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A B S T R A C T

In this work, we describe our contribution to the Purdue-SANDIA-LLNL Damage Mechanics
Challenge. The phase field fracture model is adopted to blindly estimate the failure characteris-
tics of the challenge test, an unconventional three-point bending experiment on an additively
manufactured rock resembling a type of gypsum. The model is formulated in a variationally
consistent fashion, incorporating a volumetric–deviatoric strain energy decomposition, and the
numerical implementation adopts a monolithic unconditionally stable solution scheme. Our
focus is on providing an efficient and simple yet rigorous approach capable of delivering
accurate predictions based solely on physical parameters. Model inputs are Young’s modulus
𝐸, Poisson’s ratio 𝜈, toughness 𝐺𝑐 and strength 𝜎𝑐 (as determined by the choice of phase field
length scale 𝓁). We show that a single mode I three-point bending test is sufficient to calibrate
the model, and that the calibrated model can then reliably predict the force versus displacement
responses, crack paths and surface crack morphologies of more intricate three-point bending
experiments that are inherently mixed-mode. Importantly, our peak load, crack trajectory and
crack surface morphology predictions for the challenge test, submitted before the experimental
data was released, show a remarkable agreement with experiments. The characteristics of the
challenge, and how changes in these can impact the predictive abilities of phase field fracture
models, are also discussed.

. Introduction

This work presents our contribution to the Damage Mechanics Challenge organised by Purdue University, Sandia National
aboratories and the Lawrence Livermore National Laboratory. The aim of the Damage Mechanics Challenge is to assess and showcase
he ability of computational methods to predict (as opposed to fit) the failure of rock-like materials. As detailed below, a certain
egree of information was provided on the deformation and fracture characteristics of the material under consideration, a 3D-printed
ock, and then participants were asked to predict – using the computational approach of their choosing – the failure behaviour (force
s displacement response, crack trajectory and morphology) in a new test configuration.

We chose to employ the phase field fracture model [1,2] to predict the fracture behaviour of the additively manufactured
ock samples, due to its robustness and rigorous physical basis. The phase field fracture model has been enjoying an ever-
rowing popularity in recent years. Grounded on Griffith’s energy balance [3], the phase field model enables predicting complex
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cracking phenomena based on the thermodynamics of fracture, including arbitrary crack branching, coalescence and arbitrary crack
trajectories. The approach is also known to be mesh objective and computationally robust [4,5]. Hence, not surprisingly, phase field-
based fracture models have been developed to simulate material failure across a wide range of engineering applications, including
dynamic fracture [6–8], hydrogen embrittlement [9,10], fatigue damage [11,12], fibre-reinforced composites [13–15], functionally
graded materials [16,17], smart materials [18–20], and Li-Ion battery degradation [21,22]. Notably, phase field fracture methods
have been recently applied to study crack propagation in rock-like materials [23–27] and glaciers [28,29].

In the following, we proceed to describe how we have successfully predicted the required experimental outcome of the Damage
echanics Challenge using the phase field fracture model and the provided experimental calibration data. The aim was to demonstrate

obust predictive capabilities with minimal model complexity. As such, a conventional phase field fracture model (so-called AT2
odel [2]) is employed, such that predictions depend only on four material properties: Young’s modulus 𝐸, Poisson’s ratio 𝜈, fracture

energy 𝐺𝑐 , and strength 𝜎𝑐 , with the last one being indirectly defined through the choice of phase field length scale 𝓁. It is worth
emphasising that this contribution deals with a piece of work that was conducted as part of the standard Damage Mechanics Challenge;
i.e., the results presented are blind predictions, which were submitted to the challenge organisers before the experimental data of
the benchmark test was released.

2. Approach: Phase field fracture modelling

In the following, we proceed to describe the numerical approach employed and the characteristics of the boundary value problem
under consideration. This study was carried out by three researchers based at the University of Oviedo, University of Oxford, and
Vanderbilt University with previous collaborative experience in related endeavours.

2.1. A phase field description of fracture

2.1.1. Background
The phase field fracture model builds upon Griffith’s foundational thermodynamic framework [3]. In concordance with the

principles of the first law of thermodynamics, the initiation or propagation of a crack is contingent upon the proviso that
the total energy of the system either diminishes or remains constant. Thus, the condition for fracture is critically determined
through equilibrium considerations, whereby the overall energy remains unaltered. Consider an elastic solid including a crack,
the perturbation in the total energy  attributable to infinitesimal growth in the crack area, denoted as d𝐴, can be articulated as:

d
d𝐴 = d𝛱

d𝐴 +
d𝑊𝑐
d𝐴 =

d𝛹 (𝜺 (𝐮))
d𝐴 +

d𝑊𝑒
d𝐴 +

d𝑊𝑐
d𝐴 = 0 (1)

where 𝑊𝑐 denotes the energy expenditure required to generate two new surfaces, and 𝛱 is the total potential energy supplied by
the internal strain energy 𝛹 and the external forces 𝑊𝑒. The last term in Eq. (1) is the so-called fracture energy or critical energy
elease rate, 𝐺𝑐 = d𝑊𝑐∕d𝐴; a constant, material-specific parameter characterising its resilience against fracture. The internal strain
nergy 𝛹 is a function of the strain field 𝜺, which is itself a function of the displacement field; for small strains, 𝜺 =

(

∇𝐮𝑇 + ∇𝐮
)

∕2.
Thus, in the case of prescribed/fixed displacements, although no external work is done on the body (𝑊𝑒 = 0), a crack would
grow if the energy stored in the solid equates to the energy required to create two new surfaces. As such, Griffith’s hypothesis
describes a localised principle of minimality governing the cumulative stored and fracture energies. Within an arbitrary domain
𝛺 ⊂ IR𝑛 (𝑛 ∈ [1, 2, 3]) encompassing an internal discontinuity boundary 𝛤 , this principle of minimality can be expressed through a
variational representation as:

 (𝐮) = ∫𝛺
𝜓 (𝜺 (𝐮))d𝑉 + ∫𝛤

𝐺𝑐 d𝑆 − ∫𝛺
𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺

𝐓 ⋅ 𝐮d𝑆 (2)

where the external work is characterised by the body force 𝐛 and the external traction vector 𝐓, and their dot product with the
displacement vector 𝐮. Thus, the trajectory of crack growth can be predicted devoid of arbitrary criteria, grounded in the principles
of global minimality and the conversion of stored energy into fracture energy. Nonetheless, minimising the Griffith energy functional
(2) is hindered by the intricacies associated with the tracking of the advancing fracture surface 𝛤 . This computational challenge can
be addressed by making use of a scalar phase field variable 𝜙, which can be interpreted as a damage field variable, transitioning
rom 0 in undamaged regions to 1 within the confines of the crack. In alignment with the rationale of continuum damage mechanics,
degradation function 𝑔(𝜙) = (1−𝜙)2 is also used, so as to modulate the material stiffness in accordance with the evolving damage.

Consequently, the regularised energy functional takes the form:

𝓁 (𝐮, 𝜙) = ∫𝛺
(1 − 𝜙)2 𝜓0 (𝜺 (𝐮))d𝑉 + ∫𝛺

𝐺𝑐𝛾𝓁 (𝜙)d𝑉 − ∫𝛺
𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺

𝐓 ⋅ 𝐮d𝑆 (3)

where 𝛾𝓁 is the so-called crack density function, which for the conventional AT2 model reads [2]:

𝛾𝓁 (𝜙) =
𝜙2

2𝓁
+ 𝓁

2
|∇𝜙|2. (4)

The crack density function includes the gradient of the phase field order parameter and accordingly a length scale 𝓁, which enables
mesh objectivity. This phase field length scale 𝓁 is directly related to the material strength, as can be illustrated by plotting the
solution to the homogeneous, 1D coupled deformation-phase field fracture problem, which gives a maximum stress of,

𝜎 =

√

27𝐸𝐺𝑐 (5)
2

𝑐 256𝓁
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Accordingly, for plane stress conditions, 𝜎𝑐 ∝
√

𝐺𝑐𝐸∕𝓁 = 𝐾𝐼𝑐∕
√

𝓁, and the choice of 𝓁 will define the material strength for a
given Young’s modulus 𝐸 and critical fracture energy 𝐺𝑐 (or fracture toughness 𝐾𝐼𝑐). The ability of the phase field fracture model
to go beyond Griffith’s fracture and incorporate the concept of material strength is essential to predict crack nucleation [30], and
as a result, the phase field fracture model can capture the transition from toughness-driven failures to strength-driven failures [31],
naturally encompassing the transition flaw size concept. Thus, the structure of the phase field model ensures its alignment with
conventional fracture mechanics theory and this has been shown computationally (see, e.g. Refs. [30–32]) and theoretically - e.g., 𝛤 -
convergence studies have shown that the regularised functional (3) converges to the Griffith functional (2) in both discrete and
continuous systems [33,34].

One relevant aspect to consider is that the conventional phase field fracture model, akin to Griffith’s work, assumes a symmetric
fracture behaviour in tension and compression. To break this symmetry and hinder cracking in compressive regions, a number of
authors have proposed modifications to the model that aim at decomposing the fracture driving force, the strain energy density.
Accordingly, the (undamaged) strain energy density, which is typically defined as follows for elastic solids,

𝜓0(𝜺 (𝐮)) =
1
2
𝜺 (𝐮) ∶ 𝑪0 ∶ 𝜺 (𝐮) , (6)

with 𝑪0 denoting the undamaged stiffness tensor, can be decomposed into a tensile part, 𝜓+
0 , and a compressive part, 𝜓−

0 , such that

𝜓0(𝜺(𝐮)) = 𝜓+
0 (𝜺(𝐮)) + 𝜓

−
0 (𝜺(𝐮)), (7)

Herein, we adopt the so-called volumetric–deviatoric split [35], rendering

𝜓+
0 (𝜀(𝐮)) =

1
2
𝐾⟨tr(𝜺(𝐮))⟩2+ + 𝜇

(

𝜀′(𝐮) ∶ 𝜺′(𝐮)
)

𝜓−
0 (𝜀(𝐮)) =

1
2
𝐾⟨tr(𝜀(𝐮))⟩2−,

(8)

where 𝐾 denotes the bulk modulus, 𝜇 represents the shear modulus, and ⟨⟩ are used to denote the Macaulay brackets, defined as
⟨𝑎⟩± = (𝑎± |𝑎|)∕2. Furthermore, 𝜺′(𝐮) is the deviatoric part of the strain tensor, defined as 𝜺′(𝐮) = 𝜺(𝐮) − tr(𝜺(𝐮))𝟏∕3, where 𝟏 denotes
the second-order unit tensor.

2.1.2. Balance equations
We now proceed to formulate the relevant partial differential equations of the modelling framework in their weak and strong

forms. To this end, it is convenient to define the elastic strain energy density, considering the volumetric–deviatoric split considered
above,

𝜓(𝜺(𝐮)) = (1 − 𝜙)2 𝜓+
0 (𝜺(𝐮)) + 𝜓

−
0 (𝜺(𝐮)) . (9)

Then, in a variationally consistent fashion, the Cauchy stress is defined as,

𝝈 =
𝜕𝜓 (𝜺(𝐮))
𝜕𝜺(𝐮)

= (1 − 𝜙)2
𝜕𝜓+

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

+
𝜕𝜓−

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

= (1 − 𝜙)2 𝝈+
0 + 𝝈−

0 , (10)

where 𝝈+
0 denotes the positive part of the undamaged Cauchy stress tensor, which undergoes degradation due to the evolution of

damage, while 𝝈−
0 represents the corresponding negative counterpart. Then, considering both the strain energy decomposition (7)

and the choice of crack density function (4), the regularised functional (3) can be expressed as,

𝓁 (𝐮, 𝜙) =∫𝛺

[

(1 − 𝜙)2 𝜓+
0 (𝜺 (𝐮)) + 𝜓−

0 (𝜺 (𝐮))
]

d𝑉

+ ∫𝑉
𝐺𝑐

(

1
2𝓁
𝜙2 + 𝓁

2
|∇𝜙|2

)

d𝑉 − ∫𝛺
𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺

𝐓 ⋅ 𝐮d𝑆 (11)

onsequently, taking the stationary of the functional (11), using Gauss’ divergence theorem and noting that the resulting expression
ust hold for any kinematically admissible variations of virtual quantities, the local balance equations of the problem are obtained

s follows:

∇ ⋅
[

(1 − 𝜙)2 𝝈+
0 + 𝝈−

0
]

+ 𝒃 = 0 in 𝛺

𝐺𝑐

(

𝜙
𝓁

− 𝓁𝛥𝜙
)

− 2(1 − 𝜙)𝜓+
0 (𝜺 (𝐮)) = 0 in 𝛺 (12)

Finally, one should note that crack healing is possible in the absence of supplementary constraints in the phase field evolution
Eq. (12)b. To preclude this phenomenon, a history field  can be introduced,  = max𝜏∈[0,𝑡] 𝜓+

0 (𝜏), replacing 𝜓+
0 as the fracture

riving force [4]. Also, a residual stiffness can be added to the degradation function to prevent ill-conditioning in fully damaged
egions, such that 𝑔(𝜙) = (1 − 𝜙)2 + 𝜅, where 𝜅 is a small number (𝜅 = 1 × 10−7).
3
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Fig. 1. Damage Mechanics Challenge data: calibration and to-be-predicted experiments. The calibration data included force versus displacement measurements
for: (a) four three-point bending configurations (of equal dimensions but different notch configurations), (b) unconfined compressive tests, and (c) Brazilian disk
tests. Based on this information, participants were asked to blindly estimate the cracking characteristics (peak load, crack trajectory and morphology) of an
unconventional three-point bending test with an inclined, unsymmetric notch (d).

2.1.3. Numerical implementation
The coupled system of equations is solved using the finite element method. As described in Appendix A, the components of

the stiffness matrix and the residuals can be obtained from Eq. (11) using the finite element discretisation. Here, the focus is on
simplicity and accordingly, the model is implemented in the commercial finite element package Abaqus without the need for an
element-level implementation. As shown in Appendix B, the phase field evolution equation, Eq. ((12)b), takes the form of Poisson’s
equation, such that one can exploit the analogy with the steady-state heat transfer equation and use in-built Abaqus capabilities. By
treating the phase field variable 𝜙 akin to the temperature field and applying the crack driving force via an appropriate (nonlinear)
heat source, one can easily implement the phase field model at the integration point level, using a user material (UMAT) subroutine.
Details of the implementation are provided in Appendix B and Refs. [36,37]. A monolithic solution scheme was used to solve the
coupled displacement and phase field equations, ensuring unconditional stability and thus maximising efficiency.

2.2. Numerical experiments: defining the boundary value problem

2.2.1. Challenge data, requisitions and characteristics
The phase field fracture model was used to conduct numerical experiments with the aim of benchmarking model predictions

against calibration data and providing a blind estimate of the required outputs. The samples needed for the challenge experiment and
the calibration data were manufactured by the hosts of the Damage Mechanics Challenge using additive manufacturing. The material
employed was a special type of gypsum, which resulted from the bonding of calcium sulphate hemihydrate layers (bassanite powders
with a deposition layer thickness of 0.1 mm) with a proprietary water-based binder (ProJet X60 VisiJet PXL). For consistency, all
4
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Fig. 2. Three-point bending tests used for generating calibration data: geometry, dimensions and boundary conditions. The tests included a conventional three-
point bending experiment, denoted as HC (a), two tests where the notch was placed eccentric, HB (b) and HA (c), and a fourth experiment where the notch
was inclined 45◦ along the thickness, requiring a 3D analysis, H45 (d).

samples were obtained from the same 3D printing build. As summarised in Fig. 1, the calibration data included: (i) three-point
bending tests on four types of notched samples, differentiated by the location of their notch, (ii) uniaxial loading tests to measure
the unconfined compressive strength (UCS), and (iii) Brazilian tests to measure the tensile strength. Based on this information,
participants were provided with the geometry of the challenge test, a three-point bending test with an inclined notch — see Fig. 1d,
and asked to numerically predict:

• The force versus displacement response.
• The crack trajectory to benchmark against Digital Image Correlation (DIC) images.
• The crack surface morphology to benchmark against laser profilometry measurements.

Because the growth of a pre-existing notch in a three-point bending test is likely to be driven by tensile stress states, we
isregarded the UCS values measured in the calibration unconfined compressive tests. However, these experiments can be useful in
roviding a rough estimate of the material’s Young’s modulus 𝐸. Specifically, the data provided in Fig. 1b can be well-fitted with
𝐸 values between 900 and 1100 MPa. Nevertheless, it is important to emphasise that this is likely to be a higher value than that
relevant to tensile loading, due to the additional stiffness provided by existing defects under compression. The Brazilian test data
provided was also disregarded. While the Brazilian test is an experiment frequently used to estimate a material’s tensile strength,
the analysis of the experiment with the BrazVal App [38] revealed that the conditions of validity of the test were not fulfilled. As
laborated in Ref. [38], jaws with sufficiently small radii must be used to ensure that cracking initiates in the disk centre. If this is not
he case, the tensile strength obtained from the peak load measurement is an underestimation of the real material tensile strength.
s a result, the tensile strength corresponding to the average peak load in the Brazilian tests conducted (5200 N, 𝜎𝑐 ≈ 2.5 MPa)

is deemed to be an unsuitable value and can only serve as a lower bound. Accordingly, the calibration three-point bending tests
were used to estimate the three parameters of our phase field fracture model: Young’s modulus 𝐸, strength 𝜎𝑐 and toughness 𝐺𝑐 .
Poisson’s ratio was assumed to be equal to 𝜈 = 0.2 as is commonly the case in rock-like materials and calculations with other values
(results not shown here) indicate negligible differences. While a mode I fracture experiment can serve to independently calibrate
each of these parameters, it is important to emphasise that they all have a physical meaning and can be independently measured.

Three-point bending tests were conducted on five types of samples, with the results obtained for four of them provided as
calibration data. These samples are illustrated in Fig. 2, providing details of their geometry and boundary conditions. All the samples
5
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Fig. 3. Finite element discretisation of the three-point bending tests used for generating calibration data. The model HC (a) employs a total of 8888 bi-linear
quadrilateral elements, the model HB (b) uses 11,242 bi-linear quadrilateral elements, the model HA (c) uses 14,622 bi-linear quadrilateral elements, and the
three-dimensional model H45 employs 1,953,053 linear tetrahedral elements. Since the crack trajectory is not known a priori, the mesh is strategically refined
in regions of potential crack growth.

had the following dimensions: 25.4 mm × 76.2 mm × 12.7 mm. The tests denoted HC correspond to a standard three-point bending
configuration, with the notch located in the centre of the sample and aligned with the applied load. In tests HB and HA the notch was
placed eccentric to break the symmetry of the beam and induce mixed-mode fracture conditions. A fourth calibration test, denoted
H45, included a notch inclined 45◦ along the thickness, requiring full 3D analysis. On the other hand, the challenge experiment
was based on a more intricate geometry, containing a crack that was not only inclined along the out-of-plane direction but also
exhibited a variation in notch depth along the sample thickness — see Figs. 1d and 4. An important point to emphasise is that, as
will be shown below, the mode I HC three-point bending experiment suffices to estimate the parameters of the phase field fracture
model; the model can predict (without any additional fitting) the mixed mode behaviour of the remaining three-point bending as
crack trajectories are naturally captured following the path of maximum energy release rate.

2.2.2. Computational details
The finite element meshes employed for each of the calibration three-point bending tests are given in Fig. 3. Plane strain

conditions were assumed for calibration tests HA, HB and HC, whereas a 3D model has to be employed for H45. Three and four
degrees of freedom per node are respectively employed in the 2D and 3D models, involving the components of the displacement
vector and the scalar phase field variable. A key computational advantage of the phase field fracture model is its ability to deliver
mesh-independent results, due to its non-local nature. However, this requires a mesh sufficiently fine to resolve the phase field
length scale 𝓁. Specifically, it has been shown that the characteristic element size has to be five times smaller than 𝓁 to ensure
mesh objectivity [31]. This rule is followed in all our calculations, requiring the use of a refined mesh along the potential crack
propagation region. Since the crack path is not known a priori, the mesh is refined over a relevant, sufficiently large region near
the notch — see Fig. 3.

Four-node quadrilateral elements with full integration are employed for the 2D case studies, while four-node linear tetrahedral
elements are used for the 3D benchmark. For the sake of comparison, both tetrahedral and brick elements are used in the predictions
of the challenge test, as discussed below. As quantified in the caption of Fig. 3, the finite element meshes range from 8000 to 15,000
elements, in the 2D cases, while close to 2 million elements are employed for the 3D analysis. Calculation times go from 30 min for
the 2D analyses (using a single core) to eight days for the 3D model (using 8 cores). A direct linear solver is employed. In the case
of the challenge test, the total number of DOFs was close to 4 million, and calculations exceeded ten days on an Intel(R) Xeon(R)
Gold 6242R workstation using 16 cores. These calculation times are intrinsically related to the choice of a fully monolithic scheme,
which provides accuracy and unconditional stability at the expense of poor convergence. Calculation times can be very significantly
reduced through the use of staggered or BFGS-based monolithic approaches. The geometry, mesh and boundary conditions of the
challenge test are provided in Fig. 4.
6
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Fig. 4. Details of the challenge test: (a) Geometry, dimensions and boundary conditions, and (b) finite element discretisation, employing a total of 904,429
linear brick elements.

Fig. 5. Using the mode I three-point bending experiment (HC) to estimate the three input parameters to the phase field fracture model: Young’s modulus 𝐸,
toughness 𝐺𝑐 and phase field length scale 𝓁 (or strength 𝜎𝑐 ). Numerical force versus displacement results, and comparison with experiments, for varying (a) 𝐸,
(b) 𝓁, and (c) 𝐺𝑐 . Lastly, (d) shows the prediction obtained with the choices 𝐸 = 600 MPa, 𝜈 = 0.2, 𝐺𝑐 = 0.13 kJ/m2 and 𝓁 = 0.5 mm. These choices give a
strength of 𝜎𝑐 = 4.05 MPa.

2.2.3. Calibration of the material parameters
Preliminary calculations were conducted to estimate the values of the three input parameters of the model: Young’s modulus 𝐸,

toughness 𝐺 and strength 𝜎 , with the last one being fixed by an appropriate choice of the phase field length scale 𝓁. As discussed
7
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Fig. 6. Numerical predictions of the force versus displacement response of the three-point bending tests provided as part of the challenge data. Four types of
tests have been conducted: (a) HC, (b) HB, (c) HA, and (d) H45. A black dashed line is used for the finite element results and solid coloured lines are used for
the experimental data consisting of four replicate experiments per testing configuration.

above, the mode I three-point bending test (denoted HC) suffices to calibrate these variables, and the quality of the calibration was
then benchmarked by predicting the failure of the other three three-point bending tests, which are more intricate and inherently
mixed-mode. The calibrated and verified model was then used to deliver a blind estimate for the test challenge.

Let us consider first the case of Young’s modulus 𝐸. As shown in Fig. 5a, the numerical results obtained show that the range
f values inferred from the UCS experiments (900–1100 MPa) overestimates the stiffness shown in the three-point bending tests.
nstead, a value of 𝐸 = 600 MPa appears to provide a much better agreement. As discussed above, these discrepancies between the
tiffness of tensile and compressive tests are likely to be related to the influence of defect dilation in the former (as opposed to
efect closure and friction in the latter). We proceed then to determine the fracture parameters, 𝐺𝑐 and 𝜎𝑐 (or 𝓁). Recall that the

choice of 𝓁 defines the strength, as per Eq. (5). A higher sensitivity to the choice of 𝐺𝑐 is expected because the samples contain large
pre-existing defects and thus failures are likely to be toughness-controlled (as opposed to strength-controlled) [31]. This is shown
in Figs. 5b and 5c; doubling the value of 𝐺𝑐 brings an increase of 42% in the critical load, while the critical load only changes by
10% when the value of 𝓁 is halved. But qualitatively, changes in 𝐺𝑐 and 𝓁 have the same effect — changing the magnitude of the
critical load. Accordingly, we make a judicious choice and pick a pair of 𝐺𝑐 and 𝓁 values that provide a good agreement with the
experimentally measured peak load while falling within the range of expected values for rock-like materials. These are 𝐺𝑐 = 0.13
kJ/m2 and 𝜎𝑐 = 4.05 MPa (𝓁 = 0.5 mm). As discussed below, this choice of parameters gives a remarkable agreement with the
other (mixed-mode) four three-point bending tests and with the challenge test, in terms of peak load, crack trajectory and crack
morphology.

3. Results

We proceed to showcase the numerical results obtained using the model and boundary value problems described in Section 2.
First, from a set of parameters calibrated with the mode I three-point bending test, we examine the ability of the model to predict
8
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Fig. 7. Numerical and experimental estimations of the critical (peak) load for the three-point bending tests provided as part of the challenge data. The experimental
ata is reported as the average peak load with an error bar.

racking in the four mixed-mode three-point bending data calibration experiments (Section 3.1). Then, we provide blind estimates
f the failure characteristics of the challenge test (Section 3.2).

.1. Model benchmarking against calibration data

Numerically predicted force versus displacement responses for the four three-point bending calibration tests are given in Fig. 6,
ext to the experimental results (4 repeated tests per configuration). The fit is particularly good for the HC case, unsurprisingly as it
as used as a calibration benchmark, but a good agreement is overall attained both in terms of peak load and critical displacement. A
ore quantitative comparison is provided in Fig. 7, where the peak load is shown for both simulations and experiments. In the latter,

he average of the four experiments conducted per test is reported and error bars have been included to quantify the experimental
catter. While the agreement is overall good, numerical simulations of test HA and H45 appear to respectively overestimate and
nderestimate the peak load. Nevertheless, even in those cases, numerical predictions deviate only ∼10% from the average peak

load and the error is less than 7% from the closest experimental measurement. This level of differences is arguably to be expected
considering that the model assumes that the 3D-printed rock is homogeneous and isotropic.

Next, crack trajectories are compared with DIC measurements. In addition, the predicted crack morphology in the 3D case study
(H45) is also compared to the laser profilometry profile. The results are shown in Fig. 8. Fig. 8b shows the predicted 2D crack
trajectories, with red colour denoting the regions with 𝜙 = 1 (i.e., cracks), and Fig. 8c overlaps the experimental (Fig. 8a) and
omputational (Fig. 8b) results. This overlap reveals an almost perfect agreement between the two, showcasing the ability of the
odel to capture complex crack trajectories that have not been predefined. A good agreement is also attained in the predictions of

rack morphology for the 3D analysis (case H45), as shown in Fig. 8d, with the predicted crack morphology exhibiting the same
hape and contortions as the laser profilometry-based measurements.

.2. Blind predictions of the challenge test

Finally, we use our phase field model to deliver blind estimates of force versus displacement behaviour, crack trajectory and
rack surface morphology for the challenge test. Our results, submitted to the challenge prior to the release of the corresponding
ata, are shown here and compared to the outcome of the laboratory tests. It should be noted that calculations were conducted with
wo types of elements (brick and tetrahedral) and while the results were similar, some differences were found, which are discussed
n Appendix C. The results presented in this Section correspond to those calculated using brick elements. After a mesh sensitivity
tudy, the 3D model employed uses a total of 904,429 8-node trilinear brick elements, with the mesh being selectively refined in
he regions of potential crack growth (see Fig. 4b).

First, we compare our numerical predictions of the macroscopic force versus displacement response; the results are shown in
ig. 9. The numerical model appears to succeed in predicting with reasonable accuracy the force versus displacement behaviour,
9
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Fig. 8. Numerical and experimental results of crack trajectories and morphology for the three-point bending tests provided as part of the challenge data: (a)
experimental crack paths, (b) phase field fracture model predictions, (c) overlap between experimental and numerical results, and (d) comparison of crack
morphologies for H45.

providing a peak load and a critical displacement that lie within the experimental data. As shown in Fig. 9b, the peak load appears
to be slightly lower than the test average but falls within the experimental scatter.

The crack path predictions are provided in Fig. 10, as depicted by the phase field 𝜙 contours. The experimental results are also
provided (Fig. 10a), together with an overlap of model and experimental crack trajectories (Fig. 10c). The results show a remarkable
agreement between computations and experiments, showcasing the ability of the phase field fracture model presented to deliver
accurate blind estimations.

Finally, model predictions are benchmarked against the last piece of data provided: crack surface morphology, as measured using
laser profilometry. The experimental data, provided as asperity data for 250 rows and 120 columns in 0.1 mm intervals, is plotted
using MATLAB. The results are compared in Fig. 11. As can be observed, the crack surface morphology predicted with the phase
field model appears to be in good agreement with the experimentally determined crack surface profile, which was released after
the submission of the model predictions.

4. Summary, conclusions and outlook

We have described our contribution to the Damage Mechanics Challenge, which exploited the strengths of the phase field fracture
model [2] to deliver blind estimates (i.e., predictions submitted before the challenge data was released). Phase field fracture models
10
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Fig. 9. Comparison between phase field fracture predictions and experimental data, released a posteriori, for the challenge test: (a) force versus displacement
response, showing numerical results (dashed line) and four replicate experiments, and (b) peak load, with the experimental data reported as the average peak
load with an error bar.

Fig. 10. Crack trajectories. Comparison between phase field fracture predictions and experimental data, released a posteriori, for the challenge test: (a)
experimental results, (b) phase field contours, and (c) overlap of numerical and experimental results.
11
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Fig. 11. Three-dimensional crack surface morphology. Comparison between phase field fracture predictions and experimental data, as measured with laser
profilometry.

are grounded on Griffith’s energy balance and the thermodynamics of fracture, and accordingly deliver predictions in agreement
with the conventional fracture mechanics theory. The aim was to demonstrate the predictive potential of simple, physically-sound
models based on a well-established theory. Maximising computational efficiency and simplifying implementation were also targets
of this work, which used an unconditionally stable monolithic solution scheme and straightforwardly implemented the model in a
commercial finite element package by exploiting the analogy between heat transfer and the phase field evolution equations [36,37].

Our model predictions relied only on four parameters, with a clear physical interpretation: Young’s modulus 𝐸, Poisson’s ratio
𝜈, toughness 𝐺𝑐 and strength 𝜎𝑐 , with the last one being defined through the choice of phase field length scale 𝓁 [30,31]. Our study
showed that a simple, mode I three-point bending test was sufficient to calibrate the model parameters, with the calibrated model
accurately predicting the failure characteristics of the other three three-point bending experiments provided as calibration data,
which were more intricate and intrinsically mixed-mode. A very good agreement with experiments was observed across all available
data: force versus displacement response, crack trajectory and 3D crack morphology. Furthermore, the submitted predictions for the
challenge test were shown to deliver a remarkable agreement with the experimental data, released a posteriori. The agreement was
found to be excellent across all the data provided: force versus displacement response, crack propagation paths and surface crack
profile.

The results presented further showcase the ability of phase field fracture models to capture complex cracking phenomena in a
physically sound fashion. Only the force versus displacement curve of one conventional, mode I three-point bending test sufficed
to calibrate a model that could deliver reliable predictions not only for the challenge test but also for the remaining calibration
data, across a wide range of scenarios, data (load carrying capacity, crack paths and morphology) and loading configurations. This
is despite the challenge being based on an additively manufactured material (a type of gypsum mortar) that is rare and for which little
information is available. Phase field approaches link damage and fracture mechanics, providing the computational robustness of non-
local damage models while delivering predictions based on well-established fracture parameters and in agreement with decades of
fracture mechanics development and understanding. However, one could envisage ways to complicate the challenge that would have
potentially showcased the limitations of phase field fracture modelling and other state-of-the-art computational models. For example,
rocks are typically heterogeneous porous materials yet material heterogeneity played a secondary role in this challenge. Within this
realm, several classes of heterogeneous rocks have been shown to exhibit distinct mode I and mode II critical energy release rates
(𝐺𝐼𝑐 , 𝐺𝐼𝐼𝑐 ). This was not observed in the challenge data, where cracks appear to grow according to the direction of maximum
energy release rate. In any case, phase field models have been recently developed to account for material anisotropy [39,40] and
shear fracture characteristics [26,41]. Additionally, conventional phase field models assume a failure surface that is symmetric
over the tensile and compressive regimes. This was appropriate for this challenge, as the chosen loading configuration (three-point
bend testing) resulted in crack growth due to tensile stress states. However, rock-like materials are known to exhibit asymmetric
failure surfaces and these would have played a role under more intricate loading conditions. Fortunately, recent years have seen
the development of phase field models capable of accommodating arbitrary failure surfaces, such as Drucker–Prager [42,43]. A new
edition of this challenge, which could potentially test these complex regimes, would be very welcomed.
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ppendix A. Finite element implementation of phase field fracture

For the sake of facilitating reproducibility, in the following we proceed to describe the characteristics of a finite element imple-
entation of the phase field fracture model. It is emphasised that this information, required for an element-level implementation,

s not required if the heat transfer analogy approach is followed, as discussed in Section 2.1.3.
We start by taking into account the outlined constitutive selections, including the definition of a history field , and calculate

the stationary of 𝓁 with respect to the primal variables 𝐮 and 𝜙; the resultant expression takes the form:

𝜕𝓁(𝐮, 𝜙) = ∫𝛺

{

[

(1 − 𝜙)2
𝜕𝜓+

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

+
𝜕𝜓−

0 (𝜺(𝐮))
𝜕𝜺(𝐮)

]

𝛿𝜺(𝐮) − 2(1 − 𝜙)𝛿𝜙

+ 𝐺𝑐
[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙 ⋅ ∇𝛿𝜙

]

− 𝐛 ⋅ 𝛿𝐮
}

d𝑉 − ∫𝜕𝛺
𝐓 ⋅ 𝛿𝐮 d𝑆 = 0 . (A.1)

here 𝛿𝐮 and 𝛿𝜙 are arbitrary fields (test functions). Then, considering the stress definition, Eq. (10), one can reformulate Eq. (A.1)
nto two coupled weak form equations

∫𝛺

{[

(1 − 𝜙)2 𝝈+
𝟎 + 𝝈−

𝟎
]

∶ 𝛿𝜺(𝐮) − 𝐛 ⋅ 𝛿𝐮
}

d𝑉 − ∫𝜕𝛺
𝐓 ⋅ 𝛿𝐮 d𝑆 = 0 (A.2)

∫𝛺

{

−2(1 − 𝜙)𝛿𝜙 + 𝐺𝑐
[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙∇𝛿𝜙

]}

d𝑉 = 0 , (A.3)

We define a finite element discretisation to formulate the element stiffness matrix 𝑲𝑒 and the residual vector 𝐑𝑒. Using Voigt
otation, the nodal variables for the displacement field, denoted as 𝐮̂, and the phase field 𝜙̂, are interpolated as follows

𝐮 =
𝑚
∑

𝑖=1
𝑵 𝑖𝐮̂𝑖, 𝜙 =

𝑚
∑

𝑖=1
𝑁𝑖𝜙̂𝑖 , (A.4)

here 𝑁𝑖 represents the shape function associated with node 𝑖, and 𝑵 𝑖 is the shape function matrix. Additionally, 𝑚 denotes the
otal number of nodes per element, while 𝐮̂𝑖 and 𝜙̂𝑖 respectively represent the displacement and phase field at node 𝑖. In a similar
anner, the associated gradient quantities can be discretised using the corresponding B-matrices, which contain the derivatives of

he shape functions;

𝜺 =
𝑚
∑

𝑖=1
𝑩𝐮
𝑖 𝐮̂𝑖, ∇𝜙 =

𝑚
∑

𝑖=1
𝐁𝑖𝜙̂𝑖 . (A.5)

The discretised residuals for each of the primal kinematic variables are then expressed as:

𝐑𝐮
𝑖 = ∫𝛺

{

(1 − 𝜙)2
(

𝑩𝐮
𝑖
)𝑇 𝝈+

0 +
(

𝑩𝐮
𝑖
)𝑇 𝝈−

0

}

d𝑉 − ∫𝛺

(

𝐍u
𝑖
)𝑇 𝐛 d𝑉 − ∫𝜕𝛺ℎ

(

𝐍u
𝑖
)𝑇 𝐓 d𝑆, (A.6)

𝐑𝜙𝑖 = ∫𝛺

{

−2(1 − 𝜙)𝑁𝑖 + 𝐺𝑐

[

1
𝓁
𝑁𝑖𝜙 + 𝓁

(

𝐁𝜙𝑖
)𝑇

∇𝜙
]}

d𝑉 (A.7)

The consistent tangent stiffness matrices 𝑲 are then determined by differentiating the residuals with respect to the incremental
odal variables:

𝑲𝐮
𝑖𝑗 =

𝜕𝐑𝐮
𝑖

𝜕𝐮𝑗
= ∫𝛺

{

(1 − 𝜙)2(𝑩𝐮
𝑖 )
𝑇𝑪+

0 𝑩𝐮
𝑗 + (𝑩𝐮

𝑖 )
𝑇𝑪−

0 𝑩𝐮
𝑗

}

d𝑉 , (A.8)

𝑲𝜙
𝑖𝑗 =

𝜕𝑅𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺

{(

2 +
𝐺𝑐
𝓁

)

𝑁𝑖𝑁𝑗 + 𝐺𝑐𝓁 𝐁𝑇𝑖 𝐁𝑗
}

d𝑉 , (A.9)

where 𝑪± = 𝜕𝝈±∕𝜕𝜺(𝐮) are the tangent matrices for the positive and negative parts.
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f

Fig. C.1. Assessing the role of the element type: load versus force results for the challenge test, as obtained using tetrahedral and brick elements.

Appendix B. Heat transfer analogy

As elaborated in Refs. [36,37], one can leverage the analogy with heat transfer to simplify the numerical implementation of the
phase field evolution equation in commercial finite element packages. In the presence of a heat source denoted as 𝑟, the steady-state
equation for heat transfer takes the following form:

𝑘∇2𝑇 = −𝑟 (B.1)

where, 𝑇 represents temperature, and 𝑘 is the thermal conductivity. Eq. (B.1) is analogous to the phase field evolution equation
((12)b) upon assuming 𝑇 ≡ 𝜙, 𝑘 = 1, and defining the nonlinear heat source 𝑟 as follows

𝑟 =
2(1 − 𝜙)

𝓁𝐺𝑐
−
𝜙
𝓁2

(B.2)

Finally, to determine the Jacobian or tangent matrix, we must provide the gradient of the heat source with respect to the phase
ield (temperature), which reads

𝜕𝑟
𝜕𝜙

= − 2
𝓁𝐺𝑐

− 1
𝓁2

(B.3)

Appendix C. On the influence of the element type

To investigate the sensitivity of model predictions to numerical discretisation choices, calculations for the challenge test were
conducted using two types of elements, linear tetrahedral elements and linear brick (hexahedral) elements. Overall, a small influence
was found, as is to be expected when using sufficiently fine meshes. However, given the size of the 3D models, with millions of
degrees-of-freedom (DOFs), an effort was made to use a finite element mesh as coarse as possible outside of the regions of crack
growth, and this can result in some sensitivity to the element choice. Thus, to assess this, calculations were conducted with two
models, one employing 2,438,970 linear tetrahedral elements (1,673,512 DOFs) and another one employing 904,429 linear brick
elements (3,735,636 DOFs). The results obtained are compared in Fig. C.1 in terms of their predicted force versus displacement
responses. The experimental results, released a posteriori, are also included. While small, some differences can be observed; the
tetrahedral response is stiffer and this leads to a slightly higher peak load. This is to be expected, to a certain extent, as linear
tetrahedral elements are known to display stiffer responses if the mesh is not sufficiently fine [44]. Nonetheless, both sets of
numerical results provide a good agreement with experiments.
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