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Abstract

In this paper we introduce critic, a new program for the topological analysis of
the electron densities of crystalline solids. Two different versions of the code are
provided, one adapted to the LAPW (Linear Augmentad Plane Wave) density cal-
culated by the WIEN2k package and the other to the ab initio Perturbed Ion (aiPI)
density calculated with the pi7 code. Using the converged ground state densities,
critic can locate their critical points, determine atomic basins and integrate prop-
erties within them, and generate several graphical representations which include
topological atomic basins and primary bundles, contour maps of ρ and ∇2ρ, vector
maps of ∇ρ, chemical graphs, etc.
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Size: 46703 independent lines.
Operating system: Unix, GNU/Linux.
Number of processors used: 1.
Supplementary material: User’s guide, test cases including input and output.
Keywords: Quantum Theory of Atoms in Molecules (QTAIM), topological analysis,
electron density, WIEN2k, aiPI.
PACS: 31.15.ae.
Classification: 7.3 Electronic Structure
Nature of problem: Topological analysis of the electron density in periodic solids.
Solution method: The automatic localization of the electron density critical points
is based on a recursive partitioning of the Wigner-Seitz cell into tetrahedra followed
by a Newton search from significant points on each tetrahedra. Plotting of and inte-
gration on the atomic basins is currently based on a new implementation of Keith’s
promega algorithm.
Running time: Variable, depending on the task. From seconds to a few minutes for
the localization of critical points. Hours to days for the determination of the atomic
basins shape and properties. Times correspond to a typical 2007 PC.
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LONG WRITE-UP

1 Introduction

Since its origins in the 1970 decade, the Quantum Theory of Atoms in Molecules
(QTAIM) proposed by Bader et al. [1,2] has evolved to be an invaluable tool
for the chemical interpretation of quantum mechanical data. The theory is
built upon quantum mechanical observable quantities, like the electron den-
sity. Even though any practical implementation must rely on approximately
obtained electron densities, QTAIM results are, in fact, quite independent
from any basis set description of the density, an invaluable property for solid
state studies, where a large variety of representations is used.

Conventionally, QTAIM starts from a particular division of real space into
atomic basins, each containing a single maximum of the electron density, usu-
ally corresponding to a nucleus. Two neighbor basins are separated by an
interatomic surface (IAS) such that the local flux of the electron density gra-
dient is zero at every point of the surface. This condition provides the only
partition that allows a unique definition of momentum based operators (like
the kinetic energy operator) in a non-trivial subset of the real space. Given
the appropriate operator density, any quantum mechanical observable can be
integrated within the atomic basins, giving rise to the partition of properties
into additive atomic contributions [3]. Charge and volume [4,5], but also mul-
tipolar momenta [6], polarizabilities [7], stress [8], magnetic susceptibility [9],
or total energy [10,11] have been shown to be partitioned in this way.

QTAIM has been applied traditionally to molecular systems, so most of the
previously existing software is not adequate for an infinite periodic density.
Critic has intended, from its original versions [12], to fill this gap by provid-
ing a tool taylored for the analysis of densities of solids under the Born-von
Karman conditions. The infinite and periodic nature of the problem confers
particular features to the topological analysis:

• The atomic basins are bounded in R3. The zero-flux surfaces never stretch
infinitely away from the nucleus.

• The number of critical points (CPs) in the unit cell fulfills the Morse rela-
tionships:

n− b + r − c = 0, n, c ≥ 1, b, r ≥ 3, (1)

where n is the number of local maxima, usually called nuclear critical points
(ncp); b, bond critical points (bcp); r, ring critical points (rcp) and c, the
number of cage critical points (ccp). The first Morse relationship is anal-
ogous to the Euler-Poincaré equation which applies in finite systems, for

3



which the asymptotic minimum at the infinite has been removed. The ring
and cage points, compulsory in solids, are uncommon in small molecules.

• The crystal symmetry forces the existence of CPs at selected positions in the
unit cell. Specifically, every fixed Wyckoff position forcibly contains at least
a CP. Also, the unit cell may be partitioned by the action of the symmetry
operations. The smallest wedge of the Wigner-Seitz cell that holds all the
motif information (the irreducible wedge of the Wigner-Seitz cell, IWS) also
contains one and only one copy of each non-equivalent CP.

• Atomic basins, defined as the geometric locus of all electron density gradient
field lines attracted to a given nuclear critical point, are neither the only
nor the minimal partition compatible with the zero flux condition.

• Bounded primary bundles[12] may be defined. A primary bundle is formed
by the set of points which share α– and ω–limit, i.e. start and end points for
the electron density gradient descent paths. Atomic basins are formed by
the union of all primary bundles sharing the same α-limit, i.e. the same ncp.
Similarly, the repulsion basins of the electron density local minima (voids
in the crystal structure) can be defined as the union of the primary bundles
that share the same ω-limit, i.e. the same ccp.

QTAIM analysis is essentially based on two main tasks. The first one is com-
putationally cheap, when done efficiently, and involves the localization of the
critical points of the electron density and the characterization of their proper-
ties. The bcp properties facilitate the classification of the crystal into shared-
shell (i.e. covalent) and closed-shell systems. The chemical graph can also
be drawn from the knowledge of all CP’s. The second task, computationally
more involved, corresponds to the determination of the primary bundles or the
atomic basins and the integration of quantum mechanical properties within
them. The complexity of this second step is due to the non-local nature of the
zero-flux condition,

∇ρ(r) · n(r) = 0, (2)

which holds for every point r on the atomic basin separatrix. This zero-flux
surface is, in practice, quite difficult to find. Several algorithms have been
tried [13–20] but to date only the low-efficient bisection algorithm has proven
reliable enough on crystals. 1 Atomic basins may adopt quite complicated
geometries on crystals, some of them presenting thin wings and needles [22]
to accomodate the rcp and ccp that form the edges and vertices of the IAS’s.
The gradient lines that form the zero-flux surface itself tend to be strongly
directed towards some of the attracting critical points, leaving other attractors
almost empty of gradient lines [23]. Basin integration needs to surpass these
difficulties to produce a good sampling of the basin volume.

We have developed the critic program with the goal to be a general pur-

1 Notice, however, the promising finite elements technique recently developed by
Rafat and Popelier [21] for molecules.
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pose solid state topological analysis utility. The code interprets the density
files obtained from different electronic structure programs and serves as a
platform to develop new integration algorithms. In this first public version,
critic accepts two different types of electron densities: those obtained in a
full-potential linearized augmented plane-waves(FPLAPW) calculation [24,25]
using the WIEN2k package [26,27]; and those calculated using the ab initio
perturbed ion (aiPI) formalism [28,29], as implemented in the pi7 program
[30]. Promolecular densities can be treated as a particular case of aiPI. Critic
is able to perform all the basic topological tasks, which include determin-
ing topological quantities in points, lines, planes and three-dimensional sets,
automatically locating the CPs of the electron density, integrating atomic
properties, and generating representations of atomic basins, primary bundles,
gradient paths and contour and relief plots of ρ and ∇2ρ.

In the rest of the paper we present a glimpse of the theory behind both the
FPLAPW and the aiPI methods (Section 2) and we describe the critic
program (Section 3).

2 The FPLAPW and the aiPI methods

The FPLAPW method is based on the Kohn-Sham formulation of the den-
sity functional theory (DFT)[31,32]. It is one of the most accurate electronic
structure methods available, owing to the fact that no approximation is made
to the crystal potential near the nuclei. The real space is split in two regions:
spheres centered on the nuclei (muffin tin region, Sα) and the interstitial
region (I). Each one electron basis function is then made of an atomic-like
spherical harmonics expansion within the muffin and a single plane wave in
the interstitial:

φk
K(r) =


1√
V

ei(k+K)·r, r∈I,∑
lm

[
Aα,k+K

lm uα
l (r′, Eα

1,l) + Bα,k+K
lm u̇α

l (r′, Eα
1,l)

]
Y m

l (r̂′), r∈Sα,
(3)

where V is the cell volume; k is a vector in reciprocal space; K is a reciprocal
lattice vector; r′ is the real space position relative to the atom α and r̂′ its
angular coordinates; and Y m

l is a spherical harmonic function. The atomic
radial part, uα

l , and its radial derivative, u̇α
l , are obtained by solving an effective

central-field problem for atom α with the enforced linearization energy energy
Eα

1,l, tipically a Dirac-Fock relativistic equation. The coefficients Aα,k+K
lm and

Bα,k+K
lm are determined by trying that the two parts of φk

K(r) match in value
and slope on the muffin surface. The match could only be perfect in the limit
of an infinite expansion in spherical harmonics.
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From our point of view, the advantage of the FPLAPW method is that no
pseudopotential is used. Therefore, the total electron density is directly avail-
able for the QTAIM analysis. In fact, since a relativistic Dirac-Fock calculation
is used to determine the intra muffin density, and a scalar relativistic approach
is applied to the interstitial region, the FPLAPW calculations should be ex-
pected to work excelently, and consistently, from light to heavy nuclei crystals.

The electron density in the FPLAPW scheme is given by an analytical expres-
sion analogous to that of the basis functions:

ρ(r) =


∑
LM

ρLM(r′)Y M
L (r̂′), r ∈ Sα,∑

K

ρK eiK·r, r ∈ I.
(4)

The density in the muffin tin region is given by a multipolar expansion, i.e.
a sum of spherical harmonics with radial coefficients ρLM(r′). The expression
changes in the interstitial region to a Fourier expansion, with K representing
a reciprocal lattice vector. The continuity of the electron density at the muffin
border can only be guaranteed by using an infinite number of spherical har-
monics within the muffin, but the discontinuities are usually small and can be
neglected in most cases.

Critic also works with electron densities obtained via the aiPI method. This
formalism is based on an extension of the Theory of Electronic Separability
by McWeeny and Huzinaga[33–35,28]. Each atom is regarded as a group that
interacts weakly with the rest of the atoms in the crystal. The group wave
function is approximated by the antisymmetrized product of atomic orbitals,
self-consistently calculated as linear combination of atomic basis functions
(usually STOs) in a way similar to an atomic Hartree-Fock calculation, but
including the classical and quantum effects of the rest of the groups in the
external potential. An iterative process is carried out where the group wave
functions are optimized one at a time, under the updated potential of the
crystal, until the whole set is consistent. The total wave function is the anti-
symmetrized product of the group wave functions.

The aiPI method is an excellent choice for ionic (closed-shell) systems, be-
ing both fast (it scales linearly with the size of the system [36]) and reliable.
However, the requirement for weak interaction among groups limits its appli-
cability to other compounds.

The electron density in the aiPI method is calculated as a sum over group
contributions:

ρ(r) =
∑
S

ρS(r) (5)

where the sum runs over all the atoms in the crystal. The group densities are
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generated adding up the atomic orbital contributions:

ρS(r) =
∑
nl

nS
nl

∑
pq

cS
nlpc

S
nlqχ

S
pl(r)χ

S
ql(r) (6)

where nnl is the number of electrons in the n, l subshell, χpl are the basis
functions (STOs) and cnlp are the coefficients for the atomic orbital linear
combination. Note the spherical symmetry of the group electron densities.
The promolecular (or procrystal) electron densities can be treated as if they
were aiPI ones.

3 Description of the program

3.1 Capabilities and algorithms

Critic provides the capabilities expected from a fully-fledged topological
analysis program. These include:

• Determination of electron density properties (ρ, ∇2ρ,...) on arbitrary points
in the unit cell.

• Integration of gradient paths passing through arbitrary points.
• Automatic localization of all CPs and, optionally, checking a user-entered

collection of points for their CP character.
• Determination of atomic basins and primary bundles. Several plot represen-

tations of those objects are available using external graphing programs.
• Integration of topological properties on atomic basins. As of this version,

these properties include volume and charge for the WIEN2k flavour of
critic. In the aiPI version, also force, stress[8] and kinetic energy are com-
puted.

• Contour representations of ρ and ∇2ρ in a selected plane.
• One, two and three-dimensional plots of ρ, ∇ρ, |∇ρ|, and ∇2ρ.
• Representation of gradient paths, either projected on a plane or in a three-

dimensional display.
• Zero-flux surface plots, including atomic basin separatrices and primary

bundles. Also, critic can generate plots of isosurfaces of density inside an
atomic basin.

Two main tasks lie at the core of the topological code and the algorithms used
deserve an adequate description. First, critic makes full use of the crystal
symmetry to build the irreducible wedge of the Wigner-Seitz (IWS) cell. The
IWS, formed by one or more tetrahedra, is recursively subdivided up to a
specified level by placing new points at the center of the edges, faces and
the interior of each tetrahedra. The localization of CPs is then carried out
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by means of a Newton-Raphson (NR) search starting from each corner, edge,
face, and interior of the above partition. When the search process has finished,
the list of CP candidates is completed and pruned by applying the symmetry
operations and removing duplications. This approach provides a considerable
improvement over the traditional search over doubles, triplets and quartets
of atoms, specially in highly symmetric crystals. Even more important, the
search based on the IWS guarantees that every Wyckoff position is visited at
least once thus facilitating the localization of some elusive rcp and ccp showing
a very small NR capture basin. The result is a quite robust algorithm that
automatically locates all CPs, including the non nuclear maxima exhibited by
some crystals [37,38].

The topological task is completed by determining, for each type of bcp and
rcp, the bond path that connects a bcp with its two neighbor maximal attrac-
tors (usually ncp’s), and the similar path connecting each rcp to its minimal
repellers (usually ccp’s). A depiction of the bond paths produces the chemi-
cal graph of the system. Adding the ccp-to-rcp paths commonly results in a
molecular graph of excessive complexity to be useful and, even so, the complete
topological graph still needs a further type of lines: bcp’s and rcp’s are con-
nected by single gradient paths which correspond to the intersection between
the IAS generated by the bcp and the analogous ring surface. Determining
those bcp-to-rcp lines is quite difficult, in practice.

The second main task worth noticing is the determination of the atomic basins
and the integration of the basin additive properties. The method used by
critic is currently based on the promega algorithm developed by T. Keith
[13]. The algorithm works by determining the limit of the basin for a collection
of rays emanated from the basin inner attractor. Any point along the ray
belongs in the basin if the upwards gradient path traced from this point flows
into the basin attractor, and it belongs in a different basin otherwise. The
surface position is initially bracketed by a point quite close to the attractor
and a point sufficiently far from it. The bracket is refined using a binary
partition scheme until some convergence threshold is achieved. The whole
process is slow and dominated by the time used to trace the gradient path
from each test point. However, the convergence to the real zero-flux surface
is assured to the required precision. A possible glitch on this scheme is the
scenario in which a ray intersects the separatrix more than once. However, we
have never observed this multiple intersection behavior in solids and only on
rare occasions in molecules.

The selection of rays depends on the task at hand. For the purpose of depicting
the basin we prefer to use a tesselation of the sphere based on a regular poly-
hedron, typically a cube or octahedron, whose surface is recursively divided
to achieve some 1000–6000 rays, depending on the resolution desired for the
plot. When integrating, the limit of the atomic basin is determined along the
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rays whose angles correspond to the nodes of Gauss-Legendre quadratures in
spherical coordinates.

With small changes the above method can also be used to trace primary
bundles. In this case we must require that both, the α- and the ω-limits of
each trajectory, correspond to those of the bundle currently being examined.
An additional difficulty is the selection of a point inside the bundle as the
origin of the rays. Whereas the ncp is the natural origin for an atomic basin,
no critical point occurs inside a primary bundle. The bundle surface, on the
other hand, contains one ncp and one ccp (forming the north and south poles
of the bundle), and an equal number of bcp and rcp (forming the bundle
equator). Three reasonable selections for the origin are: the midpoint between
the poles, the baricenter of the equator points, and the baricenter of all the
CPs. In any case, neither candidate is guaranteed to be interior to the desired
bundle.

3.2 Input description

Critic reads an input file which contains the structural and electronic infor-
mation for the system and the orders to execute. As a detailed description of
the avaliable keywords would be too long, we present here only a selection of
the most relevant ones and refer the reader to the user’s guide, distributed with
the code, for further detail. During the following discussion, verbatim keywords
are written in CAPITALS to distinguish them from variables, in smallcase. The
type of each variable is indicated by a suffix: .s for a string, .i for an integer
and .r for a real value. Also, square brackets indicate an optional argument
and curly braces with vertical bars, alternative keywords. When a complete
order exceeds the space available for a line of text, the continuation is shown
strongly indented in the next line or lines. The selected orders are:

• CRYSTAL: the crystal environment is usually the first specification in a
critic run as it provides the information about the system. Its form de-
pends on whether the WIEN2k or the aiPI version of critic is being
used. In the case of the WIEN2k version, everything can be read from
two WIEN2k files: the .struct file, containing the crystal structural data,
and the .clmsum file, holding the electron density expansion coefficients.
Henceforth, a critic input should start with

CRYSTAL

STRUCT structfile.s

CLM clmfile.s

[CLMDOWN clmdown_file.s]

ENDCRYSTAL

where the CLMDOWN order is used on spin-polarized calculations, on which
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two different .clm files describe the spin-up and spin-down electron density.
The aiPI version, on the other hand, requires the user to enter explicitly

the crystallographic description of the crystal:
CRYSTAL

SPG spg.s

CELL a.r b.r c.r alpha.r beta.r gamma.r

NEQ x.r y.r z.r atomfile.s

ENDCRYSTAL

The spg.s string is expected to contain a list of the independent elements
that form the space group description. For instance, Fm3̄m should be en-
tered as "f m -3 m", P63/mmc as "p 63/m m c", and R32 as either "r 3

2" (default hexagonal axes) or "r 3 2 r" (rhombohedral axes). Cell lengths
(in bohr) and angles (in degrees) define the unit cell. The crystal description
is completed by entering a neq order for every nonequivalent atom in the
unit cell. This order gives the crystallographic coordinates (x, y, z) and the
name of the pi7 atom file containing the local group wavefunction [39,30].

• AUTO: This deceptively simple order activates the complex task of com-
pleting the topological characterization of the crystal CPs. The recursive
division depth of the irreducible Wigner-Seitz zone (IWS) can be increased
beyond the default value of 2, which might prove to be necessary if the unit
cell contains a huge number of atoms and thus of CPs. The user can also
request to start from a partition of the whole parallelepipedic cell instead
of from the IWS, but this is not recommended in general. Several searching
methods are available, but the default Newton-Raphson is the best in nearly
all cases. The order can be completed, optionally, with the gradient norm
threshold, used to accept or reject the CP candidates, and the absolute and
relative limits for a density change between steps:

[SET [NO]IWS [depth.i]]

AUTO {NEWTON|AMOEBA|...} [gradthr.r [abstol.r [ftol.r]]]

• INTEGRALS: integrate the atomic properties in the atomic basins. The
default is to run over all the nonequivalent atomic basins known to the
code. This would include possible non nuclear maxima in the case that
a previous auto search has found them. Running auto before integrals

is thus advisable and adds almost nothing to the integration time. The
complete syntax for the order is

INTEGRALS [thetai.r thetaf.r phii.r phif.r]

nr.i ntheta.i nphi.i

[NCP id.i]

where thetai.r . . . phif.r are the initial and final values of the angular
coordinates θ and φ for the integrals. The default is (0, π, 0, 2π) correspond-
ing to the whole basin for each atom. The (nr, nθ, nϕ) (nr.i, . . . ) values
correspond to the number of nodes used on the spherical quadrature: nθ

and nϕ determine the number of rays and nr the number of points along
each ray. The NCP option, finally, is used to restrict the integration to the
basin of a single ncp.
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The local symmetry around a ncp can be used to reduce the region of
integration. A wedge made of one third of the basin would be enough, for
instance, if a Ĉ3 axis passes through the ncp. Critic is smart enough to
determine the multiplication factor that converts the wedge integral to the
whole basin one, but it does not determine nor checks the integration wedge
entered by the user. This is intended to change in future versions of the code.

• DOPLOT: this keyword is used to create one, two and three-dimensional
representations of ρ, ∇2ρ, ∇ρ and |∇ρ| in a variety of formats. The syntax
is:

DOPLOT [DENSITY | LAPLACIAN | ...]

[FORMAT [GNUPLOT | CUBE | ...]]

[FILE root.s]

{ 1D x0.r y0.r z0.r x1.r y1.r z1.r npts.i

| 2D x0.r y0.r z0.r x1.r y1.r z1.r

x2.r y2.r z2.r n1.i n2.i

| 3DC x0.r y0.r z0.r x1.r y1.r z1.r

n1.i n2.i n3.i }

Several output formats are available, depending on the requested plotting
task. In the case of the 1D plot, for instance, the gnuplot [40] output is
the most convenient, as it includes a large number of properties evaluated
on the r1 − r0 segment. In the case of the 2D and 3D plots, however,
only one property is available at each time, with the electron density being
the default. Nothing prevents, however, producing several data files from
successive doplot orders, and combining them with the appropriate drawing
software.

The 2D plane is determined from the crystallographic coordinates of three
points: r0, r1, and r2. The r1 − r0 segment is the abscissa, and r2 − r0 the
ordinate of the plot. In the case of a 3D plot, the gridded volume is defined
by the two extreme points along the main diagonal of a parallelepiped, plus
the number of points to use on each direction.

Figure 1 contains an example of a 3D doplot representation. The de-
piction of successively increasing or decreasing isosurfaces can be used to
identify maxima and minima of an scalar field and the existence of paths
connecting these peaks and pits. Short of a true critical point determina-
tion, this technique can be used to investigate the topological properties of,
say, ∇2ρ. The cube format can be exported to codes like molekel [41] and
tessel [42] to help in this task.

• GRDVEC: Given a user defined plane, this versatile order plots the gradient
paths starting at arbitrary points within the plane, optionally combined
with contour maps of the electron density or laplacian. The main orders
within this section are:

GRDVEC

FILES rootname.s

PLANE x0.r y0.r z0.r x1.r y1.r z1.r x2.r y2.r z2.r

[ORIG x.r y.r z.r atr.i up.i down.i]
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Fig. 1. 0.02 e/bohr3 electron density surface of the CaTiO3 perovskite unit cell
produced with the doplot/3dc order and rendered with tessel [42] and POVRay
[43].

[CP id.i up.i down.i]

[CPALL]

[BCPALL up.i down.i]

[CHECK

x.r y.r z.r

...

ENDCHECK]

[{RHO|LAP|...} [LOG|ATAN|...] [nu.i [nv.i [niso.i]]]]

ENDGRDVEC

Three points (r0, . . . ), given in crystallographic coordinates, determine the
plane of the plot: r1 serves as the origin, r1 − r0 is the abscissa (u axis)
and r2 − r0 the ordinate (v axis). The points that form part of the plot
are automatically converted to orthogonal in-plane coordinates to prevent
distortion in non-orthogonal crystalline systems or, simply, if the abscissa
and ordinate are not perpendicular.

The source points for the gradient vector lines can be entered in several
ways. With the orig and cp orders the user selects an arbitrary location
(x, y, z) or a specific critical point (the label number from a previous auto

order), respectively. The user must indicate the number of trajectories going
up and down and, in the case of the orig order, the atr value marks whether
this point corresponds to a nucleus or not.
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The cpall and bcpall orders are smarter: the CPs are replicated by
symmetry and the program selects all the CPs (or just the bcp’s) which
actually lie in the plane. This decision only works if an auto order has been
done before grdvec. Alternatively, the user can provide, within a check

environment, a list of potential targets, that will be replicated by symmetry
and used only if they truly are critical points and belong to the plane.

The plot can include, optionally, a contour representation of the electron
density or its laplacian. The electron density map is dominated by the large
peaks at the nuclei, roughly proportional to the cube power of the nuclear
charge, but the most important information from a chemical point of view
lies in the valence region, with a density of some 10−1–10−3 e/bohr3, orders
of magnitude smaller than the nuclear peaks. A logarithmic scale on the
contour levels (log option in the rho order) helps in visualizing the valence
part, with negligible distortion, while keeping the nuclear densities in the
plot. We can observe the result of a typical density plus gradient field lines
in Fig. 2a.

Similarly, the electron density laplacian varies from −∞ to +∞, but the
chemical information lies in the positive and negative values close to zero. A
scale based on the arc tangent function, (2/π) tan−1(∇2ρ) (the atan option
in the lap order), provides a convenient way to visualize the laplacian in the
valence region. Negative and positive laplacian zones map the electron rich
and electron poor regions. Besides the atomic like shell structure exhibited
around the nuclei, a bcp lying in a negative zone is a clear sign of covalent
bonding. This is quite evident on the graphene sheets depicted in Fig. 2b.
The graphite structure shows two different C-C bcp’s: the covalent short
range bond shown in the graphene plane, and the much weaker, closed-shell
like, bcp that links together two planes. The difference between both bcp’s
is quite evident in the b and c parts of Fig 2.

• fluxprint: this started as a simple internal task used to debug the gradient
vector field routines. Accordingly, the first order was quite simple:

FLUXPRINT POINT {1|-1|0} x.r y.r z.r [step.r [epsi.r]]

asking the code to trace the ∇ρ(r) line that passes through the (x, y, z)
point (in crystal coordinates) and goes up (+1), down (−1), or both ways
(0). The trajectory is integrated using an adaptive Euler method that be-
gins with the indicated step value (0.1 as a default) and continues until
the absolute value of the gradient falls below the epsi threshold (10−7 as
a default). Other integration techniques have been implemented, but the
adaptive Euler method has proven to be both robust and fast.

More advanced tasks have been added to fluxprint. For instance
FLUXPRINT NCP id.i ntheta.i nphi.i [step.r [epsi.r]]

[LVEC x.i y.i z.i]

is used to trace a star of field lines around the id-th NCP (according to the
complete list of CPs in the unit cell written by a previous auto task). The
number of field lines is determined by a linear grid in the polar spherical
angles θ and φ. The optional lvec parameter adds an integer displacement
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Fig. 2. (Top) Electron density of CaTiO3 in the [1̄01]/
√

2 plane. This plane contains
all the CPs of the structure: the three nuclei, the Ca-O and Ti-O bcp’s, a single
rcp, and two different ccp’s. Being also a symmetry plane of the structure, the down
trajectories from the bcp’s and the up trajectories from the rcp show the limits of
the central Ti basin, including the characteristic wings that will be clearly depicted
in Fig. 4.
(Bottom) Electron density laplacian of graphite on a graphene plane (left, [001])
and on a perpendicular plane (right, [1̄,

√̄
3, 0]/2). The C basin is, essentially, a

triangular prism. The hexagonal arrangement of C atoms around a ring CP is a
quite typical feature of this structure.
Thick red lines correspond to ∇ρ trajectories, blue (magenta) lines are positive
(negative) contours of ρ (top) and ∇2ρ (bottom).
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vector to the origin coordinates, thus allowing the user to start from a
different unit cell.

Similar orders exist to trace field lines that start on any bcp, rcp, or ccp
within the crystal.

The most complex fluxprint order is, currently
FLUXPRINT GRAPH igraph.i [step.r [epsi.r]]

intended to trace the complete chemical graph, i.e., the minimal set of paths
that connects all CPs in the main cell, including the portion of the paths to
the CPs in neighbor cells that lie inside the main one. The graph is made
of a variety of lines, that the user can select by type, switching on and off
the corresponding bits in the igraph control integer:

bit 1: ring paths, i.e. the unique two single paths that flow downwards from each
rcp to their ccp sinks. Use igraph=1 to ask only for these lines.

bit 2: bond paths, i.e. the unique pair of paths flowing upwards from each bcp
to their ncp sources. These are the only paths produced if igraph=2 (i.e.
binary 0010).

bit 3: the stable paths on the interatomic (IAS) and on the ring surfaces. In the
case of IAS the connection between the central bcp and each ccps lying on
the IAS border forms a 2D stable domain. On the contrary, the connection
between the central bcp and each rcp, also lying on the IAS border, forms
a 1D unstable domain, quite difficult to determine. A minimal length
trajectory can be used to represent each 2D bcp-to-ccp stable domain,
although fluxprint/graph simplyfies right now the task by depicting a
single rectilinear stick between the bcp and the ccp positions. The same
concept applies to the ring surfaces, but now a single rcp is the origin of
the surface, rcp-to-ncp 2D bundles form the stable domains, and rcp-to-
bcp 1D domains are the unstable class. The representation of the stable
paths depends on some expensive data that the auto task will obtain only
if the set graph option is explicitly activated.

bit 4: the unstable paths just described, i.e. the bcp-to-rcp trajectories. Notice
that every bcp-to-rcp path corresponds to the intersection between the
IAS generated by the bcp and the ring surface created by the rcp. Except
when determined by symmetry, those paths use to form a curved line
quite difficult to find. Currently, this trajectory is represented by a single
stick in the graph plot. The connectivity between bcp’s and rcp’s is only
obtained is the auto task is carried with the set graph option before
doing fluxprint.

The most useful graph is generally the one obtained with igraph=2 and
igraph=15 produces the most complete connectivity graph.

Fig. 3 depicts a ncp, a bcp, and a graph image obtained on the γ-Fe
(FCC, Face Centered Cubic) structure. The topology of this crystal shows
a single type of bcp’s and a single type of rcp’s, both situated on symmetry
planes of the unit cell. The Fe basin is thus identical to the Wigner-Seitz
cell. The two types of ncp appear clearly different on the IAS plot: bcp-ccp
trajectories accumulate heavily towards the ccp of lowest electron density.
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The bcp shows a rather typical ellipticity: 3.45, corresponding to the ratio
between the two negative eigen curvatures of the electron density.

• basinplot: Our last selected task is in charge of writing a three-dimensional
model for the zero-flux surface associated to every non-equivalent ncp in
the unit cell. This model is obtained by determining the intersection of the
zero-flux surface with rays centered on the corresponding ncp. These rays
are generated by recursive subdivision of a cube or a octahedron. As it
requires the determination of the limit of the interatomic surface for a large
number of points, basinplot is rather computationally intensive. The order
syntax is

BASINPLOT [lvl.i [delta.r [phasetheta.r [phasephi.r]]]]

The subdivision level is determined by the absolute value of lvl. If this inte-
ger is greater than zero, an octahedron is chosen as the starting polyhedron
while for lvl lower than zero, critic uses a cube. The current default value
is lvl=-3. The value delta specifies the precision with which the zero-flux
surface is determined (default: 10−5). Finally, in highly symmetric cases,
a foul representation of the basins may occur when some rays are traced
along symmetry elements. To prevent this, a small rotation, determined by
the phasetheta and phasephi angles, can be applied to the initial cube or
octahedron.

Modelled after this task, bundleplot can be used to determine the pri-
mary bundles, and basindensity samples a collection of electron density
properties along the rays used to define the atomic basin.

Fig. 4 shows the atomic basins of the CaTiO3 perovskite. The Ca basin
is basically a rhombidodecahedron, with nearly flat faces and edges. The
Ca-O bcp is a notorius feature in the color decoration of each face. The
Ti basin is a cube in which each edge has been extended to form a nearly
bidimensional wing. This conspicuous element of the Ti geometry prevents
the occurrence of O-O bond paths. Starting from the topology of the cube,
with 6 faces (Ti-O bcp’s), 8 vertices (ccp’s) and 12 edges (rcp’s), every edge
has been decoupled into a vertex and two edges, for a total of 6 faces, 24
edges and 20 vertices. Correspondingly, a square and four triangles form a
single face in the O basin (the Ti-O IAS), which is formed of 4+2 faces
(Ca-O and Ti-O bcp’s, respectively), 12 vertices and 16 edges. The image of
the three basin types glued together shows that every M -O IAS is curved in
such a way that the M basin is convex and the O basin has the concavity.
This is a general property related with the relative electronegativity of the
cation-like and the anion-like elements [44].

3.3 Code distribution

The source code is provided in a single tar+gzipped file. Once unpacked, the
next subdirectory tree is created:
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Fig. 3. Example of the fluxprint plots on the γ-Fe (FCC) structure. Grey, blue,
green, and red balls of decreasing size are used to represent Fe atoms, bcp’s, rcp’s,
and ccp’s, respectively; a red frame marks the main cubic cell; and yellow curves
show the gradient field trajectories. The top images correspond to the 3D attraction
basin of a Fe atom (left) and to a igraph=3 (bits 1 and 2) chemical graph (right)
where rcp balls have been eliminated for simplicity. The bottom image shows the
detail of a Fe-Fe IAS, obtained with a fluxprint bcp order. The accumulation of
trajectories towards the acute rhombus vertices, in detriment of the obtuse vertices,
is typical of most IAS.
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Fig. 4. Top: atomic basins for Ca (left), Ti (center) and O (right) in the CaTiO3

perovskite. The color scale represents the logarithm of the electron density. Note the
extremely thin wings in the Ti basin. Bottom: the three atomic basins connected
together (left) and detail of a primary bundle of the Ti basin. The bundle algorithm,
starting from the (0.56, 0.57, 0.58) point has not been able to detect the wings in
this case.

doc: User guide written in a single ASCII file (user-guide.txt) with the re-
StructuredText markup [45]. A PDF and HTML version of the user guide
can be automatically compiled from the ASCII document. Both are included
in the distribution for simplicity.

src: Source code for the WIEN and PI versions of critic.
tools: Source code for a collection of programs useful when dealing with the OFF,

BASIN, etc, geometric data files. A description of the data formats and the
purpose and use of the tools is included in the user guide.

test: A collection of test cases to be used in checking the code performance and
useful as templates for other crystals. The selected systems are: CaTiO3,
Cu3N, and the α- and γ-Fe structures.

A README file contains detailed instructions for the compilation on a unix-like
envioronment. Basically, running configure and then make should compile all
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executables: criticw and criticp (in src/), off2off (in tools/off2off), etc. Follow
the instructions from the INSTALL file to move the executables to a general
place accessible to all users. Alternatively, we advise to create a symbolic link
to the executables in a user /bin directory and adding this directory to the
user PATH variable.

On the other hand, critic output is designed to interface with a set of pro-
grams freely available:

• gnuplot[40]: an open-source plotting program.
• geomview[46]: an interface to view three dimensional geometric objects.
• tessel[42]: a program for the creation of high-quality three dimensional

representations of crystal and molecular structures.
• POVRay[43]: a raytracing renderer.
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