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A B S T R A C T

The energy-volume curve of a crystalline solid is critically examined in terms of the mechanical contributions
of its constituent atoms. In addition to the usual analysis in the positive compression regime, our computational
approach covers the tensile behavior in the negative pressure region up to the spinodal stability limit. Using
the rich polymorphism of ZnO as a test-bed example, we propose two atomic decomposition schemes that
are able to recover the bulk moduli and the critical strengths of four ZnO phases providing an intriguing
interpretation of the chemical bonding network as a parallel circuit of mechanical resistors. Our scheme also
allows the identification of the role played by the cation and anion in the densification of the high-pressure
polymorphs and up to the material rupture points. This approach may help in the quest for tailored materials

with outstanding mechanical performance.
Introduction

In a crystalline solid, the calculated electronic energy (𝐸)-volume
(𝑉 ) curve represents its equation of state (EOS) at static conditions,
i.e., at 0 K and zero point vibrational contributions neglected. This
computational approach is very reasonable in describing hydrostatic
pressure (𝑝) effects on a variety of non-molecular solids at least up to
room temperature since in this class of materials thermal expansion
coefficients are as low as 10−5–10−6 K−1. Thanks to the combination
of the static approximation with accurate first-principles computational
methodologies, databases containing calculated EOS parameters are
now often used in machine learning protocols to help the engineer-
ing of materials with specific properties [1–4]. In opposition to this
ongoing strategy, studies directed to the in-depth understanding of
specific values and the trends of these EOS parameters in terms of
the atomic constituents of the crystalline solids are much less frequent
and constitute a necessary perspective complementary to brute force
schemes.

Whereas most of the efforts have been directed toward the exploita-
tion of the 𝐸-𝑉 curve in the region with 𝑉 values lower than the
equilibrium volume (𝑉0), negative pressures appearing at 𝑉 > 𝑉0 have
been scarcely explored so far (see for example [5–8]). The main reason
is probably the experimental difficulty in expanding isotropically a
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solid. However, this fact has not hindered the observation of negative
pressure states in materials [9,10]. Epitaxial [11] and nanoparticle
growth [12], chemical substitution, or ion extraction [13] induce crys-
tal elongations, which can be understood if we assume that negative
pressures are present.

Computational experiments exploring the tensile ‘‘hydrostatic’’ ex-
pansion of a given material are needed in this regard and also yield
valuable information about strain-induced phenomena such as the
stability limit (spinodal point) and the ideal strength of materials
under tensile conditions [14]. For instance, a modified spinodal EOS
has been recently proposed to evaluate the rupture conditions of a
collection of prototypical layered crystals subjected to uniaxial and
biaxial negative stresses [15]. The importance of these properties in the
materials science field makes it necessary to develop equations of states
and atomic models directed to analyze materials under ‘‘hydrostatic’’
tensile conditions.

In this study, we employ a computational strategy based on par-
titioning the crystalline space into atomic basins using Bader’s topo-
logical analysis [16]. Similar to the Crystal Chemistry formalism,
which identifies and transfers polyhedral functional-like groups be-
tween different compounds [17–20], this approach facilitates the de-
composition of observable properties (e.g., volume, bulk modulus, ideal
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strength) into local contributions associated with different chemical ele-
ments [21]. Furthermore, we introduce an intriguing analogy between
the crystalline bonding network and a parallel circuit of mechanical
resistors [22]. This analogy becomes apparent when we focus on the
energy cost associated with the volume reduction or expansion of each
atomic constituent from its equilibrium value.

We have selected wurtzite, zincblende, rock-salt, and cesium chlo-
ride ZnO polymorphs to illustrate the bonding network-mechanical
circuit analogy and to evaluate how the changes in the atomic mechan-
ical properties of Zn and O along with the polymorphic sequence affect
their observable EOS parameters. ZnO shows a well-known pressure-
induced polymorphism with experimental data at tensile conditions
too, thus providing a simple yet realistic case study to calibrate the per-
formance of our approach. This is an important fact that has motivated
us to select ZnO as the test-bed material to undergo our microscopic
partition analysis at both positive and negative pressure regimes. ZnO
is also a genuine prototype of a binary crystal with similar atomic
sizes (BCSAS) despite presenting ionic radii with differences as large
as 0.6 Å (Zn2+) and 1.4 Å (O2−). Based on these ionic sizes, we could
xpect different atomic mechanical responses under pressure. This fact
onstitutes a challenge in the study of local mechanical properties and
as also other implications related to nucleation and growth processes
f phase transitions.

The main aim of the study is to provide insights into the atomic
echanism by means of which a given ZnO phase reduces or expands

ts volume at positive and negative pressure, respectively. To achieve
his goal, we have exploited the information enclosed in the whole
-𝑉 curves of the four ZnO phases by applying two different atomic
ecomposition schemes. As a result, several mechanical properties,
uch as the zero pressure bulk modulus and the critical strength, have
een split into Zn and O contributions. In all cases. we pursue to show
hat our chemical protocol is useful to understand particular, mainly
echanical, structure–property relationships of a given polymorph.

omputational details of electronic structure calculations and
quation of state fittings

First-principles electronic structure calculations and geometry opti-
izations of polytype structures of ZnO are carried out under the Kohn–

ham DFT framework with the ABINIT code [23] using the Perdew–
Burke–Ernzerhof (PBE) exchange–correlation functional [24]. The so-
called FHI atomic plane wave pseudopotentials [25] are adopted, while
cutoff energies and Monkhorst–Pack grids [26] are set to 600 eV and
8 × 8 × 8 and 8 × 8 × 6 for cubic- and hexagonal-ZnO, respectively.
Atomic positions are optimized until the total energy converges within
0.1 meV. At the same time, all crystalline strains were optimized so
that the corresponding stress components turned out to be within
100 MPa from a predetermined value. The Broyden–Fletcher–Goldfarb–
Shanno minimization scheme (BFGS) [27] was used. In this way,
stress-volume curves under controlled hydrostatic stress were obtained.
Critical strength (ideal strength) was determined as the maximum
value of hydrostatic stress before the lattice loses stability and the
forces diverge. Atomic positions and movements through the different
paths are analyzed using VESTA, a visualization program for structural

odels [28].
Our computational strategy consists of electronic energy calcula-

ions for each polymorph within a volume interval expanding lower
nd higher volumes than the equilibrium one. All extensive magnitudes
n our study are per formula unit. For each set of (𝐸𝑖, 𝑉𝑖) calculated

data, we perform the equation of state fittings using our GIBBS2
code [29,30]. Integrated analytical 𝐸(𝑉 ), pressure (𝑝)-𝑉 , and enthalpy
(𝐻)-𝑝 curves are rigorously determined for all the polymorphs, and
their stability pressure regions evaluated by applying the equilibrium
condition at the static approximation (𝛥𝐻 = 0), where 𝛥 refers to the
2

difference of enthalpies between two phases.
By means of the topological partition carried out using Bader’s
Atoms in Molecules formalism [16,31], the unit cell volumes per for-
mula unit (𝑉 ) of the B1, B2, B3, and B4 ZnO polymorphs are decom-
posed into disjoint atomic contributions (𝑉Zn, 𝑉O) that fill up the whole
space: 𝑉 = 𝑉Zn + 𝑉O. These atomic basins are defined by surfaces
where the flux of the electron density gradient Is zero. Each atomic
basin contains either the nucleus of Zn or O and encloses a volume
that is evaluated using the bisection method with a Gauss–Legendre
quadrature as implemented in the Critic2 code [31]. Standard options
were selected for other computational parameters. In this way, we have
evaluated the volumes of Zn and O at different pressures for each
polymorph and evaluated the fractional occupation of the two atoms
by dividing these volumes with respect to the corresponding volume of
the formula unit at zero pressure for each polymorph. This procedure
allows us to determine (𝑝𝑖, 𝑉𝑖) data for Zn and O, and the corresponding
atomic EOS in all the ZnO polymorphs.

Local decomposition schemes

We propose two decomposition schemes that look for physical–
chemical insight into the atomic-level mechanism followed by a given
material to increase its density under hydrostatic pressure. If we know
which particular chemical constituent of the solid is the one with the
lowest compressibility (among a potential set of components), then
we can anticipate and guide the synthesis of materials with desired
elastic properties. To get reliable information about this mechanism,
an exhaustive partition of the unit cell space in terms of meaningful
chemical entities is required. This feature is achieved by the two decom-
position schemes applied in this work using the well-known Quantum
Theory of Atoms in Molecules formalism developed by Richard Bader
and co-workers [16].

The advantage of the standard atomic partition is the capability of
providing equations of state (EOS) of the chemical elements belonging
to the solid mimicking the crystalline EOS. The possibility of atomic
EOS transference between different materials is also another advantage
of this partition. In the second scheme, as the emphasis is on the total
energy of the solid, the partition provides an intuitive interpretation
on how the mechanical properties of the solid are distributed among
the atomic components following an electrical–mechanical analogy.
Moreover, this second scheme, allows us to monitor the energy storage
upon pressure application in terms of the atomic constituents.

Regarding limitations, both schemes are of general application pro-
vided the solution of the Schrodinger solution of a periodic crystalline
solid is known. This means that the limitations are those inherent to
the methodologies used in first-principles solid state calculations, i.e.
disordered and amorphous solids or crystals with unit cells containing
a very large number of atoms would be prohibitive for analysis with
these two schemes.

Standard atomic EOS partition

Using a formally equivalent definition as for the macroscopic sys-
tem, local atomic compressibilities (𝑘𝑖) at zero pressure can be ex-
pressed as follows Martín Pendás et al. [21]:

𝑘𝑖 = − 1
𝑉𝑖

𝜕𝑉𝑖
𝜕𝑝

. (1)

An expression for the zero pressure bulk compressibility (𝑘0) of any
crystalline polymorph can be straightforwardly derived in terms of
atomic contributions:

𝑘0 =
∑

𝑖
𝑓𝑖𝑘𝑖; 𝑓𝑖 =

𝑉𝑖
𝑉0

, (2)

where 𝑓𝑖 is the fractional occupation of the 𝑖th atomic constituent of
the solid in the unit cell, whose volume per formula unit is 𝑉0 at zero
pressure. The atomic contributions to the zero pressure bulk modulus
(𝐵 ) are implicitly contained in this expression since 𝐵 = 1 [19,21].
0 0 𝑘0
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The only requisite for these equations to be valid is that the unit cell
volume is filled out with non-overlapping atomic volumes: 𝑉 =

∑

𝑖 𝑉𝑖.
We say that this unit cell partition is exhaustive. This partitioning has
been widely applied to explain for example how the compressibility
of spinels is determined mainly by the anion sublattice [32], the
bonding reconstruction across solid–solid phase transitions [33,34],
optical properties in ceramics [35], or the pressure behavior of several
carbonates at mantle conditions [20].

When the above equations are applied to any of the ZnO poly-
morphs, the decomposition is as simple as

𝑘0(ZnO) = 𝑓Zn𝑘Zn + 𝑓O𝑘O. (3)

𝑘0(ZnO) can be easily evaluated with this expression once the atomic
volumes 𝑉𝑖 and the 𝑝 − 𝑉 curve are obtained from the calculated 𝐸-𝑉
curve of a given ZnO polymorph. Thus, 𝐵0(ZnO) = 1/𝑘0(ZnO) can be
recovered and compared with the value from the 𝐸-𝑉 fitting.

Local pressures as resistors of a parallel mechanical circuit

A less conventional atomic partition proposed by Ouahrani et al.
[22] is also worth to be applied to analyze the mechanical properties
at positive and negative pressures. Let us consider the thermodynamic
definition of pressure at the athermal limit 𝑝 = − 𝜕𝐸

𝜕𝑉 . This definition
involves increasing of the crystal energy out of its equilibrium volume.
It also follows from this definition (using absolute values) that pressure
is a measure of the mechanical resistance of the solid to change its
volume. A decomposition of this resistance in terms of Zn and O con-
stituents of ZnO polymorphs is obtained by using a similar definition
for the local pressures 𝑝Zn and 𝑝O as follows:

𝑝Zn = − 𝜕𝐸
𝜕𝑉Zn

, 𝑝O = − 𝜕𝐸
𝜕𝑉O

. (4)

Just considering that 𝑉 = 𝑉Zn + 𝑉O, it is easy to show that the total
echanical resistance or pressure behaves analogously as the resultant

esistance of an electronic circuit of parallel resistors [22]:
1
𝑝
= 1

𝑝Zn
+ 1

𝑝O
. (5)

This partition allows us to interpret the material’s mechanical re-
sistance as due to the contribution of the mechanical resistance of its
atomic constituents. Similarly to OhmÂ’s Law applied to a circuit of
parallel electric resistors, the mechanical energy stored by changing
the crystal volume is evaluated using the above equation in which the
atoms act as parallel mechanical resistors. To make it more evident,
the roles played by the electric voltage, the current intensity, and the
electrical resistance in a parallel electrical circuit are in this analogy
played by 𝛥𝐸, 𝛥𝑉 , and 𝑝, respectively. In fact, 𝛥𝐸 = 𝛥𝑉 × 𝑝, being 𝛥𝑉
the sum of the atomic contributions, in analogy with the total current
being the sum of the intensities across the branches of the parallel
circuit:

𝛥𝑉 = 𝛥𝑉Zn + 𝛥𝑉O. (6)

In this decomposition scheme, the zero pressure bulk moduli of the
atomic constituents (we omit the 0 subscript to simplify the notation)
are defined as:

𝐵MR
𝑖 = −𝑉

𝜕𝑝𝑖
𝜕𝑉

, (7)

where the superscript MR helps to differentiate the atomic 𝐵0 parame-
ter defined in the standard atomic decomposition from the one defined
under this ‘‘mechanical resistance’’ (MR) analogy.

Using Eq. (5), the total and local pressure differentials are related
as follows:

𝑑𝑝 =
∑

(

𝑝
)2

𝑑𝑝𝑖, (8)
3

𝑖 𝑝𝑖 f
Fig. 1. 𝛥𝐻 evolution with pressure for the ZnO polymorphs explored in this work. B3
and B4 differences in enthalpy are within calculation accuracies and have been taken
as the zero value reference.

and, therefore, we can recover the crystal zero pressure bulk modulus
as:

𝐵0 = −𝑉
∑

𝑖
𝑐2𝑖

(

𝜕𝑝𝑖
𝜕𝑉

)

=
∑

𝑖
𝑐2𝑖 𝐵

MR
𝑖 , (9)

where the 𝑐𝑖 coefficients are the 𝑝
𝑝𝑖

ratios that can be obtained by linear
fittings of the 𝑝𝑖-𝑝 plots.

In the case of ZnO polymorphs these expressions become quite
simple:

𝐵0 = 𝑐2Zn𝐵
MR
Zn + 𝑐2O𝐵

MR
O , 𝑐Zn =

𝑝
𝑝Zn

, 𝑐O =
𝑝
𝑝O

. (10)

Results and discussion

Positive pressures

Macroscopic view
The behavior of ZnO under hydrostatic pressure has been explored

both experimental and computationally many times. See for exam-
ple [36,37]. Besides the two stable polymorphs at zero pressure (B3
and B4), the observation of the rocksalt (B1) structure at pressures
from around 9 GPa onwards is well documented [36]. However, this
B1 phase has not been retained at ambient conditions when the pres-
sure is released. Likewise, the B2 phase has been theoretically pro-
posed as the stable phase at pressures higher than 119.5 GPa [38] or
250–260 GPa [39] depending on the calculation procedure.

In Fig. 1, we observe that two phase transitions are predicted for
ZnO according to our calculations. The first one leads to the rocksalt
structure around 10 GPa, and the second one informs of the emergence
of the B2 structure at around 240 GPa, in good agreement with Refs. Re-
cio et al. [36], Wang et al. [39], respectively. These results are obtained
whether the B3 or B4 phase is chosen as the stable low-pressure phase.
We notice that if the B1 phase is skipped due to for example kinetic
barriers associated with the B4-B1 or B3-B1 transition, the B2 structure
would appear directly from the B4 or B3 phase at pressures around 50
GPa, which does not seem to be highly feasible. As the B3 (cubic zinc
blende) and B4 (hexagonal wurtzite) are nearly energy degenerated,
and display almost identical 𝐸-𝑉 curves, we choose to discuss results
only from the more simple B3 structure in what follows.

The zero pressure unit cell volume per formula unit (𝑉0), the in-
verse of the compressibility at zero pressure (𝐵0), and its pressure
erivative also evaluated at zero pressure (𝐵′

0) are the three basic

itting parameters describing the volume evolution with the pressure
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Table 1
Calculated crystal and atomic EOS parameters and occupation fractions in the B4, B3, B1, and B2 polymorphs of ZnO according to our
calculations are gathered in the first row of each polymorph. Range of values of crystal properties reported in Desgreniers [40] and Wang et al.
[39] are included with labels a and b, respectively. Volumes in Å3 and bulk moduli in GPa.

ZnO Zn O

𝑉0 𝐵0 𝐵′
0 𝑉Zn 𝐵Zn 𝐵′

Zn 𝑓Zn 𝑉O 𝐵O 𝐵′
O 𝑓O

B4 25.41 122.6 5.0 11.54 128.1 5.3 0.454 13.87 116.5 4.6 0.546
a 23.80–24.57 136–183 3.6–9.4
b 23.59–24.89 129–183 3.6–4.5
B3 25.40 127.4 4.4 11.40 133.8 4.7 0.449 14.03 126.8 4.3 0.551
b 23.09–24.86 130–168 3.8–4.6
B1 20.87 163.0 4.5 9.18 169.1 4.6 0.444 11.52 152.2 4.2 0.556
a 18.85–19.80 132–228 3.5–9.5
b 18.82–20.61 165–230 3.5–4.6
B2 19.91 158.6 4.5 9.20 158.2 4.5 0.465 10.60 155.1 4.4 0.535
b 17.85–19.55 161–205 4.4–4.7
(
v

of a given polymorph. These EOS parameters for the low- and high-
pressure phases of ZnO are collected in the first four columns of
Table 1. The unit cell volumes per formula unit (𝑉0) of the B4 and B3
hases show expected similar values due to their short-range equivalent
tomic coordination spheres, whereas 𝑉0 is lower for the high pressure
hases. Wang et al. [39] have recently gathered several experimental
nd calculated 𝑉0, 𝐵0, and 𝐵′

0 values for the different ZnO polymorphs.
revious data from Desgreniers [40] are also collected in Table 1.
verall, the good agreement between these previously reported data
nd our EOS parameters supports the calculated 𝐸-𝑉 curves. Higher
0 and lower 𝐵0 values are within the expectations from GGA-PBE
alculations. We notice a non-common trend in the values of 𝐵0 along
he polymorphic sequence since the increase in its value after the
ransition from B3 to the B1 phase is followed by a decrease in the
2 phase. Such conduct has been found earlier for the same B1-B2
ransition in other simple binary compounds as the alkali halides. Recio
t al. [41], Hofmeister [42] This behavior can be explained by taking
nto account that the compressibility of the high-pressure phase results
rom the balance between the higher coordination index (more effective
acking) in the B2 phase and the simultaneous increase of the Zn–O
ond lengths which decreases the bond strength. It seems that this last
ffect slightly dominates the balance when the B1 (𝐵0 = 163.0 GPa)
nd B2 (𝐵0 = 158.6 GPa) phases are compared in ZnO.

tomic equations of state
As explained in Section ‘‘Standard atomic EOS partition’’, the calcu-

ated atomic volumes at different unit cell volumes constitute the raw
ata to evaluate the EOS parameters of Zn and O gathered in Table 1.
hese values allow us to extract information about the main atomic
echanism of compression of ZnO polymorphs. The first point to

emark on is the similarity between the volumes and compressibilities
f the two atomic constituents of ZnO. Differences between Zn and

atomic 𝐵0 values are always less than 10% in all the polymorphs,
nd the highest occupation fraction (oxygen in the B1 phase) is lower
han 0.560, which means that the size of both constituents are not so
ifferent. Although in all the cases the anion is the most compressible
pecies and the one with the highest occupation in the unit cell, zinc
xide is a good example of a crystalline solid in which the effect of
ressure on its structure is distributed almost equally between its two
tomic constituents. It is secondly noticeable that the occupation frac-
ion of the atoms remains almost unchangeable regardless of the phase.
hirdly, when Eq. (3) is checked using the atomic data of Table 1, the
ulk modulus of the corresponding polymorph is recovered within a
iscrepancy of less than 2.3%. Values obtained from the atomic EOS (in
rackets calculated from the crystal 𝐸-𝑉 curve) are 121.5 GPa (122.6
Pa), 129.5 GPa (127.4 GPa), 159.3 GPa (163.0 GPa), and 156.5 GPa

158.6 GPa) for B4, B3, B1, and B2, respectively. This is a proof of the
onsistency of this decomposition scheme and provides validity to our
omputational approach.

These findings are also present when the phase transitions are
xamined. For example, the relative reduction of the volume of Zn
4

−18.5%) and O (−17.0%) across the B3-B1 transition at 10 GPa is
ery similar to the volume collapse of ZnO (−17.5%) according to our

calculations. The same is obtained for the change in the bulk modulus
at the transition pressure: +19.7% (Zn), +14.2% (O), +18.7% (ZnO).
The lower value of O than Zn is compensated by a greater occupation
factor of the oxygen (𝑓O) in the unit cell (see Eq. (3) and Table 1).
Overall, pressure affects Zn and O almost the same (Zn is only slightly
more reluctant to reduce its volume) even when a phase transformation
occurs.

We can extend the results in ZnO to analyze the response to pressure
of polymorphs of other compounds, especially of those binary crystals
whose atoms display similar sizes, BCSAS. From the EOS of one of
their atomic constituents, EOS parameters of the bulk material can be
anticipated (see Table 1). Examples of such crystals in the alkali halide
family are KF, RbCl, CsCl, and CsBr, where atomic occupation fractions
between 0.4 and 0.6 are found [21]. It is to be pointed out that in
these cases, as well as in ZnO, differences in the ionic radii of the
two constituents can be meaningful and should not be used to select
crystals belonging to this group as the following values reveal: 𝑅(Zn2+)
= 0.74 Å, 𝑅(O2−) = 1.40; 𝑅(K+) = 1.38 Å, 𝑅(F−) = 1.33 Å; 𝑅(Rb+) =
1.52 Å, 𝑅(Cl−) = 1.81 Å; 𝑅(Cs+) = 1.67 Å, 𝑅(Br−) = 1.96 Å [43]. Ionic
sizes derived from ionic radii can be in contrast with the particular
atomic volume values of Bader’s partition of the unit cell. The latter is
exhaustive, as we have remarked earlier, and the shape of the ions in
the unit cell is not spherical, thus leading in these examples to a similar
distribution of the unit cell space between the two constituents despite
having different ionic radii.

BCSAS crystals also display particular features regarding nucle-
ation and growth processes in pressure-induced phase transitions. As
discussed by Zahn and Leoni [44], the preference for small or big
nucleation domains depends on the softness and hardness of the con-
stituents and on the atomic size, which has also implications in the
final morphology of the polymorphs. If the ionic mismatch is great,
many small domains appear in the growth process as opposed to
the situation of BCSAS compounds. Thus, the identification of BCSAS
compounds, such as ZnO, is a side result of our decomposition scheme
that allows us to propose the formation of few and large domains when
pressure-induced ZnO phases are formed.

Local mechanical resistances
The mechanical resistance of the crystal to reduce its volume is

always lower than that of Zn and O. Although this may seem counterin-
tuitive, it is easy to understand if we realize that, according to Eq. (6),
the volume reduction is greater in the bulk than in its constituents. In
other words, the ZnO crystal offers a lower resistance than Zn and O. In
Fig. 2, we also observe that, although blue (Zn) and red (O) curves are
all mixed, Zn curves are slightly displaced to lower volumes than O. We
have also shown earlier that the occupation fractions of Zn and O are
around 0.45 and 0.55, respectively. More difficult to visualize is that,

when the unit cell volume decreases, the corresponding decrease in the
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Fig. 2. Calculated 𝐸-𝑉 and 𝐸-V𝑖 curves for ZnO (black), Zn (blue), and O (red) for
1, B2, and B3 phases.

Table 2
Fitting coefficients (𝑐𝑖) of the 𝑝𝑖-𝑝 data collected in Fig. 3 and mechanical resistance
MR)-like bulk moduli (𝐵MR

𝑖 ) in GPa for the B3, B1, and B2 phases of ZnO. Percentual
eviations (𝛥) in 𝐵0 evaluated with Eq. (10) (𝐵Eq.10

0 ) with respect to the corresponding
nO EOS parameters of Table 1 are collected in the last column.

Zn O ZnO

𝑐Zn 𝐵MR
Zn 𝑐O 𝐵MR

O 𝐵Eq.10
0 𝛥

B3 2.349 271.9 1.732 237.9 128.5 +0.86
B1 2.275 343.9 1.764 305.5 164.5 +0.92
B2 2.117 316.9 1.860 314.3 161.5 +1.83

volume of Zn is also slightly lower than in O. Therefore, the energy
stored upon volume compression is achieved as a result of a greater
compression of the oxide anions than of the Zn cations. This means that
Zn cations, as expected, are more resistant from a mechanical point of
view.

The local pressures or atomic mechanical resistances calculated with
Eq. (4) are plotted against the total pressure in Fig. 3. Zn and O
values in the B3, B1, and B2 phases are all included in this plot. It
is remarkable to see that all the points follow two well-differentiated
linear trends regardless of the polymorph, one for the cation (slope
2.23 ± 0.12) and the other for the anion (slope 1.79 ± 0.07). We
find a greater slope for Zn (more reluctant to decrease its volume than
O), which is consistent with the atomic bulk moduli discussed in the
previous subsection. Similar results were obtained in calculations of
local pressures in the rest of Zn chalcogenides [22] and in CdTe [45].

Using linear fittings for Zn and O in each polymorph, the coefficients
𝑐𝑖 of Eq. (10) are obtained (see Table 2). Similarly, the bulk moduli
of Zn and O under this local mechanical resistance scheme (𝐵MR

𝑖 )
are also evaluated using the calculated 𝑝𝑖 values and Eq. (7). In this
way, 𝐵0 values for the three polymorphs can be recovered. We find
again discrepancies only lower than 2% between the values obtained
from the 𝐸-𝑉 fittings and those evaluated from Eq. (10). This result
provides consistency to the different fitting procedures carried out in
our study. Moreover, the success in recovering bulk properties from
the two decomposition schemes is a relevant result that supports our
atom-level approach.

When comparing values of 𝐵𝑖 from Table 1 with those of 𝐵MR
𝑖

in Table 2 differences are apparent. This is not unexpected since the
definition used to evaluate the bulk moduli for Zn and O is not the
same in the two decomposition schemes. The important point is to see
that in both approaches the cation is the one with the highest value in
all the polymorphs. Moreover, the difference in the compressibility of
Zn and O changes with the polymorph, being greater in B3 and B1 than
in B2, but is of the same order regardless of the decomposition scheme.
5

Fig. 3. Calculated 𝑝-𝑝𝑖 curves for Zn (blue), and O (red) for all phases.

An interesting link between our atomic mechanical resistivity and
the softness/hardness of the constituents of the crystal can be derived
from our results. In our approach, the atomic softness/hardness is
controlled by two factors. One is the local bulk moduli 𝐵𝑖, which
can be transferred among different structures. The other are the 𝑐𝑖
coefficients that account for the particular environment of the atom in
a given structure. In the case of the BCSAS crystals, these two factors
tend to offset each other, resulting in similar mechanical resistances
as it happens in ZnO, where 𝑐Zn is only 1.2 times greater than 𝑐O.
We can speculate that for crystals other than BCSAS, differences in
𝑝𝑖 values would lead to meaningful differences in the hardness value
of each constituent. In that case, a different mechanism in the nucle-
ation and growth process would be expected for these materials when
experiencing phase transitions.

Negative pressures

Macroscopic view
In this subsection, we present and discuss the calculated stress–

strain curves of the ZnO phases under hypothetical hydrostatic tensile
conditions. The strain variable is the relative change in volume from
the equilibrium value, 𝜖 = 𝑉 −𝑉0

𝑉0
. Remember that in the static approx-

imation 𝑝 = − 𝜕𝐸
𝜕𝑉 , pressure values in the positive strain regime (here

equivalent to stress or tensions) are negative since an increase of vol-
ume also implies greater energy. Notice that, usually, in experimental
and theoretical tensile works stress is positive.

The relevant parameters at this volume regime of the 𝐸-𝑉 curve
with positive strains require the second derivative of the energy with
respect to volume to be zero. The corresponding volume and pressure
in this point are called the spinodal volume, 𝑉sp, and the spinodal
pressure, 𝑝sp, respectively. Under this condition 𝐵0 is zero, the cohesion
forces of the crystal are not able to withstand tensile effects, and
the crystal becomes mechanically unstable. Therefore, the spinodal
pressure can be understood as the ideal or critical strength (𝜎c) of the
crystal, whereas the associated strain is the spinodal volume, which
provides the critical strain (𝜖c) or the greatest strain that the crystal
is able to withstand.

The common strategy found in the majority of studies to determine
𝜎c and 𝜖c consists of evaluating the stress tensor at different tensile
conditions until a maximum in the stress–strain curve is obtained.
In our study, we provide an independent computational procedure
to evaluate the critical or ideal strength of polymorphs by applying
the spinodal condition to the corresponding energy-volume curves. In
Fig. 4, we collect the strain–stress curves of the B3, B1, and B2 phases
of ZnO obtained using the Vinet EOS [46] fitted to the calculated 𝐸-𝑉
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Fig. 4. Calculated stress–strain curves for B3, B1, and B2 phases of ZnO.

points in the negative pressure regime. We have checked that similar
results are obtained using other analytical EOS implemented in our
GIBBS2 code [29,30]. One advantage of this alternative proposal is
hat it also allows us to anticipate critical conditions without arriving
t the rupture limit.

We can check this advantage by analyzing the calculated ideal or
ritical stress values: −20.1 GPa (B3), −25.6 GPa (B1), and −24.6 GPa

(B2). These 𝜎𝑐 values follow a similar pattern as the one obtained for
the bulk moduli of these phases. In particular, the change in the trend
after the B1 phase reflects the decrease in the 𝐵0 value discussed in
Section ‘‘Macroscopic view’’ when passing from the B1 to the B2 phase.
In fact, there is a relationship between spinodal pressures and bulk
moduli that connects the compression and tensile behavior of materials
and explains this correlation. Generally, this relationship can be written
as Brosh et al. [47]:

𝜎𝑐 = 𝑝𝑠𝑝 = −𝛽
𝐵0

𝐵′
0
, (11)

here 𝛽 is a parameter that depends on the equation of state and can
e easily obtained by imposing the spinodal condition. For instance, in
he case of the Murnaghan EOS 𝛽 = 1.

As regards critical strain values, the noticeable feature is that they
re all around 0.5 regardless of the phase: 0.504 (B3), 0.503 (B1),
nd 0.503 (B2). This is consistent with the slopes of the stress–strain
urves at the origin that become very similar for the B1 and B2 phases,
eing lower for B3 in agreement with the corresponding 𝐵0 values.
oreover, the similarity of 𝜖c in the three phases also manifests the

niversality in the shape of the energy-volume curves. Specifically, an
nalysis of the potential energy curves revealed that rupture distances,
r in our case critical strains, are approximately constant regardless
he ionic, covalent, or metallic nature of the bonds involved [48]. This
niversality is manifested in the Vinet EOS [46], where the critical
train can be written as:

𝑐 =
𝑉𝑠𝑝
𝑉0

− 1 = 1
8𝑋3

0

(𝑋0 − 1 +
√

𝑋2
0 + 6𝑋0 + 1)3 − 1, (12)

with 𝑋0 =
3
2 (𝐵

′
0−1). Using a value for 𝐵′

0 of 4.5, which is representative
f the B1, B2, and B3 phases (see Table 1) and falls within the typical
ange of values found in the majority of solids. The latter equation
ields a critical strain of 0.492, in perfect agreement with our results.
clear conclusion is that our strategy can be used to anticipate the

upture limits (critical stress and strain) of materials under hypothetical
ydrostatic tensile conditions, knowing only the bulk modulus and its
ero-pressure derivative. This is an extension of the previous study
here critical parameters under uniaxial with and without transverse

tress were found in good agreement with available data for different
ovalent compounds [15].
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Fig. 5. Calculated stress–strain curves in the B3, B1, and B2 phases of ZnO for Zn
(top) and O (bottom).

Table 3
Spinodal parameters for the bulk, Zn, and O in B3, B1, and B2 phases of ZnO.

ZnO Zn O

𝑝ZnOsp 𝜖ZnOsp 𝑝Znsp 𝜖Znsp 𝑝Osp 𝜖Osp
B3 −20.1 0.504 −20.0 0.473 −20.4 0.514
B1 −25.6 0.503 −25.4 0.476 −25.4 0.486
B2 −24.6 0.488 −24.5 0.492 −24.4 0.503

Spinodal parameters from atomic EOS and local mechanical resistances
Our atomic decomposition of EOS parameters also provides infor-

mation on the rupture mechanism of the crystal under tensile con-
ditions in terms of its constituents. In Fig. 5, we present the atomic
stress–strain curves for Zn (top) and O (bottom) in the B3, B1, and B2
polymorphs. A short explanation is needed to indicate how these curves
are plotted. In Fig. 4, each negative pressure (stress) value is associated
with a unit cell volume that in turn is split into the atomic volumes
𝑉Zn and 𝑉O. Thus, for each stress value, 𝜖Zn and 𝜖O values are easily
assigned:

𝜖Zn =
𝑉Zn − 𝑉Zn,0

𝑉Zn,0
, 𝜖O =

𝑉O − 𝑉O,0
𝑉O,0

, (13)

where the subscript 0 refers to the corresponding equilibrium volume
value.

By definition, each 𝜎c value in Fig. 5 is the same as in the crystal, but
the atomic 𝜖c is not necessarily equal to the crystal value. Nevertheless,
and in concordance with the universal behavior of the 𝐸-𝑉 curves [46],
we found similar 𝜖c values for Zn and O in the three phases. All these
results are collected in Table 3. Notice that in this context 𝜖c = 𝜖sp.
Small differences between atomic critical strengths and the values in

the crystal are originated by the fitting procedure.
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Fig. 6. Calculated 𝑝-𝑝𝑖 curves for Zn (blue), and O (red) for the B1 phase with details
(inset) in the negative pressure regime.

When comparing Zn and O results in Table 3 and Fig. 5, we observe
that the critical strains of Zn are slightly lower than O. This means that
the deformation that the cation can withstand before the crystal rupture
is not as large as the one of the oxygen. However, the difference is not
noticeable and we can roughly conclude that in these BCSAS crystals,
there is not a particular atomic constituent responsible for the crystal
instability upon tensile conditions since both, Zn and O, show a similar
response in each of the three polymorphs.

To conclude, let us apply the partition of the pressure in terms of
atomic mechanical resistances to the spinodal condition. We examine
how this decomposition scheme works for negative pressures in Fig. 6.
In contrast to the positive pressure regime, we observe a deviation from
the linear trend in the 𝑝-𝑝𝑖 plots of the B1, B2, and B3 phases at negative
pressures. The cation and the anion consistently tend to equalize their
mechanical resistances up to the spinodal point where they become
equal and two times higher than the external pressure fulfilling Eq. (5).
The fact that the local resistances are equal at the spinodal point
suggests that the rupture limit of the material is achieved when all the
components of the crystal become unstable. This is an interesting result
informing that the atomic mechanical resistances balance each other to
produce the rupture of the crystal. Nevertheless, more calculations in
other polyatomic crystals are needed to generalize this finding.

Conclusions

Our investigation was intended to provide a two-fold contribution.
We have first emphasized that an accurate computed 𝐸-𝑉 curve con-
tains a good description of the mechanical response of a solid not only
under pressure but also under ‘‘hydrostatic’’ tensile conditions. We have
shown how the common Vinet-EOS [46] can be used to anticipate
the critical stress and strain limits of a given material. This opens the
possibility of revisiting previously reported 𝑝-𝑉 data with the aim of
obtaining stability limits of materials at negative pressure. Secondly,
our new perspective of the response of a solid to pressure relies on an
atomic decomposition with emphasis on the analogy of a crystalline
solid as a parallel circuit of atomic mechanical resistors [22,45]. Under
this view, it is possible to advance the mechanism by means the solid
not only increases its density under pressure but also reaches the
rupture point under ‘‘hydrostatic’’ tensile conditions.

In our case study, the atomic partitions reveal that ZnO pressure-
induced polymorphs belong to the class of binary crystals with similar
atomic sizes (BCSAS). This result has implications for example in
7

the nucleation and growth process of phase transitions and in the
morphology of the new polymorphs. There is not a particular atomic
constituent (Zn or O) responding differently to pressure or tensile
hydrostatic effects, though Zn is found to be slightly less compressible
and to withstand worse negative pressures. We have confirmed that
the ZnO crystal and its atomic constituents Zn and O behave more or
less the same regardless of which polymorph (B4, B3, B1, and B2) is
considered as far as the critical rupture limit is concerned. This result
is in concordance with the universal energy-volume relationship. We
believe that it is worth exploring if a generalization can be proposed
by analyzing other materials with greater complexity than this binary
ZnO crystal.
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