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A B S T R A C T   

In micro-irrigation systems, distinct media filters and filtering materials are employed to remove suspended 
solids from irrigation water and thereby avoid emitter obstruction. Turbidity is related to suspended solids and 
dissolved oxygen depends on organic matter load. At this time, no models exist that are trustworthy enough to 
forecast the dissolved oxygen and turbidity at the outlet when utilising various media configurations and filter 
types. The objective of this investigation was to construct a model that can identify turbidity and dissolved 
oxygen at the filter outlet in advance. This study presents an algorithm for meta-heuristic optimisation inspired 
by populations termed Differential Evolution (DE) in conjunction with Support Vector Regression (SVR) (DE/ 
SVR-relied model). This is an effective machine learning method, with seven kernel types for calculating the 
output turbidity (Turbo) and the output dissolved oxygen (DOo) from a dataset comprising 1,016 samples of 
various reclaimed water-using filter types. The type of media and filter, the height of the filter bed, the cycle 
duration, and the filtration velocity, as well as the electrical conductivity at the filter inlet, pH, inlet dissolved 
oxygen, water temperature, and the input turbidity are all tracked and analysed in order to achieve this. The 
best-fitted DE/SVR-relied model was constructed to predict the Turbo and DOo as well as the input variables’ 
relative importance. Determination coefficients for the best-fitted DE/SVR-relied model for the testing dataset 
were 0.89 and 0.92 for outlet turbidity (Turbo) and outlet dissolved oxygen (DOo), respectively, showing a good 
predictive performance which are of great importance for the management of drip irrigation systems.   

1. Introduction 

In many places, irrigation is crucial to sustaining economic growth 
and ensuring food production (FAO, 2022). The current rising water 
demand for non-agricultural uses, declining freshwater sources, and 
growing irregularity in water availability due to more frequent drought 
periods pose a challenge to irrigated agriculture (FAO, 2022). The 
response has been improving on-farm irrigation systems, adopting more 
efficient irrigation methods, shifting to more effective management 
practices, and using non-conventional water sources (FAO, 2022; Tar
juelo et al., 2015). Among other irrigation methods, micro-irrigation 
shows increased water use efficiency as well as decreased energy re
quirements compared to other types of pressurised systems. However, 

the complete or partial clogging of emitters is still one of the major 
problems of micro-irrigation systems (Ayars, Bucks, Lamm, & 
Nakayama, 2007; Tien, 2012). 

Irrigation water quality, which is primarily influenced by the sus
pended particle load, chemical composition, microbiological popula
tion, and their interactions, is directly linked to emitter clogging 
(Nakayama, Boman, & Pitts, 2007; Tien, 2012). To assess emitter clog
ging risk, irrigation water quality should be periodically checked to 
determine if any additional water treatment needs to be conducted. 
Instead of following time-consuming laboratory procedures for deter
mining quality parameters, the use of specific sensors allows quick and 
accurate measurements. To this regard, there are sensors developed for 
analysing pH, electrical conductivity, turbidity (which is related to 
suspended solids) and dissolved oxygen (which is inversely related to 

* Corresponding author. 
E-mail address: lato@orion.ciencias.uniovi.es (P.J. García–Nieto).  

Contents lists available at ScienceDirect 

Biosystems Engineering 

journal homepage: www.elsevier.com/locate/issn/15375110 

https://doi.org/10.1016/j.biosystemseng.2024.04.020 
Received 29 November 2023; Received in revised form 22 March 2024; Accepted 28 April 2024   

mailto:lato@orion.ciencias.uniovi.es
www.sciencedirect.com/science/journal/15375110
https://www.elsevier.com/locate/issn/15375110
https://doi.org/10.1016/j.biosystemseng.2024.04.020
https://doi.org/10.1016/j.biosystemseng.2024.04.020
https://doi.org/10.1016/j.biosystemseng.2024.04.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystemseng.2024.04.020&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biosystems Engineering 243 (2024) 42–56

43

the organic pollution in the water). 
A fundamental maintenance procedure for preventing emitter clog

ging in sand media filters is the removal of suspended inorganic and 
organic particles (Nakayama et al., 2007). This is especially important 
when using high particle loaded irrigation water (Capra & Scicolone, 
2007; Ravina et al., 1997; Tien, 2012). Since silica sand is readily 
available and inexpensive, it is the medium most frequently used in 
micro-irrigation media filters (Nakayama et al., 2007). However, using 
alternative materials with comparable physical properties, like recycled 
glass, can improve filter performance and result in more energy-efficient 
use (Cescon & Jiang, 2020). However, the environmental impact of the 
media materials depend mainly of the energy used in their manufacture, 
which is usually higher for recycled glass (Pujol et al., 2022a). 

In an effort to lower head loss and energy consumption, a number of 
authors have proposed redesigning the sand media filters (Tien, 2012; 
Bové, Arbat, Duran-Ros, et al., 2015; Bové et al., 2017; Mesquita, de 
Deus, Testezlaf, da Rosa, & Diotto, 2019; Pujol et al., 2020; Pujol et al., 
2022b). Differences in underdrain designs of the sand media filters and 
in their operation conditions, such as filtration velocity and media 
height, significantly impacted the emitter obstruction (Solé–Torres 
et al., 2019b), dissolved oxygen, and turbidity removal (Solé–Torres 
et al., 2019a), which also depends on the filtration material (Duran–Ros 
et al., 2022). 

A proper management of micro-irrigation systems requires an ac
curate prediction of the efficacy of sand media filters in removing solids 
and, consequently, lowering the risk of emitter clogging, given the 
variability of irrigation water characteristics and filter operation 
conditions. 

The prediction of turbidity at the filter outlet (Turbo) and Dissolved 
oxygen at filter outlet (DOo) for various types of media filters is a 
complex, non-linear problem, therefore it is difficult to extrapolate their 
values in a simple way. A reasonable prediction accuracy of hydraulic 
parameters, as well as DOo and Turbo for media filters, has previously 
been made feasible by employing advanced methods like neural net
works (Hawari & Alnahhal, 2016; Puig–Bargués, Duran–Ros, Arbat, 
Barragán, & Ramírez de Cartagena, 2012), regression trees with 
gradient boost and hybrid algorithms (García–Nieto et al., 2017; Gar
cía–Nieto et al., 2018), gene expression programming (Martí et al., 
2013), and Gaussian process regression (García–Nieto et al., 2020a, 
García–Nieto et al., 2020b). However, further methods that might result 
in better prediction accuracy should be investigated. 

One such potential method is a unique regressive model that relies on 
the Support Vector Machines (SVMs) approach (Cristianini & Sha
we–Taylor, 2000; Hastie, Tibshirani, & Friedman, 2003; Schölkopf, 

Smola, Williamson, & Bartlett, 2000; Vapnik, 1998). SVMs were initially 
created to address classification issues. Later they were expanded to 
address regression issues. In the case of regression, this method is termed 
Support Vector Regression (SVR) (Bishop, 2006; Deisenroth, 2020; 
Hansen & Wang, 2005; Hastie et al., 2003; James, Witten, Hastie, & 
Tibshirani, 2021; Kuhn & Johnson, 2018; Li, Lord, Zhang, & Xie, 2008; 
Steinwart & Christmann, 2008). The SVR approach is a supervised 
learning method that can be utilised to address issues with regression 
because of its extreme robustness and capacity to handle nonlinearities 
(Cristianini & Shawe–Taylor, 2000; Hastie et al., 2003; Schölkopf et al., 
2000; Vapnik, 1998). There are a number of benefits to using the SVM 
approach over traditional and meta-heuristic regression techniques 
(Bishop, 2006; Deisenroth, 2020; Hansen & Wang, 2005; Hastie et al., 
2003; James et al., 2021; Kuhn & Johnson, 2018; Li et al., 2008; 
Steinwart & Christmann, 2008): (1) the SVM approach only requires a 
subset of the training data since only the training data are used in the 
cost function that constructs the model; (2) support vectors, a subset of 
the decision function’s training points, are used by the SVM model to 
improve its accuracy and memory efficiency in high-dimensional spaces; 
(3) SVM technique offers the kernel trick inside the algorithm itself, so 
that the regression of nonlinear data has become easier and any complex 
problem can be solved; and (4) SVM approach is robust to outliers when 
hyper-parameter tuning is done correctly. As it is less influenced by 
outliers, the precision of the results is improved. 

In evolutionary computation, differential evolution (DE) (Storn & 
Price, 1997) is a method that optimises a problem iteratively, trying to 
improve a candidate solution with regard to a given measure of quality. 
Such methods are commonly known as metaheuristics as they make few 
or no assumptions about the optimised problem and can search very 
large spaces of candidate solutions. DE is used for multidimensional 
real-valued functions but does not use the gradient of the problem being 
optimised, which means DE does not require the optimisation problem 
to be differentiable, as is required by classic optimisation methods such 
as gradient descent and quasi-newton methods. In this work DE opti
miser is used in combination with SVM technique to obtain its optimal 
hyperparameters. 

Since this type of complex problem has not, to the authors’ knowl
edge, been addressed in previous research, the SVR approximation 
(Cristianini & Shawe–Taylor, 2000; Hastie et al., 2003; Schölkopf et al., 
2000) in conjunction with Differential Evolution (DE) (Chakraborty, 
2008; Feoktistov, 2006; Price, Storn, & Lampinen, 2006; Rocca, Oliveri, 
& Massa, 2011; Storn & Price, 1997; Vinoth Kumar, Oliva, & Suganthan, 
2022) for tuning the parameters of the various types of kernels seems 
like a promising approach to solving the kinds of high-nonlinearities 

Nomenclature 

Abbreviations 
C Regularization constant 
DE Differential evolution 
DO Dissolved oxygen 
PUK Pearson VII Universal kernel 
r Correlation coefficient 
R2 Coefficient of determination 
RBF SCADA SE Radial basis function Supervisory control and 

data acquisition Squared-exponential 
SVM Support vector machines 
SVR Support vector regression 
Turb Turbidity, FNU 
v Filtration velocity, m h-1 

Symbols 
a Parameter of the polynomial and sigmoid kernels 

b Parameter of the polynomial kernel 
DOi Dissolved oxygen at filter inlet, mg l-1 

DOo Dissolved oxygen at filter outlet, mg l-1 

ECi Electrical conductivity at the inlet, μS mm-1 

H Media bed height (of the filter), m 
k
(
xi,xj

)
Kernel function of the SVM model 

pHi Degree of acidity of solution at the inlet 
Tc Cycle duration of filtration, min 
Ti Water temperature, ◦C 
Turbi Turbidity at the filter inlet, FNU 
Turbo Turbidity at the filter outlet, FNU 
ε Maximum width of the insensitive tube 
ξ+,ξ− Slack variables 
σ Parameter of the RBF and PUK kernels 
σf Parameter of the matern32 and Matern52 kernels 
σl Parameter of the matern32 and mater52 kernels 
ω Parameter of the PUK kernel  
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associated with predicting Turbo and DOo. For the purpose of compar
ison, the same experimental dataset was modified using the 
DE/SVR–relied technique with seven distinct types of kernels with the 
purpose of forecasting the Turbo and DOo and compare the results ob
tained with the experimental values observed (Bishop, 2006; Hansen & 
Wang, 2005; Hastie et al., 2003; Kuhn & Johnson, 2018; Steinwart & 
Christmann, 2008). 

Preceding investigations have shown that SVM is a highly useful tool 
in many different fields, including hydro-climatic factors (Shrestla & 
Shukla, 2015), solar energy (Chen, Liu, Li, Zhou, 2013) or photovoltaic 
power (De Leone, Pietrini, & Giovannelli, 2015), among others, but it 
has never been applied to media filters. This work, using a 
DE/SVR-based model, hypotheses that it is an approach that could 
provide an effective solution in accurately predicting the Turbo and DOo 
in media filters commonly utilised in micro-irrigation systems. 

The structure of this paper is as follows: The experimental design is 
presented in Section 2 along with a breakdown of the factors that went 
into the investigation. Through the compilation of the DE/SVR results 
with the experimental values and the order of relevance of the input 
parameters, Section 3 provides insights obtained from this reliable 
technique. Finally, Section 4 concludes the study by summarizing its 
main findings. 

2. Materials and methods 

2.1. Experimental setup 

The wastewater treatment plant (WWTP) of Celrà (Girona, Spain) 
provided recovered effluents, which were filtered using three different 
media filters (see Fig. 1) featuring porous media (designed by Bové et al., 
2017), domes (model FA-F2-188, Regaber, Parets del Vallès, Spain), and 
an arm collector (model FA1M, Lama, Gelves, Spain) underdrains. 

The recovered effluent was pumped to the filters. Measurements 
were made of the filter’s inlet and outlet pressures as well as its flow. For 
filter backwashing, water from a storage tank was utilised, and the 
majority of the filtered effluent was sent to a drip irrigation sub-unit. A 
membrane pump was used to continuously inject chlorine to reach a 
concentration of 4 mg l-1 in the water used to backwash the filters and 2 
mg l-1 in the filtered effluent. At the filter inlet, the pH, temperature, and 
electrical conductivity of the effluent were measured. At the filter’s inlet 
and outlet, Turb and DO were measured, respectively. Further details of 
the experimental setup can be found in Duran-Ros et al., 2022. 

The experimental facility could be operated as well as data on 
pressure, filter inlet flow, filtration cycle duration, and water quality 
parameters could be collected and recorded on a minute-by-minute basis 
because of a system for supervisory control and data acquisition, or 
SCADA (Duran–Ros, Puig–Bargués, Arbat, Barragán, & Ramírez de 
Cartagena, 2008). The SCADA system was intended to halt operations 
when the Turbi exceeded 50 FTU, thereby preventing operation with 

Fig. 1. Setup of the experimental filtration platform.  
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high particle loads. 
A CA-07MS silica sand, with an effective diameter of 0.48 mm and a 

uniformity coefficient of 1.73 and a porosity of 0.39 (Silbeco Minerales, 
Bilbao, Spain), and NW2 crushed recycled glass Nature Works Tecno
logías, with an effective diameter D10 of 0.44 mm, a uniformity coef
ficient of 1.59, and a porosity of 0.54 (L’Alfàs del Pi, Spain) were the two 
tested filtration media. 

For a total of 250 h, media bed heights of 200 and 300 mm and 
filtration velocities of 30 and 60 m h-1 were checked. Two 4-h sessions 
per day were dedicated to running the filters for each material and 
underdrain design. A 3-min automatic backwash was initiated when 
filter pressure drop reached 50 kPa. 

2.2. Materials and model variables 

The primary aim of this research is to evaluate the partnership be
tween distinct parameters that were measured experimentally and the 
inputs that the DE/SVR model required in order to calculate the DOo and 
Turbo. The output variable for micro-irrigation systems is the Turbo, 
which is a measure of the irrigation water’s quality and is connected to 
the probability of physical obstruction of emitters. The operation’s input 
variables are as follows (refer to Table 1):  

• Media: every single filtering media (silica sand and recycled glass) 
mentioned in subsection 2.1. It is a categorical type variable;  

• Filter: section 2.1 provided an explanation of the three kinds of sand 
media filters: those with dome, porous, and arm collector under
drains. This variable is categorical; 

• Filter bed height (mm): for sand filters, this is an operational vari
able. Various filter bed heights (200 and 300 mm) were checked for 
each filter;  

• Filtration velocity (m h-1): this has an impact on filter performance. 
Two filter test velocities (30 and 60 m h-1) were applied to each filter.  

• Cycle duration (s): is the time that the filter operates in filtration 
mode;  

• Electrical conductivity (S mm-1): is a water quality indicator and in 
particular for water salinity, which can limit the use of the effluent 
for micro-irrigation (Ravina et al., 1997);  

• Input dissolved oxygen (mg l-1): this parameter controls the ability of 
water to sustain life and is commonly used as a control in wastewater 
treatment plants because it is inversely correlated with the amount of 
oxygen that microorganisms consume during the breakdown of 
organic matter, a process known as biochemical oxygen demand, or 
BDO; 

Table 1 
The physical operational variables used in this research, average values and 
standard deviations (STDs).  

Input variables Name of the variable Mean STD 

Media Media – – 
Filter media type Filter – – 
Media bed height (of the filter) (m) H 0.2666 0.0472 
Filtration velocity (m/h) v 52.101 13.219 
Cycle duration (of filtration) (min) Tc 251.90 268.06 
Electrical conductivity (μS/cm) ECi 1966.6 708.20 
Inlet dissolved oxygen (mg/l) DOi 3.7130 1.1341 
pH pHi 7.4375 0.2295 
Input turbidity (FNU) Turbi 6.5280 2.8349 
Water temperature (◦C) Ti 21.753 3.8305 
Output variables Name of the variable Mean STD 

Output turbidity (FNU) Turbo 4.7604 1.1381 
Output dissolved oxygen (mg/l) DOo 3.7104 0.9128  

Fig. 2. Correlation matrix of the process variables.  
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• pH: it measures the degree of acidity or alkalinity;  
• Water temperature (◦C): at the inlet of the filter;  
• Input turbidity (measured in formazin nephelometric units or FNU): 

is an important indicator of the water quality at the inlet of the filter, 
measures the clarity of the water and is related with the amount of 
suspended solids. 

The operational output variables of the study are as follows:  

• Output turbidity (FNU): this factor is used to evaluate the water 
quality at the filter’s outlet. Moreover, measuring the possibility of 
emitter clogging irrigation water.  

• Output dissolved oxygen (mg l-1): it has an impact on how well water 
can sustain life and if the irrigation water has low DO levels then it 
may contribute to plant root hypoxia and cause agronomic problems. 

As an initial data analysis, a correlation matrix is calculated for all 
the variables that take part in the process. Fig. 2 shows graphically how 
close the two variables are to having a linear relationship with each 
other. Each variable in the Table 1 is correlated with each of the other 
variables. 

2.3. Techniques for mathematical modeling 

2.3.1. Support vector machines (SVM) method 
SVMs were created to deal with issues related to binary classification. 

Due to the conditions, it was quickly found that the basic concepts could 
be used to solve a range of issues, such as regression issues (Bishop, 
2006; Deisenroth, 2020; Hansen & Wang, 2005; Hastie et al., 2003; 
James et al., 2021; Kuhn & Johnson, 2018; Li et al., 2008; Steinwart & 
Christmann, 2008). Next, as an example, for a dataset where the training 
set consists of the values of the continuous dependent variable yi ∈ R,∀

i = 1, 2, ...,m and the covariates xi ∈ R
p
,i = 1,2,...,m, the SVR technique 

creates a function f(x) = wTx+ b where w signifies the hyperplane’s 
perpendicular vector, also known as the director vector, and b/ ‖w‖
stands for the distance measured perpendicularly between the hyper
plane and the coordinate origin. This approach must accommodate a 
maximum deviation from the true value yi of ε while also being as flat as 
possible for all xi training cases. The Euclidean norm ‖w‖2 is minimised 
to achieve flatness, and additionally, by penalising the total of de
viations that exceed ε. In actuality, the following optimisation problem 
is what the SVR approach seeks to solve: 

min
w,b,ξ+ ,ξ−

1
2
‖w‖2

+ C
∑m

i=1

(
ξ+i + ξ−i

)
(1) 

liable to 

⎧
⎪⎪⎨

⎪⎪⎩

yi −
(
wTxi + b

)
≥ ε + ξ+i i = 1, ...,m

(
wTxi + b

)
− yi ≥ ε + ξ−i i = 1, ...,m

ξ+i , ξ
−
i ≥ 0 i = 1, ...,m

⎫
⎪⎪⎬

⎪⎪⎭

(2) 

so that ξ+, ξ− ∈ R
m are mentioned as slack variables and C is known 

as the regularization constant. With the purpose of mitigating the 
overfitting, the factor C in Eq. (1) requires a positive numerical value, 
which restricts the penalisation imposed on observations outside the 
interval ε. This value establishes the trade-off between the reduced 
complexity of the model and the horizontality of the objective function 
(Cristianini & Shawe–Taylor, 2000; Hastie et al., 2003; Schölkopf et al., 
2000; Li et al., 2008; Steinwart & Christmann, 2008; Kuhn & Johnson, 
2018; Deisenroth, 2020; James et al., 2021). Every training vector has 
slack variables, which allow deviations greater than ε but penalises 
those deviations in the objective function. An ε− insensitive tube is the 
region that yi ± ε,∀i encloses (see Fig. 3). 

Predicting DOo and Turbo a highly nonlinear problem, so the ker
nelisation technique can be used. The methodology’s foundation is the 
original dataset’s mapping to the feature space, which is space H with a 
higher dimension. A kernel function k

(
xi,xj

)
is used to carry out the 

application, and it finds a scalar product in H. With the purpose of 
solving the primal optimisation issue as presented by Eq. (1), the 
problem can be formulated it the following manner, using its dual form. 
When the Karush-Kuhn-Tucker (KKT) conditions are met, the optimi
sation problem is dual-formulated (Cristianini & Shawe–Taylor, 2000; 
Deisenroth, 2020; Hastie et al., 2003; James et al., 2021; Kuhn & 
Johnson, 2018; Li et al., 2008; Schölkopf et al., 2000; Steinwart & 
Christmann, 2008) such that: 

max
α+ ,α−

∑m

i=1
yi
(
α+

i − α−
i
)
− ε

∑m

i=1

(
α+

i + α−
i
)

−
1
2
∑m

i,j=1

(
α+

i − α−
i
)(

α+
j − α−

j

)
k
(
xi,xj

)
(3) 

liable to 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑m

i=1

(
α+

i − α−
i
)
= 0,

0 ≤ α+
i ≤ C, i = 1, ...,m

0 ≤ α−
i ≤ C, i = 1, ...,m

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4) 

The regression forecasting for a modern sample x can be computed 
using the function f(x) listed below (Eqn. (5)) (Cristianini & Sha
we–Taylor, 2000; Deisenroth, 2020; Hastie et al., 2003; James et al., 
2021; Kuhn & Johnson, 2018; Li et al., 2008; Schölkopf et al., 2000; 
Steinwart & Christmann, 2008): 

f(x)=
∑m

i=1

(
α+

i − α−
i
)
k(x,xi) + b (5) 

The technical bibliography uses a variety of common functions as 
kernels (Cristianini & Shawe–Taylor, 2000; Deisenroth, 2020; Hastie 
et al., 2003; James et al., 2021; Kuhn & Johnson, 2018; Li et al., 2008; 
Schölkopf et al., 2000; Steinwart & Christmann, 2008). If q =

⃦
⃦xi − xj

⃦
⃦

2, 
then the following kernels types can be expressed as  

• Linear kernel: 

k
(
xi,xj

)
=xi⋅xj (6)    

• Polynomial kernel: 

k
(
xi,xj

)
=
(
σxi⋅xj + a

)b (7)   

Fig. 3. A single ε− insensitive tube in a SVM regression’s scenario.  
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• Sigmoid kernel: 

k
(
xi,xj

)
= tanh

(
σxi ⋅xj + a

)
(8)    

• RBF kernel (kernel of the Radial Basis Function): 

k
(
xi,xj

)
= e− σr2 (9)    

• Pearson VII Universal kernel (PUK): 

k
(
xi,xj

)
=

1
⎡

⎣1 +

(

2r
̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1/ω) − 1

√

σ

)2⎤

⎦

ω (10)    

• Matern32: 

k
(
xi,xj

)
= σf

(

1+

̅̅̅
3

√
q

σl

)

e−
̅̅
3

√
q

σl (11)    

• Matern52: 

k
(
xi,xj

)
= σf

(

1+

̅̅̅
5

√
q

σl
+

5q2

3σ2
l

)

e−
̅̅
5

√
q

σl (12) 

so that a kernel’s typology is determined by the a, b, σ, σf , σl and ω 
parameters. 

In conclusion, choosing the right kernel type and its ideal parameters 
is essential with the purpose of mapping data that is nonlinearly sepa
rable in a feature space (higher-dimensional space) and using the SVM 
approach to solve a regression problem. 

Moreover, the following succinctly describes representative param
eters of the SVR technique (Cristianini & Shawe–Taylor, 2000; Deisen
roth, 2020; Hastie et al., 2003; James et al., 2021; Kuhn & Johnson, 
2018; Li et al., 2008; Schölkopf et al., 2000; Steinwart & Christmann, 
2008):  

• ε hyperparameter: This number sets a maximum width for the 
permitted margin of error. The empirical error is computed using the 
insensitive loss function, which accounts for errors smaller than ε, 
which is the second objective function term that was reliant on the ε 
factor (see Eq. (3)).  

• Regularisation constant: The cost function is another name for this 
constant C. This parameter represents the trade-off between the slack 
variables and margin. It is one of the SVR hyperparameters that 
needs to be pre-tuned.  

• a, b, σ, σf , σl and ω: The final model’s various kernels’ mathematical 
expressions are defined by these parameters. 

Therefore, it is practical to use a mathematical method that accu
rately determines the aforementioned hyperparameters. The meta- 
heuristic DE optimiser outlined below was successfully applied in this 
investigation. Using the python package termed scikit-learn for the SVR 
(Chang & Lin, 2011), the final hybrid DE/SVR models were built. 

2.3.2. Optimisation based on the differential evolution (DE) algorithm 
DE is a meta-heuristic approach in evolutionary computation that 

attempts to improve the quality of a potential solution iteratively with 
the purpose of optimising a problem. Using the DE optimiser for 
multidimensional real-valued data can be successful even if the opti
mised function is not differentiable. Furthermore, problems that are 
noisy, non-continuous, or change over time can also be solved with a DE 
optimiser. DE chooses the solution that best fits the specified optimisa
tion problem by utilising a populace of feasible solutions and merging 
pre-existing ones with simple mathematical formulas (Storn & Price, 
1997). The optimisation problem variables are represented by the 

algorithm as a vector of real numbers. The quantity of parameters in the 
problem of optimisation, denoted by the length n of the NP vectors that 
comprise the actual population, makes up the population. 

A vector can be defined as xg
p if p is its index among the populace (p =

1,...,NP), and g is its generation. The variables in problem xg
p,m, where m 

denotes the variable’s index within each individual (m = 1, ...,n), make 
up the components of this vector. The variables are contained within 
intervals that are, at minimum and maximum, bound by the values xmin

m 
and xmax

m , respectively. 
The DE algorithm consists of the following four steps (Chakraborty, 

2008; Feoktistov, 2006; Price et al., 2006; Rocca et al., 2011; Storn & 
Price, 1997; Vinoth Kumar et al., 2022): (1) initialisation; (2) mutation; 
(3) recombination; and (4) selection. The DE optimiser was imple
mented here using the python package called SciPy (Agresti & Kateri, 
2021). 

Following initialisation, the search is initiated. The stages of muta
tion, recombination, and selection come to an end whenever a criterion 
for stopping is met (number of generations, duration, degree of solution 
reached, etc …). 

2.3.2.1. Initialisation. Every variable is initialised (first generation) at 
random, taking into consideration the variable’s lowest and highest 
values (Chakraborty, 2008; Feoktistov, 2006; Price et al., 2006; Rocca 
et al., 2011; Storn & Price, 1997; Vinoth Kumar et al., 2022): 

x1
p,m =xmin

m + rand(0,1) ⋅
(
xmax

m − xmin
m

)
for p=1, ...,NP and m= 1, ..., n

(13) 

such that a random number in [0,1] is represented by rand(0,1). 

2.3.2.2. Mutation. The three randomly chosen subjects, referred to as 
the target vectors xa, xb and xc, are utilised while developing the NP new 
vectors that comprise the mutation. The new vectors nt

p are made in the 
manner described below (Chakraborty, 2008; Feoktistov, 2006; Price 
et al., 2006; Rocca et al., 2011; Storn & Price, 1997; Vinoth Kumar et al., 
2022): 

ng
p =xc + F ⋅ (xa − xb) for p=1, ...,NP (14) 

that differ with a, b, c, and p. The parameter F governs the rate of 
mutation. Moreover, F lies in the interval [0,2]. 

2.3.2.3. Recombination. Following the creation of the NP new vectors, a 
random recombination is performed, and the process of creating the trial 
vectors tgm involves comparing the result to the original vectors xg

p 

(Chakraborty, 2008; Feoktistov, 2006; Price et al., 2006; Rocca et al., 
2011; Storn & Price, 1997; Vinoth Kumar et al., 2022): 

tg
p,m =

{
ng

p,m if rand(0,1) < GR
xg

p,m otherwise

}

for p=1, ...,NP and m=1, ..., n

(15) 

The parameter GR regulates the rate of recombination. The test 
vector will contain both the original and updated vectors because the 
comparison is carried out variable by variable. 

2.3.2.4. Selection. We now compare the test vectors to the original 
vectors with the purpose of determining which vector will be the most 
valuable in the upcoming generation as indicated by the fitness function 
(Chakraborty, 2008; Feoktistov, 2006; Price et al., 2006; Rocca et al., 
2011; Storn & Price, 1997; Vinoth Kumar et al., 2022), according to: 

xg+1
p =

⎧
⎨

⎩

tgp if fit
(
tgp
)
> fit

(
xg

p

)

xg
p otherwise

⎫
⎬

⎭
(16)  
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2.4. Precision of this approach 

The DE/SVR model was constructed using ten input variables. The 
DOo and Turbo are the dependent predicted variables. The coefficient of 
determination (R2) is the primary goodness–of–fit statistic for the 
regression problem discussed in this article (Freedman, Pisani, & Purves, 
2007; Picard & Cook, 1984). If if ti and yi, respectively, represent the 
observed and predicted values, it considers the subsequent expressions 
(Freedman et al., 2007; Wasserman, 2003):  

• SStot =
∑n

i=1(ti − t)2: stands for the sum of squares clarified; 

Fig. 4. Process diagram employing the SVR–Matern52 model using DE for parameter optimisation.  

Table 2 
Intervals of variation for the DE/SVR–based approach’s hyperparameters that 
were fitted for this investigation.  

SVR hyperparameters Lower limit Upper limit 

C 10− 6 102 

ε 10− 6 102 

σ,σf ,σl 10− 6 102 

a 10− 6 102 

b 0.5 5 
ω 1 10  

Table 3 
The ideal hyperparameters for the Turbo foretelling in the fitted DE/SVR–based 
models.  

Model–kernel Values of optimal hyperparameters 

DE/SVR–Linear Regularization factor C = 6.50× 100, ε = 7.67× 10− 2 

DE/ 
SVR–Polynomial 

Regularization factor C = 4.23× 10− 3, ε = 9.88× 10− 6, σ =

2.91× 10− 1a = 8.97× 101, b = 3.91× 100 

DE/SVR–Sigmoid Regularization factor C = 4.63× 101, ε = 9.26× 10− 3, σ =

2.01× 10− 3a = 1.20× 10− 5 

DE/SVR–RBF Regularization factor C = 3.56× 101, ε = 1.87× 10− 2, σ =

5.79× 10− 1 

DE/SVR–PUK Regularization factor C = 3.53× 101, ε = 6.37× 10− 4, σ =

6.42× 10− 1, ω = 1.11× 100 

DE/ 
SVR–Mattern32 

Regularization factor C = 1.46× 100, ε = 3.58× 10− 5, σf =

2.14× 100, σl = 5.01× 10− 1 

DE/ 
SVR–Mattern52 

Regularization factor C = 2.06× 100, ε = 7.23× 10− 3, σf =

1.55× 100, σl = 2.66× 10− 1  

Table 4 
The ideal hyperparameters for the DOo foretelling in the fitted DE/SVR–based 
models.  

Model–kernel Values of optimal hyperparameters 

DE/SVR–Linear Regularization factor C = 5.91× 10− 1, ε = 6.57× 10− 2 

DE/ 
SVR–Polynomial 

Regularization factor C = 3.04× 10− 4, ε = 1.52× 10− 2, σ =

4.85× 100a = 1.49× 100, b = 4.65× 100 

DE/SVR–Sigmoid Regularization factor C = 2.09× 101, ε = 6.41× 10− 2, σ =

7.83× 10− 3a = 6.52× 10− 3 

DE/SVR–RBF Regularization factor C = 2.42× 101, ε = 1.47× 10− 2, σ =

4.20× 10− 1 

DE/SVR–PUK Regularization factor C = 2.15× 101, ε = 1.73× 10− 2, σ =

2.79× 100, ω = 1.75× 100 

DE/ 
SVR–Mattern32 

Regularization factor C = 7.17× 10− 2, ε = 5.81× 10− 3, σf =

1.20× 101, σl = 1.64× 100 

DE/ 
SVR–Mattern52 

Regularization factor C = 8.14× 10− 1, ε = 3.81× 10− 5, σf =

2.03× 100, σl = 6.05× 10− 1  
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• SSreg =
∑n

i=1
(
yi − t

)2: this summation has a direct correlation with 
the sample variance;  

• SSerr =
∑n

i=1
(
ti − yi

)2: is referred to as the residual squared sum. 

being t the mean value of the experimental data provided by: 

t=
1
n
∑n

i=1
ti (17) 

Fig. 5. Terms of first and second order for the DE/SVR–Matern52 model’s three key variables that determine how the Turbo will be predicted.  

Fig. 6. Terms of first and second order for the DE/SVR–Matern52 model’s three key variables that determine how the DOo will be predicted.  
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Hence, the determination coefficient is given by (Marsland, 2014; 
Wasserman, 2003): 

R2 ≡ 1 −
SSerr

SStot
(18) 

The difference between the experimental and predicted data is less 
the closer the R2 statistic is to 1.0. 

Two additional criteria considered in this study were the root mean 
square error (RMSE) and mean absolute error (MAE) (Hastie et al., 2003; 
Wasserman, 2003). These statistics are also used frequently to evaluate 
the forecasting capability of a mathematical model. The root mean 
square error (RMSE) and mean absolute error (MAE) are given by the 

Table 5 
Correlation coefficients (r), coefficients of determination (R2), root mean 
squared errors (RMSE) and mean absolute errors (MAE) for the DE/SVM–based 
method fitted with distinct kinds of kernels for the Turbo in this study. In bold, 
the values corresponding to the best DE/SVM kernel.  

Technique–kernel R2 r RMSE MAE 

DE/SVM–Linear 0.57 0.77 0.70 0.52 
DE/SVM–Polynomial 0.79 0.89 0.50 0.35 
DE/SVM–Sigmoid 0.56 0.76 0.71 0.54 
DE/SVM–RBF 0.83 0.91 0.44 0.27 
DE/SVM–PUK 0.88 0.94 0.38 0.24 
DE/SVM–Matern32 0.89 0.95 0.35 0.23 
DE/SVM–Matern52 0.89 0.95 0.35 0.23  

Table 6 
Correlation coefficients (r), coefficients of determination (R2), root mean 
squared errors (RMSE) and mean absolute errors (MAE) for the DE/SVM–based 
method fitted with distinct kinds of kernels for the DOo in this study. In bold, the 
values corresponding to the best DE/SVM kernel.  

Technique–kernel R2 r RMSE MAE 

DE/SVM–Linear 0.77 0.86 0.48 0.33 
DE/SVM–Polynomial 0.88 0.94 0.34 0.20 
DE/SVM–Sigmoid 0.771 0.88 0.48 0.33 
DE/SVM–RBF 0.89 0.94 0.33 0.19 
DE/SVM–PUK 0.90 0.95 0.31 0.19 
DE/SVM–Matern32 0.91 0.96 0.29 0.17 
DE/SVM–Matern52 0.92 0.96 0.29 0.18  

Table 7 
The ranking of significance of the input factors in the most 
excellent DE/SVR–relied method for the Turbo prediction, 
based on the matching weights, in absolute descending order.  

Input variable Weight 

Inlet turbidity (Turbi) 0.4311 
Electrical Conductivity (ECi) 0.1843 
Media bed height (H) 0.0994 
Media 0.0907 
pH 0.0778 
Inlet dissolved oxygen (DOi) 0.0752 
Filtration velocity (v) 0.0520 
Filter 0.0455 
Cycle duration (Tc) 0.0327 
Water temperature (Ti) 0.0061  

Fig. 7. Pareto chart of input variables: order of relevance for the input variables employed in the best–fitted DE/SVR–relied approach for forecasting the Turbo.  

Table 8 
The ranking of significance of the input factors in the most 
excellent DE/SVR–relied method for the DOo prediction, based 
on the matching weights, in absolute descending order.  

Input variable Weight 

Inlet dissolved oxygen (DOi) 0.8422 
Inlet turbidity (Turbi) 0.1073 
Cycle duration (Tc) 0.0364 
pH 0.0207 
Filter 0.0180 
Water temperature (Ti) 0.0173 
Electrical conductivity (ECi) 0.0122 
Media bed height (H) 0.0115 
Media 0.0026 
Filtration velocity (v) 0.0026  

Fig. 8. Pareto chart of input variables: order of relevance for the input vari
ables employed in the best–fitted DE/SVR–relied approach for the prediction of 
the DOo. 
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expressions (Freedman et al., 2007; Wasserman, 2003): 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ti − yi)

2

n

√
√
√
√
√

(19)  

MAE=

∑n

i=1
|ti − yi|

n
(20) 

If the RMSE has a value of zero, there is no difference between the 
predicted and observed data. Mean Absolute Error (MAE) is the average 
vertical distance between each point and the identity line. MAE is also 
the average horizontal distance between each point and the identity 
line. MAE has a clear interpretation as the average absolute difference 
between ti and yi. 

Currently, a model has been developed using the Turbo and DOo as 
dependent variables (specifically, in this investigation, the novel DE/ 
SVR– model), taken from the ten input factors in granular filters (Bové 
et al., 2015a, 2015b), examining their impact with the purpose of 
enhancing its computation by looking at the coefficient of determination 
R2. 

Prior research has generally employed grid search, also known as a 
parameter sweep, which is essentially a thorough search over a subset of 
the hyperparameter space’s values, to tune the hyperparameters. 
Because the DE optimiser works well with the purpose of resolving 
associated optimisation issues, it was used in this study to conduct a 
more economical search and successfully find these optimal parameters 
(Chakraborty, 2008; Feoktistov, 2006; Price et al., 2006; Rocca et al., 
2011; Storn & Price, 1997; Vinoth Kumar et al., 2022). The DE optimiser 
is an evolutionary computing technique that solves optimisation prob
lems by iteratively trying to improve a candidate solution’s quality. 
Because these methods can search very large spaces for possible solu
tions with little to no assumptions about the objective function, they are 
called meta-heuristics (Das, Mullick, & Suganthan, 2016; Onwubolu & 
Babu, 2004). 

As a result, by assessing the effect of ten operation input variables 
and efficiently utilising the R2 to optimise the computation, with the 
help of this innovative hybrid DE/SVR–based approach, the Turbo and 
DOo (output factors) have been successfully predicted. For instance, the 
process diagram for the DE/SVR–based model with Matern52 kernel 
constructed in this investigation is described in Fig. 4. 

Furthermore, a common method for determining the true model 
accuracy is by calculating the R2 from cross-validation (Agresti & Kateri, 
2021; Picard & Cook, 1984). The best hyperparameters for the DE/SVR 
model for the seven different types of kernels can be chosen using 
10-fold cross-validation (Chakraborty, 2008; Cristianini & 

Fig. 9. Observed and predicted Turbo values regarding the test dataset utilising 
two distinct filter media (silica sand and crushed recycled glass): (a) DE/ 
SVR–Sigmoid model (R2 = 0.5589); (b) DE/SVR–Linear model (R2 = 0.5722); 
(c) DE/SVR–Polynomial model (R2 = 0.7855); (d) DE/SVR–RBF model (R2 =

0.8287); (e) DE/SVR–PUK model (R2 = 0.8771); (f) DE/SVR–Matern32 model 
(R2 = 0.8924); and (g) DE/SVR–Matern52 model (R2 = 0.8944). 

Fig. 10. Observed vs. foretold outlet turbidity (Turbo) scatterplot from the 
testing dataset for the best-fitted model, DE/SVR–Matern52 model. 
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Fig. 11. Observed and foretold outlet turbidity (Turbo) boxplots from the testing dataset for the seven fitted models.  

Fig. 12. Observed and foretold outlet turbidity (Turbo) violinplots from the testing dataset for the seven fitted models.  

Fig. 13. Taylor diagram for the outlet turbidity (Turbo) using the testing dataset for the seven fitted models.  
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Shawe–Taylor, 2000; Feoktistov, 2006; Hansen & Wang, 2005; Hastie 
et al., 2003; Picard & Cook, 1984; Price et al., 2006; Rocca et al., 2011; 
Storn & Price, 1997; Vinoth Kumar et al., 2022). Ten subsets of similar 
size are randomly selected from the dataset, and after that, a set of pa
rameters is chosen. To assess a model’s goodness-of-fit, nine subsets are 
used in its construction, and the last subset is used in the test (Chen, Liu, 
Li, & Zhou, 2022; Picard & Cook, 1984; Wasserman, 2003). This pro
cedure is done ten times, with a different subset serving as the testing set 
each time. The ultimate value for the chosen collection of parameters is 
represented by the goodness-of-fit average. 

Until it selects a particular set of optimal hyperparameters, based on 
their fitness, the parameter sets to be checked are chosen according to 
the DE algorithm (Chakraborty, 2008; Chen et al., 2022; Feoktistov, 
2006; Price et al., 2006; Rocca et al., 2011; Storn & Price, 1997; Vinoth 
Kumar et al., 2022). 

Table 2 displays the hyperparameters’ intervals of variation for the 
DE/SVR models. 

3. Results and discussion 

3.1. SVR simulation results and optimisation process 

This new predictive model had ten distinct operation variables as 
input variables. Each of them had previously been displayed in Table 1. 
1,014 filtration cycles’ worth of data were employed. The samples with 
missing data have been removed from the 1,016 samples that underwent 
experimental measurement (see Appendix A). 

The dataset was divided into two sets with the purpose of tackling 
this study: 80% of the data were used in the training set, and the 
remaining 20% were used in the testing set. With the help of the training 
data, a model was created, refined, and tested on the test dataset. 

The suggested DE/SVR–based model uses the Turbo and DOo as 
output dependent variables. Furthermore, as was already mentioned, 
the cost constant (C), the size of the permitted error margin (ε param
eter), and, in the end, the six parameters a, b, σ, σf , σl and ω which 
specify how the different kernels are expressed mathematically, are the 
SVM hyperparameters that have the greatest influence on the DE/SVM 
approximation. 

Tables 3 and 4 display the optimised hyperparameters that were 
obtained after the SVR models with seven different kernels that were 
tuned by employing the meta-heuristic DE optimiser the DOo and Turbo, 
respectively. 

The R2 value was computed utilising the optimised model on the 
testing set. 

The three variables’ first and second order terms that were more 

Fig. 14. Observed and predicted DOo values regarding the test dataset utilising 
two distinct filter media (silica sand and crushed recycled glass): (a) DE/ 
SVR–Sigmoid model (R2 = 0.7661); (b) DE/SVR–Linear model (R2 = 0.7658); 
(c) DE/SVR–Polynomial model (R2 = 0.8788); (d) DE/SVR–RBF model (R2 =

0.8873); (e) DE/SVR–PUK model (R2 = 0.8994); (f) DE/SVR–Matern32 model 
(R2 = 0.9120); and (g) DE/SVR–Matern52 model (R2 = 0.9156). 

Fig. 15. Observed vs. foretold outlet dissolved oxygen (DOo) scatterplot from 
the testing dataset for the best-fitted model, DE/SVR–Matern52 model. 
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significant in the best-fitted DE/SVR model (using a Mater52 kernel) for 
outlet turbidity prediction (Turbo) are displayed in Fig. 5. 

Furthermore, the first- and second-order terms for the three crucial 
parameters in the best-fitted DE/SVR model for the DOo prediction are 
displayed in Fig. 6. 

Based on the results, the DE optimiser and SVR technique can be used 
jointly to create highly effective models for the evaluation of the Turbo 
and DOo in micro-irrigation media filters. In fact, Table 5 shows the R2 

and correlation (r-value) with the test set for the SVR approach using 
distinct kinds of kernels for the response Turbo. 

TaV this study. In bold, the values corresponding to the best DE/SVM 
kernel. 

In a similar vein, Table 6 presents the R2 and r values from employing 
the test dataset for the SVR approach with different types of kernels 
referred to the DOo. 

A computer with a CPU Intel Core i7-4770 @ 3.40 GHz with eight 
cores and 15.5 GB RAM memory was used, taking 2,031 s (⁓34 min) to 
optimise the parameters of the model and < 1 s to obtain the final output 
dissolved oxygen model (DOo). For outlet turbidity (Turbo) model, the 
respective time values were 580 s (⁓6mins) and, again, < 1 s. 

3.2. Relevance of the input variables 

Table 7 and Fig. 7 display the rankings of relevance for the inde
pendent variables that were utilised in this study to predict the depen
dent variable, Turbo. Hence, the most significant component is the input 
variable, Turbi, which is followed by ECi in the best-fitted DE/SVR 
model’s outlet turbidity prediction, followed by H, media (type of me
dium: sand or recycled glass), pH, DOi, v, filter type, Tc and Ti. 

Since the Turbi values have a significant impact on the filtering 
accomplished by the media filters (Solé–Torres et al., 2019a), the Turbi 
was the most important variable to consider when forecasting the Turbo. 
The ECi was the second variable in relative importance for explaining 
outlet turbidity. The ECi depends on dissolved solids, which may affect 
some of the mechanisms, such as diffusion (Cescon & Jiang, 2020), that 
allow particle retention across the media bed and a reduction in 
turbidity. The other water quality parameters (pH and DOi) play a less 
relevant role, probably because they do not have a direct link with 
dissolved solids. The third and four variables were H and media mate
rial, respectively. While the impact of various media materials on this 
parameter was evident, prior research (Solé–Torres et al., 2019a) did not 
demonstrate a definite pattern of H on turbidity removal (Duran–Ros 
et al., 2022). On the other hand, v and filter type were relevant variables 
in explaining turbidity reduction (Solé–Torres et al., 2019a) but their 
effect was minor in the present analysis. Further research with a wider 
range of filtration velocities and filter types should be conducted to 
verify these results. 

Similarly, Table 8 and Fig. 8 show the relative importance of the 
independent variables in the DE/SVR model for the DOo prediction. The 
SVR model in this case indicated that the most significant factor in 

Fig. 16. Observed and foretold outlet dissolved oxygen (DOo) boxplots from the testing dataset for the fitted seven models.  

Fig. 17. Observed and foretold outlet dissolved oxygen (DOo) violinplots from the testing dataset for the fitted seven models.  

Fig. 18. Taylor diagram for the outlet dissolved oxygen (DOo) using the testing 
dataset for the seven fitted models. 
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forecasting the DOo was the input variable DOi. This was followed by the 
Turbi, Tc, pH, filter type, Ti, ECi, H, media (category of medium), and v. 

In the present experiment there was a moderate DO increase at the 
filter outlet due to the removal of organic pollutants across the media 
bed (Duran–Ros et al., 2022; Solé–Torres et al., 2019a) and the reduc
tion of microorganisms caused by backwashing with chlorinated water, 
which meant that less oxygen was consumed in the filters. The high 
dependence of DOo on its initial value, i.e. DOi, is obvious in processes 
that depend on water quality parameters and was already observed in 
previous studies using different prediction techniques (Martí et al., 
2013; García–Nieto et al., 2020a). The second variable, with much less 
importance, was inlet turbidity, which is also related to organic particles 
whose oxidation by microorganisms consume oxygen and therefore re
duces the DO. All the other variables had a weight smaller than 0.04, in 
concordance with the results of similar works (García–Nieto et al., 
2020a). Given that the DO is a parameter that depends on temperature, 
the lowest weight assigned to the temperature variable was explained by 
the higher average irrigation water temperatures during the present 
experiment that caused fewer variations in the DO values. 

In this investigation, as shown in Fig. 9, the ten independent oper
ation input variables have been used to predict the Turbo in micro- 
irrigation systems, making use of the contrast between the predicted 
and observed Turbo values, using the seven previously defined models 
with the DE/SVR–Matern52 model (Fig. 9(g)) being the best-fitted 
model. Additionally, Figs. 10–13 indicate the comparison between the 
experimental and predicted Turbo values employing the seven kinds of 
models for the test dataset. Consequently, to solve this nonlinear 
regression problem, it was fundamental to bring together the SVR–Ma
tern52 procedure with the DE optimiser to produce an original hybrid 
strategy that was significantly more reliable and efficient than the other 
six regression methods. 

The comparison of the predicted and observed DOo values is dis
played in Fig. 14, for the seven proposed models against the testing 
dataset. Specifically, Figs. 15–18 indicate the comparison between the 
experimental and predicted DOo values using the seven types of models 
for the test dataset. Consequently, to solve this nonlinear regression 
problem, it is essential to bring together the SVR–Matern52 procedure 
with the DE optimiser to produce an original hybrid strategy that was 
significantly more reliable and efficient than the other six regression 
methods. 

4. Conclusions 

A substitute diagnosis method using the new differential evolution 
and support vector regression (DE/SVR) method with optimised 
hyperparameters allowed reasonable predictions of outlet turbidity 
Turbo (R2 = 0.93) and outlet dissolved oxygen DOo (R2 = 0.89) in sand 
media filters which are commonly used in micro-irrigation systems. The 
relative importance of the input variables was determined for each 
parameter. Thus, the parameter with the biggest impact on the calcu
lation of the Turbo was the inlet turbidity Turbi, and after it, inlet 
electrical conductivity ECi, media height H, type of media, pH, inlet 
dissolved oxygen DOi, filtration velocity v, type of sand filter design, 
duration of filtration cycle Tc, and water inlet temperature Ti. Addi
tionally, the input variable DOi has the biggest impact on the DOo esti
mate prior to the Turbi, Tc, pH, Ti, filter design type, ECi, H, type of 
media and v. The approach developed in this work may be effectively 
employed for various filtration mechanisms utilising the same or distinct 
kinds of filter media if the particular characteristics of the different fil
ters and experiments are considered. 
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Bové, J., Puig–Bargués, J., Arbat, G., Duran–Ros, M., Pujol, T., Pujol, J., et al. (2017). 
Development of a new underdrain for improving the efficiency of microirrigation 
sand media filters. Agricultural Water Management, 179, 296–305. https://doi.org/ 
10.1016/j.agwat.2016.06.031 

Capra, A., & Scicolone, B. (2007). Recycling of poor quality urban wastewater by drip 
irrigation systems. Journal of Cleaner Production, 15(16), 1529–1534. https://doi. 
org/10.1016/j.jclepro.2006.07.032 

Cescon, A., & Jiang, J.-Q. (2020). Filtration process and alternative filter media material 
in water treatment. Water, 12, 3377. https://doi.org/10.3390/w12123377 

Chakraborty, U. K. (2008). Advances in differential evolution. Berlin, Germany: Springer.  
Chang, C.-C., & Lin, C.-J. (2011). Libsvm: A library for support vector machines. ACM 

Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/ 
10.1145/1961189.1961199 

Chen, J.-L., Li, G.-S., & Wu, S.-J. (2013). Assessing the potential of support vector 
machine for estimating daily solar radiation using sunshine duration. Energy 
Conversion and Management, 75, 311–318. https://doi.org/10.1016/j. 
enconman.2013.06.034 

Chen, Y., Liu, R., Li, Y., & Zhou, X. (2022). Research and application of cross validation of 
fault diagnosis for measurement channels. Progress in Nuclear Energy, 150, Article 
104324. https://doi.org/10.1016/j.pnucene.2022.104324 

Cristianini, N., & Shawe–Taylor, J. (2000). An introduction to support vector machines and 
other kernel–based learning methods. New York: Cambridge University Press.  

P.J. García–Nieto et al.                                                                                                                                                                                                                        

https://doi.org/10.1016/j.biosystemseng.2024.04.020
https://doi.org/10.1016/j.biosystemseng.2024.04.020
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref1
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref1
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref2
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref2
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref2
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref3
https://doi.org/10.1016/j.biosystemseng.2015.09.00
https://doi.org/10.1016/j.biosystemseng.2015.07.009
https://doi.org/10.1016/j.biosystemseng.2015.07.009
https://doi.org/10.1016/j.agwat.2016.06.031
https://doi.org/10.1016/j.agwat.2016.06.031
https://doi.org/10.1016/j.jclepro.2006.07.032
https://doi.org/10.1016/j.jclepro.2006.07.032
https://doi.org/10.3390/w12123377
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref9
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.enconman.2013.06.034
https://doi.org/10.1016/j.enconman.2013.06.034
https://doi.org/10.1016/j.pnucene.2022.104324
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref13
http://refhub.elsevier.com/S1537-5110(24)00101-6/sref13


Biosystems Engineering 243 (2024) 42–56

56

Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential 
evolution – an updated survey. Swarm and Evolutionary Computation, 27, 1–30. 
https://doi.org/10.1016/j.swevo.2016.01.004 

De Leone, R., Pietrini, M., & Giovannelli, A. (2015). Photovoltaic energy production 
forecast using support vector regression. Neural Computing & Applications, 26, 
1955–1962. https://doi.org/10.1007/s00521-015-1842-y 

Deisenroth, M. P. (2020). Mathematics for machine learning. New York, USA: Cambridge 
University Press.  

Duran–Ros, M., Puig–Bargués, J., Arbat, G., Barragán, J., & Ramírez de Cartagena, R. 
(2008). Definition of a SCADA system for a microirrigation network with effluents. 
Computers and Electronics in Agriculture, 64(2), 338–342. https://doi.org/10.1016/j. 
compag.2008.05.023 

Duran–Ros, M., Puig–Bargués, J., Cufí, S., Solé–Torres, C., Arbat, G., Pujol, J., et al. 
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