
In Practice

RETORCH*: A Cost and Resource aware Model for E2E Testing in the Cloud

Cristian Augusto a,*, Jesús Morán a, Antonia Bertolino b, Claudio de la Riva a, Javier Tuya a

a Computer Science Department, University of Oviedo, Gijón, Spain
b ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy

A R T I C L E I N F O

Editor: Prof J. C. Duenas

Keywords:
Software engineering
Test optimization
Software testing
Cloud computing
End-to-end testing
E2E testing

A B S T R A C T

Moving testing to the Cloud overcomes time/resource constraints by leveraging an unlimited and elastic infra-
structure, especially for testing levels like End-to-End (E2E) that require a high number of resources and/or
execution time. However, it introduces new challenges to those already faced on-premises, like selecting the most
suitable Cloud infrastructure and billing scheme. We propose the RETORCH* test execution model that estimates
and compares the monetary cost of executing an E2E test suite with different Cloud alternatives, billing schemes,
and test configurations. RETORCH* goes beyond the mere cost billed, and selects the solution that best aligns
with the test team strategy using the data of on-premises prior executions and the tester’s experience. This cost is
broken down into the cost incurred to execute the test suite (testing cost) and possible unused infrastructure
(overprovisioning cost). Based on these distinct costs, the test team can compare different Cloud and test con-
figurations. RETORCH* has been evaluated using a real-world application’s E2E test suite. We analyze how the
different decisions taken when the suite is migrated to the Cloud impact the cost, highlighting how RETORCH*
can help the tester during Cloud and test configuration to make a more informed decision.

1. Introduction

Moving test suite execution to the Cloud is an acknowledged trend
(Bertolino et al., 2019) to overcome testing resources constraints by
leveraging the potentially unlimited and scalable infrastructure. This
trend, even more, applies to resource intensive testing levels like
End-to-End (E2E), which validate all interactions between system
components, from end-user interactions down to low-level components.
This validation requires significant Resources1 such as web servers,
browsers, or large databases, which in turn results in further use of re-
sources due to the high execution time, the cost of replicating Resources,
or the set-up of the system, among others.

Cloud testing removes the resource limit barriers for E2E test
execution, but puts new challenges on top of the ones already faced on-
premises, also because the E2E testing infrastructure usage patterns
differ from a standard application in production. Typically, the Cloud
infrastructure is shared among multiple test teams and projects, and E2E
test suites undergo multiple executions, resulting in a non-uniform uti-
lization of the Cloud infrastructure with usage peaks. Furthermore, the
Cloud providers offer a broad range of different infrastructure

alternatives with heterogeneous billing schemes that are not always
aligned with the E2E test execution requirements, leaving the testers in
“the agony of choice” (Zhang et al., 2012) among all these alternatives.

In prior work (Augusto et al., 2020) we addressed the efficient
execution of E2E test suites through an E2E test orchestration approach
called RETORCH, which optimized the test configuration and execution
ordering based on a proper characterization of the Resources required
by the test cases. This optimized configuration involved sharing Re-
sources among compatible test cases, either by sharing the entire System
Under Test (SUT) or specific parts of it. Alternatively, those test cases
that might otherwise produce collateral effects (Gyori et al., 2015) on
the rest of the test suite were executed in isolation.

In this article, we extend our previous work (Augusto et al., 2020) by
considering a new factor: the cost of executing the E2E test suite in the
Cloud. This factor is used to optimize the E2E test execution, through the
estimation of the monetary costs of executing the E2E test suite with
different test configurations (e.g., test case arrangements), and Cloud
alternatives (e.g., virtual machines, containers) under different
contractual schemes. For clarity, we refer to the new extended model as
RETORCH*, whereas the original term RETORCH is used when expressly

* Corresponding author.
E-mail addresses: augustocristian@uniovi.es (C. Augusto), moranjesus@uniovi.es (J. Morán), antonia.bertolino@isti.cnr.it (A. Bertolino), claudio@uniovi.es

(C. de la Riva), tuya@uniovi.es (J. Tuya).
1 Henceforth, we will use the term "Resources" (capitalized) when referring to the ones required by the E2E test suite.

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

https://doi.org/10.1016/j.jss.2024.112237
Received 13 August 2024; Accepted 2 October 2024

The Journal of Systems and Software 221 (2025) 112237

Available online 3 October 2024
0164-1212/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

mailto:augustocristian@uniovi.es
mailto:moranjesus@uniovi.es
mailto:antonia.bertolino@isti.cnr.it
mailto:claudio@uniovi.es
mailto:tuya@uniovi.es
www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2024.112237
https://doi.org/10.1016/j.jss.2024.112237
https://doi.org/10.1016/j.jss.2024.112237
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

referring to the previous version (Augusto et al., 2020).
While there exists a wide literature on managing and scheduling

Cloud resources (García-Galán et al., 2017; García Galán, 2015), to the
best of our knowledge this is the first work that focuses specifically on
how to estimate the costs of executing the E2E test suites in a Cloud
Infrastructure. The construction and validation of the RETORCH* model
relies on the one side on our long-term expertise in testing approaches
and strategies, and on the other side on an extensive analysis and
abstraction of the different offerings from the most popular Could pro-
viders. RETORCH* combines the two perspectives into one model spe-
cifically tailored for E2E testing and supports a test team with an easy
visual illustration (called the Usage Profile) of the possible costs for
different alternative solutions. It is worth noting that RETORCH* does
not incur any billing cost to make the estimation, since it does not
require the actual deployment of the alternatives in the Cloud: it uses
past data (from on-premises or other Cloud executions) and an easy
tuning by the tester. After comparing the different alternatives,
RETORCH* not solely provides the overall cost of Cloud (as the
state-of-the-art tools discussed in Section 5.3), but also the cost of
executing the test suite and the amount of unused infrastructure (over-
provisioning). These different costs for each Cloud alternative, billing
scheme, and test configuration are provided to the tester who can thus
select the one that is more aligned with the test team’s objectives. More
specifically, this article provides the following contributions:

(1) An End-to-End Test Execution Model in the Cloud, which enables
the representation of the Cloud Configuration with different op-
tions of Cloud infrastructure and billing schemes and the Test
Configuration with the different options related to the test
execution.

(2) The cost estimation of an E2E test suite execution in the Cloud,
considering not only the Overall cost (contracted) but also the
Test execution, Set-up, Tear-down, and Overprovisioning costs,
which enables the comparison of different Cloud Infrastructures
and Test configurations.

(3) An evaluation of the model comparing different Cloud in-
frastructures and test configurations, allowing the tester to
analyze the impact of selecting different Cloud alternatives,
billing schemes, test configurations, and Cloud Infrastructure
sharing.

The remainder of this paper is organized as follows: In Section 2, we
introduce RETORCH* and provide the necessary background informa-
tion about the previous RETORCH model. Section 3 further presents the
cost model and how it works. In Section 4, we explain the methodology
used in evaluating RETORCH*, including the research questions, the
results, and the threats to validity. Sections 5 presents the related work.
Finally, in Section 6, we present the conclusions drawn from our study
and outline future directions for research.

2. RETORCH* model

The RETORCH* E2E Test Execution Model in the Cloud is composed
by the Test Orchestration Submodel (TOSM) and the Cloud Configura-
tion Submodel (CCSM). The former represents the E2E test cases, the test
Resources they require, and how they are arranged during the E2E test
suite execution, extending in several aspects our RETORCH original
model (Augusto et al., 2020) (summarized below in Section 2.1).

The complete RETORCH* model is depicted in Fig. 1, with TOSM in
gray color (dotted line) and CCSM in blue color (continuous line).

2.1. Background

To make the paper self-contained, we briefly recall the RETORCH
E2E test orchestration technique (Augusto et al., 2020), which allows for
optimizing the execution of E2E test suites based on the proper

characterization of the test Resources required for their execution.
RETORCH relies on three important concepts, namely:

• Resources are physical, logical, or computational entities that are
required during the execution of the E2E test cases. The Resources
are characterized by a series of static and dynamic attributes, which
provide additional information about each Resource and how it can
be used.

• TJobs are a set of test cases with compatible Resource usage inside a
container2 that also provides the environment and containerized
Resources composing the System Under Test (SUT)

• Execution Plan is the sequence of TJobs that is given as output by
RETORCH. The different TJobs are organized in sequential or par-
allel ordering based on the Resource usage.

RETORCH gets as input the test cases, groups them according to their
usage of Resources, and provides in output an Execution Plan. Fig. 2
depicts the steps of such a process: the test cases are characterized by
their different attributes and access modes in the Resource Identifi-
cation phase. Then these test cases are grouped according to their
compatible Resource usage and scheduled based on their group assign-
ments, forming the TJobs in the Grouping and Scheduling phase (e.g.,
two test cases that use the same Resource without making modifications
can be executed together, while another test case that changes the same
Resource and might affect the previous ones should be executed in
isolation). Finally, in the Deployment phase the TJobs are deployed
into a Continuous Integration Environment like Travis, Jenkins, GitLab
CI/CD, or Azure Pipelines.

2.2. Test Orchestration Submodel

As mentioned above, the Test Orchestration Submodel extends the
original RETORCH model (Augusto et al., 2020) aiming to identify the
additional entities/attributes required to move the E2E test suite
execution to the Cloud.

2.2.1. TJobs
The TJobs are extended with a lifecycle that comprises three distinct

phases (Set-up, Test Execution, and Tear-down), as illustrated in Fig. 3.
During the TJob Set-up phase, the SUT is prepared for execution by

deploying the Resources within the infrastructure. Once everything is
ready, the Test Execution phase begins, during which the test cases are
executed against the SUT. Finally, in the TJob Tear-down phase, all
necessary cleaning actions to ensure that the environment is left in a
proper state are performed. These stages were not distinguished in the
original RETORCH approach; here we need them for a more precise
assessment of Cloud utilization costs.

2.2.2. Resources
In RETORCH*, for deploying a Resource in a specific infrastructure

some requirements have to be fulfilled to ensure the Resource’s proper
operation. By Minimal Capacities we denote the infrastructure speci-
fications required to deploy a single Resource. The Minimal Capacities
have a category (such as memory, processors, or storage) and a size (e.g.,
1vCPU, 1 GB of memory, or 1 TB of storage). The Minimal Capacities in
combination with The TJob lifecycles not only enable us to size the
contracted Cloud Infrastructure, but also devise how this infrastructure
is used.

We extend the concept of Resource with the definition of the
Resource Instance that serves as connection between the Test Config-
uration and the Cloud Configuration model. Resource Instances are

2 A lightweight virtualized environment with only the essential binaries and
libraries required for the application’s execution. See more (Koskinen et al.,
2019)

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

2

Resources hosted into a specific infrastructure (either on-premises or in
the Cloud) for use by a single TJob. A Resource can be instantiated
multiple times, creating a single Resource instance for each TJob that
requires it. For example, if several TJobs require the same database with
users, the Resource is instantiated in several Resource Instances, one for
each TJob.

2.3. Cloud Configuration Submodel

The Cloud Configuration Submodel (CCSM) is depicted in blue color
in Fig. 1 and represents the Cloud infrastructure over which the TJobs
are going to be deployed according to the different Resource Instances
that are required during the Execution Plan. The CCSM represents the
infrastructure characteristics, Cloud Provider, and billing information; it
enables cost estimation with a series of new entities detailed in the
following subsections.

2.3.1. Cloud Objects
Cloud Objects are virtual computing environments over the Internet

that are contracted with a Cloud Provider and used as execution plat-
forms for the TJobs. To construct RETORCH*, we comprehensively
examined the different types of Infrastructure, Platform, and Software as
Service offerings provided by prominent providers such as Alibaba Cloud
(Aliyun 2023), Amazon Web Services (AWS) (Amazon 2023), Google

Cloud (Google 2023), Digital Ocean (Digital Ocean 2023) and IBM Cloud
(IBM 2023). Through our analysis, we identified three primary cate-
gories among these offerings:

1. Virtual Machines are digital versions of a physical computer on
which an entire operating system and binaries are installed. Virtual
Machines (also referred as instances (Aliyun, 2023; Amazon, 2023a,
Google, 2023; Digital Ocean, 2023; IBM, 2023)) are the most com-
mon Infrastructure as a Service (IaaS). The Virtual Machines are
usually classified based on their size and/or intended purpose, ex-
amples are "bx2–4x16″ and "cx2d-8x16″ in IBM Cloud, "t2-nano" and
"t2-small" in AWS, or "ecs.g8a.large" and "ecs.g7se.xlarge" in Alibaba
Cloud. Virtual Machines require the highest degree of management in
the Cloud, for maintaining the whole operating system along with
the platforms required to deploy Resources such as Docker, web
servers, or applications.

2. Containers are lightweight packages of application code and of the
dependencies required to deploy a Resource. Considered also as a
distinct Cloud service known as Container as a Service (CaaS)
(Piraghaj et al., 2017), they require a lower degree of management
by requiring users only to handle the dependencies and installed
libraries.

3. Services are self-maintained Resources that are fully managed by the
Cloud Providers and delivered on demand for their direct usage in
the E2E test suite execution. Services are part of the Software as a
Service (SaaS) option and entail the minimal degree of management.

2.3.2. Billing Option
Billing options represent the different ways in which the Cloud of-

ferings are charged by one Cloud Provider in terms of time andmoney. A
Billing Option consists of an Invoiced Price for each Contracted

Fig. 1. RETORCH* Model of the E2E Test Execution in the Cloud.

Fig. 2. RETORCH orchestration technique.

Fig. 3. TJob lifecycle phases.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

3

Capacity and a Billing Period, which is the minimal time slot for which
a Cloud Object can be bought. In RETORCH* depending on the billing
period, we differentiate between two options:

1. Pay-as-you-go (on-demand): users pay only for the time a Cloud
Object is provisioned and used, which is characterized by short billing
periods (e.g., milliseconds or seconds).

2. Pre-Invoiced (subscription): this option requires a reservation and
advance payment for a longer billing period (hourly, daily, monthly,
or yearly). This Billing Option usually includes discounts for reser-
vations but does not allow users to release the Cloud Object in
advance, i.e., they also pay for unused time.

2.3.3. Cloud Object Instances
The Cloud Object Instances (COI) are Cloud Objects contracted under

a specific Billing Option from a Cloud Provider and used by the Resource
Instances of one to multiple TJobs during the execution of the Execution
Plan. The Cloud Object Instances have a lifecycle of three phases
(depicted in Fig. 4), in which we distinguish the Contracted Capacities
and time used for the Set-up, the TJob Execution and the Tear-down of
the Cloud Object Instance.

More in detail the lifecycle phases include:

• Provisioning and de-provisioning: they are the start and end,
respectively, of the lifecycle, in which the Cloud Object Instance is
reserved under a Billing Option and hence released. Both phases are
defined in each Cloud Object Instance with the Provisioning time and
Deprovisioning time.

• COI Set-Up: during this phase, the entire Cloud Object Instance is
blocked for installing the necessary tools and performing the
different configurations. The duration of the set-up depends on the
type of Cloud Object used, e.g., one virtual machine requires several
configuration steps, such as installing a monitoring platform or a
containerization engine, while a service provides Resources on-the-
fly with a minimal set-up time.

• TJob Execution: once the Cloud Object Instance is ready, TJobs
using it can start deploying the different Resource Instances either
sequentially or in parallel. Each TJob during this phase performs its
self-set-up, executes the test cases until the last test has finished and
perform its own necessary tear-down actions. The start of this phase
is defined by the Set-up of the earlier TJob and the Tear-down of the
last TJob.

• COI Tear-down: during this phase, the Cloud Object Instances are
shut down, and several actions such as saving the different test
outputs or logs are performed before the de-provisioning of the Cloud
Object Instance.

2.3.4. Contracted Capacities
The Contracted Capacities are the different Cloud Object specifi-

cations that are contracted under a Billing Option and used during the
execution of the Execution Plan.

Each Contracted Capacity belongs to a category; in the CCSM we
consider memory, storage, processors, graphical units, and slots (logical
partitions used to deploy fully managed Resource Instances). The Con-
tracted Capacities also have a size that represents the amount available.
Depending on the Cloud Provider (Azure, AWS, IBM among others) and
Object Contracted, the Contracted Capacity can be offered in a fixed
range (e.g., a t2.nano is a virtual machine with 1 vCPU and 0.5 GB of

memory) or can be fine-tuned (e.g., a custom virtual machine with 200
MB of memory and 0.5 vCPU). Below are the common Contracted Ca-
pacities available with their sizes and categories in most of the Cloud
Providers and Objects:

1. Virtual machines are usually contracted with four different Con-
tracted Capacities categories: the (1) memory and (2) storage cate-
gories, sized in Mb/GB, the (3) processors and (4) graphical units sized
in a number of cores or processors.

2. Containers are contracted with three different Contracted Capac-
ities categories: thememory size in Mb/GB, the processors and graphical
units sized in a number of cores or processors.

3. Services are heterogeneous and each is offered differently. In
RETORCH we focus on one single Contracted Capacity: number of
Resource Instances that are provided. We refer to them as slots,
whereby one slot is a logical partition of the service on which the
provider deploys on-the-fly a fully managed Resource Instance ready
for usage. For example, Aerokube (the enterprise that develops
Selenoid) provides Moon, an as-a-service web browser service. The
number of contracted web browsers in Moon are the slots of the
service, being individual browsers that can be used in parallel to test
the applications.

3. RETORCH* cost estimation

This section describes how RETORCH* supports the estimation of the
cost implied by the execution of the E2E test cases in the Cloud, which
we refer to as the Overall cost. From the RETORCH* model we get the
duration of different lifecycle phases, and the Contracted and Minimal
Capacities used during these phases. However, to link the Capacities
used/Contracted, the time with the estimation of the different costs, we
need three new concepts: the Utilization, the Overprovisioning, and
the Usage Profile:

• Utilization: the percentage of the total Contracted Capacity of a
Cloud Object Instance that is used by a single TJob in a concrete COI
and TJob lifecycle phase (Set-up, Test Execution, or Tear-down). The
calculation of the utilization of the total Contracted Capacities is
based on the division against the TJob Resources Minimal Capacities
multiplied times 100.

• Overprovisioning: the percentage of Contracted Capacity and time
of a COI that is not used by the Execution Plan, resulting in an idle
infrastructure and impacting negatively in the efficient use of the
Contracted Cloud Object Instance.

• Usage Profile: graphical representation of the utilization of Con-
tracted Capacities across different lifecycle stages of multiple Cloud
Object Instances within the same Cloud Object category during the
time that are provisioned. The Usage Profile shows the utilization of
Contracted Capacities at each COI and TJob lifecycle stage, as well as
the overprovisioning during the provisioned time.

Fig. 5 presents a simple example of a Usage Profile of Service (COI)
with a Contracted Capacity of 4 slots (shown in the vertical axis), under
a pre-invoiced Billing Option with a two-minute billing period (120 s
shown in the horizontal axis). We use this example to outline how we
apply the model estimations.

The COI takes 15 s to Set-up (shown in grey in Fig. 5), after which the
TJob Execution starts. The first three TJobs (TJob 1, 2, and 3) require

Fig. 4. COI lifecycle phases.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

4

2,1 and 1 slots of Contracted Capacities (vertical axis). The three TJobs
start their execution at the 16th second, taking 8 s to complete their Set-
up (yellow in Fig. 5), 16, 30, and 35 s of the TJob execution (shown in
orange in Fig. 5) and 5 seconds the Tear-down (shown in green in Fig. 5).
The three first TJobs are followed by the next ones (TJobs 4, 5, and 6),
which start their execution at the 70th second. These TJobs also take 8 s
for the Set-up, 12, 22 and 30 s respectively for the Test Execution and 4 s
to Tear-down. Last, the COI enters its tear-down, which takes 4 s (shown
in violet in Fig. 5). The Fig. 5 blue area that remains beyond the rest of
the colors represents the overprovisioning (i.e., slots of Contracted Ca-
pacities not used by any TJob).

The Usage Profile provides insights about the utilization for all life-
cycle phases of both the infrastructure and the TJobs that would run into
the COI as well as the overprovisioning. This utilization can be calcu-
lated by measuring the areas contracted and used by the different TJobs-
COI phases. In this example, we have 480 slots-seconds available (120 s
x 4 slots provisioned). Of these, 60 slots-seconds are allocated to the COI
setup, 60 slots-seconds to the TJobs Set-up, 67 slots-seconds to the Test
Execution, 34 slots-seconds to the TJob Tear-down, and 20 slots-seconds
to the COI Tear-down.

In utilization terms, means that the COI utilizes 12.5% for the Set-up
and 4.1% for the Tear-down while the TJobs utilize 12.5% for Set-up,
13.95% for the Test Execution, and 7.08% for Tear-down. The remain-
ing provisioned slots-second (143) represent an overprovisioning of
29.79%.

After this illustrative example, we can summarize the definition of
these costs as follows:

• Overall cost: the cost that is invoiced by the Cloud Provider for the
Cloud Infrastructure contracted, calculated as the product between
the Cloud Object Instance Contracted Capacities Invoiced Price and
the contracted time. The Overall cost can be distributed over several
executions of the same or different Execution Plans that use the
Cloud Infrastructure.

• Testing cost: the cost of Contracted Capacities and time employed in
tasks related to the testing process during the Execution Plan
execution. The testing costs are computed considering the lifecycles
of both TJobs and Cloud Object Instances:
○ Execution cost represented by the orange area in Fig. 5, is the cost
associated with TJobs Test Execution lifecycle phase.

○ Set-up cost represented by the gray and yellow areas in Fig. 5, is
the cost of the COI and TJobs Set-up lifecycle phases.

○ Tear-down cost represented by the violet and green areas in
Fig. 5, is the cost of the COI and TJobs Tear-down lifecycle phases.

• Overprovisioning cost represented in blue color in Fig. 5, is the cost
of the rest of the Contracted Capacity that is not used for testing
tasks.

4. Evaluation methodology design

In this section, we provide the formulation design of the study we
conducted to evaluate our cost model. Precisely, according to the critical
analysis by Wohlin and Rainer (Wohlin and Rainer, 2022), our study can
be qualified as a small-scale evaluation. In Section 4.1 we define the
Research Questions, and in Section 4.2 we present the context of our
evaluation (including the System Under Test, the infrastructure and the
different assumptions). Then Sections 4.3 to 4.6 present how the eval-
uation is carried out, focusing on the four major decisions that impact
the cost and efficiency of test execution to the Cloud: I) the Cloud Ob-
jects; II) the Billing Option; III) the Execution Plan of TJobs; and IV)
sharing the infrastructure among different projects.

4.1. Research Questions

To derive our Research Questions we employ theGoal Question Metric
(GCM) paradigm (Basili et al., 1994). The goal of the study is evaluating
how RETORCH* can support the test and Cloud configuration when E2E
testing is carried over the Cloud. We address the purpose of assessing the
impact of three main selection decisions: a) the Cloud Objects, b) the
billing option, and c) the Execution Plan. The perspective is from the
tester point of view, who is interested in evaluating the impact of those
decisions on the costs of E2E testing in the Cloud. Based on the three
above decisions, we identify the three following Research Questions:

RQ 1: Can RETORCH* support the tester decisions by comparing
how the costs of the different test and Cloud configurations vary by:

RQ 1.a: Choosing different Cloud Object categories?
RQ 1.b: Choosing different Billing Options?
RQ 1.c: Setting different Execution Plans?

The same goal could also be pursued from the same perspectivewith a
different purpose: assessing how the costs vary when a common Cloud
infrastructure is shared among several projects and teams. We then ask
an additional Research Question as follows:

RQ 2: Can RETORCH* support the tester decisions by comparing
how the costs of the different Cloud and test configuration vary when the
infrastructure is shared among different projects?

To answer the above four Research Questions, we observe
RETORCH* outcomes by assessing the following three metrics:

Fig. 5. Example of an as-a-service web browsers Usage Profile.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

5

M1: The costs provided by the RETORCH* model, measured in dol-
lars: Overall cost, Test Execution cost, Set-up cost, Tear-down cost
and the Overprovisioning cost.
M2: % of Utilization
M3: % of Overprovisioning

Concerning M2 and M3, in addition to the metrics we also rely on the
graphical representation of the Usage Profile, which is a key tool pro-
vided to the testers for aiding their decisions. Indeed, our assumption is
that these metrics and the Usage Profile can be inspected by the tester as
a support for deciding which test and Cloud configuration is the most
convenient for the system test process on hand.

In our evaluation study we employ the following strategy: given the
four decisions that impact the cost of E2E Cloud testing (Cloud Object
categories, Billing Options, Execution Plans and Infrastructure sharing),
in each RQ we vary only one of them while fixing the other ones. Each
RQ is answered in an individual subsection, in which we provide its
individual set up, the evaluation results and its analysis. Precisely:

• To address RQ 1.a in Section 4.3, we set the Execution Plan obtained
as output from the RETORCH orchestration tool (Augusto et al.,
2020) and Pay-as-you-go Billing Option type, and we explore the
selection of different Cloud Object categories.

• To address RQ 1.b in Section 4.4, we set the Execution Plan and the
Cloud Objects explored in RQ 1.a and we vary the Billing Option
types by comparing the Pay-as-you-go option (the same as RQ 1.a)
with the Pre-invoiced one.

• To address RQ 1.c in Section 4.5, we fix the Cloud Object categories
and Billing Option used in RQ 1.a and we use different Execution
Plans which vary the TJob parallelism.

• Finally, to address RQ 2 in Section 4.6, we use as Cloud Object
category the virtual machine, and the Execution Plan and Billing
option used in RQ 1.a. We increase the capacities of the virtual
machine, albeit one that is already in use by other Execution Plans to
explore the impact of sharing the test infrastructure.

4.2. Context of the evaluation

As the subject of the evaluation, we use a real-world application
called FullTeaching (ElasTest EU Project 2017), a demonstrator in the
European Project ElasTest (Garcia et al., 2018). The application provides
a platform to ease online teaching with videocalls, forums or messaging,
and uses complex Resources such as web and multimedia servers or
databases, as well as Resources required during the testing phase as
web-browsers. The application has available two test suites in the
ElasTest-URJC repositories (ElasTest EU Project 2017), with a total of 21
E2E test cases, which validate the teacher and students functionalities, e.
g., by creating a new course, posting comments, attending a classroom,
sending messages. This test suite was the input to the RETORCH tool,
that provides the Execution Plan with the different TJobs in sequential
and/or in parallel way.

The Continuous Integration infrastructure used is a physical
server running Windows Server 2019 with Hyper-V hypervisor, on
which a Jenkins continuous integration environment with several agents
is installed. The test runs used in the evaluation were executed in a
dedicated agent with 12 virtual cores and 32 GB of memory of the 32
threads (2 × Xeon CPU E5–2620 v4 processors) and 128 GB of memory
installed. The agent has access to the virtual machine Docker engine
being able to deploy and tear down the different Resource Instances,
through the commands of each TJob. The browsers are provided
containerized by Selenoid as required by the TJobs, where each session
is recorded and stored for later analysis. This infrastructure emulates the
existing on-premises infrastructure that is intended to be migrated to the
Cloud for executing the E2E test suite (see Section 4.3)

Dataset creation: using the above-described CI infrastructure, we
executed 10 times each Execution Plan and collected the different times

of its COI and TJob lifecycle phases. We have processed these 10
consecutive executions to create a dataset with the average duration
each lifecycle (Augusto et al., 2024) (onwards referred to as the average
datasets).

To estimate the different costs, we use the average datasets of each
Execution Plan with a series of parameters: the number of Execution
Plan executions/hour and the extrapolated time, the COI Con-
tracted Capacities, and the estimated COI Set-up time.

The number of Execution Plan executions/hour is set to 3: this
number has been set as a plausible value, after analyzing the peak of
executions (4) of our CI system. The extrapolated time used to analyze
the RETORCH* costs is one year, as well as the minimal billing-period
with discount available in the Cloud provider used for the RQ 1.b
containers and virtual machines, see below. The Contracted Capacities
and the estimated COI Set-up time are set according to the different
Cloud Object categories as the following:

• Virtual machines: are supposed to have a similar Set-up time and
Contracted Capacities of the on-premises agent (32 GB and 12 cores).

• Containers: the average Set-up time of the COI is increased in 1 min
(Janakiram, 2023) and are contracted according to the Resource
Minimal Capacities observed in our continuous integration system
(e.g., the database has 0.29 GB of memory and 0.2 virtual
processors).

• Services: are intended to be provisioned with no-Set-up time and
including as many Contracted Capacities as required.

Cloud Provider: We have considered multiple providers to highlight
the "Cloud Provider agnosticism" of our model and to explore various
billing options offered by these Cloud Providers. While most major
Cloud Providers offer similar services at comparable prices, this decision
allows us to delve into their nuances. In our case, we have chosen ser-
vices from three leading Cloud Providers: Google Cloud Platform, Azure,
and AWS.

For better readability, related to the Usage Profiles in the figures
below we show the Contracted Capacities used during 1 hour of the one-
year time extrapolated. In the case of the containers, the Contracted
Capacities that are shown correspond to the entire container group (a set
of containers contracted and invoiced together) to ease both the repre-
sentation and analysis.

4.3. [RQ 1.a]: Impact of the Cloud Object category

To answer RQ 1.a, we analyze how RETORCH* supports the tester in
selecting one Cloud Object category by showing it impact on the cost
(M1), utilization (M2) and overprovisioning (M3) of the E2E test
execution.

4.3.1. Evaluation set-up
To evaluate the impact of the Cloud Object category, we fixed both

the Billing Option and the Execution Plan and explored three different
Cloud Object categories offered by three major Cloud Providers. The
Cloud Object Instances and their Billing Options were retrieved from
Google Cloud Platform (Google, 2023), Azure Container Instances
(Microsoft 2023), and AWS Device Farm (Amazon 2023c) portals on the
21 of June of 2023 and are the following:

1. Virtual Machine into the Google Cloud Provider (N1) on which we
deploy all Resource Instances located in the Region of London
(Europe-west2). The virtual machine Billing Option has a billing period
of 1 hour with Contracted Capacities Invoiced Prices of $0.05453/GB
of memory and $0.040692/vcore of processor.

2. Containers are provisioned in Azure Container Instances, deploying
each Resource Instance into a separate container in the North Europe
region. The containers Billing Option has a billing period of one

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

6

second and its Contracted Capacities Invoiced Price is $0.0000013/
GB and $0.0000113/vcore.

3. Services to provide the web browsers combined with the rest of the
Resource Instances deployed into containers. The services are pro-
visioned by AWS (Device farm) and their Billing Option has a 1-min-
ute billing period with a Contracted Capacity (slots) Invoiced Price of
$0.19/slot. The rest of Resources Instances are deployed into Azure
Container Instances with identical Billing Option and region that the
above item.

The Execution Plan is specified into a pipelining code (Jenkins file)
generated by our RETORCH tool. The Execution Plan is depicted in Fig. 6
Ⓐ, the boxes represent the TJobs labeled with different letters (C to N).
Each group of TJobs (e.g., C, D, E, F, and G) is parallelized and syn-
chronized with the following group (e.g., TJobs C-G are synchronized
with TJobs H-L) through different Jenkins Stages. The length of each
TJob corresponds to its duration in seconds, and its positioning in the
figure depicts when it is executed in the Execution Plan.

Fig. 6 Ⓑ represents the number of Resource Instances required
during the Execution Plan execution: web servers (blue), OpenVidu
servers (dark green), mocks of the OpenVidu server (light green), web
browsers (red) and databases (orange).

Table 1 depicts the data contained in the average dataset of the
RETORCH Execution Plan. The first column represents each TJob
whereas the columns groups COI and TJob depict the average of dura-
tions (difference between the start and end) in seconds of each lifecycle
phase, respectively.

4.3.2. Evaluation results
Fig. 7 depicts the Usage Profiles of the different Contracted Capac-

ities the memory (Ⓐ), processor (Ⓑ), and slots (Ⓒ) for the virtual ma-
chine (①) deployed in GPC (Google Cloud Platform), the container group
(②) in Azure (Container Instances) and the devices with containers (③)
contracted in AWS (Device Farm) and Azure respectively.

The Contracted Capacities used during the different lifecycles are

represented in all graphs with the same colors: the yellow color Set-up of
the COI/TJobs, the Test Execution is in orange, and finally, the Tear-
down is represented in violet color (slight line at the end of each Test
Execution phase). Additionally, the blue color represents the Contracted
Capacity that is overprovisioned.

In the virtual machine (Fig. 7 ①) there is a significant over-
provisioning (M3) of the two Contracted Capacities. The remaining
Contracted Capacities utilization (M2) are allocated to the Set-up and
Test Execution of the TJob, with a smaller portion allocated for the Tear-
down of the TJobs-COI. The high percentage of overprovisioning (M3:
77% and 70% respectively) is due to a fixed one-hour billing period not
allowing earlier release.

In the containers (Fig. 7②) and the services (Fig. 7③) alternatives,Fig. 6. RETORCH Execution Plan.

Table 1
RETORCH Execution Plan times.

TJob COI TJob

Set-up
(s)

Tear-down
(s)

Set-up
(s)

Execution
(s)

Tear-down
(s)

C

3.7 1.2

54 96.7 4.8
D 58.8 122.9 2.5
E 59.8 104.6 2.8
F 62.3 140.4 2.7
G 63.5 138.3 2.3
H 47.3 89 2.8
I 46.4 96.8 2.5
J 50.4 297.8 2.3
K 50.6 154.1 2.1
L 53 86.9 2.8
M 29.6 59 2.6
O 30.7 53.5 2.4

Fig. 7. Usage Profile Virtual Machine, Containers, and Services.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

7

we can observe a similar percentage of usage (M2) in memory and
processor, lower in the containers because the browsers are not
containerized. The containers show a zero percentage of over-
provisioning (M3) due to the short billing period of the Billing Option (1
second) enabling the release of the COI at the same moment that the
TJob ends. On the other hand, the service slots used to deploy the
browsers in Fig. 7 (③Ⓒ) present the opposite case where the Contracted
Capacity presents a percentage of overprovisioning (M3) of16% by its
longer billing period (1 min).

In both containers and services, the percentage of utilization (M2) of
the different Contracted Capacities and costs (M1) are primarily allo-
cated to COI/TJob Set-up and Execution, and a smaller portion is
dedicated to Tear-down; on the other hand, the services (slots) are pri-
marily allocated to the TJob/COI Execution with no Contracted Ca-
pacities used for the Set-up and Tear-down.

Table 2 shows for each COI the percentage of utilization(M2),
overprovisioning (M3) and the different costs (M1) of the Contracted
Capacities (in dollars) for each lifecycle of the COI/TJob phase (Set-up,
Execution, and Tear-down) as well as its Overall cost.

4.3.3. Evaluation analysis
Considering the Overall cost (M1), the containers with a total cost of

$2097.53 are 36% and 96% cheaper than the virtual machine and ser-
vices respectively. Analyzing the alternatives in terms of testing cost
(M1), the virtual machine with a cost of $1622.91 is 23% and 96%
cheaper than the containers and services (M1: $2097.53 and
$37,992.93). The services are significantly more expensive (over 90% in
terms of Overall cost (M1)), due to the browser service price, but shows
how the Resources cost can be invested only in the TJob execution with
no Set-up or Tear-down costs.

Given the above results, we could answer the RQ 1.a as:

4.4. [RQ 1.b] Impact of the Billing Option

To answer RQ 1.b, we aim to analyze how RETORCH* could supports
the tester decision of selecting among different Billing Option types by
showing its impact on the cost (M1), utilization (M2) and over-
provisioning (M3) of E2E test execution. It is common among most
Cloud Providers to offer Cloud Object Instances with several Billing
Options, primarily differing in the pricing for the Contracted Capacities,

depending on the amount of time that is contracted (billing period).

4.4.1. Evaluation setup
To conduct the evaluation, we have fixed the Cloud Object categories

and Execution Plan as those selected in RQ1.a.We compare theAs-you-go
BillingOptions type studied in RQ1.awith the pre-invoiced BillingOption
offered by the same Cloud Providers, projected over one year (the shortest
period available for the pre-invoiced option). The Billing Option types,
Invoiced Prices, and billing periods considered are summarized in Table 3.

4.4.2. Evaluation results
Fig. 8 illustrates the Overall costs (M1) of the Virtual Machine (Ⓐ),

containers (Ⓑ), and services (Ⓒ) for both Billing Option types: As-you-go
and Pre-invoiced. The x-axis represents the time that the Cloud Object
Instance is provisioned in hours, ranging up to 8760 h (equivalent to 1
year), while the y-axis represents the Overall cost (M1) of the three
Billing Option types. The three graphs show a trade-off point at which
the Overall cost (M1) of the As-you-go type exceeds the Pre-invoiced.

This trade-off point is reached at the 63% of usage (M2, 5519th hour)
in the case of the Virtual Machine (Fig. 8Ⓐ), 73% of usage (M2, 6395th
hour) in the containers (Fig. 8Ⓑ), and 33% of usage (M2, 2900th hour)
in the services (Fig. 8Ⓒ). Table 4 shows for each Cloud Object category
the percentage of utilization (M2) and the different costs (M1) of the
Contracted Capacities (in dollars) for each lifecycle phases of the COI/
TJob phase (Set-up, Execution, and Tear-down) as well as its Overall
cost (M1) and its Billing Option type (As-you-go and Pre-invoiced):

4.4.3. Evaluation analysis
Our findings using RETORCH* show that, as expected, the selected

type of Billing Option directly impacts in the percentage of over-
provisioning (M3) and percentage of utilization (M2) of the Cloud Ob-

ject Instances. In terms of costs (M1), after a trade-off point, the as-you-
go type becomes more costly than the pre-invoiced, which becomes the
most convenient contract. However, we are not considering here the
possible percentage of overprovisioning (M3) of the Contracted Capac-
ities. Using as reference the cost invested with a Pay-as-you-go, the
virtual machine is more cost-attractive up to $3657.76 invested, the
containers up $1127.50 invested, and the services up to $14,400.00
invested.

Table 2
RQ1.1. Costs and utilization of the Cloud Object Instances.

COI Contracted
Capacity

M2–3: Utilization (%) M1: Costs ($)

Set-
up

Test
Execution

Tear-
down

Overprovisioning Overall Set-up Test
Execution

Tear-
down

Overprovisioning

Virtual
Machine

Memory 5% 15% 1% 79% $1528.6 $111.5 $234.2 $7.4 $1175.4
Processor 9% 20% 1% 70% $4277.5 $390.1 $855.3 $24.4 $3007.8

TOTAL COSTS $5806.1 $501.6 $1089.5 $31.8 $4183.2
Containers Memory 49% 49% 2% 0% $405.9 $198.5 $201.0 $6.4 $0.0

Processor 48% 50% 2% 0% $1691.6 $812.3 $855.0 $24.4 $0.0
TOTAL COSTS $2097.5 $1010.8 $1056.0 $30.7 $0.0
Services Memory 49% 49% 2% 0% $295.3 $145.9 $145.1 $4.4 $0.0

Processor 48% 50% 2% 0% $1212.2 $583.4 $611.9 $16.8 $0.0
Slots 0% 84% 0% 16% $43,484.6 $0.0 $36,485.4 $0.0 $6999.2

TOTAL COSTS $44,992.2 $729.3 $37,242.4 $21.2 $6999.2

RQ 1.a: RETORCH* enables the tester to compare the different Cloud Object categories: Containers are more attractive in terms of Overall cost
(M1) and no Overprovisioning (M3), while the virtual machines present a better Testing cost, which is the sum of Set-up, Execution and Tear-
down (see Section 3) (M1) but a high percentage of Overprovisioning (M3). Finally, in the Services the cost of Slots is entirely invested in Test
Execution cost but Overall (M1) is by far the most expensive option.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

8

Because of the abovementioned, we could answer RQ 1.b as:

4.5. [RQ 1.c] Impact of the Execution Plan

To answer this research question, we analyze how RETORCH* sup-
ports the tester in comparing different Execution Plans in terms of cost
(M1) and percentages of utilization (M2) and overprovisioning (M3).
Execution Plans can vary in terms of execution time and Contracted
Capacities required (resulting in higher or lower parallelism). We
analyze two Execution Plans that reduce the parallelism among TJobs in
comparison with the original RETORCH Execution Plan (reducing from
5 to 4 and 3 threads of parallelism). The study is done with the Cloud
Object categories used in RQ 1.a, and considering the As-you-go Billing
Option type.

4.5.1. Evaluation SET-UP

Fig. 9 depicts the 4-Parallel and 3-Parallel Execution Plans as well as

the different Resources required:
Table 5 depicts the different TJob and COI durations, collected from

our CI system for the 4-Parallel and 3-Parallel Execution Plans.

4.5.2. Evaluation results
Fig. 10 illustrates the Usage Profile of the virtual machine (①, ④),

containers (②, ⑤), and the combined usage of containers and AWS
device browsers as a service (③,⑥) for both Execution Plans (4-Parallel
and 3-Parallel). These profiles showcase the percentages of utilization
(M2) and overprovisioning (M3) for the different Contracted Capacities:
memory (Ⓐ), processors (Ⓑ), and slots (Ⓒ). Once again, the colors
differentiate the Contracted Capacities used: yellow color represents Set-
up phase, orange represents the COI/TJob Execution phase, violet rep-
resents the COI/TJOB Tear-down phase, and blue the overprovisioned.

Considering the Usage Profiles for each Execution Plan and Cloud
Object Instance, we employed RETORCH* to estimate the costs (M1),
percentage of utilization (M2) and overprovisioning (M3) and compare
them to the original RETORCH Execution Plan. Table 6 provides a
summary of the results, the first two columns specify the Cloud Object
Instances and Execution Plan while the next columns present the costs
(M1):

In the three Execution Plans, reducing the parallelism of the Execu-
tion Plan results in a decrease in the cost (M1) of COI/TJobs Set-Up,
Execution, and Tear-down in the virtual machine: $501.63 to $446.84
to $400.48 the set-up (M1), $1089.48 to $1008.07 to $918.19 the
execution (M1), and $31.80 to $30.16 to $30.05 the Tear-down (M1).
However, the cost reduction is offset by an increase in overprovisioning
costs (M1), which rise from $4183.22 to $4321.06 to $4456.41.

Similarly, the containers also experience reduced COI/TJobs Set-up
cost (M1: $1010.76, $999.54, and $915.87), Execution cost (M1:
$1056.02, $1014.77, and $888.83), and Tear-down cost (M1) ($30.74
to $30.24 to $30.07) costs without Overprovisioning cost (M1).
Nevertheless, the container alternative remains the cheapest Cloud
Object Instance for executing the Execution Plan, with costs (M1) of
$2097.53, $2044.55, and $1834.25.

Furthermore, the combined use of services and containers yields
different prices depending on the COI/TJobs Set-up cost (M1: $729.30
to $675.15 to $673.36), Execution cost (M1: $37,242.43 to $35,276.44
to $23,353.11), and Tear-down cost (M1: $21.19 to $19.98 to $21.19)
involving browsers.

4.5.3. Evaluation analysis
According to Amdahl’s law (Gene and Amdahl, 1967), which defines

the theoretical speedup of a task when parallelism is increased, our
Execution Plan’s execution time is expected to increase by 20% and 40%
when reducing parallelism to 4 and 3 TJobs in parallel. However, in
practice, the Execution Plan takes 659.8, 660.6, and 759.9 s (COI

Table 3
Billing Option types, Invoiced prices, and Billing periods.

COI Billing Option Type Invoiced Price Billing periods

Virtual Machine As-you-go $0.135/GB $0.33/vcore 1 h
Pre-invoiced $0,0837/GB $0.2046/vcore 1 year

Containers As-you-go $ 0.0000013/GB $0.0000113/vcore 1 s
Pre-invoiced $0.000000949/GB $0.000008249/vcore 1 year

Services
As-you-go $0.19/slot 1 min
Pre-invoiced $200/slot 1 month

Fig. 8. Overall Costs of the virtual machine.

RQ 1.b: The costs calculated by RETORCH* enable testers to compare the different Billing options and help them devising which is the most
attractive option. In terms of the Overall cost (M1), RETORCH* shows that the threshold beyond which the pre-invoiced type should be selected.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

9

Tear-down from Table 1, Table 5, and Table 6). The transition from
RETORCH to 4-Parallel shows no significant increase in the average
time, while the 3-Parallel approach leads to only a 15% time increase
instead of the expected 40%. Consequently, the required Contracted
Capacities of Cloud Object Instances are lower, resulting in reduced
costs (M1) and shorter execution times.

Considering the above-presented Usage Profiles, both Execution
Plans exhibit higher percentage of overprovisioning (M3) in the virtual
machine, due to the reduction of parallelism whereas the virtual

machine Contracted Capacities remain constant. The containers Usage
Profiles are similar, characterized by minimal percentage of over-
provisioning (M3) and lower capacity requirements, due to less Con-
tracted Capacity-intensive Execution Plans. The services contracted in
the AWS device farm display a slight percentage of overprovisioning
(M3) in Contracted Capacities, which can be attributed to their longer
billing period of 1 min.

Given the abovementioned, we can answer RQ 1.c as follows:

Table 4
RQ 1.b Alternatives costs.

COI Billing
Option

Capacity M2–3: Utilization (%) M1: Costs ($)

Set-
up

Test
Execution

Tear-
down

Overprovisioning Overall Set-up Test
Execution

Tear-
down

Overprovisioning

VM As-you-go Memory 10% 16% 1% 73% $1528.6 $156.9 $250.9 $8.1 $1112.6
Processor 13% 20% 1% 66% $4277.5 $530.3 $908.7 $27.7 $2810.8

TOTAL COST $5806.1 $687.2 $1159.6 $35.9 $3923.5
VM Pre-

invoiced
Memory 10% 16% 1% 73% $962.9 $98.9 $158.0 $5.1 $700.9
Processor 12% 20% 1% 66% $2694.9 $276.7 $442.3 $14.3 $1961.6

TOTAL COST $3657.8 $375.5 $600.3 $19.5 $2662.4
Containers As-you-go Memory 49% 49% 2% 0% $405.9 $198.5 $201.0 $6.4 $0.0

Processor 48% 50% 2% 0% $1691.6 $812.3 $855.0 $24.4 $0.0
TOTAL COST $2097.5 $1010.8 $1056.0 $30.7 $0.0
Containers Pre-

invoiced
Memory 8% 9% 1% 82% $216.5 $18.2 $18.4 $0.6 $179.3
Processor 8% 9% 1% 82% $911.0 $79.4 $83.6 $2.4 $745.7

TOTAL COST $1127.5 $97.6 $102.0 $3.0 $925.0
Service As-you-go Slots 0% 84% 0% 16% $43,484.6 $0.0 $36,485.4 $0.0 $6999.2

Pre-
invoiced

0% 23% 0% 77% $14,400.0 $0.0 $3274.0 $0.0 $11,126.0

Fig. 9. 4-Parallel and 3-Parallel Execution Plans.

RQ 1.c: The Execution Plan impacts the Cloud Object Instances utilization, mostly due to the parallelization level of the TJobs. Decreased
parallelism of the TJobs leads to different capacities and time required, but also different Set-up, Execution, Tear-down and Overprovisioning
costs. Consequently, a Cloud Infrastructure that was aligned with the tester’s objectives in the past may no longer retain its optimal performance
if the Execution Plan is changed.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

10

4.6. [RQ 2] Impact of sharing

To answer RQ 2, we analyze how RETORCH* supports the tester
decision about sharing the Cloud Infrastructure by showing its impact on
the cost (M1), utilization (M2) and overprovisioning (M3) of E2E test
execution. It is typical for many companies to possess multiple appli-
cations and an already contracted Cloud Infrastructure, used for multi-
ple purposes (e.g., testing, deploy in production, or pre-production
tasks). This infrastructure might exhibit overprovisioned capacities that
could be repurposed for testing. To address RQ 2 we analyze existing
Cloud Infrastructure, comprising a Virtual Machine shared among
multiple projects. We aim to deploy the subject application (Full-
Teaching) on this infrastructure to evaluate the cost (M1), utilization
(M2) and overprovisioning (M3) of this deployment.

4.6.1. Evaluation set-up
To conduct this research question, we have fixed the RETORCH

Execution Plan (Fig. 5) and the As-you-go Billing option type used in RQ
1.a The contracted Cloud Infrastructure consists of a N1 Virtual Machine
procured through the Cloud Provider GPC with the Contracted Capac-
ities increased to 96GB of memory and 48 vcores. This contracted Cloud
Infrastructure is shared with other projects throughout the time that the
COI is provisioned. This shared use of the infrastructure is simulated
among more test suite executions of the FullTeaching test suite, using
the collected data of the RETORCH Execution Plan with different
numbers of executions per hour: the first two projects have 4 execu-
tions/hour whereas the third has 3 executions/hour.

4.6.2. Evaluation results
Fig. 11 depicts the Usage Profile of the Virtual Machine (precisely of

Table 5
RQ1.c. 4-Parallel and 3-Parallel Execution Plan times.

TJob Execution
Plan

COI TJob

Set-
up
(s)

Tear-
down
(s)

Set-
up (s)

Execution
(s)

Tear-
down
(s)

C

4-Parallel 3.9 1.1

40.5 79.3 3.1
D 42.1 91.7 2.3
E 45.1 77.3 2.6
F 44.8 106.3 2.2
G 36.9 71.1 2.4
H 39.7 80.2 2.1
I 41.1 281.5 2.3
J 42.3 133.7 2.4
K 45.5 121.5 2.4
L 46.8 83.4 2.8
M 42.5 100.4 2.3
O 44.4 82.9 3.2
C

3-Parallel 3.6 1

41.1 70.4 2.4
D 43 78 2.4
E 43.5 65.4 2.3
F 31.9 53.8 2.1
G 32.8 56.4 2.1
H 34.3 269.3 2.4
I 37.9 103.2 2.5
J 36.6 76.1 2.6
K 36.2 66.4 2.4
L 36.4 103.2 2.2
M 37.7 131.4 2.2
O 39.9 62.8 2.5

Fig. 10. Usage Profile VM, Containers, and Services with a 4-Parallel and 3-Parallel Execution Plan.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

11

Memory inⒶ, and Processor inⒷ). In the Usage Profiles, we maintain
the same color scheme for each lifecycle phase as in the previous ex-
periments, with a slight modification: the capacities used by other
projects are represented in barred color:

In terms of Overprovisioning cost (M1), the virtual machine invests
more than half of the Overall cost (M1) in capacities not used during the
testing task that can be reused for other purposes (e.g., extra Execution
Plan executions or execution of another Execution Plans) that would
lead to increasing the Overall cost. The Usage Profile shows this per-
centage of overprovisioning (M3, blue color) but also enables the tester
to take more informed cost-conscious decisions selection.

4.6.3. Evaluation analysis
Given the all the information presented in the analysis section, the

tester based on the information provided by RETORCH* could take
several decisions:

One alternative could involve reducing the number of Contracted
Capacities for the different projects. As depicted in Fig. 11, the Virtual
Machine experiences usage peaks in both Contracted Capacities from
second 228 to 342 or seconds or 1938 to second 1955. Addressing these

peaks could be achieved by adjusting the timing of RETORCH Execution
Plan executions, for instance, starting at the second 500. This adjust-
ment would reduce the number of Used Capacities, allowing for provi-
sioning a virtual machine with fewer Contracted Capacities, e.g. with 36
vcores and 40GB of Memory.

By leveraging the Usage Profile, testers can also make decisions
regarding Resource Instance sharing across all projects or between ex-
ecutions to reduce the Execution, Set-up, or Tear-down costs. For
instance, it might be possible to use a single instance of Selenoid with
enough available browsers or share Resource Instances that remain
unmodified during the execution (e.g., proxies, databases used exclu-
sively for read operations, authentication systems). Such decisions could
result in a reduction of Contracted Capacities used during Set-up, Test
Execution, or Tear-down and their cost (M1).

Lastly, another feasible decision could involve utilizing the extra
Contracted Capacities for additional projects. In this virtual machine,
starting from the 2100th second and onward, the available Contracted
Capacities not used could facilitate the deployment of other projects or
allow for running the Execution Plan more times.

Table 6
Results RQ 1.c.

Fig. 11. Usage Profile shared infrastructure.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

12

4.7. RETORCH* limitations

Despite the strengths of our model observed in the above study, we
acknowledge a series of limitations thar could hinder the applicability of
the model or the adoption by new practitioners/organizations. Those
limitations are the following:

1. Model Complexity and Usability: The complexity of our model,
while necessary to accurately capture the complexity of Cloud and
test configurations, may present challenges for practitioners with a
lack of knowledge in these areas. This could hinder the model’s us-
ability in real-world scenarios, concisely for developer teams without
Cloud infrastructure experts.

2. Dependence on Historical Data:Ourmodel relies on historical data
for estimating costs and making informed predictions. While this
approach is effective in scenarios where the historical data is avail-
able, it poses significant challenges in scenarios where the data is
unavailable or has insufficient quality/information.

4.8. Threats to validity

Notwithstanding our diligent endeavors, the validity of the results
for the different research questions above described remains susceptible
to various threats. We acknowledge the existence of the following types
(Wohlin et al., 2012):

4.8.1. Construct validity
Construct validity concerns the ability of a study to actually reflect

the question investigated, in our case the assessment of costs for E2E
testing in the Cloud. In our study, the construct validity could be
impacted by our decision to measure the test execution time within an
on-premises emulation of the test environment. While we did our best to
properly reproduce the test environment as the one that would be ac-
quired, our emulation could not be faithful to phenomena that may
occur in the Cloud and thus we could introduce some error. To mitigate
such issues, we paid particular attention to emulate the Cloud envi-
ronment, and anyhow we consider that the same potential issues would
possibly affect all the compared scenarios without introducing a bias.

4.8.2. Internal validity
One common concern regarding internal validity, i.e., potential

causes that can affect the study conclusions, is the selection of the
evaluation subjects. While it is true that the original subject chosen for
our study has a limited number of test cases and lacks higher complexity
elements like non-relational databases, proxies, and testing with mobile
devices, it remains a real-world application that was utilized as a
demonstrator in the European Project ElasTest (Bertolino et al., 2018).
To address this potential limitation, we expanded the pool of test cases
as much as possible by collecting them from multiple repositories
(ElasTest EU Project 2017) resulting in a test suite size of 21 cases. By
adopting this measure, we aimed to enhance the internal validity of our
study, improve its robustness, and ensure a more comprehensive eval-
uation of the selected subject.

4.8.3. External validity
The generalizability and real-world applicability of the observed

results from RETORCH* are subject to limitations due to various factors

such as multiple Execution Plans, Cloud Objects under several Billing
Options in different Cloud Providers. The extensive range of choices
available in the Cloud, along with the various Execution Plans possi-
bilities, makes it not feasible to test all possible combinations and
directly affects the reliability and accuracy of our results. To ensure a
comprehensive evaluation and reduce the impact of these external
threats take specific measures: Firstly, we carefully select different types
of Cloud Objects that represent the common services offered by the in-
dustry leaders. This approach enabled us to capture a more compre-
hensive understanding of RETORCH* utility by comparing different
Cloud environments. Secondly, the selected Billing Options are the most
representative: pay-as-you-go and subscription-based (Pre-invoiced).
Third, we designed the different Execution Plans focused on the Cloud
Object’s usage impact, increasing and decreasing the parallelism of the
execution.

Additionally, we acknowledge an external concern arising from the
broad applicability of the RETORCH* model to different providers, op-
tions, and Cloud Objects. We recognize factors as the variation in Billing
practices among different providers, such as Azure and AWS, which
charge a ‘fixed price’ for their standard virtual machines, while Google
Cloud adopts a more granular approach by invoicing each capacity
separately. To address this concern, our concept of capacity provides
flexibility to adapt to the evolving Cloud market and effectively address
any change.

4.8.4. Reliability
To tackle this issue and ensure reproducibility by fellow researchers,

we provide access to the user execution data, various configurations
applied (C. Augusto et al., 2023), and the End-to-End (E2E) test suite
used (C. Augusto et al., 2023).

5. Related work

This section analyzes the fields that are relevant to this article:
Subsection 5.1 presents the state-of-the-art techniques and strategies to
improve the efficiency of the test suite execution, Subsection 5.2 covers
the testing in the Cloud, Subsection 5.3 deals with costs estimation when
migrating to a Cloud infrastructure.

5.1. Efficient execution of test suites

The efficient execution of test suites remains an open challenge for
testing (Bertolino, 2007). During the last decades, research trends have
aimed at optimizing time and resources required to execute test suites.
We classify these trends as (1) minimization/reduction/prioritization-
based, (2) batching, and (3) test orchestration.

5.1.1. Minimization, reduction and prioritization techniques
The test prioritization, selection, and minimization (Yoo and Har-

man, 2012) techniques propose to order, select, or reduce the number of
test cases achieving a similar defect detection rate at a lower time/cost;
they have been validated in both academia and industry (Rothermel
et al., 2002), (Wong et al., 1998). Test prioritization, selection, and
minimization can be done according to several criteria e.g., dependency
graphs to select those tests that cover the code that has changed, or
likeness of failure according to the historical data (Greca et al., 2023).

Selection and minimization techniques (Yoo and Harman, 2012) are

RQ 2: RETORCH* can support the tester decision of share the infrastructure as well as improve its efficiency during the E2E test execution. Based
on the utilization, overprovisioning and the Usage Profile, the Test and Cloud Configurations can be tuned in order to share the use of an
infrastructure. Based on the Usage Profile the shared infrastructure Test and Cloud Configurations can be tuned to improve the efficiency of the
Execution Plan execution, such as sharing Resource Instances to avoid unnecessary redeployments, changing the Execution Plan arrangement to
reduce the Contracted Capacity usage, or execute other projects in the same Cloud Infrastructure.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

13

less effective with E2E test suites which are not usually composed of a
huge number of test cases, as for unit or integration testing. Neverthe-
less, the complexity, duration, and resources required, still can require
to identify a proper execution order or test subset. In this sense, the
Execution Plan we derive using RETORCH is in fact aimed at prioritizing
the tests to reduce test execution cost based on Resource usage; instead,
most existing prioritization approaches use instead proxy parameters
(such as coverage or similarity) for accelerating failure detection.

5.1.2. Batching techniques
Batching techniques are inspired by the strategies followed in the

biomedical field to batch multiple repository changes (commits) and
consist of executing the test suite at scheduled periods, rather than for
each repository change. Despite its effectiveness only a few works have
studied the impact of this type of techniques. Najafi et al. (Najafi et al.,
2019) studied the batching impact in Ericsson finding reductions up to
42% in the execution time. Beheshtian et al. (Beheshtian et al., 2022)
evaluated several batching techniques into a Travis CI, introducing
several new batching approaches that considers a fix batch size, variate
the size of batch according the load or risk among others. Bavand et al.
(Bavand and Rigby, 2021) proposed to employ a dynamic-risk based
batch size approach achieving time savings of 47%. Fallahzadeh et al.
(Fallahzadeh et al., 2023) introduce the parallelism to the existent
approach achieving reductions up to 81% in the number of machines
required and execution reduction. Memon et all. proposed a strategy
called TAP milestone (Memon et al., 2017), that bundle together
consecutive code commits and execute/run the milestone as frequently
as possible based on the available resources.

All the above batching approaches focus on reducing the number of
executions in a continuous integration environment, trying to impact as
less as possible the feedback time to the developer. On the other hand,
our approach tries to support the tester to select the proper test and
Cloud configuration to execute the E2E test cases (or the batches), so
RETORCH* could be complemented to configure the Cloud infrastruc-
ture according to how the commits are batched.

5.1.3. Orchestration techniques
Orchestration techniques optimize the execution of test suites by

ordering the test cases to reduce the execution time or the used re-
sources. Most of the state-of-the-art techniques focus on increasing the
level of parallelism. Chakraborty et al. (Chakraborty and Shah, 2011)
propose to optimize the cost partitioning, grouping, and scheduling of
test cases to parallelize them. Yu et al. (Yu et al., 2009), focus on
discovering underlying dependencies through clustering techniques to
enable the parallelization and share its resources without collateral ef-
fects. Cerny et al. (Frajtak and Cerny, 2022) propose an orchestration
technique that seeks test case parallelization by resource sharing based
on the type of database operations performed by the test cases. Finally,
Garcia et al. (Garcia et al., 2018) propose an orchestration of the test
suites based on the test execution (verdict-driven) or the output pro-
duced (data-driven).

Some of these techniques are effective also for optimizing E2E test
case execution and show common aspects with our RETORCH*
orchestration technique. Our resource characterization and access
modes consider dependencies such as (Yu et al., 2009), we group and
orchestrate test cases to reduce time costs as (Chakraborty and Shah,
2011), and we also use the type of operations performed by resources
such as (Frajtak and Cerny, 2022). However, none of the above pre-
sented approaches has considered to select a proper Cloud Object
combination and test orchestration, aligned with the tester objectives, as
we do in RETORCH* to achieve a cost-effective E2E test execution in the
Cloud.

5.2. Testing over the Cloud

In the testing field, there is a growing tendency of moving test suites

to the Cloud (Bertolino et al., 2019) to achieve a better cost by
leveraging unlimited and scalable resources, low entrance barriers, and
avoiding part of the licensing costs or most of the infrastructure main-
tenance (Parveen and Tilley, 2010). Several authors have discussed the
pros and cons of migrating testing to the Cloud (Parveen and Tilley,
2010, Khajeh-Hosseini et al., 2011). They warn that this migration re-
quires to analyze carefully not only the SUT characteristics and the type
of testing performed, but also new issues as legal, financial control, and
software management (Riungu-Kalliosaari et al., 2012, Riungu et al.,
2010)

Several works have shown that the Cloud is a cost-effective platform
for concurrency and load testing (Inçki et al., 2012), and several
frameworks have emerged to ease the testing in the Cloud. Yu et al. (Yu
et al., 2010, Lian et al., 2009) introduced one of the first frameworks,
ElasTest (Garcia et al., 2018) that also provides tools to execute the test
suite in the Cloud or maximize the usage of the contracted Cloud Objects
(Gambi et al., 2017). The industry response has been directed by big
technological enterprises like CloudBuild (Microsoft) (Esfahani et al.,
2016), Testin (Alibaba), Utest (Tecent), or MTC (Baidu) (Xie and Yang,
2018).

All these works share with RETORCH* the aim to achieve an efficient
test execution when migrating the execution to the Cloud. However,
previous works do not consider the optimization of the Cloud and the
Test Configuration. The closest work to our proposal is the cost addon of
ElasTest (Garcia et al., 2018), which estimates the Overall cost of the
infrastructure used. Yet, to the best of our knowledge, most frameworks
(Seybold and Domaschka, 2017) do not provide a fine grained cost
estimation as the RETORCH* model. RETORCH* is not a Cloud frame-
work itself, it is aimed at being used in combination with the other
frameworks to estimate the different costs of the orchestration (test
configuration) provided by these frameworks.

5.3. Cloud service cost estimation

Cloud Resource Orchestration techniques (Weerasiri et al., 2017)
cover a broad range of approaches to allow users to escape from “the
agony of choice” (Zhang et al., 2012) between the different services
offered by the Cloud Providers. For the enterprises the objective is
maximizing the revenue of their services/products, which lead to reduce
their operational cost as much as possible. To measure the operational
cost of a service/product the so-called Total Cost of Ownership (Li et al.,
2009), which is implemented in most of the provider’s calculation tools
(Google 2022, AWS 2022, Microsoft 2022), is generally used. Despite
the utility of these calculators to estimate the cost, they are not inter-
operable between them, which hinders the comparison of multi-cloud or
inter-provider solutions; in fact, third parties have created services and
frameworks that enable the Cloud Provider and Instances comparison
(Barnaby and Enykeev, 2022, Okraszewski, 2022). Garcia Galan et al.
(García-Galán et al., 2017) propose a DSL to model the different re-
quirements and a support of a tool for automating the selection of a
Cloud infrastructure. Plewnia et al. (Plewnia, 2021) provide a tool that
integrates several Cloud infrastructure optimization approaches.
Abdennadher et al. (Abdennadher et al., 2017) propose a decision sup-
port system integrated with the Cloud Management platforms, which
evaluates the cost of a customer’s applications using different service
providers based on Cloud pricing and applications resource models.
Truong and Dustdar (Truong and Dustdar, 2010) propose a service that
enables the cost estimation, monitoring and analysis of scientific ap-
plications, to support the researcher in the decision about what parts of
their application migrate to the Cloud. Zhang et al. (Zhang et al., 2012)
present a prototype of a visual framework that allows the user to select
and compare different Cloud services. Mezni et al. (Mezni and Abdel-
jaoued, 2018) present a Cloud service recommendation system based on
Fuzzy formal analysis that can recommend different Cloud configura-
tions based on the similarity to others users’ solutions.

RETORCH* differs from the abovementioned approaches (Zhang

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

14

et al., 2012, Barnaby and Enykeev, 2022, Okraszewski, 2022, Plewnia,
2021, Abdennadher et al., 2017, Truong and Dustdar, 2010, Mezni and
Abdeljaoued, 2018) in two key aspects. First, it focuses on achieving a
cost-effective execution of the E2E test suites in the Cloud, while the
other approaches are more generalist dealing with the migratio-
n/optimization of the existent Cloud Infrastructure. Second, while other
approaches rely on solely the Overall cost, RETORCH* breaks down this
cost in different sub-costs that enable the tester to make a more informed
selection.

6. Conclusions and future work

We have presented RETORCH*, an E2E Test Execution Model in the
Cloud, which represents the E2E test suite orchestration as well as the
Cloud infrastructure and how it is used by the Execution Plan.
RETORCH* can be used to compare different Cloud infrastructure con-
figurations, considering not only the cost that is billed by the provider
(overall cost) but also the cost incurred in the Execution Plan execution
(testing cost) and the cost incurred in Cloud infrastructure that is not
used (overprovisioning cost).

The RETORCH* model can be applied on several scenarios as a
decision-support tool for the tester. One scenario is the usage of
RETORCH * to support the migration of an existing test infrastructure to
the Cloud, comparing different Cloud Objects and Billing options based
on their different costs. Another alternative is using RETORCH* to
improve a current Cloud or test configuration, comparing a new
Execution Plans or Cloud Object to the one already used to deploy the
test suite. Finally, another scenario is the use of RETORCH* for the
continuous monitoring and improvement of a Cloud infrastructure,
comparing the current infrastructure to new Cloud and test configura-
tions to suggest changes that could lead to a more cost-effective
execution (e.g. suggesting changes in the Execution Plan, or a new ser-
vice offered by a provider to deploy as-a-service one Resource)

Through our evaluation study, we analyzed the practical application
of RETORCH*. We are aware that the utility of our model cannot be
adequately validated without a controlled experiment with human tes-
ters, which is known to require a huge amount of resources and time.
This is planned in future work. In the context of this paper, our evalu-
ation consisted of examining the impact of different costs provided by
the model, including the use of different Cloud Objects, Billing Options,
and Execution Plans. The evaluation highlighted the potential of
RETORCH* for selecting the most suitable option and estimating the cost
of executing the Execution Plan on existing contracted infrastructure.
RETORCH* is conceived to empower testers to make informed decisions
and choose alternatives that best align with their testing objectives.

In future work, we plan to continue the evaluation of RETORCH*
with more real-world examples. We also plan to create a bot to enable
the integration of RETORCH* into a CI system, to enable the continuous
analysis and improvement of both the test infrastructure and the E2E
test execution.

Declaration of generative AI and AI-assisted technologies in the writing
process

During the preparation of this work, the authors used GPT-3.5/4-
based correctors (e.g. Grammarly, Chat-GPT or Bing Copilot) to
improve readability and language. After using these tools, the authors
reviewed and edited the content as needed and take full responsibility
for the content of the publication.

CRediT authorship contribution statement

Cristian Augusto: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Resources, Software, Visualization,

Writing – original draft. Jesús Morán: Conceptualization, Formal
analysis, Methodology, Supervision, Writing – original draft, Writing –
review & editing. Antonia Bertolino: Conceptualization, Formal anal-
ysis, Methodology, Supervision, Writing – original draft, Writing – re-
view & editing. Claudio de la Riva: Conceptualization, Funding
acquisition, Methodology, Project administration, Software, Supervi-
sion, Writing – review & editing. Javier Tuya: Conceptualization,
Funding acquisition, Project administration, Software, Supervision,
Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
Cristian Augusto reports financial support was provided by Spanish
Ministry of Science and Innovation. Antonia Bertolino reports financial
support was provided by Ministry of the Environment and Energy
Safety. Jesus Moran reports financial support was provided by Spanish
Ministry of Science and Innovation. Claudio de la Riva reports financial
support was provided by Spanish Ministry of Science and Innovation.
Javier Tuya reports financial support was provided by Spanish Ministry
of Science and Innovation. Antonia Bertolino is a Senior Associate Edi-
tors of this Journal. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Data availability

The data/rp is: https://github.com/giis-uniovi/retorchx-rp.

Acknowledgments

This work was supported in part by the project PID2019-105455GB-
C32 under Grant MCIN/AEI/10.13039/501100011033 (Spain), in part
by the project PID2022-137646OB-C32 under Grant MCIN/AEI/
10.13039/501100011033/FEDER, UE, and in part by the project MASE
RDS-PTR_22_24_P2.1 Cybersecurity (Italy).

References

Abdennadher, N., Loomis, C., Belli, O., 2017. An autonomic cloud application placement
tool based on cost criteria. In: Proc. - 2017 IEEE Int. Conf. Cloud Auton. Comput.
ICCAC 2017, pp. 143–152. https://doi.org/10.1109/ICCAC.2017.21.

Aliyun, “Alibaba cloud: reliable & secure cloud solutions to empower your global
business.” Accessed: May 26, 2023. [Online]. Available: https://eu.alibabacloud.co
m/en.

Amazon, “Cloud Computing con Amazon Web Services.” Accessed: May 26, 2023.
[Online]. Available: https://aws.amazon.com/es/what-is-aws/.

Amazon, “AWS Device Farm.” Accessed: Jun. 21, 2023. [Online]. Available: https://aws.
amazon.com/en/device-farm/.

Augusto, C., Morán, J., Bertolino, A., de la Riva, C., Tuya, J., 2020. RETORCH: an
approach for resource-aware orchestration of end-to-end test cases. Softw. Qual. J.
28 (3), 1147–1171. https://doi.org/10.1007/s11219-020-09505-2. Sep.

Augusto, C., Morán, J., Bertolino,A., de la Riva, C., and Tuya, J., “Replication package for
‘RETORCH: a cost and resource aware model for E2E Testing in the Cloud’.”
Software Engineering Research Group (GIIS) of the University of Oviedo, 2023.
[Online]. Available: https://github.com/giis-uniovi/retorchx-rp/.

Augusto, C., Morán, J., de la Riva, C., and Tuya, J., “FullTeaching E2E test suite.” 2023.
[Online]. Available: https://github.com/giis-uniovi/retorch-st-fullteaching.

Augusto, C. Moran, J., De La Riva, C., and Tuya, J., “RETORCH* replication package:
average datasets.” Accessed: May 06, 2024. [Online]. Available: https://github.
com/giis-uniovi/retorchx-rp/tree/main/raw-datasets.

AWS, “AWS pricing calculator,” Aws. Accessed: Jun. 08, 2022. [Online]. Available: https
://docs.aws.amazon.com/pricing-calculator/latest/.

Barnaby, J., and Enykeev, K., “Scalyr/cloud-costs.” Accessed: Jun. 08, 2022. [Online].
Available: https://github.com/scalyr/cloud-costs.

Basili, V.R. Caldiera, G., and Rombach, H.D., “The goal question metric approach,”
Encycl. Softw. Eng., vol. 2, pp. 528–532, 1994, https://doi.org/10.1.1.104.8626.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

15

https://github.com/giis-uniovi/retorchx-rp
https://doi.org/10.1109/ICCAC.2017.21
https://eu.alibabacloud.com/en
https://eu.alibabacloud.com/en
https://aws.amazon.com/es/what-is-aws/
https://aws.amazon.com/en/device-farm/
https://aws.amazon.com/en/device-farm/
https://doi.org/10.1007/s11219-020-09505-2
https://github.com/giis-uniovi/retorchx-rp/
https://github.com/giis-uniovi/retorch-st-fullteaching
https://github.com/giis-uniovi/retorchx-rp/tree/main/raw-datasets
https://github.com/giis-uniovi/retorchx-rp/tree/main/raw-datasets
https://docs.aws.amazon.com/pricing-calculator/latest/
https://docs.aws.amazon.com/pricing-calculator/latest/
https://github.com/scalyr/cloud-costs

Bavand, A.H., Rigby, P.C., 2021. Mining historical test failures to dynamically batch tests
to save CI resources. In: Proc. - 2021 IEEE Int. Conf. Softw. Maint. Evol. ICSME 2021,
pp. 217–226. https://doi.org/10.1109/ICSME52107.2021.00026.

Beheshtian, M.J., Bavand, A.H., Rigby, P.C., 2022. Software batch testing to save build
test resources and to reduce feedback time. IEEE Trans. Softw. Eng. 48 (8),
2784–2801. https://doi.org/10.1109/TSE.2021.3070269. Aug.

Bertolino, A., Calabró, A., De Angelis, G., Gallego, M., García, B., Gortázar, F., 2018.
When the testing gets tough, the tough get ElasTest. In: Proceedings - International
Conference on Software Engineering. ACM, pp. 17–20. https://doi.org/10.1145/
3183440.3183497 in ICSE18.

Bertolino, A., et al., 2019. A systematic review on cloud testing. ACM Comput. Surv. 52
(5). https://doi.org/10.1145/3331447.

Bertolino, A., 2007. Software testing research: achievements, challenges, dreams. FoSE
2007 Futur. Softw. Eng. (September), 85–103. https://doi.org/10.1109/
FOSE.2007.25.

Chakraborty, S.S., Shah, V., 2011. Towards an approach and framework for test-
execution plan derivation. In: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2011, Proceedings. IEEE, pp. 488–491.
https://doi.org/10.1109/ASE.2011.6100106.

Digital Ocean, “DigitalOcean | The Cloud for Builders.” Accessed: May 26, 2023.
[Online]. Available: https://www.digitalocean.com/.

ElasTest EU Project, 2017. Fullteaching: A Web Application to Make Teaching Online
Easy. Universidad Rey Juan Carlos. Accessed: Aug. 10, 2023. [Online]. Available: htt
ps://github.com/elastest/full-teaching.

Esfahani, H., et al., 2016. CloudBuild: microsoft’s distributed and caching build service.
In: Proceedings - International Conference on Software Engineering. ACM, pp. 11–20.
https://doi.org/10.1145/2889160.2889222 {ICSE} ’16.

Fallahzadeh, E., Bavand, A.H., and Rigby, P.C., “Accelerating continuous integration
with parallel batch testing,” 2023, https://doi.org/10.1145/3611643.3616255.

Frajtak, K., Cerny, T., 2022. On persistent implications of E2E testing. Lect. Notes Bus.
Inf. Process. 455 LNBIP (January), 326–338. https://doi.org/10.1007/978-3-031-
08965-7_16.

Gambi, A., Gorla, A., Zeller, A., 2017. O!Snap: cost-efficient testing in the cloud. In: Proc.
- 10th IEEE Int. Conf. Softw. Testing, Verif. Validation, ICST 2017, pp. 454–459.
https://doi.org/10.1109/ICST.2017.51.

García Galán, J., “Automating the support of highly-configurable services,” 2015, htt
ps://doi.org/10.13140/RG.2.1.3554.9281.

García-Galán, J., García, J.M., Trinidad, P., Fernández, P., 2017. Modelling and
analysing highly-configurable services. In: ACM International Conference
Proceeding Series, pp. 114–122. https://doi.org/10.1145/3106195.3106211.
Sevilla.

Garcia, B., et al., 2018. A proposal to orchestrate test cases. In: Proceedings - 2018
International Conference on the Quality of Information and Communications Technology,
QUATIC 2018, pp. 38–46. https://doi.org/10.1109/QUATIC.2018.00016.

Gene, D.R., Amdahl, M., 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In: AFIPS Conf. Proc. - 1967 Spring Jt. Comput.
Conf. AFIPS 1967, pp. 483–485. https://doi.org/10.1145/1465482.1465560. Apr.

Google, “Google cloud platform pricing calculator,” Google. Accessed: Jun. 08, 2022.
[Online]. Available: https://cloud.google.com/products/calculator.

Google, “Google Cloud Computing Services,” Google. Accessed: May 26, 2023. [Online].
Available: https://cloud.google.com/.

Greca, R., Miranda, B., Bertolino, A., 2023. State of practical applicability of regression
testing research: a live systematic literature review. ACM Comput. Surv. https://doi.
org/10.1145/3579851. Dec.

Gyori, A., Shi, A., Hariri, F., Marinov, D., 2015. Reliable testing: detecting state-polluting
tests to prevent test dependency. 2015 Int. Symp. Softw. Test. Anal. ISSTA 2015 - Proc.
223–233. https://doi.org/10.1145/2771783.2771793.

IBM, “IBM Cloud.” Accessed: May 26, 2023. [Online]. Available: https://www.ibm.
com/ru-ru/cloud.

Inçki, K., Ari, I., Sözer, H., 2012. A survey of software testing in the cloud. In: Proc. 2012
IEEE 6th Int. Conf. Softw. Secur. Reliab. Companion, SERE-C 2012, pp. 18–23.
https://doi.org/10.1109/SERE-C.2012.32.

Janakiram MSV, “Lightning Fast Container Provisioning with Microsoft’s Azure
Container Instances,” The New Stack. Accessed: Aug. 09, 2023. [Online]. Available:
https://thenewstack.io/lightning-fast-container-provisioning-with-microsofts
-azure-container-instances/.

Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., Teregowda, P., 2011. Decision support
tools for cloud migration in the enterprise. In: Proc. - 2011 IEEE 4th Int. Conf. Cloud
Comput. CLOUD 2011, pp. 541–548. https://doi.org/10.1109/CLOUD.2011.59.

Koskinen, M., Mikkonen, T., Abrahamsson, P., 2019. Containers in Software
Development: A Systematic Mapping Study. Springer International Publishing.
https://doi.org/10.1007/978-3-030-35333-9_13 vol. 11915 LNCS.

Li, X., Li, Y., Liu, T., Qiu, J., Wang, F., 2009. The method and tool of cost analysis for
cloud computing. In: CLOUD 2009 - 2009 IEEE Int. Conf. Cloud Comput, pp. 93–100.
https://doi.org/10.1109/CLOUD.2009.84.

Lian, Y., Le, Z., Huiru, X., Yu, S., Wei, Z., Jun, Z., 2009. A framework of testing as a
service. In: Proc. - Int. Conf. Manag. Serv. Sci. MASS 2009. https://doi.org/10.1109/
ICMSS.2009.5302717.

Memon, A., et al., 2017. Taming google-scale continuous testing. In: Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering: Software Engineering
in Practice Track, ICSE-SEIP 2017. IEEE, pp. 233–242. https://doi.org/10.1109/ICSE-
SEIP.2017.16. May.

Mezni, H., Abdeljaoued, T., 2018. A cloud services recommendation system based on
fuzzy formal concept analysis. Data Knowl. Eng. 116, 100–123. https://doi.org/
10.1016/J.DATAK.2018.05.008. Jul.

Microsoft, “Pricing calculator microsoft azure.” Accessed: Jun. 08, 2022. [Online].
Available: https://azure.microsoft.com/en-us/pricing/calculator.

Microsoft, “Azure Container Instances.” Accessed: Jun. 21, 2023. [Online]. Available:
https://azure.microsoft.com/en-us/services/container-instances/.

Najafi, A., Rigby, P.C., Shang, W., 2019. Bisecting commits and modeling commit risk
during testing. In: ESEC/FSE2019 - Proc. 2019 27th ACM Jt. Meet. Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., pp. 279–289. https://doi.org/10.1145/
3338906.3338944.

Okraszewski, M., “Cloudorado.” Accessed: Jun. 08, 2022. [Online]. Available: https://
www.cloudorado.com/.

Parveen, T., Tilley, S., 2010. When to migrate software testing to the cloud?. In:
ICSTW2010 - 3rd Int. Conf. Softw. Testing, Verif. Valid. Work., no. Vm, pp. 424–427.
https://doi.org/10.1109/ICSTW.2010.77.

Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R., 2017. ContainerCloudSim: an
environment for modeling and simulation of containers in cloud data centers. Softw.
Pract. Exp. 47 (4), 505–521. https://doi.org/10.1002/SPE.2422. Apr.

Plewnia, C., 2021. An integrated approach for cloud computing service selection and cost
estimation. In: ACM International Conference Proceeding Series. Association for
Computing Machinery. https://doi.org/10.1145/3492323.3503505. Dec.

Riungu, L.M., Taipale, O., Smolander, K., 2010. Research issues for software testing in
the cloud. In: Proc. - 2nd IEEE Int. Conf. Cloud Comput. Technol. Sci. CloudCom 2010,
pp. 557–564. https://doi.org/10.1109/CloudCom.2010.58.

Riungu-Kalliosaari, L., Taipale, O., Smolander, K., 2012. Testing in the cloud: exploring
the practice. IEEE Softw 29 (2), 46–51. https://doi.org/10.1109/MS.2011.132.

Rothermel, G., Harrold, M.J., Von Ronne, J., Hong, C., 2002. Empirical studies of test-
suite reduction. Softw. Test. Verif. Reliab. 12 (4), 219–249. https://doi.org/
10.1002/stvr.256.

Seybold, D., Domaschka, J., 2017. Is distributed database evaluation cloud-ready?
Communications in Computer and Information Science. Springer Verlag,
pp. 100–108. https://doi.org/10.1007/978-3-319-67162-8_12.

Truong, H.L., Dustdar, S., 2010. Composable cost estimation and monitoring for
computational applications in cloud computing environments. Procedia Comput. Sci.
1 (1), 2175–2184. https://doi.org/10.1016/j.procs.2010.04.243.

Weerasiri, D., Barukh, M.C., Benatallah, B., Sheng, Q.Z., Ranjan, R., 2017. A taxonomy
and survey of cloud resource orchestration techniques. ACM Comput. Surv. 50 (2).
https://doi.org/10.1145/3054177.

Wohlin, C., Rainer, A., 2022. Is it a case study?—A critical analysis and guidance. J. Syst.
Softw. 192, 111395. https://doi.org/10.1016/j.jss.2022.111395.

Wohlin, C. Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A., Experiment.
Software Eng., vol. 9783642290. 2012. https://doi.org/10.1007/978-3-642-29044-2.

Wong, W.E., Morgan, J.R., London, S., Mathur, A.P., 1998. Effect of test set minimization
on fault detection effectiveness. Softw. - Pract. Exp. 28 (4), 347–369. https://doi.org/
10.1002/(SICI)1097-024X(19980410)28:4<347::AID− SPE145>3.0.CO;2-L.

Xie, P., Yang, D., 2018. Research on scheduling of software cloud testing. In: 2017 Int.
Conf. Comput. Syst. Electron. Control. ICCSEC 2017, pp. 1311–1314. https://doi.
org/10.1109/ICCSEC.2017.8446709.

Yoo, S., Harman, M., 2012. Regression testing minimization, selection and prioritization:
a survey. In: Software Testing Verification and Reliability, 22. John Wiley and Sons
Ltd., pp. 67–120. https://doi.org/10.1002/stv.430. Mar.

Yu, L., Su, Y., Wang, Q., 2009. Scheduling test execution of WBEM applications. In:
Proceedings - Asia-Pacific Software Engineering Conference, APSEC09, pp. 323–330.
https://doi.org/10.1109/APSEC.2009.27. Batu Ferringhi, Penang, Malaysia.

Yu, L., et al., 2010. Testing as a service over cloud. In: Proceedings - 5th IEEE International
Symposium on Service-Oriented System Engineering, SOSE 2010, pp. 181–188. https://
doi.org/10.1109/SOSE.2010.36. Nanjing, China.

Zhang, M., Ranjan, R., Nepal, S., Menzel, M., Haller, A., 2012. A declarative
recommender system for cloud infrastructure services selection. Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7714
LNCS, 102–113. https://doi.org/10.1007/978-3-642-35194-5_8.

Cristian Augusto is an Assistant Professor at the Department
of Computer Science of the University of Oviedo, Asturias,
Spain. Augusto has been teaching courses in software engi-
neering at various levels and he is part of the GIIS Research
group. His research interests include Software Verification and
Validation and Software Testing concisely, resource optimiza-
tion during the End-to-End test suite execution and privacy-
preserving data publishing techniques.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

16

https://doi.org/10.1109/ICSME52107.2021.00026
https://doi.org/10.1109/TSE.2021.3070269
https://doi.org/10.1145/3183440.3183497
https://doi.org/10.1145/3183440.3183497
https://doi.org/10.1145/3331447
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/ASE.2011.6100106
https://www.digitalocean.com/
https://github.com/elastest/full-teaching
https://github.com/elastest/full-teaching
https://doi.org/10.1145/2889160.2889222
http://doi.org/10.1145/3611643.3616255
https://doi.org/10.1007/978-3-031-08965-7_16
https://doi.org/10.1007/978-3-031-08965-7_16
https://doi.org/10.1109/ICST.2017.51
http://doi.org/10.13140/RG.2.1.3554.9281
http://doi.org/10.13140/RG.2.1.3554.9281
https://doi.org/10.1145/3106195.3106211
https://doi.org/10.1109/QUATIC.2018.00016
https://doi.org/10.1145/1465482.1465560
https://cloud.google.com/products/calculator
https://cloud.google.com/
https://doi.org/10.1145/3579851
https://doi.org/10.1145/3579851
https://doi.org/10.1145/2771783.2771793
https://www.ibm.com/ru-ru/cloud
https://www.ibm.com/ru-ru/cloud
https://doi.org/10.1109/SERE-C.2012.32
https://thenewstack.io/lightning-fast-container-provisioning-with-microsofts-azure-container-instances/
https://thenewstack.io/lightning-fast-container-provisioning-with-microsofts-azure-container-instances/
https://doi.org/10.1109/CLOUD.2011.59
https://doi.org/10.1007/978-3-030-35333-9_13
https://doi.org/10.1109/CLOUD.2009.84
https://doi.org/10.1109/ICMSS.2009.5302717
https://doi.org/10.1109/ICMSS.2009.5302717
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1016/J.DATAK.2018.05.008
https://doi.org/10.1016/J.DATAK.2018.05.008
https://azure.microsoft.com/en-us/pricing/calculator
https://azure.microsoft.com/en-us/services/container-instances/
https://doi.org/10.1145/3338906.3338944
https://doi.org/10.1145/3338906.3338944
https://www.cloudorado.com/
https://www.cloudorado.com/
https://doi.org/10.1109/ICSTW.2010.77
https://doi.org/10.1002/SPE.2422
https://doi.org/10.1145/3492323.3503505
https://doi.org/10.1109/CloudCom.2010.58
https://doi.org/10.1109/MS.2011.132
https://doi.org/10.1002/stvr.256
https://doi.org/10.1002/stvr.256
https://doi.org/10.1007/978-3-319-67162-8_12
https://doi.org/10.1016/j.procs.2010.04.243
https://doi.org/10.1145/3054177
https://doi.org/10.1016/j.jss.2022.111395
http://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1002/(SICI)1097-024X(19980410)28:4&tnqh_x003c;347::AID−SPE145&tnqh_x003e;3.0.CO;2-L
https://doi.org/10.1002/(SICI)1097-024X(19980410)28:4&tnqh_x003c;347::AID−SPE145&tnqh_x003e;3.0.CO;2-L
https://doi.org/10.1109/ICCSEC.2017.8446709
https://doi.org/10.1109/ICCSEC.2017.8446709
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/APSEC.2009.27
https://doi.org/10.1109/SOSE.2010.36
https://doi.org/10.1109/SOSE.2010.36
https://doi.org/10.1007/978-3-642-35194-5_8

Jesús Moran received the Ph.D. degree in computing from the
University of Oviedo. He is an Assistant Professor with the
University of Oviedo. He is a Member of the Software Engi-
neering Research Group (GIIS, giis.uniovi.es). His research in-
terests include software testing, Big Data technologies, and
distributed programming.

Antonia Bertolino She is a Research Director of the Italian
National Research Council (CNR), at ISTI, Pisa, Italy. Her
research covers software validation and testing, on which she
worked in several national and European projects. Currently
she is Area Chair for Elsevier Journal of Systems and Software,
and Associate Editor for Wiley Journal of Software: Evolution
and Process. She serves regularly in the PC of top Software
Engineering and Testing conferences, such as ESEC-FSE, ASE,
ICSE, ISSTA and ICST. She was the General Chair of ACM/IEEE
ICSE2015 in Florence (Italy). She has co-authored over 200
papers in international journals and conferences.

Claudio de la Riva is an Associate Professor of the Department
of Computer Science, University of Oviedo, Spain. He has
received the Ph.D. degree from the Department of Computer
Science, University of Oviedo, Spain, in 2004. His research
interests include Software Verification and Validation and
Software Testing.

Javier Tuya is an Professor of the Department of Computer
Science, University of Oviedo, Spain. He has received the Ph.D.
degree from the Department of Electrical Engineering, Uni-
versity of Oviedo, Spain, in 1995. He is a member of the ACM,
IEEE and the Computer Society. His research interests include
Software Quality Assurance, Process Improvement, Verifica-
tion and Validation and Software Testing.

C. Augusto et al. The Journal of Systems & Software 221 (2025) 112237

17

	RETORCH∗: A Cost and Resource aware Model for E2E Testing in the Cloud
	1 Introduction
	2 RETORCH∗ model
	2.1 Background
	2.2 Test Orchestration Submodel
	2.2.1 TJobs
	2.2.2 Resources

	2.3 Cloud Configuration Submodel
	2.3.1 Cloud Objects
	2.3.2 Billing Option
	2.3.3 Cloud Object Instances
	2.3.4 Contracted Capacities

	3 RETORCH∗ cost estimation
	4 Evaluation methodology design
	4.1 Research Questions
	4.2 Context of the evaluation
	4.3 [RQ 1.a]: Impact of the Cloud Object category
	4.3.1 Evaluation set-up
	4.3.2 Evaluation results
	4.3.3 Evaluation analysis

	4.4 [RQ 1.b] Impact of the Billing Option
	4.4.1 Evaluation setup
	4.4.2 Evaluation results
	4.4.3 Evaluation analysis

	4.5 [RQ 1.c] Impact of the Execution Plan
	4.5.1 Evaluation set-up
	4.5.2 Evaluation results
	4.5.3 Evaluation analysis

	4.6 [RQ 2] Impact of sharing
	4.6.1 Evaluation set-up
	4.6.2 Evaluation results
	4.6.3 Evaluation analysis

	4.7 RETORCH∗ limitations
	4.8 Threats to validity
	4.8.1 Construct validity
	4.8.2 Internal validity
	4.8.3 External validity
	4.8.4 Reliability

	5 Related work
	5.1 Efficient execution of test suites
	5.1.1 Minimization, reduction and prioritization techniques
	5.1.2 Batching techniques
	5.1.3 Orchestration techniques

	5.2 Testing over the Cloud
	5.3 Cloud service cost estimation

	6 Conclusions and future work
	Declaration of generative AI and AI-assisted technologies in the writing process

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

