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Explainable chemical artificial intelligence
fromaccuratemachine learningof real-space
chemical descriptors

Miguel Gallegos 1, Valentin Vassilev-Galindo 2, Igor Poltavsky3,
Ángel Martín Pendás 1 & Alexandre Tkatchenko 3

Machine-learned computational chemistry has led to a paradoxical situation in
which molecular properties can be accurately predicted, but they are difficult
to interpret. Explainable AI (XAI) tools can be used to analyze complexmodels,
but they are highly dependent on the AI technique and the origin of the
reference data. Alternatively, interpretable real-space tools can be employed
directly, but they are often expensive to compute. To address this dilemma
between explainability and accuracy, we developed SchNet4AIM, a SchNet-
based architecture capable of dealing with local one-body (atomic) and two-
body (interatomic) descriptors. The performance of SchNet4AIM is tested by
predicting a wide collection of real-space quantities ranging from atomic
charges and delocalization indices to pairwise interaction energies. The
accuracy and speed of SchNet4AIM breaks the bottleneck that has prevented
the use of real-space chemical descriptors in complex systems. We show that
thegroupdelocalization indices, arising fromourphysically rigorous atomistic
predictions, provide reliable indicators of supramolecular binding events, thus
contributing to thedevelopment of ExplainableChemical Artificial Intelligence
(XCAI) models.

Chemistry, similar to many other scientific disciplines, is now inex-
tricably linked to computer-assisted simulations. For instance,
electronic-structure calculations have become so deeply rooted in
chemistry that they are used today as a standard characterization
technique in the chemist’s toolbox, on par with NMR spectra or X-ray
diffraction data. The applications of electronic-structure theory,
togetherwith its coupling tomolecular dynamics1, have revolutionized
materials science2, catalysis3, photochemistry4, and chemical
reactivity5, to name just a few examples. Many of the pressing efforts
today have been devoted to increasing the efficiency and accuracy of
electronic-structure methods that deliver reliable molecular quan-
tities, such as energetic or response properties. However, this has
resulted in an unintended consequence: it is now far easier to get
accurate property predictions than to interpret them physically or

chemically. In this sense, and as someof us have recently put forward6,
Coulson’s maxim "give us insight not numbers”7 has been set aside.
Today, most researchers use techniques in their essential post-
calculation interpretation steps that are based on much cruder
assumptions than those used in the simulations themselves. This
undesirable situation can be ameliorated by resorting to orbital
invariant chemical descriptors, which provide physically meaningful
properties and can be obtained either in real or in momentum space.

These descriptors are based on condensing the information
content of the wavefunction through reduced density matrices of
various orders evaluated at a set of chemically relevant points of space,
typically through the analysis of the topology induced in real space by
their gradient fields, in what it is usually known as quantum chemical
topology8. An important ingredient of the latter is isolating atomic (or
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functional group) regions from wavefunctions. Indeed, such a topic
has sparked a lot of interest in the scientific community in recent years
which has crystallized in a plethora of different decomposition and
partitioning techniques grounded on countless theoretical frame-
works. Notoriously relevant examples of these include symmetry-
adapted perturbation theory9 or even the celebrated density-
functional theory10,11, to name just a few. In this regard, a particularly
rigorous way to achieve this partitioning comes from the so-called
Quantum Theory of Atoms in Molecules (QTAIM) of R. F. W. Bader12.
QTAIMmetrics allow for an unbiased account of physical and chemical
processes at any level of theory, regardless of the use of atom-cen-
tered, plane-wave, or numerical basis sets. On one side, they provide
access to electron counting properties, including electron populations
and their statistics13, the key to a proper understanding of the role of
electron localization and delocalization, for instance. On the other,
thanks to the underlying QTAIM partitioning of the physical space,
every observable is also additively reconstructed from domain
contributions.

For instance, and if we restrict ourselves to standard Coulomb
Hamiltonians, the topological decomposition of the energy, the so-
called interacting quantum atoms (IQA) approach14, provides an exact
partition in terms of intra- and interatomic components. Contrary to
other modern energy decomposition analyses, like those tracing back
to Morokuma’s seminal insights15,16, IQA does not depend on artificial
intermediate states nor on single-determinant approximations to the
wave function. In contrast to other highly accurate procedures, like
symmetry-adapted perturbation theory9, it can also be applied to
arbitrary molecular geometries, both in weakly and strongly interact-
ing regimes. Since QTAIM and IQA provide physically meaningful
properties, having been used to shed light on an ever-growing set of
problems (see, e.g., refs. 17–19),many have envisioned their usefulness
in the construction of better-rooted, general-purpose tools, including
force-fields. Unfortunately, this rigor comes at the expense of a con-
siderable computational cost. Since the resultant atomic regions have
no analytical definition, the evaluation of domain expectation values of
two-electron contributions implies the calculation of a vast number of
expensive 6D numerical integrations20.

Although crucial work is still being currently done in the devel-
opment of faster algorithms21, a possible answer to this problem lies in
the exploitation of machine learning (ML). The extraordinary predic-
tion abilities of artificial intelligence (AI) approaches such as Deep
Learning, or ML in general, are reshaping the course of modern
research. In fact, the large efficiency of state-of-the-art AI brings the
possibility of accurately performing complex tasks in feasible time
scales. The success of this field is directly evidenced by the outburst of
AI tools in themodeling of virtually any physico-chemical property22–25

ranging from molecular structure26–28, energy landscapes29,30, spec-
troscopic transitions31, aromaticity and reactivity trends32,
magnetism33, mechanical features34, or even chemical fragrances35, to
name just a few examples. As such, the implementation of AI marks a
crucial step forward in many realms, such as the fields of drug
discovery36 and materials design37, showcasing its ability to lead
modern scientific and technological research. As far as Quantum
Chemical Topology is regarded, much effort has been devoted in the
last two decades to implement ML in the QTAIM or IQA domains. In
this context, it is worth highlighting the work of P. Popelier and
coworkers38–42, who used Gaussian Process Regression to ease the
computation of multiple terms including atomic energies, charges or
multipole moments. Albeit kernel models have been the method of
choice in this field, neural networks (NNs) have also been employed.
For instance, P. Popelier developed an NN model for the accurate
estimation of atomicmultipole moments of water clusters43. Similarly,
some of us have recently reported a simple atomistic NN for the pre-
diction of QTAIM partial charges of gas-phase main-element (C, H, O,
and N) compounds44.

However, the growing intricacy of the problems tackled by ML,
together with the scarcity of uncertainty metrics45, makes it prone to
suffer from the Clever Hans effect: getting the right answer from the
spurious interplay of wrong reasons. As such, illuminating the obscure
nature of AI has become of paramount importance, as reflected by the
so-called Physics-guided or inspired models46 or the emerging field of
explainable artificial intelligence (XAI)47,48. In spite of lacking an exact
definition49, XAI imagines AI as a tool to unravel the nature of the
problem under study and its underlying rationale, exposing the actual
capabilities and limitations of themodels. Although a growing interest
has emerged in recent years45,47, the application of XAI to chemistry is
still in its infancy owing, among other things, to the far from trivial
encoding of the physical variables of a system into a machine-
interpretable array, the so-called chemical featurization problem.
Often, a fixed functional form is used to compute these chemical
features, a strategy that requires fine-tuning a considerable number of
hyperparameters. Contrarily to these hand-crafted descriptors, end-
to-end models learn the atomistic representations directly from more
tangiblephysical variables (e.g.,R, Z). One of these is SchNet50–52, which
has gained wide popularity due to its versatility in accurately predict-
ing different quantumchemical properties. Theflexible representation
scheme provided by SchNet, achieved through continuous filtering
generators along with the state-of-the-art performance of Deep NNs,
provides extraordinary inferring abilities in countless applications53–58.
However, the default SchNet architecture was designed to predict
global quantities. Instead, dealing with local chemical properties
requires adjustments to the SchNet model.

In this work, we introduce an essential modification of this
approach, named SchNet4AIM and implemented in the SchNetPack
(SPK) package52, targeting predictions of local quantities, including
both atomic (one-body or 1P in what follows) and pairwise (two-body
or 2P) terms. As such, this constitutes a step forward in the develop-
ment of end-to-endML chemical tools in the context of local quantum
chemical analysis. The performance of the resultant architecture is put
to the test for a set of QTAIM and IQA descriptors such as atomic
charges (Q), localization (λ), and delocalization (δ) indices as well as
IQA energetic terms. The relevance of these terms, someofwhich have
been proven reliable estimators of a wide range of molecular proper-
ties (e.g., aromaticity, pka, or spectroscopic features, to name a
few)59–61, extends well beyond the QCT realm. The strategy largely
outperforms previously reported ML@QTAIM general-purpose
approaches44. Besides higher accuracy, SchNet4AIM affords robust
models while requiring much less training data than in previous
attempts. Moreover, we show how the rigor of real space techniques
grants the models with promising extrapolation and transferable
capabilities, exhibiting physically coherent behaviors that enable the
distillation of valuable chemical insights way beyond the mere quan-
titative values. In this way, the rigor of the underlying physical models
and the flexibility of SchNet4AIM puts our approach in a privileged
spot in the obtention of physically-behaved and understandable out-
puts. Unlike the usual scenario, where chemical properties obtained by
ML are derived from the aggregation of meaningless, black-box-
derived quantities, SchNet4AIM’s molecular predictions can be traced
back to physically rigorous atomic or pairwise terms, enabling the
distillation of valuable insights and interpretations. Thereby, and fol-
lowing Coulson’s maxim, we introduce a clear example of an explain-
able chemical AI model (XCAI). More importantly, this is done without
requiring the use of extrinsic explainability tools, but it is instead
inherent to the combination of SchNet4AIM with rigorous local
quantumchemical properties. As a proof of concept, we showhow this
approach breaks the QTAIM/IQA computational bottleneck by allow-
ing a general user to follow the evolution of otherwise prohibitively
expensive quantum chemical descriptors along relevant chemical
processes. This is done on the fly, at negligible extra computational
cost, and opens new opportunities to rigorously interpret the result of
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large-scale chemical simulations. To this end, we demonstrate that
electron delocalization metrics are reliable indicators of supramole-
cular binding events, offering a detailed picture of the electron rear-
rangements driving these intricate complexation phenomena.

Results
Algorithmic details and architecture
The current section gathers themodificationsmade to the SchNetPack
toolbox to enable the prediction of local quantum chemical descrip-
tors using SchNet4AIM.Details on the original SchNet architecture and
SchNetPack software can be found in Supplementary Note 1 or in the
literature50–52. A schematic representation of the architecture of our
modified version of the toolbox is shown in Fig. 1.

Just as in the original version, the representation block maps the
molecular information (geometries and atomic numbers, R and Z) into
a SchNet-like descriptor of fixed size (n), resulting in M local atomic
environments, {AE1,...,AEM}. In the case of 1P properties, this can be
readily used to feed the atomistic NN models, whereas the latter must
be further transformed to obtain a pair-wise descriptor. Although it is
possible to envision different approaches to describe a given atomic
pair, we have opted for the concatenation of atom-wise features along
with the pairwise distance to build the 2P vectors. The inclusion of the
latter hasbeenmotivatedby the strongdependenceofmany two-body
properties on the interatomic distance (Supplementary Fig. 4). Fur-
thermore, the resultant features exhibit the desirable permutational,
translational, and rotational invariances. All of this is handled by the
SPK.atomistic.model which, in the case of 2P properties, obtains
the atomistic vectors (AEi, AEj) and the interatomic distances, ∣∣ri − rj∣∣
to reconstruct the final pair-wise featurization descriptor,
{AE1:2,...,AEM-1:M}, containing a total of M(M − 1)/2 non-equivalent ele-
ments (excluding the diagonal contributions). We note in passing that
each of the pair-wise vectors,AEi:j, has now a length of 2n + 1 elements.
Thus,moderate values ofn should be used to prevent excessively large
input vectors which can result in complex and poor performing
models.

The resultant particle-wise descriptor, here referred to as the AE
tensor, is then fed into the prediction block to train the NN models.

Three different local output models have been implemented in the
SPK.atomistic module by removing the cumulative pooling layer
commonly used in the prediction of molecular observables: AIMwise,
ElementalAIMwise, and ElementalPairAIMwise. The former,
which can be either used for 1P or 2P quantities, employs a single NN
model for all the particles. On the other hand, the ElementalAIMwise
(1P) and ElementalPairAIMwise (2P), create a collection of K
particle-type specific models. K is given by either the number of non-
equivalent chemical atom types (T) or their pairwise combination
T(T + 1)/2 for 1P and 2P properties, respectively. Building 2P-specific
models raises the need to create unique, yet permutationally invariant,
identifiers for each chemically different pair. To solve this issue, weuse
a symmetric matrix, pairmat, of non-repetitive integers obtained
from the Zi and Zj atomic numbers of each pair (further details can be
found in Supplementary Note 2). The remaining architecture involved
in the predictionwas essentially left unmodified, and thus, it will not be
discussed. Further details about the modifications made to the
SchNetPack toolbox and its features can be found in Supplementary
Note 2. Finally, we also note in passing that it is possible to exploit the
physics governing the local quantum chemical properties learned by
SchNet4AIM to estimate the reliability of its predictions. As such, one
can devise different uncertainty estimates, as detailed in Supplemen-
tary Note 2. For instance, in the particular case of the QTAIM electron
metrics used in this work, the error in the reconstruction of the
molecular electron count (N) provides a very convenient way of
doing so.

Initial performance tests
Let us start by assessing the performance of SchNet4AIMwhen trained
on local properties using the IQA energies of a water cluster database,
details on the latter can be found in Methods. For the sake of simpli-
city, wewill focus on themore diverse and robust energetic properties
of O atoms, and in particular, the kinetic energy (TO) and the pairwise
interaction energy with neighboring, intra-, and inter-molecular, H
atoms (EO�H

inter ). Figure 2 gathers their dispersion plots, as predicted by
SchNet4AIM, using universal (AIMwise) and particle-specific (Ele-
mentalAIMwise or ElementalPairAIMwise)models. From the latter, it is

Fig. 1 | Architecture of SchNet4AIM (modified SchNetPack toolbox). Schematics
of the SchNetPack toolbox targeted for the prediction of one-body (1P) and two-
body (2P) terms, showing the main representation (left) and prediction (right)
blocks. The atomic environment (AE) tensor, created by the representation block,
describes an atom or atomic pair in a molecule. This is parsed to the prediction

block which outputs a molecular property (P) decomposed into a collection of
locally defined terms (K). The labels Z and R denote atomic numbers and positions
of anM atom system, while rij signifies the distance between atoms i and j. AW, EAW
and EPAW refer to AIMwise, ElementalAIMwise, and ElementalPairAIMwise output
modules, respectively, used to construct universal and particle-specific models.
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evident that SchNet4AIM is able to accurately predict atomic quantum
chemical properties, exhibiting very reasonableMAEs of just under 2.0
kcalmol−1 (≈0.003 a.u.) for the kinetic energy of the O atoms (with
values spanning over a range of roughly 0.8 a.u.).

Moving now on to the slightly more intriguing scenario of
interatomic properties, and using the EO�H

inter term as a prototypical
example, reveals quite similar findings pushing the errors down to the
noise bound (≤1.0 kcalmol−1) with MAEs as low as 0.3 kcalmol−1 in the
particular case of intra- and inter-molecular H–H interactions (Sup-
plementary Tables 8 and 9). As far as the output model is regarded,
particle-specific architectures perform slightly better than universal
models, something which is accentuated for certain 2P terms (e.g.,
EH�H
inter , Supplementary Figs. 2 and 3). Particle-specific models are

expected to outperform single NN approaches as the chemical com-
plexity of the system is increased since a large number of particle types
may selectively bias the model’s performance toward certain atoms or
atomic pairs and thus decrease the net prediction accuracy. Alto-
gether, these results evidence the suitability of SchNet4AIM for the
accurate computation of local properties.

SchNet4AIM in extrapolation domains
After showing the ability of SchNet4AIM to compute 1P and 2P prop-
erties, we will now evaluate its extrapolation abilities. Generally
speaking, ML models can only be used within those regions of the
chemical space that have been sampled during their training, the so-
called interpolation domains. Instead, their predictions often become
erratic as one moves away from the latter, delving into the extrapola-
tion region. Although this limitation is intrinsic to the field, dealing
with quasi-transferable properties can ameliorate such a limitation. In
this regard, it is worth mentioning that our approach is particularly
fitting to this task owing to the transferable nature of the QTAIM
attraction basins and their local properties62–64. In this context, che-
mical transferability has actually been evaluated in the past65,66, with

numerous studies devoted to exploring the extent of the quasi-
transferable nature of a wide collection of topological63,67–70 and geo-
metrical features71. This is particularly interesting as, if successful, it
could extend the applicability of the SchNet4AIM models to much
more complex scenarios than those used throughout the training.

To explore this idea, we will focus on the more diverse electronic
QTAIM properties of CHON molecules: the local electron counts (Q)
along with their localized (λ) and delocalized (δ) contributions.
SchNet4AIM was trained on a subset of the CHON database, see
Methods for further details, comprising ground-state minima of the
potential energy landscape. Then, its performance was explored by
studying a chemical reaction involving very far from equilibrium
structures, and comprising thus a clear case of extrapolation. In
interpolation domains, our model outperforms previously reported
approaches44 when predicting the atomic charges (Q) while using only
10%of the training data required by the latter (SupplementaryNote 11).
Such a result is not limited to the local values (with MAE errors in the
mili-electron range), but SchNet4AIM is also able to recover the
electro-neutral character of the molecules with much higher accuracy
(10−3 to 10−2 e−), evidencing the physical-behavior of its local compo-
nents (SupplementaryTable 19). Furthermore, the prediction accuracy
of SchNet4AIM drops slowly with the size of the system, even when
going beyond the largest molecular size explored during the training
(Supplementary Fig. 14). Altogether, the aforementionedobservations,
also found for the localization (λ) and delocalization indices (δ), sug-
gest that SchNet4AIM affords more accurate local properties with the
ability to better reconstruct the molecular quantities.

Since SchNet4AIM was only trained on the near-equilibrium
CHON space, we have decided to employ a chemical reaction, see
Fig. 3, gathered from the literature44 as a prototypical extrapolation
scenario: such a transformation involves out-of-equilibriumstructures,
very far from the potential wells sampled during the training. The
initial stages of the reaction involve barely any electron fluctuations, as

Fig. 2 | Dispersion plots for TO and EO�H
inter .Dispersionplots for the kinetic energy of

the O atoms, TO, and O–H interaction energies, EO�H
inter , of the water cluster database.

The training and testing data points are shown in blue and red, respectively. All
values are reported in atomic units (a.u.), whereas the testing error metrics are
given in kcalmol−1. The mean absolute error (MAE) and root mean squared error

(RMSE) were employed as measures of accuracy. The labels U and PS are used to
refer to universal (AIMwise) and particle-specific (ElementalAIMwise or Ele-
mentalPairAIMwise) models, respectively. Source data are provided as a Source
Data file.
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evidenced by the fairly monotonous behavior in the atomic charges of
the main atoms involved, comprised in Fig. 4A. It is only close to the
transition state (χ = 25) wheremajor changes inQ start to be observed:
atom 1 (C) experiences a moderate electron enrichment, also found in
a more subtle way for atom 7 (O), at the expense of depleting atom 4
(C). The interplay between the fluctuating atomic charges accom-
panying the formation of the final product promotes a net transfer of
≈0.6 electrons from ethylene to the acetonitrile oxide, as shown in

Fig. 4B. These findings, being in accordance with the quantum-
mechanical calculations, arise as a result of the large electronegativity
difference between the interacting fragments. These observations are
noteworthy on their own, as they evidence the remarkable general-
ization abilities of our approach, offering accurate predictions even in
extrapolation regimes.

Naturally, the aforementioned changes are accompanied by pro-
minent shifts in the delocalized electron counts: the δ(1, 3) and δ(4, 7)

Fig. 3 | 1,3-dipolar cycloaddition. Schematic representation of the addition of
acetonitrile oxide to ethylene to yield a 5-membered heterocycle, showing the
transition state (TS) structure involved in the transformation. The numbers and

labels of the main atoms involved in the reaction are shown. The remaining, and
with the exception of the C atom in the CH3 moiety of acetonitrile oxide, are
H atoms.

Fig. 4 | SchNet4AIM predictions in extrapolation regimes: electronics of a 1,3-
dipolarcycloaddition. Evolutionof the atomic charges of themain atoms involved
in the reaction (a), the total molecular charge of each of the reactants (b), and the
electron delocalization between the terminals atoms (1,3 and 4,7) of both species
(c). Atomic or molecular charges are denoted as Q, whereas the term δ is used to
refer to the delocalized electron counts. Solid and dashed lines are used to
represent the predicted (SchNet4AIM) and observed data, respectively. The

SchNet4AIM models are tested in never-seen (extrapolation) regions of the che-
mical space. All values are reported in electrons (e−) relative to the progress of the
reaction coordinate (χ). The atomic labels correspond to the numbering shown in
Fig. 3. d The transition state of the reaction, showing the emergent C–C and C–O
bonds that will be formed, is also shown. Source data are provided as a Source
Data file.
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metrics peak at about0.95 and0.85 electrons, respectively, evidencing
the formationof theC–CandC–Osingle bonds (see Fig. 4D) of thefinal
product, as shown in the Fig. 4C. Taking a closer look at the qualitative
trends reveals that the 1–3 bond is formed prior to the slightly more
latent 4–7 interaction, proving that SchNet4AIM is able to predict the
subtle lack of synchronicity predicted by quantum chemical calcula-
tions. Altogether, ourmodel captures, at a qualitative and quantitative
level, most of the chemical insights afforded by the more expensive
quantumchemical calculations even outside the interpolation regimes
used for its training. These findings show that the rigor ofQCT and the
reliability of the underlying SchNet4AIM architectures yield transfer-
able ML@QTAIM models with decent extrapolation abilities. Besides
accurate, SchNet4AIM predictions entail a negligible computational
costwhen compared to conventional (quantumchemical) approaches,
leading to speedup factors of up to 104 for a 48 atoms system, see
Supplementary Note 17 for further details. Besides this, we also note in
passing that SchNet4AIM showsquickly-converging learning curves, as
gathered in SI Supplementary Note 19. Such a finding evidences its
ability to adequately generalize the patterns learned from even a small
set of molecular instances to unseen data.

It should also be noted that the extrapolation capability and
transferability of SchNet4AIM are subject to three main limiting fac-
tors. First, the size and quality (e.g., how well the chemical space has
been sampled) of the reference data. Second, the representation
hyperparameters: opting for a smaller cutoff radius may improve
transferability at the cost of reduced accuracy in describing the local
environments of atoms or atomic pairs. Finally, the extrapolation
capability is closely linked to the complexity of the target properties
and the impact that the local environment has on the latter. In this way,
more chemically complex systems are more difficult to predict, as
evidenced by the subtle decrease in prediction accuracy found when
extrapolating. For instance, the MAEs in the estimation of the atomic
charges increase to the 10−2 electrons range in the case of chemical
reactions (see Supplementary Note 13). In these particularly complex
scenarios, usingmore local and compact SchNet4AIM representations,
as well as increasing the global-to-local tradeoff in the loss function,
can improve the generalization abilities of the models, ameliorating
these inconveniences. Further details are given in Supplementary
Note 13.

Chemical insights from SchNet4AIM predictions
Finally, andgiven thepromisingperformanceshownbySchNet4AIM in
the computation of local quantities, we will now proceed to explore
how this model can be used to distill valuable chemical insights. We
will focus on interpretability, showing how the synergy between
SchNet4AIM and QTAIM can provide physically coherent outputs in
line with XCAImodels in waymore complex scenarios than those used
in the training of the underlying models. For such a purpose, the
SchNet4AIMmodels trained on theQTAIMmetrics of small size CHON
molecules in their equilibrium configurations (detailed previously),
will be used to disentangle the intricacies behind a complex supra-
molecular process. This constitutes an ideal scenario to test the gen-
eralization abilities and transferability of SchNet4AIM while showing
how the latter can shed light on intricate chemical phenomena
through its intrinsically explainable outputs. As a proof of concept, this
will be exemplified with the CO2 capture and release by a recently
reported Calix[4]arene72, referred to as 13P, from now on. The latter is
equipped with NH2 groups that enable the formation of a hydrogen
bond (HB) driven supramolecular cage, within which the CO2 can get
easily trapped and subsequently released.

In recent years, cyclic oligomers, such as Calix[n]arenes, have
proven to be valuable receptors for a wide variety of ligands73–76. Their
high affinity andmodular backbone havemotivated the development
of tailor-made macrocycles for numerous applications77–81, including
gas sensing and capturing devices82–84. Indeed, and since it was first

reported in 199185, the complexation and fixation of CO2 by aromatic
macrocycles has becomeone of themost promising strategies behind
emerging CO2 capture technologies86–91. Finding the best-performing
receptors is a far from trivial task, which can benefit from modern
computational tools with the ability to dissect the chemical interac-
tions governing the complexation phenomenon. Although some
trends can be inferred from geometrical features, a more in-depth
picture often requires expensive tools, such as electronic metrics
(e.g., δ), whose prohibitive computational cost prevents their use in
dynamic scenarios.

In this section, we will show how the SchNet4AIM predicted
electron delocalization offers a robust analysis of the driving forces
governing the CO2-13P binding, paying special attention to how the
interpretable SchNet4AIM outputs can monitor this cage-opening and
CO2 release phenomena while showing the specific ligand–receptor
interactions that drive the binding events. At this point, it should be
stressed that this is a particularly challenging test since SchNet4AIM,
trained on isolated and small-size molecules in static configurations,
will be forced to make predictions on a dynamic scenario involving a
large-size and non-covalently bonded system. In this way, not only will
our model be extrapolating, but it will also be acting on completely
different chemical spaces and energy landscapes than those seen
throughout the training, evidencing the transferability of the latter. All
the insights shown in the upcomingdiscussions arebased solely on the
electron delocalization between relevant functional groups and che-
mical moieties obtained from the aggregation of raw δ SchNet4AIM
outputs. The local build-up of delocalized electron population
between two groups, corresponding to amaximum in the δ values, will
be used as an indication of a binding event. Furthermore, we will show
how SchNet4AIM can easily identify the most relevant pairwise terms
that dominate these events, evidencing the intrinsic explainability of
our approach. In this way, SchNet4AIM can aid the identification of the
driving process behind intricate chemical processes at a negligible
computational cost when compared to conventional quantum-
mechanical calculations.

At low temperature (300K), the CO2 molecule remains trapped
within the supramolecular cage, enabling the former to establish
prominent chemical contacts with the different moieties of 13P. For
instance, SchNet4AIM predicts clear-cut outbursts (up to 0.10 elec-
trons) in the electron delocalization between the guest molecule and
one of the NH2 groups, δ(CO2,NH2

1), as shown in blue in Fig. 5B (jj),
which suggest the formation of highly directional interactions. This is,
in fact, corroborated by the XCAI analysis of the predictions, which
reveals that these contacts are driven by the local N–O and H–O
interactions between the NH2 and CO2 moieties. This can be clearly
seen in Supplementary Figs. 47 and 48. A visual inspection of the
δ(CO2,NH2) (Supplementary Fig. 19) allows to sport discrete binding
events, where the NH2 groups take an active role in the stabilization of
the ligand within the binding pocket. In fact, there is an ideal agree-
ment between the position of the local maxima (e.g., 1318 fs for
δ(CO2,NH2

1)) in the latter and the geometries sampled throughout the
simulation, as shown in Fig. 5A. Analogous trends are found for the
CO2–Ph and CO2–OH delocalized electron counts (Supplementary
Fig. 19), evidencing the promiscuity of the guest molecule at estab-
lishing additional contacts, such as π-π or dipole-dipole interactions.
However, unlike in the case of the CO2–NH2 contacts, the explained
SchNet4AIM predictions gathered in Supplementary Figs. 49 and 50
suggest that the CO2–OH bonds are entirely driven by O–O
dipole–dipole interactions. This result is in perfect agreement with
chemical intuition since the proton-like H atoms of the OH groups,
embedded in a strong HB network, have a diminished ability to share
electrons with the nearby CO2 molecule.

Obtaining similar XCAI insights from plain geometrical features,
comprised in Supplementary Fig. 23, is considerablymore challenging,
as evidenced by the correlation plots, shown in Fig. 5B (further details
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on the rationale behind the correlation maps can be found in Sup-
plementary Note 15). The latter shows the binding events, character-
ized by localmaximaorminima in the evolution of the δ and ∣R∣ values,
respectively, throughout the simulation. The agreement between
electronic and geometrical predictions (shown in magenta) increases
as one moves from top to bottom, going from almost null to high
exponential correlations between both descriptors. The inability of
plain distances to capture orientation-driven contacts, coupled with
the information loss attributed to a point-to-point description,
becomes particularly detrimental for large groups with a considerable
amount of non-H atoms. The combination of these factors, along with
the short-sightedness of geometrical features in the description of
chemical interactions, explains the drop in performance of the latter at
detecting the NH2–NH2 >CO2–NH2 >CO2–Ph contacts.

Increasing the temperature to 900K promotes larger perturba-
tions of the equilibrium geometry of the 13P skeleton, resulting in
more dramatic changes in the electron delocalization at the top and
bottom of the cage, as monitored by the δ(OH,OH) and δ(NH2,NH2)
metrics (Supplementary Fig. 20). The thermal energy available at this
temperature is more than enough to partially disrupt the HB networks
holding the supramolecular cage, something which is particularly
detrimental for the highly flexible bottom scaffold of 13P. Such a
phenomenon is uniquely reflected in the XCAI δ(NH2,NH2) predictions
(Fig. 5C): the geometrical distortion starts to disrupt these interactions
at about t = 25 fs, and by t = 100 fs these have dropped to half their

starting value. The slightly longer-lasting NH3
2–NH

4
2 contact (shown in

blue) is further weakened at t = 250 fs, resulting in the full cleavage of
the cage, as corroborated by the trajectories.

From this point on, the alkyl-amine scaffolds get further apart
from each other, leading to null electron delocalizations. After the
(NH2)4 HB network cleavage, the ligand gets progressively unbounded
from the Calix, leading to the full dissociation of the system at
t ≈ 1500 fs. Within this process, some weak interactions blossom with
the differentmoieties of the receptor, as evidenced by the evolution of
their delocalized electron counts. These are primarily driven by mul-
tiple CO2 contacts with the unsaturated backbone of the receptor, as
evidenced from the bottompanel of Fig. 6 and lasting up to t ≈ 1000 fs.
However, some sporadic interactions are additionally observed within
this time window: for instance, at t = 750 fs, the δ metrics predict a
prominent contactwith one of the NH2 groupswhich, according to the
SchNet4AIM explanations, emerge from the simultaneous formation
of N–O and H–O interactions with one of the O atoms in CO2, see
Supplementary Fig. 51. This event is actually preceded by a more
subtle, though noticeable, spike in the δ(CO2,O) electron delocaliza-
tion which arises from the spatial approximation of the ligand to the O
linker of the same arm of the receptor, being completely driven by the
O–O interaction between both moieties, see Supplementary Fig. 52.
These observations, also found for the remaining correlation plots
(Supplementary Figs. 32–37), suggest that the here proposed group
electron delocalization is a much more robust and trustworthy metric

Fig. 5 | 13P-CO2 complexation and guest release. a 13P-CO2 system at 500 (i), 950
(ii), 1318 (iii), and 1600 (iv) fs throughout the 300 K simulation, corresponding to
some of the local maxima in the electron delocalization (δ) between CO2 and NH2,
δ(CO2,NH2). b Correlation maps between the electronic and geometrical descrip-
tors (i.e., the distance between the centers ofmass, ∣R∣) for the CO2-Ph

4 (j), CO2-NH1
2

(jj), and NH3
2-NH

4
2 (jjj) contacts throughout the 300K simulation. Blue dots indicate

those binding events exclusively predicted by SchNet4AIM, whereasmagenta ones

show contacts simultaneously (±10 fs) estimated by the geometrical and electronic
metrics. Each tick corresponds to 1000 fs. c 13P-CO2 system at 0, 100, 150, and
250 fs throughout the 900K simulation, along with the SchNet4AIM computed
electron delocalization between neighboring NH2 moieties, δ(NH2–NH2). For the
electronic metrics, reported in electrons (e−), the raw and bin-averaged data are
shown. Time is reported in femtoseconds (fs). Source data are provided as a Source
Data file.
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of binding events of very different nature, even in those scenarios
where geometrical features fail. Finally, it is noteworthy that these
group properties, which have proven to be valuable in the study of
supramolecular systems, have not been explicitly learned during the
training. Instead, the latter results from the addition of the physically
rigorous SchNet4AIM outputs. Altogether, the interpretability of the
SchNet4AIM local predictions, even in unexplored domains, highlights
the XCAI abilities of the resultant models. It should also be noted that
thefindings discussed in this section are in consonancewith the results
affordedby conventional quantumchemicalmethods. This is gathered
in Supplementary Note 16, which shows a direct comparison of the
SchNet4AIM-predicted and quantum-chemically computed QTAIM
electron delocalizations throughout the 13P–CO2 900K simulation.
The excellent correspondence between these two in the estimation of
chemical contacts and the electron delocalization accompanying the
latter further evidences the reliability and generalizability of the here
shown SchNet4AIM models. In fact, remarkably good MAE and RMSE
errors, in the range of 10−3–10−2 electrons (see Supplementary
Table 24), were observed in the estimation of the group electron
delocalizations, even in such intricate extrapolation scenarios.

Discussion
Achieving a physically coherent picture of complex chemical phe-
nomena is often only possible under the magnifying glass of compu-
tationally expensive techniques. In this framework, the use of atomic
descriptors, such as those arising within the quantum theory of atoms
inmolecules and relatedmethodologies, has been limited to the study
of small molecules while being unfeasible for the larger systems used
inmostmodern chemical research. Machine Learningmodels alleviate
this problem at the expense of interpretability so that the resulting
highly accurate “black box” models are only capable of providing
quantitative values. Additionally, accurately condensing chemical
information into a machine-readable format still remains one of the

main challenges in its application to chemistry. SchNet overcomes this
problem through continuous convolutional filter-generating models,
avoiding the tedious task of finely tuning the hand-crafted features
while showing state-of-the-art performance in the estimation of
molecular properties.

In this work, we have modified the SchNet architecture to enable
the prediction of atomic and interatomic quantum chemical quan-
tities. Our approach, SchNet4AIM, has been put to the test with a
collection of energetic and electronic terms, including one-body, such
as the kinetic energy or the atomic charge, and pair-wise properties,
such as the delocalization index or the interatomic energy. SchNe-
t4AIM yields not only accurate but also physically consistent predic-
tions, crucial to reconstructing the expectation values of molecular
observables. As such, and following Coulson’s maxim, our approach
provides valuable chemical insights without compromising the pre-
diction accuracy, being a clear example of an explainable chemical
artificial intelligence (XCAI) model. Moreover, such a feature emerges
naturally from the use of physically rigorous local quantum chemical
properties, which in turn results in intrinsically explainable models. In
interpolation regimes, SchNet4AIM outperforms previous
approaches44, increasing the prediction accuracy by more than an
order of magnitude while reducing the number of reference data
points required for model creation. Besides that, SchNet4AIM has
remarkable extrapolation abilities, yielding fairly robust and reliable
predictions far away from the sampling domains used for training and
contributing to the development of quasi-transferable, multi-purpose
ML models. In this way, we have shown how ML can be used for the
prediction of atomic or group quantities with great success, con-
tributing to the extension of the physical rigor of quantum chemistry
to previously prohibitive computationally intensive realms such as
molecular dynamics simulations.

Using the CO2 intake by an aromatic macrocycle as a proof of
concept model, we demonstrated how one can achieve a chemical

Fig. 6 | Chemical interactions between CO2 and 13P after the cage cleavage.
Evolution of the SchNet4AIM predicted electron delocalization (δ) between CO2

and the phenyl (Ph), oxo (O), and amino (NH2) moieties of 13P throughout the 13P-
CO2 900 K simulation and after the cage rupture event. Time is reported in

femtoseconds (fs). The labels R1, R2, R3, and R4 denote the position of the NH2, O,
and Ph moieties in 13P using the same numbering and color code as that shown in
Fig. 5A. Source data are provided as a Source Data file.
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understanding of complexation in non-covalently bonded supramo-
lecules on extended time scales, even when using SchNet4AIMmodels
trained on small-size, equilibrium molecules of a much simpler che-
mical space. Moreover, our findings demonstrate that the group
electron delocalization, directly obtained from the aggregation of the
SchNet4AIM pairwise outputs, is a valuable indicator for a manifold of
binding events, even in those scenarios where geometrical features
fail, such as in orientation-driven bonding. Besides predictable con-
tacts, XCAImodels can track very subtle phenomena (e.g., a hydrogen-
bond network rupture) with little to no impact on the total energy of
the system. In this way, SchNet4AIM has been shown to provide
interpretable and robust predictions, even when employed in com-
pletely different energy landscapes and chemical spaces than those
used for the training. Additionally, we have shown how the inter-
pretation of SchNet4AIM predictions allows to easily identify the
dominant pairwise interactions driving the aforementioned binding
events. This, which can be generalized to other domains with the aid of
the right real-space tools, opens the door to countless applications,
such as the in silico design of tailor-made molecules and materials or
the in-depth understating of supramolecular complexation phenom-
ena, to name a few. In the context of XCAI, two key challenges in
achieving explainability can be identified. Firstly, the rapid growth of
atomic pairs (≈M2) with the size of the system (M), poses difficulty in
discerning the most dominant pairwise interactions, especially in
complex supramolecular systems with a large number of groups.
Secondly, the current limitations of our XCAI implementation restrict
the explanations of how the group or molecular properties are influ-
enced by their local components, while the latter cannot be easily
traced back to the starting physical variables. However, employing
SchNet4AIM in conjunction with extrinsically explainable approaches
may address this limitation.

All things considered, our findings point out that the synergy
between Quantum Chemical Topology and Machine Learning will
likely crystallize in computational tools with many potential applica-
tions. Indeed, the development of explainable and robust SchNet4AIM
models is expected to be mostly limited by the quality of the under-
lying reference data, which is often remarkably expensive to compute.
Furthermore, fine-tuning of the SchNet representation parameters
along with the implementation of active learning protocols could
further improve the net performance of the models, something to be
explored in the near future. In this way, we have shown how the
combination of physically rigorous theories and advanced Deep
Learning architectures can contribute to the whitening of AI models.
Our proposal is able to provide not just numbers but chemically
interpretable knowledge. Thus, the computational bottleneck that
prevented the use of rigorous chemical descriptors to understand real-
life applications begins to be broken.

Methods
Quantum chemical topology
The structure of the electron density, ρ, like that of any scalar field, is
stored in the number and type of the critical points of its associated
gradient field, ∇ρ. The attraction basins of the local maxima of such a
field induce a topology in R3. Since, thanks to Kato’s cusp condition92,
each atomic nucleus is homeomorphic to such a maximum, the space
is partitioned, in general, into as many 3D regions as nuclei. The
electron density thus provides an exhaustive decomposition of R3 into
so-called atomic basins, Ω, and for an M nuclei system, R3 =

SM
A ΩA.

This is the starting point of QTAIM12. Once R3 is divided this way, every
global expectation value will become a sum of basin or domain con-
tributions. In the case of a one- (Ô) and two-electron (Ĝ) operators19

hÔi=
XM

A

hÔiA, hĜi=
XM

A

XM

B>A

hĜiAB, ð1Þ

respectively. Experience has also shown that the above domain expec-
tation values are transferable in the chemical sense: the atomic obser-
vables of functional groups in chemically similar environments are also
similar. For the sake of clarity, in what follows we will just consider a
minimal subset of these domain observables. The total electron count
(N) can be obviously decomposed into domain contributions as

N =
Z

R3
ρðrÞdr =

XM

A

Z

ΩA

ρðrÞdr=
XM

A

NA, ð2Þ

so that atomic charges qA = ZA −NA, so often employed to rationalize a
wide variety of chemical phenomena93–95, are thus defined in an orbital
invariant manner. Additional electron counting descriptors can be
formulated from the statistical analysis of population-related opera-
tors. For instance, the variance (σ2) of the electron population in a
given region is one of the most clear measures of spatial electron
localization. It is usually disguised as a so-called localization index (λ):

λðAÞ=NA � σ2
A: ð3Þ

Obviously, the spread of electrons sensed by σ2
A implies a correlation

of the population of different regions that can be quantified by the
appropriate covariance, σA,B, which is typically known as the delocali-
zation index, δ(A, B):

δðA,BÞ= � 2σA,B, ð4Þ

the latter are invariant generalizations of the classical two-center bond
order96, collapsing onto the Wiberg-Mayer index97,98 when this
formalism is translated into the traditional orbital language. λ and δ
rest on the irreducible part of the two-particle reduced-density matrix
(2RDM), being thus sensitive to electron correlation effects. Further
order cumulants99 of the statistical distribution of electron popula-
tions have been used to provide multi-center bond orders. Since the
variance of the total molecular electron count N vanishes, its localized
and delocalized contributions satisfy a sum rule, which is chemically
interpreted as the constancy of the total electron population after it is
dissected into localized and delocalized contributions:

N =
XM

A

λðAÞ+ 1
2

XM

A

XM

B

δðA,BÞ: ð5Þ

Turning to energetics, the interacting quantum atoms (IQA)
approach14 simply decomposes the expectation value of every term in
the standard Coulomb Hamiltonian, writing the energy as a sum of
intra-atomic (Eintra) and pairwise-additive interaction terms (Einter):

E =
XM

A

EA
intra +

XM

A

XM

B>A

EA,B
inter: ð6Þ

This one-body or self-energies group all the kinetic (T) and potential
(V) atomic terms that persist in the dissociation limit,

EA
intra =T

A +VA
ee +V

A
Ne, ð7Þ

where VA
ee and VA

Ne are intra-atomic electron-electron repulsions and
electron–nucleus attraction potential energies, respectively. On the
other hand, the inter-basin electronic and nuclear repulsion, along
with the electron-nucleusmutually attractive terms, comprise the total
interaction energy between any two basins:

EA,B
inter =V

A,B
ee +VA,B

NN +VA,B
Ne +VA,B

eN : ð8Þ

It should be noted that the electron-nucleus interaction between
atoms A and B arises from the mutual attraction between the electron

Article https://doi.org/10.1038/s41467-024-48567-9

Nature Communications |         (2024) 15:4345 9



density in one of the basins and the nuclear attractor of the other one,
yielding two well-defined contributions, namely VA,B

Ne and VA,B
eN .

SchNet4AIM: model construction and training
The SchNetPack hyperparameters used in this work can be found in
Supplementary Note 6. SchNet4AIM was tested against two different
databases, decomposed in standard training–testing–validation splits,
as detailed in Supplementary Note 8. The first of these comprises a set
of QTAIM electron metrics of C, H, O, and N containing neutral
molecules in their equilibriumor near equilibriumgeometries. For this
purpose, a 10% random subsample of a previously developed
database44, gathering neutral and singlet-spin structures of the CHON
equilibrium space, was employed. For each molecule, the QTAIM
atomic charges (M06-2X/def2-TZVP) are already provided, whereas
single-point calculations were computed at the same level of theory to
obtain the remaining electronic descriptors (λ and δ).

On the other hand, a second database was built to explore the
applicability of SchNet4AIM in the realm of energy prediction, relying
on IQA energetic partitioning. Considering the large computational
cost attributed to the latter, we decided to employ a set of smaller and
less chemically complex systems than those used in the aforemen-
tioned QTAIM database. For such a purpose, ab initio molecular
dynamics (BLYP-D3/6-31G(d,p), 300K) were performed on a collection
of gas-phase water clusters (H2O)n with n = [1–6], gathered from the
Cambridge database100. Structures were extracted every 10 fs (time-
step = 1.0 fs) to roughly sample the potential energy surface, resulting
in a total of 1016 geometries. Single-point calculations (B3LYP/6-
31G(d,p)) were run on the latter to obtain the corresponding wave-
functions from which the IQA partitioning of the total electronic
energy was achieved. For the sake of computational time, medium-
density integration grids were used throughout. Thus, lower perfor-
mances (when compared to the ML estimation of common chemical
properties) are generally expected when dealing with this reference
data. Details on the training protocol used for the training of SchNe-
t4AIM in combination with both databases can be found in Supple-
mentary Note 6. Additionally, the format used for the construction of
SchNet4AIM databases is specified in Supplementary Note 3.

In order to show the applicability of the SchNet4AIM predictions
as valuable indicators of chemical interactions in dynamic scenarios,
atomistic molecular dynamics calculations of a selection of supramo-
lecular systems were performed in the gas phase, starting from the
optimized geometries available in the literature72 at the HF-3C level of
theory as implemented in the ORCA quantum chemistry package101.
Time-steps in the range of 1–1.25 fs were used throughout for a varying
number of steps ranging from 2500 to 3500. The temperature was
kept constant with the aid of a Berendsen thermostat (set at 300 or
900K)with a coupling constant of 5–10 fs. As geometrical features, the
distance between the center of mass was employed.

The data gathered in the figures will be, in general, reported in
atomic units (a.u. or electrons) owing to the large nominal values for
some of the here studied quantities. However, and for the sake of
simplicity, the more commonly employed unit of kcalmol−1 (1
a.u. ≈ 627.5 kcalmol−1) will be used to refer to the energetic quantities
throughout the discussions. Further information about the computa-
tional resources and codes employed in this work can be found in
Supplementary Note 4. All molecular representations were rendered
with Jmol102.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study, including details about algorithms,
computational calculations, database creation, ML training, and

additional performance tests, are provided in the Supplementary
Information. Additionally, the actual databases used to train our
models are available at the SchNet4AIM GitHub repository. Source
data are provided with this paper103. Source data are provided with
this paper.

Code availability
The code and pre-trained SchNet4AIM models will be available, on-
line, at the SchNet4AIM GitHub repository104 (https://github.com/m-
gallegos/SchNet4AIM). The Gaussian and ORCA suites employed for
basic quantum chemical calculations are available from Refs. 105
and 101, respectively. On the other hand, the PROMOLDEN and AIMAll
codes used to run the QTAIM/IQA calculations are gathered in
Refs. 106 and 107 respectively.
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