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Abstract

Externally excited synchronous motors (EESMs) are a viable alternative to permanent mag-
net synchronous motors (PMSMs). They do not require rare-earth materials and o↵er an
additional degree of freedom in the control structure through the rotor circuit.

Reinforcement learning (RL) o↵ers several advantages over conventional controllers such
as field-oriented control (FOC) or model predictive control (MPC). RL is model-free and
data-driven, making it particularly useful for complex dynamic systems. Once adequately
trained, RL can manage nonlinear behavior with, theoretically, optimal performance without
the use of a complicated explicit model.

However, EESMs present a challenging control problem due to their complex dynamics
and strong cross-coupling between axes. This makes it di�cult for an RL agent to compre-
hend the drive’s dynamic system and provide optimal actions within predefined constraints,
such as current and voltage limitations. This thesis provides an initial proof of concept,
demonstrating that a data-driven controller with proper reward design can e↵ectively man-
age the intricate system of an EESM.
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Chapter 1

Introduction

1.1 Motivation

The current research, titled “Optimal Torque Control of Externally Excited Synchronous

Motors by Reinforcement Learning”, aims to control this AC drive using RL instead of

conventional PID controllers or MPC. The following sections summarize the motivation for

the choice of an EESM drive as the controlled system and the choice of RL as a control

strategy.

1.1.1 EESM, an Alternative to PMSM

To the author’s best knowledge, PMSM is the most e�cient electrical machine in the indus-

try and is widely used in a variety of applications, including electric vehicles and industrial

automation systems. Despite its power density and precise controllability, there are some

downsides that should be taken into consideration. First and foremost, PMSMs are ex-

pensive compared to other AC drives because permanent magnets are used in the rotor.

High-performance magnets are mostly made from rare earth elements, and the mining and

processing of these materials raise environmental concerns. Moreover, only a limited num-

ber of rare-earth material suppliers are available, with China accounting for up to 70% of

production in 2022 [6]. Therefore, if problems are encountered in Chinese production, it
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could lead to supply chain issues. Additionally, PMSMs are highly sensible to temperature;

operating at high temperatures can lead to demagnetization, resulting in reliability issues.

These challenges, along with constraints such as durability, and long-term reliability [6], have

led to extensive research into alternatives to PMSMs, with EESMs being one of them. The

comparison between EESM and PMSM is visualized in table 1.1.

Feature PMSM EESM

Rotor Permanent magnets Excitation winding

Excitation source No external source External DC supply

E�ciency High (absence of rotor losses) Slightly less than PMSM

Control complexity Moderate High (excitation control)

Initial cost Higher (rare-earth material) Lower initial cost

Temperature sensitivity Demagnetization Less a↵ected by temperature

Table 1.1: Comparison of PMSM and EESM [4]

Since the EESM does not rely on permanent magnets (rare-earth elements), its cost is

lower than that of a PMSM for high power density applications [4], while maintaining accept-

ably high e�ciency suitable for most applications. Another benefit of the EESM compared

to other AC machines is the extra control degree of freedom o↵ered by the excitation circuit

in the rotor. This, however, increases the complexity of the power electronics and the control

strategy employed.

1.1.2 Reinforcement-Learning-Based Control

RL is an inherently data-driven control method, meaning control actions are learned di-

rectly from data obtained through interactions with the controlled system, relying less on

the system’s plant modeling. Electrical drives are traditionally controlled using linear FOC

techniques in conjunction with proportional–integral (PI) controllers. This approach is only

slowly being replaced by more sophisticated methods of optimal control, especially MPC

[7]. The latter requires higher computational e↵ort during online operation and necessitates
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expert knowledge, either in the form of a prior model or through system identification tech-

niques to derive a model from observed data, which is its primary drawback. MPC makes

use of a mathematical model of the electrical drive, where typically some of the parasitic

e↵ects (e.g., inverter non-linearity, cross saturation, etc...) are neglected in order to reduce

the computational burden [7]. Data-driven algorithms would allow the controller to learn

and react to these e↵ects, since they are implicitly included in the measurement data [7].

These considerations encourage the investigation of RL methods for AC drive control. Fi-

nally, there is already proof that PMSMs can be controlled using RL methods, as evidenced

in [8] and [9].

1.2 Objective and Structure of Research

The primary objective of this thesis is to control the torque of an EESM using an RL agent.

This entails developing a data-driven and highly adaptive controller that is applicable to

this AC drive system. The optimization goal is to achieve minimum torque tracking error,

minimum transient time, and optimal e�ciency across a wide range of speeds, up to the base

speed.

However, several challenges may arise, such as long training periods, balancing the

exploration-exploitation dilemma, stabilizing the artificial neural network, and managing

the storage requirements for extensive training data. This thesis aims to tackle these chal-

lenges, starting with the current control strategy to ensure that the RL agent can understand

the complex environment and multi-dimensional state space. Once it is demonstrated that

the agent can learn and handle tracking the reference current, the research will smoothly

transition to optimal torque control in the following order.

Step: 1 Current control with RL agent

Step: 2 Torque control with PI-regulated rotor circuit and RL-regulated stator circuit

Step: 3 Torque control with RL agent
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Step: 3.1 Performance-priority control

Step: 3.2 E�ciency-priority control

Successfully addressing these challenges would enable the design of an RL agent for op-

timal torque control, providing an alternative to issues associated with traditional methods.

The analysis presented in this thesis will be conducted through simulations rather than ex-

periments, as the primary objective is to provide an initial proof of concept demonstrating

that complex systems like EESM can be e↵ectively controlled using RL.

1.3 Conceptual Framework

As explained above, this thesis focuses on two main aspects: EESM as a drive system and

RL as a controller. Firstly, the EESM will be discussed with the mathematical modelling

and analytical representation of its working principle. Secondly, this section will introduce

RL and its elements while addressing the challenges and objectives. It is important to note

that the drive model given in the following is explained exclusively for contextual purposes

in this report, and it is not known to the RL agent.

1.3.1 General EESM Modelling Approach

The derivation of the EESM model can be carried out on the basis of the schematic diagram

as shown in figure 1-1. The rotor of the machine has one field winding, and saliency generally

occurs due to its physical structure. However, the following approach is valid for both salient

and non-salient EESM. In this thesis, damper windings are not considered. For the following

mathematical expressions, the three-phase windings in the stator will be represented by coils

a, b and c, each having an identical number of windings. Every coil of the machine is modeled

as an ohmic-inductive load, leading to the machine’s dynamic equation as follows:

uabcf = Rabcfiabcf +
d abcf

dt
, (1.1)
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Figure 1-1: Schematic representation of EESM [1]

where uabcf = [ua, ub, uc, uf ]T is the vector of phase voltages and excitation voltage, iabcf =

[ia, ib, ic, if ]T is the vector of phase currents and excitation current,  abcf = [ a, b, c, f ]T

is the vector of stator flux linkage and excitation flux linkage andRabcf = diag([Rs, Rs, Rs, Rf ])

is the diagonal matrix of ohmic resistance.

For the derivation of the motor model, the parameter dependencies play an important

role and will be discussed below. Generally, the flux linkage depends on the stator current,

excitation current and rotor angle (✏el) [10]. The dynamics of temperature changing will

be neglected in this mathematical modelling of machine. Therefore, it can be described as

follow:

 abcf = f(ia, ib, ic, if , ✏el). (1.2)

For the following simplified model, only linear magnetization is considered as

 abcf = Labcfiabcf , (1.3)

27



where Labcf is the absolute inductances which vary with respect to the rotor angle. It can

be seen as a matrix:

Labcf =

2

6666664

Laa Mab Mac Maf

Mba Lbb Mbc Mbf

Mca Mcb Lcc Mcf

Mfa Mfb Mfc L↵

3

7777775
, (1.4)

whereas Lii(i 2 {a, b, c, f}) are the time-variant absolute self inductances and Mij(i, j 2

{a, b, c, f} ^ i 6= j) are the time-variant absolute mutual inductances [10].

Reference Frame Transformations

For the analysis of electrical machines, especially when dealing with 3-phase AC machines,

phase currents (ia, ib, ic) come in sinusoidal or time-variant waveform, making the control

structure complicated. To simplify the control of AC drives, an axis transformation is per-

formed. This involves transforming the 3-phase stator to a fictitious 2-phase stator, and

then from the 2-phase stator to a rotating dq frame. Direct transformation from the 3-phase

stator to the rotating dq frame is also possible.

2

4x↵

x�

3

5 =
2

3

2

41 �
1
2 �1

2

0
p
3
2 �

p
3
2

3

5

2

6664

xa

xb

xc

3

7775
= Tabc!↵� xabc, (1.5)

T↵�!abc = T†
abc!↵� =

3

2

2

4
2
3 �

1
3 �1

3

0
p
3
3 �

p
3
3

3

5
T

. (1.6)

There, † depicts the matrix pseudo-inverse (for non-square matrices). The notation x is used

for general purpose and the scaling of 2
3 is used to get the same amplitude for the variables

in the equivalent 2-phase model. When dealing with the EESM, the excitation variable is
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also taken into consideration.

2

6664

x↵

x�

xf

3

7775
=

2

4Tabc!↵� 02⇥1

01⇥3 1

3

5

2

6666664

xa

xb

xc

xf

3

7777775
= Tabcf!↵�f xabcf , (1.7)

T↵�f!abcf = T†
abcf!↵�f =

2

4T↵�!abc 03⇥1

01⇥2 1

3

5 . (1.8)

To use a synchronous reference frame to the rotor, the rotor field oriented coordinates trans-

formation is done as follow:

2

4xd

xq

3

5 =

2

4 cos(✏el) sin(✏el)

� sin(✏el) cos(✏el)

3

5

2

4x↵

x�

3

5 = T↵�!dq x↵�, (1.9)

Tdq!↵� = T�1
↵�!dq =

2

4cos(✏el) � sin(✏el)

sin(✏el) cos(✏el)

3

5 , (1.10)

2

6664

xd

xq

xf

3

7775
=

2

6664

cos(✏el) sin(✏el) 0

� sin(✏el) cos(✏el) 0

0 0 1

3

7775

2

6664

x↵

x�

xf

3

7775
= T↵�f!dqf x↵�f , (1.11)

Tdqf!↵�f = T�1
↵�f!dqf =

2

4Tdq!↵� 02⇥1

01⇥2 1

3

5 , (1.12)

where ✏el is the rotor’s electrical angle which is changing with respect to time. With the

help of above-mentioned axes transformation, the dynamic equation (1.1) is rewritten in ↵�

reference frame as follow:

u↵�f = R↵�fi↵�f +
d ↵�f

dt
, (1.13)

where

R↵�f = Tabcf!↵�fRabcfT↵�f!abcf , (1.14)
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and in the dq reference frame,

udqf = Rdqfidqf +
d dqf

dt
+ !elJ dqf , (1.15)

where

Rdqf = T↵�f!dqfR↵�fTdqf!↵�f . (1.16)

In (1.15), J is the result of mathematical operation of axis transformation which can be seen

as:

J =

2

6664

0 �1 0

1 0 0

0 0 0

3

7775
. (1.17)

Then, !el from equation (1.15) is the electrical speed of the machine and it can be obtained

from a rate of change of electrical position with respect to time as follows:

!el =
d✏el
dt

and !el = p!mech, (1.18)

where !mech is the mechanical speed of the machine and p is the number of pole-pairs.

Therefore, the above dynamic equation can be rewritten as below:

usd = Rsisd +  ̇sd � !el sq, (1.19a)

usq = Rsisq +  ̇sq + !el sd, (1.19b)

uf = Rfif +  ̇f . (1.19c)

The dq reference frame is defined with the d-axis which is aligned with the rotor’s axis. After

applying the appropriate transformation to equation (1.3), the flux equation results in

 dqf = Ldqfidqf , (1.20)
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where

Ldqf = T↵�f!dqfL↵�fTdqf!↵�f , (1.21)

L↵�f = Tabcf!↵�fLabcfT↵�f!abcf . (1.22)

Then, the equation (1.20) can be rewritten as:

 sd = Ldisd + Lmif , (1.23a)

 sq = Lqisq, (1.23b)

 f = Lfif +
3

2
Lmisd, (1.23c)

which exhibits significant cross-coupling between the d- and f-axis. The inductance in matrix

form can be seen as follow [5]:

Ldqf =

2

6664

Ld 0 Lm

0 Lq 0

3
2Lm 0 Lf

3

7775
. (1.24)

The 3
2 term appears as a consequence of the coordinate transformation criteria provided in

equation (1.5) to (1.12).

1.3.2 Development of Electromagnetic Torque

The electrical machines are electro-mechanical energy converters, and transform electrical

energy into mechanical energy or vice versa according to the operating regions. The electro-

magnetic torque is developed through the interaction of magnetic fields established by the

currents in the stator and rotor, and it can be expressed as follows [11]:

Tem =
3

2
p (�isd sq + isq sd) . (1.25)
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By substituting the equations (1.23a) and (1.23b) into the above equation, torque can be

rewritten as:

Tem =
3

2
p
⇣
� isd(Lqisq) + isq(Ldisd + Lmif)

⌘
,

Tem =
3

2
p
⇣

Lmifisq| {z }
main torque

+(Ld � Lq)isdisq| {z }
reluctance torque

⌘
.

(1.26)

The electromagnetic torque can be divided into two parts: the main torque which is generated

by the interaction between the rotor current and the stator current, and the reluctance torque

which arises from the di↵erence in inductances along the d-axis and q-axis of the machine.

It is important to highlight the behaviour of d- and q- axis inductances in EESM because

it is quite di↵erent from PMSM. In surface PMSM, if the magnet is mounted on the surface

of the rotor, Ld = Lq and no reluctance torque will be developed. In interior PMSM, if the

magnet is put inside the rotor, under the consideration of rotor flux orientation, Ld < Lq

because of the magnet’s permeability. Therefore, in interior PMSM, negative d-axis current

is preferred in order to have positive reluctance torque. However, the scenario of Ld > Lq is

not common in PMSM while it is normal in EESM.

In EESM, the values of Ld and Lq mainly depend on rotor geometry, and due to the rotor

winding slots, d-axis inductance is typically higher than q-axis inductance [10]. In cases of

high magnetic saturation, the situation may reverse, leading to Ld < Lq. This scenario,

however, is not considered in the scope of this research

1.3.3 Current and Voltage Limit

The stator current is limited by the thermal characteristics of the input electrical power

supply and the motor. The maximum available current for d- and q-axes can be defined as

follow:

i2sd + i2sq = i2s  I2s,max. (1.27)

Similarly, the stator voltage is limited by the voltage output capability of the power electronic

converter and the insulation level of the motor winding. The maximum available voltage for
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d- and q-axes is:

u2
sd + u2

sq  U2
s,max. (1.28)

If the space vector modulation or homo-polar harmonic injection is used for switching pat-

tern, the maximum voltage in the linear modulation region becomes:

Us,max =
UDCp

3
. (1.29)

1.3.4 Optimal Operation of EESMs

The maximum torque per current (MTPC) is one of the popular methods to operate the AC

drive when the motor is running below the base speed, because copper losses are minimized

and maximum e�ciency is achieved. Thanks to the field current, there is one additional

degree of freedom for EESM compared to PMSM. However, this means that more than

one current contributes to reduce copper losses. Therefore, instead of MTPC, maximum

torque per copper losses (MTPCL) is more appropriate for operating EESM. Thus, the term

MTPCL will be utilized in the following sections. using the parameters from table 1.2.

The behaviors of isd, isq, if and istator are illustrated in figure 1-2, using the parameters

from table 1.2. This analysis covers operating points ranging from minimal to maximum

torque under the MTPCL method, for steady-state conditions with only current limitations

applied.

1.3.5 Power Electronic Converters Modelling

A fundamental component of electric drives are the power electronic converters, which apply

the desired voltage actions to the motor terminals. For the two main circuits involved in

EESM (the excitation circuit for the rotor and the armature circuit for the stator), at least

two power electronic converters are required.
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Figure 1-2: MTPCL current trajectories

Four Quadrant Converter

For the rotor circuit, a DC/DC converter is required to apply (in average) arbitrary voltages

to the excitation circuit terminals from the available DC bus. In this thesis, the 4-quadrant

converter (4QC) is considered as shown in figure 1-3.

The 4QC is versatile and applicable to di↵erent voltage outputs ranging from +UDC

to �UDC. For this use-case, quadrants 1 and 4 are utilized since it is only necessary to

control the excitation current from zero to its upper limit based on the operating points of

EESM. According to the converter’s structure, the available excitation voltage would be uf 2

[�UDC, UDC]. From the controller perspective, the action command provided is the desired

voltage u⇤
f . This voltage command is, in a real application, achieved by appropriate switching

pulses generated by a modulation technique, such as PWM or SVM. In this analysis, the

switching pulses are not considered, and the converter model will apply the desired (limited)

average voltage for the duration of the sampling period.
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Figure 1-3: Four quadrant converter

B6 Bridge Converter

For the control of the stator circuit of three-phase EESM, a three-phase two-level converter

or B6 bridge three-phase converter is considered as shown in figure 1-4.

Figure 1-4: B6 bridge converter

The inputs to the B6 bridge converter are the supply DC link voltage comes from the

battery or rectified grid supply, and the switching commands for the transistors (IGBTs/
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MOSFETs) to turn ON or OFF. Typically, the controllers provide the desired output voltage

which needs to be mapped to a switching pattern over time. The switching schemes determine

the output voltage of the converter, with various modulation methods available for this

purpose. Pulse width modulation (PWM) with homo-polar harmonics injection and space

vector modulation (SVM) are very common. As seen in figure, the available stator voltage

is us 2

� UDC

2 , UDC
2

�
. As mentioned above, the action command provided is the desired

voltage u⇤
dq. The converter model applies this desired (limited) average voltage over the

sampling period, without considering the switching pulses.

1.3.6 Gym Electric Motor Toolbox

The gym-electric-motor (GEM) package is a software toolbox in python for the simulation

of di↵erent electric motors to train and test RL motor controllers, and it models an electric

drive system by its four main components: voltage supply, mechanical load, converter and

electric motor [12]. The general structure of such a system is depicted in figure 1-5.

Figure 1-5: Simplified structure diagram of an electric drive system

The voltage supply is modeled by a fixed supply voltage with UDC = 200V as per the

selected motor parameters, providing the necessary power to run the motor. Then, for the

mechanical load, the constant speed load is considered in this report.

For the power electronic converters, GEM o↵ers di↵erent converters and as mentioned

36



above, 4QC and B6 bridge converters are considered in this thesis for rotor and stator

circuits. The switching states determine the output voltage of the converter, however, from

a simulation point of view, these methods require very tiny time steps to accurately cover

the switching instants. Therefore, to speed up the simulation and reduce the computer’s

CPU requirements, the modulation schemes are neglected, and a dynamic average model is

used in the GEM environment [13].

For the electric motor, a variety of models are available in the GEM toolbox, with EESM

being used in this thesis as discussed in the motivation. In RL terms, the EESM and the

converters will act as the environment, since the RL controller interacts with the electric drive

and learns the system over time. Therefore, later in this report, the term “environment”

refers to the drive system of the EESM. In addition, GEM provides both continuous control

set (CCS) and finite control set (FCS) options for controlling the current, speed, and torque

of the EESM. However, this thesis will focus on CCS, and the relevant environment will be

used accordingly in the following sections.

1.3.7 Introduction to Reinforcement Learning and its Elements

As illustrated in figure 1-6, RL is a branch of machine learning (ML), specifically designed

for decision-making processes. The general tasks associated with each branch of ML are

shown in table 1.3.

The elements of RL are depicted in figure 1-7, with the agent and environment as the

fundamental components. The environment represents the system or entity that the agent

interacts with [17]—in this case, the EESM drive. The agent is the entity that interacts

with the environment to achieve specific goals. In this use case, the agent functions as

the controller, making decisions to control the drive system using a predefined action set.

Throughout this report, the term “agent” refers to the controller.

37



Symbol Description Value Unit

p number of pole-pairs 2 -

Ld d-axis inductance 3.78 mH

Lq q-axis inductance 1.21 mH

Lf rotor inductance 870 mH

Lm coupling inductance 40 mH

Rs stator resistance 123 m⌦

Rf rotor resistance 15.6 ⌦

n winding ratio Ns
Nf

0.057 -

is,nom nominal stator current 25 A

if,nom nominal rotor current 5 A

uDC DC link voltage 200 V

!r,lim maximum angular velocity 7000 1
min

!r,base base angular velocity 2000 1
min

Tnom nominal torque 15 Nm

Table 1.2: Parameterization of the considered drive system, EESM [5]

Markov Decision Processes

RL is generally used to solve Markov decision processes (MDPs), which are a mathematically

idealized form of RL problems. MDPs allow for precise theoretical statements and provide

insights into RL solutions, as many real-world problems can be abstracted as MDPs [3].

Therefore, MDPs are discussed below, and it is important to note that this thesis focuses

exclusively on MDPs where all states are fully measurable.

An MDP is defined by a tuple (X ,U ,P ,R, �), where X is a set of states. In this

investigation, X = {!mech, T, isd, isq, if , ✏el, ...} are general representation of states of EESM

as environment regardless of time step and fully observable to the agent. Then, U is a set

of discrete-time actions Uk 2 U . As discussed in the EESM section, the d-, q- and f-axes

voltages are involved in the dynamics equations (1.19) and are considered actions in the RL
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Figure 1-6: General disciplines of machine learning

Supervised learning Learning a mapping between a set of input variables and out-
put variables, then applying this mapping to predict the out-
puts for unseen data [14].

Unsupervised learning Learning to represent particular input patterns in a way that
reflects the statistical structure of the overall collection of in-
put patterns [15].

Reinforcement learning Learning over time to provide optimal control actions by in-
teracting with an environment [16].

Table 1.3: General purposes of di↵erent branches of machine learning

framework. Therefore, the action set in this analysis is U = {usd, usq, uf}. Moreover, P , the

state transition probability is defined as:

P = Pxx0 = P [Xk+1 = x0 | Xk = x] , (1.30)

which means the transition probability of moving from state x to x0 with respect to time step,

and in this analysis, a deterministic environment is considered, where the state transition is

governed by the EESM’s ordinary di↵erential equations (ODEs) as outlined in the preceding

sections.
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Figure 1-7: The basic RL operation principle [2]

In addition, R is a reward function which is defined mathematically as:

R = Ru
x = E [Rk+1 | Xk = xk, Uk = uk] . (1.31)

This represents the expected reward received after taking action U in state X and therefore,

the agent receives a reward on each time step. While the reward directs the agent to control

the EESM in the desired behaviour, the return (the cumulative reward over an episode or

over time) as shown in equation (1.32) is more significant when evaluating how well the agent

performs throughout the episode or across the duration of a continuing task.

In RL, the interactions between an agent and its environment are typically structured

into episodes. An episode is a sequence of states, actions, rewards and state transitions that

the agent experiences. There are generally two types of episodes: one with a termination

state and the other without a natural end. For example, winning a chess game represents

a termination state, marking the end of the episode, whereas controlling AC drives is a

continuing task without a specific endpoint. For an episodic task, the return can be defined

in mathematical form as:

gk = rk+1 + rk+2 + ...+ rN , (1.32)

where gk is the return at time step k which is the summation of the rewards from time step
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k + 1 until the episode end, terminal step k = N [3]. For a continuing task, the future

rewards should be discounted to prevent the return becoming infinite. That is why, �, the

discount factor is involved in a tuple of MDP, and � 2 {R | 0  �  1}. Then, the return

becomes

gk = rk+1 + �rk+2 + �2rk+3 + ... =
1X

i=0

�irk+i+1. (1.33)

The return can also be calculated recursively as follows:

gk = rk+1 + � gk+1. (1.34)

Concerning the range of discount rate, the return can be discussed in numeric viewpoint and

strategic viewpoint [3].

Numeric Viewpoint:

If � = 1 and rk > 0 for k �!1, gk in equation (1.33) becomes infinity.

If � < 1 and rk is bounded for k �! 1, gk in equation (1.33) is bounded which means the

return would be within a certain range.

Strategic Viewpoint:

If � ⇡ 1, the agent is farsighted, looking forward to the future reward.

If � ⇡ 0, the agent is shortsighted, only interested in immediate reward.

Then, if rk = r is a constant and � < 1, the return from equation (1.33) would be [3]:

gk =
1X

i=0

�ir = r
1X

i=0

�i = r
1

1� �
. (1.35)

Therefore, the returns can be used to evaluate how good the agent’s actions are over the

long run, not just in the immediate future.

The MDP has the Markov property, which implies that the future state is dependent solely

on the current state and action, not on the sequence of past states [17]. Mathematically,

this is expressed as:

P(Xk+1 = x0 | Xk = x) = P(Xk+1 = x0 | X0 = x0, X1 = x1, . . . , Xk = x). (1.36)
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This equation highlights the memory-less property, a key aspect of the Markov property,

indicating that the transition to the next state Xk+1 depends only on the current state

Xk, and not on any previous states. Furthermore, if the state transition probabilities are

consistent over time, the process is said to have the time-homogeneous property [17]. This

is expressed as:

P(Xk+2 = x0 | Xk+1 = x) = P(Xk+1 = x0 | Xk = x), (1.37)

for any time step k and all possible states. The time-homogeneous property ensures that

transition probabilities remain constant over time, meaning the rules governing state tran-

sitions do not change. As a result, the MDP’s state transitions depend solely on the current

state and action, reflecting both the memory-less (Markov) and time-homogeneous proper-

ties.

The objective of the MDP is to find the optimal policy ⇡⇤ that maximizes the return.

A policy is a distribution over actions given states [3]. It could be a strategy or a rule that

guides an agent in selecting specific actions for each state over time, as illustrated in equation

(1.39), making it an integral part of the agent. Generally, the policy can be described as:

⇡(uk | xk) = P [Uk = uk | Xk = xk] . (1.38)

In MDPs, policies can be either stochastic or deterministic, and they depend solely on

the current state, fully defining the agent’s behavior [3]. The deterministic policy is intended

to be used in this analysis (detailed discussion in subsection 1.3.8), and it involves directly

mapping states to actions:

uk = ⇡(xk). (1.39)

For example, when someone is driving a car, a policy might be a set of rules like

“if the tra�c light is red, stop and if it’s green, go”, where stopping and going are the ac-

tions and the underlined phrases represent the policies. In some cases the policy is a simple

function or lookup table, while in complex cases, it may involve the extensive computation

such as a search process [16].
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The concept of a value function is introduced to determine how good a particular policy

is. A value function represents the estimated expected return, helping the agent evaluate the

desirability of states or state-action pairs under a particular policy. Generally, there are two

types of value functions: the state-value function and the action-value function. However,

for the utilization of a deterministic policy, the action-value function is of greater interest.

The action-value function of an MDP is the expected return starting in state xk taking

the action uk and then following the policy ⇡:

q⇡(xk, uk) = E⇡[Gk|Xk = xk, Uk = uk] = E⇡

" 1X

i=0

�irk+i+1|xk, uk

#
. (1.40)

For example, if q⇡(xk, uk) = 0.9, it means that the expected return from state xk, taking

the action uk, and afterwards following the policy ⇡ is 0.9. In order to calculate all the

action values in a closed form, the Bellman equation can be used where the value function

is recursively defined. The above equation (1.40) can be written as:

q⇡(xk, uk) = E⇡

⇥
Rk+1 + �Rk+2 + �2Rk+3 + ...|Xk = xk, Uk = uk

⇤

= E⇡

⇥
Rk+1 + �(Rk+2 + �Rk+3 + ...)|Xk = xk, Uk = uk

⇤

= E⇡

⇥
Rk+1 + �Gk+1|Xk = xk, Uk = uk

⇤

= E⇡

⇥
Rk+1 + �q⇡(Xk+1, Uk+1)|Xk = xk, Uk = uk

⇤
.

(1.41)

Therefore, the action-value function can be mentioned as Bellman equation incorporating

transition probabilities explicitly as follow:

q⇡(xk, uk) = Ruk
xk

+ �
X

xk+12X

puk
xkxk+1

0

@
X

uk+12U

⇡(uk+1|xk+1)q⇡(xk+1, uk+1)

1

A , (1.42)

where puk
xkxk+1

is the transition probability from state xk to xk+1 under the action uk. As

mentioned above, the goal of an MDP is to find the optimal policy, which is a policy that

is better than or equal to all other policies. Although there may be more than one [16],

all optimal policies are denoted as ⇡⇤. They share the same optimal action-value function,
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denoted as q⇤. The optimal action-value function of an MDP is the maximum action-value

function over all polices:

q⇤(x, u) = max
⇡

q⇡(x, u). (1.43)

The Bellman optimality equation is applicable to the action value and for the finite MDP,

q⇤(xk, uk) = Ruk
xk

+ �
X

xk+12X

puk
xkxk+1

max
uk+1

q⇤(xk+1, uk+1). (1.44)

1.3.8 Introduction to Deep Deterministic Policy Gradient

Deep RL will be used to control the EESM drive. Among the deep RL algorithms, the deep

deterministic policy gradient (DDPG) algorithm [18] is selected for this thesis, as contin-

uous action spaces are considered for the machine, and a deterministic policy is preferred

for drive control. The DDPG algorithm was inspired by the success of Deep Q-Networks

(DQNs) in discrete action spaces [19]. However, DQNs are not directly applicable to con-

tinuous action spaces, leading to the development of DDPG, which combines DQNs and

Deterministic Policy Gradient (DPG) methods. The applications of DQNs and DDPG al-

gorithms in controlling PMSM drives are discussed in [8] and [9]. In DDPG, an actor-critic

o↵-policy approach is used to handle continuous state and action spaces.

Deterministic Policy Gradient

The DPG algorithm is a policy gradient method which works with deterministic policies

instead of stochastic policies. Policy gradient methods optimize the policy directly by com-

puting the gradients of the expected return with respect to the policy parameters. The

objective is to maximize the expected return J(✓) where ✓ are the parameters of the policy.

The DPG only integrates over the state space for the policy as mentioned in equation (1.39),

while the stochastic case integrates over both state and action spaces for the policy gradient.

In other words, deterministic policies directly map states to actions while the action is

drawn from a probability distribution in stochastic policies [20]. As the name stated, the

DPG emphasizes on deterministic parameterized policies ⇡(x, ✓), and the gradient of J(✓) is
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defined as [3]:

r✓J(✓) = E⇡

"
r✓⇡(x, ✓)ruq(x, u)

����
u=⇡(x)

#
. (1.45)

As seen above, the equation includes two gradients:

• r✓⇡(x, ✓): policy gradient with respect to its parameters,

• ruq(x, u): gradient of the action-value function with respect to the action.

Artificial Neural Network

As previously discussed, DDPG is well-suited for environments with continuous action spaces

and employs an actor-critic architecture. In this architecture, with the help of artificial

neural networks (ANNs), the actor network determines the actions, while the critic network

evaluates these actions.

ANNs are fundamental components of many modern machine learning algorithms, includ-

ing those in reinforcement learning. Inspired by the structure and function of the human

brain, ANNs consist of an input layer, an output layer, and one or more hidden layers. These

layers contain neurons or nodes that are interconnected. Each neuron in the network pro-

cesses the weighted sum of inputs from the previous layer and applies an activation function

to produce an output, as illustrated in figure 1-8. The connections between neurons are

represented by edges, which correspond to the parameters of the network. The output of a

neuron can be mathematically represented as:

y = f

✓ nX

i=1

wi · xi + b

◆
, (1.46)

whereas xi are the input values, wi are the weights, b is the bias term and f is the activation

function.

While various activation functions are available, LeakyRELU and Tanh are used in this

analysis as shown in figure 1-8 due to their respective advantages. LeakyRELU as activation
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Figure 1-8: Visualization of neurons of an ANN [3] and exemplary activation functions

function is defined as:

f(x) =

8
><

>:

x if x > 0,

cx if x  0,
(1.47)

where c is a constant with 0 < c < 1. LeakyReLU is used in the hidden layers of both the

actor and critic networks. It mitigates the issue of neuron deactivation by allowing a small

gradient for negative inputs. Then, tanh as activation function can be written as:

f(x) = tanh (x). (1.48)

The tanh function is utilized in the output layer of the actor network, ensuring that the

actions are bounded within the desired range.

ANN parameters are usually optimized iteratively using a variant of gradient descent

during the training process of the neural network [3].

W (l)  W (l) � ↵rW(l)L(y, ŷ), (1.49)

b(l)  b(l) � ↵rb(l)L(y, ŷ). (1.50)
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There, ↵ is the step size and L(.) represents the loss between the ground truth vector y and

the estimation vector ŷ, with l denoting the layer.

Structure of Deep Deterministic Policy Gradient

The structure of DDPG’s working principle is visualized in figure 1-9 and it contains the key

components of actor network, critic network, target networks, replay bu↵er and exploration

noise.

Figure 1-9: Visual summary of DDPG working principle [3]

From the two gradients included in the gradient equation (1.45), the actor network ⇡(x, ✓)

represents the policy, mapping states to actions. It approximates the deterministic policy

using an ANN and adjusts the policy parameters in the direction of actions that increase the

action-value q(x, u). This process enhances decision performance and provides continuous

action outputs for given states as follows:

J(⇡✓) = E [q(x, ⇡(x, ✓))] . (1.51)

Then, it is updated by maximizing the expected return from the current state as stated in

equation (1.45). However, the real action-value function is not initially known, so the critic

network approximates the action-value function using the ANN, and estimating the quality
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of actions taken by the policy to guide the policy update as follows:

w  w + ↵
h
r + �max

u
q̂(x0, u,w)� q̂(x, u,w)

i
rwq̂(x, u,w). (1.52)

Then, the critic network is updated by minimizing the loss as follows:

L(w)| {z }
Generalized Cost Function

=
⇥ �

r + �q(x0,⇡(x0,✓),w�)
�

| {z }
Target Network Information

� q(x,u,w)| {z }
Q-value Estimator

⇤2
Db

. (1.53)

Furthermore, target networks are introduced to estimate the Q-learning target. The pri-

mary purpose of target networks is to stabilize training by reducing large oscillations in the

parameters. This is achieved by decoupling the target Q-values from the current Q-values

and gradually updating the target network. In the DDPG algorithm, target networks are

continuously updated using a low-pass filter characteristic, as described below:

w�  (1� �)w� + �w, (1.54a)

✓�  (1� �)✓� + �✓. (1.54b)

Here, w and w� represent the critic weights and delayed critic weights, respectively, while ✓

and ✓� represent the policy weights and delayed policy weights, respectively. The parameter

� refers to the equivalent filter constant, a hyper-parameter in the range of 0 < � < 1. If

the � value is small, the target networks are updated slowly; if it is large, the networks are

updated more quickly.

Then, the replay bu↵er D is a crucial component in DDPG, used to store the transitions

hx,u, r,x0, donei observed during training after each step, where ‘done’ refers to the condi-

tion where the environment is either terminated or truncated. This bu↵er enables o↵-policy

learning by allowing the algorithm to sample and learn from past experiences, rather than

relying solely on the most recent transitions. O↵-policy learning means that the algorithm

can learn from actions generated by a behavior policy, which includes exploration noise,

rather than strictly following the current policy being optimized. Ideally, o↵-policy learning
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leverages two distinct policies [3] as follows:

• Behavior policy b(u|x): explores the environment to generate diverse experiences.

• Target policy ⇡(u|x): learns from those experiences to refine and become the optimal

policy.

One of the most challenging dilemmas in RL is balancing between exploration and exploita-

tion. Exploration involves the agent trying various actions to gather information and learn

more about the environment, enabling it to discover which actions are likely to yield the

highest returns. On the other hand, exploitation involves the agent using the best knowl-

edge gained from previous experience to choose the actions that have provided the highest

rewards so far. While this approach can be beneficial for achieving short-term maximum

rewards, it may result in missing out on better actions that could yield even higher rewards

because the agent avoids trying new actions and sticks to what is already known.

In DDPG, exploration poses a unique challenge due to the deterministic nature of the

policy, where the same action is always selected for a specific state. This determinism

can limit the algorithm’s ability to discover potentially better policies. To address this,

an o↵-policy learning approach is employed. The key idea is to select actions based on

a stochastic behavior policy, ensuring su�cient exploration, while simultaneously learning

about a deterministic target policy.

Among the available exploration noise types, Gaussian noise distribution is introduced

due to its ability to generate temporally correlated noise, which is highly e↵ective for explor-

ing environments in reinforcement learning [21].

unoisy,k = uk +N (µ, �2) (1.55)

The equation above (1.55) illustrates how the deterministic policy incorporates noise into

the action selection process whereas uk is the action value at time step k before the noise

added, and unoisy,k is the noisy action value at time step k where N (µ, �2), the Gaussian

noise sample with mean µ and standard deviation � is added.
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Finally, the training process in DDPG involves iteratively improving the policy by in-

teracting with the environment, collecting experiences, and updating the ANNs that ap-

proximate the policy and action-value functions. A more detailed step by step procedure is

provided in the pseudo code in Algorithm 1.

Algorithm 1 Deep Deterministic Policy Gradient (DDPG) [3]

1: input: di↵. deterministic policy function ⇡(x,✓) and action-value function q̂(x,u,w)
2: parameter: step sizes and filter constant {↵w,↵✓,�} 2 {R|0 < ↵,� < 1}
3: init: weights w = w� 2 Rs and ✓ = ✓� 2 Rd arbitrarily, memory D
4: for j = 1, 2, . . ., episodes do
5: initialize x0;
6: for k = 0, 1, . . . , T � 1 time steps do
7: uk  apply from ⇡(xk,✓) w/wo noise or from behavior policy;
8: observe xk+1 and rk+1;
9: store tuple hxk,uk, rk+1,xk+1i in D;
10: sample mini-batch Db from D (after initial memory warmup);
11: for i = 1, . . . , b samples do calculate Q-targets
12: if xi+1 is terminal then
13: yi = ri+1

14: else
15: yi = ri+1 + �q̂(xi+1,⇡(xi+1,✓�),w�)
16: end if
17: end for
18: fit w on loss L(w) = [y�q̂(x,u,w)]2Db

with step size ↵w;
19: ✓  ✓ + ↵✓[r✓⇡(x,✓)ruq̂(x,u,w)|u=⇡(x,✓)]Db

;
20: Update target net. w�  (1� �)w� + �w, ✓�  (1� �)✓� + �✓;
21: end for
22: end for

1.4 Basic Setup for training the agent

The DDPG algorithm was implemented using Python 3.9.19, with the setup and training of

the DDPG model accomplished through the Stable-Baselines3 library. The AC drive system

was simulated using the GEM library. Additionally, several other essential libraries were

utilized, as summarized in table 1.4. The algorithm implementation and agent training will

be carried out on a workstation with specifications as listed in table 1.5.
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Component Library/Tool Version

Programming language Python 3.9.19

RL library Stable-Baselines3 [21] 2.3.0

Deep learning framework PyTorch 2.2.2

Numerical computation Numpy 1.26.4

Serialization Cloudpickle 1.6.0

Environment interface Gymnasium [22] 0.29.1

Legacy environment API OpenAI Gym 0.17.3

AC drive simulation gym-electric-motor [12] 2.0.0

Table 1.4: Software components and versions

Workstation Specifications

CPU Apple M2

RAM 8 GB

Hard drive memory 256 GB

OS macOS Sonoma 14.3

Table 1.5: Detail data of workstation
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Chapter 2

Reinforcement Learning based

Current Control

In this chapter, the CCS current control of the EESM is examined using the DDPG algorithm.

The control is performed in rotor-oriented coordinates within this framework. The schematic

diagram of the overall control structure is presented in figure 2-1, where a B6 bridge converter

is utilized for the stator circuit, and a 4QC converter is applied to the rotor circuit, as

discussed in section 1.3.5. The primary objective of this control structure is to accurately

track the reference current, ensuring minimal steady-state error and reduced transient time.

2.1 RL-CCS Current Control

As shown in figure 2-1, the input to the control system comprises three reference currents

(i⇤sd, i
⇤
sq, and i⇤f ), which serve as the targets for the system to track. To ensure consistency

in scale among all states, the reference currents i⇤dqf are normalized. This step is crucial

as it prevents features with larger numerical ranges from disproportionately influencing the
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Figure 2-1: Schematic of overall CCS current control structure

training process. The normalization is performed as follows:

x̃ =
x

xmax
(2.1)

where x̃ is a general representation of the normalized variables. This normalization is applied

not only to the reference inputs but also to the feedback currents (idqf), the agent-selected

actions (u⇤
dqf), and the rotor speed (!mech). The trigonometric functions of the rotor electrical

position, cos (.) and sin (.), do not require normalization since they naturally fall within the

range [-1, 1]. As a result, the normalized ranges for the states are:

ĩ⇤dq, ĩdq, ũ
⇤
dqf , !̃mech, cos (.), sin (.) 2 [�1, 1] and ĩ⇤f , ĩf 2 [0, 1]. (2.2)
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The system observation vector, denoted as o, is then input into the DDPG agent, which

has been designed, as discussed in section 1.3.8, to output the optimal control actions u⇤
dqf .

These actions represent the voltage signals in the d-, q-, and f-coordinate frame, which the

system applies to achieve the desired current control.

As discussed in the context of finite MDPs, the agent must have access to all relevant

system states. Therefore, the observation space is structured as follows:

ok =
⇥̃
isd,k ĩsq,k ĩf,k !̃mech,k cos (✏el,k) sin (✏el,k) ĩ⇤sd,k ĩ⇤sq,k ĩ⇤f,k ũsd,k ũsq,k ũf,k

⇤
(2.3)

Since the return determines the agent’s performance, the design of the reward function plays

a crucial role in optimizing control behavior.

2.2 Reward Design for CCS Current Control

The reward function must be designed to guide the agent in selecting the optimal actions

for the control problem under any given circumstance. Since the agent aims to maximize

the reward through its interactions with the system, the highest achievable reward should

correspond to the optimal operating point. However, caution must be exercised in the

design of the reward function to include physical boundaries, ensuring the safe operation

of the machine within its available range. As mentioned earlier, the agent will apply the

selected actions udqf , and any violation of the predefined constraints will result in a penalty

or negative reward.

1: Excess rotor current region

In an EESM drive, the rotor circuit is supplied by DC power, and it is crucial to keep the

excitation current below its upper limit to prevent over-current operation. This constraint

is incorporated into the reward function, where any excess excitation current results in a
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negative reward proportional to the amount by which the current exceeds the limit:

if (if,k > if,lim)) rk =

✓
�1� if,k

if,lim

◆
. (2.4)

2: Excess stator current region

Similarly, the stator current of the EESM must remain within the allowable current circle.

This is another constraint factored into the reward design for current control. Operating

with an over-current condition in the stator circuit will result in a negative reward, scaled

by how far the current exceeds the limit:

if (is,k > is,lim)) rk =

✓
�0.1� is,k

is,lim

◆
. (2.5)

Whenever the constraints in the equations (2.4) and (2.5) are violated, the system will be

terminated, and the corresponding penalty will be applied.

3: Unfavourable rotor current region

As discussed in section 1.3.5, the rotor current should also be maintained above zero, with

currents below zero considered undesirable. To discourage operation in this unfavorable

region, a negative reward is assigned proportional to the magnitude of the current below

zero:

if (if,k < 0)) rk = �0.1 + 2

✓
if,k
if,lim

◆
. (2.6)

4: Tracking the references

After ensuring safe operating conditions through penalties for constraint violations, the re-

ward function must guide the agent to achieve its primary objectives: accurate stator and

rotor current tracking. To accomplish this, the agent is rewarded based on how closely the
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currents (isd, isq, if) follow its references (i⇤sd, i
⇤
sq, i

⇤
f ). The reward is defined as follows:

else ) rk = (1� �) (1� esum) , (2.7)

) rk 2

min [(1� esum) (1� �)] , 1� �

�
. (2.8)

In this context, esum represents the combined error between the actual currents and reference

currents, calculated as:

esum = esd + esq + 2ef 2 (0, 8) , (2.9)

where,

esd = |̃i⇤sd � ĩsd| 2 (0, 2) , (2.10)

esq = |̃i⇤sq � ĩsq| 2 (0, 2) , (2.11)

ef = |̃i⇤f � ĩf | 2 (0, 2) . (2.12)

Here, esd, esq and ef are the errors between the reference and actual currents of their respective

axes. It is important to note that ef is multiplied by 2 during the error summation to place

more emphasis on the f-axis current error, recognizing that excitation current is generally

more challenging to control than stator current (details discussed in section 2.3).

The reward design outlined in steps 1 through 4 systematically ensures that the RL

agent not only operates the EESM within safe boundaries but also optimizes its control

performance by balancing both safety and precision in a structured manner.

2.3 Training the DDPG Agent

To balance computational time and agent performance, the agent in this analysis is trained

for 90 · 104 environment steps. Given a sampling frequency of 10 kHz, the physical training

duration would correspond to 75 seconds. However, since the training is conducted in an
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asynchronous simulation rather than a real-time environment, simulating these 75 seconds

takes approximately 137 minutes on the workstation. The selected hyper-parameters and

the ANN architecture to run the DDPG algorithm are shown below.

Overview of Selected Hyper-parameters Set

Hyper-parameters are settings or configurations that are determined before the learning

process begins and play a crucial role in shaping the behavior of the algorithm. These

parameters, which are integral to the equations presented in section 1.3.8, need to be carefully

tuned to optimize the performance of the DDPG algorithm. The selected hyper-parameters

for this CCS current control are summarized in the following table 2.1.

Symbol Description Selected set

� discount factor 0.9

Db mini-batch size 256

D replay bu↵er size 90 · 104

K maximum episode length 5 · 103

M total training steps 90 · 104

↵actor actor learning rate 1 · 10�5

↵critic critic learning rate 1 · 10�4

Fprediction prediction networks update parameter 1 time step

Ntrain memory warm-up 5 · 103

⌫ exploration noise see figure 2-2

fs sampling frequency 10 kHz

Table 2.1: Selected hyper-parameters set for CCS current control

Regarding exploration noise, Gaussian noise, as discussed in section 1.3.8, is utilized with

zero mean values for all three actions (usd, usq, uf). The scale of this noise, represented by

the standard deviation �, varies over the course of training steps, as illustrated in figure 2-2.

The evolution of � can be categorized into three distinct stages:

58



1. Initial Stage: A low deviation value of � = 0.3 is employed during the early training

steps. This allows the agent to familiarize itself with the environment and supports

stable learning.

2. Exploration Stage: As training progresses, � increases linearly to its maximum value,

enabling full exploration of the action space.

3. Exploitation Stage: In the later training steps, � decreases exponentially, approaching

zero. This reduction in noise facilitates exploitation, allowing the agent to fine-tune

its policy based on learned experiences.

Figure 2-2: Variation of the standard deviation of the Gaussian distribution over time steps

By dynamically adjusting � throughout these stages, the agent will be able to balance

exploration and exploitation.

Artificial Neural Network Architecture

Moreover, as discussed in section 1.3.8, the ANN plays an important role in the DDPG

algorithm by enabling function approximation, which constitute the actor-critic architecture.

However, it is essential to properly balance the network’s size: if the network is too small,

it may not be su�cient to handle the complexity of the environment; conversely, if it is

unnecessarily large, it could require excessive training time. Therefore, the ANNs for this

current control are designed as illustrated in table 2.2.
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Network Layer Type Neurons Activation Function Definition

Actor

input layer 12 - -

hidden layer 1 128 LeakyReLU max(0.2x, x)

hidden layer 2 128 LeakyReLU max(0.2x, x)

output layer 3 Tanh tanh(x)

Critic

input layer 15 - -

hidden layer 1 128 LeakyReLU max(0.2x, x)

hidden layer 2 128 LeakyReLU max(0.2x, x)

hidden layer 3 128 LeakyReLU max(0.2x, x)

hidden layer 4 128 LeakyReLU max(0.2x, x)

hidden layer 5 128 LeakyReLU max(0.2x, x)

output layer 1 Linear x

Table 2.2: Artificial neural network configuration for CCS current control

With the selection of hyper-parameters complete and the ANN architecture established,

the DDPG algorithm is now prepared to interact with the environment and begin the training

process. The EESM parameters, as detailed in the accompanying table 1.2, will be utilized

as the environment for this CCS current control task.

Patterns of References

As illustrated in figure 2-1, the reference currents (i⇤sd, i
⇤
sq, i

⇤
f ) serve as inputs to the control

structure. The behavior of these reference currents during an episode of the training process

is shown in the figure 2-3.

The time constants for the stator and rotor are critical in determining the behavior of

the reference currents, as represented by the following equations:

⌧sd =
Ld

Rs�l
= 114 ms (2.13)
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Figure 2-3: Reference inputs for an exemplary episode in the CCS current control structure

⌧sq =
Lq

Rs
= 9.84 ms (2.14)

⌧f =
Lf

Rf�l
= 206 ms (2.15)

In these equations, ⌧sd, ⌧sq and ⌧f represent the time constants of the stator and rotor circuits

along the d-, q-, and f-axes, respectively. Then �l is the coupling or leakage factor between

d- and f-axes which is defined as:

�l = 1� 3L2
m

2LdLf
. (2.16)

Notably, the rotor time constant ⌧f is longer than the stator time constants ⌧sd and ⌧sq

indicating a longer transient period for the rotor to reach a stable state. Given this di↵erence

in time constants, it was chosen to ensure i⇤f remains unchanged until if has reached steady

state. To ensure the agent experiences the steady-state response of the excitation current,

the episode length is set to 5 · 103 time steps as shown in table 2.1, which is approximately

twice the duration of the excitation current transient in simulation time steps. This approach

ensures that the agent can accurately learn and understand the system dynamics.

To accommodate these dynamics, the reference currents i⇤sd and i⇤sq are introduced as step-

wise inputs as shown in figure 2-3, with amplitudes varying between positive and negative

nominal values. The time between these reference value steps changes randomly. Meanwhile,
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i⇤f is held constant throughout each episode, although its value randomly shifts between zero

and the nominal level across di↵erent episodes. This setup o↵ers a controlled but diverse

training environment, allowing the agent to learn the system dynamics e↵ectively.

Average Reward and Episode Length during Training

The behavior of the average reward and episode length throughout the training process

is illustrated in figure 2-4. The average reward refers to the mean episodic reward, while

the average episode length represents the mean number of steps taken per episode before

termination or completion [21]. Both metrics are averaged over the most recent 100 episodes

by the Stable-Baselines3 library. Initially, when fewer than 100 episodes are available, the

averages are calculated based on the available episodes. Once more than 100 episodes are

completed, the averages are continuously updated based on the last 100 episodes. This

approach is useful because it helps track the agent’s recent learning performance rather than

averaging out performance over the entire training.

Figure 2-4: Average reward and episode length over the training steps

As observed, the reward curve exhibits a gradual improvement over time, indicating that

the agent is progressively learning to interact more e↵ectively with the environment. Mean-

while, the mean episode length fluctuates during the exploration stage, reflecting the agent’s

ongoing e↵orts to balance exploration and exploitation. While the trends suggest that fur-

ther training could potentially lead to continued improvements, the current results indicate

62



that the agent has reached a level of competence that warrants validation in an environment

with di↵erent references. The subsequent section will assess whether the training duration

was su�cient for the agent to fully grasp the system’s dynamics and perform reliably in

di↵erent conditions.

2.4 Validation and Performance Analysis

To assess the agent’s adaptability after training for 90 · 104 time steps, the environment was

changed to a validation setting with new reference input currents, as shown in figure 2-5.

Figure 2-5: Reference inputs to a validation environment

In figure 2-5, the reference currents i⇤sd and i⇤sq cover the entire range from positive to

negative nominal values, while i⇤f varies from nominal to zero. Based on these references, two

validation cases were conducted: one at a negative low speed and the other at a positive high

speed, to evaluate the agent’s control capability across a wide speed range. The validation

case at negative low speed of !mech = �20s�1 will be discussed in detail below, while the

case at positive high speed is presented in the Appendix A.
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Analysis of the results

The validation results are presented in figure 2-6, which includes the actions (usd, usq, uf) and

their corresponding current responses. At first glance, it is clear that the agent successfully

tracks all three reference currents with low error, while maintaining the stator and rotor

voltages within the defined ranges of udq 2 [�100, 100] and uf 2 [�200, 200].

Figure 2-6: Validation results of the agent at a speed of !mech = �20s�1

As mentioned in equation (2.15), the longer rotor time constant significantly impacts the

behavior of if as it tracks its reference i⇤f . During the initial simulation period (less than 0.2

seconds), while isd and isq quickly reach steady state in tracking their respective references,

if remains in a transient state due to the longer rotor time constant. This di�culty in
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controlling the excitation current is why more weight was assigned to it during the reward

design.

Moreover, the coupling e↵ect between the d- and f-axes, as discussed in the EESM dy-

namics, is clearly observed. At the simulation time of 0.3 seconds, isd drops from its nominal

value to zero, which causes a spike in the f-axis current. In response, the agent applies a

negative uf to push if back to its steady-state value, with the excitation current gradually

recovering.

Apart from the challenges posed by the longer rotor time constant and the coupling

e↵ect, there is little else to note. The agent demonstrates that it has su�ciently learned the

system’s dynamics, reacting appropriately to changes and successfully achieving its primary

control objectives.

2.5 Key Takeaways of the Chapter

This chapter marks the foundational step toward achieving optimal torque control of an

EESM using RL. The analysis conducted demonstrated that the DDPG agent is capable of

navigating the complex and multi-dimensional space of the EESM. It e↵ectively controls the

d-, q-, and f-axes currents by applying the corresponding actions, addressing the challenges

posed by the strong coupling e↵ects between axes and the longer rotor time constant.

This analysis is important for optimal torque control because, in real-world applications,

torque sensors are often not utilized, and current sensors are the primary means of feedback.

As a result, the only way to estimate the produced electromagnetic torque is by calculating

it from isd, isq and if using the torque production equation (1.26). Therefore, it is vital for

the agent to e�ciently learn the system’s dynamics and e↵ectively control the currents as a

foundational step before transitioning to torque control.

Building on this foundational understanding, the next chapter will explore torque control

using a PI-assisted RL controller. In this scenario, the agent will infer its torque tracking

performance indirectly from current measurements, as no torque sensor will be used, and

the agent will not receive direct torque feedback. A torque sensor is available only during
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the training phase, so that the reward can be calculated accordingly. This setup will test

the agent’s ability to control torque based solely on current feedback.

66



Chapter 3

Torque Control with Idealized

Excitation Circuit Current Control

Building on the success demonstrated in the previous chapter, where the DDPG agent e↵ec-

tively navigated the complex environment of the EESM and accurately tracked the i⇤sd, i
⇤
sq

and i⇤f in a continuous action space, this chapter shifts the focus from CCS current control

to CCS torque control. Unlike current control, where the agent applies voltage to track

the measured current, torque control presents a more complex challenge, as the agent does

not have knowledge of the torque directly. However, torque knowledge will be used for the

reward generation. To facilitate this transition smoothly, the excitation circuit will first be

controlled to maintain a constant field current using a proportional-integral (PI) controller.

This approach simplifies the problem by fixing the excitation current, allowing the agent to

focus on manipulating the d- and q-axes currents to track the reference torque, similar to

the control strategy used in PMSMs [8]. The overall control structure is illustrated in figure

3-1.
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Figure 3-1: Schematic of the overall CCS torque control structure with PI controller

3.1 RL-CCS Torque Control

As illustrated in figure 3-1, the control structure is composed of three main parts. The

conventional PI controller is employed to maintain a constant excitation current across all

operating points, regardless of changes in the reference torque. While this approach may

not optimize the rotor circuit in terms of e�ciency, for the DDPG agent, the environment

will behave similarly to a PMSM, where only the d- and q-axes currents vary in response to

changes in the reference torque.

In the PI controller section, a low-pass filter is employed to ensure that changes in the

reference excitation current occur gradually, following an exponential curve rather than a
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step input. This approach reduces the likelihood of overshoot and oscillation in the tracking

current, while also mitigating the disturbance impact on the d- and q-axes currents, which

are common issues when the reference is introduced as a step input. The tuning process for

this PI controller is further discussed in section 3.2.1.

In the RL-controller section, the input is the reference torque, which, as usual, must be

normalized as discussed in section 2.1. Although the torque production of the EESM involves

three currents, as described in equation (1.26), the DDPG agent only provides usd and usq

to achieve the required currents in the d- and q-axes, while the f-axis current is regulated by

the PI controller. It is important to note that for the agent to learn the system’s dynamics

properly, it must have knowledge of the applied rotor voltage and current, even though the

field current is controlled by the PI controller. Additionally, since a torque sensor would not

be employed in a practical application after the commissioning of the RL controller, feedback

torque is only utilized during training for the reward function, meaning the agent does not

observe the produced electromagnetic torque. Consequently, torque is not included in the

observation vector, which is defined as follows:

ok =
⇥̃
isd,k ĩsq,k ĩf,k !̃mech,k cos (✏el,k) sin (✏el,k) T̃ ⇤

k ũsd,k ũsq,k ũf,k

⇤
. (3.1)

T̃ , T̃ ⇤ 2 [�1, 1] (3.2)

The torque is normalized to a range between -1 and 1, and the other states are consistent

with the approach mentioned previously 2.1.

3.2 Controller Design Approach

In the CCS torque control structure, both the PI controller and the RL controller, as depicted

in figure 3-1, play crucial roles. This section will discuss the tuning method for the PI

controller and the reward design strategy for the DDPG agent.
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3.2.1 Tuning the PI Controller

Due to the strong coupling between the d- and f-axes as stated in equations (1.23), any

change in the d-axis voltage can cause fluctuations in the field current. While implementing

a decoupling network could mitigate this issue, it would introduce additional complexity to

the PI controller, which is not preferred for this analysis. Moreover, allowing the coupling

e↵ects to persist enables the agent to learn the impact of field current fluctuations on the

d-axis current, which is valuable for understanding the system’s dynamics. To counteract

these fluctuations, the PI-controller is tuned with very high bandwidth, allowing the current

to recover quickly to its steady state after a disturbance. This PI controller can be easily

tuned by treating the rotor circuit of the EESM as a plant, as illustrated in the closed-loop

control structure shown in figure 3-2.

-

--

Figure 3-2: Schematic of PI controller with plant

As depicted, the controller has one pole at the origin and one zero located at � Ki
Kp

, while

the system pole is positioned at � Rf
�lLf

. A second-order system with a natural frequency

equation is used to tune the controller, as it provides a degree of freedom through the

damping factor. Therefore, the denominator of the closed loop transfer function from figure

3-2 is used to compare with the second order equation to calculate the values of Kp and Ki

gains as follow:

denom

✓
CPI(s) G(s)

1 + CPI(s) G(s)

◆
= s2 + 2⇣!ns + !2

n, (3.3)

Kp = 2⇣!n�lLf �Rf , (3.4)

Ki = !2
n�lLf . (3.5)
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The parameters used for tuning the PI controller are summarized in table 3.1.

Symbol Description Value Unit

f working bandwidth 500 Hz

!n natural frequency 3141.59 s�1

⇣ damping factor 1 -

Kp proportional gain 1.46 · 103 VA�1

Ki integral gain 2.32 · 106 V(A · s)�1

Table 3.1: Parameters tuning PI

As mentioned, the PI controller is designed to be as simple as possible to minimize

complexity. A damping factor of 1 is chosen to eliminate overshoot, with the trade-o↵ of a

potentially slower response [23]. However, the use of a high working bandwidth compensates

for this, allowing the system to quickly recover from any transients in the d-axis current. This

rapid recovery results in significantly high voltage levels in excitation circuit, therefore the

voltage limit is removed in rotor circuit to accommodate the required dynamic adjustments.

Otherwise, it would result transients in stator circuit.

3.2.2 Reward Design for PI-assisted RL Control

Since there is no predefined knowledge about the torque control loop, the reward function

will play a crucial role in guiding the agent to understand the system’s dynamics. Therefore,

it is essential to consider all relevant factors in the design of the reward.

As discussed in the previous chapter, the reward design must include physical limitations

to ensure safety, with penalties applied for any violation of these constraints. In this torque

control scenario, e�ciency is also a critical factor, meaning that behaviors that decrease

e�ciency will be discouraged. Furthermore, since the EESM will be treated similarly to a

PMSM in this analysis, the reward design approach used in [8] will be adopted. The reward

structure is illustrated in figure 3-3.

In the PMSM reward design [8], the primary operational limit is set by the available
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Figure 3-3: Schematic of the reward design approach

stator current, which must not be exceeded to prevent overheating and potential damage

to the drives and power electronic converters (region E). Then, the nominal current must

remain below the maximum limit to ensure safe and long-term operation. Although it is

allowed to go over the nominal current for a short time, it is not preferable to operate in

that region for a long run (region D). Once the current is within the nominal range, the d-

and q-axes currents should be adjusted to ensure that the motor operates with the stator

current positioned on the right side of the dq-plane.

While negative isd is preferred in PMSM operation, positive isd is more e↵ective for EESM

torque production, as indicated by the torque equation (1.26). It is important to note that

this positive isd is specifically chosen because only operation in the linear region is focused

in this thesis. Therefore, operating with negative d-axis current will be restricted (region

C). However, to provide the agent with some flexibility in tracking low reference torques

smoothly, slight deviations below zero will be allowed. The primary objective of this control

strategy is to track the reference torque as closely as possible (region B) while minimizing the

stator current, which aligns with the maximum torque per stator current operation (region

A).
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The operating regions will be prioritized accordingly, with region A being the least critical

and region E being the most crucial for safety concerns. This prioritization will be reflected in

the reward design, ensuring that the agent learns to operate the EESM safely and e�ciently

while achieving optimal torque tracking.

1: Excess current region, E

If the stator current enters this region (violating the constraints), it will cause the system

to shut down, corresponding to the termination of the episode in the RL environment. The

agent must temporarily stop learning and start a new episode. Since this scenario is not

desirable in the future, a penalty reward will be applied.

if (is,k > ilim)) rk = �1 (3.6)

2: Short-time over-current region, D

To prevent operation in the over-current region, the reward will decrease as the stator current

exceeds the nominal limit, emphasizing the importance of safety. This design guides the agent

to avoid running the machine in an over-current region, thereby preventing system overload.

if (inom < is,k < ilim)) rk =

✓
1� is,k � inom

ilim � inom

◆
1� �

2
� (1� �) (3.7)

) rk 2

�(1� �), �1� �

2

�
(3.8)

3: Unfavorable e�ciency region, C

After safety constraints are set, it is important to eliminate the behaviours which will reduce

the e�ciency. It is possible to operate with both positive and negative d-axis current safely,

but the agent should operate the machine in the right side of dq plane for the intended
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operation region with respect to the selected EESM geometry.

if (is,k < inom) and (isd,k < 0)) rk =

✓
1 +

isd,k
ilim

◆
1� �

2
� 1� �

2
(3.9)

) rk 2

�1� �

2
, 0

�
(3.10)

4: Desired operating region, B

In this region, the reward increases as the error decreases, meaning the agent will receive a

higher reward for achieving lower torque tracking error (better performance, higher reward).

if (is,k < inom) and (isd,k > 0) and (|T ⇤
k � Tk| > Ttol) :

) rk =

✓
1�

���
T ⇤
k � Tk

2Tlim

���
◆

1� �

2
(3.11)

) rk 2

0,

1� �

2

�
(3.12)

where Ttol = torque control tolerance

5: Reference torque isoline, A

To promote e�ciency, the reward will increase as the stator current decreases, following the

principles of the MTPC method with stator current. This approach encourages the agent to

minimize stator current usage while still accurately tracking the reference torque.

if (is,k < inom) and (isd,k > 0) and (|T ⇤
k � Tk| < Ttol) :

) rk =

✓
1� is,k

ilim

◆
1� �

2
+

1� �

2
(3.13)

) rk 2

1� �

2
, 1� �

�
(3.14)
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Although this thesis focuses on operation under base speed, the reward design from 1 to 5

is, in theory, versatile enough to e↵ectively cover all operating points of the EESM, includ-

ing both constant torque and constant power regions. Importantly, this reward structure

does not rely on specific machine parameters, enabling the development of a data-driven

controller that can operate e�ciently with only the stator current limit and nominal values

for normalization.

3.3 Training the DDPG Agent

Generally, the longer the agent is trained, the better its performance should be. However,

extended training steps require more computational time and a workstation with high com-

putational capabilities. Given this trade-o↵, the agent in this study is trained for 75 · 104

time steps. With a sampling frequency of 10 kHz, this training duration would equate

to 75 seconds. However, the training took 150 minutes to simulate 75 seconds because

an asynchronous simulation was used instead of a real-time simulation environment. The

hyper-parameters and ANN architecture for implementing the DDPG algorithm have been

appropriately configured.

Overview of Selected Hyper-parameters Set

With the shift in control objective from current to torque, a new set of hyper-parameters

specifically suited to the torque control structure is selected. This change is necessary because

the dynamics and control goals of torque regulation di↵er significantly from current control,

requiring adjustments to optimize the learning process. The selected hyper-parameters,

based on error and trail, for the RL integrated with the PI controller for CCS torque control

are presented in table 3.2.
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Symbol Description Selected set

� discount factor 0.9

Db mini-batch size 64

D replay bu↵er size 75 · 104

K maximum episode length 6 · 103

M total training steps 75 · 104

↵actor actor learning rate 1 · 10�4

↵critic critic learning rate 1 · 10�3

Fprediction prediction networks update parameter 1 time step

Ntrain memory warm-up 6 · 103

⌫ action noise see figure 2-2

Ttol torque control tolerance 0.1%

fs sampling frequency 10 kHz

Table 3.2: Selected hyper-parameters set for PI-assisted RL control

Artificial Neural Network Architecture

Although torque control imposes greater computational demands compared to current con-

trol, the agent in this analysis is only required to control the d- and q-axes currents. Given

this, the previously utilized ANNs from the current control phase are expected to be su�-

cient. Therefore, the same ANNs are employed here without modification.

Patterns of References

Since the PI controller is used for the excitation circuit, the reference field current is set

manually, as it is not part of the RL controller, while the reference torque is provided as

an input to the RL controller. A sample of both reference inputs is shown in figure 3-4.

To ensure the agent experiences all possible torque reference inputs during training and

understands di↵erent operating points, the reference torque is introduced as a step-wise

input. Additionally, it is crucial for the agent to recognize that excitation current might
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vary in real-world applications; hence, the reference current is adjusted at least once during

each episode.

Figure 3-4: Reference inputs for an exemplary episode in the CCS torque control structure

Figure 3-4 demonstrates that the amplitude of the torque reference input varies from neg-

ative nominal value to positive nominal value, with sub-episode lengths changing randomly.

Similarly, the excitation current fluctuates randomly between 0 and its nominal value, with

the timing of these changes also being random. Moreover, the speed will also vary, ranging

from positive to negative base speed within each episode. By varying both references in this

manner, the agent is exposed to realistic scenarios during training.

Average Reward and Episode Length during Training

During the training process, each episode has a maximum length of 6 ·103 steps. Over 75 ·104

training steps, the agent could encounter up to 125 episodes. However, in the initial stages,

the agent must learn to avoid termination and violation actions by experiencing them at least

once, leading to episode resets. Consequently, it is expected that the agent will complete

fewer than the maximum number of episodes, as the environment resets each time an episode

is terminated early.

The average reward and episode length during the training process, as shown in figure

3-5, are calculated and averaged as discussed in section 2.3. In the early stages, both the

reward and episode length are low, as the agent deals with termination and violation cases,
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Figure 3-5: Average reward and episode length over the training steps

causing episodes to end prematurely and resulting in lower rewards. Over time, as the

agent interacts with the environment and learns the system’s dynamics, both the reward

and episode length tend to stabilize, indicating that the agent has fully learned the system

and is ready for validation.

3.4 Validation and Performance Analysis

After completing 75 · 104 time steps of training, it is assumed that the agent has su�ciently

learned the system dynamics and is ready to be deployed in a di↵erent environment. To

evaluate its performance, the environment with reference torque, reference excitation and

speed di↵erent from the training environment was created to test the agent’s ability to handle

various operating points distinct from those encountered during training. In this section, two

validation cases were conducted to cover a range of operational scenarios, with the reference

inputs shown in figure 3-6.

The validation scenarios involve two distinct cases: case 1 tests the agent at a negative

high speed of !mech = �200 s�1, and case 2 at a negative low speed of !mech = �20 s�1.

To highlight the di↵erences between these operations, the speed ratio is set to a factor of 10

between the two cases. Although the agent was trained with a field current that changed

only once per episode, the validation environment introduces four di↵erent field current levels

within a single episode. For each field current level, the agent experiences a full torque cycle,
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Figure 3-6: Reference inputs to a validation environment

as depicted in the figure 3-6. The validations with positive low speed and positive high speed

are shown in the appendix B.

Analysis of the results

The validation results for both case 1 and case 2 are presented in figures 3-7 and 3-8. A clear

distinction between the two cases is evident in the applied stator voltage. As seen in equation

(1.15), higher speeds demand higher voltages during linear region operation. Consequently,

usq in case 1 is significantly higher than in case 2, by approximately 10 times, reflecting the

similar speed ratio. Additionally, as noted in the PI tuning section, the spike in excitation

voltage uf is substantial, necessary to drive the field current if back to steady state, which

motivated the removal of the voltage limit. This spike occurs in response to disturbances

caused by transients in the d-axis current due to the strong coupling between axes. However,

during steady-state operation, uf remains within the ±Udc range.

In both cases, the d-axis current isq closely follows the reference torque behavior, while

the d-axis current is maintained above or slightly below zero, as specified in the reward design

to enhance e�ciency. This indicates that the agent has learned the system’s dynamics well,

ensuring that the machine operates with stator current on the right side of the dq-plane,

while the q-axis current moves between positive and negative values as required by the

reference torque. The excitation current tracks its reference exponentially, thanks to the
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low-pass filter, preventing disturbances in the stator current.

Figure 3-7: Validation results of the agent at a speed of !mech = �200s�1

To evaluate the agent’s performance, it is crucial to analyze the torque tracking character-

istics and the associated error. The blue-shaded area in the torque tracking curve represents

the available torque region for the given excitation current. When the excitation current is

zero, the reference torque exceeds the available electromagnetic torque, resulting in a high

error in this region due to the physical infeasibility of tracking the reference. At medium field

current levels (2A - 3.5A), the agent can track low reference torque with the error less than

80



the defined tolerance, while higher reference torques fall outside the available region, making

them impossible to track. Finally, with nominal field current supplied, the agent successfully

tracks various reference torques within the tolerance limits. Therefore, a closer examination

of the torque error curves reveals that the error remains within the defined tolerance when

the reference torque is within the available torque region, while it increases when tracking

the reference is physically infeasible.

Figure 3-8: Validation results of the agent at a speed of !mech = �20s�1

However, even with the nominal excitation current, the torque tracking error at a high
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speed of !mech = �200s�1 slightly exceeds the defined tolerance. As seen in equation (1.19),

high-speed operation demands more voltage during transients, making it inherently more

challenging for the agent to control the machine at high speed compared to low speed,

consequently, the tracking error remains within the limit at low speeds under nominal exci-

tation current. However, in steady state, the agent should be able to track the high reference

torque even during high-speed operation, as long as it remains within the available torque

region. This discrepancy may be attributed to the agent not fully mastering the operation of

the machine at high speeds, possibly due to a lack of su�cient high-speed scenarios during

training.

Validation with excitation current as a ramp input

It is particularly interesting to validate the agent’s performance with the excitation current

applied as a ramp input. Given that the agent was trained with an exponentially changing

field current, it would be notable if it could e↵ectively manage a completely di↵erent input

style. In this environment, the low-pass filter is removed, and the excitation current is

gradually increased from zero to its nominal value in a ramp fashion, while the reference

torque remains constant at the nominal value throughout the validation period.

As the excitation current increases slowly, the coupling e↵ect on other axes is very low,

with the excitation voltage exceeding the limit only once at the start. Furthermore, as shown

in figure 3-9, the way the agent provides the actions (usd, usq) is noteworthy. During the

transient phase of the excitation current, it is not practically feasible to track the reference

torque because the available torque region is lower than the reference. In this scenario,

the agent does not attempt to apply the maximum stator voltage to track the reference.

Additionally, the d-axis current remains above zero throughout the period, as defined in the

reward design, even during the transient.

Finally, when the excitation current stabilizes, the agent also stabilizes usq, successfully

tracking the reference torque with very low error. The error remains close to zero, though

not exactly zero, due to the design of the reward function as discussed below.
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Figure 3-9: Validation results of the agent with i⇤f as a ramp input at a speed of �20s�1

According to reward design, the agent attempts to track the reference torque with an

error that remains within the specified tolerance. Once the error is within this limit, the

agent shifts its focus from further reducing the error to reducing copper losses with stator

current. This shift is evident in figure 3-9, where the agent refrains from increasing the

stator current to further minimize the error, as the error is already within acceptable limits

as defined in region A of the reward design.

Region B, if (is,k < inom) and (isd,k > 0) and (|T ⇤
k � Tk| > Ttol) :
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) rk =

✓
1�

���
T ⇤
k � Tk

2Tlim

���
◆

1� �

2
(3.15)

) rk 2 [0, 0.05] (3.16)

Region A, if (is,k < inom) and (isd,k > 0) and (|T ⇤
k � Tk| < Ttol) :

) rk =

✓
1� is,k

ilim

◆
1� �

2
+

1� �

2
(3.17)

) rk 2 [0.05, 0.1] (3.18)

Region A and B of the reward design from section 3.2.2 are numerically mentioned above.

The agent prioritizes e�ciency by reducing or maintaining the current level, demonstrating

the MTPC strategy by stator current once the error is within the defined tolerance. Con-

sequently, the maximum reward of 0.1 does not correspond to minimal error but is instead

related to the applied stator current. Despite the brief training of 75 · 104 time steps, the

agent’s performance is commendable.

3.5 Key Takeaways of the Chapter

This chapter represents a critical step towards achieving optimal torque control of EESM us-

ing an RL-based controller. A PI-assisted RL controller was employed to facilitate a smooth

transition from current control to torque control in this chapter. The primary focus was on

adapting the PMSM reward design from [8] to enable the EESM to behave similarly to a

PMSM under constant excitation current conditions. To this end, an idealized environment

was created by removing the excitation voltage limit and employing a high working band-

width for the PI controller. Although this setup is not realistic for physical implementation,

it provides valuable insights for future work. Specifically, the results indicate that an RL

agent can manage the complex dynamics of an EESM for torque control, track the reference

torque by manipulating stator current, and adapt to changes in excitation current, even
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when it is not controlled by the agent. In the next chapter, the torque control will be further

developed using a fully RL-based controller, with the removal of the idealized setup.
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Chapter 4

Torque Control with Reinforcement

Learning based Excitation Circuit

In chapter 3, it was demonstrated that the DDPG agent can e↵ectively control the EESM in

a manner similar to a PMSM, with the excitation current controlled a PI controller. In this

chapter, the focus shifts to a more comprehensive approach where the agent independently

manages the torque control of the EESM. This means that, unlike in the previous analysis

where the agent provided only the d- and q-axes voltages, it will now control all three currents

by applying three voltages to track the reference torque. Consequently, the overall control

structure has been modified from the previous setup, and the new configuration for torque

control, including an RL-based excitation circuit, is presented in figure 4-1.

As shown in figure 4-1, the reference torque is the only input parameter in this control

structure. The agent generates three actions (usd, usq, uf) and interacts with the environment

to learn and adapt over time. The observation state for the agent in this control structure

is as follows:

ok =
⇥̃
isd,k ĩsq,k ĩf,k !̃mech,k cos (✏el,k) sin (✏el,k) T̃ ⇤

k ũsd,k ũsq,k ũf,k

⇤
. (4.1)

As discussed previously, these states must be normalized, with the exception of cos (✏el,k)

and sin (✏el,k). The normalization range remains consistent with the values mentioned in
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Figure 4-1: Schematic of the overall CCS torque control structure with RL-based excitation
circuit

earlier chapters. The agent’s working principle is also similar to that described earlier:

without any predefined control knowledge, the agent begins by applying random actions

to the RL environment and learns through the feedback it receives via the reward function.

Consequently, the reward function is crucial in shaping the agent’s performance. This chapter

is divided into two main sections: performance priority control and e�ciency priority control,

which di↵er based on the reward design.

4.1 Performance Priority Control

In the control structure illustrated in figure 4-1, the excitation circuit is also controlled by

the DDPG agent, replacing the previous PI controller. To ensure a smooth transition from
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the PI-assisted RL control to a fully RL-based control structure, the reward design from the

previous chapter will be applied, with updates only to the safety constraints. This approach

allows the DDPG agent the flexibility to adjust the field current as needed, as long as it

e↵ectively tracks the reference torque.

4.1.1 Reward Design for Performance Priority Control

The reward design approach for performance priority control is shown in figure 4-2. While the

excitation current does not directly influence the reward design, it is essential to incorporate

its limitations into the existing reward structure to address safety concerns. Consequently,

both the over-current operation of the stator circuit and the rotor circuit must be restricted

to prevent overheating. Additionally, negative if would negatively impact e�ciency and must

be constrained. Therefore, operations in the excess current region E and the unfavorable

e�ciency region C will align with the previous reward design.

Figure 4-2: Schematic of the reward design approach for performance priority control
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1: Excess current region, E

This region consists of two parts: one where the stator current exceeds its limit and the

other where the rotor current exceeds its limit. If either the stator or rotor current enters

this region, it is considered a violation of the constraints, leading to the termination of the

episode and the initiation of a new one. As in the previous design, the penalty reward will

correspond to the extent to which the current exceeds the excess current region.

1.1: Region E in stator circuit

When the stator current enters this region, the following penalty reward will be applied.

if (is,k > is,lim)) rk =

✓
�0.1� is,k

is,lim

◆
(4.2)

1.2: Region E in rotor circuit

When the excitation current enters this region, a corresponding penalty reward will be

applied.

if (if,k > if,lim)) rk =

✓
�0.1� if,k

if,lim

◆
(4.3)

2: Unfavorable e�ciency region, C

This region also consists of two parts: one where the d-axis current reduces e�ciency and

another where the f-axis current negatively impacts e�ciency. With the agent now controlling

the excitation current, both negative d-axis current and negative f-axis current can reduce

e�ciency, as discussed in equation (1.26). However, it is crucial to allow the agent some

flexibility during the learning phase to understand why operating in this region results in

a negative reward. Thus, if the agent fails to operate the machine on the right side of the

dq-plane with a field current greater than zero, the following reward will be applied.
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2.1: Region C in stator circuit

When the agent operates the machine with negative d-axis current, the corresponding reward

will be applied.

if (is,k < is,nom) and (isd,k < 0)) rk =

✓
1 +

isd,k
is,lim

◆
1� �

2
� 1� �

2
(4.4)

) rk 2

�1� �

2
, 0

�
(4.5)

2.2: Region C in rotor circuit

Similarly, when the agent operates the machine with negative f-axis current, the respective

reward will be applied.

if (if,k < 0)) rk =

✓
1 +

if,k
if,lim

◆
1� �

2
� 1� �

2
(4.6)

) rk 2

�1� �

2
, 0

�
(4.7)

Apart from updating these two regions, the remaining regions (A, B, D) will retain the

same design as before. Similarly, the prioritization of operating regions remains unchanged,

with region A being the least important and region E the most important concerning the

safety.

4.1.2 Training the DDPG agent

To balance the trade-o↵ between training time and the agent’s performance, the training

duration is slightly extended compared to the previous setup, as the agent must manage

more complex tasks in this control structure. Consequently, a total of 90 · 104 training steps

are utilized, corresponding to a real-time simulation duration of 1 · 10�4 ⇥ 90 · 104 = 90

seconds. However, due to the computational demands, the training process required 123

minutes on the workstation to run 90 seconds of real-time operation and update the training
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network. The hyper-parameters and ANN architecture for this setup are selected as outlined

below.

Overview of Selected Hyper-parameters Set

With the transition from PI-assisted to fully RL-based torque control, the agent is now

responsible for handling an additional action, uf . As a result, it is necessary to re-select

and adjust the hyper-parameters to estimate optimal tuning for this new control structure.

These hyper-parameters di↵er from the previous set to accommodate the expanded control

responsibilities of the agent. The hyper-parameters used in this RL-based optimal torque

control are listed below.

Symbol Description Selected set

� discount factor 0.9

Db mini-batch size 128

D replay bu↵er size 91 . 104

K maximum episode length 1 . 104

M total training steps 90 . 104

↵actor actor learning rate 1 . 10�5

↵critic critic learning rate 1 . 10�4

Fprediction prediction networks update parameter 1 time step

Ntrain memory warm-up 1 . 104

⌫ action noise see figure 4-3

Ttol torque control tolerance 0.1%

fs sampling frequency 10 kHz

Table 4.1: Selected hyper-parameters set for performance priority torque control

The primary di↵erences from the previous setup include the learning rate, episode length,

and action noise. A smaller, constant learning rate is utilized to prevent the ANNs calcula-

tions from deviating from the optimal solution, and this rate remains unchanged throughout
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the entire training period. Additionally, a longer episode length is adopted, as it takes

approximately 2000 steps for the excitation current to reach a steady state, as observed

in chapter 2. This extended duration allows the agent enough time not only to learn the

system’s dynamics but also to minimize errors within the defined tolerance.

Regarding exploration noise, Gaussian noise is utilized in this control structure as well,

with zero mean values. The standard deviation of the noise varies over the course of training,

as illustrated in figure 4-3.

Figure 4-3: Variation of the standard deviation of the Gaussian distribution over time steps
for dq- and f-actions

Given that the rotor voltage range is di↵erent from that of the stator voltage, with

udq 2 [-100, 100] and uf 2 [-200, 200], it is appropriate to apply action noise with di↵erent

standard deviations. Specifically, the standard deviation, � for the f-axis action is set to be

twice as large as that for the dq-axes actions. Despite this variation in standard deviation, the

overall behavior of the action noise follows the same pattern for all three actions, progressing

through three distinct phases: the initial stage, exploration stage, and exploitation stage, as

discussed in the section 2.3.

Artificial Neural Network Architecture

Once the estimated optimal hyper-parameters are established, the next step is to customize

the ANN architecture. Given that the agent now has to manage additional actions, a larger

network is required compared to the previous setup. To balance the trade-o↵ between com-
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putational load and adequate network size, the ANN is configured as listed in table 4.2.

Network Layer Type Neurons Activation Function Definition

Actor

input layer 10 - -

hidden layer 1 128 LeakyReLU max(0.2x, x)

hidden layer 2 128 LeakyReLU max(0.2x, x)

hidden layer 2 128 LeakyReLU max(0.2x, x)

output layer 3 Tanh tanh(x)

Critic

input layer 13 - -

hidden layer 1 128 LeakyReLU max(0.2x, x)

hidden layer 2 128 LeakyReLU max(0.2x, x)

hidden layer 3 128 LeakyReLU max(0.2x, x)

hidden layer 4 128 LeakyReLU max(0.2x, x)

hidden layer 4 128 LeakyReLU max(0.2x, x)

hidden layer 4 128 LeakyReLU max(0.2x, x)

hidden layer 5 128 LeakyReLU max(0.2x, x)

output layer 1 Linear x

Table 4.2: Artificial neural network configuration for CCS torque control

To accommodate the fully RL-based torque control, an additional hidden layer is added

to the actor network, and two more hidden layers are incorporated into the critic network.

Pattern of Reference

As illustrated in figure 4-1, the torque reference is the only input to the control structure

and is applied as a step-wise signal, with its amplitude and sub-episode length changing

randomly, as shown in the figure 4-4.
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Figure 4-4: Reference input for an exemplary episode in the CCS torque control structure

Average Reward and Episode Length during Training

During the 90 · 104 training steps, with a maximum episode length of 1 · 104 steps, the

agent could numerically encounter up to 90 episodes. However, as discussed in the previous

chapters, it is likely that the agent experiences fewer full-length episodes due to early ter-

minations. As depicted in figure 4-5, both the average reward and episode length increase

exponentially and linearly over time, eventually flattening in the later stages, indicating that

the agent has su�ciently learned the control strategy. Nevertheless, while the agent appears

ready for validation in a di↵erent environment, further improvements in rewards might be

achievable with extended training.

Figure 4-5: Average reward and episode length over the training steps
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4.1.3 Validation and Performance Analysis

To assess the agent’s ability to adapt to di↵erent conditions, a di↵erent environment was

created, with the behavior of the torque reference illustrated in figure 4-6.

Figure 4-6: Reference torque to a validation environment

Two validation cases were conducted at positive low speed and negative low speed with

a full torque cycle to cover all operating points. However, for the sake of brevity, only the

validation case at a speed of !mech = 20s�1 is discussed here, with the other case provided

in the appendix C. The validation results for the selected case are presented in figure 4-7.

Analysis of the results

At a glance, it is clear that the agent adapts well to the changes in an environment, as it

successfully tracks the reference torque with an error below the predefined tolerance. It is

important to note that the available torque region remains nominal throughout the analysis,

as the agent is allowed to apply the excitation current freely, as long as it is within the safety

region.

A closer examination of the graphs reveals further details. In the actions graph, the

agent-provided values for usd, usq and uf demonstrate that the stator voltage remains within

the allowable range ustator 2 [�100, 100] and the rotor voltage also stays within its specified

limits urotor 2 [�200, 200] as discussed in the power electronic converter section 1.3.5.
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Figure 4-7: Validation results of performance priority control at a speed of !mech = 20s�1

Furthermore, one noteworthy observation in the currents graph is that the excitation

current remains at its nominal value after the transient, regardless of changes in the reference

torque. The agent successfully tracks the reference torque by primarily manipulating the

stator current. However, all three currents respond appropriately to the applied actions,

aligning well with the reward design. None of the currents enter the excess current region E,

and the agent ensures that the stator current stays below the short-term over-current region

D. Additionally, isd and if remain above zero, as required by the e�ciency considerations

in region C. Finally, the agent adjusts the currents e↵ectively to track the reference torque,

maintaining the error within the tolerance defined in the desired operating region B.

Once the agent achieves torque tracking within the desired operating region, it shifts focus

to implementing the MTPC strategy with stator current. As seen in the torque tracking

graph, the agent no longer prioritizes minimizing the error, as it is already within acceptable

limits. Instead, the agent aims to reduce or maintain the stator current while tracking

the reference torque, emphasizing e�ciency. This behavior is further evidenced in figure 4-8,
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where the reward corresponds to the applied stator current once the error is within tolerance.

Figure 4-8: Reward corresponds to reference torque isoline region A

For instance, when the stator current is high (around 20A) between 0.15 and 0.25 seconds

of simulation time, the reward decreases to approximately 0.7. Conversely, between 0.45 and

0.07 seconds, the stator current is relatively low, and the reward increases to nearly 0.09,

close to the maximum achievable reward of 0.1. This pattern reflects the machine operating

within region A, following the MTPC strategy with stator current. Therefore, considering

the agent’s brief training time steps of 90 · 104, its performance is highly commendable.

4.2 E�ciency Priority Control

As discussed earlier, since the excitation current was not included in the reward function,

the agent maintained it at a nominal value throughout the operation, potentially impacting

e�ciency. This section now shifts focus to e�ciency priority control, where the excitation

current is incorporated into the reward design with an emphasis on maximizing e�ciency.

The following discussion will explore the critical roles that both stator and rotor currents

play in enhancing overall e�ciency.
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4.2.1 Insight to E�ciency

To e↵ectively integrate e�ciency into the reward design for e�ciency priority control, it is

essential to take into consideration the method of e�ciency calculation, as outlined below:

⌘ =
Pout

Pin
, (4.8)

where Pout 2 {Pele, Pmech} and Pin 2 {Pele, Pmech} are considered in order to cover both motor

and generator operations. The electrical power can be calculated as follows:

Pel,stator =
3

2
(usdisd + usqisq) ,

Pel,rotor = ufif ,

Pele = Pel,stator + Pel,rotor.

(4.9)

Then, the mechanical power can also be evaluated as follows:

Pmech = Tem!mech. (4.10)

In this approach, the electrical power will be considered as input power if it is greater

than the mechanical power, output power, as the other way around, the mechanical power

becomes input power when it is greater than the electrical power. However, this approach is

only accurate in steady-state operation. During transients, some input power is temporarily

stored in the motor’s magnetic field, known as magnetic power, and does not immediately

convert to mechanical output.

As an alternative approach, calculating e�ciency based on ohmic losses is straightfor-

ward and applicable to both transient and steady-state conditions. However, this method

requires knowledge of stator and rotor resistance values (machine parameters), which vary

with temperature. Given that the primary objective of this analysis is to develop a data-

driven controller that does not rely on machine parameters, using resistance values is not

preferred. Instead, e�ciency will be calculated using the ratio of output power to input
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power as shown in equation (4.8), which depends only on observable variables (voltage, cur-

rent, and speed). This method applies to both motor and generator operations and will be

integrated into the reward design to enhance e�ciency in this analysis.

4.2.2 Reward Design for E�ciency Priority Control

In the performance priority control discussed above, the excitation current if was not included

in the region A of reward design, potentially leading to significant losses. To address this,

the e�ciency priority control will now incorporate both the stator current and excitation

current into the reward design, with a focus on optimizing e�ciency. While the safety and

operational constraints defined in regions E, D, C and B from the performance priority control

will remain unchanged, the reward associated with region A will be revised to emphasize

e�ciency.

1: E�ciency enhancement in region, A

if (|T ⇤
k � Tk| < Ttol) ) rk = ⌘k

✓
1� �

2

◆
+

1� �

2
(4.11)

) rk 2

1� �

2
, 1� �

�
(4.12)

In the earlier design, region A focused solely on minimizing stator current, allowing the

agent to apply the excitation current if without restriction. Under the e�ciency priority

control, e�ciency calculations are now integrated into the reward structure, ensuring a more

balanced approach. The updated reward design is straightforward: higher e�ciency results

in higher rewards. By incorporating e�ciency directly into the reward function, the agent’s

control strategy becomes more comprehensive, targeting e�ciency improvements across all

three currents.
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4.2.3 Training the DDPG Agent

For this analysis, 90 · 104 training steps were utilized, corresponding to a physical simulation

duration of 90 seconds at a sampling frequency of 10 kHz. However, since the training was

conducted on an asynchronous simulation and given the computational demands, it took 124

minutes to update 90 seconds of training on the workstation. The selected hyper-parameters

and ANN configuration are discussed below.

Overview of Selected Hyper-parameters Set

The overall control structure remains consistent between performance and e�ciency priority

controls, meaning that most aspects, such as hyper-parameters, ANN architecture, and

torque reference behavior, remain unchanged. The primary di↵erences lie in the updated

reward design, which now incorporates e�ciency considerations as discussed in section 4.2.2,

and in the slight adjustments to the action noise, as shown in figure 4-9.

Figure 4-9: Variation of the standard deviation of the Gaussian distribution over time steps
for dq- and f-actions

In the e�ciency priority control, Gaussian noise with zero mean and varying standard

deviation is applied, similar to the previous chapter. The standard deviation for the f-axis

action remains twice that of the dq-axis actions, consistent with their respective voltage

ranges. However, in this analysis, the exploration period is extended: after � reaches its

maximum for full exploration, it remains at this level for a longer duration before transition-
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ing to the exploitation phase. This adjustment expected to ensure that the agent thoroughly

explores the environment before moving on to exploit its learned strategies.

Average Reward and Episode Length During Training

The progression of the average reward and episode length throughout the training process

is depicted in figure 4-10.

Figure 4-10: Average reward and episode length over the training steps

During the training, there is a small drop in the average episode length midway through,

coinciding with the full exploration phase. This drop is expected due to the high standard

deviation of the Gaussian noise used during this period, which causes the environment to

reset. However, as the agent transitions from exploration to exploitation, the average episode

length begins to increase steadily, while the average reward curve flattens towards the later

stages of training. These trends indicate that the agent has su�ciently explored the envi-

ronment, learned the necessary behaviors, and is now prepared for validation in a di↵erent

environment.

4.2.4 Validation and Performance Analysis

To ensure a meaningful comparison with the performance priority control, the same vali-

dation setup is used for this analysis. The validation is conducted at the same speeds of
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!mech = 20s�1 and !mech = �20s�1, covering a full torque cycle to evaluate all operating

points. The results for the positive low speed are presented in figure 4-11, while the results

for the negative low speed are provided in the appendix D.

Analysis of the results

Figure 4-11: Validation results of e�ciency priority control at a speed of !mech = 20s�1

The results in figure 4-11 demonstrate that the agent e↵ectively understands the system

dynamics and tracks the reference torque. However, it is evident that the error for high

torque references slightly exceeds the defined tolerance, a deviation not observed in the

performance priority control (a comparison will be discussed in the following section 4.3).

This discrepancy arises because the agent, in its e↵ort to maximize the e�ciency and the

reward, struggles to quickly increase the excitation current to match high torque demands.

This results in the agent having di�culty tracking high reference torque values.

Despite these challenges, the agent performs well in tracking low reference torque, with

errors close to zero, while successfully maintaining stator and rotor voltages within the
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defined limits. This indicates that while the agent targets to maximize e�ciency, it still

manages to achieve e↵ective control, especially in less demanding scenarios.

4.3 Comparative Analysis of Performance and E�ciency

Priority Control

This section presents a comparative analysis focusing on two key aspects: performance and

e�ciency, as evaluated in the preceding analyses.

4.3.1 Performance Comparison

The performance comparison is based on the overall tracking error, quantified by the root

mean square error (RMSE), which serves as an objective metric for assessing the accuracy

of torque tracking. The RMSE can be defined as:

RMSE =

vuut 1

n

nX

k=1

⇣
T̃k � T̃ ⇤

k

⌘2

, (4.13)

where n represents the total number of time steps, and k denotes a specific time step. The

RMSE for both control strategies, as depicted in figures 4-7 and 4-11, was calculated for

operations conducted at a speed of !mech = 20s�1, with the reference torque provided in

figure 4-6. The resulting RMSE values are as follows:

Performance Priority, RMSE = 0.0012, (4.14)

E�ciency Priority, RMSE = 0.0025. (4.15)

These results indicate that the performance priority control strategy demonstrates superior

torque tracking accuracy, with a significantly lower RMSE compared to the e�ciency priority

control strategy. It can therefore be concluded that the performance priority control achieves

better torque tracking performance.
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4.3.2 E�ciency Comparison

To evaluate the agent’s e�ciency in this analysis, a new scenario distinct from the previous

validation setup was created. The e�ciency calculation follows the ratio of output power to

input power approach, as discussed in section 4.2.1, where the ratio between electrical and

mechanical power provides a measure of e�ciency. To thoroughly assess this, the validation

environment employs a high reference torque at medium positive speed of !mech = 80s�1,

covering both motor and generator operations. The reference torque applied is depicted in

figure 4-12, with the zero reference torque set at the start of the simulation to allow the

excitation current to reach a steady state before conducting the e�ciency analysis.

Figure 4-12: Step reference torque input for e�ciency analysis at the speed of !mech = 80s�1

E�ciency of the Agent in Performance Priority Control

The torque tracking performance, already discussed earlier, exhibits the same behavior in

figure 4-13. As noted, the excitation current remains at its nominal value throughout the test.

While this behavior is advantageous for torque tracking, allowing the agent to manipulate

only the stator current due to its faster response compared to the field current, it negatively

impacts e�ciency. The excitation current contributes significantly to losses, as evidenced

in the comparison of stator and rotor losses in figure 4-13. Despite the field current being

much lower than the stator current, rotor losses are substantially higher due to the high

105



rotor resistance value listed in table 1.2.

Figure 4-13: E�ciency analysis of performance priority control at the speed of !mech = 80s�1

Then, the available torque region is getting unnecessarily bigger than it is required as

the agent applies higher excitation current until it stays at the limit. Consequently, the

e�ciency is acceptable when all the available torque is used to produce the output power

but it is getting poor when the input power is unnecessary high. Therefore, instead of

giving the nominal field current for all operations, it is expected to see the excitation current

changing with respect to the reference torque in order to improve e�ciency in the next

section.

E�ciency of the Agent in E�ciency Priority Control

The same torque reference as depicted in figure 4-12 is applied in this environment to evaluate

the e�ciency of the agent under e�ciency priority control. The agent’s performance and

corresponding e�ciency results are presented in figure 4-14.

In the results, the e�ciency shows a noticeable increase compared to the previous strategy.
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Figure 4-14: E�ciency analysis of e�ciency priority control at the speed of !mech = 80s�1

This improvement is largely due to the agent’s strategy of limiting the excitation current,

which substantially reduces the rotor losses. In the performance priority control, rotor losses

were a dominant factor in the overall losses. By reducing these losses in the e�ciency priority

control, the overall system e�ciency is notably enhanced.

However, as previously discussed, this e�ciency gain comes at the cost of performance.

The agent, constrained by the limited excitation current it chooses to apply, struggles to track

high reference torque values e↵ectively. This trade-o↵ highlights the inherent challenge in

balancing performance and e�ciency in control strategies.

E�ciency Evaluation Against Optimized E�ciency

Although both control strategies were validated under the same environment, the operating

points di↵er based on the produced electromagnetic torque. Due to these di↵erences, a

direct comparison of e�ciency between the two strategies is challenging. Therefore, the most

e↵ective method for comparing e�ciency involves establishing an optimized e�ciency curve
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for each operating point and evaluating how closely each strategy’s e�ciency approaches

this optimization. The behavior of the currents, losses, and corresponding e�ciency for the

optimized case is illustrated in figure 4-15, which spans the entire torque range at a speed

of !mech = 80s�1 using the MTPCL method as discussed in section 1.3.4.

Figure 4-15: Optimization of di↵erent operating points at the speed of !mech = 80s�1

The optimized e�ciency, shown in figure 4-15, serves as the benchmark for evaluating

the two control strategies. The comparison between the e�ciencies of the performance pri-

ority and e�ciency priority controls against the optimized e�ciency across various operating

points is depicted in figure 4-16.

As seen in figure 4-16, the e�ciencies of both control strategies, along with their respective

produced electromagnetic torque are compared to the optimized e�ciency for each operating

point. The results indicate that the e�ciency priority control strategy achieves significantly

higher e�ciency, particularly during motor operation, where it closely matches the optimized

e�ciency. In contrast, the performance priority control strategy exhibits notably lower

e�ciency, especially in the generator operation mode.
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Figure 4-16: E�ciency comparison between two strategies for di↵erent operating points at
the speed of !mech = 80s�1

These findings suggest that maintaining the excitation current at its nominal value is

beneficial for minimizing torque tracking error, but it significantly increases losses, thereby

reducing overall e�ciency. Conversely, minimizing the excitation current enhances e�ciency

but makes it more challenging to track high reference torque accurately, particularly due to

the slower response of the excitation current.

4.4 Key Takeaways of the Chapter

This chapter demonstrates that optimal torque control of the complex dynamics inherent

in an EESM drive can be e↵ectively achieved using RL method. Two distinct strategies

were explored: performance priority control and e�ciency priority control. Each approach

o↵ers unique advantages, making the choice between them contingent on the specific re-

quirements of the application. For applications where precise torque tracking with minimal

error is paramount, performance priority control is the preferred strategy. Conversely, if the
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application allows a broader error tolerance, e�ciency priority control proves to be more

beneficial. Ultimately, this chapter highlights the challenges of balancing performance and

e�ciency in RL-based control of EESM, particularly with respect to the management of

excitation current.
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Chapter 5

Conclusions and Outlook

EESM represents a complex dynamic system within AC drives, involving the interaction of

three currents along the d-, q-, and f-axes, with significant coupling between these axes. This

thesis has demonstrated that RL can e↵ectively control this intricate motor in a continuous

manner.

5.1 Conclusions

This thesis employed a systematic approach, transitioning from CCS current control to CCS

torque control, ensuring a smooth progression at each stage. The initial focus on CCS current

control demonstrated the RL agent’s capability to manage and control the complex dynamics

of the EESM drive, successfully tracking reference currents. This step was crucial, as current

sensors are typically the primary means of feedback in real-world applications where torque

sensors are rarely utilized.

To maintain realism in the control approach, the developed electromagnetic torque was

used solely for reward generation during the training phase, not for the control purpose. As

a medium step towards optimal torque control, the excitation current was regulated by a PI

controller within an idealized environment, adapting the reward design of PMSM from [8].

With constant excitation current, the EESM mimicked PMSM behavior from the controller’s
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perspective, and it was observed that the agent could e↵ectively manage the EESM’s system

dynamics for torque control through stator current manipulation alone.

Finally, the thesis demonstrated optimal torque control using a fully RL-based controller.

Two strategies, performance priority and e�ciency priority, were explored, emphasizing the

significant impact of excitation current on the controller’s performance and e�ciency. These

findings underscore the importance of balancing performance and e�ciency in the use of

excitation current for e↵ective control of EESM drives. Then, the key insights from this

work are as follows:

• The DDPG algorithm of RL is capable of controlling AC drives in a CCS, while previous

research [8] demonstrated that DQNs algorithm is suitable for FCS.

• The RL agent can track the reference torque properly, even without direct inclusion of

the produced electromagnetic torque in the observation vector.

• The excitation current is crucial in balancing the controller’s performance and e�-

ciency, highlighting its importance in overall system control.

In summary, this thesis has provided an initial proof of concept that the EESM can

be e↵ectively controlled using RL. This work lays the foundation for further research and

development in this area.

5.2 Future Work

While this thesis has established a strong foundation, there are several areas where further

research is necessary to advance towards practical, real-world implementation:

• The current analysis has focused primarily on linear region operation, with the agent

trained only up to the base speed. Future work should extend the training to cover all

operating points, from negative maximum speed to positive maximum speed, including

considerations for the saturation region and field weakening.
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• To ensure safe and e↵ective training of torque controllers for EESMs in real-world ap-

plications, the development of safety shielding techniques is crucial. Such techniques

might include mechanisms to disable power electronic converters from applying risky

voltages, thereby ensuring safe and risk-free operation during training and implemen-

tation.

• The selection of hyper-parameters in this thesis was carried out through trial and error,

as hyper-parameter optimization was beyond the scope of this analysis. For future

work, a systematic approach to hyper-parameter optimization should be undertaken

prior to training.

By addressing these challenges, future research can move closer to realizing the full po-

tential of RL in controlling EESMs in practical applications.
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Appendix A

Validation of RL Agent for CCS

Current Control

The agent’s performance in CCS current control has already been evaluated in section 2.4,

where the validation was conducted under conditions of negative low-speed operation. In this

section, the validation of the agent at a positive high speed of !mech = 200s�1 is presented

in figure A-1, using the same reference currents as in section 2.4.

As shown in figure A-1, the agent successfully maintains both the stator and rotor voltages

within the specified limits while e↵ectively tracking the reference currents, similar to its

performance at low speed. However, high-speed operation introduces additional challenges,

including the need for higher voltages and increased di�culty in control.

While the tracking behavior of isd and if closely mirrors that of the low-speed scenario,

the performance of isq at high speed is noticeably less accurate. The gap between isq and its

reference i⇤sq is more pronounced, indicating that the agent struggles more with isq tracking

under these conditions. Meanwhile, the tracking errors for isd and if remain comparable to

those observed at low speed.

This suggests that while the agent is capable of managing current control at high speeds,

its performance is not as robust as it is at low speeds. This discrepancy could be due to

several factors: the agent may not have encountered high-speed operations frequently during
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Figure A-1: Validation results at a speed of 200s�1 for CCS current control

training, or the increased voltage demands at high speed could have led to more frequent

environment resets, resulting in fewer high-speed experiences being stored in the replay

bu↵er.

However, this limitation can be addressed by extending the training duration, allowing

the agent to accumulate more experience in high-speed operation, and thereby improving its

performance in these scenarios.
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Appendix B

Validation of PI-assisted RL Agent

The performance of the PI-assisted RL agent was validated in section 3.4, where validation

was conducted under conditions of negative low-speed and negative high-speed operation.

In this section, the agent is further validated at a positive high speed of !mech = 200s�1

and a positive low speed of !mech = 20s�1, as shown in figures B-1 and B-2, using the same

environment as in section 3.4.

The key di↵erence between positive and negative speed operations is the sign of the

stator voltage in the q-axis (usq): in positive speed operations, the agent applies a positive

usq, whereas in negative speed operations, it applies a negative usq. However, this di↵erence

is not critical as long as the agent successfully tracks the reference torque. Consistent with

section 3.4, the applied voltage in high-speed operations is approximately 10 times higher

than in low-speed operations, reflecting the speed ratio.

Interestingly, the agent is able to track the high reference torque in both positive high-

speed and low-speed operations within the defined tolerance under the nominal excitation

current. This suggests that the agent has adequately experienced a wide range of positive

speeds during training, while it may have had less exposure to negative high-speed scenarios.
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Figure B-1: Validation results at a speed of !mech = 200s�1 for PI-assisted RL control
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Figure B-2: Validation results at a speed of !mech = 20s�1 for PI-assisted RL control
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Appendix C

Validation of Performance Priority

Control Agent

The agent’s performance for the performance priority control was previously validated at a

positive low speed in section 4.1.3.

Figure C-1: Validation results at a speed of !mech = �20s�1 for performance priority control
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In this section, the agent is further validated at a negative low speed of !mech = �20s�1

to assess its adaptability across a broader range of operations. The validation is conducted

using the same environment as in section 4.1.3.

As shown in figure C-1, the agent’s performance remains consistent across all reference

torque cycles, regardless of the operating speed. While the torque tracking error is slightly

higher than in the positive speed operation, it still falls within the defined tolerance. This

indicates that the agent has been e↵ectively trained and can adapt to new environments

across a wide range of operating conditions.
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Appendix D

Validation of E�ciency Priority

Control Agent

The agent’s performance for the e�ciency priority control was previously validated at a

positive low speed in section 4.2.4.

Figure D-1: Validation results at a speed of !mech = �20s�1 for e�ciency priority control
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In this appendix, the agent undergoes further validation at a negative low speed of

!mech = �20s�1 to evaluate its adaptability across an even broader range of operational

conditions. The same validation environment as described in section 4.2.4 is employed for

this assessment.

Figure D-1 illustrates that the agent’s performance remains robust throughout all torque

cycles, with torque tracking errors nearly identical to those observed in the previous vali-

dation. This consistency, regardless of operating speed, demonstrates the agent’s e↵ective

training and its ability to adapt to diverse operating environments.
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