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Abstract
Background  Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse 
effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to 
consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a 
possible innovative alternative.

Methods  In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical 
agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells 
(CM-hUCESC) in TNBC.

Results  The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells 
and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed 
in a mouse tumor xenograft model showing that the combination of both products has a significant effect in 
reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its 
secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the 
dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC 
and soluble factors, such as TIMP-1 and − 2.

Conclusions  In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with 
paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may 
decrease chemotherapy-related toxicity.
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Background
The history of breast cancer dates back to 3,000–2,500 
BC, the approximate date of the Edwin Smith papyrus 
[1], the oldest known medical document in the world, 
which contains the first written description of cancer. 
Fifteen centuries later (1,500 BC), in the Ebers papyrus, 
breast cancer with axillary metastasis was described for 
the first time, evoking the possibility of treatment by sur-
gery, drugs or ignition. Cancer treatment was dominated 
by surgery and radiotherapy until the mid-1960s [2]. It 
was at that time, as part of a public programme to iden-
tify new anti-tumor compounds in the United States, that 
samples of Pacific yew (Taxus brevifolia) bark were found 
to exhibit potent cytotoxic activity (1964); paclitaxel was 
subsequently identified as the active ingredient of the 
extract [3]. Despite the development of new therapeutic 
modalities, chemotherapy remains the most widely used 
antineoplastic therapy in advanced breast cancer due to 
its high efficacy and despite its adverse effects [4–6].

Among breast cancer molecular subtypes, triple-
negative breast cancer (TNBC), defined by the lack of 
estrogen (ER), progesterone (PR) and human epidermal 
growth factor receptor 2 (HER-2) expression, is the most 
lethal subtype of breast cancer with a 5-year mortality of 
about 40% [7–9]. Currently, chemotherapy is the stan-
dard systemic treatment option for TNBC. So, we are 
treating an old disease using an old therapy. Since, it is 
of utmost importance to consider the combination of dif-
ferent agents to achieve greater efficacy and curability 
potential [4]. In this sense, immunotherapy, one of the 
most significant advances in oncology, introduce biologic 
agents like monoclonal antibodies (atezolizumab) target-
ing PD-1 ligand (PD-L1), for example, in TNBC manage-
ment [10, 11].

A possible innovative alternative could be the use of 
mesenchymal stem cells (MSC), defined as regenerative 
undifferentiated cells capable of being differentiated into 
various cell types [12]. MSC display a wide repertory 
of paracrine functions due to their secretion of a wide 
range of soluble factors, such as cytokines or growth fac-
tors, and extracellular vesicles. For all of this, MSC have 
aroused great interest due to their regenerative, anti-
inflammatory, immunoregulatory, anti-oxidative stress, 
anti-fibrotic or anti-microbial properties [13]. Recent 
studies also show that MSC suppressing tumor growth by 
inhibiting tumor cell proliferation and inducing apoptosis 
in cancer cells [14]. Consequently, application strategies 
based on MSC were recently considered in TNBC [15]. 
In this regard, we described a new type of mesenchy-
mal stem cell, called human Uterine Cervical Stem Cells 
(hUCESC), which are obtained from the transitional 
zone of the cervix of healthy women [16]. The method 
for obtaining hUCESC (Pap cervical smear or hysterec-
tomy) is much less invasive and painful that those used 

to obtain other MSC (from the bone marrow or adipose 
tissue). In addition, hUCESC can be isolated in high 
quantities, and have a high proliferative rate, making it 
possible to quickly obtain a huge amount of stem cells or 
conditioned medium for research and clinical use [16]. 
Our previous results showed that the secretome or con-
ditioned medium of hUCESC (CM-hUCESC) has a spe-
cific anti-tumor effect on proliferation, apoptosis, and 
invasion of aggressive TNBC cell line MDA-MB-231 and 
primary mammary carcinoma cultures in vitro [16, 17]. 
These anti-tumor actions differ from those described for 
other mesenchymal stem cells [18–20] and may be due, 
in part, to the fact that CM-hUCESC has higher levels 
of factors with recognised anti-tumor effects, such as 
LIGHT (or TNFSF14), Fms-related thyrosine kinase 3 
ligand (FLT-3 ligand), interferon gamma-inducible pro-
tein-10 (IP-10) and latency-associated protein, compared 
with CM from adipose-derived mesenchymal stem cells, 
for example [16].

Based on these data, we have proposed to study the 
anti-tumor effect of the combination of a chemical 
agent (paclitaxel) with a complex biological agent (CM-
hUCESC) in TNBC.

Materials and methods
Primary tumors and breast cancer cell line culture
Primary cell cultures of breast tumors were obtained as 
previously reported [21, 22]. The estrogen-independent 
human breast cancer-derived cell line MDA-MB-231 
were obtained from the American Type Culture Collec-
tion (ATCC, Rockville, MD, USA). MDA-MB-231 cells 
and primary cells were cultured in DMEM-F12 (Lonza, 
Visp, Switzerland) supplemented with 10% Fetal Bovine 
Serum (FBS) (Corning) and 1% penicillin-streptomycin 
solution (Gibco, Paisley, UK).

Conditioned medium production
hUCESC were obtained as previously described [16]. 
Conditioned medium from hUCESC was obtained from 
80% cell culture confluence. Afterwards, the cells were 
washed three times in PBS, and cultured in DMEM-F12 
without FBS and antibiotics. After 48 h, the medium was 
centrifuged for 5 min at 400 g, the supernatant was col-
lected and stored at -80ºC. For the in vivo studies, the 
CM-hUCESC was lyophilized and then stored at -80 ºC 
until used and resuspended just before use in the half vol-
ume of deionized distilled water (ddH2O) to obtain the 
concentrated CM-hUCESC (2X).

For the production of CM-hUCESC in presence of 
chemotherapy (CM-hUCESCchemo), hUCESC were 
incubated in presence of a sub-lethal concentration 
of paclitaxel (10 µM) (Teva Pharma) during 24  h [23]. 
Afterwards, the cells were washed, and the conditioned 
medium was produced as previously described.
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Proliferation assay
To determine the effect of the combination of CM-
hUCESC or CM- hUCESCchemo with paclitaxel (1 µM, 3 
µM and 5 µM) on the proliferation capacity of the aggres-
sive breast cancer cell line MDA-MB-231 and breast 
cancer primary tumors. Cells were seeded in 96-well 
plates in DMEM-F12 supplemented with 10% FBS and 
1% penicillin-streptomycin. After 24  h, the media was 
removed and cells were treated with 100 µ L per well 
of CM-hUCESC or CM-hUCESCchemo with or without 
paclitaxel, using DMEM-F12 medium as a control, and 
cultured for 48 h. Finally, 10 µ L of the WST-1 prolifera-
tion reagent (Roche) was added and incubated for 4 h at 
37 ºC and 5% CO2. Proliferation was quantified measur-
ing the absorbance at 450 nm and subtracting the absor-
bance value at 655 nm.

Cell cycle and apoptosis assay
Breast cancer cells were seeded in complete medium, 
washed, and then treated for 24 h in the following condi-
tions: control (DMEM-F12), CM-hUCESC, chemother-
apy (paclitaxel 1 µM) and a combination of CM-hUCESC 
and chemotherapy. Forty-eight hours later, cells were 
harvested, fixed with ethanol (70%), washed and stained 
with propidium iodide (50 µg/ml) for 1 h in darkness and 
cell cycle was analysed by flow cytometry.

Apoptosis analyses were performed using Annexin 
V-FITC. Briefly, cells were harvested, washed, and resus-
pended in 1X binding buffer. 5 µl of FITC-Annexin V was 
added and incubated for 15 min at room temperature in 
darkness. Finally, 400 µl of 1X binding buffer was added 
to each tube and analysed.

Cell invasion assay
Assays were performed in BD BioCoat Matrigel inva-
sion chambers according to the manufacturer’s instruc-
tions (BD Biosciences, Madrid, Spain). MDA-MB-231 
cells were seeded (50,000 cells) into the upper cham-
ber in DMEM-F12 (control), paclitaxel (1 µM), CM-
hUCESC, CM-hUCESCchemo or combination of 
paclitaxel + CM-hUCESC/CM-hUCESCchemo. After incu-
bation for 48 h, cells that had migrated to the lower sur-
face of the filters were fixed in methanol, stained using 
crystal violet, visualized and counted. Values for cell 
migration or invasion were expressed as the mean num-
ber of cells per microscopic field over four fields per one 
filter for duplicate experiments.

Immunoprecipitation (IP) and Western blot (WB)
As described previously, protein A/G PLUS-Agarose 
(70 µl, sc-2003, Santa Cruz Biotechnology, Dallas, USA) 
and anti-TIMP-1 antibody (5  µl, sc-365,905, Santa 
Cruz Biotechnology) or anti-TIMP-2 antibody (5  µl, 
sc-365,671, Santa Cruz Biotechnology), or IgG1 mouse 

(5 µl, used as IP control, sc-3877, Santa Cruz Biotechnol-
ogy) were mixed with 8  ml of CM-hUCESC and incu-
bated overnight at 4 °C in orbital shaking. Then, samples 
were centrifuged and the supernatant used for functional 
assays [24].

The precipitate was used to evaluate TIMP-1 and 
TIMP-2 IP by Western blot. Briefly, after 12% SDS-PAGE 
electrophoresis, proteins were transferred to a PVDF 
membrane, blocked, and immunolabeled with TIMP-2 
primary antibody (1/200, Thermo-Scientific, Rockford, 
USA) and second antibody (anti-mouse HRP, 1/3000, 
Sigma). Signal was detected with the SuperSignal West 
Pico Plus (Thermo Scientific, Rockford, USA), and visu-
alized by placing the blot in contact with standard X-ray 
film.

Isolation and characterization of CM-hUCESCchemo 
extracellular vesicles
Isolation of extracellular vesicles (EVs)was performed 
by differential ultracentrifugation, as described previ-
ously [25]. The pellet obtained by ultracentrifugation at 
100,000 g for 70 min corresponding to the fraction con-
taining the EVs was resuspended in 0.1 μm filtered PBS 
with sucrose at 1% (Sigma-Aldrich). The presence of EVs 
in the sample was detected by Transmission Electron 
Microscopy (TEM) JEM-1011 (JEOL, Japan) at 100  kV 
with a previous fixing with 2% paraformaldehyde and 
dyed with 2% phosphotungstic acid. The EVs and Taxol-
encapsulated EVs were characterized by a Pierce™ bicin-
choninic acid assay kit (Thermo Fisher Scientific, USA) 
for total protein quantification. The size distribution and 
particle concentration were determined by Nanoparticle 
Track Analysis (NTA) Nanosight LM10 (Malvern Pana-
lytical, United Kingdom).

EVs were characterized by flow cytometry using spe-
cific antibodies: anti-CD9 antibody (FITC) (Abcam, 
United Kingdom), anti-CD63 (APC) (Bio-Rad, USA) 
and anti-CD81 antibody (PE) (Bio-Rad, USA). Also, the 
Molecular Probes™ CellTrace™ Calcein Violet, AM (Invi-
trogen, USA) was used to ensure EVs integrity. The fluo-
rescence was monitored by a Cytoflex S Flow Cytometer 
using a Violet Laser (405 nm) and its light Side Scattering 
(SSCviolet).

Determination of paclitaxel by HPLC-ESI-Q-TOF
For paclitaxel determination, EVs, CM-hUCESCchemo and 
hUCESC cells were lysed as previously described [23]. 
The lysate were dried by speed vacuum (Concentrator 
5301 Eppendorf ), resuspended in the chromatographic 
initial phase and spiked with Docetaxel at 200 ng/mL as 
Internal Standard and injected into the HPLC (Dionex 
Ultimate 3000). The chromatographic separation was 
performed with an InfinityLab Poroshell 120 EC-C18 
column using ultrapure water (LabWater, Purelab Flex 
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system ELGA, UK) as phase A and acetonitrile (Fischer 
Scientific, USA) as phase B, both with formic acid at 0.1% 
(Acros Organics, Germany). The chromatographic gradi-
ent was performed at 0.2 mL/min (0 min–40% B, 2 min–
40% B, 10  min–60% B). Paclitaxel was detected by an 
ESI-QTOF spectrometer (Bruker Impact II model) with 
the following settings: capillary voltage 3500  V, dry gas 
at 6 L/min, dry temperature of 250ºC, mass range (m/z) 
between 50 and 1500 and spectra rate of 1.00 Hz.

Animal studies
Six weeks old female NMRI Fox1 nu/nu mice were used 
for xenografting studies. Twenty-eight mice (7 per group) 
were injected into the mammary fat pads with 2.5 × 106 
MDA-MB-231-luc- cells in matrigel. Ten days after cell 
injection, the mice were treated until day thirty: group 1 
(control): DMEM-F12 culture medium + saline solution; 
group 2: CM-hUCESC (2X) intraperitoneally (200  µl) 
3 times/week; group 3: paclitaxel 10  mg/kg intraperi-
toneally once/week and group 4: CM-hUCESC (2X) 
intraperitoneally (3 times/week) + paclitaxel 10  mg/kg 
intraperitoneally (once per week). Tumor growth was 
monitored by luminescence, after luciferin injection 
(150  mg/kg), mice were anesthetized using 2.5% isoflu-
rane and imaged using the In Vivo Imaging System (IVIS, 
Caliper Life Sciences, Alameda, CA, USA) at day 0, 7, 14, 
21 and 30. An intensity map was obtained using the Liv-
ing Image software (Caliper Life Sciences). The software 
uses a color-based scale to represent the intensity of each 
pixel (from blue representing low to red representing 
high).

To investigate the effect of CM- hUCESCchemo, a 
similar study was conducted as follows: group 1 (con-
trol) (n = 4): DMEM-F12 culture medium + saline 
solution; group 2 (n = 7): CM-hUCESCchemo intraperi-
toneally (200  µl) 3 times/week; group 3 (n = 7): pacli-
taxel 5  mg/kg intraperitoneally once/week and group 
4 (n = 7): CM-hUCESCchemo intraperitoneally (3 times/
week) + paclitaxel 5  mg/kg intraperitoneally (once per 
week).

All animals were euthanized by carbon dioxide inhala-
tion. The manuscript reporting adheres to the ARRIVE 
(Animal Research: Reporting of In Vivo Experiments) 2.0 
guidelines.

Statistical analysis
Data analysis and statistics (t-tests, ANOVA, Kruskal-
Wallis) were conducted with PASW Statistics 18 (San 
Diego, CA, USA) and a p value < 0.05 was considered sta-
tistically significant. We have also calculated the adjusted 
p-values using the Benjamini-Hochberg procedure, also 
known as the False Discovery Rate (FDR) procedure, used 
to control the expected proportion of false discoveries.

Results
Synergistic effect of CM-hUCESC in combination with 
paclitaxel on breast cancer cell proliferation
As shown in Fig.  1, MDA-MB-231 cells and primary 
breast cancer cells treated with CM-hUCESC and/or 
paclitaxel showed a significant inhibition of proliferation 
compared with the control (DMEM-F12). As expected, 
the higher the concentration of paclitaxel showed the 
greater inhibition of cell proliferation among paclitaxel 
treated cells. However, the combination of paclitaxel 1 
µM with CM-hUCESC significantly increased the inhibi-
tion of proliferation of MDA-MB-231 cells and primary 
tumors, showing a synergic effect (p < 0.0001, for both, 
adjusted p value = 0.0007, for both). In fact, the addition of 
CM-hUCESC to a low dose of paclitaxel showed similar 
or even superior proliferation inhibition to that exhibited 
with a higher concentration of paclitaxel; in this sense, 
cells treated with 1 µM paclitaxel + CM-hUCESC showed 
a greater inhibition of cell proliferation to that shown by 
cells treated with 3 µM paclitaxel + CM-hUCESC.

Effect of combination of CM-hUCESC and paclitaxel on cell 
cycle and apoptosis
Given that paclitaxel + CM-hUCESC significantly 
decreased proliferation of MDA-MB-231 cells, we next 
evaluated cell cycle and apoptosis as possible mediators. 
As shown in Fig.  2, cells treated with paclitaxel, CM-
hUCESC or the combination paclitaxel + CM-hUCESC 
decreased their G0-G1 phase in relation to cells treated 
with control (DMEM-F12) but increased their G2-M 
phase in relation to control (Fig. 2A).

Treatment of MDA-MB-231 cells with paclitaxel + CM-
hUCESC induced a decrease of live cells (Annexin-/PI-) 
compared with control, CM-hUCESC alone or paclitaxel 
alone and an increase of Annexin V+ / PI + cells suggest-
ing that the combination of both treatments induces late 
apoptosis (Fig. 2B).

Inhibition of breast cancer cell invasiveness by combining 
CM-hUCESC with paclitaxel
In order to evaluate the impact of the combination of 
both treatments on cell invasion capacity, we have car-
ried out a functional study treating the breast cancer 
cell line MDA-MB-231 with DMEM-F12 (control), CM-
hUCESC, paclitaxel (1 µM) and the combination of pacli-
taxel + CM-hUCESC. As shown in Fig. 2C, CM-hUCESC 
significantly inhibited MDA-MB-231 cell invasion capac-
ity (28%, p < 0.0001 compared with control (adjusted p 
value = 0.004)) but the inhibition of the invasion capacity 
is higher by paclitaxel (61%) (p < 0.0001 compared with 
CM-hUCESC, (adjusted p value = 0.004)). Although, the 
combination of both (paclitaxel + CM-hUCESC) showed 
the highest inhibition of breast cancer cell invasiveness 
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there was no significant difference compared with pacli-
taxel alone.

TIMP-1 and TIMP-2 mediate the anti-tumoral effect 
induced by CM-hUCESC
We have previously described that some factors secreted 
by mesenchymal stem cells could be responsible for their 
therapeutic effects [26] and that the tissue inhibitors of 
metalloproteinases TIMP-1 and − 2 are present at high 
levels in CM-hUCESC [24]. To establish if TIMP-1 and 
− 2 are involved in the anti-tumoral effect induced by 
CM-hUCESC, they were immunoprecipitated (IP) from 
the CM-hUCESC with specific antibodies. IgG IP was 
used as control. A Western blot was carried out demon-
strate the immunoprecipitation of TIMP-2 (supplemen-
tary Fig. 1). In the case of TIMP-1 the molecular weight 
of the light chain of the anti-TIMP-1 antibody (25 kDa) 
used in the immunoprecipitation is close to the molecular 

weight of the TIMP-1 protein (29 kDa). Due to the excess 
of the antibody use during the immunoprecipitation (to 
ensure that all TIMP-1 is immunoprecipitated) and the 
intensity of the band, this band masks the detection of 
any protein of interest with a molecular weight close to 
25 kDa (data not shown). Then, a cell invasion assay was 
carried out with MDA-MB-231 cells treated with whole 
CM-hUCESC or without TIMP-1 and − 2. Complete 
CM-hUCESC significantly decreased migration of cancer 
cell line as compared with control (p < 0.0001, adjusted p 
value = 0.0007) and with CM-hUCESC lacking TIMP-1 
and − 2 (IP TIMP-1/2) (p = 0.004, adjusted p value = 0.008) 
(Fig. 2D). Moreover, invasion of confluent MDA-MB-231 
cells induced by CM-hUCESC lacking TIMP-1 and − 2 
was similar to that induced by control.

Fig. 1  (A) Relative proliferative capacity of MDA-MB-231 cells treated for 48 h with CM-hUCESC, paclitaxel (1 µM, 3 µM and 5 µM) and the combination 
of paclitaxel (1 µM, 3 µM and 5 µM) + CM-hUCESC. (B) Relative proliferative capacity of primary tumor cells from TNBC treated for 48 h with CM-hUCESC, 
paclitaxel (1 µM, 3 µM and 5 µM) and the combination of paclitaxel (1 µM, 3 µM and 5 µM) + CM-hUCESC. *p < 0.05, ***p < 0.0001
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In vivo effect of combination of CM-hUCESC and paclitaxel
We have evaluated the effect of intraperitoneal adminis-
tration of paclitaxel (10 mg/kg) and CM-hUCESC in vivo 
using NMRI fox1 nu/nu mouse tumor xenograft model. 
Mice were injected with MDA-MB-231 cells stably 

transfected with the luciferase vector in the mammary fat 
pad. When the tumor became visible, mice were injected 
intraperitoneally, as described above, with DMEM-F12 
(control), CM-hUCESC, paclitaxel or the combination 
of paclitaxel + CM-hUCESC. The evaluation of tumor 
growth could be analysed until day 21 because at day 
28/30 many of the tumors showed necrosis. As it can be 
observed in Fig.  3, mice treated with paclitaxel showed 
a significantly reduction of the tumor growth compared 
with control (p < 0.0001; adjusted p value = 0.0007) and 
it was confirmed that the combination of chemotherapy 
treatment (paclitaxel) with the biological product (CM-
hUCESC) significantly reduces tumor growth, especially 
at day 14 (p = 0.025; adjusted p value = 0.036). Although 
mice treated with CM-hUCESC showed less tumor 
growth than mice treated with paclitaxel + CM-hUCESC, 
there was no significant difference compared to the com-
bination of treatments.

Effect of CM-hUCESCchemo and its combination with 
paclitaxel
In order to improve the potential of CM-hUCESC and 
the effect of its combination with paclitaxel, hUCESC 
were cultured with a sublethal dose of chemotherapeu-
tic prior to CM-hUCESC production. Subsequently, we 
evaluated the effect of CM-hUCESCchemo and its combi-
nation on the proliferative and invasive capacity of MDA-
MB-231, showing that it significantly decreased their 
functional capacities (Fig. 4A and B). CM-hUCESCchemo 
decreased the proliferation of tumor cells (37.4%) simi-
larly to paclitaxel (43.2%), but their combination showed 
a significant inhibition of proliferation by up to 86.4% 
(p < 0.0001; adjusted p value = 0.0007). Regarding the 
regulation of tumor cell invasiveness, the combination of 
paclitaxel with CM-hUCESCchemo significantly decreased 
the capacity of cell invasion of tumor cells (compared 
with paclitaxel alone (p = 0.045; adjusted p value = 0.052)).

Characterization of CM-hUCESCchemo extracellular vesicles
EVs and paclitaxel-loaded EVs were characterized by the 
following techniques. As can be seen in Fig. 4C, the pres-
ence of rounder vesicles in both samples was detected 
by Transmission Electron Microscopy (TEM). The pacli-
taxel-loaded EVs were slightly larger than the control EVs 
and the first ones possessed what it seemed like a lower 
electron density corona around them. For a better knowl-
edge of the size distribution of the samples, Nanoparticle 
Tracking Analysis (NTA) analyses were performed. The 
size distribution graphs (Fig.  4D) also show an increase 
in size for paclitaxel-loaded EVs with a diameter media of 
190 ± 8 nm and a mode of 132 ± 28 while control EVs have 
a diameter media of 130 ± 6 and a mode of 97 ± 14  nm. 
This is in agreement to previous studies: the EVs size 
increased proportionally to the amount of entrapped 

Fig. 2  (A) Cell cycle analysis of MDA-MB-231 cells treated for 48 h with 
control (DMEM-F12 without FBS), CM-hUCESC, paclitaxel (1 µM) or the 
combination of paclitaxel (1 µM) + CM-hUCESC, and then subjected to flow 
cytometry using propidium iodide (PI). Percentage of cells (mean + stan-
dard deviation) in each phase is shown. (B) Apoptosis was determined 
in MDA-MB-231 cells cultured for 48 h with control (DMEM-F12 without 
FBS), CM-hUCESC, paclitaxel (1 µM) or the combination of paclitaxel (1 
µM) + CM-hUCESC, by flow cytometry using Annexin V/PI. Annexin V+/
PI- and Annexin V+/PI + indicated early and late apoptosis, respectively. 
(C) Invasive capacity of MDA-MB-231 cells treated for 48  h with control 
(DMEM-F12 without FBS), CM-hUCESC, paclitaxel (1 µM) or the combi-
nation of paclitaxel (1 µM) + CM-hUCESC in Matrigel invasion chambers. 
(D) Invasive capacity of MDA-MB-231 cells treated for 48 h with control 
(DMEM-F12 without FBS), CM-hUCESC, IgG IP and CM-hUCESC lacking 
TIMP-1 and − 2 (IP TIMP-1/2) in Matrigel invasion chambers. Data represent 
the mean ± SD. *p < 0.05; ***p < 0.0001
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drug [27, 28]. However, despite the differences in size, the 
control EVs and the paclitaxel-loaded EVs show the same 
markers (CD9, CD63 and CD81) (Supplementary Fig. 2). 
Regarding particle concentration calculated by NTA, an 
increase in particle production was observed for pacli-
taxel-treated cells (1.34 + E11 ± 0.21 + E11 particles/mL 
vs. 0.47 + E11 ± 0.03 + E11 particles/mL for non-loaded 
EVs). This increase in particle production could be due to 
cellular stress produced by the paclitaxel treatment [23]. 
The bicinchoninic acid assay (BCA) also showed that this 
increase in particle concentration is correlated with a 
total protein rise (17.2 ± 1.6 vs. 14.4 ± 1.6 µg/mL for pacli-
taxel-loaded EVs and control EVs, respectively).

Determination of paclitaxel in CM-hUCESCchemo
Paclitaxel determination was performed in EVs and 
CM-hUCESCchemo samples and hUCESC by HPLC-ESI-
QTOF. Figure  4E and F show the Extracted Ion Chro-
matogram of paclitaxel (m/z = 854.34 ± 0.01) for EV 
samples. As can be seen, paclitaxel was not detected in 
the control sample (Fig. 4E), but its presence is confirmed 
in the drug loaded vesicles (Fig. 4F).

Reducing tumor growth by combining CM-hUCESCchemo 
with a lower dose of paclitaxel
Mice were injected intraperitoneally with DMEM-F12 
(control), CM-hUCESCchemo, paclitaxel or the combina-
tion of paclitaxel + CM-hUCESCchemo. The evaluation 
of tumor growth could be analysed until day 21 because 
at day 28/30 many of the tumors showed necrosis. As it 
can be observed in Fig. 4G, mice treated with a low dose 
of paclitaxel (5  mg/kg) showed a similar tumor growth 
than control mice. Mice treated with CM-hUCESCchemo 
showed a significant reduction of tumor growth, by 
almost of 60%, compared with paclitaxel alone (113% 

vs. 274% tumor volume at day 14, respectively, p = 0.032; 
adjusted p value = 0.042), and by 20% compared with the 
combination of both treatment (113% vs. 131% tumor 
volume at day 14, respectively, no significant differ-
ence). However, the combination of paclitaxel (5  mg/
kg) + CM-hUCESCchemo showed a significant reduc-
tion, by almost of 50%, of tumor growth compared with 
paclitaxel alone (131% vs. 274% at day 14, respectively, 
p = 0.016; adjusted p value = 0.029), which means that a 
low dose of paclitaxel combined with CM-hUCESC can 
inhibit TNBC tumor growth in vivo.

Discussion
The results of the present study demonstrate the syner-
gistic effect of the combination of CM-hUCESC with 
paclitaxel. First, the effect was evidenced in vitro through 
decreased cell proliferation and invasiveness of tumor 
cells and induction of apoptosis. Second, the effect was 
confirmed in a mouse tumor xenograft model show-
ing that the combination of the chemotherapeutic agent 
with the secretome of hUCESC has a significant effect 
in reducing tumor growth. Third, pre-conditioning 
hUCESC with a sub-lethal dose of paclitaxel enhances 
the effect of its secretome and in combination with pacli-
taxel, even allows to reduce the dose of paclitaxel in vivo.

Controversial reports have been published regarding 
the pro- or anti-tumor effect of MSC [14, 29, 30], largely 
justified by the tissue of origin of MSC, the variability of 
stem cell donors and experimental conditions, among 
others [31, 32]. The source of MSC and the type of tumor 
seem to be the most influential factors in this contro-
versy. In fact, many studies are contradictory regarding 
the effect on breast cancer cells of bone marrow (BM)-
MSC and adipose tissue-derived (AD)-MSC or their 
derived-products [14]. However, relevant and consistent 

Fig. 3  Representative images from mice treated with CM-hUCESC, paclitaxel 10 mg/kg and the combination of paclitaxel 10 mg/kg + CM-hUCESC taken 
at 7 and 14 days and tumor volume which was determined by measuring luminescence since day 0 until day 21
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results are found regarding the effect of MSC of uterine 
(i.e., cervix, endometrium) or reproductive tissue origin 
(i.e., umbilical cord) on breast and ovarian cancer cells, 
as shown by hUCESC previously [16, 33], as well as in the 

present study through the effects on proliferation, apop-
tosis, and tumor-cell invasiveness. This leads to consider 
the importance of the tissue origin of MSC as it may 
influence their ability to regulate homeostasis in tissues 

Fig. 4  A) Relative proliferative capacity of MDA-MB-231 cells treated with control (DMEM-F12 without FBS), CM-hUCESCchemo (pre-conditioning of 
hUCESC with paclitaxel previously of CM production), paclitaxel (1 µM) and the combination of paclitaxel (1 µM) + CM-hUCESCchemo. B) Invasive ca-
pacity of MDA-MB-231 cells treated with control (DMEM-F12 without FBS), CM-hUCESCchemo, paclitaxel (1 µM) and the combination of paclitaxel (1 
µM) + CM-hUCESCchemo. C) Transmission Electron Microscopy micrographs for control EVs (left) and paclitaxel-loaded EVs (right). (D) Size Distribution 
graphs by NTA for control EVs and drug loaded EVs. (E) Extracted Ion Chromatogram by HPLC-ESI-TOF at paclitaxel mass/charge for control EVs. (F) 
Extracted Ion Chromatogram by HPLC-ESI-TOF at paclitaxel mass/charge for drug-loaded EVs. (G) Representative images from mice treated with CM- 
hUCESCchemo, paclitaxel 5 mg/kg and the combination of paclitaxel 5 mg/kg + CM-hUCESC taken at 7 and 14 days and tumor volume which was deter-
mined by measuring luminescence since day 0 until day 21
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highly exposed to external aggressions such as the uter-
ine cervix.

The MSC-derived secretome is composed of cytokines, 
growth factors and extracellular vesicles, among others, 
which represent a therapeutic alternative that avoids the 
drawbacks and offers solutions to the limitations asso-
ciated with cell therapy, such as: (i) avoids transplanta-
tion of live and proliferative cells; (ii) offers similar safety 
assessment, dosage and potency to conventional phar-
maceutical agents; (iii) offers easy storage; (iv) offers a 
more practical and cheaper clinical application; (v) allows 
the biological product obtained for therapeutic applica-
tions to be modified to suit the patient’s needs, among 
others [26]. Other drawbacks of MSC cell therapy with 
regard to TNBC treatment have been reported, such as 
the immune rejection of the transplant due to repeated 
injections or prolonged exposure to MSC, leading to a 
poor MSC survival and function at the tumor site [15]. 
Although many research studies and clinical trials con-
tinue to approach cell therapy as an MSC-based therapy, 
more and more studies are being conducted based on the 
use of the secretome or cell-derived products [16, 33–
37], as it is known that the mechanism of action of MSC 
is primarily paracrine.

Our results have shown that the secretome of hUCESC 
alone inhibits cell proliferation, induces apoptosis, 
regulates the cell cycle, and reduces the invasiveness of 
aggressive breast cancer cells, which differs from the 
results of the secretome of other types of MSC such as 
AD-MSC [38], but also potentiates these same effects of 
chemotherapy, unlike secretome of umbilical cord (UC)-
MSC which did not significantly affect its cytotoxic, anti-
migratory or anti-invasive effects on tumor cells [39]. 
Thus, the synergistic effect evidenced led us to investigate 
the impact of priming hUCESC with paclitaxel, before 
CM production, and its combination with chemotherapy 
on tumor cell behaviour. The use of a sublethal dose [23, 
40] has allowed to potentiate the effect of paclitaxel in 
vitro and in vivo, but also to reduce the dose of paclitaxel 
administered to the mice, with a possible reduction of the 
side effects associated with the use of chemotherapy.

The observed effects could be partly due to the incor-
poration of paclitaxel into the extracellular vesicles 
released into the environment by the hUCESC, since 
the presence of paclitaxel in the EVs present in the 
CM-hUCESCchemo has been observed. The incorpora-
tion of paclitaxel into EVs produced an increase in par-
ticle size and number, probably due to cellular stress 
induced by the paclitaxel treatment. Most of EVs pres-
ent in this CM-hUCESC can be classified into exosomes 
by size (30–150 nm). These EVs are of great interest as a 
possible alternative to exploiting the properties of MSC, 
or at least part of them, due to their advantages such as 
better safety profile, lower immunogenicity, the ability 

to cross biological barriers (gastrointestinal barrier and 
blood–brain barrier), and to avoid immune rejection [14, 
41–43]. EVs are one of the interaction pathways between 
MSC and breast cancer tumor cells, MSC-derived EVs 
(MSC-EVs) can transport molecules, such as proteins and 
nucleic acids, through which they exert inhibitory or pro-
moter effects on breast cancer cells [13, 44]. At the same 
time, MSC-EVs provide new therapeutic options such 
as being carriers for drug delivery [45]. Indeed, other 
studies demonstrated the therapeutic efficacy of either 
paclitaxel-loaded MSC-CM [46] or -EVs [47, 48] and 
even that paclitaxel incorporated into MSC-EVs induced 
the same effects at a reduced concentration as the direct 
use of the chemotherapeutic agent, indicating that che-
motherapeutic-loaded MSC-Es have a specific and more 
efficient property to attack tumors [23], due to the inter-
nalisation of EVs by target cells. The loading process can 
be enhanced by electroporation, lipofection, sonication 
or extrusion [49], instead of use a passive incorporation, 
as genuinely appear to display the hUCESC. Therefore, 
our study is in the current research line that point to the 
special interest of CM and EVs derived from MSC for the 
treatment of TNBC [48, 50–52].

There are other mechanisms that could explain the 
anti-tumor effect induced by CM-hUCESC. Thus, for 
example, the involvement of matrix metalloproteinases 
(MMPs) in cancer progression through the processes 
of cell migration and invasion has been widely reported 
[53–57]. The activity of MMPs is controlled by tissue 
inhibitors of metalloproteinases (TIMPs) to prevent 
excessive proteolysis, tissue damage, migration and inva-
sion of tumor cells through basement membrane degra-
dation. Of fact, it has been reported that the anti-tumor 
effect of MSC may be partly related to the activity of the 
TIMP-1 and TIMP-2 [58]. A previous proteomic study 
has revealed the presence of high levels of TIMP-1 and 
TIMP-2 in CM-hUCESC [59], and in the present study 
we have evidenced that these factor secreted by hUCESC 
contribute to the regulation of tumor aggressiveness 
through the inhibition of tumor cell invasion, as well as 
being implicated in other non-tumor processes induced 
by CM-hUCESC [24].

In summary, this study on CM-hUCESC provided sev-
eral novelties, such as (i) the combination of the biological 
product CM-hUCESC with chemotherapy (Paclitaxel); 
(ii) the demonstration of the effect of this combination, in 
vitro, on cell proliferation, invasiveness and apoptosis of 
breast cancer tumor cells (MDA-MB-231 and/or primary 
tumor cells); (iii) the anti-tumor effect was confirmed in 
a mouse tumor xenograft model showing that the combi-
nation of both products has a significant effect in reduc-
ing tumor growth; (iv) pre-conditioning hUCESC with 
a sub-lethal dose of paclitaxel enhances the effect of its 
secretome, in vitro and in vivo; (v) the combination of the 
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secretome from pre-conditioned hUCESC with paclitaxel 
reduced significantly tumor growth and even allows to 
diminish the dose of paclitaxel, in vivo; (vi) mechanism of 
action based on soluble factors present in the secretome, 
such as TIMP-1 and TIMP-2, and extracellular vesicles 
(EVs).

Conclusions
In conclusion, our data indicate that CM-hUCESC 
enhances the chemotherapy effects on triple negative 
breast cancer cells and opens an opportunity to reduce 
the dose of the chemotherapeutic agents, which may 
decrease chemotherapy-related toxicity. This effect is in 
part due to the action of their EVs and soluble factors, 
such as TIMP-1 and − 2. In addition, the possibility to 
obtain EVs loaded with chemotherapeutic agents open 
the scenario for more selective anti-tumor strategies. 
We consider that our study also suggests the interest of 
future studies on the mechanisms underlying, such as 
PI3K/AKT/NFκB pathway and on the trophism of the 
MSC derived-EVs toward tumors, as well as to explore 
the possible impact of CM-hUCESC to relieve chemo-
therapy-induced tissue injuries, such as cardiotoxicity, 
nephrotoxicity, pulmonary toxicity, and reproductive 
tract toxicity.
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