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Abstract
The industrial internet of things (IIoT) has undergone rapid growth in recent years, 
which has resulted in an increase in the number of threats targeting both IIoT devices 
and their connecting technologies. However, deploying tools to counter these threats 
involves tackling inherent limitations, such as limited processing power, memory, 
and network bandwidth. As a result, traditional solutions, such as the ones used for 
desktop computers or servers, cannot be applied directly in the IIoT, and the devel-
opment of new technologies is essential to overcome this issue. One approach that 
has shown potential for this new paradigm is the implementation of intrusion detec-
tion system (IDS) that rely on machine learning (ML) techniques. These IDSs can 
be deployed in the industrial control system or even at the edge layer of the IIoT 
topology. However, one of their drawbacks is that, depending on the factory’s speci-
fications, it can be quite challenging to locate sufficient traffic data to train these 
models. In order to address this problem, this study introduces a novel IDS based on 
the TabPFN model, which can operate on small datasets of IIoT traffic and protocols, 
as not in general much traffic is generated in this environment. To assess its efficacy, 
it is compared against other ML algorithms, such as random forest, XGBoost, and 
LightGBM, by evaluating each method with different training set sizes and vary-
ing numbers of classes to classify. Overall, TabPFN produced the most promising 
outcomes, with a 10–20% differentiation in each metric. The best performance was 
observed when working with 1000 training set samples, obtaining an F1 score of 
81% for 6-class classification and 72% for 10-class classification.
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1 Introduction

The industrial environment has undergone significant changes since the first indus-
trial revolution, with the latest development being called Industry 4.0 or the indus-
trial internet of things (IIoT). New technologies and implementations such as the 
internet of things (IoT), artificial intelligence (AI), and 5G networks are converging 
with traditional operational technology (OT) protocols and their devices, with the 
aim of improving the performance and efficiency of companies [1]. Some authors 
[2–4] are even proposing the start of a discussion of Industry 5.0.

The convergence of OT and information technology (IT) protocols, as well as the 
IoT and web applications, can lead to security risks if good implementation practices 
are not followed, with the risks being greater for critical infrastructure, because, if 
compromised, this can cause significant losses for businesses and governments. 
In addition, many of the devices found in such infrastructures are unlikely to be 
updated on a regular basis [5]. As a result, they become prime targets for attack-
ers and their strategies, as there is ample room for attack techniques to change and 
evolve rapidly. Cybersecurity researchers can utilize ML algorithms to train multiple 
tools by analysing data left by attackers on their network or applications, which is 
a method of monitoring and preventing (or mitigating) the impacts of these attacks 
[6]. However, depending on the plant’s or industry’s characteristics, the researchers 
may gather insufficient data from these situations, and the challenges they face in 
generating datasets to train their models include issues of confidentiality and the dif-
ficulty of replicating the attacks in a given scenario [7]. New approaches using ML 
techniques, such as prior-data fitted network (PFN), have been proposed to address 
these challenges [8]. These models can be trained with a small amount of data and 
achieve good performance, making them suitable for use in industrial scenarios with 
specific data security requirements and device vulnerabilities.

This paper presents an intrusion detection system based on the TabPFN model, 
in order to address these issues. The aim of this system is to serve as an architec-
ture for the monitoring and detection of anomalies in IIoT environments using a 
small number of samples for its training phase. Our proposal is compared with 
other state-of-the-art ML algorithms that return good results with tabular data. 
To conduct this comparison, several small datasets of 2500 samples were pro-
cessed and used for training different ML models. The purpose was to evaluate 
whether our TabPFN proposal achieves better results than the other models. To 
address the cyber-attack problems that arise in IIoT environments, the proposed 
architecture can be deployed in an edge layer connected to the industrial network 
or be integrated into the intrusion detection approach within the IIoT layer, using 
the industrial control system to implement its functionalities. Given these aspects, 
this work makes the following contributions:

• We present an IDS architecture for the detection of intrusions in the IIoT The 
architecture is designed with specific requirements to allow the IDS to operate 
efficiently in various IIoT environments, particularly in new industrial topolo-
gies.
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• We design small IIoT datasets that can be used for the training and testing of ML 
models In real industry settings, it is difficult to acquire large numbers of real-
world samples needed for training ML models [9]. To address this challenge, 
the scientific community offers researchers public datasets generated using IIoT 
topologies that contain a substantial number of samples. To evaluate the efficacy 
of our proposal using fewer samples during the training phase, it is crucial to use 
these public datasets and create smaller datasets from them.

• We carry out an evaluation of the performance of our proposal compared with 
other state-of-the-art ML algorithms We compare our TabPFN proposal with 
other ML techniques to confirm that it offers better performance than other tech-
niques. By using multiple metrics for model validation, we can determine which 
ML implementation performs best in classifying malicious or benign packets.

The rest of this paper is structured as follows. The technical background of our study 
is presented in Sect. 2. Section 3 outlines the research community’s proposals for 
IDS designed for IIoT environments. The IDS architecture proposed in this exper-
iment, together with the relevant modules and deployment considerations, is pre-
sented in Sect. 4. In Sect. 5, the process of creating small datasets to train and test 
the models considered in the study is explained. Furthermore, this paper provides a 
detailed methodology for implementing the IDS using ML techniques for the afore-
mentioned datasets. Section 6 evaluates the performance of all the models in each 
of the studied scenarios. Finally, Sect. 7 presents the conclusions that can be drawn 
from this experiment.

2  Technical background

Machine learning has grown rapidly in recent years, especially in computing and 
data analysis, encompassing technologies such as the IoT, and making it possible 
to develop intelligent applications with innovative features by leveraging insights 
obtained from data analysis [10]. This approach empowers systems to extract valu-
able knowledge from incoming data autonomously, eliminating the need for explicit 
programming [11].

As mentioned above, we adopt a machine learning approach as it is considered 
the best in environments where there are unknown threats, especially in highly 
changeable and heterogeneous ones where manually establishing rules for each 
type of attack may be difficult. Several studies show that machine learning-based 
approaches perform better in these contexts  [12, 13]. In addition to obtain better 
performance, a machine learning-based IDS also offers other advantages, such as 
the following:

• Accuracy Machine learning algorithms are capable of analysing vast amounts of 
data and detecting patterns and anomalies that might be difficult for humans to 
identify or articulate explicitly.

• Flexibility Machine learning-based IDS can continuously learn and adapt to new 
types of attacks and changing network environments.
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• Anomaly detection Modelling standard system behaviour enables the identifica-
tion of anomalies that rule-based systems cannot detect.

In machine learning-related research [14], cutting-edge algorithms such as neural 
networks and their various architectures have received considerable attention. How-
ever, especially in the context of IIoT environments, where resource constraints are 
prevalent, they have specific limitations when applied to classification problems 
involving tabular data. The following are some of the drawbacks associated with the 
use of neural networks in this specific domain [15]:

• Overfitting DL algorithms, especially neural networks, can be prone to overfit-
ting, particularly when trained on smaller datasets. Although they may perform 
well on the training data, their capacity to generalize to new, unseen data can be 
significantly reduced.

• Computational complexity DL algorithms are complex models that require sig-
nificant computational resources for training. This can pose challenges in their 
implementation and execution, especially when dealing with large datasets.

• Time-consuming training phase The training phase of DL algorithms can be 
time-consuming, particularly when dealing with large datasets. This can pose 
practical challenges in real-time applications where prompt predictions are cru-
cial.

• Data requirements DL algorithms often require a large amount of data to achieve 
optimal performance. This can be a disadvantage in scenarios where data are 
scarce or difficult to collect.

• Data domain DL algorithms often try to take advantage of the spatial and tempo-
ral relationships within the data. However, in the domain of tabular data, which 
often lacks such relationships, this is typically not relevant. Instead, there are 
often more direct, causal relationships in tabular data [16, 17].

When it comes to classifying tabular data, neural networks can be powerful, but 
they can also introduce complexities and time-consuming aspects. Although neural 
networks are excellent in some scenarios, they may not be universally optimal. For 
specific use cases, alternative machine learning algorithms, such as random forest or 
XGBoost, may prove more suitable [15, 18–20]. Therefore, we have decided against 
evaluating our proposal using neural network models, such as convolutional neural 
network (CNN) or long short-term memory (LSTM). This section describes some 
technical concepts used in this work.

2.1  IDS in IIoT environments

IDS is essential tools in the IIoT cybersecurity landscape. Their purpose is to detect 
and identify intrusion attacks by monitoring network traffic within IIoT environ-
ments. IDS plays a vital role in maintaining the integrity of IIoT networks. The 
design and implementation of IDS in IIoT often utilize machine learning techniques 
for enhanced cybersecurity [21].
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In the realm of IIoT, IDS can be broadly classified into signature-based intru-
sion detection systems (SIDS) and anomaly-based intrusion detection systems 
(AIDS). The selection and configuration of an IDS depend on various factors, such 
as the IDS’s quality profile, the cost structure of the firm employing the IDS, and 
the strategic behaviour of hackers [22]. These systems are typically lightweight and 
intended for use in ad hoc IIoT networks. The open and scattered structure of IIoT 
services makes them an attractive target for potential cyber-attacks [23].

IDS in IIoT environments operates under specific technical assumptions and 
within particular environments. Their purpose is to detect computer security viola-
tions, such as illegal entry by outsiders and abuse of privileges by insiders. In the 
context of IIoT, critical considerations for an IDS include effectiveness, efficiency, 
ease of use, security, interoperability, transparency, and collaboration [24].

IIoT platforms address various use cases and revolve around similar business 
objectives, resulting in considerable differences in their architectural set-up. This is 
partly due to the technical complexity of business-to-business (B2B) environments 
and the lack of established standards in the IIoT. The gateway within the secure exe-
cution domain handles sensitive procedures of the IIoT, such as device admission, 
bootstrapping, key management, authentication, and data exchange between OT and 
IT [25].

Intruder detection across IIoT networks has been shown to be efficient using 
ML techniques. These techniques are adopted in IDSs to improve their accuracy in 
detecting intruders, reduce false positives, and identify new threats. The use of ML 
methods in the complex architecture of an IDS in the IIoT involves relying on vari-
ous ML algorithms and methods, both for binary and multi-classification approaches 
[26]. It is crucial to carefully select datasets to ensure the suitability of the model 
construction for IDS usage in IIoT. An ML-enabled IDS based on IIoT is a crucial 
security method that can help defend computer networks and the IIoT environment 
against various attacks and malicious activities [27].

2.2  Tree‑based algorithms

To classify and predict the type of packet received from the IIoT network, previous 
studies [19, 20] recommend the application of machine learning techniques such as 
boosted trees algorithms for classification of tabular data. Our study aims to analyse 
the efficiency of selected models when there are few training samples in the IIoT 
environment.

Ensemble learning methods use multiple machine learning models that generate 
weakly predictive results based on data features extracted from various projections. 
The results are subsequently combined with various voting mechanisms to achieve 
higher performance than any individual algorithm alone. The algorithms considered 
in this study include:

• Random forest [28]: The algorithm generates a parallel ensemble by concur-
rently fitting multiple decision trees. The trees are trained using either distinct 
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datasets or subsamples of the same dataset. The algorithm generates either the 
best solution from the trees or the average result as an output.

• XGBoost algorithm [29]: This technique is a boosting algorithm that has been 
proved to enhance weak learners. It is effective in solving both classification and 
regression problems. In XGBoost, trees can create a new one by considering the 
previous prediction value of the given input data for the tree and then maximiz-
ing the gain in prediction. In order to overcome the limitations of the gradient 
tree boosting implementation, and to achieve superior performance and compu-
tational speed, the XGBoost algorithm has been extended. The extended algo-
rithm is currently being developed as an open source software package.

• LightGBM algorithm [30]: This algorithm is a gradient tree boosting algorithm 
implementation that is optimized for faster training and efficiency. Moreover, 
LightGBM is suitable for being running on low-resource devices as it consumes 
less memory compared with other implementations. It also provides better accu-
racy and can handle considerable data volumes. To achieve this performance, 
LightGBM uses two main techniques to improve its training speed: (1) gradient-
based one-side sampling (GOSS), which selects data samples with higher gradi-
ents, thus increasing the focus on the computational gain of information; and (2) 
exclusive feature bundling (EFB), which is the bundling of some features of the 
data, thus reducing the dimensionality of the data [31].

2.3  TabPFN

TabPFN is a PFN [32] model developed by Hollman et al. [33]. It is used for per-
forming supervised classification tasks on tabular data. This model uses a trans-
former that has been trained to perform Bayesian inference. To obtain such a trans-
former, structural causal models are designed, which generates data depicting causal 
relationships. This data is then used for pretraining the PFN. Additionally, data con-
taining simple causal relationships is preferred. This choice is based on the princi-
ple of Ockham’s razor [34], as it can be observed on multiple occasions that causal 
relationships with fewer parameters tend to have higher a posteriori probabilities. 
Pretraining the transformer with synthetic data allows it to approximate a large num-
ber of new causal relationships based on the simple relationships it was previously 
trained on. As a result, the transformer can approximate Bayesian inference for a 
wide range of causal relationships. This approach is unique when compared with 
other algorithms that currently comprise the state of the art.

Despite the usually high cost of computing integrals involved in Bayesian infer-
ence, this approach enables the model to be trained with actual data in less than 
a second if a GPU is available. Moreover, it does not require hyperparameter 
optimization.

However, TabPFN does have several limitations. In particular, this model is con-
fined to 1000 training samples, 10 categories, and 100 features. These limitations 
result from the training time of TabPFN scaling quadratically in relation to the vol-
ume of training data.
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Nevertheless, despite its limitations, TabPFN can achieve very good classifica-
tion results, comparable to other state-of-the-art algorithms, when the require-
ments are met. The results of the TabPFN model are particularly promising 
in situations in which all features are numerical, there are no missing values, and 
obtaining labelled datasets with enough samples to train other state-of-the-art 
algorithms is challenging.

2.4  Evaluation model metrics

A variety of metrics are employed to thoroughly evaluate the effectiveness of the 
model. These metrics use the information found in the confusion matrix, which 
is generated from the model’s classification results for each packet. This matrix 
includes essential factors, such as true positive (TP), true negative (TN), false 
negative (FN), and false positive (FP), which indicate the model’s classification 
performance. The meaning of each factor of the confusion matrix in this kind of 
classification problem is:

• True positives (TP) In this scenario, TP signifies the instances where the 
model accurately detects packets as belonging to a particular attack type or 
benign classification.

• True negatives (TN) TN represents the number of instances correctly classified 
as not belonging to a specific attack or category. For each attack or benign cat-
egory, TN shows the accurate identification of non-membership in that class.

• False positives (FP) When dealing with specific attacks or benign categories, 
false positives (FP) refer to cases where the model mistakenly categorizes 
benign traffic as a particular attack type or vice versa. It is essential to mini-
mize FP to avoid false alarms for specific attacks or benign classifications.

• False negatives (FN) In this scenario, FN refers to situations where packets of 
a specific attack type are wrongly labelled as non-attack or benign traffic. Effi-
cient reduction of FN is vital to enhance the detection of individual attacks or 
categories.

The selection of suitable metrics is crucial for assessing various aspects of the 
model’s performance, particularly when the dataset utilized is imbalanced. For 
that reason, we selected the following metrics [35]:

Accuracy It is a crucial metric that calculates the proportion of accurate predic-
tions to the total predictions created by the model. This measure is computed using 
the formula displayed in Eq.  1. Nevertheless, in cases where the dataset demon-
strates imbalances amongst various categories, it is necessary to interpret accuracy 
cautiously. In such cases, a below-average model could predict the majority class 
repeatedly and still appear to have achieved a favourable accuracy owing to the con-
siderable prevalence of that category.
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Considering the typical imbalanced nature of traffic data, relying only on accuracy 
for evaluation might be insufficient. It is essential to employ supplementary metrics 
that provide a more comprehensive evaluation of the model’s performance.

Precision This metric indicates the ratio of correct positive predictions to the total 
number of positive predictions identified by the model. Equation 2 describes its cal-
culation. A noteworthy observation is that a higher value of this metric indicates that 
the IDS is able to avoid TP classifications. This result highlights the efficiency of the 
detector in reducing the number of legitimate packets being mistakenly categorized 
as malicious.

Recall This metric represents the ratio of accurately detected positive instances to 
the total number detected as positive by the model. Its calculation is defined by 
Eq. 3. A higher recall score indicates the proficiency of the intelligent threat detec-
tor in identifying a significant number of attacks that accurately match the category 
it aims to detect. In essence, a high recall score emphasizes the detector’s capability 
to efficiently identify a substantial number of attacks relevant to the specific threat 
category it aims to detect.

F1 Score The F1 score metric, frequently identified as the harmonic mean of pre-
cision and recall, is crucial in evaluating models trained on imbalanced datasets. 
It particularly highlights models wrestling with skewed class distributions, as it 
emphasizes both the accurate prediction ratio and the successful detection of anom-
alous classes during classification. The formula for this metric is given by Eq.  4, 
which encapsulates the comprehensive assessment it offers for these models. The F1 
score provides a dependable measure which presents a fair view of a model’s capac-
ity to uphold accuracy while efficiently identifying significant occurrences, particu-
larly in situations where imbalanced data dominates.

Training–test time This metric measures the time, in seconds, required by each 
model to complete both the training and testing phases. It indicates the algorithmic 

(1)Accuracy =
TP + TN

TP + TN + FN + FP

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1_Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
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complexity of each analytical technique and provides insight regarding the impact of 
this complexity on performance when applied to the dataset.

3  Related work

In this section, we present a review of the major studies on intrusion detection sys-
tems using machine learning and deep learning techniques in IIoT environments. 
The scope of this review is limited to pieces of research that are similar to ours, 
which have the most relevance in this area of study.

The authors in [36] introduce an intrusion detection system (IDS) that uses a con-
volutional neural network (CNN) to identify distributed denial of service (DDoS) 
attacks in heterogeneous internet of things (HeIoT) networks. The model is deployed 
at the gateways of these networks. The CNN model’s architecture is multi-layered, 
comprising of two 1D-convolution layers, two 1D-max-pooling layers, and a fully 
connected dense layer that serves as the output layer. The CiCDDoS2019 dataset 
[37] was used for the model’s training and testing. The proposed IDS’s performance 
was evaluated under three classification scenarios: binary, 8-class, and 13-class. The 
evaluation metrics used were precision, recall, F1 score, and accuracy. The model 
achieved high accuracies of 99.7%, 99.95%, and 99.99% for binary, 8-class, and 
13-class classification, respectively.

This work highlights the challenges addressed by their solution in HeIoT envi-
ronments, which are characterized by the complexity and heterogeneity of proto-
cols and devices. It is important to note, however, that the proposed system is pri-
marily designed to counter DDoS attacks. Although DDoS attacks are a significant 
threat that requires attention, it is important to note that there are other types that 
can disrupt the normal functionality of devices and their associated applications in 
HeIoT scenarios. Additionally, due to the limited computational resources inherent 
in HeIoT environments, the use of a CNN model may not be the most cost-effective 
solution. Future research in this area should consider this aspect.

In the innovative study made in [38], a novel method for IDS in IIoT networks is 
presented. The proposed model uses machine learning and optimization techniques 
to classify malicious activities. The authors analyse the model using various classifi-
ers and optimization algorithms, including random forest (RF), K-nearest neighbour 
(KNN), and multi-layer perceptron (MLP) models. Particle swarm optimization 
(PSO) and the bat algorithm (BA) are considered for optimizing these classifiers. 
The proposed IDS architecture is a two-step system. First, to train the classifiers, 
the data is processed using a feature selection technique to extract the most relevant 
features from the datasets. In the second step, the reduced data obtained from the 
optimization process is used for the implementation.

Although the authors’ proposal presents an interesting solution to the challenges 
of classifying IIoT traffic, it does not offer any specific techniques to reduce the 
dimensionality of the received packets. Additionally, the paper lacks detailed infor-
mation on implementing the proposed solution in real-world IIoT scenarios. There-
fore, further research and development in this area are necessary.
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The results of the study, using the WUSTL-IIoT-2021 [39] dataset and differ-
ent implementations of the IDS architecture, show that the use of RF as a classi-
fier with BA for feature selection achieves a performance of 99.6% in the F1 score 
metric.

In [40], the authors present an innovative study that combines various ensemble 
machine learning techniques with a Chi-square statistical method for feature selec-
tion. This combination is used to detect intrusions and attacks in industrial internet 
of things (IIoT) networks. The study considers several models, including XGBoost, 
bagging, RF, extremely randomized trees (ET), and adaptive boosting (AdaBoost). 
The authors evaluate the performance of each model using seven datasets from ToN-
IoT [41]. These datasets are derived from the telemetry data of various IIoT and IoT 
networks. The results reveal that XGBoost outperforms the other models across all 
datasets, achieving an impressive F1 score of 98.30%.

The proposed method addresses some of the limitations found in other IIoT intru-
sion detection techniques. It applies an ensemble-based algorithm for traffic clas-
sification in IIoT scenarios and reduces feature dimensionality using a statistical 
method for feature selection. However, this approach has its own limitations. It is a 
two-layer IDS, and the authors do not provide details on how it could be deployed in 
a real-world scenario. Furthermore, due to resource constraints inherent to the IIoT 
environment, it may not be feasible to deploy in every scenario.

The authors should compare the Chi-square method used for feature selection 
with other proposals and methods to ensure its optimality in selecting the most 
relevant features for the algorithms. Lastly, considering the characteristics of the 
ToN-IoT dataset, it would be beneficial to include another public dataset in the 
experimentation.

The research presented in [42] explores the creation of an IDS using an RF 
model. To manage feature selection and reduce the dimensionality of the datasets 
used for model training and evaluation, the approach incorporates Pearson’s correla-
tion coefficient (PCC) and isolation forest (IF). These techniques enable the model 
to overcome the challenges posed by unbalanced datasets. This is a common prob-
lem when deploying an IDS based on ML techniques in an IIoT environment.

The study evaluates the performance of each model individually and in combina-
tion, using the Bot-IoT [43] and WUSTL-IIOT-2021 [39] datasets. The results indi-
cate that the proposed approach, which combines the three models under considera-
tion, outperforms other baseline models and combinations, achieving an overall F1 
score of 93.57%.

Although the proposal to reduce dataset dimensionality is innovative and can 
enhance performance while minimizing computational requirements for predic-
tions, the study lacks a clear architectural framework for deploying this IDS. It only 
detects whether a network packet is an attack or normal traffic. Implementing this 
solution in a real-world system may pose significant challenges due to the difficulty 
in determining the appropriate response to mitigate potential attack risks. Addition-
ally, the model may not have enough information to identify new applications and 
devices deployed as potential attackers attempting to inject malicious applications. 
In the constantly evolving cybersecurity threat landscape, this could be a critical 
shortcoming.
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The authors of [44] focus their investigation on evaluating the effectiveness of 
the XGBoost algorithm as an IDS in IIoT/IoT networks. Their aim is to identify and 
classify specific malicious activities in these inherently imbalanced environments. 
To assess the performance of the XGBoost model, they use the ToN-IoT [41] and 
X-IIoTDS [45] datasets and metrics such as F1 score, precision, recall, and accu-
racy. The datasets contain malicious traffic from various cyber-attacks that can occur 
in these networks. The proposed IDS design aligns with the traditional architecture 
of IIoT networks, and the design of the datasets takes into account the imbalanced 
nature of this paradigm. The evaluation of the XGBoost algorithm using these two 
datasets shows a high level of performance, with F1 scores of 99.87% for the ToN-
IoT dataset and 99.90% for the X-IIoTDS dataset.

Although the authors’ proposed IDS is tailored to the IIoT network scheme, 
applying XGBoost in this context is not straightforward due to the computational 
requirements needed to run this model correctly. The authors do not provide specific 
details about where the IDS will be deployed. During the experimental phase, the 
preprocessing of the data only follows the minimum steps required for the model 
to work, and there are no additional processes to extract more information or to fil-
ter the features of the dataset in order to optimize it for the training phase. This 
approach could potentially limit the model’s ability to adapt to new threats and 
evolving attack vectors in the dynamic landscape of IIoT security.

The authors in [46] describe the implementation of an IDS for IIoT using con-
volutional neural network (CNN) deep learning approaches. The study includes a 
CNN model, long short-term memory (LSTM), and a novel hybrid approach that 
combines CNN and LSTM to create an enhanced classifier model. The proposed 
architecture uses a CNN model with two convolutional layers and two max-pooling 
ones. The model’s output is processed by the LSTM model to classify the packet as 
normal or malicious. This hybrid approach captures spatial features before identify-
ing temporal dependencies in the data.

The performance of the proposed architecture is evaluated using the UNSW-
NB15 [47] and X-IIoTID [45] datasets. Considering both binary and multi-class 
classifications, the study compares the performance of the proposed model with that 
of the baseline CNN and LSTM models. The results show that the latter outper-
form the other models considered. They achieve an overall accuracy of 93.06% and 
93.57% for UNSW-NB15 and X-IIoTID, respectively.

Although this approach provides an interesting analysis and understanding 
of data features, it demands a significant amount of computational resources for 
deployment, which may not be available in traditional IIoT scenarios. Furthermore, 
the proposal does not present any architecture for deploying the IDS. Additionally, 
due to the computational requirements, the scalability of this solution for larger IIoT 
networks cannot be guaranteed. This limitation could potentially affect the applica-
bility of the architecture in real-world scenarios where network size and resource 
allocation are critical factors.

The paper in [48] presents a novel architecture for an IDS based on multi-access 
edge computing (MEC) and IIoT environments. The objective is to take advantage of 
MEC’s benefits, particularly in network management and computational resources. 
Additionally, it includes a comparative study that evaluates the performance and 
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computational cost of various boosting tree algorithms. The authors assess five 
models, with XGBoost, LightGBM, AdaBoost, CatBoost, and GradientBoost being 
evaluated using a custom dataset and a testbed that incorporates traditional indus-
trial protocols such as Modbus/TCP, OPC Unified Architecture (OPC UA), and S7 
communications (S7COMM).

The models were tested for their ability to detect various attacks, including scan-
ning techniques, DDoS attacks, packet manipulation, and web application attacks. 
The study’s findings show that the XGBoost classifier achieves the best performance 
when multiple attacks occur simultaneously, with an F1 score of 99%. On the other 
hand, the LightGBM classifier demonstrates superior performance in terms of the 
classification ratio and computational cost.

The study focuses on deploying the model in devices or in the MEC layer, spe-
cifically in an IIoT-MEC environment. The generalizability of the findings may be 
limited by this focus. This would provide insights into how the proposed models 
perform in different environments and scenarios. To enhance the robustness of the 
IDS and its applicability across a broader range of IIoT contexts, it would be benefi-
cial to extend the analysis to include other datasets.

In conclusion, our proposal presents a new intelligent IDS based on TabPFN. 
The system is designed to train models with a smaller sample size and is tailored to 
address challenges in IIoT environments where access to traffic data is limited due 
to privacy or confidentiality concerns. This scope has not been extensively explored 
in the related work reviewed in this section. Additionally, our IDS is designed for 
deployment in any traditional IIoT environment, providing both flexibility and 
adaptability.

Moreover, we conducted a thorough analysis and comparison of our approach 
with other state-of-the-art ML algorithms known for their effective performance 
with tabular data. It is important to note that the models developed in other studies 
often require a large number of samples to achieve satisfactory performance results. 
In contrast, our approach aims to achieve high performance with a smaller sample 
size, making it a promising alternative for scenarios where data availability is lim-
ited. This aspect sets our proposal apart from existing solutions and enhances its 
potential for practical implementation in real-world IIoT environments.

Table  1 summarizes the algorithms, datasets, and number the samples used in 
training and testing the models, together with the key highlights and limitations of 
each study discussed in this section.

4  Proposed IDS architecture

To tackle the issue of having limited data for training ML models and detecting 
attacks in environments with imbalanced traffic between normal and anomalous 
packets, this section presents a IIoT architecture. This architecture includes an ML 
algorithm that was trained with a limited dataset.

The architecture proposed, as shown in Fig. 1, consists of three layers that encap-
sulate the main components found in IIoT scenarios, these being the IIoT physical 
layer, the network layer, and the application layer [49].
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The IIoT physical layer includes both IoT devices and industrial machinery. These 
devices perform functions such as environmental monitoring, raw material transpor-
tation, and various supply chain operations, and play a crucial role in the IIoT eco-
system. Each device operates based on a set of industrial design functionalities that 
guarantee optimal performance and security, each with specific responsibilities. The 
devices are equipped with inherent security features to prevent unauthorized access 
and tampering. However, this does not offer complete protection against malicious 
activities initiated by attackers.

The network layer comprises of two sublayers, each with different components 
based on their functionalities and implications within the IIoT architecture.

The communication layer initially manages and controls the industrial protocols 
used by IIoT devices in their communications, including Wi-Fi, Bluetooth, Mod-
bus/TCP, OPC UA, S7COMM, and MQ telemetry transport (MQTT). These pro-
tocols enable the transfer of information between different network devices in the 
IIoT topology, including routers, IoT gateways, supervisory control and data acquisi-
tion (SCADA) systems, databases, and web servers. This layer establishes multiple 

Fig. 1  Proposed IIoT ML-based IDS architecture
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relationships between IIoT devices and the industrial protocols they use in order for 
it to be designed. Additionally, this layer takes into account the location of edge 
services in IIoT environments. These services can improve network configurations, 
resources, and characteristics due to the benefits of edge computing in IIoT environ-
ments [46]. The edge services can be managed in an external network owned by 
the company of the IIoT network, enabling the unification and centralization of con-
trol and management of different IIoT networks that are not physically co-located. 
Alternatively, they can be located in the Edge Router of the IIoT networks, which 
establishes a connection with the Internet, and these services will only control the 
specific IIoT network. Edge services allow the management of diverse protocols and 
device communications to improve industrial processes and ensure the proper func-
tioning of IIoT applications.

In addition, edge services improve the performance of the control layer, which 
manages communications between IIoT devices. This layer establishes local moni-
toring services that periodically interact with our proposed ML-based IDS to distin-
guish normal from anomalous communications. If anomalous behaviour is detected 
by the monitoring services, the administrator will be alerted about the potential 
attack on the IIoT network. The monitoring services will also communicate with the 
IIoT network management to implement initial countermeasures to mitigate the most 
significant risks in the network. The element also includes additional functionalities, 
such as ensuring the correct operation of every IIoT device in the network and the 
capability to establish and register new devices that may be added to the network 
in the future. The Traffic Storage Service retains the traffic available for storage to 
maintain a periodic snapshot of the IIoT network. The service will store information 
in accordance with the company’s privacy and confidentiality policy. As such, the 
traffic database size, packets, and their information will be automatically filtered.

The IIoT application layer provides the functionality of our IIoT application to the 
end user, including smart industrial devices and smart factory capabilities. Our ML-
based IDS is deployed within this layer. The IDS uses ML algorithms trained with 
small datasets to detect anomalies in network traffic. It communicates with the con-
trol layer, which receives the traffic, classifies it, and returns the prediction result. 
Additionally, this application could be installed on a network device with sufficient 
computational and network resources to run the IDS, or it could be integrated into 
the edge services.

5  Experimentation

The proposed IDS architecture was tested using a public dataset modified to estab-
lish three different situations in real IIoT environments in order to detect possible 
cybersecurity attacks with a small amount of data. This experimentation aimed to 
analyse the performance of our architecture using the TabPFN technique, and com-
pare it with the ML techniques described in Sect. 2.

In this section, the hardware and dataset set-up used to establish our study with 
the different models are presented, together with the data science process followed 
to measure the performance of each model and obtain the results for the situations 
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considered. The methodology followed during this process is shown in Fig. 2. More-
over, the proposed ML-based IIoT IDS obtained from the experimentation is going 
to be tested using an external dataset, to prove the functionality of the proposal when 
is deployed in a IIoT network.

5.1  Hardware set‑up

For the experimentation phase of our study, a workstation computer with an Intel 
i7-13700KF CPU with 32 GB RAM memory running Ubuntu 22.03 LTS was used. 
Also, the computer included an NVIDIA RTX 3060 Ti graphics card, which was 
used to speed up the execution of the models. We used Python 3.10 as the program-
ming language, together with the libraries needed for the execution of the different 
models using the graphics card.

5.2  Dataset generation

Our study is focused on comparing the performance of ML algorithms with small 
datasets, although in the research community these datasets are not easily available, 
and the ones that predominate are those with a huge number of samples. For that 
reason, we decided to use the Edge-IIoT set [50] as a base dataset to generate three 
other small datasets, whose main differences are the number of classes considered in 
each one, and the randomly selected packets that they contain in order to avoid pos-
sible similarities in the datasets.

Fig. 2  Proposed IIoT ML-based IDS methodology for classifying attacks with small datasets
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5.2.1  Original dataset

The Edge-IIoTset [50] data collection was accomplished by orchestrating an IoT/
IIoT testbed design. This specifically tailored testbed incorporates a variety of 
devices, sensors, protocols, and configurations to provide a comprehensive and rep-
resentative dataset.

Over ten different types of IoT devices contribute to the data composition of 
the dataset domains. These devices are designed for specific tasks, such as digital 
sensors for monitoring temperature and humidity, ultrasonic sensors, water level 
sensors, pH metres, soil moisture sensors, heart rate sensors, and flame sensors, 
amongst others.

To enhance the dataset’s specificity, diverse features are employed from differ-
ent sources including alarms, system resources, logs, and network traffic. Especially 
relevant are the 61 novel characteristics that have been introduced after performing 
a diligent analysis. These inclusions, chosen from a pool of 1176 features, enhance 
the intricacy of the dataset, transforming it into a valuable resource for our analytical 
and subsequent modelling process. These features are shown in Table 2.

At its core, the Edge-IIoTset embodies the connectivity challenges inherent to 
IoT and IIoT protocols, analysed through a thorough examination of 14 interrelated 
attacks. These attacks can be broadly grouped into the following five categories:

• DoS/DDoS attacks Within these categorized attack types, malicious attackers 
have a tendency to hinder services available to authorized users, either in isola-
tion or through a distributed approach. In this dataset specifically, four principal 
techniques often utilized in such situations are discussed: TCP SYN flood, UDP 
flood, HTTP flood, and ICMP flood.

• Information gathering attacks Collecting information about the intended target is 
typically the first step in any effective attack. This dataset explores three crucial 
actions that malicious entities often carry out during the information gathering 
phase: port scanning, OS fingerprinting, and vulnerability scanning.

• Man in the middle (MitM) attacks The aim of this type of attack is to relay and 
control the communication between two entities who consider themselves to be 
involved in direct interaction. The dataset’s focus is on utilizing this attack plan, 
targeting widely used protocols in almost all modern systems: domain name sys-
tem (DNS) and address resolution protocol (ARP).

• Injection attacks The aim of these attacks is to compromise the security and con-
fidentiality of the system being investigated. Three different methods have been 
employed for this purpose, namely cross-site scripting (XSS), SQL injection, 
and upload attacks.

• Malware attacks These types of attacks are usually performed by different pieces 
of malware found in the last years due to the significant damage they have caused 
and the considerable losses reported. The dataset examination is focused on three 
variations of such attacks: backdoor, password cracking, and ransomware attacks.

In Table 3, we show how the various types of traffic are distributed amongst the dif-
ferent attacks and techniques in the dataset.
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5.2.2  Derived dataset preparation

Once the Edge-IIotset had been selected, it was necessary to establish a process 
to generate the small datasets needed for our experimentation. Firstly, we explain 
how the datasets were formed and the proportion between normal and anomalous 
ones samples, and how we distributed the different anomalous into five and ten 

Table 2  Features of Edge-IIoTset and its type

Name Type Name Type

frame.time Categorical tcp.payload Categorical
ip.src_host Categorical tcp.seq Numeric
ip.dst_host Categorical tcp.srcport Numeric
arp.dst.proto_ipv4 Categorical udp.port Numeric
arp.opcode Numeric udp.stream Numeric
arp.hw.size Numeric udp.time_delta Categorical
arp.src.proto_ipv4 Categorical dns.qry.name Categorical
icmp.checksum Numeric dns.qry.name.len Numeric
icmp.seq_le Numeric dns.qry.qu Numeric
icmp.transmit_timestamp Numeric dns.qry.type Numeric
icmp.unused Categorical dns.retransmission Numeric
http.file_data Categorical dns.retransmit_request Categorical
http.content_length Numeric dns.retransmit_request_in Numeric
http.request.uri.query Categorical mqtt.conack.flags Numeric
http.request.method Categorical mqtt.conflag.cleansess Numeric
http.referer Categorical mqtt.conflags Numeric
http.request.full_uri Categorical mqtt.hdrflags Numeric
http.request.version Categorical mqtt.len Numeric
http.response Numeric mqtt.msg_decoded_as Categorical
http.tls_port Categorical mqtt.msg Categorical
tcp.ack Numeric mqtt.msgtype Numeric
tcp.ack_raw Numeric mqtt.proto_len Numeric
tcp.checksum Numeric mqtt.protoname Categorical
tcp.connection.fin Numeric mqtt.topic Categorical
tcp.connection.rst Numeric mqtt.topic_len Numeric
tcp.connection.syn Numeric mqtt.ver Numeric
tcp.connection.synack Numeric mbtcp.len Numeric
tcp.dstport Numeric mbtcp.trans_id Numeric
tcp.flags Numeric mbtcp.unit_id Numeric
tcp.flags.ack Numeric Attack_label Numeric
tcp.len Numeric Attack_type Categorical
tcp.options Categorical
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anomalous classes. In order to perform this, the following three steps were car-
ried out:

Data cleaning The data from the dataset may include features with missing values, 
often due to collection errors or the omission of information in certain packets relat-
ing to specific protocols. To address this situation, we adapt a standardized approach 
in our research. Numeric features were assigned a value of − 1 to denote the lack of 
data, while empty strings represent categorical features. This option not only aids 
data management but also indicates to the model that these characteristics can be 
relevant to the analysis.

ReTagging data The tags assigned to the samples in the dataset are presented in 
Table 4. Our study concentrates on the performance classification of models selected 
with two, six, and ten classes. Consequently, we redefined the tags for every small 
dataset containing a different number of classes to the original. For the two-class 
dataset, we designated every attack as an anomalous packet, resulting in two classes: 
normal and anomalous. For the six-class dataset, we identified the five primary 
attack categories, which allowed us to develop an IDS that can classify anomalous 
attacks on the basis of their type. This dataset consists of normal packets, DoS pack-
ets, information gathering packets, injection packets, MitM packets, and malware 
packets. Finally, for the dataset, we chosen to focus on the specific techniques that 
exhibit the most notable disparities between packets within the general attack group. 
Where applicable, technical term abbreviations are explained upon first use. This 
ten-class dataset is comprised of each DoS technique individually, as well as general 
information gathering attacks, specific SQL injection attacks including their injec-
tion class, and packets from the MitM and malware groups.

Table 3  Distribution of class 
values in the Edge-IIoTset

Traffic Classes Records Total

Normal Normal 11,223,940 11,223,940
Attack Backdoor 24,862 9,728,708

DDoS_HTTP 229,022
DDoS_ICMP 2,914,354
DDoS_TCP 2,020,120
DDoS_UDP 3,291,626
Fingerprinting 1001
Man in the middle 1229
Password 1,053,385
Port_Scanning 22,564
Ransomware 10,925
SQL_injection 51,203
Uploading 37,634
Vulnerability_scanner 145,869
XSS 15,915
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Data distribution Once the new data were ready for distribution, we established the 
ratios of the small datasets, with 2000 samples representing normal traffic and 300 
containing anomalous packets. This decision was deemed representative of a realis-
tic scenario in an IIoT network during the traffic extraction process [51]. This prop-
erty is very interesting and can be detrimental to models that do not perform well in 
unbalanced environments.

5.3  Model development

During this second phase of our experimentation, we processed the data and trained 
various models with different iterations based on the size of the training set. We 
evaluated these models with selected metrics to validate their performance.

5.3.1  Data preprocessing

The datasets require adaptation to make them compatible with the algorithms. It is 
essential to identify techniques that are suitable for data manipulation and deter-
mine the most relevant features. The process involves preparing the data for analysis 
and also involves the strategic selection of techniques to improve the quality of data 
processing. Furthermore, the careful selection of features greatly enhances the per-
formance of the algorithms, maximizing their ability to detect patterns and provide 
accurate results. This stage is divided into the following tasks:

Table 4  Distribution of classes 
values in the different small 
datasets generated

Dataset Classes Count Per cent (%)

2-class Normal 2000 80
Anomalous 500 20

6-class Normal 2000 80
DoS 203 8.12
Inf.Gathering 61 2.44
Injection 101 4.04
Malware 121 4.84
Man in the middle 14 0.56

10-Class Normal 2000 80
DoS_HTTP 29 1.16
DoS_ICMP 61 2.44
DoS_TCP 44 1.76
DoS_UDP 67 2.68
Inf.Gathering 83 3.32
Injection 72 2.88
SQL_Injection 36 1.44
Man in the middle 6 0.24
Malware 102 4.08
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Data transformation ML algorithms are incapable of directly processing alphanu-
meric data. Consequently, it is necessary to convert all categorical features into a 
binary format. This transformation can be accomplished through binarization tech-
niques, which generate a new column in the dataset for each categorical value of a 
feature. This column indicates whether the categorical value is present in the data 
instance, represented as a Boolean value. The naming convention for these new col-
umns is “feature_name-categorical_value”.

In addition, we used the frame.time feature to create a new feature called “delay”. 
This feature adds more temporal information to our dataset, helping us to clas-
sify packets more accurately. To calculate the delay feature, we set the first packet 
or sample as the zero instance and then calculate in seconds the time difference 
between packets by subtracting the time of the current packet from the previous 
one. This method enables us to capture the temporal relationships between packets, 
thereby improving the resilience of our classification model.

Data optimization After successfully completing the data preprocessing phase, it is 
crucial to thoroughly examine the data storage. This examination is not just a for-
mality, but a critical step that involves correcting any misclassified or incorrectly 
assigned data types from the preprocessing phase.

This optimization process serves a dual purpose. Firstly, aligning data types with 
their corresponding storage requirements ensures efficient memory usage. Misclas-
sified data types can lead to unnecessary memory consumption, thus reducing the 
overall efficiency of the data storage system.

Secondly, this optimization process plays a significant role in facilitating the 
model training process. Ensuring correct data types is crucial for the interaction 
between ML algorithms and data.

Feature selection In the context of model training, not all features contribute equally 
to the predictive power of the model. In fact, some features may even degrade the 
model’s performance. Therefore, it is of paramount importance to identify and 
select the features that are most influential for prediction. In our study, we employed 
extremely randomized trees (ERT) [52] during the experimental phase to select 
the features that provide the most valuable information to the models. The features 
deemed most relevant by the algorithm are listed in Table 5. These are the features 
utilized in the subsequent training and validation stages.

5.3.2  Model training and validation

When the data are ready for the proccessing stage, the final dataset is used to train 
the ML models considered in our study. This training stage is divided into the fol-
lowing tasks:

Training and testing data split The task at hand is of significant importance in our 
study as our primary objective is to evaluate and compare the performance of various 
ML algorithms under conditions where the availability of training data is limited. 
Our dataset, although small with only 2500 samples per dataset, was meticulously 



20102 S. Ruiz-Villafranca et al.

1 3

utilized to conduct a series of experiments. For each iteration, we tested various 
training data sizes, including 250, 500, 750, and 1000 samples.

The remaining dataset is used to validate the models. The validation pro-
cess is essential as it offers insight into the generalization of trained models to 
unseen data, indicating their real-world applicability. We used the stratified hold-
out method to split the dataset for training and validation, ensuring consistent 
proportions of different classes in both splits. This is especially crucial in situa-
tions where the dataset is imbalanced, as it prevents the model from being biased 
towards the majority class.

The experiment aimed not only to compare the performance of the ML algo-
rithms but also to comprehend their behaviour and performance evolution when 
trained with different data sizes. By doing this, the goal is to study the scalability 
of these algorithms and their sensitivity to the amount of training data. These are 
important factors to consider when deploying ML models practically.

Parameter tuning The performance of machine learning algorithms is significantly 
influenced by their hyperparameters, which can be fine-tuned to enhance training 
performance. Hyperparameter tuning is a critical aspect of machine learning model 
development, as it can greatly improve predictive accuracy and generalization 
capabilities.

In our study, we employed grid search [53] that is a widely recognized and exten-
sively used technique for hyperparameter tuning. It operates by exhaustively explor-
ing a predefined set of hyperparameters to determine the combination that yields 
the best performance for machine learning models. This is achieved through a heu-
ristic approach. The performance of the model is evaluated for each combination of 
hyperparameters on a validation set.

The use of grid search ensures that our models are not only optimized for perfor-
mance but also exhibit robustness. However, it is worth noting that for our TabPFN 

Table 5  Features selected from 
the Edge-IIoTset dataset during 
feature selection step

Name

http.request.version-0.0 icmp.seq_le
http.request.method-0.0 tcp.ack
http.request.version-0 tcp.connection.rst
http.request.method-0 tcp.seq
http.referer-0.0 tcp.len
http.referer-0 http.request.version-HTTP/1.1
tcp.flags http.request.method-GET
tcp.flags.ack http.response
tcp.checksum http.content_length
tcp.ack_raw tcp.connection.fin
icmp.checksum dns.qry.name.len
udp.stream http.request.version-HTTP/1.0
tcp.connection.syn delay
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approach, hyperparameter tuning using grid search is considered unnecessary. The 
best parameters found for the tree-based algorithms are indicated in Table 6.

Once the training phase is completed, it is necessary to verify the predictions 
made by the finalized model against the testing dataset. This validation phase is crit-
ical for evaluating the model’s predictive behaviour during the classification of IIoT 
traffic. The evaluation of each model is done using the metrics defined in Sect. 2.4, 
which allow us to compare the performance of each model in the experiment and to 
consider which one is better for each situation.

5.4  Model deployment

Once each model has been validated and the best one has been selected for the 
most common scenarios, it is necessary to evaluate it by deploying it into a IIoT 
network and checking the real performance of the IDS when actual, common, and 
unknown attacks are running in the scenario. For that reason, the dataset gener-
ated by the authors [54] using their own emulator, generates a dataset with multi-
ple different attacks in a IIoT network, which contains multiple OT protocols such 
as Modbus/TCP, OPC UA, and S7COMM. For this specific case, we deploy an 
IDS that classifies up to 6 classes. The dataset follows the methodology presented 
in Fig.  2 with an additional step to retagging the label that identifies the indi-
vidual packets. This retagging step and the proportion of each class are indicated 
in Table 7. It can be seen that the manipulation attack is considered as a MiTM 
attack because manipulation attacks use an MiTM technique to capture the pack-
ets which are modified. Moreover, this attack allows us to check the behaviour 
of the model with the modified packets because it has received no knowledge 
regarding this attack during the training phase. Otherwise, brute_http is included 
as a typical brute-force attacks that uses the malware into different login services 
to infect the device. Finally, payload_user_agent represents the packets derivated 
to the inclusion into the user agent argument from the HTTP frames of a payload 

Table 6  List of best parameters 
found using grid search

Algorithm Best hyperparameters

RF max_depth: 12
n_estimators: 174
criterion: gini
max_features: auto
random_state: 42

XGBoost learning_rate: 0.1
eta: 0.1
max_depth: 6
subsample: 0.8
seed: 42

LightGBM learning_rate: 0.0952
max_bin: 20
max_depth: 15
num_leaves: 80
subsample:0.75
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that tries to use Shellshock vulnerability. The rest of the tags are adapted directly 
to the category of its purpose.

6  Results

The results obtained during model validation are presented in Tables 8 and 9. We 
considered each metric, the algorithm used, and the size of the training set in our 
tests. The analysis has been categorized by the classification type of each dataset, 
and we obtained the performance of binary, 6-class, and 10-class classification 
for each situation and training dataset size. Furthermore, a general time complex-
ity analysis is made between the ML algorithms. The metrics highlighted in the 
tables are the best results obtained in each case studied.

6.1  Binary classification

The results of binary classification using the dataset created for this particular 
scenario show that all the algorithms obtained full marks for all the metrics. 
This is even the case when the training dataset size is only 250 samples. The 
anomalous activities identified in the attacks, and the traits considered in the 
models during their predictions, are the reasons behind these results. They help 
in detecting malicious attacks with ease since the information that resides within 
the traffic packets and the differences between benign and malicious packets are 
taken into account. The selection of algorithms must therefore take into account 
additional metrics such as resource consumption and computational cost, in 
accordance with the requirements of the IIoT scenarios in which the IDS would 
be deployed.

Table 7  Conversion of the 
original tags to the tags used by 
the model deployed

Original tag Adapted tag No packets

final_clean Normal 14,634
brute_http Malware 2160
payload_user_agent Injection 2160
ping_of_death_dos DoS 5533
tcp_flood_dos
scanner_ack Inf.Gathering 5709
scanner_tcp
scanner_udp
scanner_fin
scanner_xmas
scanner_null
manipulation MiTM 3003
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6.2  6‑Class classification

When analysing the performance of the models in identifying six traffic packets 
classes, differences in the behaviour of the models are observed depending on the 
size of the dataset used for training.

The performance of the models ranges from 56 to 74%, as determined by the F1 
score, with 250 training samples being the minimum. The TabPFN proposal per-
forms best for all F1 score, precision, and recall metrics, averaging 74%, as well as 
96% in accuracy. Both RF and XGBoost behave similarly, with a marginal differ-
ence of 1% in the accuracy and F1 score metrics, although XGBoost may have a 
slight advantage over RF as F1 score is considered a better metric for imbalanced 
classification situations.

Training the models using 500 samples results in distinct performances for each 
one. RF achieves the best performance with 97%, 79%, 78%, and 78% in accuracy, 
precision, recall, and F1 score, respectively. This is a significant difference with 
respect to the other proposals. The TabPFN and XGBoost models show a similar 
performance improvement of between 1 and 7% when trained on this dataset size 
compared with using a training dataset of 250 samples. In this scenario, LightGBM 
exhibits the worst performance again. However, its performance improves by around 
10% in precision, recall, and F1 score when trained on 500 samples during the train-
ing stage instead of 250 samples.

When using 750 training samples, the results indicate that the TabPFN proposal 
achieves the best performance, being comparable to RF using 500 samples. In addi-
tion, the results demonstrate that using this model and XGBoost yields similar 
results with 97% for the accuracy metric and 74% in the other ones, whereas RF’s 

Table 8  Results of training–
testing time used by the 
ML techniques during the 
experimentation

Training set size Algorithm 2-class 6-Class 10-Class

Training–test time (seconds)
250 RF 1.97 2.40 3.08

XGBoost 2.84 3.72 4.61
LightGBM 2.59 3.24 3.79
TabPFN 1.86 1.95 2.50

500 RF 2.88 3.18 4.17
XGBoost 4.42 5.42 6.04
LightGBM 3.61 4.25 5.37
TabPFN 1.99 2.36 2.64

750 RF 4.17 3.99 5.31
XGBoost 4.86 6.61 8.43
LightGBM 4.38 5.77 6.86
TabPFN 2.71 2.95 2.96

1000 RF 4.04 5.32 7.78
XGBoost 6.31 7.14 10.42
LightGBM 4.77 6.39 9.07
TabPFN 2.53 3.18 4.01
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performance is comparatively worse than when using 500 samples in the training 
dataset. A similar behaviour is found in the evaluation of LightGBM’s results, where 
it can be observed that the performance improvement is around 1–2% compared 
with using 500 training samples.

Finally, the use of 1000 training samples shows a significant improvement in the 
metrics of the models. XGBoost and LightGBM show an improvement of 4–6% in 
the imbalanced metrics. In the case of the XGBoost model, it achieves 97% in accu-
racy, 79% in precision, 78% in recall, and 78% for the F1 score, which is better than 
the other two models. Furthermore, the RF algorithm does not show an improvement 
in performance when trained with 750 samples and has similar results to LightGBM 
with only a 2% difference in precision, recall, and F1 score, and a 1% difference in 
accuracy. In this scenario, our TabPFN proposal achieves the highest overall per-
formance, with 97% in accuracy and around 80% for the other metrics, making this 
option the most viable to be deployed as a solution in IIoT networks. Figure 3 shows 
the distribution of predictions amongst the various classes. The confusion matrix 
indicates that the ML model performs well overall, but struggles to differentiate 
between certain types of attacks. In particular, DoS attacks are sometimes misclassi-
fied as information gathering and injection attacks, likely due to similarities in net-
work traffic patterns. Similarly, information gathering attacks, which often involve 
a lot of seemingly normal traffic, may be misclassified as DoS or injection attacks. 

Fig. 3  Confusion matrix of TabPFN model with 1000 training samples for 6 classes
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Injection attacks, which involve inserting malicious data packets into the network, 
may also be misclassified as DoS or information gathering attacks. The model accu-
rately classifies most malware attacks, but it misclassifies a few instances as man-
in-the-middle (MiTM) ones. This is likely due to both types of attacks involving 
intercepting and possibly altering network traffic. Similarly, some MiTM attacks are 
misclassified as malware ones, again likely due to the interception of traffic com-
mon to both attack types. These misclassifications indicate potential areas for model 
refinement and improvement.

In summary, the TabPFN model demonstrates superior performance across the 
board with training set sizes of 250, 750, and 1000 samples, with the best results 
being achieved in the final experiment with 97% in accuracy, 82% in precision, 80% 
in recall, and 81% for the F1 score, showing improvements in the results of 3–10% 
compared with the other techniques. RF delivers the best results during the training 
phase with a sample size of 500. Most situations show similar performances for RF 
and XGBoost. This is indicated by the performance metric scores, with a difference 
ranging from 2 to 18% when compared with the other algorithms.

6.3  10‑Class classification

These experiments demonstrate the performance of the models in identifying spe-
cific attack techniques, including variations in behaviour as the number of classes to 
classify increases.

With a training set size of 250, the overall model performance is inadequate to be 
considered as a viable solution. In this scenario, the XGBoost algorithm achieves 
the best performance, with 60%, 60%, and 58% in precision, recall, and F1 score, 
respectively. The second-best method is TabPFN, which has the same recall metric 
as XGBoost, but behaves worse in the precision and F1 score metrics, scoring only 
55% in each of them. The worst performance by far is observed when using the 
LightGBM technique, with 43%, 35%, and 31% for precision, recall, and F1 score, 
respectively.

Using 500 samples during the training stage leads to improved performance in all 
models, as evidenced by the validation results. TabPFN shows the following met-
rics: 67% precision, 72% recall, 67% F1 score, and 96% accuracy, all of which are 
highlighted below. These performance enhancements suggest that increasing the 
number of samples used in the training stage could result in acceptable performance 
for IIoT situations.

When the training set size is increased to 750, the performance of the TabPFN 
solution improves, with the following metrics being achieved during classification: 
72% in precision, 73% in recall, and 71% in F1 score. The remaining solutions dem-
onstrate a similar, or inferior, performance compared with a training set size of 500. 
This situation may occur depending on the samples included during the training 
stage, and the new samples introduced may overfit the models.

When using 1000 training samples, the same situation as that mentioned above 
arises, and TabPFN again emerges as the best solution with a performance of 73% in 
the precision and recall metrics and 72% for the F1 score, proving that it is the ideal 
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candidate to classify attack techniques in IIoT networks. In general, the other models 
produce worse results than those when using 500 or 750 training samples. When 
considering the three scenarios, XGBoost maintains an overall performance of 
62% in precision, recall, and F1 score, while RF’s performance decreases by 1–3% 
in precision, recall, and F1 score when compared with its best performance when 
using 500 samples during the training stage. LightGBM displays performance that 
is comparable to RF’s, with a 2–3% reduction in its effectiveness. Figure 4 shows 
the distribution of predictions across various classes. Additionally, the confusion 
matrix illustrates the performance of the TabPFN model. Although the model accu-
rately identifies normal traffic and certain attacks such as DoS_ICMP and MiTM, 
there are some misclassifications that require further investigation. One particular 
area for improvement is distinguishing between DoS_TCP attacks, DoS_UDP, and 
DoS_HTTP. The model struggles to differentiate between DoS attacks that use dif-
ferent transport protocols and to determine if the attack is using the HTTP applica-
tion protocol. Another challenging attack to classify is Inf.Gathering related tech-
niques, where approximately 50% of the packets have been classified as injection 
attacks. This may be due to the different flags used in the TCP protocol for scanning 
techniques. Furthermore, SQL injection has proved difficult to be accurately classi-
fied even within its general attack category. This is due to 11 samples of this attack 
being identified as malware behaviour, which may be related to the various attacks 

Fig. 4  Confusion matrix of TabPFN model with 1000 training samples for 10 classes



20110 S. Ruiz-Villafranca et al.

1 3

performed by different malware samples. The limitations of the current model and 
the need for further refinement are highlighted by these misclassifications.

To conclude, this experiment indicates that, in general, TabPFN outperforms the 
other machine learning models included in the study, particularly in 10-class clas-
sification scenarios that involve 1000 training set samples. The difference in perfor-
mance is considerable in such cases. RF and XGBoost, however, achieve superior 
results in two specific scenarios, so these outcomes might be considered depend-
ing on the environment in which the IDS is to be deployed. LightGBM, in contrast, 
exhibits the poorest performance in all scenarios, highlighting the limited utility of 
this technique when only a few samples are available to train the model.

6.4  Analysis of algorithmic complexity

Upon the examination of the performance metrics of the classifiers under a vari-
ety of conditions, the complexity of the models warrants a thorough investigation. 
The evaluation of the complexity-performance trade-off of the algorithms is of para-
mount importance to pinpoint the algorithm that yields the best performance with 
the least complexity. This factor becomes increasingly significant in an IIoT setting 
due to the characteristics of the devices deployed in IIoT architectures.

Table  8 delineates notable differences in time complexity amongst the mod-
els. TabPFN emerges as the most time-efficient option, as evidenced by its supe-
rior training–test time metric results across all experimental scenarios compared to 
other algorithms. For a 10-class problem with a training set size of 1000, TabPFN 
requires only 4.01  s. The results indicate that RF is the second most favourable 
option in terms of complexity, with times ranging from 1.97 s for a training set size 
of 250–4.04  s for a training set size of 1000, suggesting that RF possesses a rea-
sonable time complexity. Conversely, XGBoost exhibits the highest time complex-
ity amongst the four algorithms, with time complexity escalating significantly with 
the size of the training set and the number of classes. For a 10-class problem with a 
training set size of 1000, XGBoost necessitates the longest time amongst all the sce-
narios at 10.42 s. LightGBM has a lower time complexity than XGBoost but higher 
than RF and TabPFN, requiring 9.07 s for the same problem.

The metric analysis indicates that TabPFN outperforms in most of the situations 
presented during the experimentation. RF and XGBoost exhibit superior perfor-
mance for the 6-class and 10-class classifications with 500 and 250 training samples, 
respectively. However, the difference between the best and second-best algorithms, 
according to the metrics, is typically only 3–5%. This suggests that TabPFN should 
be the algorithm of choice for most situations in the IIoT environment.

The computational resources of the devices that are tasked to run and deploy the 
IDS based on ML algorithms are a critical factor in algorithm selection. If the algo-
rithm possesses a higher computational complexity than the device can support, the 
performance of the IDS may be compromised. Therefore, the analysis of time com-
plexity demonstrates that TabPFN yields the best results in this regard. RF is the 
second most favourable option based on its classification performance and is a suit-
able ML technique to deploy.
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6.5  Analysis of TabPFN model deployment

The IDS deployed, as depicted the confusion matrix in Fig. 5, was evaluated within 
an IIoT context using the dataset delineated in the Sect. 5.4. The IDS demonstrated 
robust performance in accurately classifying normal activities, with no instances of 
false positives. However, the model exhibited certain limitations, particularly in dif-
ferentiating between various types of attacks.

For example, while the model accurately identified DoS attacks a majority of the 
time, it erroneously classified information gathering as DoS. This suggests that there 
may be overlapping features between these two classes. Similarly, the information 
gathering class was frequently misclassified as DoS, injection, and malware, indi-
cating a need for additional training to enhance the model’s ability to distinguish 
between these attack types.

The model exhibited commendable performance in identifying injection attacks, 
but it also misclassified DoS and information gathering as injection ones, imply-
ing shared features amongst these classes. The model accurately identified mal-
ware attacks, but it also misclassified information gathering and MiTM attacks as 
malware. This suggests a potential requirement for supplementary training data for 
these classes or a review of feature importance to comprehend this overlap, which 

Fig. 5  Confusion matrix of TabPFN model during deployment experimentation
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could be attributed to the common behaviour of malware binaries with these attack 
categories.

Lastly, the model demonstrated satisfactory performance in identifying MiTM 
attacks, but it also misclassified Normal activities as MiTM attacks. This could 
potentially be due to the fact that manipulated packets are considered as normal traf-
fic because the model does not account for this possibility, and the correct MiTM 
detection is made by the address resolution protocol (ARP) spoofing packets that are 
used by attackers to intercept legitimate packets.

Upon analysis of the confusion matrix results, it was determined that the model 
achieved performance metrics of 87%, 85%, 82%, and 83% for accuracy, precision, 
recall, and F1 score, respectively. This indicates that, although the deployed model 
yielded a lower result in the accuracy metric, it demonstrated superior results in the 
precision, recall, and F1 score metrics. This is particularly valuable for imbalanced 
datasets, with an improvement ranging between 2 and 5%.

7  Conclusions and future work

Various IDS techniques have been proposed to safeguard the IIoT environment from 
external attackers and intruders and the threats that they create. The utilization of 
big data, in conjunction with ML-based classifiers, has proved to be a powerful tool 
in the study of large datasets for the protection of IIoT devices in the current cyber-
security landscape.

However, in some industrial environments, accessing the large volumes of data 
required to train machine learning models may not be feasible. Therefore, alternative 
models must be sought to compensate for this lack of data.

The objective of this work was to address this issue by developing a TabPFN IDS. 
Our aim was to compare our proposal with other state-of-the-art ML models that 
have demonstrated good results in tabular data classification with larger datasets.

The study results indicate that TabPFN outperforms other techniques in most of 
the analysed situations. It achieved an 81% F1 score when classifying packets into 6 
classes and a 72% F1 score when classifying into 10 classes.

These results validate the effectiveness of our TabPFN proposal and demonstrate 
its readiness to be deployed as a cybersecurity solution in IIoT environments, and 
prove that it has the potential to enhance the security measures of IIoT systems, con-
tributing to the broader goal of creating safer and more secure digital environments.

In conclusion, our study has shown that the TabPFN IDS is effective for detecting 
intrusions in IIoT systems, highlighting its potential as a cybersecurity solution for 
real-world deployment. However, further exploration and improvement are neces-
sary. Thus, future research should focus on addressing key challenges and advancing 
the capabilities of the TabPFN IDS as well as aim to extend the scope and impact of 
our research, providing valuable directions for further exploration and innovation in 
the field of IIoT cybersecurity. Some suggestions could be the following:

• Dynamic model adaptation Investigate methods for dynamically adapting the 
TabPFN model to evolving IIoT environments. Develop mechanisms for con-
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tinuously updating the model based on incoming data streams and changing 
network conditions, ensuring ongoing effectiveness against emerging threats.

• Scalability and resource optimization Examine strategies to optimize the scal-
ability and resource utilization of the TabPFN IDS, particularly for deploy-
ment in resource-constrained IIoT devices or edge computing environments. 
Explore techniques such as model compression, quantization, or distributed 
inference to reduce memory and computational requirements.

• Anomaly detection and zero-day threats Expand the capabilities of the 
TabPFN IDS to incorporate advanced anomaly detection techniques for identi-
fying zero-day threats and previously unseen attack patterns. Investigate unsu-
pervised learning approaches or anomaly detection algorithms to complement 
the existing classification-based detection mechanisms.

• Integration with threat intelligence feeds Augment the TabPFN IDS by inte-
grating with external threat intelligence feeds and cybersecurity information 
sources. Develop mechanisms to leverage real-time threat intelligence data for 
proactive threat detection and response, enabling the system to adapt to the 
latest threat landscape.

• Real-world industrial deployment and evaluation Conduct real-world deploy-
ment experiments to evaluate the performance and effectiveness of the 
TabPFN IDS in operational IIoT environments. Collaborate with industry 
partners or deploy the system in pilot deployments to assess its practical util-
ity, usability, and impact on overall cybersecurity posture.

• Development and deployment of a network IDS (NIDS) in real-world scenar-
ios The TabPFN IDS model should be adapted and deployed in real-world IIoT 
scenarios for the purpose of enhancing the detection of anomalies and identi-
fication of attacks within traffic flows. This process involves leveraging the 
model’s pattern recognition capabilities in a variety of environments, such as 
those comprising corporate networks or critical infrastructure. In addition, it 
is important to ensure that the model undergoes continuous evolution in order 
to adapt to the emergence of new threats and the complexities of evolving net-
work environments.
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