
Deep-Neural-Network-based anomaly detector for DC/DC
power converter failure detection

Miguel Fernandez Costales∗1, Pablo F. Miaja1, Manuel Arias Perez de Azpeitia1, J. Antonio
Fernandez1

1Power supply systems group - Department of Electrical, Electronic, Communication and Systems Engineering, University of
Oviedo

The Electrical Power Subsystem (EPS) of a spacecraft is
paramount to its operation since it will guarantee that
every piece of equipment is receiving its required power.
Therefore, the reliability of the power subsystem is one of
the cornerstones of the full spacecraft reliability. DC/DC
converters are one of the main constituents of the power
subsystems. A method able to estimate the degradation
of a dc-dc converter would enhance the power system re-
liability. It would allow to detect dc-dc converters prone
to failure and to take corrective actions to extend their
remaining lifespan.

1 Introduction

1.1 Electrical Power Subsystem

The Electrical Power Subsystem (EPS) is tasked with
managing the electrical power sources inside a space-
craft, most commonly Solar Arrays (SA) and batteries,
offering to the loads a reliable voltage. Many architec-
tures are possible, being those cited in [1] the most
typical ones. Figure 1 shows the regulated bus archi-
tecture in which the electrical power coming from the
SA is regulated to a given voltage by means of the
Solar Array Regulator. When there is not enough so-
lar energy to provide the bus demand the battery en-
ergy is extracted to keep the bus voltage by means of
the Battery Discharge Regulator (BDR). Finally, when
there is available solar power and the battery needs
it its energy is replenished by means of the Battery
Charge Regulator. At the core of the SAR, BDR and
BCR there are DC/DC switching mode power con-
verters that perform efficiently the electrical power
conversion. [2] provides good insight in these pieces
of equipment. Most DC/DC converters work by turn-
ing on and off (i.e. switching) several power switches.
In the space electrical power domain, these switches
are mostly MOSFET transistors and diodes. The most
common kind of operation is to turn on and off the
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MOSFETs at a constant frequency (100 kHz typically)
and to control the fraction of time that the switch is on.
This allows to control the current flowing in the power
converter circuit and, thus, regulate the voltage at its
output. It can be said that it controls the amount of
energy that it is extracted from the input source.The
fraction of time that the switch is on is called Duty
cycle D so a MOSFET will be on for D · Ts and off for
(1 −D) · Ts, then it will be turned on again for D · Ts
and the process will continue. The quantity Ts is the
switching period. The control system of the DC/DC
converter will act over D to keep the output variable
controlled. Generally speaking this variable will be
the output voltage or an internal current (generally
an inductor current). At the end, D establishes the
balance between the input and output energies. The
input energy (extracted from the source) is always big-
ger than the one provided to the output (load). The
reason for this is found in the circuit parasitics, gen-
erating power losses. This also affects D, which needs
to be modified from the theoretical value to account
for that extra lost energy.

One of the most prone to failure elements in a
DC/DC converter are precisely the switching MOS-
FETs [3, 4]. When the MOSFET is on it presents a
small resistance, called Ron. When the MOSFET de-
grades, this resistance increases, mostly due to ther-
momechanical effects. So most of the health monitor-

Figure 1: Satellite electrical power subsystem.



ing techniques rely on estimating or measure this re-
sistance [4]. Once this resistance increases, a certain
amount (around 12% [5], however the same author
claims a bigger value around 50% in [6]) from its ini-
tial value the MOSFET is considered prone to failure.
However, this is not an easy task, since Ron depends
on a lot of different variables, being the ambient tem-
perature one of the most important. A high temper-
ature makes the Ron to increase. Depending on the
MOSFET, the increase in temperature could be bigger
than the increase in Ron due to degradation. This Ron
is one of the parasitics of the converter that will in-
fluence the duty cycle D. A methodology to estimate
whether a converter is prone to failure would be of
relevant importance in the Fault Detection, Isolation
and Recovery (FDIR) concept.

1.2 Machine learning for Power
Electronics

As almost every field of technology, power electronics
has not escaped the advances in machine learning [7].
All the different domains within a power converter are
quite complex and benefit from machine learning de-
velopments. Among them, optimization of power con-
version systems [8, 9], magnetic elements modeling
and design [10, 11] and of course health monitoring,
including the effects of Ron like in [12, 13]. [14] uses
the input and control variables of DC/AC converters
to identify systems that are prone to failure.

In this paper an approach similar to [14] will be
used. However, in this case it will be tried to deter-
mine whether a converter has degraded so it is close to
failure or not. In digitally controlled DC/DC convert-
ers the determination of the control action (i.e duty
cycle D) is performed digitally from a series of digi-
tal conversions of samples of the relevant quantities,
generally input and output voltages and internal cur-
rents (i.e. inductor currents). The goal would be to
determine if a DC/DC converter is degraded from its
control related measurements.

1.3 Anomaly detection

Anomaly detection is a class of system that can de-
termine whether the system under observation is
performing as intended or is functioning abnormaly.
There are many applications, even space-ones such as
[15, 16]. One of the most used tools for this task is the
autoencoder. The autoencoder [17] is a kind of neural
network trained so its output x̂ matches its input x.
The cornerstone of autoencoders is that in the middle
of the network there is a hidden layer with a much
smaller width than its input. This layer is often called

the bottleneck. The output of this layer is said to gener-
ate a code h that is dependent of the input. Therefore,
it can be said that has two parts, the encoder function
h = f (x) and the decoding one x̂ = g(h). The autoen-
coder is trained in such a way that x̂ = g(f (x)). As h
is much narrower the autoencoder learns the relevant
information contained in x. In the frame of anomaly
detectors the autoencoders are trained only with data,
x, representing a good behavior of the system to be
modelled. The error between x and x̂ should be very
small. When under a certain input x1 the error ex-
ceeds a certain threshold an anomaly is claimed to be
detected.

In DC/DC converters the control action is summa-
rized in the duty cycle D. This control action takes
into account the input and output voltages, the out-
put current and all the parasitics, such as Ron . In this
paper, instead of an autoencoder, but inspired by its
working as anomaly detector,a feed-forward neural
network will be trained to predict the D̂ from a se-
ries of inputs. Given the relationship between D and
the rest of the main parameters of the circuit, it was
deemed as enough to obtain an accurate prediction.
The duty cycle D contains all the relevant information
in the same way the bottleneck layers work in an au-
toencoder. The autoencoder approach, recovering the
inputs whilst narrowing the network, was tried and
discarded. The duty cycle, D, is mostly determined
by the ratio between input and output voltages. In
fact, without considering losses it is just set by this
ratio [2]. Then, recovering the input and output volt-
age from D is an under-determined problem, since
there are many combinations of input and output volt-
age that give the same D. For implementing the ap-
proach, the inputs and D will be gathered during a
qualification campaign modeling the behavior of a
non-degraded DC-DC converter under foreseen oper-
ation conditions. With these data a feed-forward neu-
ral network is trained to predict D̂. The error in calcu-
lating D̂ with the training data will be characterized
by its average and standard deviation. In operation
the inputs will be passed through the neural network
to calculate D̂. When the error between the estimated
D̂ for a given input and the real one, D, exceeds the
training error average by more than one standard de-
viation an anomaly will be decided. This implies that
the real converter has deviated from the modeled one
significantly. This is the scheme represented in Fig-
ure 2.
The anomaly detector is preferred over a neural
network classifier. For classifier the network should
be trained with examples of healthy and degraded
DC/DC converters. Generating examples of degraded
DC/DC converters is difficult and dangerous. Whilst
in this paper only simulations will be carried out in a



Figure 2: Anomaly detection scheme.

real application real DC/DC converter data must be
used to train the networks. While it could be possi-
ble to artificially degrade the converters, that would
be risky. Furthermore, it is possible that a new net-
work shall be trained for every converter that will be
monitorized. In some way the neural network trained
serves as a sort of digital-twin of the converter.

2 Generation of Data and Health
monitoring system design

2.1 Data generation

The DC/DC converter used in [18] was simulated in
the simulation software PSIM. The control described
in [19] was also introduced in the simulation. These
converters are controlled in an unconventional way.
Instead of providing a fixed output voltage, they will
provide a voltage dependent on the current supplied.
It does so by forcing an internal current, the inductor
current, to become a value Iref set by a control loop.
This Iref is in turn controlled by adjusting D. This al-
lows for an easier modularization of the system. From
the neural network design point of view, it will be in-
teresting since a new varying magnitude, the output
voltage, is introduced. Then the output voltage Vout
can serve as an input to the neural network.

The simulation model was enhanced introducing
the Ron dependence on the MOSFET temperature as
in [20]. In order to do so a reduced thermal model was
used to simulate the internal temperature of each of
the MOSFETs. This reduced model needs the theoret-

ical MOSFET losses as explained in [2] as well as a
reference temperature Tbase. A degradation model, in-
troducing an increased Ron was also introduced. This
degradation is just multiplying the nominal Ron by a
factor 1 + kdeg .

With this model two data-sets were generated. The
first one models non-degraded converters over the full
operation range. This is the data-set that will serve for
training the neural network and characterizing the
error statistics. Every point in this data-set will be
labelled as "Non-degraded". The second data-set cov-
ers the same operation range but introduces increased
Ron to model degraded converters. The DC/DC con-
verter has 4 MOSFETs. The degradation is applied
independently to each of them. When the simulation
is performed with kdeg ≥ 0.5, the data point will be la-
belled as degraded. This will mean an increase of 50%
in the nominal Ron once affected by the temperature.
The full training data-set is described by Table 1, as
well as the data-set that includes degraded converters.

It is important to note that the simulation model
may not be a faithful representation of the real con-
verter. However, the simulation data will serve to de-
termine if the proposed approach is enough to iden-
tify degraded converters and to determine what input
variables will be the best ones to estimate D̂. The simu-
lation model records the following parameters: Input
voltage Vin(V ), Output voltage Vout(V ), Input current
Iin(V ), Output current Iout(A), Control current Iref (A),
Duty cycle D, Temperature Tbase(C).

It is important to note that D is bounded between
-1 and 1. The data will be recorded in floating point
format. No considerations about the precision needed
have been carried out at this stage of the work.

2.2 Neural Network Design

2.2.1 Neural Network structure

The feed-forward neural network takes at its input
the temperature Tbase, input voltage, Vin, output volt-
age Vout and inductor current Iref . The first layer of
the network performs a normalization of the input

Param. Non-Deg. Step Deg. Step

Vin [42,100] V 1 V [42,100] V 5 V
Iout [2,6] A 0.25 A [2,6] A 1 A
Tbase [40,70] ºC 1 ºC [40,70] ºC 3 ºC
kdeg [0,0.25] 0.25 [0,0.9] 0.2

Table 1: Parameter ranges for non-degraded and degraded
converters.



data. The network uses the leakyReLu activation func-
tion in all the hidden layers. Tensorflow [21]default
parameters are used for this function. It has 13 lay-
ers. The maximum width is 29 neurons. Each 6 layers
a normalization layer is introduced and the network
is constrained to a width of 5. The total number of
hidden layers is 13. The network has a single output
and no activation function has been used for the out-
put. No specific optimization of the neural network
structure has been carried out. Figure 3 shows the im-
plementation of this network.

Instead of training the network to predict D it will
be trained to predict

Dexp = e1+D (1)

This allows maximizing the differences between pre-
dictions and eases the training and then the evalua-
tion of the model.

2.2.2 Training the Neural Network

The neural network has been trained to fit Dexp de-

fined in Equation (1). It will produce then �Dexp. The
chosen error function was the Mean Absolute Percent-
age Error (MAPE) this allows for maximizing the error
in the cases in which Dexp is very small.

The typical split of the data of 80% for training and
the remaining 20% for validation and testing is used.
These data was selected from the simulation with non-
degraded converters.

Finally, the network was trained using the Adam
optimizer with a learning rate of 1e−6 and an epsilon
of 1e−7. To minimize the error, it was trained for more
than 100000 epochs without showing over-fitting. The
whole training data-set was used as batch size.

2.3 Classifier design

The health monitoring system of Figure 2 needs a clas-
sifier to determine whether the input data belongs to
an anomaly or not. This decision is based in the Mean
Absolute Error, defined as

MAE =
1
n
·

n∑
i=1

Dexp −�Dexp (2)

Using the whole training data-set the output of the
neural network is calculated and the MAE calculated.
The average, µMAE and standard deviation, σMAE of
the MAE is calculated. The threshold is set to

thMAE = µMAE + σMAE , (3) Figure 3: Implemented neural network.



3 Results

For estimating if a converter is degraded a sample of
Tbase, Vin, Vout , Iref and D is recorded. With D and
Equation (1), Dexp is calculated. This forms a data
point. Then, for this data point Tbase, Vin, Vout , Iref are

run through the neural network, obtaining �Dexp. The

error between �Dexp and Dexp can then be calculated. In
Figure 4, the MAE obtained after running the training
dataset through the trained neural network is shown
alongside the histogram of the MAE when running
the test dataset, that includes the degraded converters.
Given the distribution of values, a threshold thMAE
is defined, calculated as (Equation (3)). This thresh-
old decides when a converter is degraded. Whenever
thMAE ≤ |�Dexp −Dexp | the sample will be labelled as
belonging to a degraded converter. it can be seen how
most of the training data lies below the threshold
whilst a portion of the test data lies above the thresh-
old.

The confusion matrix for the test dataset including
the degraded converters is shown in Figure 5. The
F-score is calculated to be 0.5677, due to having a con-
siderate amomunt of False Positives with respect to
True Positives. The scores show a balanced accuracy
of 74.35%.

4 Discussion

The work presented in this paper shows an attempt to
include a non-invasive anomaly detector for digitally
controlled DC/DC converters. The results presented,
using simulated data, show that the task is possible
with moderate good results.

However, much more work is needed. The most rel-
evant would be to use data from real DC-DC convert-
ers. This data will be used to train the neural network.

Figure 4: Histogram on the Mean Absolute Error between
predicted D̂exp and measured Dexp.

Figure 5: Confusion matrix between degraded and non-
degraded converters based on the difference between NN
predicted D̂ and measured D.

Also, a deep study on the resolution needed for the
task and its compatibility with the current control de-
vices needs to be carried out. On top of that an opti-
mization of the neural network and training process
needs to be assessed.

The presented neural network is small by today’s
standards. However it needs to be studied if it could
be fitted on-board. Whether inside the controlling el-
ements for DC/DC converters or as part of the on-
board software. Another possibility would be to im-
plement it on ground, as part of an enhanced teleme-
try processing. In case of being processed by the on-
board software the impact of such implementation on
the on-board computer and in the data bus needs to
be assessed. In case of implemented on ground the
impact on the Telemetry and Telecommand Systems
must be analyzed. In both cases strategies for deciding
how often the samples for health estimation purposes
must be taken need to be devised.

In summary, this work represents a first step in uti-
lizing these techniques for electrical power subsystem
monitoring.
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