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Abstract: The ECOSTRESS push-whisk thermal radiometer on the International Space Station pro-
vides the highest spatial resolution temperature retrievals over the ocean that are currently available.
It is a precursor to the future TRISHNA (CNES/ISRO), SBG (NASA), and LSTM (ESA) 50 to 70 m
scale missions. Radiance transfer simulations and triple collocations with in situ ocean observa-
tions and NOAA L2P geostationary satellite ocean temperature retrievals were used to characterize
brightness temperature biases and their sources in ECOSTRESS Collection 1 (software Build 6) data
for the period 12 January 2019 to 31 October 2022. Radiometric noise, non-uniformities in the focal
plane array, and black body temperature dynamics were characterized in ocean scenes using L1A
raw instrument data, L1B calibrated radiances, and L2 skin temperatures. The mean brightness
temperature biases were −1.74, −1.45, and −1.77 K relative to radiance transfer simulations in the
8.78, 10.49, and 12.09 µm wavelength bands, respectively, and skin temperatures had a −1.07 K bias
relative to in situ observations. Cross-track noise levels range from 60 to 600 mK and vary system-
atically along the focal plane array and as a function of wavelength band and scene temperature.
Overall, radiometric uncertainty is most strongly influenced by cross-track noise levels and focal
plane non-uniformity. Production of an ECOSTRESS sea surface temperature product that meets the
requirements of the SST community will require calibration methods that reduce the biases, noise
levels, and focal plane non-uniformities.

Keywords: ECOSTRESS; SST; validation; calibration

1. Introduction

High spatial resolution sea surface temperature (SST) observations are of great impor-
tance for the understanding and modeling of air-sea coupling, ocean dynamics in fronts,
upwelling zones, current separation zones, and coasts. The pixel sizes of the operational
instruments retrieving satellite SST range from 750 to 1100 m on polar satellite instruments
(VIIRS, MODIS, AVHRR, SLSTR) and 2000 to 3000 m on geostationary satellite instruments
(ABI, AHI, SEVIRI). Although they can retrieve SSTs in cloudy conditions, microwave
sensors have lower spatial resolutions of 25 km. The satellite spatial scales can resolve
large-scale patterns, but the fine structure and the underlying filamentous structure of
ocean temperature fields are not resolvable with these instruments. All of these platforms
suffer from land contamination of coastal pixels due to the complexity of coastlines, which,
in some cases, makes it impossible to retrieve SST in upper regions of estuaries and fjords.
In addition, in areas with large tidal amplitudes, coastal sediments and rock benches are
aerially exposed during low tides (lunar semidiurnal tide period = 12.42 h) that are not
synchronous with respect to polar satellite overpass times (period = 12 h), so on days
when satellite overpasses coincide with low tide coastal SST retrievals are contaminated
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by land and on other days with overpasses during high tide they are not contaminated.
Geostationary satellites retrieve SST at 15 min to 1 h intervals, so the tidal effects can be
compensated, but the pixel sizes (2–3 km) are so large that processes close to the coast are
not spatially resolvable. For all of these reasons, there are great advantages to an instrument
that has ~10× the resolution of operational SST sensors and that revisits at many different
times of day.

For climate change studies, the target accuracy of satellite SST retrievals is 0.1 K, with
a stability better than 0.04 K per decade [1–3]. Merchant et al. [4] produced a 1981–2019
climate data record (CDR) with a median uncertainty per individual retrieval of 0.18 K and
a long-term stability of −0.026 to 0.004 K/decade from 11 Advanced Very-High-Resolution
Radiometer (AVHRR) instruments and 3 Along Track Scanning Radiometers (ATSR). Since
the 2000s, median discrepancies between the CDR reanalyzed satellite skin SST and buoys
have remained less than 0.1 K [4]. Since 2012, the daily mean difference between VIIRS
and drifters has been between −0.1 K and 0.04 K, and robust standard deviations of
the difference remain between 0.2 and 0.3 K (SQUAM, [5]). The long-term stability of
VIIRS-SNPP is 0.082 K per decade and is 0.068 K per decade for VIIRS-N20 (SQUAM).

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station
(ECOSTRESS) meets the spatial resolution criteria, but the SST accuracy and stability
have not been fully characterized. It was launched on 29 June 2018, and the first scenes
were retrieved on 29 July 2018. Pixel size at nadir is 38 × 69 m, but these are resampled to
70 × 70 m. It has five infrared bands centered on 8.29, 8.78, 9.20, 10.49, and 12.09 µm and ac-
quires a cross-track swath approximately 400 km wide. From 15 May 2019 to 17 May 2023,
only three bands were active (8.78, 10.49, 12.09 µm). The instrument has black bodies at
293 K and 319 K, which are used to calibrate the sensor radiances on every rotation of
the two-sided scan mirror. The cold black body temperature varies because it depends
on the coolant loop of the Japan External Module. The hot black body temperature is
regulated with heaters, so it is more stable. Because of the inclination and precession of
the ISS orbit, ECOSTRESS captures scenes between 51.6◦N and 51.6◦S, revisit intervals
are sub-daily to 5 days, and overpass times vary throughout the day. ECOSTRESS data
products include L1B geolocation and satellite view angle data [6], L1B sensor radiances
with error estimates [7], L2 land and water surface temperatures and emissivities with error
estimates [8], and L2 cloud masks [9]. Between August 2018 and October 2022, more than
311,000 scenes were acquired at an average of 220 per day. Because this is a land mission,
the majority of ocean scenes are coastal and include land features.

ECOSTRESS L1B radiance is geolocated and resampled to 70 × 70 m from the original
38 × 69 m pixels. ECOSTRESS L2 surface temperature and emissivity [8] are retrieved from
the L1B calibrated sensor radiances with a Temperature Emissivity Separation (TES) algo-
rithm [10,11]. The algorithm was developed for land surface temperature measurements
because empirical regression-based split-window methods such as those used operationally
over the ocean [12,13] do not work well over unvegetated land surfaces [11], and at the
spatial scale and revisit interval of ECOSTRESS observations, surface properties are not
known. In TES methods, there are more unknowns than measurements because there are
measurements of radiances at the three bands, and the algorithm retrieves three unknown
emissivities plus the unknown surface temperature. It is necessary to constrain the addi-
tional degree of freedom in order to make the retrieval possible. TES algorithms constrain
the emissivities to retain the shape but not the amplitude of the emissivity spectrum [10].
However, over the ocean, true emissivities are much more tightly constrained than those
normally retrieved by TES methods, so there is a potential for TES surface temperatures
to have greater error variances than values retrieved after constraining emissivity using
established relationships among emissivity, 10 m wind speed, satellite viewing angle, and
temperature [14–17]. Since surface temperature is related to infrared radiance divided by
emissivity, temperature biases over the ocean may arise depending upon the magnitude
of the difference between the emissivities retrieved by TES and the emissivities calcu-
lated from the sea state. Emissivities with negative biases lead to positive temperature
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biases and vice versa. Many operational regression-based split-window SST retrieval al-
gorithms [12,13,18,19] bypass the emissivity problem by regressing in situ measurements
against sensor radiances, differences among sensor radiances, satellite view angles, and
their products to calculate coefficients for retrieval equations.

ECOSTRESS skin temperature retrievals over water have been previously compared
to in situ observations from lakes [20,21], coastal buoys [22], and VIIRS SST retrievals [23].
Because ECOSTRESS is primarily a terrestrial mission, no sea surface temperature (SST)
product is produced; instead, the land surface temperature (LST) product is generated
over both water and land. In order to determine whether the TES algorithm was adequate
to produce SST from ECOSTRESS, we carried out an in-flight validation of ECOSTRESS
surface temperatures and brightness temperatures over the ocean with quality-controlled
data from the NOAA in situ SST Quality Monitor (iQuam, [24]), and with collocated
GHRSST Level-2P SST from instruments on geostationary satellites (ABI on GOES-16 and
17 [25,26]; AHI on Himawari-8 [27]; SEVIRI on MSG-1, MSG-2 and MSG-4 [28–30]).

Calibration and validation of the instrument on the ocean have great advantages
relative to calibration on land. First, the infrared emissivity of the ocean is much more
spatially uniform than that of land surfaces, where fine-scale variation in substratum type
can lead to emissivity variation. For example, on the ocean at the maximum ECOSTRESS
view zenith angle of 28.34◦, the effect of both wind speed and view angle on emissivity
at 10.5 µm is ±0.0005 [14,31], and the effect of temperature on emissivity is less than
±0.001 [32] (emissivity is a dimensionless quantity that ranges between 0 and 1). By
contrast, the emissivities of land surfaces can vary between 0.99 and 0.7, depending on
the surface type (vegetation, soils, rocks, sand). Second, the specific heat of water is
higher than that of most terrestrial materials, so diurnal changes in temperature (which
complicate validation) are smaller. Third, the number of terrestrial validation sites is small,
so the number of potential collocations per month is small. By contrast, in the global
ocean, there are approximately 7900 platforms (buoys, drifters, moorings, ships), providing
more than 2.2 million quality-controlled SST measurements per month to the NOAA
in situ SST Quality Monitor [24], so there are vastly more opportunities for collocation
than are available on land. There are also 2 km spatial scale ocean skin temperature
retrievals available every 15 min from the GHRSST Level 2P archive of data from the
Eumetsat geostationary MSG-SEVIRI instruments over the eastern Atlantic and Indian
Oceans [28–30,33]. There remain, however, diurnal variations and bulk–skin differences
that complicate the validation of SST retrievals [2,34].

1.1. Cloud Masks

Cloud masking is necessary because the TES and operational SST algorithms all require
a clear sky. The ECOSTRESS cloud mask was developed for observations over land [35].
It has several tests: Test 1 uses 10.49 µm brightness temperature and surface elevation in
km (DEM). Pixels with BT10.49 < 300 K − 6 × DEM are considered cloudy (over the ocean
DEM = 0). Test 2 uses BT10.49 − BT12.09 > 6 to indicate thin clouds and cirrus. Test 3 uses
BT8.78 − BT10.49 > −1 to indicate clouds. For the ocean, Test 1 is not appropriate because
ocean temperatures are mostly below 300 K.

Because the ECOSTRESS cloud masks underdetect clouds, we used cloud masks from
L2 GHRSST geostationary satellite SST files processed by NOAA and archived at podaac.
jpl.nasa.gov (accessed on 22 May 2024). The cloud masks for GOES-16, GOES-17, and
Himawari-8 were from the NOAA Advanced Clear Sky Processor for Oceans (ACSPO) [12],
and the cloud masks for EUMETSAT MSG-01, MSG-02, and MSG-04 were from the NOAA
version of the Generalized Bayesian Cloud Screening code from the University of Edin-
burgh [13]. Geostationary observations were at a much coarser spatial scale (2–3 km) than
ECOSTRESS, but because of their sub-hourly to hourly sampling rate, matchups were
available for all ECOSTRESS scenes. Polar satellite matchups were far less frequent and
were not used in this study.

podaac.jpl.nasa.gov
podaac.jpl.nasa.gov


Remote Sens. 2024, 16, 1876 4 of 27

1.2. Sensor Calibration

The instrument used in ECOSTRESS is the Prototype HyspIRI-TIR (PHyTIR). The
detector is a Mercury Cadmium Telluride (HgCdTe) array. HgCdTe detectors have well-
defined nonlinearities [36–40], so linear rather than quadratic calibrations may lead to
errors. Calibration of HgCdTe sensors on operational missions often uses a quadratic
equation, either based on pre-flight measurement of the nonlinearity (AVHRR [40–42],
ASTER [39,43,44], SLSTR [45]) or a combination of pre-flight and on-orbit measurements
(MODIS [46], VIIRS [47–49]). ECOSTRESS uses a two-point linear calibration for each pixel
in the focal plane array on a scan-by-scan basis based on onboard black bodies at 293 K and
319 K [20,50]. Since most ocean temperatures are below the temperature of the cold black
body, sensor nonlinearities may be important. Pre-launch coefficients for each detector in
the focal plane array were not measured, although the average linearity of the focal plane
was measured over a temperature range of 278 to 338 K [51].

1.3. Scan Geometry

ECOSTRESS is a push-whisk instrument with a 256 pixel × 5 band focal plane array
(FPA) with a per-pixel resolution of 38 × 69 m at nadir, resampled to 70 × 70 m [52].
Blocks of 16 pixels in the cross-track direction are covered by a set of bandpass filters
for the different wavelength bands. Pixels 34–48 of the 12.09 µm region of the FPA are
non-responsive, so the missing radiance data are filled with values predicted from the
other bands using a machine-learning algorithm [53]. Pixels are binned with their nearest
neighbors to provide a 70 m resolution at the nadir and an effective FPA size of 128 pixels
and to reduce smearing and optical distortions in the along-track direction [54]. Each
rotation of the scanning mirror permits 5400 across track retrievals of the 128-pixel FPA for
each band, and there are 44 scans per scene, yielding a raw 5400 × 5632 image. There are
64 retrievals from each of the two black bodies on each scan, allowing calculation of a per
scan gain and offset for each pixel. The circular 230 mm diameter cold black body is scanned
perpendicularly, and the 300 mm × 220 mm warm black body is image scanned at a 45◦

angle [53]. Adjacent earth scans overlap by approximately 30 pixels. ECOSTRESS L1–L4
data products retain the raw 5400 × 5632 structure of the scans, including the overlapping
regions. For example, pixels 97–128 of the FPA on one mirror scan may overlap pixels 1–30
of the focal plane on the next scan. Because of the orbital motion and yaw of the ISS, the
overlaps are not perfect and resemble a Moire pattern. There is also a bowtie effect, with
the degree of overlap changing as a function of the view zenith angle.

The NASA/USGS Land Processes Distributed Active Archive Center (LP DAAC)
provides a nearest-neighbor resampling tool [55] for projecting the raw scan data onto a
UTM or longitude–latitude grid. The spatially shifting pixel overlap creates image artifacts
because the nearest neighbor of the ground target location may come from either pixels
1–30 or 97–128 of the focal plane, and that assignment shifts from pixel to pixel, leading to
a checkerboard pattern of data from pixels at opposite ends of the focal plane.

1.4. Data Versions

ECOSTRESS Collection 1 uses processing software Build 6 and covers the period from
launch to present; it is available at the LP DAAC (https://e4ftl01.cr.usgs.gov/ECOSTRESS,
accessed on 22 May 2024). ECOSTRESS Collection 2 uses processing software Build 7,
which covers the period 26 October 2022 to present and is available on the USGS Land
Processes Cloud (LPCLOUD). Collection 2 radiances differ from Collection 1 radiances by
linear gain and offset coefficients derived from matchups to in situ calibration/validation
sites [52]. There are plans to reprocess all ECOSTRESS scenes prior to 26 October 2022 with
Build 7, but those data were unavailable at the time of writing. All ECOSTRESS data are
available without cost and are searchable at https://search.earthdata.nasa.gov (accessed
on 22 May 2024).

We largely restricted our analysis to Collection 1 (Build 6) because it has a much longer
period of record (9 July 2018 to present) than Collection 2 (Build 7, 26 October 2022 to

https://e4ftl01.cr.usgs.gov/ECOSTRESS
https://search.earthdata.nasa.gov
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present). During all but the first 5 months of the period of our analysis, only the 8.78, 10.49,
and 12.09 µm bands were active, so we restricted our analyses to those bands.

Because Collection 2 radiance conversion coefficients are available, it was possible to
convert Collection 1 radiances to Collection 2 equivalent radiances and brightness tempera-
tures, which allowed for examining brightness temperature biases in both Collection 1 and
Collection 2 (Sections 2.3 and 3.3 below).

1.5. Relation to Other Missions

ECOSTRESS has approximately 10× the spatial resolution of operational SST missions
like VIIRS and MODIS. It serves as a precursor for future planned 50–60 m scale thermal
missions TRISHNA (CNES-ISRO) [56], SBG (NASA) [57], and LSTM (ESA) [58], which
together are expected to provide global daily 50–60 m coverage of the ocean within 100 km
of the world’s coasts. ECOSTRESS and all of these planned instruments have design
constraints, so an understanding of the consequences of those limitations will be useful in
the development of methods for improving the quality of temperature retrievals.

2. Materials and Methods
2.1. Matchups

Triple collocations [59] were used to match single ECOSTRESS L2 skin temperature
pixels to NOAA iQuam in situ observations [60] and to single Level-2 GHRSST L2P SST
clear sky pixels from geostationary satellites (GOES-16 [25], GOES-17 [26], Himawari-8 [27],
MSG-1 [28], MSG-2 [29], MSG-4 [30]). The ECOSTRESS-iQuam matchups were within
30 min and 100 m, and the ECOSTRESS-geostationary matchups were within 30 min and
1.5 km. All clear sky triple collocations over the period 1 December 2018 to 31 October 2022
were used. Data were separated into day and night subsets.

The data quality variable in iQuam files is “quality_level”, and values range from
0 (invalid) to 5 (best quality). The data quality variable in ECOSTRESS L2_LSTE files
is “QC” and is an unsigned 16-bit variable; if bit 15 = 1, the LST accuracy is good to
excellent. The 8-bit cloud variable in the ECOSTRESS L2_CLOUD files is “CloudMask”;
clear sky water pixels are identified by a value of 33 (bit 5 = 1 indicates water pixel, bit
0 = 1 indicates cloud mask was determined, bits 1 to 4 = 0, no clouds detected). We
compared matchups between best quality iQuam (quality_level = 5) data and “good
to excellent LST accuracy” ECOSTRESS (QC bit 15 = 1) temperature retrievals with no
ECOSTRESS clouds (CloudMask = 33). We then made increasingly strict subsets of the data:
(1) geostationary SST non-missing, (2) best quality geostationary SST (quality_level = 5),
(3) best quality geostationary SST and robust outliers were removed (absolute value of
ECOSTRESS bias < median of absolute value of bias + 4 × robust standard deviation). The
robust standard deviation (RSD) was calculated as the interquartile range/1.349 [41].

2.2. Observation and Model Brightness Temperatures

ECOSTRESS infrared (IR) band brightness temperatures (BT) at 8.78 µm, 10.49 µm,
and 12.09 µm were calculated from L1B calibrated band radiances [7] using the ECOSTRESS
brightness temperature lookup tables [61] for the inverse Planck function. Infrared (IR) band
brightness temperatures at 8.6 µm, 10.4 µm, and 12.3 µm from the geostationary satellites
were obtained from L2P GHRSST data for NOAA GOES-16 [25], and GOES-17 [26] (ABI
Instrument), Japan Meteorological Agency Himawari-8 [27] (AHI Instrument). Brightness
temperatures were not available in the NOAA-processed L2P GHRSST data for EUMET-
SAT (European Organisation for the Exploitation of Meteorological Satellites) MSG-1 [28],
MSG-2 [29] and MSG-4 [30] (SEVIRI Instrument).

Radiative transfer modeling of channel brightness temperatures was carried out with
RTTOV 12.3 [17], using the iQuam observation as the surface temperature and using
ECMWF ERA-5 hourly 0.25◦ reanalysis data [62] for vertical profiles of air temperature
and specific humidity, 2 m air temperature, 2 m specific humidity, and 10 m wind speed,
all bilinearly interpolated in space to the iQuam coordinates and linearly interpolated
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in time to the ECOSTRESS scene time. The K (Jacobian) model was used to calculate
atmospheric absorption, sea surface emissivity, and at-sensor brightness temperatures in
conjunction with RTTOV coefficient files for ECOSTRESS and the ABI and AHI geostation-
ary satellite instruments. Sea surface emissivity in RTTOV was modeled by the IREMIS
algorithm [17,63], which includes the effects of 10 m wind speed, satellite view angle, and
in situ surface temperature.

2.3. Bias Analysis

Retrieved skin temperature bias was calculated as ECOSTRESS LST—iQuam in situ
temperature. Wind speed influences on bulk–skin temperature differences and skin temper-
ature bias [2,34,64] were examined by regression analysis, using hourly 0.25◦ ERA-5 10 m
winds interpolated bilinearly in space and linearly in space to the collocation coordinates.
Nonlinearities in the relationship between skin temperature bias and iQuam temperature
were examined by comparing linear and quadratic fits to the data.

The ECOSTRESS emissivity retrievals were compared to RTTOV emissivity calcula-
tions at each of the triple collocation sites. Skin temperatures were approximated with
iQuam in situ observations, and zenith angles were obtained from the ECOSTRESS L2_GEO
files. Emissivity bias was calculated as ECOSTRESS TES emissivity–RTTOV-simulated
emissivity at 8.78 µm, 10.49 µm, and 12.09 µm.

Brightness temperature observation-model bias was calculated as ECOSTRESS BT–
RTTOV-simulated BT at 8.78 µm, 10.49 µm, and 12.09 µm. Relationships between brightness
temperature bias and iQuam temperature were examined by linear and quadratic regres-
sion, as were relationships between brightness temperature bias and view zenith angle.

ECOSTRESS Collection 2 applies a linear gain and offset to the channel radiances
to correct the Collection 1 biases [52] (8.78 µm: gain = 0.9429, offset = 0.5110; 10.49 µm:
gain = 0.9507, offset = 0.5208; 12.09 µm: gain = 0.9448, offset = 0.5515). These gains and
offsets were used to convert ECOSTRESS Collection 1 radiances to ECOSTRESS Collection
2 equivalent radiances, which were converted to Collection 2 equivalent brightness tem-
peratures with the ECOSTRESS brightness temperature lookup tables [61]. Collection 2
brightness temperature observation-model bias was calculated as Collection 2 equivalent
BT–RTTOV-simulated BT as described above. Robust central tendencies were measured
as medians and robust standard deviations (RSD) were measured as the interquartile
range/1.349 [41]. Conversion of retrieved LST to its Collection 2 equivalent was not pos-
sible because it requires running the TES algorithm for which we do not have the source
code or binaries. Only a small subset of our data record has been updated to Collection 2
as of the writing of this paper.

Relationships between retrieved skin temperature bias (LST—iQuam in situ) and
retrieved emissivity bias (TES emissivity–RTTOV simulated emissivity) were examined
by linear regression. Because of the inverse relationship between emissivity and infrared
radiance, we expected a negative relationship between emissivity bias and retrieved tem-
perature bias.

2.4. Sensor Stability

All sensors suffer from drift, so it is important to estimate on-orbit sensor stability.
A frequently used method to compare consistency among platforms is double differenc-
ing [65]. In this method, one platform is defined as the reference (REF), and the other is
the satellite under consideration (SAT). Radiance transfer modeling by RTTOV was used
to simulate the brightness temperatures of the reference and satellite. Observation-model
brightness temperature double differences were calculated by comparing ECOSTRESS
observation-model bias at 8.78 µm, 10.49 µm, and 12.09 µm to geostationary ABI/AHI
observation-model bias at 8.6 µm, 10.4 µm, and 12.3 µm. The brightness temperature
double difference is defined as

DDSAT-REF = (OBSSAT − MODSAT) − (OBSREF − MODREF) (1)
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where OBS are observed brightness temperatures and MOD are simulated brightness
temperatures [65]. The slope of the regression of monthly mean double differences with
respect to time was used as a measure of the stability of the sensor calibration.

2.5. Focal Plane Uniformity (Spatial Noise)

We examined focal plane array (FPA) uniformity in images by comparing radiances
among pixels in the FPA at the scale of individual focal plane retrievals within cross-
track swaths (5400 retrievals per swath). Scenes were masked to retain only ocean pixels.
Radiance anomalies for each cross-track retrieval were calculated relative to the mean of
the FPA values in the retrieval. Mean anomalies were compared among scenes of ocean
surfaces with temperatures ranging from 271.4 K to 301.8 K.

We also compared FPA uniformity in ocean radiance retrievals to FPA uniformity in
black body radiance retrievals and black body digital numbers from the same scene. This
provides a measure of the effectiveness of the gain and offset calibration method.

2.6. Detector Noise (Temporal Noise)

The ECOSTRESS sensor noise-equivalent delta temperatures (NEdT) measured before
launch were 0.13 K, 0.10 K, and 0.29 K for the 8.78 µm, 10.49 µm, and 12.09 µm channels,
respectively, at scene temperatures of 25 ◦C [21]. These channel noise levels may contribute
to retrieved surface temperatures in several ways. Since the 10.49 µm channel is the most
important in surface temperature retrieval, we expect noise levels in surface temperatures
to be similar to the NEdT levels for that channel. In addition, the difference between
the 10.49 µm and 12.09 µm channel brightness temperatures is a measure of atmospheric
attenuation of IR radiation; thus, we expect an additional contribution of the combined
variability of the two channels to the retrieved temperature [66]. In order to estimate noise
in the retrieved surface temperature, we calculated successive differences on cross-track
transects over ocean pixels. Successive differences effectively de-trend the temperature
data, and the median absolute deviation (MAD) among the differences serves as a measure
of noise in the signal [67]. The MAD/0.6745 is a robust measure of the standard deviation
of the noise, which should be similar to the NEdT.

2.7. Statistics

All calculations were carried out with R version 4.2.3 [68] in the RStudio environ-
ment [69]. Data ingest was carried out with packages ncdf4 [70], rhdf5 [71], sys [72],
getPass [73], httr [74], purrr [75], rvest [76], dplyr [77], abind [78], udunits2 [79], retry [80],
terra [81]. Matchups and masking were calculated with packages RANN [82], sp [83],
spatstat [84], bitops [85]. Statistical quantities were calculated using packages stats [68],
gslnls [86], jointseg [87], DescTools [88]. Graphics were produced with packages gg-
plot2 [89], viridis [90], ggpubr [91].

3. Results
3.1. Matchups

Between 12 January 2019 and 31 October 2022, we obtained 237,711 matchups. After
robust outlier removal (see below), 35,871 of these were collocated among “good to excel-
lent” quality ECOSTRESS cloud-free ocean observations, “best quality” (quality 5) iQuam
in situ observations, and “best quality” (quality 5) geostationary SST retrievals spread over
830 dates. To test the efficacy of the ECOSTRESS cloud mask, we examined the bias of
the ECOSTRESS temperature retrievals and iQuam in situ observations. When only the
ECOSTRESS cloud mask was applied, there was a large number of retrievals over clouds,
leading to a large root mean square error (RMSE) (3.741 K) (Figure 1A). When both the
ECOSTRESS and the geostationary cloud masks were used, the number of cloudy retrievals
was reduced, and the RMSE was lower (2.871 K) (Figure 1B). After robust outlier removal
(absolute value of ECOSTRESS bias < median absolute value of bias + 4 × interquartile
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range/1.349), RMSE was 0.57 K (Figure 2A), larger than for AVHRR (0.39 K), VIIRS (0.25 K)
and MODIS (0.25 K) [5,92].
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3.2. Bias Analysis

ECOSTRESS L2 skin temperature is strongly correlated with iQuam in situ SST
(Figure 2A, R2 = 0.9782, RMSE = 0.567 K, slope = 0.992, intercept = 1.411, p < 0.001). The skin
temperature bias had a weak but statistically significant correlation with in situ temperature
(Figure 2B, R2 = 0.0033, slope = −0.00849, p < 0.001) and had a median of −1.05 K.

In a subset of the data, which included only collocations with L2P skin tempera-
ture retrievals from the Eumetsat geostationary SEVIRI instrument [28–30,33] (N = 1785),
ECOSTRESS bias relative to SEVIRI skin temperature was −1.010 K (RSD = 0.556 K), and
ECOSTRESS bias relative to iQuam in situ SST was −1.090 K (RSD = 0.415 K). The difference
between these two values is a measure of the contribution of the bulk–skin temperature
difference to the ECOSTRESS bias relative to iQuam in situ SST.

Wind speed reduces bulk–skin temperature differences [34,64]. There was a weak
but statistically significant relationship between skin temperature bias and ERA-5 re-
analysis 10 m wind speed, which was linear and negative during daytime (Figure 3A,
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R2 = 0.0054, RMSE = 0.556 K, slope = −0.0134, intercept = −0.8934, N = 24454, p < 0.001)
and positive during nighttime (Figure 3B, R2 = 0.0233, RMSE = 0.473 K, slope = 0.0245,
intercept = −1.2822, N = 13007, p < 0.001). There was no statistical difference between the
linear relationship during nighttime and the nonlinear Donlon et al. [64] relationship, which
predicted smaller biases at higher wind speeds (Figure 3B). The asymptote of the nonlinear
Donlon relationship was −1 K at night (Figure 3B), indicating that the bias is larger than can
be explained by the bulk–skin temperature difference, which has an asymptote of −0.13 K
at wind speeds above 10 m s−1 [34].
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Figure 3. Relationship between ECOSTRESS skin temperature bias and ERA-5 reanalysis wind speed:
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ECOSTRESS skin temperature bias is consistently negative with little seasonal or
latitudinal influence (Figure 4). The most extreme monthly biases occur in months with
low sample sizes. Biases were not plotted when there were less than five collocations per
month in a latitude bin.
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The ECOSTRESS skin temperature uncertainty statistic provided in the ECOSTRESS
L2 LSTE files (LST_err) is derived from the TES algorithm [10] and under-estimates the
actual error, which is quantified by the absolute value of the skin temperature bias. The
actual median skin temperature error relative to in situ observations is 1.05 K, and the
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range of errors is between 0 and 4.83 K, yet the median of the calculated uncertainty values
(LST_err) is 0.92 K, and its range is between 0.56 and 1.48 K.

The ECOSTRESS clear sky brightness temperatures (BT) are lower than those simulated
by temperature relative to RTTOV. The median bias of the ECOSTRESS Collection 1 bright-
ness temperature relative to RTTOV and its robust standard deviation (RSD) at 8.78 µm
was −1.74 K (RSD = 0.53 K), the median bias at 10.49 µm was −1.45 K (RSD = 0.35 K),
and the median bias at 12.09 µm was −1.77 K (RSD = 0.57 K) (Figure 5, red histograms).
ECOSTRESS Collection 1 radiances were converted to Collection 2 equivalent radiances and
brightness temperatures using the published gains and offsets [52], and biases relative to
RTTOV were calculated (Section 2.3). The ECOSTRESS Collection 2 brightness temperature
biases (8.78 µm: median bias = −1.01 K, RSD = 0.50 K, 10.49 µm: median bias = −0.84 K,
RSD = 0.39 K, 12.09 µm: median bias = −1.21 K, RSD = 0.62 K) are smaller than Collection
1 biases (Figure 5, blue histograms).
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Figure 5. Clear sky brightness temperature (BT) bias distributions: (A) 8.78 µm, (B) 10.49 µm,
(C) 12.09 µm. BT bias was calculated as BTECOSTRESS−BTRTTOV. Red: Collection 1; Blue: Collection 2.

Quadratic terms in the relationship between brightness temperature bias and in
situ temperature were used as indicators of the nonlinearity of the HgCdTe detectors
in the focal plane array. Brightness temperature bias at 8.78 µm had a weak but sta-
tistically significant negative quadratic relationship to in situ temperature (Figure 6A:
BTbias8.78µm = −3.073 + 2.110 × iQuam − 0.003 × iQuam2, R2 = 0.0046, RMSE = 1.40 K,
p < 0.001, N = 35,375). Brightness temperature bias at 10.49 µm also had a weak but
statistically significant negative quadratic relationship to in situ temperature (Figure 6B:
BTbias10.49µm = −0.0105 + 0.7127 × iQuam − 0.00122 × iQuam2, R2 = 0.0046,
RMSE = 0.537 K, p < 0.001, N = 37,449). Brightness temperatures at 12.09 µm had a
weak but statistically significant positive quadratic relationship to in situ temperature
(Figure 6C: BTbias12.09µm = 0.0202 − 1.380 × iQuam + 0.00234 × iQuam2, R2 = 0.042,
RMSE = 0.641 K, p < 0.001, N = 37,449).

Brightness temperature bias at 8.78 µm had a weak positive correlation to view zenith
angle (VZA) (BTbias8.78µm = −1.856 + 0.0133 × VZA, R2 = 0.0025, p < 0.001, RMSE = 1.99 K,
N = 37,450). Brightness temperature bias at 10.49 µm was very weakly negatively related
to VZA (BTbias10.49µm = −1.461 − 0.00056 × VZA, R2 = 0.00006, p < 0.001, RMSE = 0.54 K,
N = 37,450). Brightness temperature at 12.09 µm had a negative linear and a weak positive
quadratic relationship to VZA (BTbias12.09µm = −1.798 − 0.0162 × VZA + 0.00087 × VZA2,
R2 = 0.217, p < 0.001, RMSE = 0.65 K, N = 37,450).
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Figure 6. Clear sky ECOSTRESS brightness temperature (BT) bias at 8.78 µm (A), 10.49 µm (B),
and 12.09 µm (C) relative to RTTOV temperature. BT bias was calculated as BTECOSTRESS−BTRTTOV.
Colors indicate the number of observations. Solid lines are linear regressions; dotted lines are
quadratic regressions.

3.3. Emissivity Bias

There was little overlap in the emissivities retrieved by TES (Figure 7, blue histograms)
and those estimated by the RTTOV radiance transfer simulations (Figure 7, red histograms).
The median 8.78 µm emissivities retrieved by TES (median = 0.966, RSD = 0.0889) were lower
than those calculated by RTTOV (median = 0.984, RSD = 0.000), and more than 90% were
lower than laboratory [93] emissivity measurements. The 10.49 µm emissivities retrieved by
TES (median = 0.982, RSD = 0.003) were all lower than RTTOV emissivities (median = 0.991,
RSD = 0.000) and lower than the laboratory measurements of emissivity. More than 90% of
12.09 µm TES emissivities (median = 0.968, RSD = 0.0089) were lower than RTTOV emis-
sivities (median = 0.984, RSD = 0.0014) and the laboratory measurements of emissivity
(Figure 7). The distribution of median RTTOV emissivities is within 0.004 of the laboratory
spectrum and the variabilities around the RTTOV values are very small (RMSE8.78µm = 0.0005,
RMSE10.49µm = 0.0005, RMSE12.09µm = 0.0009), whereas the median TES emissivities relative to
RTTOV emissivities are low by 0.009 to 0.018 and the variabilities are much larger
(RMSE 8.78µm = 0.0153, RMSE10.49µm = 0.0079, RMSE12.09µm = 0.0140) (Figure 7).
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Figure 7. Clear sky sea surface emissivity distributions at 8.78 µm (A), 10.49 µm (B), and 12.09 µm (C)
retrieved by TES (blue) and simulated using sea state by RTTOV (red). Vertical black line indicates
laboratory measurement of seawater emissivity [57].

Estimates of emissivity uncertainty from the TES algorithm [10] at 8.78 µm
(median = 0.0170, RSD = 0.00178), 10.49 µm (median = 0.0128, RSD = 0.00074), and 12.09 µm
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(median = 0.0101, RSD = 0.00015) differ in magnitude or dispersion or both from the actual
emissivity errors at 8.78 µm (median = 0.0171, RSD = 0.00741), 10.49 µm (median = 0.009,
RSD = 0.00148), and 12.09 µm (median = 0.017, RSD = 0.01037) (Figure 8). Emissivity
uncertainty is defined in the algorithm theoretical basis document as the difference between
lab emissivity and retrieved emissivity, which depends upon view angle, total atmospheric
column water, and instrument noise [10].
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Figure 8. Clear sky emissivity error magnitudes at 8.78 µm (A), 10.49 µm (B), and 12.09 µm (C)
predicted by the TES algorithm (blue) compared to the absolute value of TES emissivity bias relative
to RTTOV (red).

We expected a negative relationship between emissivity bias and retrieved temperature
bias because of the inverse relationship between emissivity and infrared radiance. As
expected, the relationship between emissivity bias (TES relative to RTTOV radiance transfer
simulations) and skin temperature bias (LST determinations relative to in situ iQuam
observations) was negative in all cases (Figure 9). The slope of the relationship was −15.71
in relation to emissivity bias at 8.78 µm (R2 = 0.0567, p < 0.001, N = 37,453), −17.31 in relation
to emissivity bias at 10.49 µm (R2 = 0.0244, p < 0.001, N = 37,453), and −6.77 in relation to
emissivity bias at 12.09 µm (R2 = 0.0148, p < 0.001, N = 37,453). These regression slopes
indicate that for a 0.01 reduction in retrieved emissivity at 8.78, 10.49, and 12.09 µm, the
median ECOSTRESS skin temperature bias approached closer to zero by 0.157 K, 0.173 K,
and 0.068 K, respectively (Figure 9).
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3.4. Sensor Stability

Double differences of observation–RTTOV radiance transfer model brightness tem-
peratures were regressed against time to determine the relative temporal stability of the
ECOSTRESS instrument compared to the ABI/AHI sensors on geostationary satellites
(Figure 10). Double differences were calculated as (ECOSTRESS observation−RTTOV
ECOSTRESS simulation)−(ABI observation−RTTOV ABI simulation). The slope of the re-
gression for the 8 µm channel was not significantly different from zero (slope = −0.1169 K/year,
p = 0.186, N = 709). The slopes for the 10 µm and 12 µm channels were significantly negative
(10.49 µm, slope = −0.1059 K/year, p < 0.001, N = 709; 12.09 µm, slope = −0.1498 K/year,
p < 0.001, N = 709) (Figure 10). There was a cold bias relative to RTTOV radiance transfer
simulations on all three ECOSTRESS channels relative to the geostationary channels. The
median double difference was −0.201 K at 8 µm (RSD = 1.2106 K); at 10 µm, the median
value was −0.446 K (RSD = 0.7621 K), and at 12 µm, it was −0.399 K (RSD = 1.1380 K).
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Figure 10. Temporal changes in double differences of observations−RTTOV brightness temper-
atures. Double differences were calculated as (ECOSTRESS observation−RTTOV ECOSTRESS
simulation)−(ABI observation−RTTOV ABI simulation): (A) 8 µm; (B) 10 µm; (C) 12 µm. Blue
lines are linear regressions.

3.5. Focal Plane Detector Radiometric Noise (Temporal Noise)

Focal plane detector radiometric noise levels were measured in ocean scenes from
the Sea of Okhotsk, the English Channel, Australia, and the Arabian Gulf, with mean SST
of 271.4, 279.7, 291.0, and 301.8 K, respectively. Mean cross-track successive differences
in brightness temperature varied with scene temperature and among pixels in the focal
plane array (Figure 11). The estimates of NEdT by cross-track successive differences were
in the same rank order as pre-flight measurements in the laboratory [51], and noise levels
varied inversely with scene temperature (Figure 11). However, noise levels in the middle of
the focal plane array were substantially greater than the pre-flight values for the 8.78 and
10.49 µm bands (Figure 11A,B). There was also an eight-pixel periodicity in the magnitude
of the noise level. In the lowest temperature scene (271.4 K), individual pixels 32, 40, 48,
56, 64, 72, 80, 88, and 96 in the 8.78 µm band had noise levels between 0.28 and 0.32 K,
which are between 42 and 62 percent larger than the interpolated pre-flight value of 0.197 K
(Figure 11A). Noise levels between those peaks in the 8.78 µm band were somewhat smaller
(0.25 to 0.275 K). In the 10.49 µm band, pixels 48, 56, 64, 72, 80, 88, and 96 had noise levels
between 0.20 K and 0.23 K in the 271.4 K scene, which are between 21 and 39 percent
larger than the interpolated pre-flight value of 0.165 (Figure 11B). Noise levels were slightly
smaller between the peaks between locations 48 and 96 in the 10.49 µm band (Figure 11B).
The 12.09 µm band in the 271.4 K scene had noise levels between 0.48 K and 0.60 K in pixels
32, 40, 48, 56, 64, 72, 80, 88, 96, 104, and 112, which are between 5 and 32 percent higher
than the interpolated pre-flight value of 0.455 (Figure 11C). The 12.09 µm noise levels in
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the 271.4 K scene, between the peaks in pixels 32–104, were between 8 and 17% below the
preflight value, ranging from 0.38 K to 0.42 K (Figure 11C).
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There were similar patterns in the scenes with higher temperatures (Figure 11). Noise 
levels in the retrieved skin temperatures (LST, Figure 11D) are dependent upon those in 
the individual wavelength bands, but the specific numerical relationship depends upon 
the TES temperature retrieval algorithm. As in the wavelength bands, retrieved skin 
temperature noise is greater in the middle of the focal plane than on the edges, and there 
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retrieved skin temperature noise upon scene temperature, except at the lowest scene 
temperature (271.4 K). 

Figure 11. The robust standard deviation of band brightness temperature and retrieved skin tem-
perature measured by cross-track successive differences vs. pixel position in the focal plane array:
(A) 8.78 µm; (B) 10.49 µm; (C) 12.09 µm; (D) retrieved skin temperature. Lines are from scenes
with different mean ocean temperatures (red: 301.8 K; brown: 291 K; blue: 279.7 K; black 271.4 K).
Colored squares to the left of zero are interpolated from pre-flight measurements of NEdT in the
laboratory [44]. The gray area in (C) is a region of non-responsive pixels interpolated from data in the
other two wavelength bands. Noise levels in retrieved skin temperatures (D) are affected by noise in
the individual wavelength bands.

There were similar patterns in the scenes with higher temperatures (Figure 11). Noise
levels in the retrieved skin temperatures (LST, Figure 11D) are dependent upon those in
the individual wavelength bands, but the specific numerical relationship depends upon
the TES temperature retrieval algorithm. As in the wavelength bands, retrieved skin
temperature noise is greater in the middle of the focal plane than on the edges, and there
is an eight-pixel periodicity in the noise peaks (Figure 11D). There is little dependence
of retrieved skin temperature noise upon scene temperature, except at the lowest scene
temperature (271.4 K).

The focal plane array is arranged in 4 × 256-pixel blocks for each wavelength, with
the long axis in the along-track direction. The four pixels in each row are combined by time-
delayed integration (TDI), yielding a 1 × 256 pixel column. In the L1A to L1B processing,
adjacent pairs of pixels in each column are combined, yielding a 1 × 128-pixel cross-track
observation set. The readout circuit for the focal plane array used a 32-channel analog
multiplexer [50]. The 8-pixel periodicity in noise levels in each of the channels is likely the
result of a noise spike when the multiplexer index resets to zero after reading each group
of 32 pixels in the columns of the 4 × 256-pixel blocks. This would lead to a noise spike
every 16 pixels in the L1A datasets after TDI and to a noise spike every 8 pixels in the L1B
data, as seen in Figure 11.

3.6. Focal Plane Non-Uniformity (Spatial Noise)

There are pixel-to-pixel differences in sensitivity across the FPA, as evident in the
variation in the black body digital numbers (Figure 12). The patterns differ among bands
because different parts of the FPA are used to capture data from different wavelength
bands. The differences between individual pixels and the smoothed lines likely come
from variations in the electrical and optical characteristics of individual pixels in the FPA.
There is a quasi-parabolic relationship between pixel number and digital number in the
8.78 µm band (Figure 12A) and a quasi-linear increasing relationship in the 10.49 µm band
(Figure 12B); in the 12.09 µm band, there is a nonlinear relationship with a shape change
around pixel 64 (Figure 12C).
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Figure 12. Focal plane non-uniformity in black body counts in the 8.48 µm (A), 10.49 µm (B), and
12.09 µm (C) bands. Thin lines are mean values (blue = 293 K black body; red = 319 K black body).
Missing data in panel (C) are due to non-functional pixels in the region 18–24 that were damaged
during pre-flight testing. Smoothed lines and shaded regions are loess regressions and 95% confidence
limits, respectively. Pixel 1 data were removed for clarity. Vertical grey lines are at 8-pixel intervals.
Data are from scene 2 (Table 1).

Table 1. Black body thermistor temperature variation in English Channel scenes. Temperature means
and standard deviations are from 5 platinum resistance thermometers embedded in the center and
perimeter of each black body.

Scene Number Orbit_Scene Date Time (UTC)
Cold BB Hot BB

Mean (K) sd Mean (K) sd

1 10043_007 13 April 2020 14:24:40 292.800 0.170 318.905 0.144

2 10072_005 15 April 2020 11:13:12 293.015 0.172 318.907 0.149

3 10392_001 6 May 2020 02:37:16 294.086 0.178 318.918 0.145

4 16665_003 14 June 2021 10:53:10 293.195 0.172 318.919 0.145

5 17169_005 16 July 2021 21:47:31 292.624 0.171 318.905 0.150

6 17615_009 14 August 2021 13:27:20 292.868 0.169 318.912 0.143

7 17983_010 7 September 2021 04:16:44 293.848 0.175 318.907 0.145

The elevations of the lines on the digital number axis differ among scenes, but the deviations
of pixels from the smoothed lines are nearly identical among all scenes in each wavelength
band independent of black body temperature. Scene 5 warm black body digital numbers
are approximately 1000 counts higher than those from the other scenes, indicating that the
blackbody was colder than in the other scenes; however, the warm black body PRT temperatures
in scene 5 differ by less than 10 mK from those in the other scenes (Table 1), so the difference
must be due to something else, perhaps instrument component temperatures that are different
from the other scenes. Future analysis of engineering data may resolve this discrepancy.

Ocean scene brightness temperatures also show consistent patterns of variation among
pixels in the FPA. In nine scenes from the English Channel, retrieved between February
2019 and September 2021, there were clear signs of consistently low-sensitivity pixels and
high-sensitivity pixels (Figure 13). There were also cross-array variations in sensitivity,
with pixels 100–128 having lower sensitivity at all three wavelengths, the effect being most
evident in the 12.09 µm wavelength band. In the 8.78 µm band, the median anomaly in
pixels 100–128 decreased from −0.04 to −0.12 K (slope = −0.0046, R2 = 0.737, N = 29,
RMSE = 0.0236 K, p < 0.001). In the 10.49 µm band, the median anomaly in pixels 100–128
decreased from −0.003 to −0.19 K (slope = −0.0043, R2 = 0.142, N = 29, RMSE = 0.0910 K,
p < 0.05). In the 12.09 µm band, the median anomaly in pixels 100–128 decreased from
−0.001 to −0.437 (slope = −0.0174, R2 = 0.744, N = 29, RMSE = 0.0886 K, p < 0.001). The
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broad patterns differed among wavelengths, as did the locations of the especially high
and low-sensitivity pixels. Brightness temperature anomalies varied in magnitude but
were consistently found in the same pixels within a band. In the 8.48 µm band, anomalies
as low as −0.45 K were observed in pixels 6, 61, and 93. Negative anomalies lower than
−1.4 K were observed in pixel 1, and anomalies lower than −2.5 K were observed in pixels
110–111 in the 10.49 µm band. Negative anomalies lower than −0.5 K in pixels 11, 12, 91, 92,
117, 118, and 123–128 exceeded −1.0 K in pixel 92 in the 12.09 µm band. The primary consistent
patterns across wavelengths were (1) a tendency for anomalies at 8-pixel intervals along the FPA
(Figure 13), which probably derives from small transients caused by the 32-channel multiplexer,
as described in the section on noise (3.5), and (2) a fall-off in sensitivity in pixels 100–128.
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−0.001 to −0.437 (slope = −0.0174, R2 = 0.744, N = 29, RMSE = 0.0886 K, p < 0.001). The broad 
patterns differed among wavelengths, as did the locations of the especially high and low-
sensitivity pixels. Brightness temperature anomalies varied in magnitude but were 
consistently found in the same pixels within a band. In the 8.48 µm band, anomalies as 
low as −0.45 K were observed in pixels 6, 61, and 93. Negative anomalies lower than −1.4 
K were observed in pixel 1, and anomalies lower than −2.5 K were observed in pixels 110–
111 in the 10.49 µm band. Negative anomalies lower than −0.5 K in pixels 11, 12, 91, 92, 
117, 118, and 123–128 exceeded −1.0 K in pixel 92 in the 12.09 µm band. The primary 
consistent patterns across wavelengths were (1) a tendency for anomalies at 8-pixel 
intervals along the FPA (Figure 13), which probably derives from small transients caused 
by the 32-channel multiplexer, as described in the section on noise (3.5), and (2) a fall-off 
in sensitivity in pixels 100–128. 
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3.7. Black Body Performance

Black body data from seven scenes of the English Channel (longitude 0) were analyzed
(Table 1). Each black body has five embedded platinum resistance thermometers (PRT),
which are measured 52 times during each scene retrieval of 44 mirror scans. Four PRTs are
arranged around the perimeter of each black body, and the fifth is in the center [53]. The
PRT temperatures in the black bodies vary among each other by up to 0.4 to 0.6 K during
retrieval of individual scenes, but the rank order of the temperatures differs between the
hot and cold BBs (Figure 14). The cold black body temperature was highest when the space
station was on the dark side of the earth (UTC times 02:37 and 04:16) and lowest just after
the ISS passed into the earth’s shadow (UTC 21:47) (Table 1). The cold black body had a
larger temperature gradient (0.483 K) than the warm black body (0.436 K), based on the
mean temperature difference between the warmest and coolest PRTs (Figure 14). The PRT
temperature rank orders differed between the cold and hot black bodies, suggesting that
there is also a difference in the geometry of the temperature gradients across the black
bodies. The individual PRTs in the warm black body have smaller overall temperature
variations among each other (Table 1) but larger within-scene temperature transients than
the thermistors in the cold black body (Figure 14).
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Figure 14. Blackbody PRT temperature anomalies relative to temperature mean during 7 scenes listed
in Table 1: (A) cold black body; (B) hot black body. Scene numbers (Table 1) are at the top of each
panel. Line colors identify individual PRTs. PRT numbers are on the right-hand side of each panel.

The temperature gradients in both black bodies were stable despite the 1.5 K changes
in temperature of the cold black body between the sun and shade portions of the orbit
(Table 1, Figure 14). These temperature gradients and variations contribute to the overall
uncertainty of the radiometric calibration.

4. Discussion
4.1. Biases

ECOSTRESS Collection 1 has a median skin temperature cold bias of −1.05 K relative
to in situ observations with an RMS error of 0.57 K (Figure 2A). Bulk–skin temperature
differences [2,34,64] cannot account for the bias relative to in situ observations because the
bias has an asymptote of approximately −1 K at wind speeds over 10 ms−1 (Figure 3). The
RMS error relative to in situ is approximately 1.6× greater than the RMS error of AVHRR
relative to in situ and 2.3× greater than the RMS error of VIIRS and MODIS relative to in
situ. The SST retrieval bias derives in part from median brightness temperature biases of
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−1.74, −1.45, and −1.77 K in the three active wavelength bands (Figure 5). These biases
are not completely corrected in Collection 2 (Figure 5). The radiance calibration is depen-
dent upon measurements of two onboard black bodies, each of which has five embedded
platinum resistance thermometers. Preflight validation with an external calibration target
indicated no relationship between brightness temperature bias and NIST-traceable exter-
nal target temperature; RMSE was 36.2, 46.8, and 44.6 mK at 8.78, 10.49, and 12.09 µm,
respectively [51].

Most SSTs in the iQuam dataset are below 20 ◦C, the temperature of the ECOSTRESS
cold black body (~20 to 25 ◦C), so the linear calibration of the sensor radiances relative to the
black bodies could lead to errors at temperatures below 22 ◦C [40,41] (e.g., Mittaz et al. 2009;
Mittaz and Harris 2011), although there is little evidence of temperature dependence of
the bias in the post-flight data (Figure 2) or in the pre-flight data. There is only very weak
evidence of nonlinearity in the instrument response (Figure 6). The temperature biases
were stable over the period 2019–2022 (Figure 10).

Retrieved emissivities over the ocean are generally below the range of physical pos-
sibility (Figure 7), and the uncertainty statistics derived from the TES algorithm do not
accurately estimate the true biases (Figure 8). The overall effect of the emissivity bi-
ases partially compensates for the cold biases in the brightness temperatures (Figure 9),
so the retrieved temperatures are not as low as would be expected from the brightness
temperature biases.

4.2. Radiometric Noise (Temporal and Spatial Noise)

Temporal, radiometric noise (cross-track) varies as a function of scene temperature and
detector in the focal plane array (Figure 11) and propagates from the individual wavelength
band radiances and brightness temperatures to the retrieved skin temperature. The lowest
radiometric noise was in scenes with the highest temperature and vice versa. Noise levels
in detectors at both ends of the focal plane were similar to pre-flight values, but the middle
of the focal plane had noise levels approximately 2× greater. There was also a spike in
noise at eight detector intervals along the focal plane array. We suspect that the spikes are
caused by the 32-channel multiplexor in the readout circuit.

Spatial radiometric noise (focal plane non-uniformity) is evident from clear detector-
to-detector variations in the sensitivity of the ECOSTRESS focal plane (Figures 12 and 13),
with pixels at one end having lower sensitivity than those at the other end. The origin of
the non-uniformity is unknown; however, there are several possibilities. One possibility
is that there are differences in spectral response among detectors, which could lead to
non-uniformities because the radiometric calibration of ECOSTRESS uses a single lookup
table for each wavelength band to relate detector digital numbers to radiance [50]. Focal
plane non-uniformities in VIIRS SNPP are at least partially due to differences in spectral
response among detectors [94,95]. In VIIRS JPSS1, the non-uniformities increase with source
temperature [96], which could also be related to differences in spectral response. These
detector-to-detector differences in the spectral response of VIIRS lead to detector-to-detector
variations in retrieved temperature of up to 7 mK [97]. By comparison, the detector-to-
detector differences in ECOSTRESS brightness temperatures are up to 375 mK in the 8.78
and 10.49 µm bands and up to 875 mK in the 12.09 µm band (Figure 13). These are so large
that detector-to-detector differences in spectral response are unlikely to be responsible.

A second possibility is that the geometry of the optical system leads to a fall-off in
incident radiation at the two ends of the focal plane array. A ray-tracing figure of the optical
system [98] indicates that the angle of incidence of radiation differs from approximately
10◦ at one end of the focal plane to 45◦ at the other end, which would cause a gradient in
detector response. However, a full evaluation of the optical model of the telescope and
focal plane will be necessary to determine the magnitude of this effect.

Focal plane non-uniformity leads to along-track striping in all bands. After reproject-
ing the swath data onto a rectilinear geographic coordinate system, the non-uniformity
also leads to a checkerboard artifact because geographically adjacent pixels may come
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from opposite ends of the focal plane due to the 15–30 pixel overlap of adjacent mirror
swaths [52], and one end of the focal plane has a negative temperature bias relative to the
other end (Figure 13).

Spatial and temporal radiometric noise in ECOSTRESS is greater than in other satellite in-
struments used for operational SST retrievals (VIIRS [49,95,99], SLSTR [100], MODIS [101,102],
Table 2) but is similar to the expected radiometric noise in future high-resolution missions
(TRISHNA [103], SBG [104], LSTM [105]) (Table 2). The high temporal (cross-track) radio-
metric noise level of ECOSTRESS derives from the short integration times required for
retrieving data at a 70 m spatial scale with a push-whisk instrument. The spatial noise is a
result of non-uniformities along the focal plane.

Table 2. Radiometric noise at 300 K of satellite instruments used in operational SST retrievals
and future planned high-resolution missions. Values are noise-equivalent delta temperatures in
mK. Wavelength bands are not identical in the different instruments. * SBG and LSTM values are
predictions; the remainder are measured temporal noise values.

Instrument 8.5 µm 10–11 µm 12 µm

Noise Type Spatial Temporal Spatial Temporal Spatial Temporal

VIIRS 55 25 23 30 39

SLSTR 3 13 3 15

MODIS 600 30 26 30 32 40

ECOSTRESS 375 100–300 375 60–180 625 180–520

TRISHNA 95 80 70 70 60 70

SBG * 100 100 100

LSTM * 100 100 100

4.3. Black Body Performance

One possible source of brightness temperature biases in the individual wavelength
bands is in the black bodies themselves. Variability among ECOSTRESS thermistors is
approximately 10× greater than in other satellite instruments used for SST retrievals:
ATSR [106], SLSTR [45,100], MODIS [107], and VIIRS [99] (Figure 14, Tables 1 and 3). This
high variability means that the uncertainty in the black body temperatures is large, and
this uncertainty propagates through the radiance calibration process to uncertainty in
the temperature retrievals. Platinum thermistors can differ from the standard resistance
versus temperature relationship by as much as 0.5 K after encapsulation into black body
assemblies as a result of straining of the platinum wire during manufacturing and testing,
leading to biases [108]. Depending upon which subset of thermistors is used to determine
black body temperature, biases in radiance calibration can arise. This is a greater problem
for ECOSTRESS than for the other instruments because of the high variability among
thermistor temperatures.

Table 3. Variation among thermistor temperatures in black bodies of satellite instruments used for
SST retrievals. Values are standard deviations in mK.

Instrument Hot BB sd (mK) Cold BB sd (mK) Source

ATSR 6.2 5.02 62

SLSTR-A 11.6 9 60

SLSTR-B 27 8 63

MODIS-A 30 7 64

VIIRS-SNPP 4 59

VIIRS-N20 8 59

ECOSTRESS 146 172 Table 1
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4.4. Radiometric Uncertainty

A full radiometric uncertainty analysis [100] is beyond the scope of this paper, but
several contributions to uncertainty in the radiance retrievals from ECOSTRESS can be iden-
tified. Detector temporal and spatial noise (NEdT) varies as a function of scene temperature,
detector, and wavelength band (Figure 11). Black body temperature uncertainty derives
from the variation among thermistors embedded in the black bodies (Figure 14, Table 1),
and since the black body temperatures are used in the radiance calibration, their uncertainty
contributes to uncertainty in retrieved radiances. Focal plane non-uniformities that are not
corrected by the calibration algorithm (Figure 13) cause uncertainties in radiance retrievals
on a pixel-to-pixel basis in earth scenes. The total uncertainty in Table 4 is the linear sum of
all contributions.

Table 4. Sources of uncertainty in ECOSTRESS radiance retrievals for an earth scene at 280 K. Values
are in mK. For details of quantities, see Appendix A.

Source of Uncertainty Uncertainty Estimation 8.78 µm 10.49 µm 12.09 µm

NEdT Figure 11 120–250 60–180 180–520

Cold BB PRT temperatures ∂LE
∂LBB

∗ ∂LBB
∂TBB

|TBB ∗ ∂TBB
∂TPRT

∗ ∂TE
∂LE

|TE ∗ ∆PRT
10 9.6 9.4

Hot BB PRT temperatures 11.4 10.2 9.6

Focal Plane Non-uniformity Figure 14 125 250 750

Total 266–396 330–450 949–1289

The uncertainties in Table 4 are much larger than those reported for SLSTR [100],
but they are generally within the required specifications of the ECOSTRESS instrument
for land surface temperature acquisitions (uncertainty < 1 K in retrievals from a 300 K
earth scene) [20]. These results highlight the differences in requirements of SST missions
compared to LST missions. Because surface properties of the ocean are so much more
tightly constrained than those of land, the expectation for SST missions (SST retrieval
uncertainty < 0.3 K and top of atmosphere brightness temperature uncertainty < 0.2 K [100])
is much more stringent than for LST missions. On land, surface emissivity is unknown
a priori, so temperature retrievals necessitate simultaneous emissivity retrievals and the
solving of N equations for N + 1 unknowns, all of which increase the uncertainty of the
retrievals. Therefore, land surface missions have less stringent uncertainty requirements
than SST missions. The next three high spatial resolution thermal missions (TRISHNA, SBG,
LSTM) have been designed primarily for land surface temperature retrieval and will have
lower performance on SST retrieval but much higher spatial resolution than current SST
missions. Table 4 indicates that retrieval of high-quality SST products from ECOSTRESS
and those future missions will require careful attention to noise and uncertainty reduction
in the retrieval algorithms.

5. Conclusions

ECOSTRESS serves as a precursor for future planned 50–60 m scale thermal missions
TRISHNA (CNES-ISRO) [56], SBG (NASA) [57], and LSTM (ESA) [58], which together
are expected to provide global daily 50–60 m coverage of the ocean within 100 km of the
world’s coasts. Lessons learned from ECOSTRESS will be extremely valuable in planning
for future missions.

The ECOSTRESS Collection 1 Level-2 surface temperature product (2018–present) has a
~1 ◦K cold bias relative to VIIRS observations [23] and to in situ observations on lakes [20,21],
coastal waters [22], and the ocean (Figure 2). The RMSE of the surface temperature product
relative to in situ was 0.57 K, somewhat larger than the RMSE for MODIS and VIIRS
(0.25 K) and AVHRR (0.39 K) operational products [92]. The brightness temperatures
have a cold bias relative to RTTOV radiance transfer simulations (Figures 5 and 6). Ocean
surface emissivities retrieved with the ECOSTRESS temperature emissivity separation
algorithm are much lower than either laboratory measurements or RTTOV simulations
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(Figure 7). The instrument has some calibration drift, evidenced by the 0.1 K/year negative
trend in model-observation double differences with respect to GOES-ABI in the 10 and
12 µm channel brightness temeratures over the period 2019–2022 (Figure 10). Temporal
(cross-track) radiometric noise is temperature dependent and is higher than expected
from pre-flight measurements (Figure 11), and is much larger than temporal radiometric
noise of operational instruments used for SST retrievals (ATSR, SLSTR, MODIS, VIIRS,
Table 2). The onboard blackbody temperature gradients are much larger than gradients on
other operational sensors (Tables 1 and 3). Detector to detector differences in brightness
temperatures are up to 375 mK in the 8.78 and 10.49 µm bands and up to 875 mK in the
12.09 µm band (Figure 13), leading to checkerboard artefacts when overlapping pixels
are reprojected onto a geographic coordinate system. For the creation of a sea surface
temperature product that meets the requirements of the SST community, it will be necessary
to develop calibration methods that reduce the brightness temperature biases and reduce
the detector to detector differences in sensitivity.

The high spatial resolution of ECOSTRESS and the future TRISHNA, SBG, and LSTM
instruments are potential game-changers for oceanography because their small pixel sizes
permit resolution of submesoscale features on spatial scales of 2× pixel size (100 to 200 m),
far smaller than what is detectable by current operational SST instruments. However, the
spatial and temporal radiometric noise levels of ECOSTRESS and the planned instruments
are higher than in current operational SST instruments, requiring the development of new
techniques for noise reduction to enable the detection of filaments, fronts, and gradients in
order to take advantage of the higher spatial resolution. ECOSTRESS can provide a test
bed for the necessary algorithm development.
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Appendix A

We follow Smith et al. [100] in developing a partial uncertainty budget from the data
presented above. Partial derivatives were calculated using Maple 15 [109]. The radiance
calibration equation for ECOSTRESS takes the form

LE = a0 + a1DE (A1)
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where LE is the radiance of the earth scene, and DE is the digitizer counts from the earth
scene. The gain (a1) and offset (a0) are calculated from the blackbody scans:

a0 =
DcLh − DhLc

Dc − Dh
(A2)

a1 =
Lc − Lh
Dc − Dh

(A3)

where Dc and Dh are the digitizer counts from the cold and hot black bodies, and Lc and Lh
are the radiances predicted from the temperatures of the thermistors embedded in the cold
and hot black bodies. Radiances were calculated using the Planck equation:

L(λ, T) =
2hc2

λ5
(

exp
(

hc
λkT

)
− 1

) (A4)

where λ is the wavelength in m, T is the temperature, h (Planck’s constant) = 6.62607015
× 10−34 J s, c (speed of light) = 299,792,458 m s−1, and k (Boltzmann’s constant) = 1.380649
× 10−23 J K−1. To scale L in units of W m−2 sr−1 µm−1, the result is divided by 106.

The uncertainties in scene radiance associated with the digitizer count variations are
related to the partial derivatives of scene radiance with respect to scene digitizer counts
(Equation (A5)), black body digitizer counts (Equations (A6) and (A7)), and black body
radiances (Equations (A8) and (A9))

∂LE
∂DE

= a1 (A5)

∂LE
∂Dc

= a1
Dc − DE

Dc − Dh
(A6)

∂LE
∂Dh

= a1
DE − Dc

Dc − Dh
(A7)

∂LE
∂Lc

=
DE − Dc

Dc − Dh
(A8)

∂LE
∂Lh

=
Dc − DE

Dc − Dh
(A9)

where the overbar symbols represent means, either of the scene or the detector, and coeffi-
cient a1 is defined in Equation (A3).

The uncertainty in radiance associated with a scene or black body temperature varia-
tion is related to the partial derivative of the Planck equation (Equation (A4)), evaluated at
λ = central wavelength and T = temperature.

∂L
∂T

=
ε2h2c3exp

(
hc
λkT

)
λ6kT2

(
exp

(
hc
λkT

)
− 1

)2 (A10)

The uncertainty in retrieved radiance due to variation in the black body thermistors
(∆PRT) is estimated with Equation (A11)

∂LE
∂TPRT

=
∂LE

∂LBB

∂LBB
∂TBB

|TBB

∂TBB
∂TPRT

∆PRT (A11)

using Equations (A8) and (A9), with Equation (A10) evaluated at the band wavelength and
the black body temperature, where the partial derivative of black body temperature with
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respect to PRT temperature is 1/5 (because there are 5 PRTs per black body) and ∆PRT is
the standard deviation of PRT temperatures (Table 1).

The uncertainty in retrieved earth temperature is obtained using Equation (A11), with
Equation (A10) evaluated at the average scene temperature TE.

∂TE
∂TPRT

=
∂LE

∂TPRT

(
∂LE
∂TE

|TE

)−1
(A12)
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