
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:14330–14345
https://doi.org/10.1007/s11227-024-06023-x

1 3

Adaptive quadtree splitting parallelization (AQSP) 
algorithm for the VVC standard

Alberto González‑Ruiz1 · Antonio Jesús Díaz‑Honrubia1   · 
Santiago Tapia‑Fernández1   · David García‑Lucas2   · 
Gabriel Cebrián‑Márquez3   · Luis Mengual‑Galán1 

Accepted: 23 February 2024 / Published online: 19 March 2024 
© The Author(s) 2024

Abstract
The Versatile Video Coding (VVC) standard, also known as H.266, was released in 
2020 as the natural successor to the High Efficiency Video Coding (HEVC) stand-
ard. Among its innovative coding tools, VVC extended the concept of quadtree (QT) 
splitting to the multi-type tree (MTT) structure, introducing binary and ternary par-
titions to enhance HEVC’s coding efficiency. While this brought significant com-
pression improvements, it also resulted in a substantial increase in encoding time, 
primarily due to VVC’s larger Coding Tree Unit (CTU) size of 128×128 pixels. To 
mitigate this, this work introduces a flexible parallel approach for the QT traversal 
and splitting scheme of the VVC encoder, called adaptive quadtree splitting parallel-
ization (AQSP) algorithm. This approach is based on the distribution of coding units 
(CUs) among different threads using the current depth level of the QT as a basis to 
minimize the number of broken dependencies. In this way, the algorithm achieves 
a good trade-off between time savings and coding efficiency. Experimental results 
show that, when compared with the original VVC encoder, AQSP achieves an accel-
eration factor of 2.04× with 4 threads at the expense of a low impact in terms of BD 
rate. These outcomes position AQSP competitively in comparison with other state-
of-the-art approaches.

Keywords  Parallelization · VVC · Quadtree

1  Introduction

The significant growth of video traffic over the Internet, which currently accounts 
for more than 75% of the total traffic  [1], and the increasing adoption of video 
formats like 4K/8K, 360-degree, high dynamic range (HDR) and wide color 
gamut (WCG), have motivated the development of a new video coding stand-
ard. The Versatile Video Coding (VVC) standard, conceived by the Joint Video 

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5464-0714
http://orcid.org/0000-0002-1418-9276
http://orcid.org/0000-0001-6934-1901
http://orcid.org/0000-0002-6510-7517
http://orcid.org/0000-0002-9783-5738
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06023-x&domain=pdf


14331

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

Exploration Team (JVET) and officially ratified in July 2020, represents the latest 
flagship in video compression technology [2]. In comparison with its precursor, 
the High Efficiency Video Coding (HEVC) standard [3], VVC delivers a notable 
reduction in bit rate, albeit at the expense of a noticeable increase in computa-
tional complexity.

The coding efficiency of VVC is attributed to the novel coding tools it introduces. 
In particular, the new coding structure, called quadtree (QT) plus multi-type tree 
(MTT), allows for greater flexibility in handling diverse video content by accom-
modating coding units (CUs) in a frame depending on the complexity of the scene. 
This structure ensures that the encoding process can adapt efficiently, allocating 
more bits to complex regions while conserving resources in simpler areas. This, 
combined with advanced tools for intra-frame and inter-frame prediction, enhanced 
motion compensation and improved entropy coding, makes VVC a cutting-edge 
standard capable of delivering high-quality video while reducing bit rates, meeting 
the demands of the modern digital landscape.

All these novel tools, while reducing bit rates significantly, increase the com-
putational demands of both the encoder and the decoder. In particular, the encoder 
needs to perform the so-called rate distortion optimization (RDO) to find a balance 
between minimizing bit rates and preserving video quality. To make informed deci-
sions, the encoder must consider various quantization levels, motion vectors and 
other encoding parameters, which necessitates extensive computational resources 
and time-consuming processes. The QT structure described above alone results in 
341 leaf nodes that need to be evaluated to find a sub-optimal coding efficiency.

To tackle this complexity, fast encoding algorithms can significantly accelerate 
the encoding process, making it more suitable for real-time applications. However, 
these speed-focused techniques often come at the cost of large coding efficiency 
penalties. Parallel architectures, in contrast, represent a promising way to mitigate 
the inherent complexity of VVC by distributing smaller, more manageable encod-
ing tasks across multiple cores or processors. This approach not only accelerates the 
encoding process but also enhances the scalability of VVC on modern multi-core 
CPUs and GPUs.

In this regard, this paper proposes the adaptive quadtree splitting parallelization 
(AQSP) algorithm. AQSP distributes multiple processing threads across the CUs of 
the QT coding structure to parallelize the entire encoding process. The main contri-
bution of this proposal lies in its intelligent distribution of processing threads, aimed 
at maximizing CPU utilization while minimizing the number of broken dependen-
cies between neighbor CUs. As a result, the experimental evaluation of AQSP shows 
an acceleration factor of 2.04× with 4 threads at the expense of only 5.11% BD rate 
(BDR)  [4]. These outcomes position AQSP competitively with respect to similar 
works in the state of the art.

The remainder of this paper is organized as follows. Section  2 summarizes 
the main features and coding tools of the VVC standard, in particular its coding 



14332	 A. González‑Ruiz et al.

1 3

structure. Section 3 analyzes the existing related works regarding parallel implemen-
tations of the VVC encoder. The description of the AQSP proposal can be found 
in Sect. 4 and its evaluation in Sect. 5. Finally, the main conclusions are drawn in 
Sect. 7.

2 � Technical background

As mentioned above, the partitioning scheme of VVC represents a significant evolu-
tion over its predecessors. The HEVC standard relies on Coding Tree Units (CTUs) 
with sizes of up to 64× 64 pixels and recursive QT partitioning into four CUs as 
small as 8 × 8 pixels. In contrast, VVC introduces a new CTU size of 128×128 pixels 
and employs the innovative MTT structure for partitioning [5]. This MTT frame-
work brings enhanced flexibility and adaptability in image partitioning, which is 
executed in two stages: First, the QT structure allows recursive division of CUs into 
four equal-sized square blocks; and second, the binary tree (BT) and ternary tree 

Fig. 1   Example of CTU partitioning using the QT plus MTT scheme



14333

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

(TT) structures enable horizontal and vertical splitting of the QT leaf nodes, with 
the exception of the exclusive use of BT for 128×128 pixel QT leaf nodes. Figure 1 
illustrates an example of CTU splitting (Fig. 1a) using the new QT plus MTT parti-
tioning (Fig. 1b).

VVC also introduces significant advancements in the inter-prediction module [6]. 
It incorporates the VVC affine motion compensated prediction, employing two dis-
tinct motion compensation models. Moreover, the implementation of the sub-block-
based temporal motion vector prediction (SbTMVP) tool improves the temporal 
motion vector prediction (TMVP) technique of HEVC. This enhancement contrib-
utes to the adaptability and accuracy of motion vector encoding, allowing for more 
refined choices between four-luma-sample, integer-luma-sample or quarter-luma-
sample motion vector (MV) units.

Regarding the intra-prediction module, VVC distinguishes itself from HEVC by 
introducing a substantial expansion in prediction modes [7]. While HEVC offers 33 
modes, VVC extends this to a total of 65. This expansion enables VVC to make 
more effective predictions according to the characteristics of the image characteris-
tics. Regarding the Planar and DC modes, they remain the same as in HEVC.

In other modules, the main innovations include the introduction of the multiple 
transform selection (MTS) technique [8], which encompasses a set of different trans-
form functions, and the employment of a high-precision MV storage, allowing for 
up to 1/16 fraction accuracy [9].

3 � Previous works in the topic of VVC encoding parallelization

In the context of parallel algorithms for VVC coding, the existing literature is 
relatively limited due to the recency of the standard. By examining the available 
research, this section presents a comprehensive review of the current state of the art 
in parallel algorithms for VVC coding.

In [10], a frame partitioning algorithm for parallel processing is presented using 
the tile grid partitioning of VVC. The proposed algorithm introduces a Tile and 
Rectangular Slice (TRS) partitioning solution that takes into account both the spa-
tial texture of the content and the encoding times of previously encoded frames. 
The goal is to find the best partitioning configuration that minimizes the trade-off 
between multi-thread encoding time and encoding quality loss. The TRS partition-
ing allows for processing rectangular regions of a frame with independent threads, 
thereby increasing the partitioning flexibility. Experimental results conducted on the 
VVC test model (VTM) 6.2 [11] in a 4-thread configuration on FHD content achieve 
an encoding speedup of 3.1× , but with a 1.57% penalty in terms of BDR.

An intra-fast coding proposal including different parallel configurations is 
described in [12]. First, some scalar operations are replaced by single-instruc-
tion–multiple-data (SIMD) instructions in several VTM 10.0 encoder modules: 



14334	 A. González‑Ruiz et al.

1 3

discrete transform, inverse transform, quantization, inverse quantization, intra-pre-
diction and deblocking filter. For parallel processing, wave front parallel process-
ing (WPP) is employed, and horizontal/vertical deblocking filters are separately pro-
cessed by different threads. Additionally, the intra-mode decision has been modified 
by a coarse-to-fine search in angular direction granularity, while block partitioning 
remains the same. The achieved results demonstrate a significant acceleration in the 
encoding process, reaching a speedup of 710× . However, the accompanying com-
pression penalty is substantial, to the extent that it nullifies the overall compression 
advantage offered by VVC over HEVC, with a BD rate of 49%. It is also worth not-
ing that the authors do not use sequences in class D of the common test conditions 
[13] for VVC, whose results are expected to worsen the overall performance of the 
proposed algorithm.

The literature on parallel techniques for the VVC standard is still in its early 
stages and is expected to incorporate more techniques in the coming years. The 
study and improvement of parallel tools have been a major focus within the scientific 
community, especially in comparison with prior standards like HEVC and AVC. As 
a result, there are numerous proposals concerning multi-frame, multi-slice and tile 
partitioning approaches, as referenced in works such as [14–19]. However, many of 
these proposals, particularly those centered on multi-slice approaches, primarily aim 
to achieve a perfect workload distribution among slices by creating and modifying 
the sizes of new slices to maximize acceleration. As a result, since these proposals 
prioritize parallelism over video coding efficiency, they often compromise the over-
all compression performance. On the other hand, proposals like [20] focus primar-
ily on coding efficiency. In this work, authors allow for the existence of references 
between slices, which can potentially have a negative impact on slice utilization if 
dependencies are not properly handled. However, authors in  [20] demonstrate that 
a three-stage approach (pre-slice encoding, slice encoding and post-slice encoding) 
can achieve an acceleration close to the theoretical maximum. Therefore, it is crucial 
to design algorithms that balance both aspects: fast encoding and coding efficiency.

Fig. 2   Representation of the QT structure



14335

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

4 � Proposed adaptive quadtree splitting parallelization (AQSP) 
algorithm description

This section aims to describe the proposed adaptive quadtree splitting parallelization 
(AQSP) algorithm. As explained in Sect. 2, and depicted in Fig. 2, the QT structure 
in the VVC standard can have up to 5 depth levels. Specifically, depth level 0 (CU 
size of 128×128 pixels) has only 1 node, depth level 1 (CU size of 64× 64 pixels) has 
4 nodes, depth level 2 (CU size of 32× 32 pixels) has 16 nodes, depth level 3 (CU 
size of 16× 16 pixels) has 64 nodes, and depth level 5 (CU size of 8 × 8 pixels) has 
256 nodes. In total, there are 341 nodes whose evaluation is, in principle, independ-
ent of each other, making them ideal for parallelization.

However, ME algorithms, for example, do not perform a complete search to 
avoid unaffordable execution times. Instead, they employ heuristic algorithms that 
use the best MV candidate obtained from the antecedent CUs as a starting point to 
perform ME. This approach results in a sequential dependency in the tree traversal 
that affects multiple tools in VVC. For instance, intra-prediction relies on the most 
probable mode (MPM) list that is constructed based on the information of the left 
and above neighboring blocks. Similarly, inter-prediction uses techniques such as 
matrix-weighted intra-prediction (MIP) and the extended merge prediction method 
that use coding information coming from neighboring blocks [21]. In this regard, it 
is particularly important to highlight the fast encoding algorithm proposed in [22] 
that limits the tree depth based on the depth of neighboring CUs. Therefore, the 
proposed AQSP algorithm needs to consider these dependencies to minimize dis-
ruptions when distributing work among different threads. Specifically, the upper and 
left boundary sub-blocks of the CU processed by a thread may not fully benefit from 
the aforementioned techniques.

4.1 � Node distribution algorithm

The most straightforward work distribution technique among all the available 
threads would be to create a pool with all the CUs (or QT nodes) in the order they 
should to be processed sequentially. Then, when a thread finishes processing a node, 
it would proceed to the next one in the pool that has not been previously processed 
or is currently being processed by another thread. However, this approach would 
result in breaking some dependencies, leading to significant compression penalties.

As discussed above, the utilization of information reuse techniques between con-
secutive CUs presents challenges in certain scenarios. For instance, the absence of 
an initial reference point for seeking an optimal MV in inter-prediction can result 
in a propensity to converge toward local optima. A more significant concern arises 
from the inherent limitations imposed on the partitioning of a CU based on the 



14336	 A. González‑Ruiz et al.

1 3

dimensions of its neighboring units. When the adjacent CUs have not yet been 
encoded completely, they are treated as if they have the maximum size possible. 
Consequently, the current CU may automatically skip splitting modes, impacting the 
overall coding process. To address this issue, a preliminary scheduling process is 
required to determine which node should be processed by each thread. This sched-
uling should take into account the expected workload for each node and thread, as 
well as the dependencies between a node and other nodes, including its parent.

Taking the previous aspects into consideration, the proposed AQSP algorithm 
makes use of the QT depth levels to distribute work among different threads. First 
of all, the algorithm determines the QT level at which the distribution will occur, 
denoted as leveldist ), considering the number of threads that are going to be used, nth , 
which is an input parameter for the algorithm. The level used for this purpose is the 
first level with, at least, as many nodes as threads are going to be used. Such a num-
ber can be obtained as follows:

After determining the distribution level, the nodes at that level are distributed to 
each thread. To achieve this, the number of nodes per thread is calculated by divid-
ing the number of nodes in the level by the number of threads. If the remainder of 
this division is not 0, then as many threads as indicated by this reminder are assigned 
one extra CU.

After each node at leveldist has been assigned to a thread, all the successor nodes 
of a node at that level are assigned to that same thread using a top–bottom approach. 
Given that an ancestor node may have children assigned to different threads, every 
node on a given level is assigned to the same thread as its leftmost child using a bot-
tom–top approach. Algorithm 1 describes the proposed scheduling process, which 
takes the number of threads to be used, n_th , as parameter, and returns nodes, which 
is an array of integers. Each position in this array represents the number of the 
thread to which the node at depth level i and position j at that depth level has been 
assigned. Figure 3a and b illustrates the results of this algorithm for 4 and 6 threads, 
respectively.

leveldist = ⌈log4
�
nth

�
⌉



14337

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

Fig. 3   QT node distribution example for different threads



14338	 A. González‑Ruiz et al.

1 3

Algorithm 1   nodes_distribution(n_th)

As shown in Fig.  3b, the algorithm can handle number of threads that are not 
multiple of 4. To achieve optimal node distribution (where no extra nodes are 
assigned to any thread), the number of threads should be a divisor of the total num-
ber of nodes at the distribution level. Given that the algorithm adapts the level at 



14339

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

which the distribution is done, the number of threads to be used so that the distribu-
tion is optimal must be a power of 2.

4.2 � Optimal mode decision

It must be considered that, after all the nodes have been processed, the optimal split-
ting needs to be selected. This is achieved by comparing the Lagrangian cost of the 
current node with the sum of the Lagrangian costs of its four children. If the cost of 
the node itself is lower than the sum of its children, then the QT will not be split for 
that node and the encoding mode decision for the node will be the one selected as 
optimal during node processing. However, if the cost of the node exceeds the sum 
of its children’s costs, the decision for that node is overwritten as “split using QT.”

In the sequential algorithm, this can be accomplished with the backtracking pro-
cess that is inherent to any tree traversal algorithm. However, in the proposed AQSP 
algorithm, this process needs to be done after all the threads have completed their 
work. For this reason, the cost and the mode for each node must be stored during 
processing. Otherwise, all the modes (except QT splitting) would be needed to be 
re-evaluated at the leaves of the QT.

After the parallel stage of the algorithm, the update of the costs and encoding 
modes is done using a bottom-up approach as shown in Algorithm 2. In this algo-
rithm, modei,j represents an array of integers, where each value represents the index 
of the encoding mode to be used for the node at depth level i and position j, and 
costi,j is an array of floats, indicating the cost of using the aforementioned encoding 
mode in that same node. These values must be initialized during node processing. 

Algorithm 2   tree_backtracking()

Once the optimal modes are known, the proposed AQSP algorithm splits the cur-
rent CU into four sub-CUs when the node is not a leaf of the final QT. Then, it skips 
the evaluation of all modes in the leaves except for the optimal, avoiding the repeti-
tion of any evaluation.



14340	 A. González‑Ruiz et al.

1 3

5 � AQSP algorithm evaluation

Regarding the experimental setup, the hardware platform used in the tests was 
composed of an Intel Xeon Silver 4314 CPU with 16 physical cores and simulta-
neous multi-threading technology (up to 32 logical cores), each of which running 
at 2.40 GHz and 16 GB of main memory. The encoders were compiled with GCC 
11.3.0 and executed on Ubuntu 22.04.2 LTS. Sequences were encoded accord-
ing to the CTC document issued by the JVET to compare proposals in the field 
of VVC  [13]. These CTC ensure standardized comparisons across experiments. 
Specifically, the random access (RA) configuration has been used, with QP values 
of {22, 27, 32, 37}. From the video sequences suggested for this configuration, 
classes A1, B, C and D have been selected for the experiments. The names and 
resolutions of the sequences are as follows:

•	 Class A1 (3840 × 2160 pixels): Tango2 and Campfire.
•	 Class B (1920 × 1080 pixels): Kimono, ParkScene, Cactus, BasketballDrive and 

BQTerrace.
•	 Class C (832 × 480 pixels): RaceHorsesC, BQMall, PartyScene and Basketball-

Drill.
•	 Class D (416 × 240 pixels): RaceHorses, BQSquare, BlowingBubbles and Bas-

ketballPass.

Following the CTC, the results are presented in terms of BDR, which meas-
ures the increment in bit rate for a fixed objective quality, and the acceleration 

Table 1   Results of the proposed AQSP algorithm for the QT search

Class Sequence BDR (%) Global accelera-
tion

Local acceleration

Class A1 Tango2 2.27 1.71× 2.34×
Campfire 3.18 1.83× 2.76×

Class B Kimono 2.19 1.97× 3.04×
ParkScene 4.89 2.03× 2.90×
Cactus 5.34 1.56× 1.93×
BasketballDrive 4.10 1.85× 2.65×
BQTerrace 6.28 2.01× 3.09×

Class C BasketballDrill 8.67 1.63× 2.13×
BQMall 4.53 2.23× 3.29×
PartyScene 3.20 2.21× 3.01×
RaceHorsesC 9.49 2.77× 3.65×

Class D BasketballPass 10.31 2.37× 3.35×
BQSquare 0.76 2.51× 3.21×
BlowingBubbles 2.14 1.96× 2.77×
RaceHorses 9.25 1.99× 2.72×

Average 5.11 2.04× 2.86×



14341

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

achieved by the VVC encoder that includes the proposed algorithm with respect 
to the original VVC encoder. The peak signal-to-noise ratio (PSNR) used to cal-
culate the BDR corresponds to the luminance component. All these metrics have 
been extracted using version 20.0 of the reference software, i.e., VTM 20.0 [11].

Table 1 shows the BDR, the global acceleration achieved by the parallel algorithm 
presented in the previous section and the local acceleration of the part of the encoder 
that is being parallelized. It can be seen that the algorithm presents a low BDR of 
5.11%, while achieving a global acceleration factor of 2.04× with respect to the original 
version of the VTM encoder and a local parallelization acceleration of 2.86× (being 
4× the theoretical maximum local acceleration that can be achieved with 4 threads). 
Additionally, the results remain consistent across all sequences, regardless of their 
class, indicating that the algorithm scales effectively to various video resolutions (since 
it focuses on acceleration at QT level rather than the frame level).

Furthermore, Table 2 shows the impact of increasing the number of threads in 
the results obtained by the proposed AQSP algorithm for a representative subset of 
sequences. When using 8 threads instead of 4, the global acceleration reaches 1.85× , 
with a BD rate of 4.79%. It is worth noting that the BD rate increases by 63%, while 
the acceleration increment of 19%, suggesting that increasing the number of threads 
may not always yield significant benefits.

Table 2   Impact of the number of threads used in the proposed AQSP algorithm

Class Sequence 4 threads 8 threads

BDR (%) Acceleration BDR (%) Acceleration

Class B Kimono 2.19 1.97× 4.35 2.13×
Class C BQMall 4.53 1.63× 6.52 2.36×
Class D BlowingBubbles 2.14 1.96× 3.49 2.12×
Average 2.95 1.85× 4.79 2.20×

Table 3   Results of the proposed 
algorithm compared to state-of-
the-art methods

BDR (%) Acceleration

Proposed AQSP algorithm
4 threads

Class A1: 2.73
Class B: 4.56
Class C: 6.47
Class D: 5.62

Class A1: 1.77×
Class B: 1.88×
Class C: 2.21×
Class D: 2.21×

Amestoy et al. [10]
4 threads

FHD: 1.57
UHD: 1.27

FHD: 3.10×
UHD: 3.27×

Amestoy et al. [10]
8 threads

FHD: 2.80
UHD: 2.33

FHD: 5.07×
UHD: 5.34×

Amestoy et al. [10]
12 threads

FHD: 3.90
UHD: 3.20

FHD: 6.44×
UHD: 7.09×



14342	 A. González‑Ruiz et al.

1 3

6 � Comparison with state‑of‑the‑art proposals

In this section, a comparative analysis of results with other parallel coding tech-
niques published for VVC is presented. The primary focus of the evaluation is the 
achieved acceleration compared to the compression penalty introduced when com-
pared to sequential coding as shown in Table 3.

In comparison with the proposal presented in [10], it is noteworthy that the pro-
posed AQSP algorithm, while exhibiting a slightly higher BD rate and a margin-
ally lower acceleration, introduces a crucial consideration. The proposal in  [10] 
relies on the use of tiles, a technique demonstrated to result in significant subjec-
tive quality degradation attributable to the perceptible boundaries between them, as 
substantiated in [23] and [24]. This visual impairment goes unaccounted for in met-
rics like the BDR, which exclusively leverages objective quality assessments. The 
visual quality decline induced by the presence of tiles might potentially be mitigated 
through the application of filters. However, that such filters are acknowledged for 
their computational intensity, thereby reducing the overall acceleration achieved by 
the that approach.

Given that  [10] represents the sole state-of-the-art proposal for VVC providing 
results on parallelization, it becomes pertinent to consider HEVC parallelization 
proposals for comparative analysis. In this sense, most of these studies focus on the 
acceleration achieved, often neglecting to address the associated coding penalty. For 
instance, the authors in [25] report a noteworthy global acceleration of 10.32× while 
using 64 threads to accelerate the HEVC encoder. This equates to a thread pro-
ductivity metric (calculated as the achieved acceleration divided by the number of 
threads, meaning that the closer to 1.0, the better) of 0.16. In contrast, the proposed 
AQSP algorithm exhibits a thread productivity of 0.51 for 4 threads and 0.28 for 8 
threads, demonstrating its competitive efficiency in parallel processing scenarios.

7 � Conclusions

This work proposes the AQSP algorithm, a parallel algorithm for fast traversal and 
encoding of the QT in the new VVC video coding standard. The algorithm distrib-
utes different nodes to be processed across multiple threads taking into considera-
tion existing dependencies between nodes to minimize encoding efficiency penal-
ties and broken dependencies due to parallelism. The results show that the proposed 
algorithm accelerates the original VTM 20.0 encoder by 2.04× , resulting in a 51.0% 
reduction in encoding time, with a negligible BDR penalty of 5.11%.

Author contributions  AGR implemented the algorithm in the VTM source code and prepared the figures 
included in the manuscript. AJDH participated in the design of the proposed algorithm, prepared the 
experimental environment, performed part of the test and wrote part of the main manuscript. STF par-
ticipated in the design of the proposed algorithm, solved implementation aspects related to parallelism 
and wrote part of the main manuscript. DGL collaborated with the aspects of the implementation related 
to the VVC encoder, performed part of the experiments, prepared the comparison with other proposals 
and wrote that part in the manuscript. GCM participated in the design of the proposed algorithm, solved 



14343

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

implementation aspects related to the VVC encoder, performed part of the experiments and wrote part 
of the main manuscript. LMG participated in the design of the proposed algorithm, solved implemen-
tation aspects related to parallelism and wrote part of the main manuscript. All authors reviewed the 
manuscript.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. 
This work has been supported by the Spanish Ministry of Science and Innovation, the Agencia Estatal 
de Investigación (10.13039/501100011033) and the European Commission (FEDER: A way to make 
Europe) under projects PID2021-128167OA-I00, PID2021-123627OB-C52 and PID2022-142332OA-
I00, and by the Regional Government of Castilla-La Mancha under project SBPLY/21/180501/000195.

Availability of data and materials  Not applicable.

Declarations 

Conflict of interest  The authors declare no Conflict of interest.

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 CISCO: Cisco visual networking index: forecast and trends (2018 to 2023). Technical report
	 2.	 ISO/IEC, ITU-T (2020) Versatile Video Coding (VVC). ITU-T Recommendation H.266 and ISO/

IEC 23090-3. Video standard
	 3.	 ISO/IEC, ITU-T (2013) High Efficiency Video Coding (HEVC). ITU-T Recommendation H.265 

and ISO/IEC 23008-2. Video standard
	 4.	 Bjøntegaard G (2008) Improvements of the BD-PSNR Model. Technical Report VCEG-AI11, 

ITU-T SG16 Q6
	 5.	 Huang Y-W, An J, Huang H, Li X, Hsiang S-T, Zhang K, Gao H, Ma J, Chubach O (2021) Block 

partitioning structure in the VVC standard. IEEE Trans Circuits Syst Video Technol 31(10):3818–
3833. https://​doi.​org/​10.​1109/​TCSVT.​2021.​30881​34

	 6.	 Yang H, Chen H, Chen J, Esenlik S, Sethuraman S, Xiu X, Alshina E, Luo J (2021) Subblock-based 
motion derivation and inter prediction refinement in the versatile video coding standard. IEEE Trans 
Circuits Syst Video Technol 31(10):3862–3877. https://​doi.​org/​10.​1109/​TCSVT.​2021.​31007​44

	 7.	 Pfaff J, Filippov A, Liu S, Zhao X, Chen J, De-Luxán-Hernández S, Wiegand T, Rufitskiy V, 
Ramasubramonian AK, Auwera G (2021) Intra prediction and mode coding in VVC. IEEE Trans 
Circuits Syst Video Technol 31(10):3834–3847. https://​doi.​org/​10.​1109/​TCSVT.​2021.​30724​30

	 8.	 Zhao X, Kim S-H, Zhao Y, Egilmez HE, Koo M, Liu S, Lainema J, Karczewicz M (2021) Trans-
form coding in the VVC standard. IEEE Trans Circuits Syst Video Technol 31(10):3878–3890. 
https://​doi.​org/​10.​1109/​TCSVT.​2021.​30877​06

	 9.	 Chien W-J, Zhang L, Winken M, Li X, Liao R-L, Gao H, Hsu C-W, Liu H, Chen C-C (2021) Motion 
vector coding and block merging in the versatile video coding standard. IEEE Trans Circuits Syst 
Video Technol 31(10):3848–3861. https://​doi.​org/​10.​1109/​TCSVT.​2021.​31012​12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TCSVT.2021.3088134
https://doi.org/10.1109/TCSVT.2021.3100744
https://doi.org/10.1109/TCSVT.2021.3072430
https://doi.org/10.1109/TCSVT.2021.3087706
https://doi.org/10.1109/TCSVT.2021.3101212


14344	 A. González‑Ruiz et al.

1 3

	10.	 Amestoy T, Hamidouche W, Bergeron C, Menard D (2020) Quality-driven dynamic VVC frame 
partitioning for efficient parallel processing. In: 2020 IEEE International Conference on Image Pro-
cessing (ICIP), pp 3129–3133 . https://​doi.​org/​10.​1109/​ICIP4​0778.​2020.​91909​28

	11.	 JVET: VVC Test Model - Version 20.0. https://​vcgit.​hhi.​fraun​hofer.​de/​jvet/​VVCSo​ftware_​VTM/-/​
tree/​VTM-​20.0

	12.	 Kawamura K, Unno K, Kidani Y (2021) Fast still picture coding for VVC. In: 2021 Asia-Pacific 
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp 
70–73 (2021)

	13.	 Li, X., Suehring K (2021) Common test conditions and software reference configurations. In: Tech-
nical Report JVET-H1010, Joint Video Experts Team (JVET)

	14.	 Ba K, Jin X, Goto S (2010) A dynamic slice-resize algorithm for fast H.264/AVC parallel encoder. 
In: 2010 International Symposium on Intelligent Signal Processing and Communication Systems, 
pp. 1–4. https://​doi.​org/​10.​1109/​ISPACS.​2010.​57046​38

	15.	 Zhao L, Xu J, Zhou Y, Ai M (2012) A dynamic slice control scheme for slice-parallel video encod-
ing. In: 2012 19th IEEE International Conference on Image Processing, pp 713–716. https://​doi.​org/​
10.​1109/​ICIP.​2012.​64669​59

	16.	 Rodriguez A, Gonzalez A, Malumbres MP (2006) Hierarchical parallelization of an H.264/AVC 
video encoder. In: International Symposium on Parallel Computing in Electrical Engineering 
(PARELEC’06), pp 363–368. https://​doi.​org/​10.​1109/​PAREL​EC.​2006.​42

	17.	 Storch I, Palomino D, Zatt B, Agostini L (2016) Speedup-aware history-based tiling algorithm for 
the HEVC standard. In: 2016 IEEE International Conference on Image Processing (ICIP), pp 824–
828. https://​doi.​org/​10.​1109/​ICIP.​2016.​75324​72

	18.	 Ahn Y-J, Hwang T-J, Sim D-G, Han W-J (2013) Complexity model based load-balancing algorithm 
for parallel tools of HEVC. In: 2013 Visual Communications and Image Processing (VCIP), pp 1–5. 
https://​doi.​org/​10.​1109/​VCIP.​2013.​67064​51

	19.	 Blumenberg C, Palomino D, Bampi S, Zatt B (2013) Adaptive content-based Tile partitioning algo-
rithm for the HEVC standard. In: 2013 Picture Coding Symposium (PCS), pp 185–188. https://​doi.​
org/​10.​1109/​PCS.​2013.​67377​14

	20.	 Franche J-F, Coulombe S (2012) A multi-frame and multi-slice H.264 parallel video encoding 
approach with simultaneous encoding of prediction frames. In: 2012 2nd International Conference 
on Consumer Electronics, Communications and Networks (CECNet), pp 3034–3038. https://​doi.​
org/​10.​1109/​CECNet.​2012.​62020​18

	21.	 Browne A, Ye Y, Hwan Kim S (Jun 2023) Algorithm description for Versatile Video Coding and 
Test Model 20 (VTM 20). Technical Report JVET-AD2002, Joint Video Experts Team (JVET)

	22.	 Yamamoto Y, Ikai T, Yasugi Y (Jan 2017) Improved fast encoding setting. Technical Report JVET-
E0023, Joint Video Experts Team (JVET)

	23.	 Ahrar AM, Roodaki H (2021) A new tile boundary artifact removal method for tile-based viewport-
adaptive streaming in 360◦ videos. Multimed Tools Appl 80:29785–29803

	24.	 Gankhuyag G, Jeong J, Kim Y-H (2019) Advanced motion-constrained AV1 encoder for 8K 360 VR 
tiled streaming. In: 2019 International Conference on Information and Communication Technology 
Convergence (ICTC), pp 682–684. https://​doi.​org/​10.​1109/​ICTC4​6691.​2019.​89397​30

	25.	 Yan C, Zhang Y, Xu J, Dai F, Li L, Dai Q, Wu F (2014) A highly parallel framework for HEVC cod-
ing unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–
576. https://​doi.​org/​10.​1109/​LSP.​2014.​23104​94

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1109/ICIP40778.2020.9190928
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-20.0
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-20.0
https://doi.org/10.1109/ISPACS.2010.5704638
https://doi.org/10.1109/ICIP.2012.6466959
https://doi.org/10.1109/ICIP.2012.6466959
https://doi.org/10.1109/PARELEC.2006.42
https://doi.org/10.1109/ICIP.2016.7532472
https://doi.org/10.1109/VCIP.2013.6706451
https://doi.org/10.1109/PCS.2013.6737714
https://doi.org/10.1109/PCS.2013.6737714
https://doi.org/10.1109/CECNet.2012.6202018
https://doi.org/10.1109/CECNet.2012.6202018
https://doi.org/10.1109/ICTC46691.2019.8939730
https://doi.org/10.1109/LSP.2014.2310494


14345

1 3

Adaptive quadtree splitting parallelization (AQSP) algorithm…

Authors and Affiliations

Alberto González‑Ruiz1 · Antonio Jesús Díaz‑Honrubia1   · 
Santiago Tapia‑Fernández1   · David García‑Lucas2   · 
Gabriel Cebrián‑Márquez3   · Luis Mengual‑Galán1 

 *	 Antonio Jesús Díaz‑Honrubia 
	 antoniojesus.diaz@upm.es

	 Alberto González‑Ruiz 
	 alberto.gonzalez.ruiz@alumnos.upm.es

	 Santiago Tapia‑Fernández 
	 santiago.tapia@upm.es

	 David García‑Lucas 
	 garcialucdavid@uniovi.es

	 Gabriel Cebrián‑Márquez 
	 gabriel.cebrian@uclm.es

	 Luis Mengual‑Galán 
	 lmengual@fi.upm.es

1	 Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid, 
Campus de Montegancedo, 28660 Madrid, Spain

2	 Department of Computer Science, University of Oviedo, Calle Leopoldo Calvo Sotelo, 18, 
33007 Oviedo, Spain

3	 High Performance Networks and Architectures group, Universidad de Castilla-La Mancha, Calle 
Investigación, 2, 02071 Albacete, Spain

http://orcid.org/0000-0001-5464-0714
http://orcid.org/0000-0002-1418-9276
http://orcid.org/0000-0001-6934-1901
http://orcid.org/0000-0002-6510-7517
http://orcid.org/0000-0002-9783-5738

	Adaptive quadtree splitting parallelization (AQSP) algorithm for the VVC standard
	Abstract
	1 Introduction
	2 Technical background
	3 Previous works in the topic of VVC encoding parallelization
	4 Proposed adaptive quadtree splitting parallelization (AQSP) algorithm description
	4.1 Node distribution algorithm
	4.2 Optimal mode decision

	5 AQSP algorithm evaluation
	6 Comparison with state-of-the-art proposals
	7 Conclusions
	References




