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A B S T R A C T   

This work deals with the scheduling optimization of a Continuous Galvanizing Line (CGL) in the steel industry. 
We introduce a real-case extension of the CGL scheduling problem that is concerned with the linking of cam-
paigns. In order to link the different campaigns planned at the CGL, the scheduler may fix the start coil of the 
sequence, the end coil, or both, introducing new boundary constraints (BC) to the sequencing problem. This shows 
to have a significant impact in the performance of the current Ant Colony Optimization (ACO) algorithms in use, 
failing to find feasible solutions with reliability. Our research aims at improving this reliability. Viewing se-
quences as paths in a directed weighed graph, in which coils are the nodes, and coil changes the edges, the BC 
problem is to find a minimum cost Hamiltonian path that respects the required start and end nodes. In this paper 
we study the negative impact brought by the BC in 30 challenging instances from the CGL, we discuss the reasons 
behind, and we propose a new algorithm able to robustly assure feasibility in all of them. We introduce a brand- 
new graph analysis method devised as an effective surrogate check for feasibility, which runs embedded in the 
ACO sequence construction heuristic. In the experimental analysis we see that it clearly boosts performance, 
increasing reliability by 20%, up to 99.67%. By teaming up with the Interval Reconstruction local search, the 
reliability and quality of the solutions shows to improve further. This graph analysis method we propose, though 
illustrated within ACO as a use case, is applicable to any constructive metaheuristic.   

1. Introduction 

Planning and scheduling operations is fundamental in the 
manufacturing industries, bringing efficiency to production, logistics or 
maintenance tasks, among others. Scheduling helps to coordinate and 
plan the use of resources, such as employees, equipment, and raw ma-
terials. Scheduling is critical for improving productivity, quality and 
service indicators, because it helps minimize downtimes, delays and 
unexpected disruptions in the production process. By improving plan-
ning and scheduling, inventories can also be reduced without impacting 
customer satisfaction (Maravelias & Sung, 2009). 

Most scheduling problems are combinatorial optimization problems, 
many of which are NP-hard problems (Karp, 1972), that is, due to their 
formulation it does not exist any polynomial-time algorithm able to 
resolve them, assuming that P ∕= NP (Garey & Johnson, 1979). 
Approximate methods are used to solve this kind of problems, which 

means that finding the global optimum can never been assured. When 
developing optimization algorithms for the industry, computation time 
is very relevant: the final user needs to obtain a good quality solution in 
a reasonable time, so the efficiency of the algorithm is very important. A 
trade-off between solution quality and computation time is always in 
play. 

The sequencing of jobs in one machine can be related to the famous 
Traveling Salesman Problem (TSP) (Applegate, Bixby, Chvatal, & Cook, 
2006), and thus may be solved effectively by algorithms designed for 
this problem. This work deals with the scheduling of a Continuous 
Galvanizing Line (CGL) in a steel making factory, which has successfully 
been solved by different metaheuristics, among them ACO (Fernández- 
Alzueta et al., 2014). Álvarez-Gil et al. (2022a) studied the CGL sched-
uling problem in 30 real-world challenging instances, focusing on as-
suring feasibility –i.e., all constraints are respected– in very constrained 
scenarios, proposing a new ACO variant with a novel local search 
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(Interval Reconstruction, AS-IR) able to perform successfully where the 
algorithms so far in use failed. 

The motivation of this work stems from the feasibility issues 
encountered when applying the ACO algorithms in the context of linking 
the planned campaigns, where additional constraints make even more 
difficult the optimization problem. Behind this important real-case 
problem, a higher motivation lies in the aspiration to devise an effi-
cient mechanism able to steer constructive heuristics in complex graphs, 
endowing them with an effective look-ahead capability. 

The contributions of this work are (1) the introduction of a new 
scheduling problem concerning the sequencing of steel coils in a CGL 
with boundary constraints (BC) related to the link between schedules; 
(2) the analysis of the performance of the ACO algorithms in use, which 
are not able to assure feasibility when these BC are introduced; and (3) 
the development of graph analysis (GA) techniques –designed to 
perform as a surrogate method for checking feasibility– and their 
streamlined hybridization with ACO to robustly overcome the feasibility 
issues in the benchmark instances. The GA method developed is not 
ACO-dependent, it can be applied to any constructive metaheuristic. 

The rest of the paper is structured as follows: Section 2 presents a 
literature review of existing methods and problems related to our 
problem and line of research. Section 3 provides the description of the 
scheduling problem. In Section 4 we describe the GA method and the 
new algorithm developed to solve the problem. Section 5 shows and 
analyses the computational results achieved. Section 6 gathers the 
conclusions of the work and provides hints on future lines of research. 

2. Literature review 

Following the classification of production scheduling problems 
found in Graves (1981), our problem’s paradigm is the flow shop 
problem (FSP), with one-stage one-processor, also called the one- 
machine problem. Regarding the scheduling criteria, we have all costs 
accounted in a single fitness function (single objective), without addi-
tional schedule performance objectives to optimize (level of production 
resources, percentage of late tasks, etc.). The problem consists in 
sequencing in a single facility the set of input items (coils) with mini-
mum total cost. 

In the book Principles of Sequencing and Scheduling (Baker & 
Trietsch, 2009), the authors provide a great introduction to scheduling 
optimization through operations research. The book goes over a set of 
classical scheduling problems, such as single-machine problem, earli-
ness and tardiness costs, etc., and explains traditional techniques that 
can resolve them, including well-known metaheuristics like Simulated 
Annealing, Branch and bound, or Genetic Algorithms, to cite a few. 

The scheduling optimization in the steel industry has received 
attention in the literature, though the number of publications is not 
abundant. Works in a steel factory can be found in Harjunkoski & 
Grossmann (2001). An exhaustive review for scheduling at Primary 
operations with uncertainty can be found in Iglesias-Escudero et al. 
(2019). The scheduling problem addressed in this work, though, belongs 
to Finishing Operations, for which those studies do not apply due to the 
very different nature of the scheduling at the finishing lines. 

Regarding the CGL problem, Okano et al. (2004) describe a sched-
uling problem for the CGL plus other upstream facilities involved, 
aiming at a standard solution regarding selection and sequencing stages. 
They apply clustering methods that select homogeneous coils from the 
stock, in order to increase connectivity and therefore feasibility. They 
build this way the campaigns from downstream to upstream, attending 
at due dates, and then sequence from upstream to downstream, even-
tually repairing flow and due dates issues. 

Kapanoglu & Koc (2006) address the problem of scheduling a CGL in 
highly constrained scenarios, but taking a wider scope. Instead of a fixed 
set of coils to be sequenced, they look for primary coils –coils from the 
targeted campaign– to build the sequence, picking them by due dates. In 
a second stage, unfeasible solutions are repaired by taking from the 

inventory secondary coils –coils from other campaigns– to fix violations. 
A very interesting Multi-population Parallel Genetic Algorithm is 
developed for the solution. 

Our study has a more concise scope than this paper, focusing 
exclusively on avoiding constraints violations and not on fixing them. In 
the factory for which we are optimizing the schedules, fixing violations 
is a manual task: selection decisions can only be taken by experts who 
must ponder many factors for their choice –due dates, stock building 
strategies, quality, etc. As a remark, it is worth noting that sometimes the 
best decision for repairing an unfeasible sequence is to remove coils, not 
to add extra coils –if that is consistent with due dates. 

Valls Verdejo et al. (2009) address scheduling of a CGL with the use 
of a Tabu Thresholding (TT) combined with a Tabu Search (TS) algo-
rithm (Glover, 1989), that outperforms the manual schedules solutions. 
The problem addressed includes multi-coil conditions related to the 
coils’ weights, which divides them in two sets heads and tails. The TT 
focuses on finding feasible sequences, and includes two local search 
methods for reducing and diversifying heads and improving fitness. The 
TS acts as a global optimizer. 

Tang & Gao (2009) study a CGL scheduling problem in which the 
coils are classified into inner and outer coils (depending on the upper 
side chosen when run at the line), and must be sequenced separately, 
requiring to insert several inner coils between the outer coils. The 
problem objective is to minimize the total changeover cost, the number 
of inner coils inserted in the outer coils part, and the number of transi-
tions coils needed to fix infeasibilities. The authors propose a TS algo-
rithm for which 5 neighborhoods or kind of moves are defined: 2-opt, 
path insert, path swap, coil exchange and coil swap. The first 3 moves 
are only applied to the inner part of the schedule. The algorithm also 
uses intensification and diversification search, where diversification 
consists in performing shifts to the best solution so far obtained and 
reinitializing the TS. 

Fernandez et al. (2014) address the problem of sequencing a CGL 
with the same approach we take as a (low) constrained ATSP, success-
fully adapting the AS algorithm, initially devised for the TSP, to handle 
scheduling constraints and optimize the schedules. Important savings 
are reported compared to the reference schedules. 

Álvarez-Gil et al. (2022b) study highly constrained scenarios brought 
by the production of a more heterogeneous inventory mix, which chal-
lenges the AS performance. Analyzing a set of 30 especially challenging 
instances of the problem that prove to pose serious difficulties for the AS, 
they develop a novel local search especially designed for highly con-
strained scenarios, due to its constructive character. Their Interval 
Reconstruction local search procedure is described further below. 

We have found scarce literature on sequencing metaheuristics that 
makes use of graphs properties or graph theory to improve their per-
formance, which is our line of research. 

Alba & Chicano (2007) propose a new algorithm ACO huge graphs 
(ACOhg) designed to solve problems with huge underlying graphs 
–some over 106 nodes. This brings important issues related to memory 
consumption and efficiency. ACOhg introduces very interesting ideas 
like building and evaluating partial solutions or reducing the memory 
consumption of the pheromone trails. ACOhg deals with a problem far 
from the one we are concerned with –we tackle complex but relatively 
small graphs. 

Wang et al. (2014) present a graph based ACO for an integrated 
process planning and scheduling problem, in which they make use of an 
AND / OR graph structure to store alternative paths in the production 
route of the items. In this problem, not all nodes of the AND / OR graph 
structure need to be visited, i.e., we are not looking for a Hamiltonian 
path. The scope of this work is quite different from our study. The paper 
focuses especially in avoiding local optima, for which it makes relevant 
changes in the pheromone deposition method. The use of the graph here 
concerns the representation of the problem, but no properties or analysis 
of the graph are considered into the algorithm, as we intend to do. 

As already mentioned, feasibility deals with finding Hamiltonian 
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paths in graphs. So, any theoretical approach for this problem in graph 
theory is of application for our problem. 

Bang-Jensen & Gutin (2009) present a comprehensive study of graph 
theory putting their focus exclusively in undirected graphs –or 
digraphs–, which is our topic of interest for scheduling. The BC imposed 
by scheduling campaigning is already conceptualized in graph theory, as 
we can read in this paper: an (x, y)-Hamiltonian path is a Hamiltonian 
path from x to y. If such a path exists, we say that a digraph is 
Hamiltonian-connected. Asking for such a path in an arbitrary digraph is 
an even stronger requirement than asking for a Hamiltonian path: the 
theory confirms that the (x, y)-Hamiltonian path problem is NP- 
complete. 

Sleegers & van den Berg (2022b) discuss the best backtracking al-
gorithms for the Hamiltonian Cycle Problem (HCP) and argue that even 
if the problem is NP-hard almost all of the instances are not. All the 
algorithms in the study are based in depth-first search, some of them 
enhanced with edge-pruning techniques for efficiency. Especially 
interesting edge-pruning methods are four non-Hamiltonian checks: 
degree check, that verifies any edge with 1- or 0-degree, premature 
closure check, disconnectedness check, and one-connectedness check, 
which looks for articulation points –any vertex that if removed, breaks 
up the graph in two or more disconnected parts. An example of a difficult 
instance for the HCP can be found in Fig. 1. 

Sleegers & van den Berg (2022a) use two evolutionary algorithms to 
generate hard instances of the HCP, evaluating hardness as the number 
of recursions required by Vandegriend–Culberson, the best-known exact 
backtracking algorithm for the problem (Vandegriend and Culberson, 
1998). 

These backtracking algorithms are very interesting and of inspiration 
for our solution. Nevertheless, we must remember that they address the 
HCP, which presents 4 differences with respect to our CGL scheduling 
problem: (1) we are looking for paths, not cycles; (2) we are imposing 
start and end vertices; (3) we are tackling directed graphs, not undi-
rected; and (4) we are looking for minimum cost paths, not just paths. 
We must also recall that, though highly streamlined by pruning, back-
tracking algorithms are computationally expensive. 

3. Problem description 

3.1. Industrial context 

In a steel factory, the planning and scheduling of all its units plays a 
critical role. The overall steel making process is complex, with many 
possible different routes and designs (Totten, Funatani, & Xie, 2004). 
Two big parts can be differentiated: Primary operations, where the pig 
iron is made from iron ore and coke at the blast furnace, refined into 
liquid steel by reducing its carbon content at the steel shop, and then 
solidified in the casters facilities into big blocks of steel (slabs, billets); 
and Finishing operations, where those slabs and billets are gradually 
subject to transformations in size (width, thickness) and mechanical 
properties (yield strength) along successive processes, and so trans-
formed into a steel strip that is cut in sheets or wound in coils. The 
surface of the strip is usually protected against corrosion by electro- 
chemical treatments such as galvanizing or tinning. In the Continuous 
Galvanizing Lines (CGL), coils are unrolled and welded into a never- 
ending steel strip that goes into a furnace for annealing treatments, a 
zinc bath for galvanizing the surface with a zinc coating layer, and a 
skin-pass machine for mechanical properties refinement and rugosity 
control. The strip is eventually oiled for further protection and recoiled 
to be sent to the customer Fig. 2. 

The planning and scheduling of all these processes at the steel factory 
is hierarchical (Maravelias & Sung, 2009), from the high-level planning 
of volumes and flows of campaigns along the units to the most opera-
tional low-level scheduling of the items to be processed in each unit for 
the day. Items (i.e., slabs, coils) with similar properties are grouped in 
campaigns that are sequenced one after another attending to tactical and 
operational criteria, being service (customer dates) an important one. 
These decisions are taken by planning experts with the help of support 
tools. Finally, the schedulers at each facility need to decide the 
arrangement of the items of each campaign, usually for a horizon of 1 to 
2 days. The arrangement must respect the production rules and mini-
mize as much as possible losses related to quality, yield, productivity, 
etc. Finding the best arrangement is a complex combinatorial problem 
that needs the help of optimization techniques in order to build good 
quality schedules, and is the problem we are discussing in this paper. See 
the underlying graph of a difficult real-world instance for the CGL 
scheduling problem in Fig. 3. 

In some manufacturing industries, the scheduling optimization 
problems are modeled as a make-span minimization problem (Hejazi & 
Saghafian, 2005). 

In the CGL, however, the production time for each coil is constant no 
matter its position in the schedule, and no setup stops are needed be-
tween coils, that may increase the total make-span –setups appear only 
between campaigns. Quality costs appear instead at each coil change or 
coil transition (Fernandez et al., 2014). The fitness function to be mini-
mized is the sum of all the transition costs. Aside to the costs, a wide set 
of production rules introduce scheduling constraints that forbid certain 
coils to be sequenced consecutively, because this brings issues or is not 
possible for certain machines at the CGL (for instance two coils that do 
not weld together, or two coils whose difference in strip width is over a 
given limit, or which have very different annealing temperatures targets 
in the furnace). If an infeasible sequence was to be processed in the CGL, 
there would be a risk of strip breakage, which represents a huge cost due 
to the unproductive long hours required to fix the issue. The strip has to 
be manually welded where it broke, and if this happens into the 
annealing furnace, the operation is very complicated, sometimes 
requiring more than 24 h to accomplish it. 

3.2. The CGL problem 

The real-world problem under study consists in arranging all coils for 
the CGL at an important steel company. We aim at minimizing the total 
production cost while respecting the production constraints. To these Fig. 1. Hardest Hamiltonian graph for size 13, non-Hamiltonian.  
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production constraints, we must add boundary constraints related to the 
link between the campaigns. 

It is not the subject of this work to go into the mathematical functions 
that are used to model the scheduling costs, which will be known and 
come in the input instances, but to describe the methods to solve the 
optimization problem. All the costs are defined in a square cost matrix 
that stores the cost of sequencing together each pair of coils. This cost is 
not symmetric, i.e., it is not the same cost to run coil 0 and then coil 1 
than vice versa. 

The first priority for the schedule is to have no constraints violated, 
the second priority is to have minimum cost. If a schedule does have one 
or more constraints violated, that is, is not feasible, different actions can 
still be taken by the CGL experts, like introducing linking auxiliary coils, 
looking for more coils to try to fix the issue, or eliminating coils from the 
schedule. All these actions have a huge cost for the factory in terms of 
yield and service, and a significant loss of time for the experts. 

We can easily make an analogy of the problem described with the 
Asymmetrical Travelling Salesman Problem (ATSP), in which the target 

is to visit a set of cities minimizing the total cost of the trip, knowing the 
cost or distance between each pair of cities. In the ATSP, the constraints 
would forbid to travel directly between certain cities, and the theoretical 
problem can be defined as a Constrained Asymmetric Travelling 
Salesman Problem (CATSP). It is important to note that in the TSP we 
look for a cycle, that is, we account for the cost of completing the tour 
from the last city to the initial city, while in the CATSP described we look 
for a path: the cost from last coil to first coil is not accounted. The 
problem described so far is addressed by Fernandez et al. (2014) and 
Álvarez-Gil et al. (2022a). 

The problem extension we introduce in this work is related to the 
linking of the CGL campaigns. The order of the campaigns is of high 
importance and is decided by the plant planning experts, who must take 
decisions concerning coils due dates, flow of campaigns in upstream 
facilities, planned downtimes, etc. As the CGL process is continuous, the 
end coil of one campaign must link to the start coil of the next campaign, 
still respecting all the standard scheduling constraints. Even though the 
schedules for each campaign are made independently, they must be 
consistent with the campaign linking, making sure that consecutive 
campaigns do link. We will call this linking requirement boundary con-
straints (BC) to the CATSP and the problem CATSP-BC. The linking of 
schedules, as we will show in the computation analysis, has a big impact 
in the problem complexity. In fact, it poses a challenge to the algorithm 
that otherwise would perform fine. Three requirements are possible:  

1. The start coil and the end coil are free to be chosen by the algorithm. 
This is the case with campaigns in which the coils are very similar 
and the link to other campaigns is not critical. The scheduler leaves 
the algorithm complete freedom to optimize.  

2. The start coil of the schedule is imposed. This is the usual case when 
the coil properties in the campaign is very heterogeneous, and the 
scheduler must make sure that the start coil of the schedule respects 
all constraints with the end coil of the previous schedule.  

3. Both the start and the end coils of the schedule are imposed. This is 
common when the expert knows that the next campaign has limited 
connectivity with the current campaign he is scheduling, or when a 
special start is required in the next campaign. For instance, some 
campaigns that are run “wide-to-narrow” regarding the strip width: 
because of this, the previous campaign must end in a coil with 
maximum width. It is always the decision of the scheduler to set the 
convenient end coil, which must have connectivity with the coils of 
the next campaign. 

Fig. 2 illustrates option 3. Campaign A runs first, then B and then C. 
We must make sure that last coil of campaign A links with first coil of 
campaign B; we must assure that last coil of campaign B links with first 

Fig. 2. Scheduling campaigns at a Continuous Galvanizing Line.  

Fig. 3. Underlying graph for problem instance cgl_44, with the start node 0 and 
the end node 43. 
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coil of campaign C, and so on. 

3.3. Formal definition 

A formal definition of the problem is: given a directed weighted 
graph G = (V, E), where V is the set of vertices or nodes and E is the set of 
edges or arcs between nodes, and two nodes s,e ∊ V, find the minimum- 
cost Hamiltonian path that starts in s and ends in e. The set V corre-
sponds to the set of n coils to be sequenced (|V| = n). Each arc (i, j) in the 
set of arcs E is weighed with the transition cost cij between coils i and j, 
and the arc exists if and only if the transition between the two coils is 
allowed. 

The adjacency matrix A of the graph stores the information of 
allowed transitions for each pair of coils, having aij = 1 for existing arcs 
between nodes i and j, and aij = 0 if there is no arc. 

The cost matrix C associated to the graph stores the information of 
transitions costs for each pair of coils, that is, the weights of the arcs in 
set E, having a cost cij ≥ 0 for existing arcs between nodes i and j. By 
convention, the cells of the matrix corresponding to forbidden transi-
tions (whose equivalent cell in A has aij = 0), will have cij = − 1. This 
practical convention allows an easy representation of the problem with a 
single cost matrix C from which we can easily obtain the adjacency 
matrix A and build the graph G. 

It is important to note that in the CATSP-BC problem, the constraints 
only forbid two coils i and j to be sequenced together, that is, the pair (i,
j) must never appear in the solution: a sequence 
S = {0,1, 2, 3,⋯.i, j,⋯n − 1} would be an infeasible sequence, violating 
a scheduling constraint. Contrarily to the Sequencing Ordering Problem 
(SOP) introduced by Escudero (1988), where precedence constraints 
forbid a coil i to be sequenced at any position before a coil j, here two 
coils i and j with no transition (i, j) between them can be arranged at any 
position as long as the sequence does not include the nodes i and j as 
consecutive in it. As the problem is asymmetric, transition (j, i) might be 
perfectly valid regardless that (i, j) is forbidden. 

If we add the boundary constraints to the problem, the solution 
sequence must be then 

S = {start, 1, 2, 3, ⋯end}

That minimizes the total cost C =
∑

cij, with aij = 1 for each pair of 
nodes (i, i+1) of the sequence. 

The boundary constraints have total priority for the solution. This 
means that even if there are feasible solutions without these constraints, 
the start and end nodes must be respected no matter if that implies to 
deliver an unfeasible solution. The transition costs are provided for each 
pair of coils, matrix C, independently of the nodes chosen as start and 
end of the sequence. In this regard,  

• We will find in E existing arcs outgoing from e, and incoming arcs to 
s.  

• We may find in E the arc (start, end) existing as well. 

This only means that those coils can be produced together in the line, 
regarding the production rules. But the boundary constraints invalidate 
those arcs for each specific problem. That is, the BC are not reflected in 
the matrix C provided. This convention simplifies the data: the same cost 
matrix C can be used for any chosen boundary coils. 

We must clarify that the CGL schedulers do not know in advance if 
the problem is feasible, that is, if there exist a sequence that respects all 
constraints. Determining this is actually an NP-hard problem. Should the 
problem be infeasible, i.e., no Hamiltonian path exists, the optimal so-
lution is that one with minimum constraints violations. In this case, 
there are actions to be taken by the CGL schedulers, all of them costly to 
the company –in loss of yield and productivity, in service indicators, or 
in loss of time by the experts. This is a major reason to look for a 
feasibility-wise robust algorithm. 

4. Algorithms 

In this section we describe the algorithms under study, the reasons 
for their choice, and the new method proposed. 

4.1. Choice of the algorithms and approach to the problem 

The CGL original scheduling problem without boundary constraints 
has been already studied in Fernandez et al. (2014) and in Álvarez-Gil 
et al. (2022a). In these papers we can see detailed reasoning of why the 
algorithm of choice has been Ant Colony Optimization, in particular the 
Ant System (AS). In the latter, the authors present an evolution of AS 
called AS-IR embedding a local search named Interval Reconstruction 
(IR). The effectiveness of the IR local search assures feasibility in hard to 
solve instances, and is the algorithm in use at the CGL we are addressing 
in this work. 

The IR local search is especially designed for feasibility and adds 
reliability in high-constrained scenarios while keeping the same 
parameterization that yields good performance of the base AS in me-
dium or low-constrained scenarios. This parameterization has been 
tested and adjusted in all kinds of campaigns with very different costs 
and constraints structure. Our line of research intends to further evolve 
the AS for the CATSP-BC keeping this advantage in mind. We are aware 
of how parameters can improve performance, but we also want to avoid 
overfitting our AS, compromising the optimality in the regular 
scenarios. 

For this reason, we conducted a preliminary analysis to assess the 
impact of parameterization and to get insights on our problem. Param-
eters α and β tune the influence of the pheromone information versus the 
heuristic, and ρ controls the pheromone evaporation and thus premature 
convergence. We set up the start and end nodes as described in Section 5. 
We discarded values of α > 1 which is reportedly prone to stagnation 
(Stützle & Dorigo, 2004). We tested the AS and the AS-IR with all grid- 
like combinations for α = {0.5, 0.7, 1}, β = {0, 0.5, 1, 1.5, 2, 4}, ρ = {0.5, 
0.65, 0.8}, that is, 3x6x3 = 54 experiments, running them 30 times for 
each instance. This makes a total of 54x30x30 = 48,600 runs for each 
algorithm. 

This preliminary analysis shows better performance in feasibility for 
certain parameterizations. In Table 1 we can see the results for β = {0, 
2}, which are the most significant for our discussion; β = 4 gets the worst 
results by far and β = {0.5, 1, 1.5} throw an intermediate performance 
between β = 0 and β = 2. We show (1) the total success rate per instance 
(%) –percentage of feasible solutions in all runs all instances–, (2) the 
number of instances in which more than 50 % of the runs were infea-
sible, and (3) the same latter indicator for a 90 % infeasibility. 

We can observe that the best results are obtained with β = 0, an 
extreme setting that effectively removes the cost influence: all costs are 
equal to the algorithm, we are looking just for Hamiltonian paths, not for 
minimum cost Hamiltonian paths. This reveals that in these instances 
some high-costs arcs that belong to the Hamiltonian path are misguiding 
the construction heuristic –which usually selects costly arcs with very 
low probability, except if β = 0. 

But, though setting β = 0 seems to avoid this adverse-costs issue, this 
is not necessarily the best configuration regarding minimization of costs. 
In Table 2 we can see a comparison in costs for the two configurations β 
= 0 and β = 2. For each instance we can see the best cost and the number 
of infeasible runs (inf.). Each cost of 100,000,000 stands for a constraint 
violation. The column cost diff (%) shows the difference in percentage of 
best cost for β = 0 with reference to β = 2. As expected, if the algorithm is 
less greedy on costs, feasibility improves but the optimal cost found 
increases notably. In 12 instances, the best costs found with β = 0 are 
over a 100 % higher than the best costs found with the greedier β = 2. 
We must remark that this is the recommended standard parameteriza-
tion in Stützle & Dorigo (2004). 

Now, we can easily imagine that if we had instances with the same 
nodes and arcs, but being the cheapest arcs only in the Hamiltonian 
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path, a better configuration both for feasibility and costs would be β = 2. 
This tells that trying to solve the problem just by adjusting the param-
eterization does not seem to be enough. We would be overfitting the AS 
to our test problems. Following these considerations, we have dismissed 
applying automatic parameterization methods (Huang, Li, & Yao, 2020) 
like IRACE (López-Ibáñez et al., 2016) to address the BC problem. 

An alternative solution is to try to characterize the input instances, 
classifying them in order to apply different optimal AS parameters for 
each type of instance. This is another interesting line of research that we 
did not follow, because (1) it is very difficult to get or to generate a 
heterogeneous and representative set of instances –easy and hard to 
solve, with diverse types of graphs and connectivity, with diverse cost 
structure– adequate to feed the automatic classifier, and (2) in our 
opinion the results shown cast doubts on finding a parameterization 
especially good both in feasibility and costs for adverse-cost scenarios, 
should we succeed in this classification problem. 

Our line of research followed a different path: try to bring intelli-
gence into the AS by looking at the underlying graph, adding searching 
mechanisms especially designed for feasibility and for the BC problem. 
In this sense, the algorithm we propose in this work performs the same 

way that the base AS in regular scenarios and, when feasibility is at 
stake, a graph analysis method guides the sequence construction 
–without any need to characterize the input in advance for this. This 
design strategy assures that the quality is never lost in the regular in-
stances, and is the reason why we will not insist more on the AS pa-
rameters hereafter. 

In the next three sections we describe the AS and the AS-IR, both 
slightly modified for the BC, and the new algorithm AS-GA we propose. 

4.2. Ant System 

The algorithms under study are built on the Ant Colony Optimization 
(ACO) framework, a population-based algorithm that performs sto-
chastic constructive heuristics gradually improved by means of positive 
feedback (pheromone).  

Algorithm 1 ACO algorithms framework  

1. Set the parameters  
2. Initialize the pheromone values  
3. while (termination criteria not met) do  
4. PerformAntsSequenceConstruction  
5. PerformLocalSearch (optional)  
6. UpdatePheromoneValues 
7end while  

The Ant System (AS) (Dorigo, Maniezzo, & Colorni, 1996) is the first 
developed variant of the ACO family. We will formulate the AS meta-
heuristic as applied to the scheduling problem, following the framework 
in Algorithm 1. We have an input cost matrix C describing the problem, 
and a pheromone matrix T –for trails. A set of m ants perform the con-
struction of a sequence for n iterations, starting with a random coil and 
continuing with next coil based on a pseudo-random decision. The 
probability of a candidate coil j to be chosen as the next one after coil i is 
given by 

pk
ij =

[τij]
α
[ηij]

β

∑
l∈Nk

i
[τil]

α
[ηil]

β, if j ∈ Nk
i (1)  

where τij is the amount of pheromone on the arc (i, j) stored in T and ηij 
its heuristic information inversely proportional to the transition cost 
stored in C for each arc (i, j), ηij = 1/cij. The parameters α and β control 
the influence of the heuristic information versus the pheromone. For 
forbidden transitions, we still leave them as candidates, but assign a 
penalty cost (some huge cost HC) that yields the probability virtually 
zero. At some point during the sequence construction, if no candidate 
coils remain, the candidates will have all of them a heuristic value ηij =

1/HC and therefore the final choice for those forbidden transitions will 
depend only on the pheromone value τij that each candidate transition 
has at that iteration. With this formulation, only valid transitions are 
chosen unless no other option exist. 

After all the ants have completed their sequences, the pheromone 
matrix is updated. Before doing the pheromone deposition, we perform 

Table 1 
Preliminary analysis of the impact of the AS parametrization on feasibility.   

β = 0 β = 2  

ρ = 0.5 ρ = 0.65 ρ = 0.8 ρ = 0.5 ρ = 0.65 ρ = 0.8 

α 0.5 0.7 1 0.5 0.7 1 0.5 0.7 1 0.5 0.7 1 0.5 0.7 1 0.5 0.7 1 

AS                   
success rate (%) 84 87 88 85 87 90 85 88 88 70 64 58 69 63 54 65 61 52 
instances inf. ≥ 50 % 5 3 3 5 3 2 4 3 4 9 11 12 8 11 12 11 11 13 
instances inf. ≥ 90 % 3 1 0 2 0 0 2 1 0 8 8 9 8 9 9 8 9 11 
AS-IR                   
success rate (%) 88 92 92 90 92 92 89 93 92 82 80 76 81 79 75 81 77 74 
instances inf. ≥ 50 % 3 3 3 3 2 1 3 2 2 6 6 8 6 6 8 6 7 8 
instances inf. ≥ 90 % 1 0 0 1 0 0 1 1 0 4 6 5 4 6 4 4 6 4  

Table 2 
Comparison in costs for the AS-IR with parameter β = 0 and β = 2.   

AS IR β = 0  AS-IR β = 2   

Instance best cost inf. best cost inf. cost diff (%) 
cgl_17.txt 5602 0 5602 27 0 
cgl_26.txt 6613 0 6522 30 1 
cgl_28.txt 3953 0 3654 0 8 
cgl_32.txt 7388 0 7128 26 4 
cgl_33.txt 12,027 1 10,068 27 19 
cgl_37.txt 10,476 0 5673 17 85 
cgl_38.txt 7253 0 7253 0 0 
cgl_43.txt 9079 0 7939 30 14 
cgl_44.txt 15,444 17 100,009,102 30  
cgl_45.txt 9462 0 8596 19 10 
cgl_47.txt 15,634 0 6061 1 158 
cgl_48.txt 16,263 0 10,733 30 52 
cgl_48b.txt 12,390 0 6013 4 106 
cgl_50.txt 9186 15 6641 0 38 
cgl_51.txt 26,988 0 12,668 0 113 
cgl_51b.txt 13,599 0 5469 0 149 
cgl_57.txt 22,391 0 9795 8 129 
cgl_58.txt 8835 0 5093 0 73 
cgl_60.txt 20,074 16 100,010,795 30  
cgl_66.txt 14,568 0 9368 5 56 
cgl_70.txt 34,221 0 11,232 0 205 
cgl_70b.txt 14,298 0 7258 3 97 
cgl_72.txt 17,333 14 13,186 30 31 
cgl_73.txt 18,952 0 8655 30 119 
cgl_76.txt 31,602 0 11,752 1 169 
cgl_78.txt 22,049 5 100,010,101 30  
cgl_81.txt 26,502 0 9191 6 188 
cgl_88.txt 33,354 0 11,185 4 198 
cgl_107.txt 34,086 0 7377 0 362 
cgl_114.txt 38,135 0 11,341 0 236  
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the pheromone evaporation for all arcs (i, j) in T according to the 
equation: 

τij←(1 − ρ)τij, ∀(i, j) ∈ T (2)  

where ρ is the parameter that controls the rate of evaporation. After the 
evaporation, we lay pheromone only for the arcs belonging to the best 
sequences. The number of best sequences nbest is a parameter of the al-
gorithm. See Stützle & Dorigo (2004) for details on pheromone depo-
sition and initialization recommendations. 

For the CATSP-BC, a modification is needed to assure complying with 
the BC. The start node is always chosen as the first node, and the end 
node is never used as a candidate until the last step of the construction. 
See Fig. 4. 

In the base AS, no local search is performed. Our choice for an 
effective local search is the AS variant described in next section. But for 
the analysis done in this work, we will also use the base AS as a reference 
and as a measure for the difficulty of the instances. 

There is another variant of AS called Ant Colony System (ACS), with 
a greedier action choice and a slightly different pheromone deposition, 
that performs well in bigger instances for problems like TSP, but has 
serious problems of stagnation (Stützle & Dorigo, 2004). In general, as 
observed in small difficult instances, it is not able to explore adequately 
the solution space compared to AS. Because of this poorer performance, 
observed computationally in Álvarez-Gil et al. (2022a), we will not 
include ACS in our study. 

4.3. Ant system with interval reconstruction 

The Ant System with Interval Reconstruction (AS-IR) described in 
Álvarez-Gil et al. (2022a) is an evolution of the AS that embeds a local 
search especially designed to look for feasibility. The method focuses on 
feasibility but also allows to reduce costs. It is an innovative approach to 
local search because it addresses the local moves using a partial 
constructive mechanism. This proves to be very efficient for highly 
constrained scenarios, where other local search kind of moves fail to 
improve the sequence. 

The base algorithm is the AS, to which the IR local search step is 
added, as in Algorithm 1. The IR is performed over the best sequence 
Sbest of each iteration, before the pheromone update. The IR targets an 
arc with a constraint violation or a high cost, and defines one interval 
window W1 around the nodes it links; a second window W2 is placed 
elsewhere randomly. The length of both intervals is selected randomly 
over a predefined minimum and maximum length interval (parameter-
ized). Then all the nodes in the two intervals (or windows) are put 
together in a bag B = W1 U W2 from where they are redistributed in the 
now empty intervals. 

With probability p = 0.5 a window Wi is chosen, and a node is 
selected from B among all the nodes that are adjacent to the last node in 
Wi. If at some point no adjacent nodes remain at B, a random node is 
taken, which means a violation will be inevitably added. The node is 
removed from the bag and the process is repeated until emptying it, 
getting a new complete sequence S’. Then cost is computed, without 
forgetting to include the arc from the windows ends to the next nodes in 
the sequence, right after the windows. If cost (including penalizations 
due to violations) is reduced, the new S’ is consolidated as the best 
improved sequence so far. The reconstruction is performed several 
times. Fig. 5 illustrates the method described. 

The IR local search implementation is efficient, as it only computes 

differential improvements for its evaluations. And, being focused on 
violations to be fixed until a feasible sequence is found, the method is 
very effective in resolving constraints issues, as it proves in the 
computational analysis. 

Concerning the BC, a modification is needed in the IR: if the second 
interval chosen includes the end node, we must make sure that it is never 
sent to the first interval, ant never placed at any other position than the 
last one. The logic for this is straightforward and deserves no further 
explanation. Although this requirement limits the moves of the IR, the 
method is still very powerful. 

4.4. Ant system with graph analysis 

In this section we introduce the new Graph Analysis method and 
algorithm AS-GA developed for the CATSP-BC. 

4.4.1. Motivation 
The CGL problem seeks to find (minimum cost) feasible sequences. 

Being restricted to finish in a given node makes the task much harder, 
because the number of feasible solutions diminishes notably. To achieve 
feasibility, a constructive heuristics must take all the correct decisions 
from the early stages rather than just go appending adjacent nodes. The 
motivation of this work is to provide to the constructive heuristic the 
ability to look ahead, steering it in the correct direction towards the end 
node. 

This is not an easy task: building a Hamiltonian path, as we have 
seen, is an NP-Hard problem. Checking the Hamiltonian condition for 
each candidate node at each construction step, for each ant, at each 
iteration, would be itself an NP-hard problem to solve every time. This 
panorama poses a real challenge. We need to come up with an effective 
yet efficient analysis able to guide the heuristic. We describe our solu-
tion in the next two sections. 

4.4.2. A surrogate for feasibility applying graph analysis techniques 
Our approach for guiding the heuristic to make right decisions 

regarding feasibility is based in the analysis of the graph containing the 
nodes still unused in the sequence under construction. We want to select 
at each step a candidate node that leaves a good remaining graph –a 
good set of remaining nodes– ahead, increasing the chances of 
feasibility. 

Before going into details, we will give a few basic definitions (Fau-
dree, 2003) related to graphs. A Hamiltonian path is a path that visits 
every vertex of the graph exactly once. In directed graphs there are two 
important types of connectivity. A directed graph is called weakly 
connected (WC) if replacing all of its directed edges with undirected 
edges produces a connected (undirected) graph. A vertex v is reachable 
from a vertex u if there is a directed path from u to v. The digraph is 
called strongly connected (SC) if each pair of distinct vertices is reach-
able from each other. We call WC components and SC components to 
subgraphs in a graph that are WC and SC respectively. 

Once these notions set, we will see how we can make use of them to 
help find Hamiltonian paths. 

We will consider hereafter that the BC applies to the problem, that is, 
the start and end nodes are fixed. To comply with this, we modify the 
underlying graph removing all arcs incident to the start node and all arcs 
incident from the end node. Hereafter we will always talk about directed 
graphs, referred indifferently as digraphs or simply graphs. 

The construction of the sequence begins with the start node and 
continues selecting next nodes among the incident nodes from the last 
node of the sequence, at each step. In the highly constrained scenarios, 
though, at a certain point during the sequence construction, we may run 
out of incident nodes from last node: to continue we can only take one 
node not adjacent, violating a constraint. This lack of adjacent nodes is a 
consequence of all the previous decisions taken steps before. Involun-
tarily, we have left a remaining graph without possible Hamiltonian 
paths. Our target is to avoid arriving to this situation by trying to Fig. 4. The end node is always reserved for the last node.  
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identify in advance those bad decisions. 
When we go adding nodes to the sequence, those nodes are removed 

from the remaining graph, together with all their arcs: the rest or nodes 
lose arcs, the graph becomes less and less connected. One idea for 
avoiding connectivity issues could be to prefer selecting nodes with poor 
adjacency –that is, low degree nodes–, before they eventually become 1- 
or 0-degree nodes. This stands both for incoming and outcoming arcs. 
The target is to avoid generating leaf nodes like node 2 in Fig. 6. This 
simple strategy, though, proves to be not very effective in computational 
tests. One reason is that it is usually too late to fix these issues when we 
detect them, often due to concurrent cases. This strategy would not 
detect either a disconnected remaining graph, like in Fig. 7. 

A slightly more sophisticated strategy would be to analyze the 
minimum degree of the remaining graph. This idea has also shown to 
yield a poor performance in complex scenarios. 

For a surrogate feasibility check to be reliable enough, we must look 
not at node level but at the big picture of the whole graph. A trivial 
necessary Hamiltonian condition is to always require a WC graph, 
avoiding getting a disconnected graph like in Fig. 7. This basic condition 
is correct but clearly insufficient. The graph depicted in Fig. 6 is WC but 
does not have a Hamiltonian path. 

However, to require a SC graph as a condition for feasibility is too 
strong a condition. We can see in Fig. 8 how we could easily trace a 
Hamiltonian path from start to end, yet the graph is not SC: there are two 
SC components, depicted in color white and grey. 

Inversely, SC graphs do not assure the existence of a Hamiltonian 
path, like we can see in two examples in Fig. 9. This is because in the 
definition of a SC graph, each pair of nodes is reachable from each other, 
but we can repeat nodes to do this. 

Our target is to devise a surrogate for feasibility able to rule out 
graphs that spoil the Hamiltonian condition for sure. 

The key to an effective method lies in the closing of a cycle between 
end and start, by adding an auxiliary arc from end to candidate node. 
With this arc, we allow going through all nodes from start to end and 
finally get back to the start node. As a result of closing the cycle, graphs 
become SC when a Hamiltonian path exists, i.e., drawing an arc (end,
start) in Fig. 8. Although we cannot assure feasibility, i.e., cases like in 
Fig. 6, we are using a condition much stronger than WC and getting 
closer to the Hamiltonian condition. 

This first requirement of a SC graph, after adding the arc (end,
candidate), is illustrated in Fig. 10. The nodes {start, … last} belong 
already to the sequence, and now we have 3 candidates {1, 2, 3} incident 
to last, from which to choose. Our analysis identifies not which candi-
date will assure a Hamiltonian path, but which one will surely spoil it, in 
order to reject it as a valid node to continue the sequence. We remove 
last node and its arcs and draw an arc from the end node to the candidate 
node being checked. We can see to the left how choosing candidate 1 
renders the graph WC but not SC. Instead of one SC graph, we get three 
SC components. We see in black and grey color candidates 2 and 3 that 
cannot be visited starting from 1. This means that there not exists any 
Hamiltonian path from node 1 to end, and therefore we can reject node 1 
as a good candidate. At the figure in the bottom center, we see the 
impact of choosing candidate 2, drawing an arc (end,2). In this case, we 
get two SC components, and we can easily see that node 3 cannot be 
visited after node 2. Thus, we also reject this candidate. Finally, the 
graph to the right corresponds to the choice of candidate 3. We draw an 
arc (end,3) and the result is a SC graph, in which all nodes are reachable 

Fig. 5. One reconstruction try of the Interval Reconstruction.  

Fig. 6. Weakly connected graph with 4 strongly connected components.  

Fig. 7. Disconnected graph during the sequence construction.  

Fig. 8. Weakly connected graph with 2 strongly connected components.  

Fig. 9. Strongly connected graphs without Hamiltonian paths.  
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from all the rest. This is the only valid candidate in this simple example. 
Without much difficulty, we can spot a Hamiltonian path starting from 
node 3, continuing to node 2 and to node 1, and then on easily towards 
the end node. 

Of course, the complexity of the graphs goes beyond simple cases like 
this, used only for illustration. Our computational tests have led us to 
our final surrogate feasibility check, which involves repeating this 
analysis one step further with the nodes that are incident from our 
candidate –that is, with the next step’s future candidates. This, though of 
course far from a perfect check, proves to be sufficient to effectively 
guide the heuristics towards the end node reliably, as we will show in the 
computational analysis section. 

The main drawback of this surrogate feasibility check is its compu-
tational cost: doing this analysis for each candidate at each step of the 
construction, for all the ants, in all the iterations, has a polynomial in-
crease in the computation time. The performance slows down drasti-
cally, making unviable a brute-force application of the method. In the 
next section, we will show how we have embedded the method in the AS 
algorithm in an efficient way. Yet this method is not devised for very big 
sizes in short computation time. It will work efficiently below 150 nodes, 
which meets the requirements of our use case, where the size of the 
schedules is usually under 100 nodes. 

The pseudo-code of our surrogate feasibility check, performing the 
graph analysis described, is shown in Algorithm 2 and Algorithm 3. The 
input to the surrogate Hamiltonian check is the partial sequence S, the 
remaining graph G, together withthe candidate and the end nodes. We 
will see in algorithm 5 where the check is called.  

Algorithm 2 SurrogateFeasibility(S, G, candidate_node, end_node)  

1. last_node ← LastNodeInSequence(S)  
2. G’ ← RemoveNode(G, last_node)  
3. feasible ← IsAdjacent(G, last_node, candidate_node)  
4. if feasible and | V’ | ≤ 2: # cannot apply the surrogate check for less than 3 nodes  
5. return True  
6. feasible ← IsStronglyConnected(G’, candidate_node, end_node)  
7. if feasible:  
8. next_feasible ← False  
9. NextCandidates ← GetAdjacentNodes (G’, candidate_node)  
10. if NextCandidates ∕= Ø:  
11. next_feasible ← False  
12. for next_candidate in NextCandidates:  
13. next_feasible ← IsStronglyConnected (G’, next_candidate, end_node)  
14. if next_feasible:  
15. Break  
16. end for  
17. feasible ← next_feasible  
18. return feasible   

Algorithm 3 IsStronglyConnected(G, candidate, end_node)  

1. G’ ← GetSubgraph(G, candidate) 

(continued on next column)  

(continued ) 

Algorithm 3 IsStronglyConnected(G, candidate, end_node)  

2. G’ ← DeleteOutgoingArcsEndNode(end_node)  
3. G’ ← AddArcEndNodeToCandidateNode(end_node, candidate)  
4. is_connected ← IsStonglyConnected(G’)  
5. return is_connected  

4.5. Embedding graph analysis in the ACO framework 

To embed the graph analysis into the ACO framework we only 
modify the ants sequence construction, inserting our surrogate feasi-
bility check. The new framework, shown in Algorithm 4, barely differs 
from the one in Algorithm 1.  

Algorithm 4 AS-GA algorithm framework  

1. Set the parameters  
2. Initialize the pheromone values  
3. while (termination criteria not met) do  
4. PerformAntsSequenceConstructionGraphAnalysis  
5. PerformLocalSearch (optional)  
6. UpdatePheromoneValues  
7. end while  

The main challenge for applying the feasibility check deals with doing it 
without an exponential growth in computation. In a first scheme, we 
would simply apply the feasibility check to all adjacent candidates, 
rejecting those with a negative result of the feasibility check, and then 
apply the AS selection method to the accepted nodes. But clearly this is a 
bad option in terms of computation, especially for the low constrained 
scenarios in which all or almost all the candidates are adjacent and 
therefore should be checked. Several key modifications allow to achieve 
a satisfactory performance in terms of computation time:  

• The first modification to streamline this first rough design is to 
change the exhaustive check to all candidates, that would filter out 
those unfeasible, into a selection round that gets a candidate and 
then checks it, and finishes as soon as a candidate gets a positive 
result from the feasibility check. That is, we first perform the stan-
dard AS selection action to all adjacent nodes, and then apply the 
feasibility check, not the other way round. If the result is an accep-
tance we validate the candidate, otherwise we remove that node 
from the candidates list and repeat the selection and check procedure 
again. 

This design leads to the AS-GA sequence construction logic shown in 
Algorithm 5. We are building sequence S, initialized to the start node. 
We first apply the feasibility check to the start node, stopping it any 
further if the result is negative. Once we have confirmed that there may 

Fig. 10. Three candidates for last node, two of them (1 and 2) rendering the sequence unfeasible.  
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exist a (start, end)-Hamiltonian path we continue with next nodes. We 
first perform the standard selection method for next candidate from a 
bag Badj with all the adjacent candidates to the last node currently in the 
sequence, and then perform the feasibility check for that selected node. 
If the node is accepted, we continue to next step; if it is rejected, we 
remove it from Badj and repeat this selection logic with the rest of can-
didates until the feasibility check returns a positive result. In case there 
is no candidate acceptance for any of the nodes in Badj, we continue with 
a random non-adjacent node, and we do not perform any more the graph 
analysis for this ant.  

Algorithm 5 PerformAntsSequenceConstructionGraphAnalysis(G, start_node, 
end_node)  

1. S ← {start_node}  
2. feasible ← False  
3. if SurrogateFeasiblity(S, G, start_node, end_node)  
4. feasible ← True  
5. G ← RemoveNode(G, start_node)  
6. while S not complete  
7. last_node ← LastNodeInSequence(S)  
8. Bagadj ← GetAdjacentNodes(G, last_node)  
9. Bagadj ← Remove(Bagadj, end_node)  
10. if Bagadj = Ø  
11. feasible ← False  
12. candidate ← SelectRandomNodeNotAdjacent(V)  
13. else  
14. candidate ← SelectNextNode(Bagadj)  
15. if feasible  
16. while (not SurrogateFeasiblity(S, G, candidate, end_node) and Bagadj ∕= Ø)  
17. Bagadj ← Remove(Bagadj, candidate)  
18. candidate ← SelectNextNode(Bagadj)  
19. if Bagadj = Ø  
20. feasible ← False  
21. candidate ← SelectRandomNodeNotAdjacent(V)  
22. G ← RemoveNode(G, last_node)  
23. S ← Append(candidate)  
24. S ← Append(end_node)  
25. return S  

The efficiency improvement achieved with this scheme is significant but 
still insufficient. 

• A second important streamlining choice lies in the number of itera-
tions needed. The algorithm can be stopped at a target time or be run 
for a fixed number of iterations. In the base AS, a factor of success is 
to run efficiently numerous iterations in short time, hoping to 
eventually converge to a feasible solution. If a more robust approach 
like AS-GA achieves feasibility already in the first iterations, as we 
will see, only a few iterations suffice, focused mainly on cost 
reduction.  

• A third streamlining choice is that with this method we need fewer 
ants and, besides, not all ants need perform the graph analysis. This is 
possible only because the GA is effective enough: as we will see in the 
computational tests, in all instances and all runs, a feasible solution is 
achieved by a confident percentage of the ants. With this good per-
formance, we do not need all the ants perform the analysis. Some 
percentage of the ants, i.e., 50 %, may be devoted to scout for feasible 
solutions with the GA capabilities, while the rest of the ants do not 
need perform the analysis; they just rely on the AS learning process 
(stigmergy) to build good solutions, exploiting the results of their 
companion GA ants.  

• A fourth implicit streamlining mechanism comes built-in, derived by 
the infeasibility cases: whenever we run out of candidates at a certain 
construction step, the feasibility check is not useful anymore, and is 
deactivated. This means that once an ant fails in feasibility, the se-
lection loop is not performed anymore. 

The AS-GA run in our computational analysis includes all these ef-
ficiency methods. Yet there is still room for more future streamlining. 
Parallel computation should significantly reduce the computation time. 

Ants running in parallel in different cores allow an easy reduction of the 
total computation time; there are no drawbacks for the AS-GA design 
regarding this. But for the purpose of this work, to carry out a fair 
comparison with the other algorithms, no parallel computation has been 
implemented in any of the AS variants under study. 

A clear improvement to the AS-GA is to add the IR local search, 
which at first does not have any drawback other than adding extra 
computation. The computational cost is small compared to the GA sur-
rogate feasibility check, and the implementation is straightforward, just 
adding the IR mechanism as the local search of choice in the scheme 
shown in Algorithm 4. We have called this variant the AS-GA-IR. 

We want to remark that this feasibility graph analysis is valid for any 
constructive heuristic that builds sequences from start to end –as 
different to insertion constructive heuristics. That is, it is suitable to be 
embedded into constructive metaheuristics such as Greedy Randomized 
Adapted Search Procedures (GRASP) (Feo & Resende, 1995). In this 
method, a greedy constructive heuristic is randomized and run 
throughout multiple iterations, adding local search improvements after 
each construction phase. The GRASP construction phase builds solutions 
from scratch by selecting next candidate from a Restrictive Candidate 
List (RCL). Embedding our graph analysis method into the GRASP would 
be similar to its embedding into the use case AS: in the GRASP con-
struction phase, we substitute each (one-time) candidate selection from 
the RCL for a selection round, in which we iteratively select a tentative 
candidate and perform on it the graph-based feasibility check, until the 
check is positive. Only then the tentative candidate is effectively 
selected. 

5. Experimental analysis 

In this section we show and analyze the results of the computational 
tests, comparing the 3 algorithms described in section 4 plus a fourth 
algorithm combining the IR local search and the GA method. Aside to 
the summary results, we illustrate the GA method at work with a couple 
graphs analyzed during the construction of the sequences. We also 
analyze details in the performance of the algorithms regarding 
feasibility. 

For this study, we have chosen to use the 30 instances published in 
Alvarez-Gil et al. (2022-april), which have been selected because of their 
difficulty from daily schedules run at the line. Each instance is a cost 
matrix named as cgl_n, where n is the size of the problem (number of coils 
to be sequenced), ranging from 17 coils to 114 coils. 

For the campaign BC, we have chosen in all instances start node = 0, 
that is, the first node of the matrix, and end node = n-1, that is, the last 
node, because we know in advance that there is at least one (0, n-1)- 
Hamiltonian path. This is easy to see at first glance looking at the cost 
matrix, where we can check that none of the elements over the diagonal 
are constraints, which makes the trivial solution S = {0, 1, 2, 3…n-1} 
feasible. The only exception for this is instance cgl_38, in which only 
node 1 is reachable from 0 while visiting all nodes, and so we have set 
end node = 1 for this instance. 

We want to remark that we can set multiple different BC problems 
using the same instance, but for the experimental analysis we have 
chosen one specific BC. 

5.1. Experiment setting 

Our aim is to analyze what improvement in performance our graph 
analysis method brings. We have a common implementation of the AS in 
which we can activate or deactivate the GA method and the IR local 
search. For the computational analysis, thus, we will be comparing 4 
algorithms: the base algorithm AS, the AS-IR algorithm with the IR local 
search, the AS-GA hybridized algorithm we propose in this work, and the 
AS-GA-IR which embeds both the GA capabilities and the IR local search. 

We have run our computational analysis in an Intel(R) Xeon(R) CPU 
E5-2695 v4 @ 2.20 GHz machine with 32 GB of RAM. 
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The 4 algorithms have the same AS parameterization. We have set up 
the standard parameters for the AS defined in Stützle & Dorigo (2004), 
which are α = 1, β = 2, ρ = 0.5, and m = n, being m the number of ants 
and n the size of the instance. The number of ants n, though, as discussed 
in the previous section, is limited for the AS-GA and AS-GA-IR to a 
maximum of 40 ants in the instances with more than 40 nodes, as a 
streamlining strategy. This means that the AS-GA and the AS-GA-IR al-
ways run with fewer or equal of ants than the AS and the AS-IR. The 
number of best ants set up is nbest = 1. 

The parameters used for the IR in the AS-IR are the ones used in 
Álvarez-Gil et al. (2022a): max_window_len = n/3, min_window_len = 0, 
max_improvement_tries = 10 and max_reconstruction_tries = 30. We can see 
a summary of the parameters used in Table 3. 

For assuring statistical significance, we have run the 4 algorithms 30 
times each on every instance. All runs have the same fixed budget time 
of 180 s, no matter the size of the instances. This is an assumable 
computation time for the final user. It is higher than the budget time of 
120 s set in Álvarez-Gil et al. (2022a) due to the higher complexity of the 
problem. 

Additionally, to have a reference of the optimum value for each 
problem, we have run the 30 instances on an exact solver, in our case 
IBM ILOG CPLEX Interactive Optimizer 22.1.1.0, in a machine with a 
processor 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz 3.00 GHz 
and with 32 GB of memory. The solver is stopped after 1 h. We have 
formulated the problem as an Integer Linear Programming (ILP) prob-
lem following the formulation by Miller, Tucker, & Zemlin (1960), with 
minor adaptations to look for a Hamiltonian path with given start and 
end nodes, instead of a Hamiltonian cycle. 

5.2. Results 

5.2.1. Summary comparison of the algorithms 
In Table 4 we can see the results of the computational test. For each 

instance we can see the best cost and the number of infeasible runs (inf.) 
for the 4 algorithms. Each cost of 100,000,000 stands for a constraint 
violation. In Table 5 we show a summary of the feasibly success rate (%). 

The requirement from the CGL is to run a robust algorithm able to 
assure feasibility in every run. The scheduler does not know in advance 
if there is a feasible arrangement for the coils of the campaign to be 
schedule. It will run the algorithm just once, and then will fix violations 
in case there are. Many times, the set of coils is not feasible, and no other 
option exists. But a robust algorithm able to reduce violations at 
maximum in the hardest scenarios will make the difference and save 
scheduling costs and time to the CGL. 

This is the reason why we look at the number of runs that have not 
found a feasible sequence, additionally to the best cost found in all the 
30 runs. 

We can also see the result from the exact solver CPLEX, showing the 
lower bound (LB) and upper bound (UB) obtained after running a 

maximum of 3600 s. This gives us a reference of how difficult the in-
stances are, and how close to the known optimum values the algorithms 
studied are. In the cases in which the best cost is found, we show it in 
column best cost, otherwise we write “-”. The exact solver finds the so-
lution in 6 of the 30 instances (the three smallest and other three of 
small-medium size), all of them obtained in a computation time below 
180 s. The rest of instances are not resolved in the budget time of 3600 s. 

The AS is only competitive in occasional runs in a few instances. In 
Table 4 we can see that the base AS fails to find feasible sequences in 
some run in 22 out of the 30 instances: only 8 instances get 0 infeasibility 
runs. Its total success rate is only 56.89 %. 

The AS-IR, specifically designed for feasibility in complex instances 
(without BC), finds more feasible sequences, succeeding in 79.67 % of 
the total runs. Yet in 3 instances it never finds a feasible solution (30 
infeasibilities in the 30 runs) and in 1 more instance it only gets a 
feasible solution in 2 runs out of 30 (see 28 infeasibilities). We must 
recall that if we do not set a start and end node, in these instances the AS- 
IR is robust, feasibility-wise (Álvarez-Gil et al., 2022a). 

The AS-GA reaches a 99.67 % feasibility success rate, failing only in 3 
runs out of the total 900 runs, 30 per instance. Regarding costs it is very 
competitive, though the AS-IR gets to find better cost solutions in 8 
instances. 

As we were expecting, combining both hybrid AS algorithms in the 
AS-GA-IR results in the best of the 4 algorithms: the feasibility success 
rate is 99.78 %. Hybridizing them is straightforward. Although the GA 
method has an important computational cost, the IR local search is quite 
efficient in comparison, so there is no major drawback, even computa-
tionally, in applying the IR local search to improve the already good- 
quality solutions built with the GA method. 

Regarding efficiency, we want to remark that in the budget time 
chosen of 180 s, the number of iterations run for the bigger instances 
when using GA decreases with size. 

Regarding costs, in Table 6 we show the number of best cost results 
for all instances, both in average (only feasible sequences considered) 
and in minimum value of all runs. Minimum values are those in Table 4, 
the table for average values is omitted for simplicity. We can observe 
that the IR local search, as expected, helps improve the sequences built 
by the ants, reducing costs. Yet the AS-GA is competitive in costs, getting 
minimum best cost in 11 out of the 30 instances without the help of any 
local search improvement. This is because the best costs achieved do not 
sometimes differ notably. 

5.2.2. Two examples of the graph analysis method at work 
In Fig. 11, we can see the GA method in action in instance cgl_28. The 

end node is node 27. The only good candidate here is node 2, because no 
remaining node is incident to it except last node. In the graph (following 
the GA method described) we cannot see last node, only the candidate 
being checked; but we just need to know that in this case last node links 
to all the nodes seen in the graph –all nodes are candidates, making the 
decision at this stage very difficult. The selection loop chooses several 
times some node that renders the graph not SC, like the case depicted to 
the left. Selecting node 9 splits the graph in two SC subgraphs: one with 
node 2, and the other one with the rest of nodes. The surrogate feasi-
bility check detects this issue, discards the candidate, and tries other 
candidates: nodes 11, 5, 4, etc., with the same negative result from the 
check. Only when candidate node 2 is selected and checked the graph 
evaluated is SC, picture to the right. We can see that in this case, 
following the described method, an arc is drawn from end node 27 to 
node 2 because the latter is the candidate node; this arc renders the 
graph SC. When choosing other candidate nodes, no arc enters node 2 
anymore, which makes it impossible to visit node 2 in the future. 

In Fig. 12, we can see in action a counterexample of how the sur-
rogate feasibility check is not equivalent to the Hamiltonian check. To 
the left, we detect that candidate node 23 spoils the SC condition, 
splitting the graph in two SC components. We correctly reject this node 
23. To the right, we see that choosing node 42 fixes the issue, getting a 

Table 3 
List of parameters for the experimental analysis.  

parameter value description used in 
algorithm 

α 1 coefficient for pheromone 
weight 

all 

β 2 coefficient for heuristic weight all 
ρ 0.5 coefficient for pheromone 

evaporation 
all 

max_window_len n/3 maximum window length for 
IR move 

AS-IR, AS-GA- 
IR 

min_window_len 0 minimum window length for 
IR move 

AS-IR, AS-GA- 
IR 

max_improvement_tries 10 maximum improvement tries 
for IR move 

AS-IR, AS-GA- 
IR 

max_reconstruction_tries 30 maximum reconstruction tries 
for IR move 

AS-IR, AS-GA- 
IR  
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SC graph. But we can easily see that, whatever node we actually select, 
the path towards the end node is doomed to eventually fail in subsequent 
steps: node 22 is clearly dividing the graph in 2 sets (articulation point), 
being the only way to visit the nodes {15, 19, 21} at the bottom. Once it 
gets selected at some step ahead, we will not be able to go back to end 

node 43. That is, our surrogate deems the remaining graph Hamiltonian, 
but it is actually not the case. 

5.2.3. Feasibility and convergence 
Finally, in this section we briefly analyze the convergence of the 

algorithms, by looking at the number of violations the ants obtain at 
each iteration. We will show two examples focusing on the AS-IR and the 
AS-GA, which are the two methods we are most interested in comparing 
in our work: the reference algorithm in use, and the new algorithm we 
propose. We focus on the AS-GA instead of the AS-GA-IR so as to analyze 
the goodness of the graph analysis method introduced, regardless the 
local search refinement that the IR method can add up. The objective of 
this paper is to introduce this graph analysis, which can be applied in 
other meta-heuristics, rather than just to look for the best performant 
algorithm for this use case. 

To illustrate their behavior, we will look at two plots: (1) the number 

Table 4 
Best cost and number of infeasible runs for each instance and algorithm.   

CPLEX   AS  AS-IR  AS-GA  AS-GA-IR  

Instance LB UB best cost best cost inf. best cost inf. best cost inf. best cost inf. 
cgl_17.txt 5602 5602 5602 5602 27 5602 0 5602 0 5602 0 
cgl_26.txt 6522 6522 6522 100,005,242 30 6522 0 6535 0 6522 0 
cgl_28.txt 3654 3654 3654 3654 0 3654 0 3654 0 3654 0 
cgl_32.txt 5482 7128 − 8342 26 7128 0 7147 0 7128 0 
cgl_33.txt 10,067 10,068 − 10,874 27 10,068 0 10,083 0 10,068 0 
cgl_37.txt 5673 5673 5673 6677 17 5673 0 5841 0 5673 0 
cgl_38.txt 6089 7253 − 7253 0 7253 0 7253 0 7253 0 
cgl_43.txt 5758 7343 − 100,004,005 30 7939 18 7351 0 7618 0 
cgl_44.txt 10912,9 10,914 − 100,009,102 30 100,009,102 30 11,132 3 11,122 2 
cgl_45.txt 8596 8596 8596 8622 19 8596 8 8619 0 8619 0 
cgl_47.txt 5841 5992 − 6061 1 6061 0 6323 0 6061 0 
cgl_48.txt 10,322 10,604 − 100,010,180 30 10,733 7 10,729 0 11,017 0 
cgl_48b.txt 5073,9 5578 − 6256 4 6013 1 5990 0 5900 0 
cgl_50.txt 6340 6610 − 6664 0 6641 0 6622 0 6624 0 
cgl_51.txt 12666,7 12,668 − 12,705 0 12,668 0 12,996 0 12,868 0 
cgl_51b.txt 4825 4991 − 5812 0 5469 0 5503 0 5496 0 
cgl_57.txt 8371,5 9722 − 11,209 8 9795 5 9739 0 9739 0 
cgl_58.txt 5093 5093 5093 5093 0 5093 0 5093 0 5093 0 
cgl_60.txt 9762,1 11,601 − 100,010,923 30 100,010,795 30 12,073 0 12,112 0 
cgl_66.txt 9191 9290 − 10,257 5 9368 0 9465 0 9420 0 
cgl_70.txt 10,236 10,237 − 11,391 0 11,232 0 11,104 0 10,445 0 
cgl_70b.txt 5798,7 6618 − 7345 3 7258 2 7470 0 7104 0 
cgl_72.txt 8069 10,370 − 100,008,447 30 13,186 28 13,686 0 13,186 0 
cgl_73.txt 6824 7978 − 100,006,715 30 8655 18 8227 0 7985 0 
cgl_76.txt 9916,4 10,411 − 11,896 1 11,752 0 12,376 0 11,224 0 
cgl_78.txt 9641,2 12,027 − 100,010,101 30 100,010,101 30 14,272 0 14,746 0 
cgl_81.txt 7883 8365 − 10,979 6 9191 3 8716 0 8929 0 
cgl_88.txt 10144,7 11,092 − 11,506 4 11,185 3 12,284 0 12,334 0 
cgl_107.txt 4419 7057 − 7718 0 7377 0 8076 0 7859 0 
cgl_114.txt 10,930 11,287 − 11,592 0 11,341 0 12,577 0 12,833 0  

Table 5 
Success rate (%) of feasible sequences found in all instances, all runs.   

AS AS-IR AS-GA AS-GA-IR 

feasibility success rate (%)  56.89  79.67  99.67  99.78  

Table 6 
Best cost summary scores per algorithm, for average cost (feasible sequences 
only) and minimum cost.   

AS AS-IR AS-GA AS-GA-IR 

Best avg cost 2 16 5 14 
Best min cost 5 17 11 17  

Fig. 11. Example of selection round for the GA method.  

Fig. 12. Construction step correctly rejecting a surely wrong node, but doomed 
to fail eventually because of an articulation point, an issue originated in pre-
vious steps of the heuristic. 
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of violations in each ant per iteration (characterized through three 
values: minimum number of violations among all ants, average number 
of violations, and maximum number of violations); and (2) number of 
ants getting feasible solutions per iteration, that is, sequences without 
violations. We zoom in on the first 50 iterations for a better view. 

In Fig. 13 we can see an example of the performance of the AS-IR in 
instance cgl_60. In the right chart we can see that the AS-IR has not found 
any feasible sequence in any run. In the left chart we look at the number 
of violations made in each ant’s sequence. At the first iteration the 60 
ants of the AS-IR build sequences within a range of 3 and 8 violations, 
and an average of slightly over 5 violations. No ant gets a feasible 
sequence (0 violations). We can see that the AS learning process makes 
the ants improve and get ever decreasing violations along time, but the 
convergence does not reach 0 violations eventually. We are only 
showing the 50 first iterations here, but the curve does not go eventually 
down to 0, as Table 4 shows. We see that the complexity of the problem 
impacts the convergence, because the minimum violations perform 
somewhat erratic for this value. To the right, we confirm that no ant gets 
feasible solutions at any iteration. 

In Fig. 14 we see an example of the performance of the AS-GA in the 
same instance cgl_60. What we first notice is that the number of total 
iterations does not reach even 20, due to the computational cost of the 
GA method. In the right chart, we can observe that the AS-GA finds 
feasible sequences (no violations) from the first iteration. We are 
running 40 ants every iteration, among which only 20 run the GA 
method. The number of feasible ants increases the along iterations from 
3 ants at iteration 0 to 13, 15, 17… in subsequent iterations, and sta-
bilize in an oscillating value that never surpasses 20 ants. This shows 
how difficult the instance is: the ants not performing the GA method do 
not get to find feasible sequences. Regarding the number of violations, in 
the left chart, the maximum number goes down to 3 quickly: the pher-
omone feedback helps reduce violations to those ants; compare with the 
AS-IR where the maximum goes down much more slowly and stabilizes 
at 4 or 5. 

In Fig. 15 and Fig. 16 we compare again two runs of the both algo-
rithms for the instance cgl_44. In these runs not only do both algorithms 
converge to a low average number of violations per ants, with minimum 
0 violations (feasible sequences found), but they do it in almost all ants. 

This convergence in almost all ants finding feasible sequences does 
not occur in the 30 runs, though. In Fig. 17 we can see a different run of 
the AS-GA for instance cgl_44, in which only a fraction of the ants ach-
ieves feasibility, while other ants explore without success. We are 
running 20 GA ants, and we can observe how the number of ants with 
feasible solutions stagnates in 20, from the total of 40 ants. 

In our opinion, the fact that not all runs converge into all ants getting 
feasible sequences is a measure of the high complexity of the instances. It 

also highlights the effectiveness of the GA method we propose in this 
work, which adds strong reliability to the AS algorithm: the 20 ants 
running the GA method do find feasibility. 

To sum up our analysis of the results, we can conclude that the AS-GA 
presented in this work is an algorithm very robust for the CATSP-BC for 
which it has been designed. The AS-GA finds a feasible solution in 99.67 
% of the runs in all instances. The AS-IR alone is not so reliable: it fails to 
find a feasible sequence in 3 instances, and almost fails in other 2. 
Joining forces from both methods, the AS-GA-IR gets to improve the cost 
performance, which is what we expected when adding an effective local 
search over already feasible solutions. 

Concerning efficiency, we must observe that the bigger instances run 
ever fewer iterations for the AS-GA and AS-GA-IR, due to the compu-
tational cost of the GA method. Nevertheless, the cost pays off because 
those few iterations suffice to assure feasibility and compete in costs. 

6. Conclusions 

This work addresses the scheduling optimization for a Continuous 
Galvanizing Line (CGL) at a steel making plant, in which we are required 
to link the different campaigns. This real-world problem we introduce 
can be translated into finding a minimum cost (start, end)-Hamiltonian 
path in the graph underlying to the scheduling costs matrix, where the 
imposed start and end nodes of the path are related to the campaign 
linking. This requirement significantly reduces the number of valid Fig. 13. Performance of the AS-IR: run #18 for instance cgl_60.  

Fig. 14. Performance of the AS-GA: run #5 for instance cgl_60.  

Fig. 15. Performance of the AS-IR: run #12 for instance cgl_44.  
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Hamiltonian paths, making the problem harder to solve. 
Many metaheuristics designed for the Traveling Salesman Problem 

(TSP) can be applied to solve this scheduling problem, like the Ant 
System (AS) algorithm. In the steel factory we are concerned with, the 
algorithm in use is the AS with Interval Reconstruction (AS-IR), an 
evolution designed for assuring feasibility in highly constrained sce-
narios –lately frequent due to an increasingly heterogeneous orderbook 
and tighter production rules. The campaign linking constraints impact 
the performance of the AS-IR, making it unreliable regarding feasibility. 

Requiring a given end coil to the sequence does much harm to al-
gorithms that, like the AS, are based in constructive heuristics. At first 
glance, the constructive heuristic can only keep aside the given end coil 
and add it after the sequence is finished. This easily results in getting a 
high cost or a constraint violation at the very end of the sequence. The 
AS relies on the learning mechanism (the positive feedback stored in the 
pheromone trails) to eventually fix this. But this ideal convergence does 
not always occur in the 30 challenging instances of this study. Serious 

problems of stagnation in (infeasible) local optima appear. 
The motivation of this work has been to research how graph analysis 

techniques can assist the heuristics, helping them take the right decision 
at each step of the construction and look ahead to avoid compromising 
feasibility. Our research’s ultimate purpose is to explore and broaden 
the knowledge bringing together graph theory and metaheuristics. 

In this study we introduce a surrogate check for the Hamiltonian 
condition, or feasibility surrogate check (FSC). Checking if a graph is 
Hamiltonian is itself an NP-hard problem: this is the reason why we rely 
on a surrogate check. The method analyzes the graph of the remaining 
nodes to be visited and requires conditions on strong connectivity; a 
negative result rejects candidates that, if selected at that step, would 
spoil feasibility. We have embedded this FSC into the AS in the fashion of 
a non-Hamiltonian check, resulting in the AS-GA algorithm we propose 
in this work. The FSC manages to robustly steer the ants to the desti-
nation, enabling them to navigate more safely in challenging environ-
ments. The AS stigmergy mechanism brings convergence, making ever 
more ants achieve feasibility along the iterations. In the description of 
the AS-GA algorithm, we highlight the challenge posed by the compu-
tational cost the method introduces, and we detail the measures 
implemented to render it efficient enough for a short running time for 
the final user. 

The results of the experimental analysis show that, though being 
computationally costly, applying the GA method amply pays off: 
running a test of 30 runs at each instance, the AS-GA assures a 99.67 % 
of feasible solutions, from the very first iterations. Only 3 runs fail, all at 
instance cgl_44, out of 900 total runs. The complexity of the graphs 
during the ants’ construction is illustrated in the experimental analysis 
section and speaks about how easy it is at each building step to take the 
wrong decision towards feasibility, if no such analysis is performed. The 
high effectivity of the FSC makes the ants explore more in the feasible 
region of the solution space, which renders the AS-GA competitive in 
costs as well. The results show that the AS-GA clearly outperforms the 
base AS (56.89 % of success rate) and the AS-IR (79.67 %) in assuring 
feasible sequences, which is the first priority for the CGL. In some of the 
harder to solve instances, the latter algorithms fail to find any feasible 
solution at all. Additionally, we implement the hybrid algorithm AS-GA- 
IR, which in the comparison proves to inherit the goodness of both GA 
and IR methods, achieving 99.78 % success rate and reducing costs from 

Fig. 16. Performance of the AS-GA: run #26 for instance cgl_44.  

Fig. 17. A different run (#7) by the AS-GA at instance cgl_44 with no complete 
convergence of all ants. 
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AS-GA. 
The method we propose in this work is valid for any sequencing 

metaheuristic running constructive heuristics –as opposed to local 
search metaheuristics–, such as the Greedy Randomized Adaptive 
Search Procedures (GRASP). A key advantage of the GA method is that it 
does not rely heavily on the metaheuristic settings (the AS parameters in 
our case) for achieving feasibility. This allows to keep the best param-
eterization for standard instances and yet transparently be robust for 
hard to solve instances, without need to identify them as such. The main 
drawback of the method is that it is not scalable to very big instances. In 
them, few iterations can be run in the time budget of 180 s. Further 
research might explore how to render it yet more efficient –aside to the 
promising option of parallel computation–, to help reduce the running 
time. Another possible future line of research is to define a more so-
phisticated surrogate feasibility check adding more reliability without 
adding too much more computational cost. 
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