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Statistical depth functions are a standard tool in nonparametric statistics to extend order-based 
univariate methods to the multivariate setting. Since there is no universally accepted total order 
for fuzzy data (even in the univariate case) and there is a lack of parametric models, a fuzzy 
extension of depth-based methods is very interesting. In this paper, we adapt the multivariate 
depths projection depth and 𝐿𝑟-type depth functions to the fuzzy setting, proposing different 
generalizations for the 𝐿𝑟-type depths. We prove that the proposed fuzzy depth functions have 
very good properties, obtaining that the fuzzy projection depth is the second example in the 
literature to satisfy simultaneously the notion of semilinear and of geometric depth. This implies 
that the fuzzy projection depth is extremely well behave, to order fuzzy sets with respect to fuzzy 
random variables. Furthermore, we illustrate the good empirical behavior of the proposed fuzzy 
depth functions with a real data example of trapezoidal fuzzy sets and the used of fuzzy depths 
in depth-based classification procedures. Finally, as trapezoidal fuzzy sets can be represented by 
elements of ℝ4, we justify our proposals by also showing empirically the superiority of the fuzzy 
depths over the multivariate projection depth applied to fuzzy sets.

1. Introduction

It has repeatedly been observed (see, e.g., [1,16]) that statistical analysis of fuzzy data faces several difficulties:

(a) The algebraic structure of fuzzy sets, which is not a linear space and lacks a subtraction operation.
(b) Fuzzy sets lack of a natural total order (even in ℝ) and many competing approaches to rank fuzzy numbers exist.
(c) There is a substantial lack of parametric models and no practically useful analog of the normal distribution.

In this situation, nonparametric methods taylored to the specific structure of fuzzy set spaces that incorporate a well-founded way to 
order a fuzzy data sample would be very interesting. That is exactly what statistical depth for fuzzy data [13] tries to achieve.

By definition, the medians are the points with respect to which at least half of the sample is smaller or equal and at least half 
of the sample is greater or equal. A seemingly innocuous rewording replaces ordering by geometry: the medians are the points 
that split the real line into two half-lines each of which contains at least half of the sample. The 10th percentile is more outlying 
because the two half-lines it defines divide the sample very unevenly. With this idea, Tukey [31] realized that, in order to extend the 
notion of position of a point in a sample to the multivariate setting, it suffices to replace half-lines by half-spaces. To each 𝑥 ∈ℝ𝑝, 
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Tukey associated a depth value 𝐷(𝑥), calculated as the greatest lower bound of the proportion of the sample points contained in any 
half-space whose boundary passes through 𝑥. Like in the real line, if 𝐷(𝑥) is very small there exists a hyperplane through 𝑥 splitting 
the sample very unevenly. That is, 𝑥 is quite outlying. And 𝐷(𝑥) will be largest if the sample is split (by the worst-case hyperplane 
through 𝑥) as evenly as it is possible. Thus data themselves define a way to rank points according to their centrality or outlyingness, 
without requiring a total ordering in ℝ𝑝. Tukey’s data-driven center-outward ordering is not unique. In time, more ways to assess 
statistical depth were discovered and eventually Zuo and Serfling [35] proposed a list of desirable properties for a statistical depth 
function. Depth functions in the literature often fail to satisfy all those properties perfectly. The dominant view is that this does 
not automatically disqualify a candidate depth function but it surely points out a weakness that should be taken into account in a 
practical context (see Remark 4.11 in this regard). Therefore, understanding the theoretical properties of each depth function is an 
important step to make an informed choice between them.

In [13], we proposed a defining list of desirable properties for statistical depth in the fuzzy case. Unlike with multivariate data, 
many different distances between fuzzy sets are available. Thus we suggested a definition of depth which only depends on the 
algebraic operations between fuzzy sets (semilinear depth functions) as well as a metric dependent definition (geometric depth 
functions) and studied the relationships between them. While there are approaches to depth in abstract metric spaces [4,7,24], our 
definition (see Properties P1–P4b below) was conceived with the specificities of fuzzy data in mind, and in particular it would make 
sense for (crisp) set-valued data as well. In connection to this, statistical depth functions for either set-valued or fuzzy data were 
also independently proposed by Cascos et al. [3] and Sinova [27]. This paper is part of an ongoing program to develop depth-based 
methods specifically designed for fuzzy data. As it happens that, although in theory, multivariate depths could be applied to many 
fuzzy settings (for instance, trapezoidal fuzzy sets can be seen as elements of ℝ4), it happens in practice that they do not provide a 
meaningful order (see Section 5). In [13], besides proposing an abstract list of desirable properties, we studied a generalization of the 
Tukey depth to the fuzzy setting and showed that it fulfills all the proposed properties. Additionally, in [14] we studied several ways 
to adapt Liu’s simplicial depth [19] and also their properties. Next it becomes necessary to establish whether some other popular and 
relevant statistical depth functions also admit adaptations and whether their properties are preserved in this more general setting. 
Once a library of depth functions becomes available, comparing their performance for specific purposes will be possible. In this 
paper, the projection and 𝐿𝑟-depth functions, initially defined in ℝ𝑝, are generalized to the fuzzy setting. We have selected them 
because they do not vanish outside the convex hull of the sample, as it happens with the previously studied Tukey and simplicial 
depths. Note that such vanishment is problematic for certain applications, such as clustering.

The projection depth [35, Example 2.4] of a point 𝑥 ∈ ℝ𝑝 with respect to the distribution of a random vector 𝑋 considers the 
projections of 𝑥 in every direction and compares them with the univariate median of the corresponding projection of the distribution. 
In that sense, it measures the worst case of outlyingness of 𝑥 with respect to the median of the distribution in any direction. It is 
formally defined as

𝑃𝐷(𝑥;𝑋) ∶=
(
1 +𝑂 (𝑥;𝑋)

)−1
,

with

𝑂(𝑥;𝑋) ∶= sup
𝑢∈𝕊𝑝−1

|||⟨𝑥, 𝑢⟩− med
(⟨𝑥,𝑋⟩)|||

MAD
(⟨𝑢,𝑋⟩) . (1)

In (1), ⟨⋅, ⋅⟩ denotes the usual inner product in ℝ𝑝, and 𝕊𝑝−1 ∶= {𝑥 ∈ℝ𝑝 ∶ ‖𝑥‖ ≤ 1} the unit sphere, with ‖.‖ the Euclidean norm on 
ℝ𝑝. Moreover, med(𝑌 ) and MAD(𝑌 ) denote the median and the median absolute deviation of a real random variable 𝑌 . Notice the 
set of all medians will be denoted by Med(𝑌 ) and the usual convention of defining med(𝑌 ) to be the midpoint of Med(𝑌 ) applies. 
The function 𝑂, which measures the outlyingness of a point with respect to the median, is widely considered in the literature. For 
instance, in the univariate case it appears in [23] and its multivariate version was introduced in [9]. In this paper, after providing the 
necessary notation and basic results on fuzzy sets, fuzzy random variables and statistical depth in Section 2, we generalize the concept 
of the projection depth to the fuzzy setting in Section 3. We do so by substituting the inner products in (1) by the support function 
for every direction 𝑢 ∈ 𝕊𝑝−1 and every level 𝛼 ∈ [0, 1]. There, we also demonstrate that our proposal has extremely good properties, 
proving that the fuzzy projection depth is the second existing instance to satisfy simultaneously the semilinear and geometric depth 
notions [13]. Besides that, we prove that the fuzzy projection depth is actually a generalization of the, multivariate, projection depth; 
as they coincide when applied to the indicator function of a crisp vector and, respectively, the vector itself.

The 𝐿𝑟-depth [35, Example 2.3] of 𝑥 ∈ℝ𝑝 with respect to the distribution of a random vector 𝑋 is

𝐿𝑟𝐷(𝑥;𝑋) ∶=
(
1 + E[‖𝑥−𝑋‖𝑟])−1 , (2)

where E[⋅] denotes the expected value and ‖ ⋅ ‖𝑟 is the 𝑟-norm in ℝ𝑝 (the same notation will be used for the 𝐿𝑟-norm in function 
spaces). The structure is similar to that of the projection depth, but now the function E[‖ ⋅−𝑋‖𝑟] measures the distance from a point 
to the distribution. In Section 4, we generalize the concept of 𝐿𝑟-type depth to the fuzzy setting. We do so in four different manners, 
two of them use the 𝜌𝑟 metrics to generalize the multivariate ‖ ⋅ ‖𝑟 norms. For the other two, we define a family of metrics in the 
fuzzy space using the (𝑚𝑖𝑑, 𝑠𝑝𝑟) decomposition of the support function. There, we prove that under certain scenarios the proposed 
fuzzy depth functions fulfill the semilinear and geometric notions.

An example of real fuzzy data is analyzed in Section 5. There, we show the good empirical behavior of all the proposed fuzzy 
2

depths. As the analyzed real dataset consists of trapezoidal fuzzy sets, which are identifiable with elements of ℝ4, we also compare 
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the proposed fuzzy depths with a multivariate depth. We show the empirical superiority on fuzzy data of fuzzy depths by making use 
of the projection depth. The selection leans on the extremely good theoretical properties obtained by the proposed fuzzy projection 
depth and 𝐿𝑟-type depths. Furthermore, we make use of our depth proposals in two depth based classification procedures, analyzing 
another real-world fuzzy dataset consisting of trapezoidal fuzzy sets.

Some final remarks close the paper in Section 6. All proofs are deferred to Appendix A.

2. Notation and preliminaries

2.1. Fuzzy sets

A function 𝐴 ∶ℝ𝑝 → [0, 1] is called a fuzzy set on ℝ𝑝. Let 𝛼 ∈ (0, 1], the 𝛼-level of a fuzzy set 𝐴 is defined to be 𝐴𝛼 ∶= {𝑥 ∈ℝ𝑝 ∶
𝐴(𝑥) ≥ 𝛼} and 𝐴0 = clo({𝑥 ∈ℝ𝑝 ∶ 𝐴(𝑥) > 0}), where clo(⋅) denotes the closure of a set. By 𝑐(ℝ𝑝) we denote the set of all fuzzy sets 
𝐴 on ℝ𝑝 whose 𝛼-level is a non-empty compact and convex set for each 𝛼 ∈ [0, 1] For simplicity, we will just refer to the elements of 
𝑐(ℝ𝑝) as fuzzy sets, although a general fuzzy set may not be in 𝑐 (ℝ𝑝).

Let 𝑐(ℝ𝑝) denote the class of all non-empty compact and convex subsets of ℝ𝑝. Any set 𝐾 ∈𝑐(ℝ𝑝) can be identified with a 
fuzzy set via its indicator function I𝐾 ∶ ℝ𝑝 → [0, 1], where I𝐾 (𝑥) = 1 if 𝑥 ∈𝐾 and I𝐾 (𝑥) = 0 otherwise. For any 𝐾 ∈𝑐(ℝ𝑝), define ‖𝐾‖ =max𝑥∈𝐾 ‖𝑥‖.

The support function of a fuzzy set 𝐴 is the mapping 𝑠𝐴 ∶ 𝕊𝑝−1 × [0, 1] →ℝ defined by 𝑠𝐴(𝑢, 𝛼) ∶= sup𝑣∈𝐴𝛼
⟨𝑢, 𝑣⟩, for every 𝑢 ∈ 𝕊𝑝−1

and 𝛼 ∈ [0, 1].
In 𝑐(ℝ) it is common to use trapezoidal fuzzy numbers (e.g., [17, Section 10.7]). For any real numbers 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑, the fuzzy set 

given by

Tra(𝑎, 𝑏, 𝑐, 𝑑)(𝑥) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥− 𝑎

𝑏− 𝑎
if 𝑥 ∈ [𝑎, 𝑏),

1 if 𝑥 ∈ [𝑏, 𝑐],

𝑥− 𝑐

𝑑 − 𝑐
if 𝑥 ∈ (𝑐, 𝑑],

0 otherwise

(3)

is called a trapezoidal fuzzy number.

2.2. Arithmetics and Zadeh’s extension principle

Let 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) and 𝛾 ∈ℝ. According to [32], the operations sum and product by a scalar are defined by

(𝐴+𝐵)(𝑡) ∶= sup
𝑥,𝑦∈ℝ𝑝∶ 𝑥+𝑦=𝑡

min{𝐴(𝑥),𝐵(𝑦)}, with 𝑡 ∈ℝ𝑝,

(𝛾 ⋅𝐴)(𝑡) ∶= sup
𝑥∈ℝ𝑝∶ 𝑡=𝛾⋅𝑥

𝐴(𝑥) =
⎧⎪⎨⎪⎩
𝐴

(
𝑡

𝛾

)
, if 𝛾 ≠ 0

𝐼{0}(𝑡) if 𝛾 = 0
, with 𝑡 ∈ℝ𝑝.

Given 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝), 𝛾 ∈ [0, ∞), 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1], a useful relationship between the support function and these operations is 
the formula

𝑠𝐴+𝛾⋅𝐵(𝑢, 𝛼) = 𝑠𝐴(𝑢, 𝛼) + 𝛾 ⋅ 𝑠𝐵(𝑢, 𝛼). (4)

The (mid∕ spr)-decomposition is a commonly used tool to deal with support functions of fuzzy sets. Given 𝐴 ∈ 𝑐(ℝ𝑝) and 𝑠𝐴 the 
support function of 𝐴, it can be expressed as

𝑠𝐴(𝑢, 𝛼) = mid(𝑠𝐴)(𝑢, 𝛼) + spr(𝑠𝐴)(𝑢, 𝛼), (5)

where, for all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1],

mid(𝑠𝐴)(𝑢, 𝛼) ∶= (𝑠𝐴(𝑢, 𝛼) − 𝑠𝐴(−𝑢, 𝛼))∕2,

spr(𝑠𝐴)(𝑢, 𝛼) ∶= (𝑠𝐴(𝑢, 𝛼) + 𝑠𝐴(−𝑢, 𝛼))∕2.
(6)

A function 𝑓 ∶ 𝑐(ℝ𝑝) →ℝ is convex if

𝑓 (𝜆 ⋅𝐴+ (1 − 𝜆) ⋅𝐵) ≤ 𝜆 ⋅ 𝑓 (𝐴) + (1 − 𝜆) ⋅ 𝑓 (𝐵)
3

for all 𝜆 ∈ [0, 1] and 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝).
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Zadeh’s extension principle [33] allows to apply a crisp function 𝑓 ∶ℝ𝑝 → ℝ𝑝 to a fuzzy set 𝐴 ∈ 𝑐(ℝ𝑝), obtaining a new fuzzy 
set 𝑓 (𝐴) ∈ 𝑐(ℝ𝑝) with

𝑓 (𝐴)(𝑡) ∶= sup{𝐴(𝑦) ∶ 𝑦 ∈ℝ𝑝, 𝑓 (𝑦) = 𝑡}

for all 𝑡 ∈ℝ𝑝.
Let 𝑀 ∈𝑝×𝑝(ℝ) be a regular matrix, 𝐴 ∈ 𝑐(ℝ𝑝) a fuzzy set and let 𝑓 ∶ ℝ𝑝 → ℝ𝑝 be the function given by 𝑓 (𝑥) =𝑀 ⋅ 𝑥. The 

application of Zadeh’s extension principle results in the fuzzy set 𝑓 (𝐴) =𝑀 ⋅𝐴 defined as

(𝑀 ⋅𝐴)(𝑡) = sup{𝐴(𝑦) ∶ 𝑦 ∈ℝ𝑝,𝑀 ⋅ 𝑦 = 𝑡}

From [13, Proposition 7.2],

𝑠𝑀 ⋅𝐴(𝑢, 𝛼) =
‖‖‖𝑀𝑇 ⋅ 𝑢‖‖‖ ⋅ 𝑠𝐴

(
1‖‖𝑀𝑇 ⋅ 𝑢‖‖ ⋅𝑀𝑇 ⋅ 𝑢, 𝛼

)
(7)

for any 𝐴 ∈ 𝑐(ℝ𝑝), 𝑀 ∈𝑝×𝑝(ℝ) a regular matrix, 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1].

2.3. Metrics between fuzzy sets

Given fuzzy sets 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝), define

𝑑𝑟(𝐴,𝐵) ∶=
⎧⎪⎨⎪⎩
(∫[0,1] (𝑑𝐻 (𝐴𝛼,𝐵𝛼)

)𝑟 d𝜈(𝛼))1∕𝑟
, 𝑟 ∈ [1,∞)

sup𝛼∈[0,1] 𝑑𝐻 (𝐴𝛼,𝐵𝛼), 𝑟 =∞,

(8)

where

𝑑𝐻 (𝑆,𝑇 ) ∶= max

{
sup
𝑠∈𝑆

inf
𝑡∈𝑇

∥ 𝑠− 𝑡 ∥, sup
𝑡∈𝑇

inf
𝑠∈𝑆

∥ 𝑠− 𝑡 ∥

}
is the Hausdorff metric between elements of 𝑐(ℝ𝑝) and 𝜈 denotes the Lebesgue measure over [0, 1]. The metric space (𝑐(ℝ𝑝), 𝑑𝑟) is 
separable and non-complete for any 𝑟 ∈ (1, ∞), while the metric space (𝑐 (ℝ𝑝), 𝑑∞) is non-separable and complete [8].

𝐿𝑟-type metrics can be considered using the support function [8]. Given 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) and 𝑟 ≥ 1,

𝜌𝑟(𝐴,𝐵) ∶=
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|𝑠𝐴(𝑢, 𝛼) − 𝑠𝐵(𝑢, 𝛼)|𝑟 d𝑝(𝑢) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑟

, (9)

where 𝑝 denotes the normalized Haar measure in 𝕊𝑝−1.

2.4. Fuzzy random variables

Let (Ω, ) be a measurable space. A function Γ ∶ Ω → 𝑐(ℝ𝑝) is a random compact set [22] if {𝜔 ∈ Ω ∶ Γ(𝜔) ∩ 𝐾 ≠ ∅} ∈ 
for all 𝐾 ∈ 𝑐(ℝ𝑝), or equivalently if Γ is Borel measurable with respect to the Hausdorff metric. According to [25], a function 
 ∶ Ω → 𝑐(ℝ𝑝) is called a fuzzy random variable if the 𝛼-level 𝛼(𝜔) is a random compact set for all 𝛼 ∈ [0, 1] where 𝛼 ∶ Ω →𝑐(ℝ𝑝)
is defined as 𝛼(𝜔) ∶= {𝑥 ∈ℝ𝑝 ∶ (𝜔)(𝑥) ≥ 𝛼} for any 𝜔 ∈Ω.

Let us denote by 𝐿0[𝑐(ℝ𝑝)] the class of all fuzzy random variables on (Ω, ). For any 𝑟 ∈ [1, ∞), we denote by 𝐿𝑟[𝑐(ℝ𝑝)] the 
subset of fuzzy random variables in 𝐿0[𝑐(ℝ𝑝)] such that 𝐸[‖0‖𝑟] <∞. Fuzzy random variables in 𝐿1[𝑐(ℝ𝑝)] are called integrably 
bounded.

The support function of a fuzzy random variable  is the function 𝑠 ∶ 𝕊𝑝−1 × [0, 1] ×Ω →ℝ with 𝑠 (𝑢, 𝛼, 𝜔) ∶= 𝑠(𝜔)(𝑢, 𝛼) for all 
𝑢 ∈ 𝕊𝑝−1, 𝛼 ∈ [0, 1] and 𝜔 ∈ Ω. Throughout the paper, the probability space associated with a fuzzy random variable is denoted by 
(Ω, , ℙ).

2.5. Symmetry and depth: semilinear and geometric notions

In [13], we proposed two notions of symmetry in the fuzzy setting, the 𝐹 -symmetry notion, based in the support function, and the 
(mid, spr)-notion, based on the (mid, spr)-decomposition. Given a fuzzy random variable  ∶ Ω → 𝑐(ℝ𝑝) and a fuzzy set 𝐴 ∈ 𝑐(ℝ𝑝),

•  is 𝐹 -symmetric with respect to 𝐴 if

𝑠𝐴(𝑢, 𝛼) − 𝑠 (𝑢, 𝛼) =𝑑 𝑠 (𝑢, 𝛼) − 𝑠𝐴(𝑢, 𝛼),
4

for all (𝑢, 𝛼) ∈ 𝕊𝑝−1 × [0, 1], where =𝑑 represents being equal in distribution.
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•  is said to be (mid, spr)-symmetric with respect to 𝐴 if

mid(𝑠𝐴(𝑢, 𝛼)) − mid(𝑠 (𝑢, 𝛼)) =𝑑 mid(𝑠 (𝑢, 𝛼)) − mid(𝑠𝐴(𝑢, 𝛼)) and

spr(𝑠𝐴(𝑢, 𝛼)) − spr(𝑠 (𝑢, 𝛼)) =𝑑 spr(𝑠 (𝑢, 𝛼)) − spr(𝑠𝐴(𝑢, 𝛼)),

for all (𝑢, 𝛼) ∈ 𝕊𝑝−1 × [0, 1].

There it is also proved that, for all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1],

𝑠𝐴(𝑢, 𝛼) ∈ Med(𝑠 (𝑢, 𝛼)) if  is 𝐹 -symmetric with respect to 𝐴 (10)

and

mid(𝑠𝐴)(𝑢, 𝛼) ∈ Med(mid(𝑠 )(𝑢, 𝛼)) and spr(𝑠𝐴)(𝑢, 𝛼) ∈ Med(spr(𝑠 )(𝑢, 𝛼)) (11)

if  is (mid, spr)-symmetric with respect to 𝐴.
In [13], we introduced the following two abstract definitions of a statistical depth function for fuzzy data. Let us consider 

 ⊆ 𝐿0[𝑐(ℝ𝑝)] and  ⊆ 𝑐(ℝ𝑝), with  and  being non-empty, and a mapping 𝐷(⋅; ⋅) ∶  × → [0, ∞). Let 𝐴 ∈  be such that 
𝐷(𝐴; ) = sup{𝐷(𝐵; ) ∶ 𝐵 ∈  } and let 𝑑 ∶ 𝑐(ℝ𝑝) × 𝑐(ℝ𝑝) → [0, ∞) be a metric. Consider the following properties, which are 
required to hold for any such 𝐴.

P1. 𝐷(𝑀 ⋅𝑈 + 𝑉 ; 𝑀 ⋅ + 𝑉 ) =𝐷(𝑈 ; ) for any regular matrix 𝑀 ∈𝑝×𝑝(ℝ), any 𝑈, 𝑉 ∈  and any  ∈.
P2. For any symmetric fuzzy random variable  ∈ (for some notion of symmetry), 𝐷(𝑈 ; ) = sup𝐵∈𝑐 (ℝ𝑝)𝐷(𝐵; ), where 𝑈 ∈ 

is a center of symmetry of  .
P3a. 𝐷(𝐴; ) ≥𝐷((1 − 𝜆) ⋅𝐴 + 𝜆 ⋅𝑈 ; ) ≥𝐷(𝑈 ; ) for all 𝜆 ∈ [0, 1] and all 𝑈 ∈ 𝑐(ℝ𝑝).
P3b. 𝐷(𝐴; ) ≥𝐷(𝑈 ; ) ≥𝐷(𝑉 ; ) for all 𝐵, 𝐶 ∈  satisfying 𝑑(𝐴, 𝑉 ) = 𝑑(𝐴, 𝑈 ) + 𝑑(𝑈, 𝑉 ).
P4a. lim𝜆→∞𝐷(𝐴 + 𝜆 ⋅𝑈 ; ) = 0 for all 𝑈 ∈  ⧵ {I{0}}.
P4b. lim𝑛→∞𝐷(𝐴𝑛; ) = 0 for every sequence {𝐴𝑛}𝑛, with 𝐴𝑛 ∈  for all 𝑛 ∈ ℕ, such that 𝑑(𝐴𝑛, 𝐴) →∞.

These properties adapt to the specificities of fuzzy data the defining properties of a statistical depth function in multivariate analysis 
[35]. As defined in [13], 𝐷 is a semilinear depth function if it satisfies P1, P2, P3a and P4a. It is a geometric depth function with respect 
to a metric 𝑑 if it satisfies P1, P2, P3b and P4b for that metric.

2.6. Banach spaces

A Banach space is a real normed space (𝔼, ‖ ⋅ ‖) whose induced metric is complete.

Definition 2.1 ([11]). Let (𝔼, ‖ ⋅ ‖) be a Banach space. It is said to be strictly convex if 𝑥 = 𝑦 whenever ‖(1∕2) ⋅ (𝑥 + 𝑦)‖ = ‖𝑥‖ = ‖𝑦‖
for every 𝑥, 𝑦 ∈ 𝔼.

The property of strict convexity in Banach spaces plays a crucial role in the relation between properties P3a and P3b of the 
semilinear and geometric depth notions, which is due to [13, Theorem 5.4]. In this work, we make use of strict convexity in proving, 
in Sections 3 and 4, property P3b for the projection and the 𝐿𝑟-type fuzzy depths.

The Cartesian product 𝔼 × 𝔽 of two Banach spaces (𝔼, ‖ ⋅ ‖𝔼) and (𝔽 , ‖ ⋅ ‖𝔽 ) can be endowed with an 𝑟-norm

‖(𝑥, 𝑦)‖𝑟 = (‖𝑥‖𝑟𝔼 + ‖𝑦‖𝑟𝔽 )1∕𝑟.
The resulting Banach space is denoted by 𝔼 ⊕𝑟 𝔽 .

3. Projection depth and its properties

3.1. Definition

In this section, we introduce a statistical depth function inspired by the multivariate projection depth. We extend the notion of 
projection depth by replacing in (1) the product functionals ⟨𝑢, ⋅⟩ by the support functionals 𝑠⋅(𝑢, 𝛼). A rationale for this adaptation is 
given in [13, Section 6]. We introduce the concept of projection depth into the fuzzy framework for three different reasons. Firstly, 
our adaptation aims at creating a library of depth functions, specifically tailored for fuzzy sets and for subsequent applications to 
fuzzy real data. The need of this will be seen later in Section 5, where we show that multivariate depth functions do not have a 
good performance when applied to fuzzy sets. Secondly, in both [13] and [14], we adapt the halfspace and the simplicial depth to 
the fuzzy setting. Both depth measures face the issue of vanishing outside the convex hull of the sample and we aim in this paper 
at depth functions that behave well in this matter. The projection depth does not vanish at any point of the space, an important 
property for the purpose of ordering elements according to their depth value. Finally, the projection depth has a robust construction, 
5

a property expected from depth functions.
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Fig. 1. Representation in black of the sets 𝐴 (left), 𝐵 (right) and 𝐶 (middle) and in red the median of the fuzzy random variable  . (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Definition 3.1. The projection depth based on  ⊆ 𝑐(ℝ𝑝) and  ⊆ 𝐿0[𝑐(ℝ𝑝)], with  and  being non-empty and the subset 
not containing degenerate fuzzy random variables, of a fuzzy set 𝐴 ∈  with respect to a fuzzy random variable  ∈ is

𝐷𝐹𝑃 (𝐴;) ∶=
(
1 +𝑂 (𝐴;)

)−1
,

where

𝑂(𝐴;) ∶= sup
𝑢∈𝕊𝑝−1 ,𝛼∈[0,1]

|𝑠𝐴(𝑢, 𝛼) −Med(𝑠 (𝑢, 𝛼))|
MAD(𝑠 (𝑢, 𝛼))

. (12)

The usual convention of taking the mid-point of the interval of medians when the median is not unique is adopted, both in the 
numerator and the denominator.

The hypothesis that  does not contain degenerate fuzzy random variables is a technical hypothesis implemented to prevent null 
denominators in the definition of the 𝑂 function. Going back to the multivariate function 𝑂, commented in Section 1, we have that it 
measures the worst case of outlyingness of a point with respect to the univariate median for every direction 𝑢 ∈ 𝕊𝑝−1. Here we follow 
the same idea, measuring the worst case of outlyingness over 𝕊𝑝−1 and [0, 1] of the support function of a fuzzy set with respect the 
univariate median of the support function of the fuzzy random variable.

In the following examples we show the performance of the proposed fuzzy projection depth and in what sense it measures the 
outlyingness of the support function of fuzzy sets.

Example 3.2. Let ({𝜔1, 𝜔2}, ({𝜔1, 𝜔2}), ℙ) be a probability space such that ℙ({𝜔1}) = ℙ({𝜔2}) and  ∶ {𝜔1, 𝜔2} → 𝑐(ℝ) a fuzzy 
random variable such that 𝐴 ∶= (𝜔1) = I{1} and 𝐵 ∶= (𝜔2) = I{6}. Let us consider the trapezoidal fuzzy set 𝐶 = Tra(2, 3, 4, 5). 
These three sets are represented in black in Fig. 1.

To compute the fuzzy projection depth of 𝐶 with respect to  we have to compute the support functions of the above fuzzy sets. 
It is easy to see that, for every 𝑢 ∈ 𝕊0 and 𝛼 ∈ [0, 1], their support functions are 𝑠𝐴(𝑢, 𝛼) = 𝑢, 𝑠𝐵(𝑢, 𝛼) = 6𝑢 and

𝑠𝐶 (𝑢, 𝛼) =
⎧⎪⎨⎪⎩
5 − 𝛼, if 𝑢 = 1

−2 − 𝛼, if 𝑢 = −1.

The median and the median absolute deviation of the support function of the fuzzy random variable are respectively 
Med(𝑠 (𝑢, 𝛼)) = 7𝑢∕2 and MAD(𝑠 (𝑢, 𝛼)) = 5∕2.

Let us compute the value 𝑂(𝐶; ). According to [28], the 1-median of the fuzzy random variable  is I{7∕2} (see the red line in 
Fig. 1). As the function 𝑂 measures the worst case of outlyingness of the support function, we have that 𝑂(𝐶; ) takes the supremum 
at 𝛼 = 0, as these are the farthest values of the support function of 𝐶 to the support function of the 1-median of the fuzzy random 
6

variable. The value between 𝑢 = 1 and 𝑢 = −1 is the same because the fuzzy set 𝐶 is symmetric with respect to line 𝑥 = 7∕2.
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Fig. 2. Representation of Example in black of the sets 𝐴 (left), 𝐵 (right) and 𝐶 (middle) and in red the median of the fuzzy random variable  .

𝑂(𝐶;) = sup
𝛼∈[0,1]

max

{|5 − 𝛼 − 7∕2|
5∕2

,
|− 2 − 𝛼 + 7∕2|

5∕2

}

= sup
𝛼∈[0,1]

max

{
3 − 2𝛼

5
,
3 − 2𝛼

5

}

= sup
𝛼∈[0,1]

3 − 2𝛼
5

=
3
5
.

Finally, the projection depth of 𝐶 with respect to  is

𝐷𝐹𝑃 (𝐶;) = (1 +𝑂(𝐶;))−1 = (1 + 3∕5)−1 = 5∕8.

In the example above, we have computed the projection depth of a symmetric fuzzy set with respect to a fuzzy random variable 
that takes values on crisp sets. In the following example, we compute the projection depth of a more complex scenario.

Example 3.3. Let ({𝜔1, 𝜔2}, ({𝜔1, 𝜔2}), ℙ) be a probability space such that ℙ({𝜔1}) = ℙ({𝜔2}) and  ∶ {𝜔1, 𝜔2} → 𝑐(ℝ) a 
fuzzy random variable with 𝐴 ∶= (𝜔1) = Tra(1, 2, 3, 4) and 𝐵 ∶= (𝜔2) = I[10,11]. Let us consider the trapezoidal fuzzy set 
𝐶 = Tra(5, 7, 8, 9). We have displayed these fuzzy sets in black in Fig. 2.

To obtain the projection depth of 𝐶 with respect to  , we compute the support functions of the above fuzzy sets. It is easy to see 
that, for every 𝑢 ∈ 𝕊0 and 𝛼 ∈ [0, 1], they are

𝑠𝐴(𝑢, 𝛼) =
⎧⎪⎨⎪⎩
4 − 𝛼, if 𝑢 = 1

−1 − 𝛼, if 𝑢 = −1,

𝑠𝐵(𝑢, 𝛼) =
⎧⎪⎨⎪⎩
11, if 𝑢 = 1

−10, if 𝑢 = −1

and

𝑠𝐶 (𝑢, 𝛼) =
⎧⎪⎨⎪⎩
9 − 𝛼, if 𝑢 = 1

−5 − 2𝛼, if 𝑢 = −1.

The median and median absolute deviation of the support function of the fuzzy random variable are, respectively,

Med(𝑠 (𝑢, 𝛼)) =

⎧⎪⎪⎨⎪
15 − 𝛼

2
, if 𝑢 = 1

11 + 𝛼
7

⎪⎩ −
2

, if 𝑢 = −1
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and

MAD(𝑠 (𝑢, 𝛼)) =

⎧⎪⎪⎨⎪⎪⎩

14 + 𝛼

2
, if 𝑢 = 1

9 − 𝛼

2
, if 𝑢 = −1.

Now, we compute the value 𝑂(𝐶; ). According to the computation of the support function of the median of the fuzzy ran-
dom variable  and the definition of 1-median in [28], we have that the 1-median of  is the trapezoidal fuzzy set Med() =
Tra(11∕2, 6, 7, 15∕2) (see the red trapezoid in Fig. 2). Thus, the case of 𝑢 = 1, the worst case of outlyingness between the fuzzy set 𝐶
and the 1-median of  happens for 𝛼 = 0. On the other hand, for the case of 𝑢 = −1, the worst case happens for 𝛼 = 1.

𝑂(𝐶;) = sup
𝑢∈𝕊0 ,𝛼∈[0,1]

|𝑠𝐶 (𝑢, 𝛼) − Med(𝑠 (𝑢, 𝛼))|
MAD(𝑠 (𝑢, 𝛼))

= sup
𝑢∈𝕊0 ,𝛼∈[0,1]

max

{|(3 − 𝛼)∕2|
(14 + 𝛼)∕2

,
|(1 − 3𝛼)∕2|
(9 − 𝛼)∕2

}

= sup
𝑢∈𝕊0 ,𝛼∈[0,1]

max

{
3 − 𝛼

14 + 𝛼
,
|1 − 3𝛼|
9 − 𝛼

}

=max

{
3
14
,
1
4

}
=

1
4

Finally, the projection depth of 𝐶 with respect to  is

𝐷𝐹𝑃 (𝐶;) = (1 +𝑂(𝐶;))−1 = (1 + 1∕4)−1 = 4∕5.

In what follows, we consider the particular case of the function 𝐷𝐹𝑃 based on

 =
{

I{𝑥} ∈ 𝑐(ℝ𝑝) ∶ 𝑥 ∈ℝ𝑝
}
,

showing 𝐷𝐹𝑃 generalizes the multivariate projection depth. This happens since the subset  ⊂ 𝑐(ℝ𝑝), equipped with the fuzzy oper-
ations, exhibits a behavior analogous to ℝ𝑝. Particularly, the result states that the projection depth with respect to any fuzzy random 
variable with images in  coincides with the multivariate projection depth. Thus, in this context, our proposal is a generalization of 
the multivariate projection depth within the fuzzy framework.

Proposition 3.4. Let  = {I{𝑥} ∶ 𝑥 ∈ℝ𝑝}. For any random vector 𝑋 on ℝ𝑝 and any 𝑥 ∈  ,

𝐷𝐹𝑃

(
I{𝑥}; I{𝑋}

)
= 𝑃𝐷(𝑥;𝑋).

The proof follows directly from the fact that 𝑠𝐴(𝑢, 𝛼) = ⟨𝑢, 𝑥⟩ for any 𝐴 = I{𝑥}, 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1].

3.2. Properties

We will now show that projection depth, like Tukey depth [13], is both a semilinear depth function and a geometric depth 
function.

Theorem 3.5. 𝐷𝐹𝑃 satisfies properties P1, P2 with 𝐹 -symmetry, P3a and P4a. Moreover, it satisfies P3b for 𝜌𝑟 if 𝑟 ∈ (1, ∞) and P4b for 
𝜌𝑟 if 𝑟 ∈ [1, ∞) and 𝑑𝑟 if 𝑟 ∈ [1, ∞].

Corollary 3.6. When using the 𝐹 -symmetry notion, 𝐷𝐹𝑃 is a semilinear depth function and a geometric depth function for the 𝜌𝑟 distance 
for any 𝑟 ∈ (1, ∞).

The next result shows that 𝐷𝐹𝑃 is not a geometric depth function for the 𝑑𝑟 metrics. Using [13, Example 5.6], it is proved by 
counterexample that 𝐷𝐹𝑃 violates property P3b for some metrics.
8

Proposition 3.7. 𝐷𝐹𝑃 is not a geometric depth function for the 𝑑𝑟-distance for any 𝑟 ∈ [1, ∞].
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4. 𝑳𝒓-type depths and their properties

4.1. Definitions

We present several approaches to statistical depth for fuzzy data inspired by multivariate 𝐿𝑟-depth. As it is apparent from (2), 
a distance between fuzzy data is required. A natural 𝐿𝑟-type distance is the 𝜌𝑟 metric defined above. We introduce the concept of 
𝐿𝑟-type depths into the fuzzy setting for the same first two reasons we explained for the projection depth, in previous section. Firstly, 
we are motivated to create a library of depth functions for fuzzy sets, as multivariate depths do not behave well in this setting. 
Secondly, 𝐿𝑟-type depth functions are based on metrics, thus any element of the space has null depth.

Definition 4.1. For any 𝑟 ∈ [1, ∞), the 𝑟-natural depth based on  ⊆ 𝑐(ℝ𝑝) and  ⊆ 𝐿1[𝑐(ℝ𝑝)], with  and  being non-empty, 
of a fuzzy set 𝐴 ∈  with respect to a fuzzy random variable  ∈ is

𝐷𝑟(𝐴;) ∶=
(
1 + E[𝜌𝑟(𝐴,)]

)−1
.

The reason to consider  ⊆ 𝐿1[𝑐(ℝ𝑝)] is to avoid having an infinite expectation in the definition. While it is possible to define 𝐷𝑟

as being identically zero in that case (see [13, Example 5.9]), a null depth function is not desirable in practice, e.g., in classification 
problems.

Definition 4.2. For any 𝑟 ∈ [1, ∞), the 𝑟-natural raised depth based on  ⊆ 𝑐(ℝ𝑝) and  ⊆ 𝐿𝑟[𝑐(ℝ𝑝)], with  and  being non-
empty, of a fuzzy set 𝐴 ∈  with respect to a random variable  ∈ is

𝑅𝐷𝑟(𝐴;) ∶=
(
1 +𝐸[𝜌𝑟(𝐴,)𝑟]

)−1
.

In the context of the 𝑟-natural raised depth, we consider the subsets  ⊆ 𝐿𝑟[𝑐(ℝ𝑝)] to prevent the denominator from having an 
infinite expectation.

Another possibility is to define an 𝐿𝑟-type depth by using the mid and spr functions, through which the location and the shape of 
the fuzzy sets are described. With that aim, denoting by ‖ ⋅ ‖𝑟 the norm of the Banach space 𝐿𝑟

(
𝕊𝑝−1 × [0,1],𝑝 ⊗ 𝜈

)
, we define

𝑑𝑟,𝜃(𝐴,𝐵) ∶=
[‖‖mid(𝑠𝐴) − mid(𝑠𝐵)‖‖𝑟𝑟 + 𝜃 ⋅ ‖‖spr(𝑠𝐴) − spr(𝑠𝐵)‖‖𝑟𝑟]1∕𝑟 (13)

for any 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝), 𝑟 ∈ [1, ∞) and 𝜃 ∈ [0, ∞). This is a straightforward generalization of the distance 𝑑2,𝜃 in [30]. For 𝜃 > 0, 𝑑𝑟,𝜃
is a metric, as it identifies isometrically each 𝐴 ∈ 𝑐(ℝ𝑝) with the element (mid(𝑠𝐴), spr(𝑠𝐴)) of the Banach space

𝐿𝑟
(
𝕊𝑝−1 × [0,1],𝑝 ⊗ 𝜈

)
⊕𝑟 𝐿

𝑟
(
𝕊𝑝−1 × [0,1], 𝜃1∕𝑟 ⋅ (𝑝 ⊗ 𝜈)

)
.

In the case 𝜃 = 0 it depends only on mid and it is just a pseudometric. We will use this case for a counterexample (Proposition 4.24).
The definitions introduce a parameter 𝜃 in order to control the relative importance of the shape and location of the fuzzy sets. 

That resembles what happens in function spaces with the Sobolev distances. As before, we give two proposals: one based on 𝑑𝑟,𝜃 and 
another on 𝑑𝑟

𝑟,𝜃
.

Definition 4.3. For any 𝑟 ∈ [1, ∞) and 𝜃 ∈ [0, ∞), the (𝑟, 𝜃)-location depth based on  ⊆ 𝑐(ℝ𝑝) and  ⊆ 𝐿𝑟[𝑐(ℝ𝑝)], with  and 
being non-empty, of a fuzzy set 𝐴 ∈  with respect to a fuzzy random variable  ∈ is

𝐷𝜃
𝑟
(𝐴;) ∶=

(
1 + E[𝑑𝑟,𝜃(𝐴,)]

)−1
.

Definition 4.4. For any 𝑟 ∈ [1, ∞) and 𝜃 ∈ [0, ∞), the (𝑟, 𝜃)-location raised depth based on  ⊆ 𝑐(ℝ𝑝) and  ⊆ 𝐿𝑟[𝑐(ℝ𝑝)], with 
and  being non-empty, of a fuzzy set 𝐴 ∈  with respect to a random variable  ∈ is

𝑅𝐷𝜃
𝑟
(𝐴;) ∶=

(
1 + E[𝑑𝑟,𝜃(𝐴,)𝑟]

)−1
.

In the context of 𝐷𝜃
𝑟

and 𝑅𝐷𝜃
𝑟
, we consider the subsets  ⊆𝐿𝑟[𝑐(ℝ𝑝)] to avoid the denominator having an infinite expectation.

The particular case of 𝐷𝜃
2 in the real line was discussed in [27, Section 6]. Yet another similar definition, but involving only the 

spread and not the mid, is used in [13, Example 5.7] to show that P3a does not imply P3b in general.

Remark 4.5. The general structure of the definitions above is

𝐷(𝐴;) = (1 + 𝜙(𝐸[𝑑(𝐴,)]))−1

where 𝑑 is a metric in 𝑐(ℝ𝑝) and 𝜙 is an appropriate increasing (and convex, for some arguments in the sequel) function with 
𝜙(0) = 0. While this type of object makes sense in a general metric space, the next subsection will focus on whether it satisfies 
9

properties which are specific to the context of fuzzy sets.
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Remark 4.6. Definitions 4.1 through 4.4 adapt the multivariate notion of 𝐿𝑟-depth to the fuzzy setting but are not generalizations 
of it. The reason is that the 𝑟-norm distance between two points of ℝ𝑝 does not equal the 𝜌𝑟- or 𝑑𝑟,𝜃 -distance between their indicator 
functions. Take, for instance, 𝑥 = (2, 3) and 𝑦 = (3, 7). We have ‖𝑥 − 𝑦‖1 = 1 + 4 = 5 whereas

𝜌1

(
𝐼{𝑥}, 𝐼{𝑦}

)
=

2𝜋

∫
0

||cos𝜃 + 4 ⋅ sin𝜃||d𝜈(𝜃) = 4
√
17.

Observe 𝑑𝑟,𝜃
(

I{𝑥}, I{𝑦}
)
= 𝜌𝑟

(
I{𝑥}, I{𝑦}

)
for all 𝜃 ∈ [0, ∞) since their spread is the null function.

The following result states that functions of the form of 𝐿𝑟-type depths satisfy property P3a under certain convexity assumptions.

Lemma 4.7. If 𝐶(⋅, ) is a convex function then the function (1 + E[𝐶(⋅, )])−1 satisfies P3a for every  ∈ 𝐿0[𝑐(ℝ𝑝)] such that 
E[𝐶(I{0}, )] <∞.

This lemma and its proof are analogous to the multivariate result [35, Theorem 2.4], since 𝐶(⋅, ) and P3a maintain the structure 
of their multivariate analogues.

Proposition 4.8. Let 𝑟 ∈ [1, ∞), 𝜃 ∈ [0, ∞) and  ∈𝐿𝑟[𝑐(ℝ𝑝)]. The functions 𝜌𝑟(⋅; ), 𝜌𝑟(⋅; )𝑟, 𝑑𝑟,𝜃(⋅; ) and 𝑑𝑟,𝜃(⋅; )𝑟 are convex.

4.2. Properties

4.2.1. Affine invariance

The next example shows that neither 𝐷𝑟, 𝑅𝐷𝑟, 𝐷𝜃
𝑟

nor 𝑅𝐷𝜃
𝑟

are affine invariant in the sense of property P1; the same happens in 
the multivariate case [35].

Example 4.9. Let {{𝜔1, 𝜔2}, ({𝜔1, 𝜔2}), ℙ} be a probability space with ℙ({𝜔1}) = ℙ({𝜔2}) = 1∕2.

(i) Let (𝜔1) ∶= I[1,2] and (𝜔2) ∶= I[5,7]. Taking 𝐴 = I[3,4], after some algebra we have, for any 𝑟 ∈ [1, ∞),

E(𝜌𝑟(𝐴,)) =
1
2
⋅
⎡⎢⎢⎣2 +

(
3𝑟 + 2𝑟

2

)1∕𝑟⎤⎥⎥⎦
and

E(𝜌𝑟(𝐴,)𝑟) =
1
2
⋅

[
2𝑟 +

3𝑟 + 2𝑟

2

]
.

Thus,

𝐷𝑟(𝐴;) =
⎛⎜⎜⎝2 +

1
2
⋅

(
3𝑟 + 2𝑟

2

)1∕𝑟⎞⎟⎟⎠
−1

> 0

and

𝑅𝐷𝑟(𝐴;) =
⎛⎜⎜⎝1 + 3 ⋅

(
2𝑟−2 +

3𝑟−1

4

)⎞⎟⎟⎠
−1

> 0.

Considering the matrix 𝑀 ∶= (5) ∈1×1(ℝ),

𝑀 ⋅(𝜔1) = I[5,10], 𝑀 ⋅(𝜔2) = I[25,35] and 𝑀 ⋅𝐴 = I[15,20].

Therefore, for every 𝑟 ∈ [1, ∞),

𝐸[𝜌𝑟(𝑀 ⋅𝐴;𝑀 ⋅) = 5𝐸[𝜌𝑟(𝐴;)]

whence 𝐷𝑟(𝑀 ⋅𝐴; 𝑀 ⋅) ≠𝐷𝑟(𝐴; ) and 𝑅𝐷𝑟(𝑀 ⋅𝐴; 𝑀 ⋅) ≠𝑅𝐷𝑟(𝐴; ).
(ii) Let (𝜔1) ∶= I[0,2] and (𝜔2) ∶= I[2,3]. Taking 𝐴 = I[1,2], we obtain for any 𝑟 ∈ [1, ∞) and 𝜃 ∈ (0, ∞)

1
(

(1 + 𝜃)1∕𝑟
)

10

E[𝑑𝑟,𝜃(𝐴,)] =
2
⋅ 1 +

2
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and

E[𝑑𝑟,𝜃(𝐴,)𝑟] =
1
2
⋅

(
1 +

1 + 𝜃

2𝑟

)
.

Thus,

𝐷𝜃
𝑟
(𝐴;) =

⎛⎜⎜⎝1 +
1
2
⋅

[
1 +

(1 + 𝜃)1∕𝑟

2

]⎞⎟⎟⎠
−1

> 0

and

𝑅𝐷𝜃
𝑟
(𝐴;) =

⎛⎜⎜⎝1 +
1
2
⋅

[
1 +

1 + 𝜃

2𝑟

]⎞⎟⎟⎠
−1

> 0.

Now, for 𝑀 = (2) ∈1×1(ℝ),

𝑀 ⋅(𝜔1) = I[0,4],𝑀 ⋅(𝜔2) = I[4,6] and 𝑀 ⋅𝐴 = I[2,4].

Therefore,

E[𝑑𝑟,𝜃(𝑀 ⋅𝐴,𝑀 ⋅)] = 1 +
(1 + 𝜃)1∕𝑟

2
and

E[𝑑𝑟,𝜃(𝑀 ⋅𝐴,𝑀 ⋅)𝑟] = 2𝑟−1 ⋅

(
1 +

1 + 𝜃

2𝑟

)
.

For every 𝑟 ∈ [1, ∞) and 𝜃 ∈ (0, ∞),

𝐷𝜃
𝑟
(𝑀 ⋅𝐴;𝑀 ⋅) ≠𝐷𝜃

𝑟
(𝐴;) and 𝑅𝐷𝜃

𝑟
(𝑀 ⋅𝐴;𝑀 ⋅) ≠𝑅𝐷𝜃

𝑟
(𝐴;).

Let us consider the following property, weaker than P1.

P1∗. 𝐷(𝑀 ⋅𝐴 +𝐵; 𝑀 ⋅ +𝐵) =𝐷(𝐴; ) for any orthogonal matrix 𝑀 ∈𝑝×𝑝(ℝ) and 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝).

This property (called rigid-body invariance) was shown to hold in the multivariate case in [35]. The following result states that 𝐷𝑟, 
𝑅𝐷𝑟, 𝐷𝜃

𝑟
and 𝑅𝐷𝜃

𝑟
are invariant when the matrix 𝑀 ∈ 𝑝×𝑝(ℝ) is orthogonal. That is due to the fact that ‖𝑀𝑇 ⋅ 𝑢‖ = 1 for all 

𝑢 ∈ 𝕊𝑝−1 if 𝑀 is orthogonal. Note that the 𝑀 ’s in Example 4.9 are not orthogonal matrices, because their determinant is not ±1.

Proposition 4.10. Let  ⊆ 𝑐(ℝ𝑝), 1 =𝐿1[𝑐(ℝ𝑝)] and 𝑟 ⊆ 𝐿𝑟[𝑐(ℝ𝑝)]. Property P1∗ is satisfied by 𝐷𝑟 based on  and 1 and 𝑅𝐷𝑟

based on  and 𝑟, for any 𝑟 ∈ [1, ∞]; and by 𝐷𝜃
𝑟

based on  and 1 and 𝑅𝐷𝜃
𝑟

based on  and , for any 𝑟 ∈ [1, ∞] and 𝜃 ∈ [0, ∞).

Remark 4.11. The failure of 𝑃1 and its multivariate analog for some non-orthogonal matrices illustrates why ‘lists of properties’ 
are guides rather than axioms for depth functions. If the results of an analysis may be different depending on whether temperature 
values are expressed in the Celsius or Fahrenheit scale, one would like to ponder calmly whether it makes sense to use that method. 
Thus, failing affine invariance looks like an egregious violation for a depth function.

From the discussion of Property P1*, 𝐿𝑟-depths are rotation (and also translation) invariant, and only have problems with 
rescaling. Since both the function 𝑥 ↦ (1 + 𝑥)−1 and multiplication by a scalar are strictly monotonic, rescaling modifies the depth 
values but not their order. Therefore, as long as depth values are used as a ranking device (as opposed to important values in 
themselves) there will be no problem.

For instance, consider a depth-trimmed mean obtained by eliminating from the sample the 10% less 𝐿𝑟-deep points. Rescaling 
does not affect which sample points get trimmed and therefore the depth-trimmed mean will still be affinely invariant, even if the 
depth function itself is not. Similarly, a depth-based classification task will yield the same result regardless of rescaling.

Moreover, in some situations data are routinely standardized before the analysis, which makes the rescaling issue irrelevant. For 
instance, in cell studies like cancer diagnosis, cell measurements taken from tissue images need standardization since different images 
may not share the same scale.

Remark 4.12. In [27, Proposition 6.1], Sinova shows what amounts to stating that 𝐷𝜃
2 (in the real line) satisfies Property P1*. In 

that case, matrices are not involved since the only orthogonal transformations of ℝ are the identity function 𝑖𝑑 and its opposite −𝑖𝑑. 
Although Sinova also states properties of monotonicity relative to the deepest point and vanishing at infinity, they are formulated in 
11

terms of the behavior of 𝐸[𝑑2,𝜃( , 𝐴)] instead of 𝐴 itself, following from the definition.
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4.2.2. Maximality at the center of symmetry

While 𝐹 -symmetry is suitable for 𝐷𝑟 and 𝑅𝐷𝑟, we will use (mid, spr)-symmetry for 𝐷𝜃
𝑟

and 𝑅𝐷𝜃
𝑟

as the mid and spr functions are 
involved in their construction. We first focus on cases 𝑟 = 1, 2, since some of our proofs employ arguments which are specific to those 
values.

For 𝑟 = 1, the results are in Propositions 4.15 and 4.16, which require integrably bounded fuzzy random variables. These propo-
sitions rely on Lemmas 4.13 and 4.14, which ensure the existence of the expectation in the denominator of 𝐷1 and 𝐷𝜃

1 , respectively. 
Note that for 𝑟 = 1 one has 𝑅𝐷1 =𝐷1 and 𝑅𝐷𝜃

1 =𝐷𝜃
1 .

Lemma 4.13. Let 𝑟, 𝑠 ∈ [1, ∞) and  ∈𝐿𝑟[𝑐(ℝ𝑝)]. Then E[𝜌𝑠(I{0}, )𝑟] <∞.

Lemma 4.14. Let 𝑟 ∈ [1, ∞), 𝜃 ∈ [0, ∞) and  ∈𝐿1[𝑐(ℝ𝑝)]. Then 𝐸[𝑑𝑟,𝜃(I{0}, )] <∞.

Proposition 4.15. Let  = 𝑐(ℝ𝑝) and  ⊆ 𝐿1[𝑐(ℝ𝑝)]. Then 𝐷1 (equivalently, 𝑅𝐷1) based on  and  satisfies Property P2 for 
𝐹 -symmetry.

Proposition 4.16. Let  = 𝑐(ℝ𝑝),  ⊆ 𝐿1[𝑐(ℝ𝑝)] and 𝜃 ∈ [0, ∞). Then 𝐷𝜃
1 (equivalently, 𝑅𝐷𝜃

1) based on  and  satisfies Property 
P2 for (mid, spr)-symmetry.

For 𝑟 = 2, the results are in Propositions 4.17 and 4.18.

Proposition 4.17. Let  = 𝑐(ℝ𝑝) and  ⊆𝐿2[𝑐(ℝ𝑝)]. Then, 𝑅𝐷2 based on  and  satisfies Property P2 for 𝐹 -symmetry.

Proposition 4.18. Let  = 𝑐(ℝ𝑝),  ⊆ 𝐿2[𝑐(ℝ𝑝)] and 𝜃 ∈ [0, ∞). Then, 𝑅𝐷𝜃
2 based on  and  satisfies Property P2 for (mid, spr)-

symmetry.

Fuzzy sets can be associated with their support functions in the function space 𝐿𝑟(𝕊𝑝−1 × [0, 1], 𝑝 ⊗ 𝜈). Thus, it is possible to 
define a notion of symmetry in the fuzzy setting by using central symmetry in that function space (see [20]). Notice that this notion 
does not depend on the choice of 𝑟 ∈ [1, ∞).

Definition 4.19. Let  be a fuzzy random variable, we say that  is functionally symmetric with respect to a fuzzy set 𝐴 if 𝑠 − 𝑠𝐴 is 
identically distributed as 𝑠𝐴 − 𝑠 .

Theorem 4.20. Let 𝑟 ∈ [1, ∞),  = 𝑐(ℝ𝑝) and  ⊆ 𝐿1[𝑐(ℝ𝑝)]. Then, 𝐷𝑟 based on  and  satisfies Property P2 for functional 
symmetry.

4.2.3. Properties P3 and P4

We will now study properties P3 and P4 for 𝐿𝑟-type depths.
Lemma 4.13 guarantees the finiteness of the expectation in the denominator of 𝐷𝑟 for each 𝑟 ∈ [1, ∞) and for every integrable 

bounded fuzzy random variable. In the case of 𝑅𝐷𝑟, we consider fuzzy random variables  ∈𝐿𝑟[𝑐(ℝ𝑝)].

Theorem 4.21. Let 𝑟 ∈ [1, ∞),  = 𝑐(ℝ𝑝), 1 ⊆ 𝐿1[𝑐(ℝ𝑝)] and 𝑟 ⊆ 𝐿𝑟[𝑐(ℝ𝑝)]. Then 𝐷𝑟 based on  and 1, and 𝑅𝐷𝑟 based on 
 and 𝑟 both satisfy

• P3a and P4a,

• P3b for the 𝜌𝑠 and 𝑑𝑠,𝜃 metrics for any 𝑠 ∈ (1, ∞) and 𝜃 ∈ (0, ∞),
• P4b for the 𝜌𝑠 and 𝑑𝑠,𝜃 metrics for any 𝑠 ∈ [1, 𝑟] and 𝜃 ∈ (0, ∞).

In general, P4b does not admit 𝑠 > 𝑟, as shown for 𝑟 = 1 in [13, Example 5.9]. Based on Lemma 4.14, the function 𝐷𝜃
𝑟

is well 
defined for integrably bounded fuzzy random variables. For the case of 𝑅𝐷𝜃

𝑟
, we consider fuzzy random variables  ∈𝐿𝑟[𝑐(ℝ𝑝)].

Theorem 4.22. Let 𝑟 ∈ [1, ∞), 𝜃 ∈ [0, ∞),  = 𝑐(ℝ𝑝), 1 ⊆𝐿1[𝑐(ℝ𝑝)] and 𝑟 ⊆ 𝐿𝑟[𝑐(ℝ𝑝)]. Then 𝐷𝜃
𝑟

based on  and 1 and 𝑅𝐷𝜃
𝑟

based on  and 𝑟 satisfy

• P3a,

• P4a if 𝜃 ∈ (0, ∞),
• P3b for the 𝜌𝑠 and 𝑑𝑠,𝜃 metrics for any 𝑠 ∈ (1, ∞) and 𝜃 ∈ (0, ∞),
12

• P4b for the 𝜌𝑠 and 𝑑𝑠,𝜃 metrics for any 𝑠 ∈ [1, 𝑟] and 𝜃 ∈ (0, ∞).
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Fig. 3. Display of the dataset Trees.

Table 1

Sample frequencies and depths for each quality value.

Quality 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9

Frequency 22 16 39 36 85 22 35 12 12

𝐷𝐹𝑃 .2333 .2917 .3889 .4737 1 .4737 .3889 .2917 .2333

𝐷1 .3726 .4149 .4887 .5488 .5790 .5163 .4493 .3781 .3814

𝐷2 .4530 .4751 .5214 .5506 .5903 .5287 .5001 .4545 .4564

𝐷5
1 .2979 .3036 .3761 .3695 .3814 .3545 .3307 .2838 .2522

𝐷10
1 .2295 .2390 .2972 .2780 .2839 .2694 .2682 .2265 .2014

Remark 4.23. The case 𝑠 = 1 is special for property P3b in Theorems 4.21 and 4.22 because the space 𝐿1(𝕊𝑝−1 × [0, 1], 𝑝 ⊗𝜈) is not 
strictly convex. This results in that P3a and P3b are not necessarily equivalent for 𝑠 = 1, that equivalence being used to prove P3b 
for 𝑠 > 1.

For 𝜃 = 0, Properties P4a and P4b are not satisfied, as shown next. Note that the distance function 𝑑2,𝜃 is defined in [30] for 
𝜃 ∈ (0, 1]. It is not a distance for 𝜃 = 0, as mentioned in Section 4.1.

Proposition 4.24. 𝐷0
𝑟

and 𝑅𝐷0
𝑟

can fail P4a for any 𝑟 ∈ [1, ∞) and P4b with the 𝜌𝑠 metric for any 𝑠 ∈ (1, ∞) and 𝑟 ∈ [1, ∞).

5. Real data example

In this section, we compute the depth of the elements in a real datasets composed of trapezoidal fuzzy sets. Subsection 5.1
focuses on computing our depth proposals, specifically tailored for fuzzy sets. To apply them, it suffices to take  =𝐿0[𝑐(ℝ𝑝)] and 
 = 𝑐(ℝ𝑝). Since trapezoidal fuzzy sets are characterized by four real numbers, in Subsection 5.2 we compare the obtained results 
with those of the multivariate projection depth in ℝ4. In Subsection 5.3, we make use of out fuzzy proposals to perform depth based 
classification procedures.

5.1. Fuzzy depth functions

In order to compare the behavior of projection and 𝐿𝑟-type depths we use the dataset Trees from the SAFD (Statistical Analysis 
of Fuzzy Data) R package [5]. It comes from a reforestation study at the INDUROT forest institute in Spain. The study considers the 
quality of the tree, a fuzzy random variable whose observations are trapezoidal fuzzy numbers. To define it, experts took into account 
different aspects of the trees, including leaf structure and height-diameter ratio. The 𝑥-axis represents quality, in a scale from 0 to 
5, where 0 means null quality and 5 perfect quality. The 𝑦-axis represents membership. The dataset contains a random sample (size: 
279) of 9 possible fuzzy values (see Fig. 3 and Table 1). There, the trapezoidal fuzzy numbers are represented by 𝑇𝑖, 𝑖 = 1, … , 9 from 
left to right, for which projection depth and some 𝐿𝑟-type depths were computed.

In Fig. 3, we appreciate a certain symmetry in the data representation. Beyond this fact, we can not discard any metric a priori, 
thus we compute the 𝐿𝑟-type dephts for 𝑟 = 1, 2, the most common cases in the literature. It is clear that the median of the sample 
(in the sense of [28]) is the maximizer of 𝐷1 and thus is 𝑇5. This fact, together with the fact of symmetry, makes us suppose that 
the projection depth will give a symmetric ordering, that is 𝑇1 will have the same depth of 𝑇9, 𝑇2 the same depth of 𝑇8 and so on. 
Table 1 shows that the projection depth represents the symmetry of the data. In the left panel of Fig. 4 it is represented the ordering 
which induce the projection depth. The ordering induced in the fuzzy numbers by the 1- and 2-natural depths is the same and it is 
represented in the right panel of Fig. 4.

Finally, we compute some examples of (𝑟, 𝜃)-location depth. The cases 𝑟 = 1, 2 and 𝜃 = 1 generate the same ordering as 𝐷1 and 
𝐷2. If we take 𝜃 > 1, we prioritize shape over location and we should expect a different ordering (see Fig. 5). Indeed, as 𝜃 increases, 
13

trapezoidal fuzzy sets with intermediate slopes become deeper than centrally located ones.
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Fig. 4. Display of the dataset Trees. Color is assigned based on the projection depth (left panel) and on the 1-natural and 2-natural depths (right panel) of each fuzzy 
set in the empirical distribution. Colors range from red (high depth) to blue (low depth).

Fig. 5. Display of the dataset Trees. Color is assigned based on the (1, 5)-location depth (left) and (1, 10)-location depth (right), ranging from red (high depth) to blue 
(low depth).

Table 2

Sample frequencies and multivariate and fuzzy depths for each quality value.

Quality 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9

Frequency 22 16 39 36 85 22 35 12 12

𝑃𝐷𝑅 .0124 .0044 .0357 .0371 .1971 .0317 .0070 .0109 .0042

𝐷𝐹𝑃 .2333 .2917 .3889 .4737 1 .4737 .3889 .2917 .2333

5.2. Multivariate depth functions

In this section, we compute the multivariate projection depth of each trapezoidal fuzzy set in the Trees dataset, in order to compare 
the ordering with the one given by the fuzzy depths, with a focus on the fuzzy projection depth. For that purpose, we consider each 
trapezoidal fuzzy set as an element of ℝ4.

To compute the multivariate projection depth in practice, we employ a methodology akin to that of the random Tukey depth 
[6]. We approximate the 𝑂 function by considering 1000 random directions on the sphere 𝕊3, evaluate the corresponding function 
and take the maximum over these directions. Table 2 presents the multivariate depth values, denoted as 𝑃𝐷𝑅, and the fuzzy depth 
values of the different elements in the dataset; in addition to the frequency of each element in the dataset. Fig. 6 displays the ordering 
induced by the multivariate projection depth, using random directions on the sphere, (left panel) and by the fuzzy projection depth 
(right panel). It is evident that the ordering given by the fuzzy projection depth (or the other proposed fuzzy depths) is more coherent 
with a natural order. For instance, the fuzzy projection depth taks into account the symmetry among the trapezoidal fuzzy sets with 
respect to 𝑇5. On the other hand, the ordering given by the multivariate depth gives to 𝑇1 the fifth deepest value, a disposition that 
does not coincide in a natural way with the arrangement of the fuzzy sets; as 𝑇1 is the fuzzy set with a farthest location to the left in 
the plots.

5.3. Real-world application of fuzzy depths

In this section, we compute the fuzzy projection and fuzzy 𝐿𝑟-type depths as the base of a supervised classification procedure. 
The dataset that we consider consists of 40 overall opinions of one expert and 38 of a second expert on the quality of the Gamonedo

cheese from Asturias, Spain, see [26]. As the perception of the quality is a subjective process, the quality of the experts is expressed 
14

in terms of trapezoidal fuzzy sets. Here, the 0-level is the closed interval where the quality clearly lies and the 1-level is the closed 
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Fig. 6. Display of the dataset Trees. Color is assigned based on the multivariate projection depth (left panel) and on the fuzzy projection depth (right panel). Colors 
range from red (high depth) to blue (low depth).

Table 3

Misclassification rates of different classification procedures 
based on projection and 𝐿𝑟-type depths.

Depth 𝐷𝐹𝑃 𝐷2 𝐷1
2 𝐷40

2

𝑀𝐷 .3589 .3333 .3333 .2307
𝐷𝑇𝑀0.1,0.1,𝑑2,100 .2692 .1923 .1923 .2307

interval where the experts think the quality lies. In this setting, we consider two fuzzy random variables, 1 and 2, where 1 is the 
fuzzy random variable that corresponds to the overall opinion of the first expert and, analogously, 2 to the second expert.

Given that the fuzzy sets are trapezoidal, determining the precise value of the 𝐿𝑟-type depths is straightforward. This ease arises 
from the fact that the metrics 𝜌𝑟 and 𝑑𝑟,𝜃 make use of integrals over the intervals [0, 1] and 𝕊0 and the structure of trapezoidal fuzzy 
sets is simple, being determined by 4 values. However, when calculating the exact value of the projection depth, it is required to 
compute the supremum of a function over an infinite number of 𝛼-levels. Here we estimate the projection depth values, by randomly 
selecting 200 values from the closed interval [0, 1], computing the function’s value for each, and then taking the maximum among 
these 200 values.

Let us suppose we have two samples of fuzzy sets, 𝑋1, … , 𝑋𝑛 and 𝑌1, … , 𝑌𝑚. We use here the two following depth based supervised 
classification procedures.

1. Maximum depth (MD) [12]. In consists of adding each observation to the two training samples, computing its depth with respect 
to both samples, and classifying the observation into the group where its depth is the greatest.

2. Distance to the trimmed mean (𝐷𝑇𝑀𝛼,𝛽,𝑑) [21]. For this procedure we compute the depth of each observation of 𝑋1, … , 𝑋𝑛 and 
select an 𝛼 ∈ [0, 1). Then, we compute the 𝛼-trimmed mean of the sample, 𝜇𝛼(𝑋), which is the mean of the 𝑛 × (1 − 𝛼) deepest 
points. We select 𝛽 ∈ [0, 1) for the sample 𝑌1, … , 𝑌𝑚 and compute, similarly, 𝜇𝛽 (𝑌 ). Let us consider a metric in the fuzzy space, 
𝑑. Now, we classify a fuzzy set 𝐴 in the first group if

𝑑(𝐴,𝜇𝛼(𝑋)) < 𝑑(𝐴,𝜇𝛽 (𝑌 )).

We evaluate the accuracy of these procedures employing one-leave-out cross-validation. Table 3 shows the misclassification error 
rate for our depth proposals. We consider the projection depth, the 2-natural depth and the (2, 𝜃)-location depth, for 𝜃 ∈ {1, 40}. For 
the 𝐷𝑇𝑀𝛼,𝛽,𝑑 procedure, we consider the family of metrics 𝑑2,100. Different values of 𝜃 between 0 and 200 were used in a previous 
analysis on this dataset, which led to the selection of 𝜃 = 100.

This dataset was used by [15] in a two-sample dispersion test. There it was obtained that there is no significant difference between 
the opinions of both experts. Despite this, the misclassification rate using 𝐷𝑇𝑀 based on 𝐷2 or 𝐷1

2 is only 0.1923, indicating that 
we can accurately classify well over 80% of the observations.

6. Concluding remarks

Since the introduction of projection depth [35], it has been applied in multivariate analysis (see, e.g., [10] and [34]), measuring 
the worst case of the outlyingness of a point by comparing the projection of the point in every direction with respect to the univariate 
median of the projection in that direction. In the fuzzy case, as the support function of a fuzzy set considers the projection of 
every direction 𝑢 and every 𝛼-level, we define the function 𝐷𝐹𝑃 replacing the inner product by the support function for every 
(𝑢, 𝛼) ∈ 𝕊𝑝−1 × [0, 1].

The function 𝐷𝐹𝑃 is the natural generalization of the multivariate projection depth to the fuzzy setting (Proposition 3.4). Pro-
jection depth for fuzzy sets, as the Tukey depth defined in [13], is a semilinear depth function and also a geometric depth function 
15

for the 𝜌𝑟-distances with 𝑟 ∈ (1, ∞) (Corollary 3.6). It is also interesting that, being defined via medians, it imposes no integrability 
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requirements on the fuzzy random variables. There is a limitation with respect to its implementation when working with general 
fuzzy sets, as the 𝑂 function requires the use of every direction 𝑢 on the sphere 𝕊𝑝−1 and every level 𝛼 on [0, 1]. This is equivalent 
to the existing limitation in the multivariate setting. Both are easily solved by approximating the function randomly as in [6]: con-
sider 𝑛 random directions, 𝑚 random levels, evaluate the functions and take the maximum. In summary, projection depth is a nice 
alternative to Tukey depth in the fuzzy setting.

For any 𝑟 ∈ [1, ∞), the 𝐿𝑟-type fuzzy depths satisfy the semilinear and the geometric depth notions under the assumption that 
the matrices considered in P1 are orthogonal (Proposition 4.10). Property P2 is satisfied by 𝐷1 =𝑅𝐷1 and 𝑅𝐷2 when 𝐹 -symmetry 
is considered (see Proposition 4.15 and 4.17) and by 𝐷𝑟 for 𝑟 ∈ [1, ∞) when functional symmetry is considered (see Theorem 4.20). It 
is also satisfied by 𝐷𝜃

1 = 𝑅𝐷𝜃
1 and 𝑅𝐷𝜃

2 for 𝜃 ∈ [0, ∞) when (mid, spr)-symmetry is considered (see Proposition 4.16 and 4.18). The 
main shortcoming of the 𝐿𝑟-type depths is their use for general fuzzy sets. To compute 𝐿𝑟-type depths is necessary that the support 
functions of the sample of fuzzy sets are integrable functions, to determine the integrals related with the metrics. Although 𝐿𝑟-type 
depths are neither semilinear nor geometric depth functions, we can observe in Section 5 that their behavior can be similar to that 
of projection depth, which is in fact a semilinear and a geometric depth function.

For future work, it would be desirable to study the continuity or semicontinuity properties of these depth functions, as it is done 
in the multivariate case (see [35]) and in the functional case (see [24]). It is also open to find a geometric depth function for the 
𝜌1 metric or 𝑑𝑟 metrics, or to show the impossibility of such functions. From the point of view of applied mathematics, it could be 
stimulating to develop algorithms to compute some fuzzy depth proposals, in order to generalize to fuzzy sets some nonparametric 
methods of multivariate and functional data analysis.
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Appendix A. Proofs

This appendix contains the mathematical proofs of the results in Sections 3 and 4.
The proof of Theorem 3.5 relies on Lemmas A.1 and A.2 below [13, Theorem 5.4 and Proposition 5.8]. Given a metric 𝑑 in 

𝑐(ℝ𝑝), these lemmas consider the following assumptions.

(A1) 𝑑(𝛾 ⋅𝐴, 𝛾 ⋅𝐵) = 𝛾 ⋅ 𝑑(𝐴, 𝐵) for all 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) and 𝛾 ∈ [0, ∞),
(A2) 𝑑(𝐴 +𝑊 , 𝐵 +𝑊 ) = 𝑑(𝐴, 𝐵) for all 𝐴, 𝐵, 𝑊 ∈ 𝑐(ℝ𝑝).

Lemma A.1. Let (𝔼, ‖ ⋅ ‖) be a strictly convex Banach space, 𝑑 a metric in 𝑐(ℝ𝑝) fulfilling 𝐴1 and 𝐴2, and 𝑗 ∶ (𝑐(ℝ𝑝), 𝑑) → (𝔼, ‖ ⋅ ‖) an 
isometry. Whenever 𝐴, 𝐵, 𝐶 ∈ 𝑐(ℝ𝑝) are such that 𝑑(𝐴, 𝐵) = 𝑑(𝐴, 𝐶) + 𝑑(𝐵, 𝐶), the fuzzy set 𝐶 has the form (1 − 𝜆) ⋅𝐴 + 𝜆 ⋅𝐵 for some 
𝜆 ∈ [0, 1].

Lemma A.2. Let  be a fuzzy random variable and 𝐷(⋅; ) ∶ 𝑐(ℝ𝑝) → [0, ∞) a function for which P4b holds with respect to a metric that 
fulfills 𝐴1 and 𝐴2. Then 𝐷(⋅; ) satisfies P4a.

We introduce a basic result about symmetry of real random variables which is used in the proof of property P2 below.

Lemma A.3. Let 𝑋 be a real random variable symmetric with respect to 𝑐 ∈ ℝ. Then 𝑐 = med(𝑋) and also 𝑐 = E[𝑋] provided E[𝑋] ∈ ℝ
16

exists.
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Proof. If E[𝑋] <∞, then E[𝑋] − 𝑐 = E[𝑋 − 𝑐] = E[𝑐 −𝑋] = 𝑐 − E[𝑋], where the second equality is due to the symmetric hypothesis 
(𝑋 − 𝑐 and 𝑐 −𝑋 are equally distributed). Thus, E[𝑋] = 𝑐.

Suppose for a contradiction that 𝑐 ∉ Med(𝑋). Without loss of generality we assume ℙ(𝑋 ≤ 𝑐) < 1∕2. Therefore, ℙ(𝑋 ≥ 𝑐) > 1∕2. 
By the symmetry hypothesis, ℙ(𝑋 − 𝑐 ≤ 0) = ℙ(𝑐 −𝑋 ≤ 0). Thus, we have that 1∕2 > ℙ(𝑋 ≤ 𝑐) = ℙ(𝑋 ≥ 𝑐) > 1∕2, which leads to a 
contradiction. Then,

𝑐 ∈ Med(𝑋). (14)

If we restrict Med(𝑋) to be a singleton, then 𝑐 = med(𝑋). If the set Med(𝑋) = [𝑚, 𝑀] is not a singleton, let us assume for a contra-
diction that 𝑐 ≠ med(𝑋) = (𝑀 +𝑚)∕2. Taking into account (14) we assume, without loss of generality,

(𝑀 +𝑚)
2

< 𝑐 ≤𝑀. (15)

That implies 𝑀 − 𝑐 < 𝑐 −𝑚. Then there exists some 𝜖 > 0 such that 𝑐 − [(𝑀 − 𝑐) + 𝜖] >𝑚. As (15) also implies

𝑀 + 𝜖 > 𝑐, (16)

we get 𝑐 > 𝑐 − [(𝑀 − 𝑐) + 𝜖] >𝑚. Then 𝑐 − [(𝑀 − 𝑐) + 𝜖] ∈ Med(𝑋) and

ℙ(𝑋 ≤ 𝑐 − [(𝑀 − 𝑐) + 𝜖]) ≥ 1
2
. (17)

As ℙ(𝑋 ≤𝑀 + 𝜖) ≥ ℙ(𝑋 ≤ 𝑐) ≥ 1∕2, by (14) and (16), and 𝑀 + 𝜖 ∉ Med(𝑋),

ℙ(𝑋 ≥𝑀 + 𝜖) <
1
2
. (18)

By the central symmetry of 𝑋, ℙ(𝑋 − 𝑐 ≤ 𝑡) = ℙ(𝑐 −𝑋 ≤ 𝑡) for each 𝑡 ∈ ℝ. Setting 𝑡 = −[(𝑀 − 𝑐) + 𝜖] and taking into account (17)
and (18),

1∕2 ≤ ℙ(𝑋 ≤ 𝑐 − [(𝑀 − 𝑐) + 𝜖]) = ℙ(𝑋 ≥ 𝑐 + (𝑀 − 𝑐) + 𝜖) < 1∕2,

a contradiction. □

Proof of Theorem 3.5. Property P1. Let 𝑀 ∈𝑝×𝑝(ℝ) be a regular matrix and 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝). It suffices to prove 𝑂(𝑀 ⋅𝐴 +𝐵; 𝑀 ⋅
 +𝐵) =𝑂(𝐴; ). By translation invariance,

MAD(𝑠 (𝑢, 𝛼) + 𝑠𝐵(𝑢, 𝛼)) = MAD(𝑠 (𝑢, 𝛼))
for any 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1], yielding 𝑂(𝑀 ⋅ 𝐴 + 𝐵; 𝑀 ⋅  + 𝐵) = 𝑂(𝑀 ⋅ 𝐴; 𝑀 ⋅ ). Now consider the function 𝑔 ∶ 𝕊𝑝−1 → 𝕊𝑝−1
defined by

𝑔(𝑢) =

(
1‖‖𝑀𝑇 ⋅ 𝑢‖‖

)
𝑀𝑇 ⋅ 𝑢.

Then

𝑂(𝑀 ⋅𝐴;𝑀 ⋅) = sup
𝑢∈𝕊𝑝−1 ,𝛼∈[0,1]

|𝑠𝐴(𝑔(𝑢), 𝛼) −med(𝑠 (𝑔(𝑢), 𝛼))|
MAD(𝑠 (𝑔(𝑢), 𝛼))

=𝑂(𝐴;),

where the first identity uses (7) and the properties of the univariate median. The second identity holds because 𝑔 is bijective, a 
consequence of 𝑀 being regular.

Property P2. Let  be a fuzzy random variable, 𝐹 -symmetric with respect to some 𝐴 ∈ 𝑐(ℝ𝑝). It implies that the real random 
variable 𝑠 (𝑢, 𝛼) is symmetric with respect to 𝑠𝐴(𝑢, 𝛼) for every 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. By Lemma A.3, 𝑠𝐴(𝑢, 𝛼) = med(𝑠 (𝑢, 𝛼)) for 
all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1], thus 𝑂(𝐴; ) = 0. As 𝑂(𝑈 ; ) ≥ 0 for all 𝑈 ∈ 𝑐(ℝ𝑝), we obtain

𝐷𝐹𝑃 (𝐴;) = 1 ≥ sup
𝑈∈𝑐 (ℝ𝑝)

𝐷𝐹𝑃 (𝑈 ;).

Property P3a. It is not hard to show that 𝑂(𝐶; ) is a convex function in 𝐶 , i.e.

𝑂((1 − 𝜆) ⋅𝑈 + 𝜆 ⋅ 𝑉 ;) ≤ (1 − 𝜆) ⋅𝑂(𝑈 ;) + 𝜆 ⋅𝑂(𝑉 ;)

for all 𝑈, 𝑉 ∈ 𝑐(ℝ𝑝) and 𝜆 ∈ [0, 1], using the linearity of the support function, the triangle inequality and the fact that a sum of 
17

suprema majorizes the supremum of sums. Then, taking any 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) such that 𝐴 maximizes 𝐷𝐹𝑃 (⋅; ),
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𝐷𝐹𝑃 ((1 − 𝜆) ⋅𝐴+ 𝜆 ⋅𝐵;) = (1 +𝑂((1 − 𝜆) ⋅𝐴+ 𝜆 ⋅𝐵;))−1 ≥
(1 + (1 − 𝜆) ⋅𝑂(𝐴;) + 𝜆 ⋅𝑂(𝐵;))−1 ≥
(1 +𝑂(𝐵;))−1 =𝐷𝐹𝑃 (𝐵;).

Property P3b. By Lemma A.1, P3a and P3b are equivalent for all 𝜌𝑟 with 𝑟 ∈ (1, ∞).
Property P4b. Let 𝑟 ∈ [1, ∞). Let 𝐴 ∈ 𝑐(ℝ𝑝) maximize 𝐷𝐹𝑃 (⋅; ) and let {𝐴𝑛}𝑛 be a sequence of fuzzy sets such that 

lim𝑛 𝜌𝑟(𝐴, 𝐴𝑛) =∞. As 𝜌𝑟(𝐴, 𝐴𝑛) ≤ 𝑑∞(𝐴, 𝐴𝑛) for every 𝑛 ∈ ℕ, we have lim𝑛 𝑑∞(𝐴, 𝐴𝑛) =∞. By the triangle inequality,

lim
𝑛
𝑑∞(𝐴𝑛, I{0}) =∞. (19)

Let us denote by 𝐴𝑛,𝛼 the 𝛼-level of 𝐴𝑛. As 𝑑𝐻 (𝐴𝑛,𝛼, {0}) = sup{‖𝑥‖ ∶ 𝑥 ∈𝐴𝑛,𝛼} and 𝐴𝑛,𝛼 ⊆ 𝐴𝑛,0 for all 𝛼 ∈ [0, 1] and 𝑛 ∈ℕ, we have

𝑑∞(𝐴𝑛, I{0}) = 𝑑𝐻 (𝐴𝑛,0,{0}) = sup{‖𝑥‖ ∶ 𝑥 ∈𝐴𝑛,0}. (20)

Since the norm is continuous as a function and each 𝐴𝑛,0 is compact, the supremum is attained at some 𝑥𝑛 ∈𝐴𝑛,0. Thus

lim
𝑛

‖𝑥𝑛‖ = lim
𝑛
𝑑∞(𝐴𝑛, I{0}) =∞.

In particular, some 𝑒𝑖 in the standard basis {𝑒1, … , 𝑒𝑝} of ℝ𝑝 is such that lim𝑛⟨𝑒𝑖, 𝑥𝑛⟩ =∞. As ⟨𝑒𝑖, 𝑥𝑛⟩ ≤ 𝑠𝐴𝑛
(𝑒𝑖, 0) for every 𝑛 ∈ ℕ, we 

have lim𝑛 𝑠𝐴𝑛
(𝑒𝑖, 0) =∞. Taking this into account, since med(𝑠 (𝑒𝑖, 0)) ∈ℝ and MAD(𝑠 (𝑒𝑖, 0)) ∈ [0, ∞),

lim
𝑛→∞

𝑂(𝐴𝑛;) ≥ lim
𝑛→∞

|||𝑠𝐴𝑛
(𝑒𝑖,0) − med(𝑠 (𝑒𝑖,0))|||

MAD(𝑠 (𝑒𝑖,0))
=∞.

Then, lim𝑛 𝐷𝐹𝑃 (𝐴𝑛; ) = 0, and 𝐷𝐹𝑃 satisfies P4b for the 𝜌𝑟 metric for every 𝑟 ∈ [1, ∞), as well as for 𝑑∞.
Now, let {𝐴𝑛}𝑛 be a sequence such that lim𝑛 𝑑𝑟(𝐴, 𝐴𝑛) = ∞ for some 𝑟 ∈ [1, ∞). As 𝑑𝑟(𝐴, 𝐴𝑛) ≤ 𝑑∞(𝐴, 𝐴𝑛) for every 𝑛 ∈ ℕ, the 

same proof establishes P4b for 𝑑𝑟.
Property P4a. By Lemma A.2, P4b for the 𝜌𝑟-metric implies P4a, for any 𝑟 ∈ [1, ∞). □

Proof of Proposition 4.8. Case 1 (𝜌𝑟 and 𝜌𝑟
𝑟
). For 𝑟 ∈ [1, ∞) and  ∈𝐿𝑟[𝑐(ℝ𝑝)],

𝜌𝑟((1 − 𝜆) ⋅𝐴+ 𝜆 ⋅𝐵,) = ‖𝑠(1−𝜆)⋅𝐴+𝜆⋅𝐵 − 𝑠‖𝑟 =‖(1 − 𝜆) ⋅ 𝑠𝐴 + 𝜆 ⋅ 𝑠𝐵 − 𝑠‖𝑟 = ‖(1 − 𝜆) ⋅ (𝑠𝐴 − 𝑠 ) + 𝜆 ⋅ (𝑠𝐵 − 𝑠 )‖𝑟 ≤‖(1 − 𝜆) ⋅ (𝑠𝐴 − 𝑠 )‖𝑟 + ‖𝜆 ⋅ (𝑠𝐵 − 𝑠 )‖𝑟 = (1 − 𝜆) ⋅ 𝜌𝑟(𝐴,) + 𝜆 ⋅ 𝜌𝑟(𝐵,),

for every 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) and 𝜆 ∈ [0, 1], where the inequality is due to the triangle inequality and the second equality due to the 
linearity of the support function.
Now let us consider the function 𝑓 ∶ [0, ∞) → [0, ∞) defined by 𝑓 (𝑥) = 𝑥𝑟. The function 𝑓 is convex and increasing, thus

𝜌𝑟((1 − 𝜆) ⋅𝐴+ 𝜆 ⋅𝐵,)𝑟 = 𝑓
(
𝜌𝑟((1 − 𝜆) ⋅𝐴+ 𝜆 ⋅𝐵,)

) ≤
𝑓
(
(1 − 𝜆) ⋅ 𝜌𝑟(𝐴,) + 𝜆 ⋅ 𝜌𝑟(𝐵,)

) ≤ (1 − 𝜆) ⋅ 𝑓
(
𝜌𝑟(𝐴,)

)
+ 𝜆 ⋅ 𝑓

(
𝜌𝑟(𝐵,)

)
=

(1 − 𝜆) ⋅ 𝜌𝑟(𝐴,)𝑟 + 𝜆 ⋅ 𝜌𝑟(𝐵,)𝑟,

for all 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) and 𝜆 ∈ [0, 1].
Case 2 (𝑑𝑟,𝜃 and 𝑑𝑟

𝑟,𝜃
). Let 𝑟 ∈ [1, ∞), 𝜃 ∈ [0, ∞) and  ∈𝐿𝑟[𝑐(ℝ𝑝)]. The mapping

(‖ ⋅ ‖𝑟
𝑟
+ 𝜃‖ ⋅ ‖𝑟

𝑟
)1∕𝑟 ∶𝐿𝑟(𝕊𝑝−1 × [0,1],𝑝 ⊗ 𝜈)⊕𝑟 𝐿

𝑟(𝕊𝑝−1 ⊗ [0,1], 𝜃1∕𝑟 ⋅ (𝑝 ⊗ 𝜈))→ [0,∞)

is a norm. We identify each 𝐴 ∈ 𝑐(ℝ𝑝) with the pair

(mid(𝑠𝐴), spr(𝑠𝐴)) ∈𝐿𝑟(𝕊𝑝−1 × [0,1],𝑝 ⊗ 𝜈)⊕𝑟 𝐿
𝑟(𝕊𝑝−1 ⊗ [0,1], 𝜃1∕𝑟 ⋅ (𝑝 ⊗ 𝜈))

Using the properties of mid, spr and support functions one obtains

ℎ(𝑠(1−𝜆)⋅𝐴) + ℎ(𝑠𝜆⋅𝐵) = ℎ(𝑠(1−𝜆)⋅𝐴+𝜆⋅𝐵)
18
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for every ℎ ∈ {mid, spr}, 𝐴, 𝐵 ∈ 𝑐(ℝ𝑝) and 𝜆 ∈ [0, 1]. Now

𝑑𝑟,𝜃((1 − 𝜆) ⋅𝐴+ 𝜆 ⋅𝐵;) =(‖mid(𝑠(1−𝜆)⋅𝐴+𝜆⋅𝐵) − mid(𝑠 )‖𝑟𝑟 + 𝜃 ⋅ ‖ spr(𝑠(1−𝜆)⋅𝐴+𝜆⋅𝐵) − 𝑠𝑝𝑟(𝑠 )‖𝑟𝑟)1∕𝑟
=(‖(1 − 𝜆) ⋅ (mid(𝑠𝐴) − mid(𝑠 )) + 𝜆 ⋅ (mid(𝑠𝐵) − mid(𝑠 ))‖𝑟𝑟+

𝜃 ⋅ ‖(1 − 𝜆) ⋅ (spr(𝑠𝐴) − spr(𝑠 )) + 𝜆 ⋅ (spr(𝑠𝐵) − spr(𝑠 ))‖𝑟𝑟)1∕𝑟 ≤(‖(1 − 𝜆) ⋅ (mid(𝑠𝐴) − mid(𝑠 ))‖𝑟𝑟 + 𝜃 ⋅ ‖(1 − 𝜆) ⋅ (spr(𝑠𝐴) − spr(𝑠 ))‖𝑟𝑟)1∕𝑟
+(‖𝜆 ⋅ (mid(𝑠𝐵) − mid(𝑠 ))‖𝑟𝑟 + 𝜃 ⋅ ‖𝜆 ⋅ (spr(𝑠𝐵) − spr(𝑠 ))‖𝑟𝑟)1∕𝑟

=

(1 − 𝜆) ⋅ 𝑑𝑟,𝜃(𝐴,) + 𝜆 ⋅ 𝑑𝑟,𝜃(𝐵,)

where the inequality is due to the triangle inequality for the norm (‖ ⋅ ‖𝑟
𝑟
+ 𝜃‖ ⋅ ‖𝑟

𝑟
)1∕𝑟.

The proof for 𝑑𝑟
𝑟,𝜃

is analogous to that of 𝜌𝑟
𝑟
. □

Proof of Proposition 4.10. Let 𝑟 ∈ [1, ∞] and let 𝑀, 𝐴 and 𝐵 be as in P1∗. For 𝐷𝑟 and 𝑅𝐷𝑟, it suffices to prove that for every 
𝜔 ∈Ω we have 𝜌𝑟(𝐴, (𝜔)) = 𝜌𝑟(𝑀 ⋅𝐴, 𝑀 ⋅(𝜔)), as, by (9), clearly 𝜌𝑟(𝑀 ⋅𝐴 +𝐵, 𝑀 ⋅(𝜔) +𝐵) = 𝜌𝑟(𝑀 ⋅𝐴, 𝑀 ⋅(𝜔)). Since

𝜌𝑟(𝑀 ⋅𝐴,𝑀 ⋅(𝜔)) =
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|𝑠𝑀 ⋅𝐴(𝑢, 𝛼) − 𝑠𝑀 ⋅(𝜔)(𝑢, 𝛼)|𝑟 d𝑝(𝑢) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑟

,

using (7) and the orthogonality of 𝑀 ,

𝜌𝑟(𝑀 ⋅𝐴,𝑀 ⋅(𝜔)) =
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

||||𝑠𝐴 (
𝑀𝑇 ⋅ 𝑢, 𝛼

)
− 𝑠(𝜔)

(
𝑀𝑇 ⋅ 𝑢, 𝛼

)||||𝑟 d𝑝(𝑢) d𝜈(𝛼)
⎞⎟⎟⎟⎠
1∕𝑟

.

With the change of variable 𝑣 =𝑀𝑇 𝑢 and the notation 𝑀 = (𝑚𝑖,𝑗 )𝑖,𝑗 , 𝑢 = (𝑢1, … , 𝑢𝑝) and 𝑣 = (𝑣1, … , 𝑣𝑝), we have 𝑢𝑖 =
∑𝑝

𝑗=1𝑚𝑖,𝑗 ⋅ 𝑣𝑗 . 
Thus, the domain of integration remains the same and the Jacobian determinant is det(𝐽 (𝑀𝑣)) = det(𝑀). By the orthogonality, 
det(𝑀) = ±1 and |det(𝐽 (𝑀𝑣))| = 1. Thus

𝜌𝑟(𝑀 ⋅𝐴,𝑀 ⋅(𝜔)) =
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|𝑠𝐴(𝑣, 𝛼) − 𝑠(𝜔)(𝑣, 𝛼)|𝑟 d𝑝(𝑣) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑟

= 𝜌𝑟(𝐴,(𝜔)).

The proof for 𝐷𝜃
𝑟

and 𝑅𝐷𝜃
𝑟
, 𝜃 ∈ [0, ∞) follows similar ideas, as shown next. It suffices to prove that

‖mid(𝑠𝑀 ⋅(𝜔)) − mid(𝑠𝑀 ⋅𝐴)‖𝑟 = ‖mid(𝑠(𝜔)) − mid(𝑠𝐴)‖𝑟 and‖ spr(𝑠𝑀 ⋅(𝜔)) − spr(𝑠𝑀 ⋅𝐴)‖𝑟 = ‖ spr(𝑠(𝜔)) − spr(𝑠𝐴)‖𝑟
for any orthogonal matrix 𝑀 ∈𝑝×𝑝(ℝ) and 𝜔 ∈Ω.

As before, by (7) and the orthogonality of 𝑀 ,

‖mid(𝑠𝑀 ⋅(𝜔)) − mid(𝑠𝑀 ⋅𝐴)‖𝑟
=
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|mid(𝑠𝑀 ⋅(𝜔))(𝑢, 𝛼) − mid(𝑠𝑀 ⋅𝐴)(𝑢, 𝛼)|𝑟 d𝑝(𝑢) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑟

=
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

||||mid(𝑠(𝜔))
(
𝑀𝑇 ⋅ 𝑢, 𝛼

)
−mid(𝑠𝐴)

(
𝑀𝑇 ⋅ 𝑢, 𝛼

)||||𝑟 d𝑝(𝑢) d𝜈(𝛼)
⎞⎟⎟⎟⎠
1∕𝑟
19
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Again, with the change of variable 𝑣 =𝑀𝑇 ⋅ 𝑢 we obtain‖‖‖mid(𝑠𝑀 ⋅(𝜔)) − mid(𝑠𝑀 ⋅𝐴)
‖‖‖𝑟

=
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|mid(𝑠(𝜔))(𝑣, 𝛼) − mid(𝑠𝐴)(𝑣, 𝛼)|𝑟 d𝑝(𝑣) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑟

=‖mid(𝑠(𝜔)) − mid(𝑠𝐴)‖𝑟
The proof for the spread function is analogous. □

Proof of Lemma 4.13. For any 𝜔 ∈ Ω and 𝛼 ∈ [0, 1] we have 𝛼(𝜔) ⊆ 0(𝜔), which implies |𝑠(𝜔)(𝑢, 0)| ≥ |𝑠(𝜔)(𝑢, 𝛼)| for each 
𝑢 ∈ 𝕊𝑝−1. Thus

‖0(𝜔)‖𝑟 = sup
𝑢

|𝑠(𝜔)(𝑢,0)|𝑟 = sup
𝑢,𝛼

|𝑠(𝜔)(𝑢, 𝛼)|𝑟 ≥ 𝜌𝑟((𝜔), I{0})𝑟.

The inequality holds because the integrand in the definition of 𝜌𝑠((𝜔), I{0}) is precisely |𝑠(𝜔)(𝑢, 𝛼)|. Taking expectations in both 
sides,

E[𝜌𝑠(I{0},(𝜔))𝑟] ≤ E[‖0‖𝑟] <∞

because  ∈𝐿𝑟[𝑐(ℝ𝑝)]. □

Proof of Lemma 4.14. Fix 𝜃 ∈ [0, ∞) and 𝑟 ∈ [1, ∞). It suffices to prove E[𝑑𝑟,𝜃( , I{0})] <∞. By [30, Proposition 4.2],

⎛⎜⎜⎜⎝ ∫𝕊𝑝−1 |mid(𝑠𝐴)(𝑢, 𝛼)|𝑟 + 𝜃 ⋅ | spr(𝑠𝐴)(𝑢, 𝛼)|𝑟 d𝑝(𝑢)⎞⎟⎟⎟⎠
1∕𝑟

≤ 𝑑𝐻 (𝐴𝛼,{0}) ≤ ‖𝐴0‖,
for any 𝐴 ∈ 𝑐(ℝ𝑝) and 𝛼 ∈ [0, 1]. From this and (13) we obtain

E[𝑑𝑟,𝜃(I{0},)] ≤ E

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎝∫[0,1] ‖0‖𝑟 d𝜈(𝛼)⎞⎟⎟⎟⎠

1∕𝑟⎤⎥⎥⎥⎥⎦
= E[‖0‖] <∞

because  is integrably bounded. □

Proof of Proposition 4.15. Let  ∈ be 𝐹 -symmetric with respect to 𝐴 ∈ 𝑐(ℝ𝑝). As stated in (10), 𝑠𝐴(𝑢, 𝛼) ∈ Med(𝑠 (𝑢, 𝛼)) for 
all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. Because of that and since the medians of the integrable random variable 𝑠 (𝑢, 𝛼) minimize the expected 
absolute deviation,

𝑠𝐴(𝑢, 𝛼) ∈ argmin𝑥∈ℝ E(|𝑠 (𝑢, 𝛼) − 𝑥|) (21)

for each 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. Consider 𝐸[𝜌1(𝑈, )] for any fixed 𝑈 ∈ 𝑐(ℝ𝑝). Since the function 𝑠 is jointly measurable in its 
three arguments [18, Lemma 4], by Fubini’s theorem and (9)

E[𝜌1(𝑈,)] = ∫
[0,1]

∫
𝕊𝑝−1

E[|𝑠 (𝑢, 𝛼) − 𝑠𝑈 (𝑢, 𝛼)|] d𝑝(𝑢) d𝜈(𝛼).
Applying (21) now,

E[𝜌1(𝑈,)] ≥ ∫
[0,1]

∫
𝕊𝑝−1

E[|𝑠 (𝑢, 𝛼) − 𝑠𝐴(𝑢, 𝛼)|] d𝑝(𝑢) d𝜈(𝛼) = E[𝜌1( ,𝐴)].

Then 𝐷1(𝑈 ; ) ≤𝐷1(𝐴; ). By the arbitrariness of 𝑈 , property P2 is satisfied. □

Proof of Proposition 4.16. Let  ∈  be (mid, spr)-symmetric with respect to 𝐴 ∈ 𝑐(ℝ𝑝). Applying the same reasoning in the 
proof of Proposition 4.15, but using (11) instead of (10), to the mid and spr functions separately, we obtain 𝐷𝜃

1(𝐴; ) ≥𝐷𝜃
1(𝑈 ; ) for 

all 𝑈 ∈ 𝑐(ℝ𝑝) and 𝜃 ∈ [0, ∞). □

Proof of Proposition 4.17. Let  ∈  be 𝐹 -symmetric with respect to some 𝐴 ∈ 𝑐(ℝ𝑝). This implies E[‖0‖] < ∞ and hence 
20

E[𝑠 (𝑢, 𝛼)] < ∞ for all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. By the definition of 𝐹 -symmetry, the real random variable 𝑠 (𝑢, 𝛼) is centrally 
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symmetric with respect to 𝑠𝐴(𝑢, 𝛼) for all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. By Lemma A.3, 𝑠𝐴(𝑢, 𝛼) = E[𝑠 (𝑢, 𝛼)] for all 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. 
For any square integrable random variable, E[𝑋] = argmin𝑦∈ℝ E[|𝑋 − 𝑦|2]. Then, since  ∈𝐿2[𝑐(ℝ𝑝)],

𝑠𝐴(𝑢, 𝛼) = argmin𝑈∈𝑐 (ℝ𝑝) E[|𝑠 (𝑢, 𝛼) − 𝑠𝑈 (𝑢, 𝛼)|2] (22)

for each 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1]. Like in Proposition 4.15, applying Fubini’s theorem and (22), we obtain 𝑅𝐷2(𝑈 ; ) ≤ 𝑅𝐷2(𝐴; )
for all 𝑈 ∈ 𝑐(ℝ𝑝). Thus 𝑅𝐷2 satisfies P2. □

Proof of Proposition 4.18. Let 𝜃 ∈ [0, ∞) and let  ∈ be (mid, spr)-symmetric with respect to 𝐴 ∈ 𝑐(ℝ𝑝). By applying the same 
reasoning in the proof of Proposition 4.17 but taking into account mid(𝑠𝐴)(𝑢, 𝛼) = E[mid(𝑠 )(𝑢, 𝛼)] and spr(𝑠𝐴)(𝑢, 𝛼) = E[spr(𝑠 )(𝑢, 𝛼)]
for every 𝑢 ∈ 𝕊𝑝−1 and 𝛼 ∈ [0, 1], one obtains 𝑅𝐷𝜃

2(𝐴; ) ≥𝑅𝐷𝜃
2(𝑈 ; ) for all 𝑈 ∈ 𝑐(ℝ𝑝) and 𝜃 ∈ [0, ∞). □

Proof of Theorem 4.20. Let  ∈ be functionally symmetric with respect to 𝐴 ∈ 𝑐(ℝ𝑝) and 𝑟 ∈ [1, ∞). By Lemma 4.13, 𝐷𝑟(⋅; )
is well defined. To reach

𝐷𝑟(𝐴;) ≥ sup
𝑈∈𝑐 (ℝ𝑝)

𝐷𝑟(𝑈 ;)

it suffices to prove

E[‖𝑠 − 𝑠𝐴‖𝑟] ≤ inf
𝑈∈𝑐 (ℝ𝑝)

E[‖𝑠 − 𝑠𝑈‖𝑟]. (23)

Let us denote by  the Banach space 𝐿𝑟(𝕊𝑝−1 × [0, 1], 𝑝 ⊗ 𝜈). As the norm is a convex function, for every 𝑓 ∈

E[‖𝑠 − 𝑠𝐴‖𝑟] ≤ 1
2
⋅ E[‖𝑠 − 𝑠𝐴 + 𝑓‖𝑟] + 1

2
⋅ E[‖𝑠 − 𝑠𝐴 − 𝑓‖𝑟]. (24)

Since  is functionally symmetric with respect to 𝐴, we know 𝑠 − 𝑠𝐴 and 𝑠𝐴 − 𝑠 are identically distributed. Thence ‖𝑠 − 𝑠𝐴 +
𝑓‖𝑟 and ‖ − 𝑠 + 𝑠𝐴 + 𝑓‖𝑟 are identically distributed and the right-hand side of (24) equals

1
2
⋅ E[‖− (𝑠 − 𝑠𝐴 − 𝑓 )‖𝑟] + 1

2
⋅ E[‖𝑠 − 𝑠𝐴 − 𝑓‖𝑟] = E[‖𝑠 − 𝑠𝐴 − 𝑓‖𝑟].

Therefore

E[‖𝑠 − 𝑠𝐴‖𝑟] ≤ E[‖𝑠 − 𝑠𝐴 − 𝑓‖𝑟]
for each 𝑓 ∈ and

E[‖𝑠 − 𝑠𝐴‖𝑟] ≤ inf
𝑔∈E[‖𝑠 − 𝑔‖𝑟] ≤ inf

𝑈∈𝑐 (ℝ𝑝)
E[‖𝑠 − 𝑠𝑈‖𝑟]

taking all possible 𝑔 = 𝑠𝐴 + 𝑓 ∈ and using the inclusion {𝑠𝑈 ∶𝑈 ∈ 𝑐(ℝ𝑝)} ⊆. □

Proof of Theorem 4.21. Let 𝑟 ∈ [1, ∞),  = 𝑐(ℝ𝑝), 1 ⊆𝐿1[𝑐(ℝ𝑝)] and 𝑟 ⊆ 𝐿𝑟[𝑐(ℝ𝑝)].
Property P3a. By Proposition 4.8, the mappings 𝑑𝑟(⋅, ⋅) and 𝑑𝑟

𝑟
(⋅, ⋅) are convex in their first argument. Lemma 4.7 yields 𝐷𝑟 based 

on  and 1, as well as 𝑅𝐷𝑟 based on  and 𝑟, satisfy P3a. Notice Lemma 4.13 ensures that the integrability assumption in 
Lemma 4.7 is satisfied, for the classes 1 and 𝑟 in the statement.

Property P3b. By Lemma A.1, P3a and P3b are equivalent for the 𝜌𝑠 metric for every 𝑠 ∈ (1, ∞).
Now, for the 𝑑𝑠,𝜃 -metrics we want to apply Lemma A.1 as well, with 𝑠 ∈ (1, ∞) and 𝜃 ∈ (0, ∞). The mapping

𝑗 ∶ 𝑐(ℝ𝑝)→𝐿𝑠(𝕊𝑝−1 ⊗ [0,1],𝑝 ⊗ 𝜈)⊕𝑠 𝐿
𝑠(𝕊𝑝−1 ⊗ [0,1], 𝜃(1∕𝑟) ⋅ (𝑝 ⊗ 𝜈))

defined by 𝑗(𝐴) = (mid(𝑠𝐴), spr(𝑠𝐴)) is an isometry, considering in 𝑐(ℝ𝑝) the metric 𝑑𝑠,𝜃 and in 𝐿𝑠(𝕊𝑝−1⊗ [0, 1], 𝑝⊗𝜈) ⊕𝑠𝐿
𝑠(𝕊𝑝−1⊗

[0, 1], 𝜃(1∕𝑠) ⋅ (𝑝 ⊗ 𝜈)) the distance induced by its norm (‖ ⋅ ‖𝑠
𝑠
+ 𝜃 ⋅ ‖ ⋅ ‖𝑠

𝑠
)1∕𝑠. It is clear from its definition that 𝑑𝑠,𝜃 fulfills A1 and A2. 

In order to use the lemma, we need to show that the Banach space(
𝐿𝑠(𝕊𝑝−1 ⊗ [0,1],𝑝 ⊗ 𝜈)⊕𝑠 𝐿

𝑠(𝕊𝑝−1 ⊗ [0,1], 𝜃(1∕𝑠) ⋅ (𝑝 ⊗ 𝜈)), (‖ ⋅ ‖𝑠
𝑠
+ 𝜃 ⋅ ‖ ⋅ ‖𝑠

𝑠
)1∕𝑠

)
is strictly convex.

Let us define the mapping 𝜓 ∶ [0, 1] → [0, 1] with

𝜓(𝑡) =
(
(1 − 𝑡)𝑠 + 𝜃 ⋅ 𝑡𝑠

)1∕𝑠
.

It is easy to show

(
𝑠 𝑠

)1∕𝑠 ( ) ( ‖𝑔‖𝑠 )

21

‖𝑓‖
𝑠
+ 𝜃 ⋅ ‖𝑔‖

𝑠
= ‖𝑓‖𝑠 + ‖𝑔‖𝑠 ⋅𝜓 ‖𝑓‖𝑠 + ‖𝑔‖𝑠
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for every (𝑓, 𝑔) ∈ 𝐿𝑠(𝕊𝑝−1 ⊗ [0, 1], 𝑝 ⊗ 𝜈) ⊕𝑠 𝐿
𝑠(𝕊𝑝−1 ⊗ [0, 1], 𝜃(1∕𝑠) ⋅ (𝑝 ⊗ 𝜈)). By [29, Theorem 6], the Banach space 𝐿𝑠(𝕊𝑝−1 ⊗

[0, 1], 𝑝 ⊗ 𝜈) ⊕𝑠 𝐿
𝑠(𝕊𝑝−1 ⊗ [0, 1], 𝜃(1∕𝑠) ⋅ (𝑝 ⊗ 𝜈)) will be strictly convex if and only if 𝐿𝑠(𝕊𝑝−1 ⊗ [0, 1], 𝑝 ⊗ 𝜈) and 𝐿𝑠(𝕊𝑝−1 ⊗

[0, 1], 𝜃1∕𝑠 ⋅ (𝑝 ⊗ 𝜈)) are strictly convex and the function 𝜓 is strictly convex. For 𝑠 ∈ (1, ∞), 𝐿𝑠-spaces are always strictly convex 
(e.g., [2, p. 114]), and Ψ is strictly convex as Ψ′′(𝑡) > 0 for 𝑡 ∈ (0, 1). Therefore, by Lemma A.1, P3b for 𝑑𝑠,𝜃 is equivalent to P3a, 
which has already been established.

Property P4b. Let  ∈1 be a fuzzy random variable and 𝐴 ∈  a fuzzy set maximizing 𝐷𝑟(⋅; ). Let us first prove the case 𝑠 = 𝑟. 
Let {𝐴𝑛}𝑛 be a sequence of fuzzy sets in  such that

lim
𝑛
𝜌𝑟(𝐴𝑛,𝐴) =∞. (25)

As 𝑟 ≥ 1, by Lemma 4.13 E[𝜌𝑟(𝐼{0}, )] is finite. As 𝜌𝑟(𝐼{0}, 𝐴) is a constant, applying the triangle inequality to 𝜌𝑟(𝐴, ), we obtain

E[𝜌𝑟(𝐴,)] <∞. (26)

Using again the triangle inequality,

E[𝜌𝑟(𝐴𝑛,)] ≥ E[𝜌𝑟(𝐴𝑛,𝐴) − 𝜌𝑟(𝐴,)] = 𝜌𝑟(𝐴𝑛,𝐴) − E[𝜌𝑟(𝐴,)]→∞, (27)

where the limit is obtained from (25) and (26). Accordingly, 𝐷𝑟(𝐴𝑛, ) → 0.
For the general case, notice 𝜌𝑠 ≤ 𝜌𝑟 whenever 𝑠 ≤ 𝑟. Thus, 𝜌𝑠(𝐴𝑛, 𝐴) →∞ implies 𝜌𝑟(𝐴𝑛, 𝐴) →∞ and therefore 𝐷𝑟(𝐴𝑛; ) → 0 by 

the former case.
That establishes the result for 𝐷𝑟 under the 𝜌𝑠-metrics. Let us prove it now for 𝑅𝐷𝑟.
Let  ∈𝑟. Like before, we will prove first the case 𝑠 = 𝑟. By Jensen’s inequality,

E[𝜌𝑟(𝐴𝑛,)𝑟] ≥ E[𝜌𝑟(𝐴𝑛,)]𝑟. (28)

From (27),

lim
𝑛→∞

E[𝜌𝑟(𝐴𝑛,)𝑟] =∞.

Consequently, 𝑅𝐷𝑟(𝐴𝑛, ) → 0. The general case follows as with 𝐷𝑟.
Now let us consider the 𝑑𝑠,𝜃 -metrics. Let 𝑠 = 𝑟 and 𝜃 ∈ (0, ∞). Given a fuzzy random variable  ∈ 1, a fuzzy set 𝐴 ∈ 

maximizing 𝐷𝑟(⋅; ) and a sequence {𝐴𝑛}𝑛 in  such that

lim
𝑛
𝑑𝑠,𝜃(𝐴𝑛,𝐴) =∞. (29)

By Lemma 4.14, E[𝑑𝑠,𝜃(I{0}, )] <∞. By (29), lim𝑛 𝑑𝑠,𝜃(𝐴𝑛, 𝐴)𝑟 =∞, whence

lim
𝑛

‖mid(𝑠𝐴𝑛
) − mid(𝑠𝐴)‖𝑟𝑠 =∞

or

lim
𝑛

‖ spr(𝑠𝐴𝑛
) − spr(𝑠𝐴)‖𝑟𝑠 =∞

Since the other case is analogous, we assume without loss of generality ‖ mid(𝑠𝐴𝑛
) −mid(𝑠𝐴)‖𝑟𝑠 →∞. Moreover,

‖mid(𝑠𝐴𝑛
) − mid(𝑠𝐴)‖𝑠

=
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|mid(𝑠𝐴𝑛
)(𝑢, 𝛼) − mid(𝑠𝐴)(𝑢, 𝛼)|𝑠 d𝑝(𝑢) d𝜈(𝛼)⎞⎟⎟⎟⎠

1∕𝑠

=
1
2
⋅

⎛⎜⎜⎜⎝∫[0,1] ∫
𝕊𝑝−1

|(𝑠𝐴𝑛
(𝑢, 𝛼) − 𝑠𝐴(𝑢, 𝛼)) + (𝑠𝐴(−𝑢, 𝛼) − 𝑠𝐴𝑛

(−𝑢, 𝛼))|𝑠 d𝑝(𝑢) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑠

≤1
2
⋅
(‖𝑠𝐴𝑛

− 𝑠𝐴‖𝑠 + ‖𝑠𝐴𝑛
− 𝑠𝐴‖𝑠) = 𝜌𝑠(𝐴,𝐴𝑛) ≤ 𝜌𝑟(𝐴,𝐴𝑛)

whence lim𝑛 𝜌𝑟(𝐴𝑛, 𝐴) =∞. Thus, using the previous proof, the depth function 𝐷𝑟 based on  and 1 fulfills P4b for 𝑑𝑠,𝜃 .
The case of 𝑅𝐷𝑟 based on  and 𝑟 is done in an analogous way as in the case of 𝜌𝑠.

Property P4a. As 𝜌𝑟 and 𝑑𝑟,𝜃 metrics fulfill assumptions 𝐴1 and 𝐴2, property P4b implies P4a (Lemma A.2). □
22
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Proof of Theorem 4.22. Property P3a. Like in the proof of Property P3a in Theorem 4.21, the mapping (‖ ⋅‖𝑟
𝑟
+ 𝜃 ⋅‖ ⋅‖𝑟

𝑟
)1∕𝑟 is convex 

(because it is a norm) and, by Lemma 4.7, 𝐷𝜃
𝑟

and 𝑅𝐷𝜃
𝑟

satisfy P3a for any 𝑟 ∈ [1, ∞) and 𝜃 ∈ [0, ∞).
Property P3b. By Lemma A.1, P3b is equivalent to P3a for the 𝜌𝑠 metric if 𝑠 ∈ (1, ∞). In the proof of Theorem 4.21 it was shown 

that P3b is equivalent to P3a for the 𝑑𝑠,𝜃 metric.
Property P4b. Let 𝜃 ∈ (0, ∞). Let  ∈1 and let 𝐴 ∈ 𝑐(ℝ𝑝) be a fuzzy set that maximizes 𝐷𝜃

𝑟
(⋅, ). We consider a sequence {𝐴𝑛}𝑛

of fuzzy sets such that 𝜌𝑟(𝐴𝑛, 𝐴) →∞. By the triangle inequality, for any ℎ ∈ {mid, spr},

E[‖ℎ(𝑠 ) − ℎ(𝑠𝐴𝑛
)‖𝑟] ≥𝐸[‖ℎ(𝑠𝐴𝑛

) − ℎ(𝑠𝐴)‖𝑟 − ‖ℎ(𝑠 ) − ℎ(𝑠𝐴)‖𝑟]
= ‖ℎ(𝑠𝐴) − ℎ(𝑠𝐴𝑛

)‖𝑟 − E[‖ℎ(𝑠 ) − ℎ(𝑠𝐴)‖𝑟]. (30)

On the other hand, as lim𝑛 𝜌𝑟(𝐴, 𝐴𝑛) =∞ and 𝜌𝑟 is a metric, the triangle inequality yields lim𝑛 𝜌𝑟(𝐴𝑛, I{0}) =∞. By the decompo-
sition given in (5),

𝜌𝑟(𝐴𝑛, I{0}) =
⎛⎜⎜⎜⎝∫[0,1] ∫

𝕊𝑝−1

|mid(𝑠𝐴𝑛
)(𝑢, 𝛼) + spr(𝑠𝐴𝑛

)(𝑢, 𝛼)|𝑟 d𝑝(𝑢) d𝜈(𝛼)⎞⎟⎟⎟⎠
1∕𝑟

= ‖mid(𝑠𝐴𝑛
) + spr(𝑠𝐴𝑛

)‖𝑟 ≤ ‖mid(𝑠𝐴𝑛
)‖𝑟 + ‖ spr(𝑠𝐴𝑛

)‖𝑟.
Therefore lim𝑛 ‖ mid(𝑠𝐴𝑛

)‖𝑟 =∞ and/or lim𝑛 ‖ spr(𝑠𝐴𝑛
)‖𝑟 =∞. Since the other case is analogous, without loss of generality assume

lim
𝑛

‖mid(𝑠𝐴𝑛
)‖𝑟 =∞. (31)

Because  is integrably bounded, by Lemma 4.14 we have E[𝑑𝑟,𝜃( , I{0})] <∞, which implies

E[‖mid(𝑠 ) − mid(𝑠𝐴)‖𝑟] <∞. (32)

Then

𝐸[𝑑𝑟,𝜃(𝐴𝑛,)] ≥ E[‖mid(𝑠 ) − mid(𝑠𝐴𝑛
)‖𝑟]

≥ ‖mid(𝑠𝐴) − mid(𝑠𝐴𝑛
)‖𝑟 − E[‖mid(𝑠 ) − mid(𝑠𝐴)‖𝑟]

≥ ‖mid(𝑠𝐴𝑛
)‖𝑟 − ‖mid(𝑠𝐴)‖𝑟 − E[‖mid(𝑠 ) − mid(𝑠𝐴)‖𝑟]→∞,

(33)

where the first inequality is due to (13), the second one to (30) and the limit to (31) and (32). Consequently, 𝐷𝜃
𝑟
(𝐴𝑛; ) → 0. That 

proves the case 𝑠 = 𝑟. The case 𝑠 < 𝑟 follows like in the proof of Theorem 4.21.
Let us prove it now for 𝑅𝐷𝜃

𝑟
and the 𝜌𝑠-metrics.

Let 𝜃 ∈ (0, ∞). Let  ∈𝑟 and let 𝐴 ∈ 𝑐(ℝ𝑝) maximize 𝑅𝐷𝜃
𝑟
(⋅, ). Let {𝐴𝑛}𝑛 be a sequence of fuzzy sets such that 𝜌𝑟(𝐴𝑛, 𝐴) →∞. 

By Jensen’s inequality,

E[𝑑𝑟,𝜃(𝐴𝑛,)𝑟] ≥ E[𝑑𝑟,𝜃(𝐴𝑛,)]𝑟.

By (33),

lim
𝑛→∞

E[𝑑𝑟,𝜃(𝐴𝑛,)𝑟] =∞.

Thus 𝑅𝐷𝜃
𝑟
(𝐴𝑛, ) → 0. That establishes the case 𝑠 = 𝑟. The case 𝑠 < 𝑟 is deduced like in the proof of Theorem 4.21.

The proof of P4b for 𝐷𝜃
𝑟

and 𝑅𝐷𝜃
𝑟

with 𝑑𝑠,𝜃 is analogous to that of P4b for 𝐷𝑟 and 𝑅𝐷𝑟 with respect to the 𝜌𝑠-metrics (see 
Theorem 4.21), taking into account the inequality 𝑑𝑠,𝜃 ≤ 𝑑𝑟,𝜃 for 𝑠 ∈ [1, 𝑟].

Property P4a. By Lemma A.2, property P4b for 𝜌𝑟 implies P4a. □

Proof of Proposition 4.24. Let (Ω, , ℙ) be a probabilistic space such that Ω = {𝜔1},  = (Ω) and let 𝑟 ∈ [1, ∞). We consider 
the fuzzy random variable  defined by (𝜔1) ∶= I[−1,1]. Let 𝐴 = (𝜔1) and 𝐴𝑛 ∶= I[−𝑛,𝑛] for all 𝑛 ∈ ℕ. It is clear that 𝐴 maximizes 
𝐷0
𝑟
(⋅; ) with 𝐷0

𝑟
(𝐴; ) = 1, and that mid(𝑠𝐵)(𝑢, 𝛼) = 0 for 𝐵 ∈ {𝐴, 𝐴𝑛}, spr(𝑠𝐴)(𝑢, 𝛼) = 1, and spr(𝑠𝐴𝑛

)(𝑢, 𝛼) = 𝑛 for all 𝑢 ∈ 𝕊0, 𝛼 ∈ [0, 1]
and 𝑛 ∈ℕ. By the mid∕ spr decomposition (5),

lim
𝑛→∞

𝜌𝑟(𝐴𝑛,𝐴) = lim
𝑛→∞

(∫
[0,1]

|𝑛− 1|𝑟𝑑𝛼)1∕𝑟 = lim
𝑛→∞

|𝑛− 1| =∞.

Taking into account E[𝑑𝑟,0(𝐴𝑛, )] = 0 for all 𝑛 ∈ ℕ, whence 𝐷0
𝑟
(𝐴𝑛; ) = 1, i.e., 𝐷0

𝑟
fails P4b for 𝜌𝑟. In the case 𝑟 = 1, we have 

𝑅𝐷0
1(𝐴𝑛; ) =𝐷0

1(𝐴𝑛; ) so 𝑅𝐷0
𝑟

can fail P4b as well.

To prove that 𝐷0
𝑟

and 𝑅𝐷0
𝑟

violate P4a, we use 𝐵 ∶= I[−2,2]. Let 𝑟 ∈ [1, ∞). Note 𝐴 + 𝑛𝐵 = I[−1−2𝑛,2𝑛+1] for all 𝑛 ∈ ℕ. Clearly,
23

mid(𝑠(𝜔1))(𝑢, 𝛼) = 0 = mid(𝑠𝐴+𝑛𝐵)(𝑢, 𝛼)
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for all 𝑢 ∈ 𝕊0 and 𝛼 ∈ [0, 1]. Thus E[𝑑𝑟,0(𝐴 + 𝑛𝐵, )] = 0 and

𝐷0
𝑟
(𝐴+ 𝑛𝐵;) = 1 =𝑅𝐷0

𝑟
(𝐴+ 𝑛𝐵;)

for all 𝑛 ∈ ℕ whence 𝐷0
𝑟

and 𝑅𝐷0
𝑟

violate P4a.
A fortiori, by Lemma A.2, this is also a counterexample to property P4b for 𝜌𝑟, for any 𝑟 ∈ (1, ∞). □
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