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ABSTRACT

Aims. The main goal of this work is to test the results of a methodological improvement in the measurement of the magnification bias
signal on a sample of submillimeter galaxies. In particular, we investigate the constraining power of cosmological parameters within
the ΛCDM model. We also discuss important points that can affect the results.
Methods. We measured the angular cross-correlation function between a sample of foreground GAMA II galaxies in a single wide
spectroscopic redshift bin of 0.2 < z < 0.8 and a sample of background submillimeter galaxies from Herschel-ATLAS. We focused
on the photometric redshift range of 1.2 < z < 4.0, with an improved methodological framework. Interpreting the weak lensing
signal within the halo model formalism and performing a Markov chain Monte Carlo (MCMC) algorithm, we obtained the posterior
distribution of both the halo occupation distribution and cosmological parameters within a flat ΛCDM model. Our analysis was also
performed with additional galaxy clustering information via a foreground angular auto-correlation function.
Results. We observed an overall remarkable improvement in terms of uncertainties in both the halo occupation distribution and
cosmological parameters with respect to previous results. A priori knowledge about β, the logarithmic slope of the background
integral number counts, is found to be paramount to derive constraints on σ8 when using the cross-correlation data alone. Assuming
a physically motivated prior distribution for β, we obtain mean values of Ωm = 0.23+0.03

−0.06 and σ8 = 0.79+0.10
−0.10 and an unconstrained

distribution for the Hubble constant. These results are likely to suffer from sampling variance, since one of the fields, G15, appears
to have an anomalous behavior with a systematically higher cross-correlation. We find that removing it from the sample yields mean
values of Ωm = 0.27+0.02

−0.04 and σ8 = 0.72+0.04
−0.04 and, for the first time, a (loose) restriction of the Hubble constant is obtained via

this observable: h = 0.79+0.13
−0.14. The addition of the angular auto-correlation of the foreground sample in a joint analysis tightens the

constraints, but also reveals a discrepancy between both observables that might be an aggravated consequence of sampling variance
or due to the presence of unmodeled aspects on small and intermediate scales.
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1. Introduction

The submillimeter galaxy magnification bias was recently
proposed as a novel approach to constrain cosmology via
a weak lensing-induced cross-correlation between a fore-
ground galaxy sample and a background set of submillime-
ter galaxies (Bonavera et al. 2020, 2021; González-Nuevo et al.
2021). Indeed, the phenomenon of magnification bias (see
Bartelmann & Schneider 2001, and references therein) can boost
the flux of background sources, while increasing the solid angle
they subtend. However, imposing a flux threshold effectively cre-
ates a mismatch between the two effects, which can result in an
excess of background sources around those in the foreground
with respect to the absence of lensing. Although it has tradi-
tionally been deemed inferior to shear analyses for the prob-
ing of the galaxy-matter cross-correlation, the realization that
submillimeter galaxies provide an optimal background sample
for magnification bias studies (as shown by the very significant

early detections of this cross-correlations in Wang et al. 2011;
González-Nuevo et al. 2014) has turned this observable into an
emerging independent cosmological probe.

The reason behind their relevance for these studies lies
in the fact that submillimeter galaxies are typically located
at high (z & 1−1.5) redshifts (Chapman et al. 2004, 2005;
Amblard et al. 2010; Lapi et al. 2011; González-Nuevo et al.
2012; Pearson et al. 2013) are faint in the optical band due to
thermal emission from dust and, most importantly, have a steep
luminosity function (Granato et al. 2004; Lapi et al. 2006, 2011;
Eales et al. 2010). The strength of the magnification bias effect
depends strongly on this last feature; indeed, the steeper the
number counts, the larger the number of faint sources that may
go over the detection threshold and the more likely it is that
the dilution effect of magnification bias is overcome by the flux
boosting.

The current concordance cosmological model has
been shown to successfully reproduce a large number of
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cosmological observations, namely, the cosmic microwave
background (CMB) temperature and polarization spectra
(Planck Collaboration XVI 2014; Planck Collaboration XIII
2016; Planck Collaboration VI 2020), baryon acoustic oscil-
lation measurements (Eisenstein et al. 2005; Beutler et al.
2011; Bautista et al. 2021), the primordial abundance of light
nuclei (Cyburt et al. 2016; Fields et al. 2020), or the magnitude-
redshift relation from type Ia supernovae (Perlmutter et al. 1999;
Brout et al. 2022; Scolnic et al. 2022; Riess et al. 2022), among
many others. However, in this day and age, the necessity for
additional independent cosmological probes is unquestionable.
Indeed, regardless of its countless successes, the standard
cosmological model is not short of both theoretical and obser-
vational challenges (Bull et al. 2016; Di Valentino & Melchiorri
2022; Abdalla et al. 2022; Perivolaropoulos & Skara 2022).
Regarding the latter, a special mention should be made to
the ubiquitous &4σ tension between local measurements of
the Hubble constant derived via a distance ladder approach
(Riess et al. 2022) and the corresponding values from CMB
anisotropy measurements (Planck Collaboration VI 2020).
Additional inconsistencies that are worth mentioning are
related, for instance, to differences in the value of the struc-
ture growth parameter, S8 ≡

√
Ωm/0.3σ8, between “direct”

approaches and the CMB power spectra (Secco et al. 2022) or
to the presence of anomalies in the anisotropies of the CMB
(Planck Collaboration VII 2020).

Along this line, the submillimeter galaxy magnification bias
has been put forward as a novel and independent cosmologi-
cal probe that does not seem to suffer from the typical σ8−Ωm
degeneracy found in other lensing observables. In particular,
González-Nuevo et al. (2021) performed a first analysis and cor-
rection of the large-scale biases that could contaminate the signal
and, as a consequence, the cosmological constraints. Moreover,
Bonavera et al. (2021) divided up the foreground sample into
four redshift bins to perform a tomographic analysis, which
opened up the possibility of studying the time evolution of
the dark energy equation of state. Although the Hubble con-
stant could not be constrained, they obtained mean values of
Ωm = 0.33+0.08

−0.16 and σ8 = 0.87+0.13
−0.12 at 68% credibility within

the ΛCDM model.
The present work, which is intended to be released along

another companion paper, aims to build upon the aforemen-
tioned results, along with a refinement in terms of the method-
ology. Here, we address the cosmological and halo occupation
distribution (HOD) constraints that can be derived using a sin-
gle broad foreground redshift bin and updated cross-correlation
data. The computation of the theoretical model for the sig-
nal is also revisited with respect to Bonavera et al. (2020) and
González-Nuevo et al. (2021), assessing the importance of the
value of the logarithmic slope of the background galaxy number
counts and of a numerical correction regarding the computation
of the non-linear power spectra. In Bonavera et al. (2024), to be
referred to as Paper II, the analysis is extended to a tomographic
setup, where the foreground sample is split into different red-
shift bins. The dependence on the number of redshift bins and
their range is discussed along with the possible improvements
with respect to the use of a single broad bin.

The study carried out in this work uses the measurement of
the angular cross-correlation function between a sample of back-
ground submillimeter galaxies from H-ATLAS (Pilbratt et al.
2010; Eales et al. 2010) and a sample of foreground galaxies
from GAMA II (Driver et al. 2011; Baldry et al. 2010, 2014;
Liske et al. 2015). Assuming a flat ΛCDM cosmology, we per-
formed a Markov chain Monte Carlo (MCMC) analysis to derive

the posterior probability distribution of both HOD and cosmo-
logical parameters. Additionally, we include the information
about the clustering of the foreground sample and discuss the
importance of the steepness of the submillimeter galaxy number
counts.

This paper has been structured as follows. Section 2 lays out
the theoretical background of this work. We discuss the physi-
cal origin of the weak lensing-induced foreground-background
cross-correlation and how it is computed within the halo model
formalism. The methodology followed in the paper is described
in Sect. 3: the galaxy samples are detailed, along with the estima-
tion procedure for both the angular cross- and auto-correlation
functions and the MCMC setup to sample the posterior proba-
bility distribution of the parameters involved in each of the cases
we studied. Section 4 presents the results we obtained and Sect. 5
summarizes our conclusions.

2. Theoretical framework

2.1. Galaxy clustering and the cross-correlation induced by
magnification bias

As noted in the introduction, the weak lensing-induced
foreground-background number cross-correlation is the main
observable of this paper. However, a joint analysis together with
the clustering of the foreground galaxy sample was also carried
out in addition to study the potential tightening of the parame-
ter constraints. Therefore, we proceed to describe the theoretical
modeling of both observables below.

Under the well-known Limber (1953) and flat-sky approx-
imations, the foreground angular auto-correlation function is
given by

wff(θ) =

∫ ∞

0
dz

H(z)
c

[dNf/dz
χ(z)

]2 ∫ ∞

0

dl
2π

l Pgg(l/χ(z), z) J0(lθ),

(1)

where Pgg is the galaxy power spectrum, H(z) is the Hubble
parameter at redshift z, χ(z) is the comoving distance at redshift
z, dNf/dz is the normalized foreground source distribution, and
J0 is the zeroth-order Bessel function of the first kind.

Moreover, the phenomenon of magnification bias, cen-
tral to this work, probes the galaxy-mass correlation via
the foreground-background angular cross-correlation function.
Indeed, in the presence of lensing, the phenomenon of mag-
nification bias produces fluctuations in the number density of
background sources that, in the weak-lensing regime, can be
expressed as (Bartelmann & Schneider 2001):

δnµb(θ) ≈ 2(β − 1) κ(θ),

where β is the logarithmic slope of the unlensed background
number counts1 and κ is the effective convergence field. Since
the foreground sources trace the underlying matter field, their
fluctuations are due to pure clustering, that is,

δnc
f (ϕ) =

∫ ∞

0
dz

dNf

dz
δg(ϕ, z).

Therefore, for two galaxy samples with nonoverlapping red-
shift distributions, the only non-negligible contribution to the

1 The intrinsic integral number counts of the background sources are
assumed to be described by a power law in a neighborhood of the detec-
tion limit: nb(>S ) = A S−β.
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foreground-background angular cross-correlation comes from
the two above terms: wfb(θ) ≡ 〈δnc

f (ϕ) δnµb(ϕ + θ)〉ϕ. Once
again, using the Limber and flat-sky approximations, this can
be expressed as (Cooray & Sheth 2002):

wfb(θ) = 2(β − 1)
∫ ∞

0

dz
χ2(z)

dNf

dz
W lens(z)

×

∫ ∞

0
dl

l
2π

Pg-m(l/χ(z), z)J0(lθ), (2)

where

W lens(z) ≡
3
2

1
c2

[ H(z)
1 + z

]2 ∫ ∞

z
dz′

χ(z)χ(z′ − z)
χ(z′)

dNb

dz′
·

Here, Pg-m is the galaxy-matter cross-power spectrum and
dNb/dz is the normalized background source distribution.

2.2. Modeling of the non-linear power spectra

According to the halo model of structure formation, the non-
linear galaxy, matter and galaxy-matter power spectra can be
computed analytically if the following ingredients are provided:
the halo mass function, n(M, z), the deterministic linear halo
bias, b1(M, z), the halo density profile, ρ(r), the linear matter
power spectrum, Plin(k, z), and the HOD. For instance, the galaxy
power spectrum can be expressed as:

Pgg(k, z) = P1h
gg(k, z) + P2h

gg(k, z),

where P1h
gg and P2h

gg are known as the one-halo and two-halo
terms and account for galaxy correlations within single halos and
among different halos, respectively. They can be written as

P1h
gg(k, z) =

∫
dM n(M, z)

〈Nc〉M〈Ns〉M

n̄g(z)2 |u(k|M, z)|

+

∫
dM n(M, z)

〈Ns(Ns − 1)〉M
n̄g(z)2 |u(k|M, z)|2

and

P2h
gg(k, z) = Plin(k, z)

[ ∫
dM n(M, z) b1(M, z)

〈N〉M
n̄g(z)

|u(k|M, z)|
]2
,

where n̄g(z) is the mean number density of galaxies at redshift
z, u(k|M, z) is the normalized Fourier transform of the density
profile of a typical halo of mass M at redshift z and 〈N〉M is the
first moment of the HOD, that is, the mean number of galaxies
in a halo of mass M, which has been split into the contributions
of central and satellite galaxies, expressed as 〈Nc〉M and 〈Ns〉M,
respectively.

Regarding the galaxy-matter cross-power spectrum, the halo
model prescription is expressed as:

Pg-m(k, z) = P1h
g-m(k, z) + P2h

g-m(k, z),

where

P1h
g-m(k, z) =

∫ ∞

0
dM M

n(M, z)
ρ̄0

〈Nc〉M

n̄g(z)
|u(k|M, z)|

+

∫ ∞

0
dM M

n(M, z)
ρ̄0

〈Ns〉M

n̄g(z)
|u(k|M, z)|2

and

P2h
g-m(k, z) = P(k, z)

[ ∫ ∞

0
dM M

n(M, z)
ρ̄0

b1(M, z)u(k|M, z)
]

×

[ ∫ ∞

0
dM

n(M, z)
n̄g(z)

b1(M, z)
(
〈Nc〉M + 〈Ns〉M u(k|M, z)

)]
.

Although a detailed description about the ingredients of the
model is given in Appendix A, it suffices to say here that we
have chosen the Sheth and Tormen model for the halo mass func-
tion and the corresponding linear halo bias derived via the peak-
background split (Sheth & Tormen 1999), the NFW model for
the halo density profile (Navarro et al. 1997), the usual power-
law primordial power spectrum, and the three-parameter HOD
model of Zehavi et al. (2005). For this, we have:

〈N〉M = 〈Nc〉M + 〈Ns〉M =

[
1 +

( M
M1

)α]
Θ(M − Mmin). (3)

Therefore, within the halo model prescription, the galaxy and
galaxy-matter power spectra depend both on cosmology and the
parameters of the HOD. The corresponding angular auto- and
cross-correlation functions inherit this dependence via Eqs. (1)
and (2), where an additional cosmological influence is present,
as well as the additional parameter β in the case of the latter, as
we discuss in Sect. 4.1.1.

These two last comments should be made before proceeding
regarding the computation of the model with respect to previ-
ous works. Firstly, given the large number of integrals that have
to be carried out for each angular value, we have resorted to a
mean-redshift approximation in which the outermost integrals in
Eqs. (1) and (2) are not computed directly for all the redshift
distribution, but through evaluation at the mean redshift of the
sample due to the reduction of computational time by a factor of
10, so that:

wfb(θ) ≈ 2(β − 1)
W lens(z̄)
χ2(z̄)

∫ ∞

0
dl

l
2π

Pg-dm(l/χ(z̄), z̄)J0(lθ).

The validity of this approximation ought to be proven in the first
MCMC run, so that all subsequent analyses can be safely com-
puted with it, which speeds up the computations dramatically.

Secondly, a crucial point should be raised regarding the com-
putation of the two-halo term of the galaxy-matter cross-power
spectrum within the halo model. As discussed by Mead et al.
(2020) and Mead & Verde (2021), the evaluation of the corre-
sponding integral poses a numerical problem, since typical halo
mass functions assign a large fraction of mass to low-mass halos;
this causes convergence of the integral to be extremely slow and
to bias the large-scale behavior, which no longer reflects the typ-
ical linear regime. Although a more detailed analysis is made
in Appendix B, where the correction procedure is explained, we
stress here that overlooking this issue can induce a very strong
bias on the cosmological results from a halo modeling of the sig-
nal. We have implemented the above correction for all cases in
this paper.

3. Data and methodology

3.1. The foreground and background galaxy samples

The foreground and background galaxy samples have been
extracted from the GAMA II (Driver et al. 2011; Baldry et al.
2010, 2014; Liske et al. 2015) and H-ATLAS (Pilbratt et al.
2010; Eales et al. 2010) surveys, respectively. Their common
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Fig. 1. Normalized redshift distribution of the background (light blue)
and foreground (dark blue) samples of galaxies.

area covered three regions on the celestial equator at 9, 12 and
14.5 h (named G09, G12 and G15) and part of the south galactic
pole (SGP) region, which amounts to a total of ∼207 deg2. These
are the same samples used in González-Nuevo et al. (2017,
2021) and Bonavera et al. (2020), where a more detailed discus-
sion of the selection procedure can be found.

In essence, the foreground sample is made up of GAMA
II sources in the common region with H-ATLAS with spec-
troscopic redshifts in the range 0.2 < z < 0.8, resulting in
∼130 000 galaxies with a median redshift of 0.28 and surveyed
down to a magnitude of ∼19.8 in the r band. Figure 1 (in dark
blue) depicts the associated redshift distribution.

The background sample is made up of ∼37 000 H-ATLAS
sources in the common area, obtained via a photometric redshift
selection of 1.2 < z < 4.0 to ensure that there is no overlap
with the foreground galaxies. The redshift estimation procedure,
which is thoroughly described in González-Nuevo et al. (2017)
and Bonavera et al. (2019), consists of a χ2 fit of the photometry
to the spectral energy distribution of SMM J2135−0102 (“the
Cosmic Eyelash”; Ivison et al. 2010; Swinbank et al. 2010),
a gravitationally-lensed submillimeter galaxy at z = 2.3
that was shown to provide the best overall fit to H-ATLAS
data (Lapi et al. 2011; González-Nuevo et al. 2012; Ivison et al.
2016). The redshift distribution of the background sample, tak-
ing into account the effect of random errors, is depicted in light
blue in Fig. 1.

3.2. Measurements and methodological aspects

The scanning strategy employed by the H-ATLAS survey
resulted in slightly overlapping rhomboidal shapes (or “tiles”)
in most fields, each of them covering about 16 deg2. An average
using this natural division, along with a subdivision into “mini-
tiles” (i.e., one fourth of a tile) was analyzed in the detailed anal-
ysis of González-Nuevo et al. (2021). Indeed, a cross-correlation
measurement averaged over all minitiles was concluded to be the
most robust method, washing out large-scale inhomogeneities
and needing only the so-called integral constraint (IC) correc-
tion. The use of minitiles was, in fact, the default strategy in
previous related works (Bonavera et al. 2020, 2021; Cueli et al.
2021, 2022). However, as detailed in Appendix C, this approach
could bias the data and, ultimately, the cosmological parameter
constraints.

Therefore, and as customary in galaxy clustering studies, we
now explore the possibility of performing a sole measurement

of the cross-correlation function using all the available area, a
methodology that should be free of IC biases given the scales
probed. Although the minitiles strategy is no longer used for
the measurement itself, an analogous subdivision of the whole
area into minimal subregions is still necessary to assign mean-
ingful uncertainties via internal covariance estimation. To define
the subregions, we drew inspiration from TreeCorr (Jarvis 2015),
a popular software package for computing two-point correlation
functions. TreeCorr uses a k-means clustering algorithm to par-
tition the data into subregions known as “patches”, which are
similar to our minitiles. Specifically, we adopted the k-means
algorithm provided by the SciPy library, which aims to minimize
the sum of the squared distances between data points and their
assigned patch centroid. We determined the number of patches
by imposing a minimum area for each of them and introduced an
additional step by repeating the procedure ten times with differ-
ent random initial centroids and selecting the case yielding the
most consistent number of data points across patches. Figure 2
shows the distribution of foreground (top panel) and background
(bottom panel) sample galaxies for the G15 field. A choice of
(approximately equal-area) patches for the computation of the
covariance matrix (as explained below) is also depicted.

The angular auto-correlation function of the foreground sam-
ple is measured over the available area through the standard
Landy & Szalay (1993) estimator:

ŵauto(θ) =
Df Df(θ) − 2DfRf(θ) + RfRf(θ)

RfRf(θ)
,

where Df Df(θ), DfRf(θ), and RfRf(θ) denote the normal-
ized foreground-foreground, foreground-random and random-
random pair counts at an angular separation of θ, computed in
practice using equally spaced logarithmic bins. The random cat-
alog is generated from mock random positions for ten times the
number of foreground sources. The measurements are shown in
black in the upper part of Fig. 3.

In turn, the foreground-background angular cross-correlation
is computed over the available area via the natural modification
of the above estimator (Herranz 2001):

ŵcross(θ) =
Df Db(θ) − DfRb(θ) − DbRf(θ) + RfRb(θ)

RfRb(θ)
,

where Df Db(θ), DfRb(θ), DbRf(θ) and RfRb(θ) denote the normal-
ized foreground-background, foreground-random, background-
random and random-random pair counts at an angular separation
of θ.

The cross-correlation measurements are also depicted in
black in Fig. 3, where they are compared with the ones used
by González-Nuevo et al. (2021), shown in gray2. As expected,
the cross-correlation signal is much weaker than the auto-
correlation. The new data reach larger angular scales and
have smaller statistical uncertainties due to the different and
more efficient measurement methodology. As concluded in
Bonavera et al. (2020), these aspects are expected to lead to an
improvement in the cosmological constraining power. It should
be pointed out that unlike the data from González-Nuevo et al.
(2021), the cross-correlation signal at large angular scales does
not seem to die off particularly steeply. This behavior (and its
consequences on the cosmological estimates) are analyzed in
Sect. 4.1.2.

The covariance matrix is estimated for both observables
through a Bootstrap method, which involves dividing the whole

2 It should be noted that the measurements from González-Nuevo et al.
(2021) were performed using the average-over-minitiles strategy.
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Fig. 2. Angular distribution of foreground (top panel) and background (bottom panel) sample galaxies in the G15 field. In the bottom panel,
different colours indicate the definition of the patches used for the Bootstrap error estimation of the angular cross- and auto-correlations. The red
square in the top panel indicates the typical shape and size of a minitile, used in previous works to divide the sample into subregions (see text for
more details). The number density has been artificially reduced in both panels for loading and visualization purposes.

common area into N subregions, resampling Nr of them with
replacement and repeating the process Nb times. In essence, a
random integer from 0 to N is assigned to each subregion with
the condition that all of them add up to Nr, effectively con-
structing a Bootstrap sample from the existing data on which
one performs a measurement. This procedure is repeated Nb
times, each one with different assignments of random integers
to each subregion. The covariance matrix is then computed
via:

Cov(θi, θ j) =
1

Nb − 1

Nb∑
k=1

[
ŵk(θi) − ¯̂w(θi)

][
ŵk(θ j) − ¯̂w(θ j)

]
, (4)

where ŵk denotes the measured correlation function from the kth
Bootstrap sample and ¯̂w is the corresponding average value over
all Bootstrap samples.

Regarding the choice of Nr, that is, the number of subregions
to be drawn with replacement for each Bootstrap sample, we fol-
low the conclusions of Norberg et al. (2009) and let Nr = 3N,
for which they obtained a very good agreement between the
Bootstrap errors and those derived with an external estimate.
To reach a compromise between the largest scales probed and
the fact that we have 13 data points, we chose N = 20, that
is, we divided up each independent field into five patches. The
procedure was repeated Nb = 10 000 times. Lastly, it should
be noted that our internal approach does not take super-sample
covariance (Lacasa & Kunz 2017) into account, since our dom-
inant source of uncertainty is currently the sampling variance
between the different fields used for the measurements (see
Sect. 4.1.2).

100 101 102

 [arcmin]

10 3

10 2

10 1

100

w
(

)

All fields
No G15
González-Nuevo et al. (2021)

Fig. 3. Measurements of the foreground auto-correlation function and
the foreground-background cross-correlation function (in black) com-
pared to the cross-correlation function excluding the G15 region (in
olive green). The cross-correlation data from González-Nuevo et al.
(2021) are shown in gray.

3.3. Parameter estimation

For the purposes of this paper, the free parameters we con-
sider here are: Mmin, M1, α, Ωm, σ8, h and β. A flat ΛCDM
cosmology is assumed throughout the paper, with Ωb and ns
fixed to the latest Planck values (Planck Collaboration VI 2020).
For the estimation procedure, a Bayesian statistical approach
is followed, for which the sampling of the posterior distribu-
tions was carried out via an MCMC algorithm using the open-
source emcee software package (Foreman-Mackey et al. 2013), a
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Table 1. Parameter prior distributions and summarized posterior results from the MCMC runs on the cross-correlation function with uniform and
Gaussian priors on the β parameter.

Uniform β Gaussian β

Parameter Prior Mean Mode 68% CI Prior Mean Mode 68% CI

α U[0.00, 1.50] 0.83 0.64 [0.45, 1.24] U[0.00, 1.50] 0.72 0.64 [0.32, 1.04]
log Mmin U[10.00, 16.00] 11.67 11.73 [11.48, 11.94] U[10.00, 16.00] 11.47 11.54 [11.34, 11.69]
log M1 U[10.00, 16.00] 13.41 13.57 [12.60, 14.23] U[10.00, 16.00] 13.04 12.94 [12.02, 13.71]
Ωm U[0.10, 1.00] 0.21 0.20 [0.16, 0.24] U[0.10, 1.00] 0.23 0.21 [0.17, 0.26]
σ8 U[0.60, 1.20] 0.95 − [0.87, 1.20] U[0.60, 1.20] 0.79 0.79 [0.69, 0.89]
h U[0.50, 1.00] 0.70 0.65 [0.50, 0.75] U[0.50, 1.00] 0.72 − [0.50, 0.80]
β U[1.50, 3.50] 2.46 2.16 [1.81, 2.86] N[2.90, 0.04] 2.90 2.91 [2.86, 2.94]

Python-based implementation of the Goodman and Weare affine
invariant MCMC ensemble sampler (Goodman & Weare 2010).

Two main cases are distinguished in the analysis. The first
one deals only with the angular cross-correlation function and
assesses the parameter constraints that can be derived from its
observation alone. The corresponding log-likelihood function
can be described as a multivariate Gaussian, that is:

logLcross (θ1, . . . , θm) = −
1
2

[
m log (2π) + log |Ccross|

+ εT
crossC

−1
cross εcross

]
,

where εcross ≡ [εcross(θ1), . . . , εcross(θm)],

εcross(θi) ≡ wfb(θi) − ŵcross(θi) ∀i ∈ {1, . . . ,m}

and Ccross is the covariance matrix associated to the cross-
correlation measurements, computed according to Eq. (4).

The second main case deals with a joint analysis of the
foreground-background cross-correlation and the foreground-
foreground auto-correlation. The corresponding log-likelihood
will be expressed as:

logLauto+cross (θ1, . . . , θm) = −
1
2

[
m log (2π) + log |C|

+ εTC−1 ε
]
,

where ε ≡ [εcross(θ1), . . . , εcross(θm), εauto(θ1), . . . , εauto(θm)],

εauto(θi) ≡ wff(θi) − ŵauto(θi) ∀i ∈ {1, . . . ,m}

and C is the full covariance matrix associated to the cross-
and auto-correlation measurements, again computed according
to Eq. (4).

4. Results

4.1. Cross-correlation analysis

4.1.1. The β parameter

The preliminary cosmological and astrophysical results derived
in Bonavera et al. (2020) and González-Nuevo et al. (2021) had
assumed a fixed value of β = 3, on account of the results found
by Lapi et al. (2011), where the observed number counts of high-
redshift Herschel submillimeter galaxies had been successfully
reproduced using an updated version of the galaxy formation
model by Lapi et al. (2006). Indeed, high-redshift submillime-
ter galaxies were interpreted as massive protospheroids and the

logarithmic slope of their intrinsic (unlensed) number counts at
350 µm was predicted to be near 3 at the 3σ detection limit.
However, the exact value of β that should be used is not straight-
forward, since the behavior of the counts around the detection
limit needs to be taken into account and the minimum flux that
can be statistically boosted above the threshold cannot be pre-
dicted. Nonetheless, an analysis of the predicted integral num-
ber counts according to the above model allowed us to derive
an average of the β values in a sensible neighborhood of the
detection limit. In essence, this translates into the possibility of
considering a plausible prior for β consisting of a Gaussian dis-
tribution with mean equal to 2.90 and standard deviation equal
to 0.04.

Notwithstanding this analysis, we assess the importance of
prior information on β by studying four different cases in this
first subsection assuming several choices for the β parameter: a
uniform prior distribution between 1.5 and 3.5, the aforemen-
tioned Gaussian prior distribution with mean 2.9 and standard
deviation 0.04, and fixed values of 2.2 and 3.0. The last two cases
are considered for different reasons: the first to assess large devi-
ations from usual values and the second to make a comparison
with previous results.

However, as noted at the end of Sect. 2, the validity of the
mean-redshift approximation needs to be tested before it can
be adopted for all MCMC runs. We started by carrying out an
analysis with the most general case (uniform prior distribution
on β) to assess if there could be any important deviation from
the full model. The resulting corner plot is depicted in Fig. D.1
and the summarized statistical results are shown in Table D.1.
As can be clearly seen, only minor differences are present and
we can safely adopt it for the rest of the paper. Moreover, this
approximation is even more accurate in the tomographic setup
of Paper II, where the model is evaluated within narrower red-
shift bins.

With regard to the four main MCMC runs of this first subsec-
tion, the corresponding full corner plots are shown in Fig. D.2 in
red, green, blue, and cyan for the cases of a uniform, Gaussian,
and fixed 2.2. and 3.0 values for the β priors, respectively, and
the numerical results are summarized3 in Tables 1 and D.2. For
visual purposes, the marginalized posterior distributions of all
parameters are depicted in Fig. 4.

A preliminary global view shows, as expected, that the case
with the weakest priors (uniform distribution on β) yields the
least stringent constraints on most parameters. However, the
marginalized distributions of Mmin, M1, and σ8 have a distinctive
feature which sheds light onto the influence of the β parameter;

3 Throughout the paper, all halo masses are expressed in M� h−1.
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Fig. 4. Marginalized posterior distribution of the HOD, β (top panels) and cosmological (bottom panels) parameters for the different cases discussed
in Sect. 4.1.1, i.e., a uniform prior (in red), a Gaussian prior (in green), and fixed values on β of 2.2. and 3.0 (in blue and cyan, respectively).

indeed, two different peak values for these parameters appear
according to the two seemingly plausible values of β, which are
around 2.2 and a 3.0. In particular, for σ8, the interplay with
the β parameter becomes clear on the σ8−β plane, where larger
values of the former imply smaller values of the latter.

Regarding the constraints on the HOD parameters, the least
informative case (uniform prior on β) yields mean values of
α = 0.83, log Mmin = 11.67 and log M1 = 13.41, with 68% cred-
ible intervals of [0.45, 1.24], [11.48, 11.94], and [12.60, 14.23].
As we discuss below, even in this case, which has an additional
degree of freedom with respect to González-Nuevo et al. (2021),
a remarkable improvement takes place concerning the determi-
nation of α, which had not even been constrained, and M1, for
which mostly lower limits had been derived up to now. This
is a direct consequence of the reduction of the error bars on
small scales with respect to the measurement strategy in previ-
ous works. Nevertheless, the uncertainty in Mmin is comparable
to that of González-Nuevo et al. (2021) due to the range of β
values that are allowed in the present work. Indeed (and inter-
estingly), the posterior distribution of β has a clear maximum
at 2.20, but displays a long tail toward the high end. However,
in the case of a narrow Gaussian prior around 2.90, the poste-
rior does not deviate from it in any noticeable way. This fact,
which in principle could be indicative of a wrong assumption
for the Gaussian β prior, will be commented further in the next
subsection.

When the value of β is fixed, either to 3.0. or 2.2, the con-
straints are clearly tightened, yielding mean values of log Mmin =

11.67+0.27
−0.19 and 11.47+0.22

−0.13 and log M1 = 13.41+0.82
−0.81 and 13.04+0.67

−1.02,
respectively. The difference between both cases explains the
higher uncertainties discussed above. Indeed, as made clear in
Fig. D.2 by the red β − log Mmin and β − log M1 contours and
the marginalized posterior distributions of Mmin and M1 for all
cases, a lower (higher) value of β is related to a higher (lower)
value of both Mmin and M1. This is a consequence of the inter-
play between halo masses and the logarithmic slope of the back-
ground number counts: the small-scale (1-halo) behavior of the
cross-correlation caused by larger HOD masses can be counter-

balanced by smaller β values, which reduce the normalization of
the signal.

Concerning cosmology, the case with the uniform prior on β
yields an unconstrained posterior distribution for the σ8 param-
eter. However, when β is fixed to 3.0 and 2.2, mean values of
σ8 = 0.82+0.10

−0.10 and 1.02+0.18
−0.04 are obtained at 68% credibility,

respectively. With regard to the matter density parameter, it is the
most robust in terms of dependence on the value of β. Compared
to typical cosmological probes, low values of Ωm are obtained
in all four cases, with a mean of 0.21+0.03

−0.05 for the first (uniform
prior on β), 0.23+0.03

−0.06 for the second (Gaussian prior), 0.24+0.02
−0.06

for the third (β = 3.0), and 0.20+0.03
−0.05 for the last (β = 2.2). The

Hubble constant, however, cannot be constrained at the moment
in any case, as in previous studies (Bonavera et al. 2020, 2021;
González-Nuevo et al. 2021). The reason behind this is twofold:
firstly, the sensitivity of the angular cross-correlation function
to the h parameter is concentrated on the largest scales, where
the uncertainties are still large. Secondly, given the degeneracy
between h and Ωm, which have opposite effects, and the fact that
the angular cross-correlation is much more sensitive to the latter
parameter, constraining the former seems to prove challenging
at the current stage.

Nonetheless, for comparison purposes, Fig. 5 depicts the
results for the β = 3.0 case from this paper to those of
González-Nuevo et al. (2021), which had used the same β value.
The results show a remarkable overall improvement in terms of
parameter uncertainties, mainly due to the reduction of error bars
and to the possibility of reaching larger angular scales with the
new methodology. The differences in the specific posterior dis-
tributions can be explained by two different facts4. Firstly, and
as discussed in Sect. 3.2, the data from González-Nuevo et al.
(2021), which employed a different measurement methodology,
might have been biased due to the relative arbitrariness of the so-
called integral constraint correction on large scales. Secondly,
and as will be highlighted in the next subsection, the steeper

4 It should also be noted that tighter prior distributions were imposed
for the HOD parameters in González-Nuevo et al. (2021).
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Fig. 5. Marginalized posterior distributions and probability contours for the MCMC run on the cross-correlation function with a fixed value of
β = 3.0 (in cyan), compared to the results from González-Nuevo et al. (2021) depicted in gray.

ones fall above 20 arcmin in the data from González-Nuevo et al.
(2021) can only be accounted for with larger values of Ωm.

Figure 6 shows the posterior sampling of the cross-
correlation function for all four cases in red, green, blue and
cyan, respectively, along with the best fit (solid black line) and
the data. The model explains the data correctly on most scales,
but it tends to slightly overestimate the signal between 10 and
40 arcmin and to underestimate it above 60 arcmin, especially
when β has larger values (2.9 and 3.0). Moreover, the tight
small-scale uncertainties of the data seem to induce a prefer-
ence toward a steeper fall above 60 arcmin than the data suggest.
Indeed (as commented in Sect. 3.2), our current data do not die
off particularly steeply and a sensitivity analysis shows that this
large-scale behavior forces particularly low values of Ωm. This
issue will be studied in detail in the next subsection.

The first conclusion to be drawn up to now is that a priori
knowledge on the β parameter is a necessary condition for con-
straining cosmology using the submillimeter galaxy magnifica-
tion bias with a single redshift bin. Indeed, although the matter
density parameter is barely affected by its value, too loose a
prior on β erases the possibility to constrain σ8 as a consequence
of the large degeneracy and interplay between both parameters.
Furthermore, a wrong assumption of a fixed value of β can sub-
stantially bias the constraint on σ8, with larger values of the for-
mer linked to lower values of the latter. In particular, it should

be stressed once again that previous works on the submillimeter
galaxy magnification bias assumed a value of β = 3.0.

4.1.2. Sampling variance and the large-scale
cross-correlation

The moderate fall in the large-scale behavior of the cross-
correlation function seems to suggest a more thorough analysis.
Given the fact that we have four spatially separated regions in the
sky, we decided to measure the angular cross-correlation func-
tion in each of the different fields independently so as to exam-
ine if there are substantial differences among them. Figure 7
shows the corresponding results for the G09, G12, G15 and SGP
regions (in red, blue, green and pink, respectively) along with
the overall data (in black).

Although the cross-correlation signal shows a relatively sta-
ble profile in the case where all regions are combined, the
data display non-negligible variations among the fields that are
nonetheless mostly contained within the error bars. However the
G15 regions represents a clear exception, with a systematically
higher signal on all scales. Regarding possible explanations of
this phenomenon, it should first be noted that the selection crite-
ria of both the foreground and background samples are uniform
across all four regions and the redshift distributions barely differ.
Moreover, stellar masses derived via stellar population fitting of
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Fig. 6. Posterior-sampled angular cross-correlation function for the different cases of Sect. 4.1.1, that is, uniform prior on β (in red), Gaussian prior
on β (in green) and fixed β values of 3.0 and 2.2 (cyan and blue, respectively). The cross-correlation data are shown in black.
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Fig. 7. Measurements of the foreground-background angular cross-
correlation function in each independent field separately (G09, in red,
G12, in blue, G15, in green and SGP, in pink), compared to the global
measurement combining all fields (in black).

the SEDs as found in the GAMA catalogs show a remarkable
uniformity among the fields.

Another possibility would be failing to correctly consider the
selection function of the samples in the construction of the ran-
dom catalogs. This is automatically taken into account for the
foreground sample, since we made use of the random catalogs
generated by the GAMA team and available on the database that
reproduce the underlying selection function5. As for the back-
ground sample, the spatial variation in the instrumental noise is
considered via H-ATLAS noise maps, which are imprinted in the
random catalog. Even if this didn’t account for the whole selec-
tion function of the background sample, the differences among
regions are already present in the foreground sample itself, so

5 Using a purely Poissonian random catalog was shown to introduce
almost negligible variations in the signal.
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Fig. 8. Measurements of the foreground angular auto-correlation func-
tion in each independent field separately (G09, in red, G12, in blue,
G15, in green and SGP, in pink), compared to the global measurement
combining all fields (in black).

they should not be sourced by a missing consideration in the
selection function.

Indeed, this variability is observed even more strongly in
the angular auto-correlation function of the foreground sample,
depicted in Fig. 8 with the same colors as the cross-correlation.
The foreground galaxies in the G15 region do not seem to clus-
ter particularly strongly (which would explain a higher cross-
correlation signal), but the large variation among fields, even at
small scales, seems to point to sampling variance as the under-
lying cause. Although this issue will be studied further in future
work with a larger data set, we performed a preliminary analysis
by excluding the seemingly anomalous G15 region.

Figure 3 shows a comparison between the cross-correlation
measurements taking all four regions into account (in black) and
the corresponding ones resulting from excluding the G15 region
(in olive green). Indeed, the removal of G15 induces a steeper fall
above 40 arcmin, more in keeping with the qualitative behavior
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of the data from González-Nuevo et al. (2021). Although this
region was also included in the cross-correlation computation
in González-Nuevo et al. (2021), we believe that the different
measurement strategy (involving splitting each field into 16 sub-
regions and averaging the cross-correlation signal) might have
helped mitigate the differences.

In order to assess the influence of the (unexpectedly) moder-
ate fall in the large-scale data, we considered excluding the G15
region from the computation of the angular cross-correlation
function. We performed two MCMC runs, namely, with a uni-
form and a Gaussian prior on β, and compared the results with
those from the previous subsection. The full cornerplots are
shown in Figs. D.3 and D.4, respectively.

The results on the HOD parameters behave as expected for
both cases. Indeed, the exclusion of the G15 region reduces
the cross-correlation signal even at small scales, which implies
smaller galaxy halo masses. As regards cosmology, important
differences appear with respect to using all fields. Figure 9 sum-
marizes the deviations for Ωm and σ8. For both cases, Ωm is
the most affected parameter, with the same qualitative behav-
ior: the exclusion of the G15 region implies higher values of
Ωm due to the steeper fall at the large-scale end. In particular,
for a uniform (Gaussian) prior distribution on β, the mean value
goes from Ωm = 0.21+0.03

−0.05 (0.23+0.03
−0.06) using all data and regions

to Ωm = 0.29+0.03
−0.06 (0.27+0.03

−0.04) when the G15 region is excluded.
As regards σ8, the interplay with the β parameter still doesn’t
allow a clear determination when no information about the lat-
ter is given, but an upper limit of σ8 < 0.81 is obtained at 68%
credibility. However, for the Gaussian prior on β, the distribu-
tion is tightened, with the mean value going from σ8 = 0.79+0.10

−0.10
using all regions to σ8 = 0.72+0.04

−0.04 when the G15 region is
excluded. Interestingly, the posterior distribution of the Hubble
constant, although wide, displays (for the first time in submil-
limeter galaxy magnification bias studies) a clear maximum and
we derived a mean value of h = 0.79+0.13

−0.14. It should be noticed
that, although the observed anticorrelation between Ωm and h
would be expected to imply smaller values of the Hubble con-
stant with respect to the previous case (given the larger Ωm after
removing the G15 region), such values are not favored. This
seems to be a consequence of the weaker overall signal com-
pared to the four-field case. Indeed, even if the anticorrelation
between the two parameters is still present, too small a value for
the Hubble constant would not allow Ωm (which cannot be arbi-
trarily high due to the interplay with σ8 and the HOD parame-
ters) to explain the weaker signal6. Lastly, and as opposed to the
previous case, the marginalized distribution of β for the uniform-
prior case now displays a clear maximum at 3, well above the
value of 2.2. Therefore, the physically motivated β ∼ 2.9 is
recovered by excluding the G15 region, effectively solving the
apparent inconsistency described in the previous subsection.

The conclusion at this point is that sampling variance can
induce a bias in the cosmological parameter constraints derived
from an analysis of the submillimeter galaxy magnification bias.
In our case, an excess of cross-correlation seems to be present
in the G15 region. When excluded, the behavior resembles the
qualitative fall of the signal from González-Nuevo et al. (2021),
which averaged over smaller subregions and was thus less likely
to be affected by large-scale inhomogeneities. Further work is
needed along this line to confirm this hypothesis by enlarging
the galaxy samples.

6 A sensitivity analysis shows that, unlike for the Hubble constant,
variations of Ωm still affect the signal at small and intermediate scales
and thus imply a non-trivial interplay with the HOD parameters.
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Fig. 9. Marginalized posterior distribution for the Ωm and σ8 parame-
ters. Top panel: results for the MCMC runs with a uniform prior on β.
Bottom panel: results for the MCMC runs with a Gaussian prior on β.

4.2. Cross- and auto-correlation joint analysis

Inspired by studies of galaxy-galaxy lensing, where the clus-
tering of galaxies is added to tighten constraints (Abbott et al.
2018, 2022), we performed a joint analysis for both the angu-
lar cross- and foreground auto-correlation functions. To assess
whether galaxy clustering could help tighten the constraints, we
analyzed our base case: a Gaussian prior for β. The full corner-
plot with the results is shown in Fig. D.5 in purple, where the
cross-correlation-only case is also depicted in green for compar-
ison purposes. Table D.5 presents the corresponding summarized
statistical results.

The constraints on all parameters are extremely tightened
after the incorporation of the auto-correlation function. Regard-
ing the HOD, we obtained mean values of α = 0.92+0.04

−0.05,
log Mmin = 11.54+0.09

−0.11 and log M1 = 12.41+0.25
−0.17. Interestingly, the

distribution of the matter density parameter is displaced toward
higher values, with a mean value of Ωm = 0.36+0.01

−0.02. The nor-
malization parameter of the power spectrum is reduced to lower
values with respect to the sole cross-correlation measurement,
with a mean of σ8 = 0.72+0.04

−0.03. Regarding the Hubble constant,
we obtained an extremely saturated distribution toward low val-
ues, possibly related to the apparent inconsistency between both
observables.

Indeed, the sampling of the posterior distribution, shown
in Fig. 10, reveals a poor joint fit to the data, mainly due
to the underestimation of the auto-correlation signal below
20 arcmin. A similar issue was found in the joint cluster-
ing and galaxy-galaxy lensing analysis of Abbott et al. (2022),
where an internal inconsistency between the tangential shear
and the auto-correlation function of the redMaGiC lens sam-
ple was apparent. Although sampling variance would again be a
plausible explanation in our case and, possibly, the most rele-
vant one at the current stage, other reasons could be behind this
discrepancy. Indeed, as shown by hydrodynamical simulations,
baryonic feedback can impact the galaxy and halo distributions
differently (van Daalen et al. 2014, 2020; Renneby et al. 2020),
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Fig. 10. Posterior-sampled angular auto- and cross-correlation functions
from the joint analysis of both observables. The data are shown in black.

which can effectively reduce the lensing signal in the one-halo
regime while having no impact on clustering (Amon et al. 2023).
Moreover, assembly bias (i.e., the dependency of halo occu-
pation and clustering on secondary properties other than halo
mass) can suppress the lensing signal on small and even inter-
mediate scales (.5−10 Mpc h−1), as shown by Gao et al. (2005),
Wechsler et al. (2006), Leauthaud et al. (2017), and Amon et al.
(2023), among others. This matter goes beyond the scope of this
paper and will be pursued in future work.

However, slightly different HOD values were found in pre-
vious related works (Bonavera et al. 2020, 2021) from a sepa-
rated analysis of the auto- and cross-correlation functions. Since
this could be related to the above discussion, we decided to
run a preliminary joint test allowing a different HOD model
for each observable to analyze if the galaxy-halo connec-
tion could respond differently to each physical situation. The
results are shown in Fig. D.6 and Table D.6. The overall
fit, shown in Fig. D.7, is better than the previous case, but
the cross-correlation is now overestimated below 30 arcmin.
The galaxy-halo connection, although compatible at 2σ, differs
slightly between the auto- and cross-correlation models, since
log Mauto

min = 11.58+0.12
−0.22, log Mcross

min = 11.83+0.08
−0.08, log Mauto

1 =

12.33+0.24
−0.47 (at 68% credibility), and log Mcross

1 > 12.34 (at 95%
credibility). In turn, this implies a very high value of σ8, whose
mean value is constrained to be σ8 = 1.10+0.05

−0.04. We found a
matter density parameter that is perfectly consistent with the
previous cases (Ωm = 0.34+0.05

−0.05) and, interestingly, the Hubble
constant is no longer unconstrained, with a mean value of
h = 0.69+0.06

−0.17. These results should of course be taken with
a pinch of salt and further work will be needed regarding the
enlargement of the galaxy sample to shed light on this apparent
inconsistency.

5. Summary and conclusions

This paper has addressed the cosmological constraints result-
ing from the refinement of the methodology of the submillime-
ter galaxy magnification bias. With an improved strategy with
respect to previous works, we have measured the weak-lensing
induced angular cross-correlation function between a sample
of H-ATLAS submillimeter galaxies with photometric redshifts
1.2 < z < 4.0 and a sample of GAMA II galaxies with spec-
troscopic redshifts 0.2 < z < 0.8 using a single wide fore-
ground bin. Additional aspects on the modeling side have been
addressed, as the relevance of the logarithmic slope of the back-

ground number counts and the explicit numerical computation of
the two-halo terms of the halo model power spectra. Addition-
ally, we have measured the angular auto-correlation function of
the GAMA II galaxies to assess the possibility of improving the
constraints on cosmology through additional information about
the foreground sample. By means of a halo model interpreta-
tion of the galaxy-matter and galaxy-galaxy power spectra, we
carried out a Bayesian analysis through an MCMC algorithm to
obtain posterior probability distributions about the HOD and the
cosmological parameters Ωm, σ8 and h of a flat ΛCDM model.

We began the analysis using only the cross-correlation data
and an important point was immediately raised: the value of β
(i.e., the logarithmic slope of the background (unlensed) integral
number counts) can have a large influence on the constraints of
some of the parameters, namely Mmin, M1 and, most importantly,
σ8. Although the matter density parameter, Ωm, was barely
affected by this issue, we conclude that a priori information on
the value of β is of paramount importance to derive unbiased
constraints using the cross-correlation data alone. Indeed, prior
studies relied on a fixed value of β = 3, but the degeneracy and
interplay between this parameter and σ8 imply that larger values
of the former are related to lower values of the latter. Since the
choice of a uniform prior distribution for β does not produce any
constraint on σ8, an analysis of the (predicted) intrinsic integral
number counts allowed us to restrict the prior distribution of β
on physically-motivated grounds: β = 2.90 ± 0.04. For this case,
we obtained mean values of Ωm = 0.23+0.03

−0.06 and σ8 = 0.79+0.10
−0.10

at 68% credibility and no deviation whatsoever from its prior
distribution for β.

However, inspecting the sampling of the posterior distribu-
tion and comparing the current cross-correlation data with the
ones from González-Nuevo et al. (2021) raised suspicion that
there could be an intrinsic bias in the signal. Indeed, the mod-
erate large-scale fall seems to be induced by sampling variance;
more precisely, by the seemingly anomalous behavior of the
G15 region, where the signal is notably stronger than the rest
at all scales. To test how this could influence the results, we
performed additional MCMC runs by excluding the G15 region
from the measurement of the signal. The two cases that we stud-
ied (uniform and Gaussian prior on β) yielded qualitatively sim-
ilar results, confirming that nonnegligible differences arose with
respect to the previous case. Although the influence of β on the
constraining power over the σ8 parameter remained, the exclu-
sion of the G15 region yielded a mean value of Ωm = 0.29+0.03

−0.06
for the matter density parameter. When a Gaussian prior was
assigned to β, we obtained mean values of Ωm = 0.27+0.02

−0.04 and
σ8 = 0.72+0.04

−0.04, larger and smaller than the results of the previ-
ous paragraph, where all regions had been used. Interestingly, in
this case we obtained the first (albeit loose) constraint on then
the Hubble constant using the submillimeter galaxy magnifica-
tion bias, for which results up to now had only consisted in one-
sided limits. A mean value of h = 0.79+0.13

−0.14 was obtained at 68%
credibility.

When a joint analysis of the angular cross- and fore-
ground auto-correlation functions is carried out, parameter con-
straints are tightened with respect to the previous case, but
the fit is worsened due to a clear underestimation of the auto-
correlation signal that is reminiscent of the internal inconsis-
tency found in Abbott et al. (2022) between tangential shear
and autocorrelation measurements in one of their lens samples.
Although sampling variance is still likely the most plausible
explanation, other phenomena, such as baryonic feedback or
assembly bias acting on small to intermediate scales, may be
behind the apparent discrepancy between both observables.
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Along with the inclusion of these smaller-scale effects, the
overall behavior of the G15 region (and, more generally, the
issue of sampling variance) will be a subject for future studies,
since there is no physical indication that it should be discarded
for our analyses. The addition of more independent regions com-
ing from other surveys will allow us to estimate the significance
of this deviation of the cross-correlation signal by performing a
statistical analysis.
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Appendix A: Ingredients of the halo model

This section describes in detail the computation of the halo
model prescription for the galaxy and galaxy-matter power spec-
tra. The halo mass function is expressed as:

n(M, z) =
ρ0

M2 fST(ν)
∣∣∣∣∣ d log ν
d log M

∣∣∣∣∣,
where

fST(ν) = A
√

aν
2π

[
1 +

( 1
aν

)p]
e−aν/2

is the Sheth and Tormen model (Sheth & Tormen 1999), for
which A = 0.33, a = 0.75, and p = 0.3. The ν parameter is
defined as

ν(M, z) ≡
[
δ̂c(z)
σ(M, z)

]2
,

where δ̂c(z) is linear critical overdensity at redshift z for a region
to collapse into a halo at this redshift (computed via the fit of
Kitayama & Suto 1996) and σ(M, z) ≡ D(z)σ(M, 0), where D(z)
is the linear growth factor for a ΛCDM universe (normalized at
z = 0) and σ(M, 0) is the square root of the mass variance of the
filtered linear overdensity field at z = 0.

The linear deterministic halo bias is computed from the
above halo mass function via the peak-background split
(Sheth & Tormen 1999), yielding

b1(M, z) = 1 +
aν − 1
δ̂c(z)

+
2p/δ̂c(z)
1 + (aν)p .

Moreover, the mean number of galaxies in a halo of mass M,
〈N〉M , follows the model described in Eq. (3) and the mean num-
ber density of galaxies at redshift, z, is computed via:

n̄g(z) =

∫ ∞

0
dM n(M, z) 〈N〉M .

The matter transfer function used to compute the linear
matter power spectrum is computed via the analytical formula
of Eisenstein & Hu (1998), which takes baryonic effects into
account. This approach has been favored over a numerical one
based on Boltzmann codes due to computation time, since no
significant differences were found for our purposes.

Lastly, the halo density profile is taken to follow the two-
parameter NFW model (Navarro et al. 1997), that is,

ρ(r) =
ρs

(r/rs)(1 + r/rs)2 .

The halo is effectively truncated at a comoving virial radius, rh,
which yields a relation between ρs and the mass M of the virial-
ized halo (or, equivalently, its mean density, ρh):

ρs =
ρh

3
c

ln (1 + c) − c/1 + c
,

where c ≡ rh/rs is the halo concentration parameter. Since the
mass of the halo satisfies

M =
4
3
π r3

h(z) ρh(z),

the choice of both a typical density for a collapsed halo, ρh,
and of a prescription for the mean mass-concentration relation,
c(M, z), completely specifies the values of rs and ρs; thus, the

NFW profile of a typical halo of mass, M, at redshift, z. We have
chosen a virial overdensity criterion, that is,

ρh(z) = ∆vir(z) ρ̄0,

where ∆vir(z) has been computed through the fit by
Weinberg & Kamionkowski (2003). Regarding the mass-
concentration relation, we have used that of Bullock et al.
(2001). With all this in mind, the normalized Fourier transform
of a typical halo of mass, M, at redshift, z, is expressed as:

u(k|M, z) =
1

ln (1 + c) − c/1 + c

[
sin krs

[
Si([1 + c]krs) − Si(krs)

]
−

sin ckrs

[1 + c]krs
+ cos krs

[
Ci([1 + c]krs) − Ci(krs)

]]
,

where Si and Ci are the sine and cosine integrals, respectively.

Appendix B: Numerical issue about the
computation of the two-halo term

As pointed out by Mead et al. (2020) and Mead & Verde (2021),
the evaluation of the two-halo terms of the power spectra involv-
ing the matter field presents a numerical problem. The halo
model considers that all matter is bound up into distinct halos,
which is translated into the following condition for the halo mass
function:∫ ∞

0
dM

n(M, z)
ρ̄0

M = 1,

which, in the case of the Sheth & Tormen model, fixes the nor-
malization parameter A in terms of p. However, an additional
condition involving the linear halo bias must be enforced in order
for the halo model to reproduce the correct large-scale behavior
of the power spectra. This condition is expressed as:∫ ∞

0
dM

n(M, z)
ρ̄0

b1(M, z) M = 1

and presents a very relevant numerical problem. Indeed, defining

I(Ma,Mb, k, z) ≡
∫ Mb

Ma

dM
n(M, z)
ρ̄0

b1(M, z) M u(k|M, z), (B.1)

the halo model requires that I(Ma → 0,Mb → ∞, k → 0, z) →
1. However, choosing sensible limits of Ma = 108M�/h and
Mb = 108M�/h, a regular Planck cosmology yields a value of
≈ 0.7. The problem stems from the fact that typical models for
the halo mass function assign a large fraction of the total mat-
ter to low-mass halos, causing convergence of the above integral
to be extremely slow as the lower limit of the integral becomes
smaller.

To work around the problem, Schmidt (2016) suggests mod-
ifying the halo mass function under the assumption that all mass
below Ma is contained in halos of a mass that is exactly Ma. This
amounts to making the substitution:

n(M, z) =⇒ n(M, z)Θ(M − Ma) +
A(Ma)

b1(Ma)Ma/ρ̄0
δD(M − Ma)

in (B.1), where

A(Ma) ≡ 1 −
∫ ∞

Ma

dM
n(M, z)
ρ̄0

b1(M, z) M.
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Fig. B.1. Effect on the cross-correlation function of the numerical cor-
rection in the computation of the two-halo term of the galaxy-matter
power spectrum.

If this is not taken into account, an extremely strong bias
is induced in any cross-correlation involving the matter field.
For instance, Fig. B.1 shows the effect of not including this cor-
rection in the angular cross-correlation function. The discrep-
ancy increases with the angular scale, reaching about 60% above
5 arcmin and compromising any reliable constraint on cosmol-
ogy. We stress that this should be addressed in any computation
of halo model cross-correlations involving matter.

Appendix C: Integral constraint correction

Given a certain patch, the number of detected galaxies in it will
certainly be higher or lower than what we would have in a fair
sample of the Universe, thus affecting our estimates in the ran-
dom catalog of the patch. Averaging over a large number of
patches, as done in previous works (Bonavera et al. 2020, 2021;
Cueli et al. 2021, 2022), tends to introduce an artificial weaken-
ing of the observed clustering signal. This is because sources
sufficiently close to edges of the corresponding field are less
likely to have pairs at large distances. This effectively causes
the estimated cross-correlation to be biased low by a constant
(Adelberger et al. 2005), so that:

ŵideal(θ) = ŵ(θ) + IC.

Although there are theoretical approaches to estimate the
IC for a particular scanning strategy (see e.g., Adelberger et al.
2005), in practice, it is commonly estimated numerically using
random-random counts. Specifically, the IC can be estimated for
the cross-correlation using the formula:

IC =

∑
i RfRb(θi)wideal(θi)∑

i RfRb(θi)
, (C.1)

where wideal(θ) is an assumed model for the cross-correlation
function. An equivalent expression is used for the auto-
correlation.

However, the obvious caveat is that the ideal model for the
cross-correlation function is not known. Two approaches appear
to be reasonable in this situation. Thus, inspired by the usual
procedure of the angular auto-correlation estimation, we can first
assume a power-law model of wideal(θ) = Aθ−γ. The procedure,
however, is highly dependent on the limiting angular scales used
for the fit. Although we can derive a wide-range estimate of IC∼
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Fig. C.1. Angular cross-correlation data as measured in this work
(in black) and using the minitiles strategy from González-Nuevo et al.
(2021) (in blue). The light blue points represent the measurements with-
out the IC correction, which is depicted by the dot-dashed line.

7 − 18 × 10−4, we prefer to abandon this method in favor of a
more precise alternative that does still make use of this value.

The second approach implies assuming the halo model as
the ideal cross-correlation. An additional problem stems from
the fact that the correction would depend on the HOD and,
most importantly, on cosmology. This is crucial, because the
largest angular scales are the most important for constraining
cosmological parameters but, at the same time, they are the
most affected by the adopted IC correction. Therefore, we per-
formed the following analysis to try and refine the procedure:
firstly, we performed maximum likelihood estimation searches
for the HOD parameters using only the measurements in the
one-halo regime and random uniform cosmological parameters.
With the obtained HOD parameters, we computed the IC dis-
tribution for 100 random sets of cosmological parameters. We
then discarded those cosmologies resulting in IC values outside
the range 7 − 18 × 10−4, as obtained above. The final estimate
we obtained was IC=(11 ± 3) × 10−4. To test the sensitivity of
these results to the assumed cosmological parameter distribu-
tion, we repeated the analysis using Gaussian random cosmo-
logical parameter sets based on Planck (Planck Collaboration VI
2020) with dispersion values of ∼ 0.05. The results we obtained
were IC=(13 ± 2) × 10−4. After considering all cases, we chose
a value of

IC = (12 ± 3) × 10−4

as the most appropriate IC estimate for our study with the mini-
tiles strategy.

Figure C.1 provides a comparison of the cross-correlation
function estimated using different approaches. Light blue circles
represent the minitiles results before the IC correction, which
show a sharp decline above 10 arcmin (where the blue dashed
line, representing the IC correction, becomes relevant). Blue cir-
cles correspond to the minitiles results after applying the IC
correction, while the black ones are estimated using the new
approach without any further correction. The uncertainties are
derived from the covariance matrix, as described in the main text.

The minitiles results are consistent with the new results
within the uncertainties up to 30 arcmin, but they appear to
be slightly underestimated across all angular scales. Above
30 arcmin, which are the most important for cosmological
constraints, the new results are clearly higher than those of

A190, page 14 of 22



Cueli, M. M., et al.: A&A, 686, A190 (2024)

the minitiles. When we consider higher IC values, such as
IC=15 − 20 × 10−4, the two measurements become compati-
ble even at the largest angular separations. We conclude that
the IC correction procedure is not at all straightforward, since
it depends on relatively arbitrary choices, such as the angular

scales over which we may fit the data or the cosmologies sam-
pled, which might be restricted but depend on a range dictated by
the power-law fit. Therefore, we decided to avoid this methodol-
ogy given the availability of a better alternative, which we chose
for the purposes of this work.
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Appendix D: Additional plots and tables
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Fig. D.1. Marginalized posterior distributions and probability contours for the MCMC runs on the cross-correlation function with a uniform β
prior. The results using the mean-redshift approximation are shown in red, while the ones with the full model are depicted in black.

Table D.1. Parameter prior distributions and summarized posterior results from the MCMC runs on the cross-correlation function with a uniform
β prior using the mean redshift approximation and the full model.

Approximation No approximation

Parameter Prior Mean Mode 68% CI Prior Mean Mode 68% CI

α U[0.00, 1.50] 0.83 0.64 [0.45, 1.24] U[0.00, 1.50] 0.81 0.71 [0.56, 1.50]
log Mmin U[10.00, 16.00] 11.67 11.73 [11.48, 11.94] U[10.00, 16.00] 11.70 11.66 [11.46, 11.95]
log M1 U[10.00, 16.00] 13.41 13.57 [12.60, 14.23] U[10.00, 16.00] 13.50 13.56 [12.68, 14.29]

Ωm U[0.10, 1.00] 0.21 0.20 [0.16, 0.24] U[0.10, 1.00] 0.21 0.19 [0.16, 0.24]
σ8 U[0.60, 1.20] 0.95 − [0.87, 1.20] U[0.60, 1.20] 0.97 − [0.89, 1.20]
h U[0.50, 1.00] 0.70 0.65 [0.50, 0.75] U[0.50, 1.00] 0.71 − [0.50, 0.77]
β U[1.50, 3.50] 2.46 2.16 [1.81, 2.86] U[1.50, 3.50] 2.40 2.09 [1.82, 2.84]
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Fig. D.2. Marginalized posterior distributions and probability contours for the MCMC runs on the cross-correlation function for different choices
of prior distributions on the β parameter.

Table D.2. Parameter prior distributions and summarized posterior results from the MCMC runs on the cross-correlation function with fixed values
of the β parameter: 3.0 and 2.2.

Fixed β = 3.0 Fixed β = 2.2

Parameter Prior Mean Mode 68% CI Prior Mean Mode 68% CI

α U[0.00, 1.50] 0.61 0.54 [0.18, 0.90] U[0.50, 1.50] 0.76 0.69 [0.37, 0.89]
log Mmin U[10.00, 16.00] 11.51 11.58 [11.37, 11.73] U[10.00, 16.00] 11.74 11.77 [11.62, 11.90]
log M1 U[10.00, 16.00] 13.28 13.02 [12.00, 13.99] U[10.00, 16.00] 13.49 13.62 [12.66, 14.37]

Ωm U[0.10, 1.00] 0.24 0.21 [0.18, 0.26] U[0.10, 1.00] 0.20 0.19 [0.15, 0.23]
σ8 U[0.60, 1.20] 0.82 0.82 [0.72, 0.92] U[0.60, 1.20] 1.02 1.12 [0.98, 1.20]
h U[0.50, 1.00] 0.72 − [0.50, 0.81] U[0.50, 1.00] 0.73 − [0.50, 1.00]
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Fig. D.3. Marginalized posterior distributions and probability contours for the MCMC runs on the cross-correlation function with a uniform β
prior. The results using all four fields are shown in red, while those where the G15 field has been excluded are depicted in orange.

Table D.3. Parameter prior distributions and summarized posterior results from the MCMC run on the cross-correlation function with a uniform
prior on β and where the G15 regions was excluded from the measurement.

Parameter Prior Mean Mode 68% CI

α U[0.00, 1.50] 0.91 0.86 [0.65, 1.19]
log Mmin U[10.00, 16.00] 11.35 11.38 [11.01, 11.75]
log M1 U[10.00, 16.00] 12.49 12.72 [11.86, 13.24]

Ωm U[0.10, 1.00] 0.29 0.27 [0.23, 0.32]
σ8 U[0.60, 1.20] 0.77 − [0.60, 0.81]
h U[0.50, 1.00] 0.74 − [0.50, 1.00]
β U[1.50, 3.50] 2.78 3.00 [2.58, 3.50]
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Fig. D.4. Marginalized posterior distributions and probability contours for the MCMC runs on the cross-correlation function with a Gaussian β
prior. The results using all fields are shown in dark green, while those where the G15 field has been excluded are depicted in light green.

Table D.4. Parameter prior distributions and summarized posterior results from the MCMC run on the cross-correlation function with a Gaussian
prior on β and where the G15 regions was excluded from the measurement.

Parameter Prior Mean Mode 68% CI

α U[0.00, 1.50] 0.94 0.91 [0.63, 1.19]
log Mmin U[10.00, 16.00] 11.31 11.41 [11.15, 11.62]
log M1 U[10.00, 16.00] 12.46 12.82 [11.93, 13.18]

Ωm U[0.10, 1.00] 0.27 0.26 [0.23, 0.29]
σ8 U[0.60, 1.20] 0.72 0.73 [0.68, 0.76]
h U[0.50, 1.00] 0.79 0.80 [0.65, 0.92]
β U[1.50, 3.50] 2.90 2.90 [2.86, 2.94]
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Fig. D.5. Marginalized posterior distributions and probability contours for the joint MCMC run on the cross- and auto-correlation functions in
purple, compared with the corresponding ones using only the cross-correlation function in green. Both cases were run with a Gaussian prior on β.

Table D.5. Parameter prior distributions and summarized posterior results from the joint MCMC run on the auto- and cross-correlation functions
with a Gaussian prior on β.

Parameter Prior Mean Mode 68% CI

α U[0.00, 1.50] 0.92 0.92 [0.87, 0.96]
log Mmin U[10.00, 16.00] 11.53 11.54 [11.43, 11.63]
log M1 U[10.00, 16.00] 12.41 12.46 [12.24, 12.64]

Ωm U[0.10, 1.00] 0.36 0.36 [0.34, 0.37]
σ8 U[0.60, 1.20] 0.72 0.71 [0.69, 0.76]
h U[0.50, 1.00] 0.54 − [0.50, 0.55]
β N[2.90, 0.04] 2.88 2.88 [2.84, 2.93]
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Fig. D.6. Marginalized posterior distributions and probability contours for the MCMC run on the cross-and auto-correlation functions assuming
different HOD models for each observable.

Table D.6. Parameter prior distributions and summarized posterior results from the joint MCMC run on the auto- and cross-correlation functions
assuming different HOD models for each observable.

Parameter Prior Mean Mode 68% CI

αauto U[0.00, 1.50] 0.79 0.76 [0.73, 0.80]
log Mauto

min U[10.00, 16.00] 11.58 11.52 [11.36, 11.70]
log Mauto

1 U[10.00, 16.00] 12.33 12.22 [11.86, 12.57]
αcross U[0.00, 1.50] 0.41 − [0.00, 0.43]

log Mcross
min U[10.00, 16.00] 11.83 11.85 [11.75, 11.91]

log Mcross
1 U[10.00, 16.00] 14.50 − [14.08, 16.00]

Ωm U[0.10, 1.00] 0.34 0.35 [0.29, 0.39]
σ8 U[0.60, 1.20] 1.10 1.11 [1.06, 1.15]
h U[0.50, 1.00] 0.69 0.64 [0.52, 0.75]
β N[2.90, 0.04] 2.94 2.95 [2.90, 2.98]
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Fig. D.7. Posterior-sampled angular auto- and cross-correlation functions from the joint analysis with different HOD parameters. The data are
shown in black.
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