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Abstract—One of the key indicators of power converters
degradation is an increase on the conduction resistance Ron

of the power switches. In this paper a method for estimating
such increase, and thus converter degradation is presented.
By means of utilizing an Extended Kalman Filter (EKF) it is
possible to estimate this resistance increase from simple input
and output voltage and current converter measurements. In this
way, converter degradation can be detected, so actions can be
taken to act accordingly. A prototype has been developed to
perform online computation of the EKF.

Index Terms—DC-DC converter, health monitoring, Extended
Kalman Filter

I. INTRODUCTION

In critical power systems, such as those used in space
systems, ensuring a high level of reliability is crucial. Any
failure can jeopardize other systems or even the entire mission.
Among all components, switching devices and capacitors are
the most likely to fail [1], posing a risk to the overall reliability.
However, in space applications self-healing capacitors are
commonplace [2]. Therefore, determining whether a switching
device is close to failure could prove more useful to guarantee
the reliability. Before a failure, a MOSFET will experience a
progressive increase in its Ron resistance [3]. The limit before
total failure is generally considered to be a 12% increase
over the nominal value [4]. Adding additional circuits to
measure Ron is not desirable, as it would decrease reliability
of the full system, in addition to increasing associated costs.
Therefore, non-invasive methods that can estimate the Ron

value from signals normally used to control the converter are
preferred. The Kalman filter and its variations for nonlinear
applications [5], such as the extended Kalman filter (EKF)
[6], are techniques that estimate the state of a dynamic
system from noisy measurements. The procedure relies on
the previous state value, and can be divided into two steps.
First, a prediction step propagates the state estimation and its
associated covariance matrix through the system’s linearized

Fig. 1. Satellite power architecture

model. Then, a correction step corrects the estimation upon
receiving a new measurement of the states. Their fields of
application are varied [7], [8]. Within power electronics, their
use has been more restricted to motor control [9] or to
determine the state of charge of batteries [10]. They have
also been used as estimators when sensor use is difficult [11].
Applications focused on parameter estimation in converters
have been proposed in [12] and [13]. Ron-based estimates are
made in [14], but using the averaged model and open-loop
converters. Reference [15] provides an overview of several
methods to determine the Remaining Useful Lifetime (RUL)
of the converter, although the shown methods rely on actual
measurements and they are more invasive than the ones used
in this paper.

The case study of this work is a modular satellite power



system, where several parallel converters regulate the bus
voltage [16], following the block diagram in Fig 1. Each of
these converters acts as a current source. A main supervisor
decides how much power is provided by each converter, so
it is possible to adjust these levels based on the detected
degradation of the converters. In this way, a prognostic method
is implemented to predict when one of the modules has
undergone excessive degradation based on the estimation of
the Ron resistance value of the switching elements, allowing
less power to be drawn from the module and extending its
useful lifetime. Although it is a very specific application, a
general methodology is proposed, and the estimation system
could be adapted to almost any controlled DC/DC converter.

This article is organized into the following sections. Section
II analyzes the operation of the boost converter used. Section
III focuses on the application of the extended Kalman filter
to said converter. Section IV collects the experimental results
obtained. Finally, Section V includes the main conclusions of
this work.

II. APPLICATION TO A BOOST CONVERTER

The power converter analyzed in this paper is the boost
converter, following the schematics in Fig.2. In this paper the
use case for this topology is a modular space power system
where several converters regulate the main bus. Then the
output voltage Vo is defined as a constant voltage source. All
these converters are digitally current controlled adjusting the
duty cycle d so a sample of the current through the inductor
IL matches a certain value, defined as Iref . By wisely taking
this sample at the middle of the switching period this sample
corresponds to the average current through the inductor [17].
In this paper the EKF has two states, which are related to each
other. One of them could not be measured, only estimated thus
it is a hidden state. This will be the parasitic resistance rl. This
resistance models all the parasitic resistances of the circuit
which affect the current flow through the inductor.Therefore,
it is affected by other parasitic elements in the circuit, such as

Fig. 2. Boost converter schematics

Fig. 3. Equivalent circuit to showcase the effects of Ron on rl

the inductor series resistance Rinductor or the diode resistance
RD, as it is shown in Fig 3. By taking into consideration these
two parasitic resistances, apart from the Ron, the effects of the
latter over rl can be considered as

rl = (Rinductor +Ron) · d+ (Rinductor +RD) · (1− d) (1)

where d is the duty cycle applied at the given switching
period. The other state could be measured, therefore this is
an observable state. This state is based in the current ripple
through the inductor. An additional sample of the inductor
current, defined as Irip, is taken during the same switching
cycle Ts as the one used to control the inductor current Iref .
The difference between Irip and Iref results in the observable
state ∆i, which will be used by the EKF to estimate rl. The
converter that has been studied has two switching states, one
when M1 is conducting, during d ·Ts, and a second one when
M1 is off, during (1 − d) · Ts. Thus, a system state space
description could be defined as

∆̇i =


Vin

L − rl
L ·∆i− rl

L · Iref if 0 < t < d · Ts

Vin

L − Vo

L − rl
L ·∆i− rl

L · Iref if d · Ts < t < Ts

(2)
This state space description can be utilized by the EKF

in the state prediction for the next switching cycles. in this
description Vin,Vo and Iref are the inputs to the system.

A. State propagation

As aforementioned, the system consists of two states: an
observable one, ∆i, defined as the difference between Iref and
Irip, which is used as baseline for the prediction of the other
state, in this case unobservable, rl. Changes in ∆i, without
changes in the inputs (Vin,Vo and Iref ), will show that there
has been a change in rl. This unobserved state is considered
an augmented state and has no dynamics, hence ṙl = 0.

To determine how ∆i, evolves through the next switching
period, it is propagated one switching cycle, following

∆i(Ts) = e
−rl
L Ts ·∆i(0) +

∫ Ts

0
e

−rl
L (Ts−τ) ·B(τ) ·


Vin

Vout

Iref

 dτ (3)

As it can be seen in Fig 4, if Irip[n−1] is taken as a reference
it must be propagated through the different switching states
of the converter. This allows to calculate the evolution of
∆i[n − 1] at the switching state changes at t1 and t3. Then,
the temporal evolution at the next sample ( which takes place
at t4) is

∆i(t1) = e
−rl
L t1 ·∆i(0) +

[
Vin

rl
− Iref − Vo

rl

]
·
[
1− e

−rl
L t1

]
(4)

∆i(t3) = e
−rl
L (t3−t1) ·∆i(t1) +

[
Vin

rl
− Iref

]
·
[
1− e

−rl
L (t3−t1)

]
(5)

∆i(t4) = e
−rl
L (t4−t3) ·∆i(t3) +

[
Vin

rl
− Iref − Vo

rl

]
·
[
1− e

−rl
L (t4−t3)

] (6)



Fig. 4. Inductor current sampling

Given the approximation e
−rl
L Ts ≈ (1− rl

L Ts)

∆i(t4) =
(
1− rl

L
t4

)
∆i(0)

+ t4

(
Vin

L
− Iref

rl
L

− Vo

L

)
+ (t3 − t1)

Vo

L

(7)

Considering now that t4 = Ts and that t3 − t1 = d · Ts,

∆i(Ts) =
(
1− rl

L
Ts

)
·∆i(0)

+

(
Vin

L
+

Vo

L
(d− 1)

)
· Ts − Iref · rl

L
Ts

(8)

(8) provides the value of the next sample of ∆i[n], which is
part of the state transition function F (X[n], U [n]).

III. EKF DEVELOPMENT

Using the previous equations, all the parameters needed to
compute the EKF can be calculated. The states are

X[n] =

∆i[n]

rl[n]

 (9)

The input control variables can be reformulated into

U [n] =

∆V [n]

Iref [n]

 (10)

Fig. 5. Kalman filter algorithm block diagram.

where
V [n] = Vin[n]− (1− d[n]) · Vo[n] (11)

The state transition function F (X[n], U [n]) = X[n+ 1] is

F (X[n], U [n]) =(1− rl[n]
L Ts

)
∆i[n] +

(
V [n]Ts

L

)
− Iref [n]

rl
L Ts

rl[n]

 (12)

The measurement matrix H(X[n]) represents how the state is
seen by the measurement sensors. In this case

H(X[n]) = ∆i[n] (13)

As the system is nonlinear, the state transition function is
linearized around the previous state. To do that, the Jacobian
matrix is computed

JF [n] =
δF [n]

δX[n]
=

 δ∆i[n]
δ∆i[n]

δ∆i[n]
δrl[n]

δrl[n]
δ∆i[n]

δrl[n]
δrl[n]

 (14)

In a similar way, the Jacobian matrix of the measurement
matrix is

JH [n] =
δH[n]

δX[n]
=

[
δ∆i[n]
δ∆i[n]

δ∆i[n]
δrl[n]

]
(15)

These Jacobian matrices are used to predict the state covari-
ance.

The process error covariance matrix Q, and the measure-
ment error covariance matrix R, model the system noise. Q
indicates the error in the model that represents the dynamic
evolution of the system. These values are calculated empiri-
cally [18] [19]. It is, in this case

Q =

Q∆i∆i Q∆irl

Qrl∆i Qrlrl

 (16)

The measurement error covariance matrix R models the noise
present in the sensors. Just as with Q, it is obtained through
calibration processes. It is

R = R0 (17)



where R0 is the sensor error.
The covariance matrix P indicates the confidence in the

state estimates of the EKF at a given moment. This matrix
is updated in each iteration during the prediction stage, in-
corporating the process error (matrix Q). In the correction
stage, P is further adjusted by adding information from the
measurements through the Kalman gain. The Kalman gain
determines how much weight is given to the measurements
with respect to the prediction.

In this way, the iterative process of the EKF can be
initiated, consisting of: initialization, prediction, and correction
of values. Fig 5 shows the iterative process of this algorithm.

• Initialization
The EKF requires an estimate of the initial states X0

as well as the covariance matrix P0 that indicates the
certainty of this estimate. These values can be obtained
by simulation. Then,

X0 =

∆i0

rl0

 (18)

P0 =

P∆i∆i0 P∆irl0

Prl∆i0
Prlrl0

 (19)

The EKF aims to predict the state values ∆if [n] and
rfl [n] from the corrected samples of the previous cycle
∆ia[n − 1] and ral [n − 1]. Since ∆im[n] = Iref [n] −
Irip[n], this state will be used to correct the predictions
with the Kalman gain. In this study, it is assumed that
the EKF operates in a steady state, which implies that
the input variables (Vo, Iref , Vin) do not change during a
switching period. The state ∆i has a dynamic behavior
that depends on Vin, Vo, Iref , duty cycle d, and state rl.

• Prediction
In this step, the EKF makes predictions of the states
∆if [n] and rfl [n] and the covariance matrix P f [n], from
the matrix of the corrected states of the previous instant,
where

∆if [n] = ∆ia[n− 1] ·
(
1− ral [n− 1] · Ts

L

)
+

Ts

L
V [n− 1]− Iref [n− 1]

Ts

L
ral [n− 1]

(20)

rfl [n] = ral [n− 1] (21)

The prediction of the covariance matrix is made from the
Jacobian JF [n], where

P f [n] = JF [n] · P a[n− 1] · JT
F [n] +Q (22)

• Correction

In this stage, the Kalman gain is calculated from the
predicted covariance matrix P f [n]. Thus,

K[n] =

K∆i[n]

Krl[n]

 = P f [n] · JT
H [n]·

(
JH [n] · P f [n] · JT

H [n] +R0

)−1

(23)

The values of the covariance matrix P a[n] are updated
to correct the estimated values with measurement infor-
mation through

P a[n] = (I −K[n] · JH [n]) · P f [n] (24)

In this stage, the mean of the states is also corrected using
the Kalman gain and the difference between the measured
and predicted values. Therefore,

∆ia[n] = ∆if [n] +K∆i[n] · (∆im[n]−∆if [n]) (25)

ral [n] = rfl [n] +Krl[n] · (∆im[n]−∆if [n]) (26)

The description of the correction of the states provides the
framework which updates the unobservable state rl. This one
is updated through the corrections between the prediction and
the measurements of state ∆i.

IV. EXPERIMENTAL RESULTS

A. EKF implementation

Making use of the Texas Instruments C2000 Microcontroller
Blockset, a version of the EKF was implemented on Simulink
that allows it to be programmed onto the controller, along the
control stage of the DC/DC converter. This provides an online
rl estimation system. Table I gathers all the main components
of this implementation, requiring very few resources and
resulting in an adequate solution with a compact computational
cost. The Simulink block diagram is depicted in Fig 6.

TABLE I
EKF IMPLEMENTATION SIZE

Operation Value

Additions 23

Registers 8

Multiplications 19

Divisions 2

B. Results

The validation was carried out with a custom platform
based on a boost converter. Input and output voltage values,
duty cycle, and inductor currents are captured. Additionally,
this platform includes additional circuitry to measure the
voltages and currents of the switching MOSFET, that allow to
calculate the Ron. This value is compared with the EKF esti-
mation. All these data are acquired using a Texas Instruments
TMS320F28379 DSP, which is also responsible for controlling
the converter. In this case, average current mode control



Fig. 6. Kalman filter algorithm Simulink block diagram.

is performed, where the inductor reference current is fixed
to 2.5 A. Current sensing is performed using Hall sensors,
specifically the ACS730 models from Allegro Microsystems,
with a bandwidth of 1 MHz. The block diagram of the
experimental implementation is depicted in Fig 7, while the
experimental setup is shown in Fig 8. The selected MOSFET
is the SPP20N60S5 with an Ron of 0.19 mΩ. A switching
frequency of 10 kHz was chosen to avoid data losses during
data transmission to the PC with MATLAB which records
the data for representation. This computer is also used to
program the DSP. Other parameters of interest used in the
experimentation are collected in Table II.

Apart from samples of the inductor current, Iref used for the
current control loop, which determines d, and Irip for the EKF,
samples of Vin and Vo are also taken for the EKF. Additionally
the DSP also takes measurements of the current through the
MOSFET and its drain to source voltage while on. These data
are used by the DSP to calculate the prediction of rl, rl est,
which is then sent to an external PC with Simulink along

Fig. 7. Setup block diagram.

with the switching MOSFET measured resistance Ron. This
is made for visualizing data in real time. All the processing is



Fig. 8. Experimental setup.

done by the DSP.
Fig. 9 shows the data used as input for the EKF. It includes a

fixed output voltage Vo of 30 V, an input voltage Vin ranging
from 15-17 V, the current samples Iref and Irip, with Iref
being the reference current for the control, and duty cycle d.
With these data, the prediction is made. Fig. 10 shows the esti-
mated difference between the two current samples through the
inductor ∆i(est) versus the real value ∆i, and the augmented
state rl(est) corresponding to the estimated parasitic resistance
of the system, versus the real Ron. The changes in Ron were
artificially introduced by lowering the driving voltage of the
MOSFET between 17 V for the lower Ron values and 12 V

Fig. 9. EKF input values.

Fig. 10. EKF output, comparison with measurements.

Fig. 11. Output of the EKF: Ron estimation comparison with measurement.

for the higher ones. The change in the driving voltage takes
place approximately at time t = 35 s. It can be seen how
d increases a little bit to keep the current constant in spite
of the increased resistance. Figure 11 focuses in more detail
on the differences between the measured resistance, Ron, and
the predicted one, Ron EKF based on the predicted rl and
separating the different elements, as per (1). It can be seen
that during the transient, the EKF doesn’t have enough time
to converge, providing a different value estimation, which then
diminishes once the final resistance value has reached.

V. CONCLUSIONS

In this work, a method is presented to predict the conduction
resistance Ron of switching MOSFETs in power converters
with the objective of preventing catastrophical failures and
extending their useful lifetime. This method is based on the
use of an extended Kalman filter, providing a feasible solution
that doesn’t require any invasive measurement. By measuring
input voltage Vin, output voltage Vo, inductor current at two
samples within the same switching period Iref and Irip, and
duty cycle d, it is possible to obtain a prediction of the parasitic
resistance rl, which can then be extrapolated to the detection
of an increase in conduction resistance Ron of the switching
MOSFET. The validation of this method has been carried out
experimentally using a boost converter with 15 V input voltage
and 30 V output voltage. By comparing the augmented output
of the extended Kalman filter, which represents the parasitic



TABLE II
PARAMETERS AND VALUES

Parameter Value
Vin 15 V

Vo 30 V

Iref 2.5 A

fs 10 kHz

L 275 µH

∆Ron 10%

resistance of the circuit rl, with the measured Ron of the
switching MOSFET it has been shown that changes in Ron

value, artificially increased by changing the driver’s supply
voltage, ara properly tracked by the EKF output. The EKF has
been implemented on the DSP controlling the boost converter.
By allowing it to be implemented on the controller, there is
no need for external data processing. The results show it is
possible to detect an increase in the conduction resistance
of the switching element, that is, the Ron of the switching
MOSFET, which is sufficient to determine premature aging in
the component.
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