()
x>’

saaa LA Y ¥ X3

Universidad de Oviedo

Programa de Doctorado en
Matematicas y Estadistica

Tesis Doctoral:

Algoritmos Cuanticos
para Estructuras Algebraicas

Jefferson Miguel Hernandez Caceres

Directores:
Ignacio Fernandez Rua, Elias Ferndndez-Combarro Alvarez

Oviedo
2024

FOR-MAT-VOA-010 (Rea.2018)

SEige

.°°°.
° o’
4448 °°° saass

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Titulo de la Tesis

Espafiol/Otro Idioma: Inglés:

Algoritmos cuanticos para estructuras Quantum Algorithms for Algebraic
algebraicas Structures

2.- Autor

Nombre:

Jefferson Miguel Hernandez Céceres

Programa de Doctorado: Matematicas y Estadistica

Organo responsable: : Centro Internacional de Postgrado

RESUMEN (en espaiiol)

La computacion cuantica es un paradigma de computacion bien asentado desde el punto de
vista tedrico [NC11] y prometedor desde el punto de vista practico [Aeal9].

Por otra parte, el estudio de estructuras algebraicas a través de técnicas computacionales es
bien conocido y constituye una linea de investigacion habitual en Algebra [vzGG99, CCS99].
En concreto, entre unas de las estructuras algebraicas que han sido estudiadas usando esta
metodologia se encuentran los semicuerpos finitos [Knu65]. Para ellos, se han desarrollado
algunas técnicas computacionales para su estudio y potenciales aplicaciones. En el primer
aspecto, se incluye la clasificacion computacional de semicuerpos finitos [RCR09, RCR12]; en
el segundo, la construccion de S-cajas criptograficas a partir de ellos [RC18]. En todos los
casos mencionados anteriormente, los algoritmos considerados son clasicos.

Para el modelo de computacién cuantica, se han propuesto algunos algoritmos para el estudio
de estructuras algebraicas. Por ejemplo, consideremos el caso de determinar si una estructura
(algebra, anillo, grupo) es conmutativa 0 no. Este es un problema estudiado en diferentes
contextos desde un punto de vista estrictamente tedrico [Jac45, MWO05, Pso84]. Desde el punto
de vista efectivo, esto es, computacional, se ha estudiado especialmente en el caso de grupos,
para los que se han propuesto algoritmos (no solamente clasicos aleatorizados sino también
cuanticos) [MNO5, Pak12].

En el caso de las algebras finito dimensionales, la necesidad de un procedimiento efectivo para
determinar la conmutatividad de la estructura es un problema natural en el contexto del estudio
computacional de semicuerpos finitos. Para este problema se han propuesto diferentes
algoritmos cuanticos, basados en el algoritmo de Grover [CRR19a], en métodos adiabaticos
[CRR19c] y en caminos cuanticos [CRR19b]. En todos estos casos la deteccion de pares de
constantes de estructura que no coinciden es el elemento fundamental sobre el que se
articulan los algoritmos cuéanticos considerados. Como consecuencia de estos estudios se ha
desarrollado una abstraccion de diversas técnicas cuanticas de deteccion bajo el formalismo de
los Quantum Abstract Detecting Systems (QADS) [CRR20].

En esta tesis presentamos dos familias de QADS, llamadas QADS Combinatorios y QADS
Rotacionales que, respectivamente, generalizan los sistemas de deteccién basados en puertas
controladas por un solo qubit y en el algoritmo de Grover. Ademas, estudiamos sus
propiedades, entre estas, el cierre algoritmico de cada familia, y demostramos que algunos de
estos QADS son equivalentes (en el sentido de tener la misma tasa de deteccién) a otros
construidos a partir del producto tensorial de operadores controlados y sus raices cuadradas.
también aplicamos la construccion de QADS combinatorios a un problema de decisién de
valores propios, problema de estimacion de fase y, adicionalmente, al problema de determinar
la conmutatividad de algebras finito-dimensionales. La segunda familia, QADS rotacionales,
incluye un caso particular, los QADS de la busqueda de Grover [HCCR22].

ook

e %o
4888 °°° asss

En relacion con los métodos cuanticos que resuelven el problema del subgrupo oculto (por
ejemplo, el algoritmo de Shor), como segunda parte de esta tesis, presentamos algoritmos
cuanticos que encuentran subestructuras de manera eficiente, al formularlo como una instancia
del problema del subgrupo oculto. Estos algoritmos cudnticos tienen orden de complejidad
polinomial (cuantica) en la dimension del algebra [JER23].

Por dltimo, desarrollamos métodos cuanticos para la clasificacion computacional de
semicuerpos finitos mediante técnicas computacionales cuanticas (basadas en el algoritmo de
Grover) y su implementacién, incluida la clasificacién efectiva mediante simuladores cuanticos
de semicuerpos finitos de tamafios pequefios [HCR23].

RESUMEN (en Inglés)

On one hand, quantum computing is a well-established computing paradigm, from a theoretical
point of view [NC11], and promising, from a practical point of view [Aeal9].

On the other hand, the study of algebraic structures using computational techniques is well
known and constitutes a common line of research in Algebra [vzGG99, CCS99]. Specifically, in
the study and applications of finite Semifields [Knu65]. For these structures, some
computational techniques have been developed for their classification. For instance, [RCRO09,
RCR12]; and also, for the construction of cryptographic S-boxes from them [RC18]. In all these
cases, the algorithms considered are classical, understood as those that can be executed on an
ordinary computer, that is, not quantum.

For the quantum computing model, some algorithms have been proposed for the study of
algebraic structures. For example, consider the case of determining whether a structure
(algebra, ring, group) is commutative or not. This is a problem studied in different contexts from
a strictly theoretical point of view [Jac45, MWO05, Pso84]. From the effective point of view, that
is, computational, it has been studied especially in the case of groups, for which algorithms
have been proposed (not only randomized classical, but also quantum) [MNO5, Pak12].

In the case of finite-dimensional algebras, the need for an effective procedure to determine the
commutativity of the structure is a natural problem in the context of the computational study of
finite semifields. For this problem, different quantum algorithms have been proposed, based on
Grover’s algorithm [CRR19a], adiabatic methods [BF28] and quantum walks [CRR19b]. In all
these cases, the detection of pairs of structure constants that do not coincide is the fundamental
element on which the considered quantum algorithms are articulated. As a consequence of
these studies, an abstraction of various quantum detection techniques has been developed
under the formalism of Quantum Abstract Detecting Systems (QADS) [CRR20].

So, in this thesis we introduce two family of QADS, namely Combinatorial QADS and Rotational
QADS which, respectively, generalize detecting systems based on single qubit controlled gates
and on Grover's algorithm. Additionally, we study their properties, namely, the algorithmic
closure of each family, and prove that some of these QADS are equivalent (in the sense of
having the same detection rate) to others constructed from tensor product of controlled
operators and their square roots. We also apply the combinatorial QADS construction to a
problem of eigenvalue decision, and to a problem of phase estimation. Also to the problem of
determining the commutativity of finite dimensional algebras. The second family, Rotational
QADS includes as a particular case the QADS from Grover’s search [HCCR22].

Next, in connection with the quantum methods that solve the hidden subgroup problem (such as
Shor’s algorithm), the study of problems related to the calculation of substructures is proposed.
In fact, we introduce quantum algorithms that find substructures efficiently, by formulating it as
an instance of the Hidden Subgroup Problem. These quantum algorithms has a polynomial
(quantum) complexity order in the dimension of the algebra [JER23].

Finally, we develop quantum methods for the computational classification of finite semifields by
quantum computational techniques (based on Grover’s algorithm) and their implementation,
including the effective classification by quantum simulators of finite semifields of small sizes
[HCR23].

SR. PRESIDENTE DE LA COMISION ACADEMICA DEL PROGRAMA DE DOCTORADO
EN MATEMATICAS Y ESTADISTICA

Contents

Resumen
Publicaciones,

Abstract
Publications e e

1 Introduction
Overview of the Contents i i it it
Notation and Conventions v v v v v i e e e
Acknowledgment

2 Algebraic Foundations

2.1 Groups. e e e e
2.2 Ringsand Modules
23 K-algebras
24 Finite Semifields Lo
2.5 Character Theory of Finite Abelian Groups
2.6 Probability of Generatinga Group
3 Quantum preliminaries
3.1 Quantum CircuitModel
3.1.1 BraketNotation
312 Qubits e
3.1.3 Measurement e e e e e e e e e e e e e e
3.1.4 Quantum gates Lo e e e
32 Quantum CircuitS e e e e e e e
321 Oracles e
3.3 Quantum Fourier Transform over Abelian Groups
33.1 QFTover (Z/pZ)".
3.4 Quantum Optimization i

4 Some Quantum Algorithms
4.1 Simon’s Algorithm
4.2 The Hidden Subgroup Problem

Vil

vii
xi

~N O\ N =

11
13
16
19
21

23
23
23
24
27
28
31
37
40
43
45

1 Contents
4.3 Quantum Phase Estimation 58
4.4 Grover’s Search Algorithm, 60
4.5 Technique For Listing All Elements Marked By AnOracle 65
4.6 Quantum Abstract Detecting Systems (QADS) 67

4.6.1 Algorithmic closure of QADS 69
4.6.2 Propertiesof QADS 71
4.6.3 DetectionwithaQADS 71

5 Combinatorial and Rotational QADS 73
5.1 m-Combinatorial QADS o 73
5.2 Rotational QADS 82
5.3 Application: Decision on Eigenvalues 89
5.4 Application: Phase estimation 0L 91

5.4.1 Generalized Hadamard Test 91
54.2 Dichotomysearch 95
5.4.3 Hybrid methodology 95
5.5 Application: Commutativity of Finite Algebras with Combinatorial QADS. 98

6 Efficient Quantum Algorithms To Find Substructures On Finite Algebras 103
6.1 Substructures e e 104
6.2 Theclassical approach, 107

6.2.1 Hiding functions L 107
6.2.2 Classical solution 108
6.3 The quantum approach 110
6.3.1 Oracle of the hiding function 110
6.3.2 Quantum Algorithm To Find Substructures 112
6.3.3 Classical postprocessingo 115
6.34 Examples 116
7 An approach to the Classification of Finite Semifields by Quantum Computing 125
7.1 Quantum Computational Search of Finite Semifields with Grover’s algorithm . 125
7.1.1 Semifieldof Order8 127
7.1.2 Description of Semifields of Order 16 133
7.1.3 Estimation of costs for the general case, in terms of Quantum Gates . . 152
7.2 Quantum Computational Search of Finite Semifields with Quantum Optimization 155

8 Conclusions 159

Conclusiones 160
Appendices 163
A CodesforChapter5 163
B CodesforChapter6 e 173
C CodesforChapter 7 i 183

Contents 1il

Bibliography 205

Index 213

Y

Contents

Resumen

La computacion cudntica es un paradigma de computacion bien asentado desde el punto de vista
tedrico [NC11] y prometedor desde el punto de vista practico [Aeal9].

Por otra parte, el estudio de estructuras algebraicas a través de técnicas computacionales es
bien conocido y constituye una linea de investigacién habitual en Algebra [vzGG99, CCS99].
En concreto, entre unas de las estructuras algebraicas que han sido estudiadas usando esta
metodologia se encuentran los semicuerpos finitos [Knu65]. Para ellos, se han desarrollado
algunas técnicas computacionales para su estudio y potenciales aplicaciones. En el primer as-
pecto, se incluye la clasificacién computacional de semicuerpos finitos [RCR09, RCR12]; en el
segundo, la construccién de S-cajas criptograficas a partir de ellos [RC18]. En todos los casos
mencionados anteriormente, los algoritmos considerados son clésicos.

Para el modelo de computacion cudntica, se han propuesto algunos algoritmos para el estu-
dio de estructuras algebraicas. Por ejemplo, consideremos el caso de determinar si una estruc-
tura (4lgebra, anillo, grupo) es conmutativa o no. Este es un problema estudiado en diferentes
contextos desde un punto de vista estrictamente tedrico [Jac45, MWOS, Pso84]. Desde el punto
de vista efectivo, esto es, computacional, se ha estudiado especialmente en el caso de grupos,
para los que se han propuesto algoritmos (no solamente clasicos aleatorizados sino también
cuanticos) [MNOS5, Pak12].

En el caso de las dlgebras finito dimensionales, la necesidad de un procedimiento efec-
tivo para determinar la conmutatividad de la estructura es un problema natural en el contexto
del estudio computacional de semicuerpos finitos. Para este problema se han propuesto difer-
entes algoritmos cudnticos, basados en el algoritmo de Grover [CRR19a], en métodos adiabati-
cos [CRR19c¢] y en caminos cudnticos [CRR19b]. En todos estos casos la deteccion de pares de
constantes de estructura que no coinciden es el elemento fundamental sobre el que se articulan
los algoritmos cuénticos considerados. Como consecuencia de estos estudios se ha desarrollado
una abstraccion de diversas técnicas cudnticas de deteccion bajo el formalismo de los Quantum
Abstract Detecting Systems (QADS) [CRR20].

En esta tesis presentamos dos familias de QADS, llamadas QADS Combinatorios y QADS
Rotacionales que, respectivamente, generalizan los sistemas de deteccion basados en puertas
controladas por un solo qubit y en el algoritmo de Grover. Ademds, estudiamos sus propiedades,
entre estas, el cierre algoritmico de cada familia, y demostramos que algunos de estos QADS
son equivalentes (en el sentido de tener la misma tasa de deteccidn) a otros construidos a partir
del producto tensorial de operadores controlados y sus raices cuadradas. También aplicamos la
construccion de QADS combinatorios a un problema de decision de valores propios, problema
de estimacion de fase y, adicionalmente, al problema de determinar la conmutatividad de élge-

v

vi Contents

bras finito-dimensionales. La segunda familia, QADS rotacionales, incluye un caso particular,
los QADS de la busqueda de Grover [HCCR22].

En relacion con los métodos cudnticos que resuelven el problema del subgrupo oculto (por
ejemplo, el algoritmo de Shor), como segunda parte de esta tesis, presentamos algoritmos cudn-
ticos que encuentran subestructuras de manera eficiente, al formularlo como una instancia del
problema del subgrupo oculto. Estos algoritmos cudnticos tienen orden de complejidad polino-
mial (cudntica) en la dimension del dlgebra [JER23].

Por dltimo, desarrollamos métodos cudnticos para la clasificacién computacional de semicuer-
pos finitos mediante técnicas computacionales cudnticas (basadas en el algoritmo de Grover) y
su implementacion, incluida la clasificacion efectiva mediante simuladores cudnticos de semicuer-
pos finitos de tamafios pequefios [HCR23].

Contents Vil

Publicaciones

Publicaciones en las que estd basada esta tesis:

* Hernandez Céaceres, J.M., Combarro, E.F. Ruda, I.LF. Combinatorial and rotational quantum
abstract detecting systems. Quantum Inf Process 21, Paper No. 66, 27, (2022). [HCCR22]

* Hernandez Céceres, J.M., Rua, L.F. An approach to the Classification of Finite Semifields
by Quantum Computing. Springer Proceedings in Mathematics & Statistics (PROMS,
volume 427) , 245-260, (2023) [HCR23]

* Hernandez Céceres, J.M., Rda, L.LF.,, Elias F. Combarro. Efficient Quantum Algorithms
To Find Substructures On Finite Algebras. Quantum Information & Computation Vol.23
No.15&16 (2023) [JER23]

viii Contents

Abstract

On one hand, quantum computing is a well-established computing paradigm, from a theoretical
point of view [NC11], and promising, from a practical point of view [Aeal9].

On the other hand, the study of algebraic structures using computational techniques is well
known and constitutes a common line of research in Algebra [vzGG99, CCS99]. Specifically,
in the study and applications of finite Semifields [Knu65]. For these structures, some computa-
tional techniques have been developed for their classification. For instance, [RCR09, RCR12];
and also, for the construction of cryptographic S-boxes from them [RC18]. In all these cases,
the algorithms considered are classical, understood as those that can be executed on an ordinary
computer, that is, not quantum.

For the quantum computing model, some algorithms have been proposed for the study of
algebraic structures. For example, consider the case of determining whether a structure (algebra,
ring, group) is commutative or not. This is a problem studied in different contexts from a strictly
theoretical point of view [Jac45, MWOS5, Pso84]. From the effective point of view, that is,
computational, it has been studied especially in the case of groups, for which algorithms have
been proposed (not only randomized classical, but also quantum) [MNOS, Pak12].

In the case of finite-dimensional algebras, the need for an effective procedure to determine
the commutativity of the structure is a natural problem in the context of the computational study
of finite semifields. For this problem, different quantum algorithms have been proposed, based
on Grover’s algorithm [CRR19a], adiabatic methods [BF28] and quantum walks [CRR19b]. In
all these cases, the detection of pairs of structure constants that do not coincide is the fundamen-
tal element on which the considered quantum algorithms are articulated. As a consequence of
these studies, an abstraction of various quantum detection techniques has been developed under
the formalism of Quantum Abstract Detecting Systems (QADS) [CRR20].

So, in this thesis we introduce two family of QADS, namely Combinatorial QADS and
Rotational QADS which, respectively, generalize detecting systems based on single qubit con-
trolled gates and on Grover’s algorithm. Additionally, we study their properties, namely, the
algorithmic closure of each family, and prove that some of these QADS are equivalent (in the
sense of having the same detection rate) to others constructed from tensor product of controlled
operators and their square roots. We also apply the combinatorial QADS construction to a
problem of eigenvalue decision, and to a problem of phase estimation. Also to the problem of
determining the commutativity of finite dimensional algebras. The second family, Rotational
QADS includes as a particular case the QADS from Grover’s search [HCCR22].

Next, in connection with the quantum methods that solve the hidden subgroup problem
(such as Shor’s algorithm), the study of problems related to the calculation of substructures

X

X Contents

is proposed. In fact, we introduce quantum algorithms that find substructures efficiently, by
formulating it as an instance of the Hidden Subgroup Problem. These quantum algorithms has
a polynomial (quantum) complexity order in the dimension of the algebra [JER23].

Finally, we develop quantum methods for the computational classification of finite semi-
fields by quantum computational techniques (based on Grover’s algorithm) and their imple-
mentation, including the effective classification by quantum simulators of finite semifields of
small sizes [HCR23].

Contents X1

Publications

Publications this thesis is based on:

* Hernandez Céaceres, J.M., Combarro, E.F. Ruda, I.LF. Combinatorial and rotational quantum
abstract detecting systems. Quantum Inf Process 21, Paper No. 66, 27, (2022). [HCCR22]

* Hernandez Céceres, J.M., Rua, L.F. An approach to the Classification of Finite Semifields
by Quantum Computing Springer Proceedings in Mathematics & Statistics (PROMS, vol-
ume 427) , 245-260, (2023). [HCR23]

* Hernandez Céceres, J.M., Rda, L.LF.,, Elias F. Combarro. Efficient Quantum Algorithms
To Find Substructures On Finite Algebras. Quantum Information & Computation. Vol.23
No.15&16 [JER23]

To Maira, Alejandro and Oriana.

Chapter 1

Introduction

Ideas for Quantum Computing date back to the pioneering work of Feymann, Manin, Benioff,
and others [Fey82], [Man80], [Ben80]. In fact, Quantum Computing emerges from the fields
of quantum mechanics and computer science, when back in 1980, Paul Benioff showed that
a computer could operate under the laws of quantum mechanics by introducing a Schrodinger
equation description of Turing machines.

But what is Quantum Computing? Quantum Computing is a computational model based on
exploiting quantum phenomena such as superposition (which gives the possibility that a qubit
(quantum memory units) can be in the states |0) and |1) simultaneously, so n qubits can handle
2" states in a moment), interference (which is used to affect probability amplitudes, in other
words, every possible outcome has some probability of occurring), and entanglement (which
refers to the fact that multiple qubits can be linked in such a way that their states are correlated,
even when they are very far apart).

It has been one of the most intense and promising areas of research in complexity theoreti-
cal computer science in recent years, with some brilliant and remarkable results of quantum
algorithms that outperform their classical counterparts.

For instance, in 1996, Lov Kumar Grover presents a quantum algorithm based on the concepts
of superposition, and quantum parallelism (which is the ability to perform many calculations
simultaneously, for example, the possibility that a function can be evaluated at many values at
once), for searching databases, that is quadratically faster than any possible classical algorithm
for the same purpose. More explicitly, a marked element in a list of N unordered ones (un-
structured search), can be found by Grover’s algorithm [Gro96] in expected time 0(\/N) (with
probability > 1/2), and it has been shown [BBBV97] that Grover’s algorithm is optimal in the
sense that no quantum Turing machine can do this in the less than O(v/N) operations in the
black box model. Classicaly, this problem has complexity Q(N).

In the computational (or effective) study of finite algebraic structures, Grover’s algorithm has
been successfully applied for testing the commutativity of a finite dimensional algebra [CRR19a],

1

2 Chapter 1. Introduction

achieving a quadratic speedup over the classical case [CRR19a]. Besides [CRR19a], there are
also some quantum procedures for solving this task, that outperform their classical counterpart,
which are: [CRR19b], based on quantum walks, and [CRR19c] based on adiabatic methods.

In all these cases, the authors were only interested in detecting if a witness of noncommu-
tativity exist, 1.e., the detection of certain pairs of structure constants that do not coincide. As a
consequence of these studies, an abstraction of various quantum detection techniques has been
developed under the formalism of, Quantum Abstract Detecting Systems (QADS) [CRR20].
Indeed, QADS were introduced as a common framework for the study and design of detecting
algorithms in a quantum computing setting. Given a black-box oracle for a boolean function
f, the QADS construct an initial state and an operator that can be used to detect if the function
is identically zero or not. For instance, if Uy denotes a quantum oracle evaluating f, then the
QADS related to Grover’s algorithm [Gro96] constructs a uniformly superposed initial state
|@o) , and a quantum operator G = U,Uy, product of the quantum oracle and the diffusion op-
erator U;. Such an operator can be used to evolve the quantum system from the initial state,
so that measurement of the resulting state, G*| @), gives always |@y) when f is zero, where as
when f is not zero, it gives the initial state with non-zero probability. These facts can be used
to determine whether f is zero or not, i.e., to detect the existence of an element x such that

flx)=1.

There are two main advantages to the introduction of the QADS methodology. The first one
is that it helps to systematically analyse the effectiveness of the detection procedures under
study. Namely, the actual usefulness of a particular QADS can be analized in terms of a trade-
off between the precomputation cost of the QADS (efficient constructibility), and the number of
iterations required to achieve a bounded success probability. The second advantage is that the
methodology allows to construct new QADS from given ones, which might yield better detect-
ing probabilities. These transformed QADS are members of the algorithmic closure of QADS.
Most of these closure procedures are quite natural, such as extending the number of qubits used,
inverting the detecting operator, multiplication of detecting operators with the same initial state,
conjugation by a unitary operator, or control of a detecting operator with a qubit.

The possibility of constructing new QADS from existing ones leads to new families of QADS,
such as combinatorial and rotational QADS. In Chapter 5, we introduce these new families of
QADS. The combinatorial QADS generalise the well-known controlled operators. The rota-
tional QADS, includes as a particular case the QADS from Grover’s search. For them, we study
the expression of the state after application of the detecting operator on the initial state, and
their algorithmic closure. Interestingly, we derive some nice equivalences for these QADS in
terms of tensor products and products of square roots of the original QADS. We also apply the
combinatorial QADS construction to a problem of eigenvalue decision, to a problem of phase
estimation, and to the problem of determining the commutativity of a finite dimensional algebra
(which can be used to see whether a finite semifield is commutative or not).

So, as a second part of this thesis, we focus our attention on the classification of finite semi-
fields. In fact, finite semifields are finite nonassociative rings with an identity element such that

the set of nonzero elements is a loop under the product. Their number of elements is a prime
power, known as order. They were considered first by Dickson [Dic06], and studied by Albert
[AIb60] and Knuth [Knu65]. Finite Semifields of order 16 have been classified by Kleinfeld in
[KIe60], and of order 32 by Knuth in [Knu65] and by Walker in [Wal62]. The case of order 81
was solved by Dempwolff [DemO8].

The classification of finite semifields of order 64 was achieved by Riia, Combarro, Ranilla in
[RCRO9], and of order 243 by Rua, Combarro, Ranilla in [RCR12], based on the fact that clas-
sification of finite semifields can be rephrased as a problem of finding certain sets of matrices
which can be solved by computer search. In this computer assited classifications, determining
the commutativity of millions of algebras is important. Additionally, in the computational clas-
sification of finite semifields, an important task is the determination of substructures such as the
right, middle, and left nuclei, the nucleus, and the center. Finding these structures may become
computationally expensive when there is no additional information about the algebra properties,
and there are millions of structures to classify.

On the other hand, if we carry on with quantum algorithms that outperform their classical
counterparts, we have Simon’s algorithm [Sim94]. Daniel Simon, in 1994, presented one of the
first quantum algorithms to show an exponential speed-up versus the best classical algorithm in
solving a specific problem.

Simon’s algorithm uses O(n) queries to solve Simon’s problem. In his paper, he shows that
the best classical algorithm requires (2%) queries (bounded error setting). Moreover, Simon’s
algorithm is significant because it paved the way for Shor’s algorithm [Sho97]. In 1994, and
based on the quantum Fourier transform (perhaps one of the most important unitary transfor-
mation in quantum computing), Peter Shor gave a quantum algorithm for factoring integers
in polynomial time, while no classical algorithm with such a complexity is known. This is a
breakthrough since, for instance, the RSA public-key cryptosystem is absolutely vulnerable to
attackers that use this algorithm. These two algorithms (Simon’s and Shor’s) can be regarded
under the framework of the hidden subgroup problem (HSP), which states the following:

Hidden Sugroup Problem. Let G be a finite group, and let H < G be one of its sub-
groups. Let S be a set, and let g : G — § be a function that distinguishes cosets of H, i.e.,
for all g1,8> € G, f(g1) = f(g2) < g1H = g»H. The hidden subgroup problem (HSP)
is to determine a generating set for the subgroup H given access to a black box that
evaluates f on arbitrary elements.

Which can be rephrased as:
Given: The ability to evaluate a hiding function f, for a subgroup H of a finite
group G, (i.e., a function f that is constant on a subgroup H of G, and is distinct on

different cosets of H), on arbitrary elements of G.

Problem: Finding sy,s2,...,s;, a generating set for H.

4 Chapter 1. Introduction

For specific groups, abelian for instance, efficient quantum algorithms solving the HSP are
known. As a second part of this thesis, we want to use this fact to efficiently compute substruc-
tures such as the right, middle, and left nuclei, the nucleus, and the center of finite algebras,
and in particular of finite semifields. Therefore, we turn our attention on the following prob-
lem: Given the multiplication table of a IF ,-algebra A, with [F,, a finite field of order p, consider
the additive group G = (A, +). We want to find algebraic substructures of A, such as the right,
middle, and left nuclei, the nucleus and the center, using efficient quantum algorithms. These
sets, which can be written in terms of an IF,-basis 8 and the multiplication table of the algebra,
provide information about the algebra. For instance, when A is a finite semifield, i.e., a finite
division ring, these sets are related to properties of the corresponding coordinates projective
planes [AIb60].

So, our problem is, then, stated as follows:

-)

Given: Multiplication table of a finite dimensional [F,-algebra A (I, finite field of order
p)-

Problem: Finding N,(A),N,,(A),N;(A),N(A), and Z(A).

Here N,(A),N,,(A),N;(A),N(A), and Z(A), denote the right, middle, and left nuclei, the
nucleus, and the center of the FFp-algebra A, respectively. Now, in order to solve it with quantum
techniques, we will transform each problem of finding N,(A),N,,(A),N;(A),N(A) and Z(A) into
an instance of the HSP.

Thus, in Chapter 6, we explicitly and efficiently construct quantum circuits that, from the
multiplication table of the n-dimensional algebra over a finite field IF,, implement hiding func-
tions f that can be used to determine these sets using only a polynomial number of quantum
gates. Namely, of order O(n°r®), with O(nr) queries to the oracle to find those sets, where
r = [log,(p)] (i.e., with an asymptotically linear number of evaluations of the function f for
fixed p). This is achieved by suitable choices of functions f in the previous problem.

Finally, in this thesis we address the effective classification of finite binary semifields by quan-
tum techniques. It was pointed out on [CRR19a] and [RCRI12], that the classification of all
finite semifields of size 128 is completely out of reach with current classical computing tech-
nology. Since Grover’s Algorithm has a quadratic speedup for finding marked items in long
lists, application of quantum computing to classify finite semifields seems promising.

So, we introduce a quantum procedure for classifying finite semifields with 8 and 16 elements,
based on Grover’s quantum search algorithm. We also discuss the scalability of the method to
higher orders in Chapter 7. Thus, in order to classify a finite semifield of order 2¢, we show that
with this method at least d(d — 1)? qubits are required, together with an estimate on the number
of quantum gates needed to build up the quantum circuit, showing that this approach is not as
cheap as it would be desired. Indeed, we show, that the cost in terms of quantum gates would
be at least:

Number | Gate
6a+b CNOTS

2a H
3a T
4a T

where
d—1 75
a=@d+1)Y (dk 1)kd(d— 1(d—2)

b:df (d;1)kd((d—1)!—1)(1+d)+2d_1—1,

and d is the dimension of the binary finite semifield, over [.

Overview of the Contents

More in detail, this thesis is organized in seven chapters. After this introductory chapter, Chap-
ter 2 is meant to sum up all the algebraic foundations required for this thesis. For instance,
we present notions on finite semifields and the way classification of finite semifields can be
rephrased as a problem of finding certain sets of matrices.

After the algebraic preliminaries are given, we also give a background on Quantum Com-
puting, that can be found in Chapter 3. There, we present notions on the quantum circuit model,
i.e., we collect some basic notions on qubits, measurements, quantum gates and oracles that
would be useful for the next chapters. Also, we recall the Quantum Fourier Transform over
Abelian Groups, which would be use in Chapter 6.

In Chapter 4, we explain some well known quantum algorithms, such as Simon’s Algorithm,
the solution to the Hidden Subgroup Problem for the abelian case, and Grover’s Algorithm.
They play an important role on this thesis, as we can see, from Chapter 5 through Chapter 7.
Lastly, in section 4.6, we explain what is a quantum abstract detecting system, that we use in
Chapter 5.

In Chapter 5, we introduce combinatorial QADS and study their algorithmic closure. Rota-
tional QADS are introduced and studied in Section 5.2, including their algorithmic closure. An
application of the combinatorial QADS construction to a concrete eigenvalue decision problem
is given in Section 5.3.

In Chapter 6, we model the problem of finding substructures in a finite-dimensional algebra
as an instance of the HSP, and we show that, in some cases, it can not be classically solved with
a polynomial number of function accesses to the hiding function f. In Section 6.3, we construct
an efficient quantum oracle for the function f and we build an efficient circuit for the solution
of the corresponding HSP.

6 Chapter 1. Introduction

Notation Description

lp) Known as ket, represent a vector in C".

(| Known as bra, is the transposed conjugate of |¢).

l0) @ |w) Tensor product of |@) and |y).

lv) | o) Abbreviated notation for tensor product of |¢) and |y).

(y|U o) Inner product between |y) and U |@) (U is an n X n complex
matrix).

Al Transpose of the matrix A.

A Complex conjugate of the matrix A.

AT AT =A"

I, Denotes the identity matrix of size n X n.

arg z Denotes the argument of a complex number z.

Re z Denotes the real part of a complex number z.

Table 1.2: Table of notations used in this dissertation.

In Chapter 7, using a simulator for quantum circuits, we find the multiplication tables for
the finite semifield Fg (which is the only finite semifield of order 8), and for finite commutative
semifields of order 16, based on Grover’s quantum search algorithm. This chapter is meant to
be a compendium of possible (unsatisfactory) approaches to the problem of classifying binary
semifields using quantum computing techniques.

Finally, in Chapter 8, we give some conclusions of our study and print out some future work.

Additionally, a more detailed description of the contents of each chapter, and sections are given
at its beginning, together with the sources used, in order to guide the reader through the text.

Notation and Conventions

In what follows, C,R,Q,Z, and N stand for the field of complex numbers, the field of real
numbers, the field of rational numbers, the ring of integers, and the set of natural numbers
respectively. ZT will denote the positive integers, and C* = C — {0}, denotes the complex
numbers without the zero. Mat, »,(K), with K a field, stands for the set of matrices of size n x n
with entries in K. Z/pZ = {0,1,...,p — 1} stands for the additive group of integers modulo
p. For a real number x, by |x| we mean the nearest integer. We use the standard notation
of quantum mechanics for linear algebraic concepts. Namely, Dirac notation, as presented in
Table 1.2.

Acknowledgment

First and foremost, I would like to express my sincerest gratitude to my supervisors, Prof. Dr.
Inaki, and Prof. Dr. Elias, for your kindness, patient, guidance, encouragement, and constant
support in every possible way, during all these years, virtually and in person. For the many
explanations given, they help me grow academically, specially with your book Prof Dr. Elias.
Thanks to both of you, for introducing me to such interesting path of research.

Prof. Dr. Ifiaki thank you for support in many ways, not only academically, but also with
bureaucracy issues.

I am grateful to Prof. Dr. Santos, for your selfless support, for letting me join the Cybercamp
with the workshops and conferences. Also, I want to thank Dr. Luis Ovejero for the experience
and personal grow in Satec HUB.

Lastly, I am really grateful with my family, for their endless support, love, and motivation,
specially in tough times. Maira, Alejandro and Oriana you mean all to me.

Chapter 1. Introduction

Chapter 2

Algebraic Foundations

Nothing in this chapter is new, we only give overview of known facts. See, for instance, [DF04].

2.1 Groups

Definition 2.1. A group is a nonempty set G together with a binary operation * on G such that
* is associative (that is, for any a,b,c € G, a* (bxc) = (axb) xc), there is an identity (or unity)
element e in G such that for all a € G, axe = exa = a, and for each a € G, there exists an in-
verse element a~! € G such that axa~! = a~! xa = e. The order of a finite group is the number
of its elements, and it is denoted by |G]|.

If the group also satisfies that for all a,b € G, a*b = bx*a, then the group is called abelian.
Usually, multiplicative notation is used, i.e., * is written as -, or simply as juxtaposition.

Example 2.2. The set U(n) = {A € Mat,, (C) : ATA = AA" = I} is a group under multiplica-
tion of matrices, called unitary group.

Example 2.3. Let Gy,...,G, be n groups, we consider G = G X --- X G, to be the set of n-

tuples withx; € G;, fori =1, ...,n, and componentwise multiplication. Then, G is a group called
the direct product of groups, whose unit element is (ej,...,e,) (wWhere ¢; is the unit element of
G)).

An additive group is a group in which the group operation is to be thought of as addition,
and x is usually written as +.

Example 2.4. The additive group of integers modulo 7 is the group with domain {0,1,2,...,n—
1}, and with the operation of addition mod n. It is denoted as Z/nZ.

Definition 2.5. Let H C G. We say that H is a subgroup of G if H is nonempty, for every
a,b€ H,axb € H, and for every a € H, the inverse a~! € H.

10 Chapter 2. Algebraic Foundations

Example 2.6. The set SO(n) = {A € O(n) : det(A) = 1} is a subgroup of the orthogonal group
O(n) = {A € Mat,,(C) : A’A = AA" = I}, called the special orthogonal subgroup.

Definition 2.7. Let G be a group and let S be a subset of G. We say that S generates G, if every
element of G can be expressed as a product x; - - - x, where each x; or x;l isin S. A cyclic group
is a group which has one generator, i.e., if there exists g € G such that any x € G can be written
as g", for some integer number 7.

Definition 2.8. The order of an element g € G is the smallest positive natural number n such
that g" = e. If g¢" = e does not hold for all positive r, we say that the order is infinity.

n
In an additive group, the order of an element is the smallest positive integer n such that x+ o
+x=0.

Definition 2.9. Let G be a group, and let H C G be a subgroup or G. A left coset of H in G is
a subset of the form aH = {ah : h € H}, for some a € G. The element a is a representative of

the coset aH. The collection of left cosets is denoted G/H. Likewise, a right coset is a subset
of the form Ha = {ha : h € H}, for some a € G.

If the group operation is written additively, as is often the case when the group is abelian,
the notation changes to a + H. Two elements of x,y € G, are called equivalent with respect to
the subgroup H, if xH = yH, or, equivalently, if x~'y € H. This defines an equivalence relation
in G, of which G/H is the quotient set. The number of left cosets of H is called the index of H
in G and is denoted by [G : H]. The well-known Lagrange’s Theorem states that the order of a
subgroup must divide the order of a finite group.

Theorem 2.10 (Lagrange’s Theorem). For any finite group G, if H is a subgroup of G, then
|G| =[G : H]|H|.
Definition 2.11. A subgroup N of a group G is called normal, if for every element of g € G,
gNg~! =N.Here gNg~! = {gng™! : n € N}.

Note that every subgroup of an abelian group is a normal subgroup.

Definition 2.12. A quotient group is defined in G/N, for any normal subgroup N C G. It is
equipped with the operation (gN) o (hN) = (gh)N.

Definition 2.13. Let (G, x) and (H,-) be two groups. A group homomorphism from (G, *) to
(H,-) is afunction ¢ : G — H such that, for all g1, g> € G, itholds that ¢ (g;*g2) = @ (g1) -9 (g2).
A group homomorphism that is bijective, i.e., injective and surjective, is an isomorphism.

The following theorem says that a particular family of groups has a particular structure or
form.

Theorem 2.14 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian group G
is isomorphic to a direct product of cyclic groups

G=2Z/MLXLInZ X - X L] nZ, (2.1)

where Z./n;7Z = {0,1,...,n; — 1} is the additive group of integers modulo n;.

2.2. Rings and Modules 11

2.2 Rings and Modules

Definition 2.15. A non-associative ring A is a set with two binary operations (addition and
multiplication) such that A is an abelian group with respect to addition (so that A has a zero
element, denoted by 0, and every x € A has an additive inverse, —x), and multiplication is
distributive over addition, i.e. x(y+z) = xy+xz, (y +z)x = yx + zx, for all x,y,z € A.

Definition 2.16. If a non-associative ring A satisfies the multiplicative associative law (x(yz) =
(xy)z, for x,y,z € A), then we shall say that it is an associative ring, or simply a ring. If it
satisfies the commutative law (xy = yx, for all x,y € A,) we will call it commutative.

We say that a non-associative ring A has identity or one, if there exists an element 1 20 € A,
such that 1x = x1 = x, for all x € A.

Definition 2.17. A non-associative ring with identity is called a division ring if, for all x € A,
there exists y,z € A such that xy = zx = 1. When A is finite, then it is called a finite semifield.
When it is associative and commutative, then it is called a field.

Next, we shall assume that rings are (associative) commutative, and with identity.

Definition 2.18. A subset S of a ring A is called a subring, if S is a ring with the restrictions
of multiplication and addition to S. An ideal a of a ring A is a subset of A which is an additive
subgroup and is such that Aa = {ab : a € A,b € a} C a, and aA C a. For any a € A, the set Aa
is an ideal of A, known as ideal generated by a (or a principal ideal). It will be denoted as (a).

Definition 2.19. A zero-divisor in a ring A is a non-zero element x which divides 0, i.e., for
which there exists y # 0 in A such that xy = 0. A ring with no zero-divisors is called an integral
domain.

A unit in A is an element x which divides 1, i.e., an element x such that xy = 1 for some
y € A. The element y is then uniquely determined by x, and is written as x~!. The units in A
form an abelian group.

A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Example 2.20. For example, let K be a field, let x be an indeterminate over K, then K x|, called
the polynomial ring in x, with coefficients in K, is a principal ideal domain. It is well-known
that this makes K[x] a unique factorization domain, i.e., any non-constant polynomial can be
uniquely (up to the order of the factors) written as the product of irreducible polynomials (those
that can be only divided by constants and themselves, up to a multiplicative constant).

Definition 2.21. If a is an ideal of a ring A, then the quotient group A/a (whose elements are
the cosets of a in A) inherits a uniquely defined multiplication from A which makes it into a
ring, called the quotient ring A /a.

Definition 2.22. A (unitary) A-module is an abelian group M, written additively, together with
amap A Xx M — M, written by am for all a € A, and all m € M, which satisfies that (a+b)x =
ax+bx,a(x+y) =ax+by, (ab)x =a(bx), forall a,b € A, and for all x,y € M; and also, 1lm = m,
forallme M.

12 Chapter 2. Algebraic Foundations

Example 2.23. Note that when A = K is a field, then the A-module M is a K-vector space.

Example 2.24. A commutative ring with identity A is an A-module, where the multiplicative
map is the ring product.

Definition 2.25. Let M,N be A-modules. A mapping f : M — N is an A-module homorphism
if f(x+y)=f(x)+f(y), and f(ax) =a- f(x), for all a € A and all x,y € M (also note that
when A is a field, an A-module homomorphism is a linear transformation of vector spaces). A
module homomorphism is called a module isomorphism if it admits an inverse homomorphism;
in particular, it is a bijection. It will be denoted as M = N.

Definition 2.26. A module M is cyclic if there exists an element x € M such that M is generated
by one element: M = Ax = {ax : a € A}.

Example 2.27. If A is a commutative ring with identity, then any principal ideal a C A is a
cyclic A-module.

Definition 2.28. If M,N are A-modules, their direct sum M & N is the set of all pairs (x,y)
with x € M,y € N. This is an A-module with componentwise addition an scalar multiplication

a(x,y) = (ax,ay).

Example 2.29. Let A = K|[x| be the polynomial ring in the indeterminate x, with coefficients in

a field K. Let V be a finite dimensional vector space over K of dimension n. Let 7 : V — V be
n

a linear map, and let p(x) € K[x]. Consider the action of the ring element p(x) = ¥ aix* on

k=1
veVas

v =Y aT(v),
k=0

where T =T o To---oT, and o denotes function composition (with 70 =I:V — V the identity
map). With this map K|[x] x V — V, V can be seen as a K[x]-module.

Recall the following notions from linear algebra. Let V be a K-vector space of dimension
n,and let T : V — V be a linear map.

Definition 2.30. Let A be an indeterminate over a field K, and A € Mat,,.,(K). We call ps(1) =
det (AL, — A) the characteristic polynomial of A. If A is the coordinate matrix of 7 with respect
to one of its bases, then the polynomial py(A) = det (Al — A) is called the characteristic poly-
nomial of 7. It will be denoted as pr. It is independent of the choice of basis.

Definition 2.31. Let m(x) € K|[x] be the unique monic polynomial generating the annihilator
ideal of V in K[x], i.e., Ann(V) = {p(x) € K[x] : p(T) = 0}. Equivalently, m(x) is the unique
monic polynomial of minimal degree annihilating V, i.e., such that m(T) =0 (here 0: V — V
is the null linear transformation) (And so, if f(x) € K|[x] is any polynomial annihilating V, then
m(x)|f(x)). It is called the minimal polynomial of 7, and it will be denoted as mr(x) . The
unique monic polynomial of least degree which annihilates the matrix A € Mat,,,(K), is called
the minimal polynomial of A (i.e., such that p(A) = 0), and it will be denoted as m4 (x) .

2.3. K-algebras 13

The following theorem states the structure of the K[x]-module V.

Theorem 2.32. (Fundamental Theorem of endomorphisms of a finite dimensional vector space)
Let V a finite dimensional K-vector space, and let T : V — 'V be a linear map. Let x be an
indeterminate over K. Then as K|x|-modules,

1.
V =K/ (a1(x)) @ K[x]/(a2(x)) @ - - @ K[x] / (am(x))

where aj(x),a2(x),...,an(x) are monic polynomials (called invariant factors) in K|x| of
degree at least one with the divisibility conditions

ar(x)|az(x)]--- |am(x).

2. Ann(V) = (am(x)). And so the minimal polynomial my(x) is the largest invariant factor
of V. All the invariant factors of V divide my (x).

3. The characteristic polynomial T is the product of all invariant factors of T.

4. (Cayley-Hamilton) The minimal polynomial of T divides the characteristic polynomial of
T.

5. The characteristic polynomial of T divides some power of the minimal polynomial of T.
In particular, they have the same irreducible factors.

As a consequence, we get:
Proposition 2.33. Let A € Mat,,,(K). Then

1. (The Cayley-Hamilton Theorem) The minimal polynomial of A divides the characteristic
polynomial of A.

2. The characteristic polynomial of A divides some power of the minimal polynomial of A.
In particular, these polynomials have the same irreducible factors, not counting multiplic-
ities

2.3 K-algebras

Definition 2.34. A finite dimensional algebra A over a field K (or more simply a K-algebra) is
a non-associative ring A that has the structure of a K-vector space of dimension d, such that for
allb,ccAand a € K,a(b-c) = (ab)-c = b(ac).

Note that we not necessarily have a commutative nor associative product, or identity. Through-
out this thesis, we will use the term non-associative algebra to emphasize the fact that the
multiplication may not be associative, and non-commutative that might not be commutative.
An algebra is called a division algebra, if it is a division ring. Now, let S be a non-associative

14 Chapter 2. Algebraic Foundations

non-commutative finite dimensional algebra over a field K. Let us fix a K-basis f = {x1,...,x4}
of S, so there exists a unique set of constants {M; jk},d k=1 C K, such that,

d
Xixj= Y Mjjx, foralli,je{l,....d}.
k=1

That set is known as the multiplication table (or structure constants) of the algebra (with respect
to the basis 3). For each x € S, consider the maps L, : S — S, and R, : § — §, given by L,(a) =
x-a, and Ry(a) = a- x, respectively. Both are K-linear homomorphisms. Additionally, Ly, (x;) =

i

d d
XjiXj= kglMijkxk. Letx = L a;x;, with o; € K. Then,

J

d
Li(a)=x-a=) axi-a=0ay(x;-a)+-+ay(xs-a)
=

d
=1Ly (a) + -+ aqly,(a) = Z oLy (a).
i=1

So, the map L, can be described by the maps Ly, ..., Ly,. Denote the column coordinate matrix
of L,, with respect to 3 by:

My Mpy My ... Mg

M1 Mpy Mz ... Mip
A=) i .)

Mg Mpg Mg ... Mg

1=

d d
Consider the set M := {Aj,...,As}. Then, if x = ¥ oix;, with o; € K, then L, = Y. o;L,,, and
i=1 1

so we have that the column coordinate matrix of L, with respect to f3 is
d
Ay = Z 0GA;.
i=1

Which justifies that M is a multiplication table for S (all the products can be described by d>
constants in K). Furthermore, we can see some properties of the algebra in terms of M. For
instance, note that x # 0 is not a left zero divisor (i.e., there does not exist a y # 0 such that
xy = 0), if and only if L, is a K-linear isomorphism if and only if A, is invertible. The same
holds for x # 0 not being a right zero divisor. Since for any x there exist &, ..., ®; € K such that
X = QX1 + -+ 0y, then S is a division algebra if and only if any non zero linear combination
of M is invertible.

Definition 2.35. Let A be a non-associative non-commutative finite dimension algebra. If a,b €
A, we define the commutator as |a, b] = ab — ba. We define the associator as the multilinear map
['7 E] TAXAXA— A7 given by [x,y,z] = (xy)z —x(yz).

2.3. K-algebras 15

The commutator measures the non-commutativity of A. For instance, A is a commutative
algebra if and only if [x;,x;] =0, forall i, j=1,...,d, ie.,

U

d n d
0= [x;,x;] =xixj —xjxi = Y Mijpxe — Y Mjuxi = Y Mijexe — M jipxy = Z Mijx — Mjix) X,
k=1 k=1 =1 =1

if and only if M;j, = My, for all i, j,k=1,...,n

The associator measures the non-associativity of A, so A is associative if and only if, the as-
sociator is identically zero, i.e., forevery i, j,k=1,....d,

0= [x,-,xj,xk] = (Xi-Xj) X — Xi (Xj -xk)

(g e(goer)

M;jmXpm - Xp — Z M X - Xim

M; jmMipax; — Z Z Mimix;

m=11=

3
L

|
M=~

3
I

Il
M=
M=~

3
I
_
-
I
_

I
M=~
M=~

M; jmMipiix; — M M x;

3
I
_
—
I
_

(M jmMongs — M jionMimt) ;.

I
M=
M=

3
I
_
-
Il
—_

So, A is associative if and only if for every i, j,k,l = 1,...,d, we have that,
d
Z (Miijmklxl - MjkmMiml) =0.
m=1

Definition 2.36. Consider the following sets, known as the right, middle, and left nuclei, the
nucleus and the center, of an algebra over K:

(A)={a€A:x,yal =0, forall x,y € A}

(A)={a€A:x,a,y] =0, forallx,yc A}

Ni(A)={acA:|a,x,y| =0, forall x,y € A}

(4) = No(4) N Nw(A) AN (4)
(A)=NA)N{a€A:[a,x] =0, forallxc A}

These sets are subalgebras of A, i.e., K-vector subspaces closed under multiplication.

16 Chapter 2. Algebraic Foundations

2.4 Finite Semifields

In this section, we collect definitions and facts on finite semifields, which is the class of finite
division algebras. Proofs can be found, for instance, in [Knu65], [HRO7]. The term finite
semifield was introduced in 1965 by Knuth. However, in 1906, and 1960, the concept of finite
semifield had been previously studied by Dickson [Dic06] and Albert [Alb60], respectively.

Definition 2.37. A finite non-associative ring D is called presemifield, if the set of nonzero
elements D* is closed under the product. If D has an identity element, then it is called (finite)
semifield (i.e., if it is a division ring).

Example 2.38. Any finite field I, of g elements is a finite semifield.

If D is a finite semifield, then D* is a multiplicative loop. That is, there exists an element
e € D* (the identity of D) such that 1x = x1 = x, for all x € D, and for all a,b € D*, the equation
ax = b (respectively xa = b) has a unique solution.

Definition 2.39. Let S be a finite semifield. Its cardinality is called order and denoted as |S]|.
The additive order of the identity of S is called the characteristic of S.

Proposition 2.40. Let D be a finite semifield. The characteristic of D is a prime number p. Its
center is a finite field IF, of ¢ = p© elements, where ¢ € N. Moreover, D is a finite-dimensional
algebra over Z(D) of dimension d, where |D| = ¢%. Also, the nuclei N,(D),N,,(D),N;(D), and
the nucleus N(D) of D are finite fields.

It is well known that for every prime p and every positive integer n there exists a finite field
with p” elements [LN96]. Any associative finite semifield is necessarily commutative and hence
a finite field (by Wedderburn’s Theorem [MWO05]). Nevertheless, not every finite semifield is
necessarily associative. If a finite semifield is not associative, it is called proper.

Theorem 2.41 ([Knu65]). A proper semifield has order p", where n > 3, and p" > 16.

Knuth proved that a proper semifield has at least has 16 elements by showing that the only
finite semifield of order 23 is the finite field Fg. As an example of a proper semifield we have:

Example 2.42. Consider the field F = Fy4, with the elements 0,1, ® and ®*> = 1 + . Let V =
{u+Av:u,v € F}, and define

+: VxV — \%4
(u1 —i—lvl,uz-l—l\/z) — (u1 —|—v1)—|—7t(u2+vz)

VxV — \%
(w1 +Avi,up +Ava) = (uiup +viva) + A (viug +uivy +vH3)

Then, V is a finite semifield with identity 1+ A0. Note that V' is not commutative, and hence it
is a proper semifield.

Another example is Knuth’s binary semifield:

2.4. Finite Semifields 17

Example 2.43. Let n be odd, and mn > 3. Consider F»» as an [Fon-vector space, let f : Fom —
[Fom be the unique linear functional, i.e., f(oa+ Bb) = af(a) + Bf(b), for all a,b € Fym, and
all a, B € Fym, such that f(1) = 1, and f(x) = f(x*"). Define a multiplication in Fom as follows:

o]F2mn X]Fzmn — Fzmn
(a,b) — ab+(f(a)b+ f(b)a)’

Now, define a product * in the vector vector space as (1 o0a) * (1 0b) = aob. It can be shown
that (Fpm, +, %) is a proper commutative semifield, known as Knuth’s binary semifield.

It is well-known that, for a finite field I, the set F* = F, — {0} is a cyclic group. We shall
call primitive element to any generator of IF;. It is also well-known that, for any n € N the Galois

group G (F7|F,) (i.e., the set of all F;-automorphism of Fy) is a cylic group of order n.

Example 2.44. Albert’s generalized twisted fields were introduced in [Alb61] as a generaliza-
tion of other families of semifields that Albert himself had previously discovered. Its construc-
tion is based on the deformation of the product of a finite field, hence the name of “twisted
fields”.

Let F =F, with g = p" > 2, and K = F}/ withm > 3. Let 0,7: K — K be elements in the
Galois group G(K|F) such that

<o>'N<t>'=FNF=F,
where < 6 >1= {a € K : 6(a) = a}. Consider the product operation defined as:
aeb=ab—gt(a)o(b),

for all a,b € K, which makes the group (K,+) a finite presemifield. Thus, the applications
L},R} : K — K are bijections, and the group (K, +) with the new operation:

axb=(R})"(a)(L})™ (b),

forall a,b € K, 1s a finite semifield, called generalized twisted field. It is a proper finite semifield
if and only if o # .

Note that its identity is f = 1 — g, and its nucleus and center are N = Z = F f its right nucleus
N, =< 0 > f,its left nucleus N, =< t > f, and its middle nucleus is N, = R} (M) = L} (M),
where M ={a €K : o(a) =1(a)}.

Definition 2.45. Let D be a finite semifield, and a € D. We inductively define the left principal
powers of a as . .
a®=1, forallie N:a*! = aql,

and the right principal powers of a as

a =1, forallie N:a'tV = ad).

18 Chapter 2. Algebraic Foundations

Definition 2.46. A finite semifield D is called left primitive semifield, if it possesses an element
o such that D* is the set of all left principal powers of ®. The element @ is called a left primitive
element. D is called right primitive semifield, if it possesses an element @ such that D* is the
set of all right principal powers of ®. The element @ is called a right primitive element. The
semifield is called primitive, if its both left and right primitive.

Example 2.47. Any finite field is a primitive semifield.

Example 2.48. Knuth’s binary semifield of order 32 [Knu65] is neither left nor right primitive.
This was shown by [Ri04].

Definition 2.49. A polynomial f € F,[x] of degree m > 1 is called primitive over I, if f is
monic, f(0) # 0, and ord(f) = ¢ — 1. Here, the order of f (denoted as ord(f)) means the least
positive integer / for which f(x) divides x/ — 1. Any primitive polynomial is irreducible [LN83].

Proposition 2.50 ((HRO7]). If D is a finite semifield of dimension d over its center Z(D) =T,
then @ € D is a left primitive element of D if and only if the characteristic polynomial of the
linear map L, : D — D, is a primitive polynomial of degree d over Z(D).

Corollary 2.51 ([HRO7]). If @ is a left primitive element of a finite semifield D, then {1, @, o?, ...
%~V is a Z(D)-basis of the algebra D.

An effective description of finite semifields can be given in terms of matrices, as the follow-
ing proposition shows.

Proposition 2.52 ([RCR09]). Any finite semifield D of order ¢? and center containing ¥, can
be described by a set of d matrices {Ay,...,A;}, known as standard basis, such that

1. Ay is the identity matrix.

d
2. Y oyA; is invertible for all nonzero tuples (0, ..., o) € F4.
i=1

3. The first column of the matrix A; is the column vector with a 1 in the i-th position, and 0
everywhere else.

The semifield D can be identified with the algebra (Fg ,+,+), where the multiplication is
given by x-y = 2?21 x;A;y. As a consequence of this proposition, we have:

Corollary 2.53. 1. [Alb60] IfF, is the center of D, then any non-scalar linear combination
of a standard basis (i.e., not of the form AA;) has a characteristic polynomial without
linear factors.

2. In the conditions of Proposition 2.52: [HRO7] D is not left primitive if and only if for any
non-scalar linear combination of a standard basis, its characteristic polynomial is not a
primitive polynomial.

2.5. Character Theory of Finite Abelian Groups 19

2.5 Character Theory of Finite Abelian Groups

In this section, let G be a finite abelian group. By theorem 2.14, G is isomorphic to a product of
cyclic groups
G=Z/mZXL/nZ X - X1L/nZ, (2.2)

where Z/n;Z = {0,1,...,n; — 1} is the additive group of integers modulo n;. Let ¢ : G —
Z/mZ X L]nyZ x --- x Z/niZ be a group isomorphism. For g € G, denote ¢(g) as k-tuples:
o(g) = (g1,---,8k), with g; € Z/n;Z. Write —¢(g) for the (additive) inverse of g € G in
Z/mZ X L/nyZ x --- x Z/ni Z. Denote the identity of G as 1, so ¢(1) = (0,0,...,0). Let

(p(el) = ﬁl = (1,0,0,...,0),(/)(62) = Bz = (0,1,0,...,0),...,(p(ek) = ﬁk = (0,0,0...,1) eG.
Then,

k
0(g) =) g;B;
j=1
We shall use this additive representation of G.

Definition 2.54. A character of a group G is a group homomorphism) from G to the multi-
plicative group of nonzero complex numbers C* = C — {0}, : G — C*.

Let g =(g1,..-,8k) € G, s0
k k A
x(8)=2x (Zlgfﬁf) = Hlx (B)*.
Jj= j=

Hence, ¥ is completely determined by By, ..., Bx. Since the order of B; is nj, x (B;) has or-

der dividing n;, so x (BJ) = a),i’j, for some hj € Z/n;Z, and @,; = exp (i—’j’) (a complex prim-

itive nj-th root of unity). Now, any given character ¥ : G — C* is determined by (h1,..., /),
with 2j € {0,1,...,n;}. Therefore, each character) can be labelled by an element of G. Recip-
rocally, any of such labellings determines a character y.

Definition 2.55. For each g € G, we define the character,
Xe: G — CF
kel
h — x,(h) = Hl !
]:
Proposition 2.56. Let x(G) denote the set {), : g € G} of all such maps. Then, x(G) is a
group under X, - X = Xg+h, and ¥ (G) is isomorphic to G.

Definition 2.57. Given a subgroup H of a finite abelian group G, its orthogonal subgroup H=
is defined as the set of all elements in G orthogonal to H, i.e.,

H-={gc€G:x(h)=1,forallhc H}.

20 Chapter 2. Algebraic Foundations

It follows that H* is a subgroup of G, since the identity 1 € G is in H* (x1(g) = 1, for
all g € G), and if a,b € H™* then, for any h € H, we have x;,(a —b) = x,(a)/xn(b) = 1, thus
a—becH".

Proposition 2.58. H* =~ G/H, and (H L)L =H.

In particular, if G = (Z/27Z)", (Z/27)" naturally comes with a group structure given by
the (component-wise) XOR (addition mod 2) between bit vectors: let x,y € (Z/2Z)", with
x=(X1,...,xn),and y = (y1,. .-, ¥n) - S0, (X153 X0) B (V1yeeey¥n) = (X1 BY1,y- -, X Dyy) . By
x -y, let us denote the inner product modulo 2 of x and y, i.e.,

n
xX-y= (Zx,-y,-) mod 2.
i=1

Therefore, if H is a subgroup of G, and since x,(y) = [] (—1)*?7 =1ifand onlyif } x;y; =0
j=1 j=1
mod 2, we have

Ht={xeG:x(y)=1,forallyc H} ={xe€G:x-y=0, forally € H}.

This means that, if x,y are binary vectors in an n-dimensional F,-vector space, then H is a
subspace, and H is the orthogonal complement to H (with respect to the inner product -).

In general, if G = Z/mZ X Z/nyZ X - - - X L /n; 7, let m be the least common multiple of all
n;’s. Any root of unity ®,, can be written as a power of ®,,, where m = lcm(ny,...,n). Indeed,

Oy, = (On?- Let x = (g1,82,---,8n),y = (h1,h2,...,h,) be elements of Z/nZ X Z/ny 7 x - -+ X
Z/n;Z. Then,

k o k mN gjhj k % mgihy .y ekl

=Tl =T1 (o) =T1(o”)=an"
j=1 j=1

which means that

mgihy L mekh
n ng

HL:{xeG:xx(y):l,forallyEH}:{xeG: =0, forallyEH}.

In particular, if G = (Z/pZ)" , then,

H={xcG:x(y)=1, forally € H}
={xeG:gih+ +gh =0, forally e H}.

Finally, let us recall this well-known fact:

Proposition 2.59. Let @ be a complex 7-th root of unity (i.e., ®" = 1, and @* # 1,if 1 <k < n),

n—1
and suppose that @ # 1. Then, ¥, o* =0.
k=0

2.6. Probability of Generating a Group 21

2.6 Probability of Generating a Group

In this subsection, we follow [Pak00]. We are interested in the probability that a certain amount
of elements chosen uniformly at random from a finite group will generate the whole group.

Let ¢ (G) denote the probability that k random elements of G generate the entire group, i.e.,

O (G) = Pr({g1,82,---,8) = G),

where g; are elements of G, chosen independently and uniformly at random from G. For a finite
cyclic group G = (g), we know that G = (g*) if and only if ged(n,k) = 1. So, for instance,
if |G| = n, then G has @(n) generators, where ¢ denotes the Euler Phi function. Hence, the
probability of any randomly chosen element to be a generator of the group is

n n

g ")
¢(n) _ pl :L—,[l(l_l)'

In general, we have:

Lemma 2.60. Let G be any finite group or order |G| < 2" r > 1. Then, for all t > 1,¢,(G) >
¢ (Z3)

As a consequence of
Lemma 2.61. ¢, (Z) > 1— 4, fort > 0.
We get,

Theorem 2.62. Let G be a finite group. For an integert > 0, the probability that k =t +1log, |G|
elements chosen uniformly at random from G will generate G is bounded by

1
(Pk(G) Z 1— 57

fort > 0.

For completeness, in this section, we present a result on the probability of coprimality of
integers uniformly sampled from a fixed range.

Lemma 2.63 ([Lom04]). Suppose that we have k > 2 uniformly random samples ti, ... ,t; from
the integers {0,...,d — 1}, withd > 2. Then

Pr(ged(ty,....ty) =1)>1— (—)é

22

Chapter 2. Algebraic Foundations

Chapter 3

Quantum preliminaries

The main purpose of this chapter is to give an explicit explanation of the quantum circuit model,
one of the most popular quantum computing paradigms, in order to understand quantum algo-
rithms. Additionally, we give the conventions and choices of notation used throughout this
thesis. As a last section, we briefly give an explanation of another quantum computing model,
namely Adiabatic Quantum Computing.

3.1 Quantum Circuit Model

The quantum circuit model is a model for quantum computing. In it, qubits store data, oper-
ations are performed with quantum gates, and results are obtained via measurements. All of
these are ruled by the laws of quantum mechanics. We start by explaining some basic notions
on qubits and quantum gates that would be useful for the next chapters. Details can be found
for instance in [NC11], [CGC23], and [YMOS].

3.1.1 Braket Notation

Let us begin with some notation. Let K be a field (usually C), and let V be a K-vector space. A
ket is an expression of the form |v). Mathematically, it denotes a vector. Hence, |-) notation is
used to indicate that the object is a vector and it is the standard quantum-mechanical notation for
a vector in a vector space. A bra is an expression of the form (.|. Mathematically, it denotes a
linear map f: V — K. Letting the linear functional (f| act on a vector |v) is written as (f|v) € K.

Example 3.1. In the C-vector space C", the space of all n-tuples of complex numbers, kets can
be seen as column vectors and bras are the Hermitian conjugates of kets. That is, for a given
ket, the corresponding bra is a row vector (the transpose of a ket), where the elements have been
complex conjugated.

23

24 Chapter 3. Quantum preliminaries

Example 3.2. If C" has the standard inner product, then for vectors |u) and |v) in C", i.e.,

u Vi
us V2
|u> = . 7|V> =)

with u;,v; € C, for all i = 1,...,n, the bra of |u) is the conjugate transpose of the vector |u),
which is

ui !

. uz o _
(lu))" = : =m I i],
Uy

where the ¢ superindex denotes the transpose of a matrix. Thus, the standard inner product in
C" can be written as

() = ()) = Y. v

and the norm of a vector |v) is defined by

n n
2 —
[)17 = () = Y vmi =) vl
i=1 i=1

~
—

Note that the product between |v) and (v|, called the outer product, yields a matrix of size n xn :

Vi VIVL VIV2 ... VIV
%) o o VoVl VaVa ... VoV,
Wol=| " |[7w 7 v | = "
Vn VeVl Va2 ... VpVy

Note that in the finite dimensional complex vector spaces that come up in quantum compu-
tation and quantum information, a Hilbert space is exactly the same thing as an inner product
space (since every finite dimensional normed vector space is complete).

The simplest quantum mechanical system, and the system which we will be the most concerned
with, is the qubit.

3.1.2 Qubits

Consider the set {|0),|1)}, where [0) =[1 0]l and [1) =0 1]t. It is an orthonormal
basis of C2. Indeed, (0|1) = (1|0) = 0 and (0|0) = (1|1) = 1, since

o) =o' =[1 o] [7] <o.

3.1. Quantum Circuit Model 25

It is called the computational basis of C2. Now, let us talk about qubits. A quantum-bit or qubit
for short, is the minimal information unit in quantum computing. In contrast to normal bits,
which can be in state 0 or in state 1, it can be in state |0) or |1), or it could be in a superposition
«|0) + B |1) where &, 8 € C, and |a|* + |B]* = 1.

The scalars a, 8 are called the amplitudes of the state. The quantity \/|a|> + |b|? is called
the norm of the state, and, when its is 1, the state is normalised.

Example 3.3. For example,

* [4) =5 (10)+11)) * li+) = 5 (10) +i1))
* =) =5 (10) = 1) * li=) =5 (10) = i1))

are qubits states.

Definition 3.4. Superposition refers to the fact that any linear combination of two quantum
states, once normalized, will also be a valid quantum state.

A quantum computer contains several qubits. Thus, it is necessary to know how to construct
the combined state of a system of qubits given the states of the individual qubits. The joint state
of a system of qubits is described using an operation known as the tensor product ®. The tensor
product of two vectors |u) and |v) of C", denoted as |u) ® |v) is defined by

]
uivz
ul Vi Ur2Vm
u %) usrvy
) @|v) = ® = :
Up Vi UVm
uzvi
L. uan —
with u;,v; € C, for all i = 1,...,n. Now, let us define the computational basis for C*. Denote
i) @1j) as [ij) for i, j € {|0),[1)}, so
00) =[0)®[0)=[1 0 0 0]
o =0)®[1)=[0 1 0 0]
10) = H®|0)=[0 0 1 0]
i =Hely=[0 0 0 1].

26 Chapter 3. Quantum preliminaries

The computational basis would be {|00),]01),|10),|11)}. For a more convenient notation, de-
note |[00) = |0), [01) = |1),]10) = |2),[11) = |3), so the computational basis for C* would be
{]0),]1),]2),|3)}. A two-qubit state is of the form

[¥) = a0 |00) + a1 [01) + @10 [10) + g [11),
where o, 01, ®10, 011 € C and ’Oloolz-i- ’05()1‘24— ‘(X10|2—|- ‘(Xllyz =1.

Example 3.5. The vectors

|00) + |11) |00) —|11) [10)+4|01) |O1)—|10)
V2o v V2 T V2
are two-qubit states. These four states are known as the Bell states, or the Bell base, or the EPR
pairs.

In general, one can see that the dimension of the state space grows exponentially with the
number of qubits n and the number of basis vectors is 2”. Indeed, the computational basis for
C?" would be

{l0)®]0)®---®[0),10)®@[0)®---@|1),...,[1) @[1)---@[1)}
:{|0>7|1>7"'7|2n_1>}a

21 2]
50, a generic state of a multi-qubit system is |w) = ¥ ;i) where ¥ |04|> =1and o; € C
i=0 i=0

for0 <i<2"—1.

Definition 3.6. Let |y) be a state. We say that |y) is a product state if there are two states |@;)
and |@,) such that |y) = |@;) ® |@,), that is, |y) can be written as the tensor product between
two states @) and |@2). If |y) is not a state product, then we say it is entangled.

Example 3.7. For example, the state |01>_[2|10> is an entangled state. Indeed, let us suppose not.

Then, for some «, B, 0, B> we would have

100) —10)

7 = (a1 [0) + 1 1)) @ (02 |0) + B> | 1))

= 061062|00>+061ﬁ2‘01>+ﬁ10€2|10>+ﬁ1ﬁz|11>

So, ajop =0, 061132 = %,ﬁ]&g = _%7[31[32 = 0. Then, either ¢; =0 or op = 0. If op = 0,
then B0 = 0, which is not valid. If &y = 0, then ¢t} B, = 0 which is not valid. Hence, %
is an entangled state.

Lastly, let us define what is a quantum register,

Definition 3.8. A quantum register is a system comprising multiple qubits.

3.1. Quantum Circuit Model 27

3.1.3 Measurement

An important ingredient of quantum circuits is the measurement of a qubit in the computational
basis. It allows us to obtain classical values from quantum states, with two outcomes. In fact,
consider the state |y) = ¢ |0) + B |1) with &, € C and |a|?> + |B|*> = 1. If we measure |y),
then the probability of obtaining measurement outcome 0 is |&|?. And the probability of obtain-
ing measurement outcome 1 is |B|2. Naturally, these two probabilities must add up to one (i.e.,
the probability of finding the system in any of them is 1), hence the need for the normalisation
condition |a|?> + |B|*> = 1. The state after measurement in the two cases is |0) and |1), respec-
tively.

Now, let |y) = Zl.zial a; |iy, with a; € C such that Z?LEI |a;|> = 1, be a generic state of a system
of n qubits. If we measure all the qubits of the system |y), we obtain i with probability |a;|?,
and the state would collapse to |i). If we measure the i-th qubit, then we will obtain 0 with
probability Y ;c;|a J-]2 where J is the set of numbers whose j-th bit is 0, and the state of the
system after measuring 0 will be

X ajlj)

jel

L lajl?

jeT

The case in which we obtain 1 is analogous.

In general, if we have a state
axy [X) [y),
xe{0,1)7 yef0,1}m
and we measure the first n—qubit register, we will obtain |xo) with probability Y c o 1}~ [WES

which is equivalent to
2

Z axoy |y>

ye{0,1}m

and the quantum state then collapses to

)

Z axoy |x0> |y>
ye{0,1}

[X ’axoy‘z
ye{(),l}m

The case where the second register is measured is analogous as measuring the first register.
When we have more than two registers, the situation is also analogous.

Example 3.9. Suppose that we have the superposition

|lw) = = (|000) 4 [100) + [101) —|111)),

| =

28 Chapter 3. Quantum preliminaries

and we measure the third qubit. The probability that the measurement outcome is 0 is

ONOE

and in this case the resulting state is

1 1
—(]00) 4+ |10)) |0) = —(]000) + |100)) .
75100} +110))10) = —=(1000) +[100))
The probability that the measurement outcome is 1 is also %, and the resulting superposition is
= (110) ~ [11)[1) = = (]101) ~ [111))
V2 V2 '

Note 1. There is a well-known principle called, The Principle of Deferred Measurement,
which states that measurements can always be moved from an intermediate stage of a quantum
circuit to the end of the circuit; if the measurement results are used at any stage of the circuit
then the classically controlled operations can be replaced by conditional quantum operations.
[[NCI11], Section 4.4]. This principle will be used in Section 6.3.2.

3.1.4 Quantum gates

In order to perform computations, we need to manipulate the state of qubits. In the quantum
circuit model, operations are a special type of linear transformation applied to the vectors repre-
senting the states of the qubits. These linear transformations are unitary matrices and are called
quantum gates. Recall that a matrix U is unitary if UTU = UUT = I, where I, is the identity
matrix of size n X n, and T is the conjugate transpose (see Table 1.2). In other words, U is
unitary if U is invertible and U~! = UT. Now, let us see some general properties that the unitary
matrices satisfy, and then we will give some examples of those matrices.

Proposition 3.10. Let 7 be a unitary matrix and A an eigenvalue of 7. Then |A| = 1.
Proof. Suppose |v) is not the zero vector, and T [v) = A |v) . Then
A2 (vlv) = (AvAv) = (TvITv) = (T [v)'T v) = (I TTT v) = ().
Since (v|v) = ||v||> #0, then |A|> = 1 and hence |A| = 1. O
Proposition 3.11. Unitary matrices preserve inner products between vectors.

Proof. Let |v) and |w) be any two vectors, and U a unitary operator. Then,

(Uv[Uw) = (| UTU [w) = (v|T|w) = (v]w).

3.1. Quantum Circuit Model 29

Proposition 3.11 tell us that unitary matrices preserve the inner product, which means that
no matter how you transform a vector with a sequence of unitary matrices, the normalization
condition still holds. Indeed, if (y|y) = 1 and U is unitary then let U |y) = |y’). Tt holds that

T
W) =)' [v)=Ulw) Uly) = (WU ULy) = (wlIy) = (vly) = 1.
Proposition 3.12. The tensor product between two unitary matrices is a unitary matrix.

Proof. Let Uy, U, be two unitary matrices of size n; X n; and ny X np respectively. On one hand
(U12U) (U1 et) = (U] & U]) (U@ Us) = UfU1 @USU, = Iy @1p = I,

with n = ny 4+ ny, and on the other hand,
U) (U @) = (U0 U,) (UlT ® U}) =UU] @UaUs = Iy, @1y, = 1.

Hence, U; ® U, is unitary. O

Now, let us see some examples of important one-qubit quantum gates:

(1 0] [0 1 0 —i 1 0
h=lo 1 %=1 Ol’y_{i o}’z_{o —11’
1 0] 1 1 [1 1
S=lo i|°7T= Oelg}’H_ﬁ[l —1}

The X gate is the quantum version of the NOT gate and H is the Hadamard gate, one of
the most widely used single-qubit gates. The reason behind this is that the Hadamard gate can
be used to create superposition of states, as shown by its action on the computational basis:

1),

10) 10)

il +1’
V2 V2
1

H 1
n % Lo -1,

Other examples of quantum gates are the parametrized gates

1 0 1 1 —e*
Ui(4) = { 0 o } U2(6.2) =5 { eif i(9+A)]

Note that Uy (1) = Z,U; (5) =S,U1 (§) =T, and U, (0,7) = H. The U;(1) gates are also
known as phase gates.

30 Chapter 3. Quantum preliminaries

So far we have only seen one-qubit gates. Let us start with two-qubit gates. Since the ten-
sor product between two unitary operators is unitary, two one-qubit gates acting on each qubit
independently would form a two-qubit gate whose action is given by

Ulyr) ®@|yr) = (Ui @U2)(lv1) @ |w2)) = Up lyr) @ Us |wa),

where |y1),|ys) are two states of qubits and U; and U, are one-qubit gate acting respectively
on states |y) and |yp) .

However, there are unitary matrices that cannot be written as the tensor product of unitary
matrices. Indeed, an example of this is one of the most important two-qubit gate, the CNOT or
controlled-NOT given by

1 00O
0100
CNOT = 000 1
0010

Note that

CNOT |00) = |00) CNOT |10) = [1)NOT |0) = |11)
CNOT [01) = |01) CNOT|11) = |I)NOT |1) = |10}.

In general, for any quantum single-qubit gate U, its controlled version CU is given by

CU |00) = [00) CU |10) = |1)U |0)
culol) =[01) CU|11) =[1)U]|1).

So, if U is given by

then

CU =

oo o
o O = O
o Q OO
QU OO

It can be seen that if U is a unitary, CU is also unitary, and the application or not of U is
controlled by the first qubit

CiU =10)(0|®I+|1)(l|®U,
but if the first qubit is the target and the second qubit is the controlled one then

GU =12]0) (0] +U 1) (1.

3.2. Quantum Circuits 31

Now, an example of a three-qubit gate is the doubly-controlled NOT gate (CCNOT) or Toffoli
gate. Its matrix is given by

CCNOT =

S oo~ OO OO0
(el =R elloliaela)
— O OO oo oo
S — OO OO oo

S oo oo oo
ecloBoBoBolol =,
S oo oo~ O 0o
oleoBelael S =l =R

This gate behaves analogously to the CNOT gate, with the difference that both the first and
second qubits must be 1 in order for the third qubit to be negated.

Now, let us see an example of a n-qubit gate. If we take the gate H and make the tensor
product of itself n-times we would have an n-qubit gate H®" = HQH ®--- @ H.

Proposition 3.13. Let |x) = |x| - --x,) denote a computational basis state on n qubits. That is,
x € {0,1}" and each x; € 0,1 denotes a particular bit value. Then

x) = 17 5).

\/_2n Y-
where x- j =x1j1 Bx2/o B - - B X, jn, and P stands for XOR.

Proof. See, for instance, [Section 6.1, [YMOS]]. O

3.2 Quantum Circuits

Let us now describe quantum circuits. In the circuit representation, the horizontal lines are
called wires and they represent the qubits that we are working with, and the circuit is read from
left to right. Gates are then drawn on the qubits they act on. This is done in sequence from left
to right. The initial state of the qubit is denoted at the beginning of each of the qubit lines. So

for instance, the circuit
V)

represents a Hadamard transform applied to a single qubit, with state |y). If the input is |y) the
output is H |y) .

Now, let us assume that we have two gates U and V, that both act on a qubit |y). When V
is put after U in a circuit, then the effect of the two gates can be described as a single gate VU
which is the product between the two matrices. It can be seen in the following quantum circuit

v) —uvl— = lv) —{vu}—

32 Chapter 3. Quantum preliminaries

Example 3.14. It can be proved that

) —HHZHH = =) —{X]—

since X = HZH.

The measurement operator allows us to obtain classical values from quantum states. In
quantum circuits, it is denoted by the gauge symbol shown in Figure 3.1.

Figure 3.1: Quantum circuit symbol for measurement.

Example 3.15. Consider the following quantum circuit:

0) Ui(4)

Let us see what it produces.

1. First, we apply the Hadamard gate on the first qubit to obtain

0) &, H|O>:(|O>J§|1>).

2. Then, we apply the phase gate U; (1) to obtain

0)+11)\ i), 0)+]1)) _ [10)+e™[1)
S U““(T)—(T)-

3. Then, we apply the Hadamard gate to get

[0) +e™* [1) +el’t|1
R

:1<yo>+\1>+e‘l(!0> 1 >))

:cos%|0)—isin5|1>.

4. Finally, we measure. The probability of obtaining 0 is cos>%, and the probability of

obtaining 1 is sm2 A

3.2. Quantum Circuits 33

Figure 3.2: CNOT Representation.

The circuit representation of a controlled one qubit-gate U is

Example 3.16. The representation of the CNOT gate in a quantum circuit can be seen in Fig-
ure 3.2.
As an example, the operation a & b, with a,b Boolean variables, can be implemented with 1

CNOT gate as
&y |a)
6) laeb)

Now, if we have two quantum gates U and V in parallel, with U acting on a qubit |y) and V
acting on a qubit |@), this is equivalent to the gate U ® V acting on |y) ® |@), as it is shown in

the following circuit:
v) lv) — —

= UV

) ¢) — -

n
)®" in the quantum circuit representation

This leads to an important example.

Example 3.17. In general, the gate H*" acting on |0
can be seen as
[0)

ninputs | [0)

> 3

[[0) —{H]
Example 3.18. Consider the following quantum circuit:
0)
0)

Let us see what it produces.

34 Chapter 3. Quantum preliminaries

1. First, we apply the Hadamard gate on the first qubit and, at the same time, we apply the
identity on the second qubit, and as we know this is in fact the tensor product between the
Hadamard gate and the identity. This give us

0)+11)
V2

0)10) 2% (10)10)10) = H10) 2110} = () 10) = = 100) +]10)).

2. Then, we apply the CNOT gate to get

1

\/5(!00>+\11>)-

CNOT (i (100) +]10))) _ L (enor ooy +cnor 10)) =

V2 V2

Thus, this quantum circuit prepares a Bell state.

Example 3.19 ((CEMMO98] Hadamard Test). The Hadamard Test is a routine to estimate the
real part of the value (y|U |y) where |y) is a quantum state and U is a unitary gate acting on
the space of |y). Its quantum circuit is given in Figure 3.3.

0)

) \U |

Figure 3.3: Circuit of the Hadamard Test.

The action of this circuit can be described with the following steps:
1. First, apply H®1 to |0) ® |y) to get

0) & |y} 22 ”‘”}2“” ®w)

:\%(|0>®|w>+|1>®lw>)-

2. Then, we apply CU to obtain
1 cu 1
7 () ly) +1)@[y) —
3. Then, we apply H ®I to obtain
1
V2

(l0)Iy)+1)@Uly)).

N

2

H®I

(O ely)+heUly) — —=(H|0)@|y) +H[1)2U|y))

L [10)+]1) 0) —11)
(T®W>+T®UW>>

(10) @ (1+U) w) + 5 (1) & (- 0)).

Sl -

S

| —

3.2. Quantum Circuits 35

Let us write |y) as «|0) + B |1) with o, B € C and ||* +|B|> = 1. There exist §,€ € C,
such that U |y) = 810) +€]1). So

(10) @ (1+U) w) + 5 (1) ® (1 -0) y)

=5 (10)® ((06+5)!0>+(ﬁ+8)\1>))+%(\1>®((06—5)|0>+(l3—8)|1>))'

NI»—‘NI’—‘

4. Finally we measure the first qubit. The result is O with probability
1
Z(|a+6|2+|ﬁ+8|2)'
And, the result would be 1 with probability
1
1 (|a—6!2+|ﬁ—£]2).
Now, we can obtain the desired result with a simple computation:
1
(|a+5|2+|l3+8|) (1) +7 (Je—8[+[B—e*) (1)
(la+8 —Jo— 8> +|B+el>— B —el)
((4Re(a)4Re(0)+4Im(cx)4Im(5)) + (4Re(P)4Re(e) +4Im(B)4Im(e)))
(@)Re (8) — Im (@) Im (8)+Re(3) e(e)_Im(ﬁ)lm(e)
Re a6+Es>
Re(y|U|y).

Now, let us consider a particular case where |w) is an eigenstate of the unitary operator U, so
Uly)=¢?|y), for ¢ € [0,2n]. When we apply CU we obtain

4
1
4
1
2
Re

U

(|0>®|W>+|1>®\II/>) (|0>®1|W>+|1>®UIII/>)

Sl -

= (10) @) +[h e)
(I0>®|W>+e"”!1>®\w>)

((l0) +e® 1) @ w)) .

S5l amw

Then, applying H ® I we get

L ((1469)10) + (1-9) 1) @).

—=((10)+ €7 |1)) @]w) 22 2

V2

36 Chapter 3. Quantum preliminaries

Now, if we measure the first qubit, we get 0 with probability

411 [(1+¢9)|" = % ((14cos @)* + (sing)?)

= i (2+2cos @)

—cos?(?)
cos (2
And we get 1 with probability,
1 ; 1
1 (1-¢?) ‘2 =7 ((1 —cos@)? + (- s1n(p)2)
1
=1 (2—2cos @)

As a last example, let us give the quantum circuit representation of the Toffoli gate. It is
known that the Toffoli gate is a universal reversible logic gate. In fact, it can be used to imple-
ment the AND gate. For instance, a A b (where A is AND, a,b are Boolean variables) can be
constructed as in Figure 3.4.

@) —o— la)
) —— |b)

0) Lx1 |anb)

Figure 3.4: Circuit for a A b constructed with a Toffoli gate.

It is worth mentioning that the CNOT, Hadamard and 7' half-phase gates are a universal set
of gates [NC11] [Section 4.5], which means that we can approximate to any desired accuracy
any quantum transformation on an arbitrary number of qubits using only these gates. For ex-
ample, the circuit in Figure 3.5, shows a possible decomposition (or transpilation, which is the
process of rewriting a given input circuit to map the topology of a specific quantum device) of
a Toffoli gate, in the base [H,T,T",CNOT] [[NC11] Section 4.2].

Lastly, let us define what is the size of a quantum circuit, and what we mean by efficient
quantum circuits, since most of this thesis is concerned with those concepts.

Definition 3.20. The size of a quantum circuit in a fixed basis of universal gates is the number
of gates it contains.

3.2. Quantum Circuits 37

? +—7] XHT1iHX

H—AXAT AXATAX AT A XHT—/H

Figure 3.5: Descomposition of a Toffoli gate.

By efficient, we mean that as the size of the input grows, the size of the necessary quantum
gates such as NOT, Hadamard, 7 gates and CNOT should grow at most polynomially with the
size of the input.

3.2.1 Oracles

Many quantum algorithms are based on the analysis of some function f that is given as an
oracle. An oracle (also called black box) is a special kind of unitary transformation that is
defined by its action on the computational basis, and that is given as a gate that can be used in
a quantum circuit but whose inner workings cannot be inspected.

One of the main forms that oracles take is that of Boolean oracles. For a given Boolean
function f: {0,1}" — {0, 1}", such a unitary operator, denoted Uy, acts on quantum states in
(C2)®+m) where a € {0,1}" and h € {0,1}", and is defined by

Uyla) |h) = |a) |h & f(a)).

Observe that, when the second m—qubit register is |0), application of Uy yields an evaluation
of the content of the first n—qubit register.

We can represent such an oracle with the circuit shown in Figure 3.6.

@) U, @)

) h& f(a))

Figure 3.6: Representation of the oracle Uy.
Example 3.21. Let f: {0,1} — {0, 1} defined by f(0) =1 and f(1) = 0. A unitary operator
Uy that implements Uy |a) |h) = |a) |h @ f(a)) is

Another form of oracle is the phase oracle, defined as Py |x) = (—1)/¥)|x), where f(x) €
{0,1}. Note that, in fact, it can be obtained from a Boolean oracle. Indeed, consider the Boolean

38 Chapter 3. Quantum preliminaries

Figure 3.7: Representation of the oracle Uy of example 3.21.

oracle Uy that correspond to the same function. Then

Uy (1) @) = o) ® (%mow(x» oy 69f(X)>))
1

_ Ly, _
—\@(17 |x) @ (]0) — (1))
= (-1 ne-)

= Prlx) ®|-)

Here, we have used the fact that |[0®a) — |1 ©a) = (—1)4(|0) —|1)) for a € {0,1}. Also note
that |—) = H|1) . Therefore, we can get a phase oracle from a Boolean oracle.

These oracles typically requires a number of ancillary qubits that are initially in a well-defined
state, usually |0), to store partial results, and must be returned to the same state at the end of
the computation. This technique is used so that the ancillary qubits can be re-used. In many
cases, uncomputing a quantum register can be achieved by the inverse of the steps required for
the computation [NC11][Chapter 4].

Example 3.22. Using CNOT gates and Toffoli gates, we can represent the oracle for the Boolean
function f given by

f:{0,1}* — {0,1}
(a,b,c,d) — (aN\b)® (cNd),

with a,b,c,d Boolean variables. Indeed, we can achieve it with 4 Toffoli gates and 1 CNOT
gate, as we can see in the quantum circuit shown in Figure 3.8.

Example 3.23. Consider the Boolean function:

£:{0,1} —{0,1}
(a1,a2,a3) — (al ®a2) A (~ a2 @ a3) A (al a3).

Here, ~ stands for NOT. Now, let us build its corresponding oracle (see Figure 3.9).
As it can be seen, it has a quantum register of 4 qubits, and a ancillary register of 5 qubits, 13
CNOT, 4 NOT and 4 Toffoli gates.

3.2. Quantum Circuits 39
@))
D) D)
|c)) Quantum Register
|d))
0) X £(a,b,c.d)))
0) 4XHX XHXH— |0) }
~—— . .
Uncomputation Ancillary Register
Figure 3.8: Representation of the oracle Uy of example 3.22
jar) |a1)
a2) (X —x] a2)
|as) |as)
0) X] |f(ar,az,a3))
0) {xHx} E 0)
0) (X —x] X —x] 0)
0) k4 X} 02
0) X Hx] 0)
0) (XX} 0)

Figure 3.9: Representation of the oracle Uy of example 3.23.

40 Chapter 3. Quantum preliminaries

3.3 Quantum Fourier Transform over Abelian Groups

Now, let us talk about one of the most important unitary transformations in quantum comput-
ing, which is the Quantum Fourier Transform (QFT) . The Quantum Fourier Transform is
the quantum implementation of the discrete Fourier transform over the amplitudes of a wave
function. And as a matter of fact, the QFT lies at the heart of quantum algorithms such as
Shor’s factoring algorithm, the quantum phase estimation algorithm and the algorithm used for
the Abelian HSP.

So, in this section we define the Quantum Fourier Transform over finite Abelian groups, and
for that, we require the basic elements of representation theory, given in Section 2.5. Then we
will see some particular examples we are interested in, together with their implementation.

Definition 3.24. Let G be a finite group. We can form a vector space over C which has the
group elements of G as a basis, denoted by {|g) : g € G}, such that the addition is given by

Y ogle)+) Bele) =) (ag+Be)lg)

geG geG geG

where o, B, € C for all g € G. Scalar multiplication is given by

AY oglg) =) Aaglg).

geG geG

Definition 3.25. Let G = 7Z/NZ. Consider C" such that 2" > N = |G|, so that to each group
element g we can associate a basis element |g). Then, the QFT over G is the transformation
with the following action on the basis states:

Falg) = %,;G xe () [B)

where ¥, (h) = ¢*™igh/N for g .h € G. For basis elements that do not represent group elements
Fg 1s the identity. For this reason, we usually omit the part of the QFT that acts as the identity.

Note 2. Equivalently, the Quantum Fourier Transform can be viewed as a unitary matrix

1
Fg = ﬁgﬂhZE:G%g(h)) (gl

In fact, the equality holds, because, for a basis state | j), we have that

Folj) = (% Y 2e(h)) <g|>)= % Y xe(h)) (gl)) = % Y () |h).

&,heG g,heG heG

3.3. Quantum Fourier Transform over Abelian Groups 41

Now, let us see that it is unitary, i.e., FGF, - FGTFG = Iy. It holds that

T
FGFj = Xel) (Xo(h) |h) g!)

1
- th %60 1) {g]) gl
=LY) ele) o
gheG
1
P CCICL
1
== 11h) (h
TPRILL
e
NhGG
o
— Iy

The same holds for FéFg. Furthermore, from the unitary property it follows that the inverse of
the Quantum Fourier Transform is Fg;

Now, let us see how we can implement the QFT. For that, let us first consider the case when
G =7/NZ,with N =2". So far, we know that F; maps a basis element |x) to \/LN Z]yvz_ol eAT/N |y

However, if we use the fractional binary notation on the integer y, y/N = Zzzlxﬂ’k or as
0.y1y2...yn, the action of the quantum Fourier transform can be expressed as

=1 277:1(i ykZ*k)x
Foly) = -1 Z ¢ NE T)
o mxyk
_ S)
\/_ -
| 2min2
- 5® (!0> +e)
k=
_ % (2m[0xn |1>> R ® <|0> _’_eZHi[O.xl.xz...xn,l.xn] |1>>]

Then, the representation as a quantum circuit can be seen in Figure 3.10. The quantum gates

42 Chapter 3. Quantum preliminaries

used in the circuit of n qubits are the Hadamard gate H and the phase gate

1 0
Rk: 0 eZﬂ?i/Zk :

|)Cl> R, |—| R; |— . _I R, I |0>+62m'3§1...xn]|1>

o |0>+627Ti[0~)(2~-xn]|1>
|)C2> H |—| Ry |_ Ry, 7

. |0>+62m[0AX3mxn]|1>
[x3) ~

.2ﬂi[0.xn71xn]
1) e HHR, |0)+e 1Y)

V2

e 0)+¢>™0-nl] 1)
%) [Hf— P

Figure 3.10: Circuit of the Quantum Fourier Transform Case N = 2".

The operations on each individual qubit can be implemented efficiently using one Hadamard
gate and a linear number of controlled phase gates. The first term requires one Hadamard gate
and (n— 1) controlled phase gates, the next term requires one Hadamard gate an (n — 2) con-
trolled phase gates, and the last step requires only one Hadamard gate. Hence, n+ (n+1) +
...+ 1=n(n+1)/2 = O(n?) quantum gates (which is quadratic in the number of qubits) are
needed. This means that it can be efficiently implemented.

One of the main reasons why we introduce the QFT, is that it lies at the heart of many applica-
tions of quantum computing and simulation that demonstrate exponential speed-ups compared
to the best-known classical counterparts. In particular, as part of the quantum phase estimation
sub-routine. In this procedure it is used the inverse of the Quantum Fourier Transform, so let us
see its quantum circuit.

To invert the QFT, we must run the circuit shown in Figure 3.10 in reverse, with the inverse
of each gate in place to achieve the transform

1 N—1
eZﬂ'ijk/N

=

Since the Hadamard gate is self-inverse, and the inverse of the rotations gate Ry, is given by:

. 1 0
R, = 0 e 2mi/2*)"

= 1J)-

the inverse QFT circuit is:

3.3. Quantum Fourier Transform over Abelian Groups 43

x1) RY AR [RS

x2) R\ HR R HH

[x3)

Ry HH =

|xn71>

bon) —{H]

Figure 3.11: Circuit of the Inverse Quantum Fourier Transform Case N = 2".

Note that the quantum circuits shown in Figures 3.10 and 3.11, are only a valid implementation
of the QFT and the inverse of the QFT, when N is a power of 2. However, efficient quan-
tum circuits for the Fourier transform over Z/NZ with N odd are well studied. For instance,
see [Lom04] [Algorithm A.2.3] which use an implementation based on the Quantum Fourier
Transforms of powers of 2 to get an approximation of the odd one, within a desired error mea-
sured by the total variation distance defined as follows:

Definition 3.26. Given two probability distributions D and D' over {0,1,...,M — 1}, let |D —
D'ry = 535, D(k) = D(K')].

Theorem 3.27. [Lom04] Given an odd integer N > 13, and any \/2 > € > 0. Then for Fg with
G =1/NZ,
1. There is a unit vector |y) such that the output |v) of the algorithm A.2.3 in [Lom04]
satisfies |||v) — Fg |u) |[w)|| < €, with |u) an element of G = {]0),|1),...,|[N—1)}.

VN

2. Fg can be computed using at most [12.53 4 3log, Y| qubits, and the algorithm has

operation complexity

VN VN 1
0] (lng T <10g2 10g2 T + 10g2 E)) .

3. The induced probability distributions D, from the output of the algorithm, and D from
Fg |u) ® |w) satisfy that |D, — D|ry < 2& + €.

Proof. The proof is fundamentally technical and it can be seen in [[Lom04] Appendix A]. [l

331 QFTover (Z/pZ)".

Now we know how to implement the QF T for Z/NZ when N = 2" and when N is odd. Consider
the Abelian group G = (Z/pZ)" with p a prime number. The vector space over C which has the

44 Chapter 3. Quantum preliminaries

group elements of G as a basis is isomorphic to the tensor product of each of the vector spaces
over C of Z/pZ, because we can map one basis to another by

[(X1, %2, 5 X)) =2 x1) @ [x2) @+ @ |x)

for x; € Z/pZ. The QFT over a direct product of the cyclic groups Z/pZ is the tensor product
of the QFT over each group, i.e.,

n
Fg = ®F Z/pZ>
i=1
which acts on the entire C-vector space of G. Indeed, note that it is unitary, since the tensor

product of unitary operators is unitary. Furthermore, since for any g,h € (Z/pZ)" there exist
gi,hi € Z/pZfori=1,...n,suchthat g = (g1,...,g,) and h = (hy,...,h,), it holds that

n
Q) Fzypz
i=1

_ 1 (Y Xgl(h1)|h1><gl|>®%< Y, xe(h2)|h) <g2|)®...®
82,

VP 81,mEL/pL hy€Z/pZ
1
= X n(hn) |hn> <8n|>
\/ﬁ (gmhnEZZ/pZ *
1
——= Y Y e () X ()) (1] @ @) (gl

g1 MEL/PL gn,hn€L/PZ
2mig 1 hy _~_m_._277:ignhn

Ly T S) dale sl (o
g1,M€EL/pZ 8n,hn €L/ pZ

= Y x| (gl
g.he(Z/pL)"
—F;. (3.1)

-3

-3
S

3

Then, we can implement the corresponding QF T's over Z/pZ. Now, each quantum circuit
is independent from each other and by Theorem 3.27, we have that for any v/2 > €’ > 0, the

Fyp7 can be computed using at most [12.53 +31og, \é—ﬁ qubits and with complexity of order,
1
0 <log2 g (log2 log, g +log, E)) . (3.2)

Now, let Dy, ...,D,, be the induced probability distributions from the output, and Dy,...,D,
from each Fy,7 |u) ®0). Define D, and D as [T\, Dy, and D = []_, D;, respectively. Then
by [LP17] [Section 4.7], the total variation distance between D and D' is,

n
\D, — DIy < Y IDy, —Dilrv. (3.3)
i=1

3.4. Quantum Optimization 45

! ! 2
So, forv2 > ¢’ = £>0,each |D,, —Dj|ry <2% + <8—> . Hence,

n

L £ /g2 £)?
|DV_D|TV < Z |Dv,- _Di|TV <n <2;—{— (Z)) — 2€—|—Q, (34)

i=1 n

Thus, F7,,7)" can be computed using at most n [12.53+310g, n‘/?ﬁw , qubits, and the complexity
would be of,
VP

0 <1og2n? <log2 1og2ng +log, g)) . (3.5)

Example 3.28. Let G = (Z/27)". Then,

Fslg) = Z(f[(1 >|h> S N

hEG hGG

Thus, the Quantum Fourier Transform (QFT) over (Z/27)" is equal to H®".

3.4 Quantum Optimization

In Chapter 7, we will be interested on finding the multiplication table of a non primitive binary
semifield of order 32 using quantum techniques. For that, first we will find a Boolean formula,
and then, in order to determine whether there are assignments that makes the formula true, we
will rephrase it as a Higher Order Binary Optimization problems, HOBO for short, so that we
can apply for instance, Quantum Approximate Optimization Algorithm, QAOA for short, or
Quantum Adabiatic Computing, for finding those assignments. Thus, in this section we will
give a brief explanation of Quadratic Unconstrained Binary Optimization problems, QUBO for
short, and HOBO. We follow [CGC23][Chapter 4-5].

Let us begin by defining what are QUBO problems. They are minimization problems in which
the cost function is a quadratic polynomial over binary variables with no restrictions. More
explicitly, they are problems of the form

Minimize ¢q(xo, ... ,Xm)

subjectto x; € {0,1}, j=0,...,m,
where g (xo, ...,Xn) is a quadratic polynomial on the x; variables. Now, optimization problems
in which we are asked to minimize a binary polynomial of any degree, with no additional restric-

tions, are called Higher Order Binary Optimization problems, HOBO for short, or Polynomial
Unconstrained Binary Optimization problems, PUBO for short.

Example 3.29. As an example, consider the following Boolean formula on binary variables,
given in conjuctive normal form (CNF),

(X()\/ ~x1V N)Cz) A (N XoVx1V NX2) N (X() A\l \/)CQ).

46 Chapter 3. Quantum preliminaries

We want to determine assignments of values that make the formula true, if they exist. For
that, let us rewrite the problem as an instance of a HOBO problem by mapping the operations
xVy,xAyand x to xy,x+y and 1 —x, respectively, so it can be represented as the polynomial,

q(x0,x1,x2) = (1 —x0)x1 (1 —x2) +x0 (1 —x1) x2+ (1 —x0) (1 —x1) (1 —x2)
= —XxpX1X2 + 2x0X2 — X0 —Xp + 1.

Hence our problem is,
Minimize ¢ (xg,x1,x])

subject to xq,x1,x2 € {0,1}.

Thus, if the minimum of the polynomial is O, then the formula will be satisfiable. Otherwise,
the formula will be unsatisfiable.

Now, one way of solving this HOBO problem is by transforming it into a QUBO problem by
introducing auxilary variables, so that the objective function is a binary quadratic polynomial.
For more detailes see, for instance, [CGC23][Section 5.1.5]. Then we can apply Quantum An-
nealing to find those assignments.

In fact, Quantum Annealing is a form of computation that efficiently samples the low-energy
configurations of a quantum system. However, it is not a universal quantum computing model,
but it is closely related to Adiabatic Quantum Computing, which is indeed universal. It was
introduced by Farhi et al. [FGGS00]. In contrast with quantum circuits, that rely in the applica-
tion of discrete operations, adiabatic quantum computing which is polynomially equivalent to
the quantum circuit model [AvDK*04], relies on the use of continuous transformations, namely
a time-dependent Hamiltonian H (¢) of the form

H(t) =A(t)Ho+ B(t)H,,

with Hj an initial Hamiltonian and H; a final Hamiltonian whose ground state encodes the so-
lution to the problem of interest, and H(¢) gradually changes the acting Hamiltonian from the
initial to the final one by using real-valued functions A, B that accept inputs over the interval
[0, T] for some time T and such that A(0) = B(T) = 1 and A(T) = B(0) = 0.

Now, in order to apply Quantum Annealing, the final Hamiltonian H; has to be selected from a
certain, restricted class, for instance, an Ising Hamiltonian, which is of the form

=Y JiZiZi— Y hiZj,
Tk 7

where each Z; is a Z gate acting on qubit i and the coefficients Jj, h; are real numbers. In our
case, after transforming from HOBO to QUBO, the QUBO can be seen as Ising Hamiltonian
by a suitable sustitution, x; = (1 —Z)/2, which will be the Hamiltonian that encodes the as-
signemts that satisfies the Boolean formula.

3.4. Quantum Optimization 47

Another alternative for solving HOBO problems is using QAOA. This is a hybrid method in
which both a classical and a quantum computer are used. It was initially proposed by [FGG14]
as a discretization of Adiabatic Quantum Computing, so that it can approximate optimal so-
lutions to combinatorial optimization problems. It is a gate-based algorithm that can be un-
derstood to be the counterpart to quantum annealing in the quantum circuit model. In contrast
with quantum annealing, the binary polynomial can be of any degree, and we can transform it
directly into a Hamiltonian with the substitution x; = % It can be seen that then we will have
a Hamiltonian that is a sum of tensor products of the matrix Z [CGC23][Section 5.1.5]. Thus,
in Chapter 7 we will study ways of formulating the problem of finding satisfying assignments
of a Boolean function f: {0,1}" — {0,1} as QUBO and HOBO problems that can be solved

with QAOA and Quantum Annealing.

48

Chapter 3. Quantum preliminaries

Chapter 4

Some Quantum Algorithms

We have now introduced all the concepts that we need to study quantum algorithms. A quantum
algorithm consists in an initial state which is transformed by a series of quantum gates and
eventually measured. In this section, we explicitly give some highly influential examples of
quantum algorithms, such as Grover’s algorithm, Simon’s algorithm and the Quantum Phase
Estimation algorithm (which is a quantum algorithm that estimates the phase corresponding to
an eigenvalue of a given unitary operator), that we will use in the next chapters.

4.1 Simon’s Algorithm

In 1994, at the IEEE Symposium on the Foundation of Computer Science [Sim94], Daniel R.
Simon, introduced a problem that a quantum algorithm can solve exponentially faster than any
classical algorithm. In fact, it was one of the first quantum algorithms to show an exponen-
tial speed-up versus the classical algorithm for solving a specific problem, since any classical
deterministic algorithm that solves Simon’s problem requires (1/2") queries [CQI18]. The
definition of Simon’s problem is as follows:

Given: A function f: {0,1}" — {0,1}".

Promise: There exists a secret string s € {0,1}" with s # 0, such that for all
x1,x2 € {0, 1}, f(x1) = f(x2) ©@xp =xp0rxp = x] Ds.

Problem: Find s, the secret string.

The algorithm that gives solution to this problem uses a quantum subroutine and a classical
post-processing procedure. We first show the quantum part, which is the following:

49

50 Chapter 4. Some Quantum Algorithms

Algorithm 4.1 (Simon’s Algorithm-Quantum Procedure).
Input: An oracle that performs the operation Uy |a) |0) = |a) | f(a)) for a € {0, 1}".

Quantum Procedure:
1. Initial state: |0)*"|0)*"
2. Create superposition by applying H®" on the first register.
3. Apply the black box Uy.
4. Apply the H®" on the first register.
5. Measure the registers.

Output: z € {0,1}" which is an element in H+ = {x € {0,1}" : x-s =0 mod 2}.

The quantum procedure is implemented in the circuit of Figure 4.1.

‘O>®n] H®n L | H®n _|/7/\|=
Ur

0)=" A=

Figure 4.1: Circuit of the Quantum Procedure to Solve Simon’s Problem.

Now, let us understand the outcome of the above circuit with a litte more detail.
Step 1 First, the algorithm starts with two registers, initialized to |0)*"|0)*"

Step 2 Then, we apply the Hadamard transform to the first register, which gives the state

Z|0

| >®n|0>®n H®'®I

Step 3 We apply the oracle Uy to obtain
5 L1002 Y L)
V2 e A
Step 4 We apply another Hadamard transform to the first register. This will produce the state
Z (—1)% \j>> £ (k)

1 23! H®”®I —~
X K0) ;(

21 1 2=l '
=Y (2— y (—1)”‘|f(k)>> .
k=0

j=0

2"—1

4.1. Simon’s Algorithm 51

Step 5 We measure the first register. The probability of finding the state |j) is

1 2"—1

S WV

k=0

But since there exist exactly two elements xj,x;, such that f(x;) = f(x;) = z for each z €
Range(f), then

1 m_1 . 2 | . . 2
7 L CDHRN =l X (DM D)
k=0 zE€Range(f)
2
1 . .
=||5 Z (=1)/ 4 (=1)71®9)) |7
2 ZERange(f)< >
2
1 : .
=llz X D+ R)
z€Range(f)

Now, when js is odd then the expression will vanish, but when js is even then the expression
is 2=("=1)_ Thus, the output z € {0,1}" is a uniformly random element of H- = {x € {0,1}" :
x-s =0 mod2}. Now, we can run the quantum subroutine O(n) times to get a list of linearly
independent bitstrings z1,...,z,. By Lemma 2.61, we can ensure that span{zj,...,z,} = H*
with high probability.

The second step of Simon’s algorithm is a purely classical post-processing step given by:

Algorithm 4.2 (Simon’s Algorithm-Classical Procedure).
Input: z;,...,7, € {0,1}"

Classical Post processing: Apply Gaussian elimination to
Z%xl + z%xz + - 4+ Zix, = 0 mod2
Z}lx 1+ z%xz + -+ + Zx;, = 0 mod2

Output: s € {0,1}".

Simon’s problem is a special case of the (Abelian) Hidden Subgroup Problem. For that, let
us introduce the Hidden Subgroup Problem, and see why Simon’s problem is a special case of
it.

52 Chapter 4. Some Quantum Algorithms

4.2 The Hidden Subgroup Problem

In this section, we start by stating the Hidden Subgroup Problem (HSP). Then, we see that
Simon’s problem is an instance of it. After that, we give a quantum procedure for finding
subgroups of the form (d) in a cyclic group (Z/NZ,+) (d € Z/NZ). Lastly, we draw our
attention to a quantum algorithm that find subgroups H of an Abelain group, (Z/pZ)", with p
a prime number. For that, we follow [Lom04].

Definition 4.3. Let G be a group and H < G one of its subgroups. Let S be any set, and
f: G — S be a function that distinguishes cosets of H, i.e., for all g;,g> € G, f(g1) =
f(g2) < g1H = goH. The hidden subgroup problem (HSP) is to determine a generating
set for the subgroup H given the ability to evaluate f on elements of G.

It is worth mentioning that classical query complexity of the HSP is known. In fact, suppose
that G has a set S of N subgroups such that Hy N H, N ...NHs = {e} (e the identity of G). Then,
a classical computer must make Q(v/N) queries to solve the HSP [HK18]. For example,
on Simon’s problem, we worked over the group (Z/27)" with the operation bitwise addition
modulo 2, and the subgroup H is {0",s} (so the goal of finding s is equivalent to learning the
subgroup H). Then by [HK18], a classical computer must make Q(ﬁ) queries to solve it.
However, as we saw in the previous section, there is a quantum algorithm that makes O(n)
queries to solve it.

Now, let us see a quantum procedure for finding subgroups of a cyclic group of order N.

Example 4.4. Let N be an integer greater than 1, let X be a finite set, and consider the addi-
tive group of integers mod N denoted by G = (Z/N7Z,+) . Let us state the problem, and see a
solution.

Given: Suppose we are given a function f : G — X that separates cosets of the subgroup
H = (d) of G.
Problem: Determine a generating set for H.

First, note that we can represent G and H as {|0),|1),...,[N—1)}, H={|0),|d),...,
|(M —1)d)}, where M = |H|. Second, assume we have U that performs the unitary transform,

Ur) ly) =) ly® f(x)) ,

for x,y € G. In the quantum circuit model it would be represented by
X X
[x) U,)

) [f(x) &)

Now, let us determine a generating set for H, trying to reduce the number of queries to the
oracle Uy. The algorithm is as follows:

4.2. The Hidden Subgroup Problem 53

Algorithm 4.5 (Abelian Hidden Subgroup Problem for Cyclic Groups).
Input: A black box that performs the operation Ufla)|0) = |a)|f(a)) for
ac {|0>7|1>77|N_1>}

Quantum Procedure:
1. Initial state: |0) |0) .

2. Create superposition over all elements of G by applying the Quantum Fourier
Transform 3.25 to the first register.

3. Apply the black box Uy.

4. Measure the second register.

5. Apply the quantum Fourier transform to the first register.
6. Measure the first register.

Output: z € {0, 1}, which is a bitstring that represents a multiple of M.

Let us see in more detail the steps of the algorithm:
Step 1 Initial state |0) |0).

Step 2 Apply the quantum Fourier transform to the first register of the zero state, with this,
we obtain a superposition over all elements of G:

QFT®I
0)[0) —— Z /) 10).

Step 3 Now, apply Uy, which is actually the coset separating function f, to obtain

1N1

\/—Z|J \/—Z|J

Step 4 Now, since we know that f is a function that distinguishes cosets of H, we measure the
second register collapsing the second register to some state |f(j)) and leaving the first register
with those values where they agree on f, namely the coset j + H

N—-1 M-
7 L IO) e 3 i L Lisa) 10
j: :

heH

54 Chapter 4. Some Quantum Algorithms

Step S Then, apply the quantum Fourier transform Fy on the first register to get

1 Mt OFT
W Z |+ sd)
s=0

1M1

\/_;

1 N—-1
Z 27mi(j+sd)k/N ‘k>

— M—1

_ Z mjk/N|k Z e27risdk/N
VM. k=0 s=0

Using that Md = N, we can evaluate the geometric series

le (eZnik/M>s

s=0

in which if M|k then there exist ¢ € 7% such that k = Mc, so

Mil <627rik/M)s _ Mil <62m‘Mc/M)s _ Mil (e271€)° = MZ =M

5=0 s=0 s=0 s=0
But when M 1 k then
1 1_(27rikM/M> -~
MZ GO ¢ I el G I N
= 1 — g2mik/M 1 — 2mik/M 1 — g2mik/M
Therefore
. ik /N =, isdk /N 1 27i jk /N =, isdk /N
27ij |k o2 7is — e Tij |k> g2 Tis
i 5, Vi | L L
MR
1 2T k/N & oiarn
+ — Tij |k e TTis
vVMN kZO Sz‘b
Mik
_ 1 Nil o2ijk/N k) M
VMN | =o
Mk
M < 21ij
__7 e JtM /N ‘Z‘M>
e
d

~1
_ % (Z ezmj’M/N\tM)> ‘
1=0

Step 6 Finally, measuring the first register, gives as a result a multiple of M in {0, M,...,(d —
1)M} with uniform probability. We repeat this quantum procedure / times for some positive

4.2. The Hidden Subgroup Problem 55

integer /, and obtain / multiples of M, let us call them #;M,...,;;M. Then, we compute the
greater common divisor of all of them ged(7y,...,#) with the Euclidean algorithm. Now, by

!
Lemma 2.63 we know that Pr(ged (t1,...,4;) = 1) > 1 — ()%, hence we determine M, and
therefore H (because d = 1%).

Quantum algorithm for the HSP over finite Abelian groups of the form (Z/pZ)" .

In Chapter 6 we will be interested on finding certain types of substructures of a finite dimen-
sional Algebra over IF,, with p a prime number. For that, we state the problem as an instance of
the (Abelian) HSP. Here, we present a quantum procedure to find a subgroup H of the Abelian
group (Z/pZ)", with n a positive integer, based on [Lom04].

Let G (Z/pZ)" . Suppose we are given a function f : G — X to a finite set X such that there is
a subgroup H < G with the property that f separates cosets of H. We want to find a generating
set for H. Now, the p" = N elements of G which has the form of n-tuples x = (x1,...,x,) can
be represented as |x;) |x2) - - - |x,) . Let us see a quantum algorithm for the HSP over this kind of
finite Abelian groups. For now, we ignore the size of the quantum circuit. However in Chapter 6
we will give explicit details on the size of it. The algorithm is as follows:

Algorithm 4.6 (Finding the orthogonal of a subgroup H of a group of the form
(Z/pZ)").

Input: A black box which performs the operation Uy |x) |0) = |x)|f(x)) for x in the
vector space over C which contains the group elements of G.

Quantum Procedure:

1. Initial state: [0)*™|0)*"2, for r; = n[log, p] and r, € N (ancillary qubits for the
oracle Uy).

2. Create superposition over all elements of G by applying the Quantum Fourier
Transform (Equation 3.1) to the first register.

3. Apply the black box Uy.

4. Measure the second register.

5. Apply the Quantum Fourier Transform (Equation 3.1) on the first register.
6. Measure the first register.

Output: z € {0,1}" a bitstring of an element in H- (here H-, is as Definition 2.57).

Let us analyze the procedure step by step.

Step 1 Initial state |0) |0) .

56 Chapter 4. Some Quantum Algorithms

Step 2 Apply the Quantum Fourier Transform (Equation 3.1 from Subsection 3.3.1) to the
first register in order to obtain a superposition over all elements of G :

0)0) 2= z)]0

geG

Step 3 Apply Uy, to obtain

Zlg 0) = Z|g £ (2)

gEG gEG

Step 4 Measure the second register. So, since we know that f is a function that distinguishes
cosets of H, i.e., f returns the same value if and only if g and g, belong to the same coset of H,
measuring the second register will collapse to some state |f(g;)) and will leave the first register
with those values where they agree on f, namely the coset g, + H.

So, if {x1,x2,...,x;} is a Z/pZ-basis of the subgroup H of G, then for all z € Range(f),
there exists g, € G such that z = f(g, + Y/ Aix;), for all 0 < Ay,...,4 < p—1. So, the
probability of the outcome f(g;) is

2
1

\/ﬁ g;G g) =@|H|,

such that f(g)=z
and the state after the measurement is,

|
NV 18)|2) = —=
|‘g |G geG |H| ﬂ,l,.g«l_o

such that f(g)=z

i=1

!
8z+zlixi> 2).

Step S Apply the Fourier transform Fg; from Subsection 3.3.1, Equation 3.1, to the first register
to obtain

1 p-l

VIH| xl,gﬁ,

!
g+ Y /lixi> |2)

i=1

g +Zl’l-x~>|z> orr, 1 1 Y pi] Xg(h) |h) <g
=0) i=1 - V G| \/ |H &heG Ay,.. ,/11_)

I h)lh .
\/’E\/Whgéxl Z %gz+zi:,xixi()1h) |2)

From Section 2.5, for g,h € G with g = (g1,...,8x),h = (hy,...,h,) and g;, h; € Z/ p’Z, for all

i=1,...,nand a)p—exp(> > we have that,

xg(h) wgh wg1h1+ +8ihi

4.2. The Hidden Subgroup Problem 57

Thus,
1

r! L Axr)
% L (MR [2) = < wp & h ”)Ih> |2).
\/’G V |H|h§ékl Z gt Lizy A \/|G V|H] hg'G /11,.; 3

Step 6 Measuring the first register, we obtain a random element uniformly distributed over H.
Indeed, if we measure the first register, the probability of measuring a state |h) is

2
1 L O L
H\/rGHHrZZ< I N L
geGheG \A,...,4;=0

Then extracting the common factor ®”4:, the probability becomes

2
p—1 1
o h(g+YXi_ 11%)) ‘Z) _‘

hgz wh/ltxz |Z>
‘FGHH (Z VT H<Z)

Now, when hx; # 0 mod p for some i = 1,...,/, then by Proposition 2.59 we have that

p—1

lhxi _
Y 0" =0
Ai=0

Otherwise, 1 € H*, and the probability of finding the state |A) is,

[p—1 2 1
ngZH<Z a)2>| =— l(l,pl)2:plfn.

i=1 \ =0 r'p

1

T
VIGlIH|

Thus, we obtain an element uniformly distributed over H L

Run the algorithm #; + [log, G| times to obtain gi,... ;81 +log, 6] elements of H L. Now, recall
that from Section 2.6 that @, [10g, 67 (H 1) denotes the probability that ¢ + [log, G| random
elements of H generate the entire subgroup. Thus, by Theorem 2.62 we know that
. N 1
Pty +log, 6| (H) = Pr ((81,82,---,gn+nog2G}> :HL> >1- o

Note that & € H if and only if x, (§x) = 1 for g, € H+ withk=1,2,...,t; + [log, G|, which
is equivalentto - gy =0 forallk=1,2,...,7; + [log, G] (see Section 2.5). Now, let us consider
the following system of 7] 4 [log, G| linear equations:

gixi + &% + e+ &1 xn = 0 modp

~1 ’) : . 5 : _
gtl+“0ngWXI + gtl+[10g2 G‘|x2 + PP + gl}:ll+|—10g2G-‘xn = O mOd p

The second step of the algorithm is a purely classical post-processing step in which, for instance,
an algorithm like Gaussian elimination can be used to compute the solution of the system over
IF),. In fact, taking #; = s for s a positive integer and applying Gaussian elimination the solutions
will generate H with probability at least 1 —27°.

58 Chapter 4. Some Quantum Algorithms

4.3 Quantum Phase Estimation

As another application of the QFT, we have the Quantum Phase Estimation algorithm. It is used
to estimate the eigenvalue of an eigenvector of a unitary operator. The algorithm was initially
introduced by Alexei Kitaev in 1995 [Kit95]. The problem is formally stated as follows:

Given: U a unitary operator that operates on m qubits and an eigenvector |y) of U such
that U |y) = ™0 |y), 0< 6 < 1.

Problem: Find the eigenvalue ¢**® of |y), which is equivalent to estimating the
value 6.

The phase estimation algorithm is:

Algorithm 4.7 (Quantum Phase Estimation). .
Input: A black box which performs controlled U/ operations, for any integer j, an
eigenstate |y) of U with eigenvalue ¢>*%, and n qubits initialized to |0).

Quantum Procedure:
1. Apply H®" to the first n qubits.
2. Apply all the n controlled operations CU 2 for 0 < j<n—1,on the second register.
3. Apply the inverse Quantum Fourier Transform on the first n qubits.
4. Measure the first n qubits.

Output: |2"0 | with probability greater or equal than %, from which we can estimate 6.

The procedure is implemented in Figure 4.2.

[10) HH]

0) _@ OFT"
| o)

)

2"6)

HE

0 1

U2 —U2 — ... —UZ"_I

Figure 4.2: Circuit of the Quantum Phase Estimation

4.3. Quantum Phase Estimation 59

Let us analyze the steps of the procedure:

Step 1 Create superposition by applying H®" on the first register. We get,

S(E0)e

Step 2 Apply all the n controlled operations CU 2 for 1 < j<n-—1. Note that, U 2 ly) =

Ue*™2’0 and the transformation implemented by the controlled gates applying U 20, U? N 2!
is |k) |w) — |k) U* |y) . Indeed, let Z;?;(l) 2" 1=Jk, _1_; with k; € {0,1} be the binary represen-
tation of k, so

@
10y [y 22—

n—1 X
y 2=k, s n—1 L
Uj:O n J _ HUzn 1]knflfj.

Recall that the unitary CU operation applies the unitary operator U on the target register only if
its corresponding control qubit is |1) . So, U?'Xi will only be apply if the qubit k; is 1. Therefore,

2"—1 0 1 2| 2"—1
CU2 CU? ,...CcU? 1 27ikO
75 L Y).
k=0

2}’[

Step 3 Apply the inverse Quantum Fourier Transform to obtain

n—1

o 2miok QF T omiko 1 —2mkx/2"
k) ® e x)®
n—1 Hn—1
1 ZZ 22 e —2mik)(x—2"0)/2" ‘x> ® |W>
x=0 k=0

Step 4 Lastly, we perform a measurement of the first register. First, note that 20 can be written
as a+2"0 where a = [2"6] and 0 < || < 2,,+1 SO

o 2mik(x=2"0)/2" _ ,—2mik(x—a—2"8)/2" _ , — 22k (x— a) ,27iks
Then,
1 — nl 1 on— 12111
L —2mik)(x— 2"9)/2"‘ o i (x—a) 2mk6’)).
LI v T

Thus, performing a measurement in the computational basis on the first register yields the result
|a) with probability

2 on— 1
L Z e—%(x—a) o27ikS Z 2mikd

bl

60 Chapter 4. Some Quantum Algorithms

which is 1 if 6 = 0. However if 0 # 0 then using the formula of the geometric series

nl 1 —x
k
X =

k;()

n

1—x’

we have that

2 275) " 2 2
on—1 1 —(e“™ __2mis2n
2y |) e
22n = T o2n 1 — g2mid C22n | | _ 2mid
Since |6 < #, it follows that 262" < 7, and hence 762" < 7. Now,

’ - em"f”‘ = /T—2cos(2782") + 1 = 2sin (282",

and

(1 —emi‘ — /1—2cos(278) + 1 = 2 sin (x5)|.

Since, |sin (18)| < |78 and [sin (182")| > 222" — 452,
2
2 2
(1 (482\\P_ 4
—\2" \ 27§ 2

4.4 Grover’s Search Algorithm

1 1= e27ri52”

2o

1— eZm’6

As we mentioned in the Introduction, another advantage that a quantum computer has over a
classical computer is in searching databases. Indeed, Lov Kumar Grover introduced a quan-
tum algorithm, based on the concepts of superposition and quantum parallelism, for searching
databases that is quadratically faster than any possible classical algorithm for the same purpose.
More explicitly, consider a list of N items in which we want to locate an element ® that we say
is marked. To find the marked element using classical computation, in the worst scenario, we
would have to check all of them. On a quantum computer, however, with Grover’s amplitude
amplification technique, the item ® can be found in O(v/N) queries with probability at least %
Now, let us present formally the problem and the quantum procedure of Grover’s algorithm
more explicitly:

Given: The search problem can conveniently be represented by a function f :
{0,1,...,N—1} — {0,1}, with N = 2" and n € N such that

fx) =

{0 if x 1is not a marked element

1 if x 1is a marked element

Problem: Find x such that f(x) = 1 (that is, a marked element).

4.4. Grover’s Search Algorithm 61

Let us assume that we can access f in the form of a standard quantum oracle. This standard
oracle, denoted as Uy, uses an ancillary qubit to compute

Uy lx) y) = %) [y @ f(x)) -
It holds that,

|x)[y®1) for x=o, (ifandonlyif f(x)=1)

Ur) ly) = {|x> ly) for x# ®, (if and only if f(x) =0).

Another vital ingredient is the reflection Uy = 2|s) (s| — I, where |s) = ﬁ ZZ;’;OI | /), called the

diffusion operator. Its implementation can be seen in the circuit from Figure 4.3.

n
H X ZH X[H

Figure 4.3: Circuit of the diffusion operator.

Now, based on [JO6] and [BBHT98] we present Grover’s algorithm, also known as the quantum
search algorithm, which is as follows:

Algorithm 4.8 (Grover’s quantum search).
Input: A black box Uy which performs the transformation Uy |x) [y) = |x) [y ® f(x)),
where f(x) =0 for all 0 < x < N = 2" except ® for which f(w) = 1.

Quantum Procedure:
1. Initial state: |0)*"|0).
2. Create superposition. Apply H*" to the first n qubits, and X H to the last qubit.
3. Apply G =UUy, L%ﬁj times.
4. Measure the first n qubits, and apply H on the last qubit.

Output: @, with probability greater or equal than %

The quantum procedure is implemented in the circuit shown in Figure 4.4.
Let us analyze the algorithm step by step.

Step 1 The algorithm uses a register with n+ 1 qubits. It starts out with |0)" |0) as the ini-
tial state.

62 Chapter 4. Some Quantum Algorithms

Repeat O(y/N) times

N
o o o
~ ~ ~ ~—

<
)
=] 5] [5]
3\
=] [5] [g

Figure 4.4: Circuit of Grover’s Quantum Search.

Step 2 We apply the NOT gate, and after that, we apply the Hadamard transform to the last
qubit,

10)710) =25, 10y (1))

[®n®H
—0)"|-).

Now, we apply the Hadamard transform to the first n qubits, which gives the uniform superpo-
sition |s) given by

H®n 1 N-1

0)" =) =) =1s)]=)
= E

Step 3 We apply the oracle Uy to the state |s). Now, after applying Uy, we apply Uy =2|s) (s| —
I, known as the diffusion operator. This transformation is, thus, U;Uy, which correspond to a
rotation. Actually, it rotates the initial state |s) closer towards |®). Let us see why. Consider the
following sets A = {x € {0,1}": f(x)=1}and B={x € {0,1}": f(x) =0}. Denote a = |A],
and b = |B|. Let us assume that a < . Additionally define

|A) = \/_ Z |x) and |B) = Z Ix),

XEA xEB

which are orthogonal unit vectors. Moreover, |s) is a vector in the subspace spanned by

{|A),|B)}. Indeed
[a /b

Let G = U,Uy, and let us see how G acts on the states of |A) and |B) . Since they are orthogonal

4.4. Grover’s Search Algorithm 63

vectors and (v| = (|v)), it holds that

GlA)[=) =UsUr |A) | =)
= (21s) (s| = 1,) (= |A)) |-)
= ((—2!S>< \)|A>+|A>)!—>
= (=2(slA) |s) +14))[=)

:<_ @([m [|B>+|A>|_>
=<(1—fv—“)|A> 2ab >>|—>,

analogously for G|B) we have

G[B)|=) = UsUy |B)|=)

= (2ls) (s| = 1) |1B) |)

= ((2]s)(s)) |B) = [B))[=)
(2(s|B) |s) —

2\/2(\/%@; \/gym) - |B>> =)
(2 (ﬁ—1)|3>)|—>.

= (2L (1—%’)w>)|—>.

Therefore, G maps the subspace spanned by {|A),|B)} to the subspace spanned by {|A), |B)}.
Furthermore, the action of G on the space spanned by {|A),|B)} can be seen as the following
matrix where the first row and column correspond to |B) and the second row and column to |A) :

_(1_2\ _2Vab [(N=2b\ _ 2Vab
(N) N — N) N
2+/ab _2a 2Vab N—2a
N (N) L N (N)
[_(a+b72b) _ 2Vab]
— N N
I a a N— 2a
_ —(“N—”]
2\/ab
L N

64 Chapter 4. Some Quantum Algorithms

Note that

2
i :[—(% —%’”],

\/% 2vab (b_)

N
Now, take 6 € (0, %) such that sinf = \/% and cos 6 = \/% . Recall that, in two dimensions,
the standard rotation matrix has the form

[cos¢ —sing]

N

sin¢g cos¢

for ¢ € [0,27]. So, using a rotation of angle 26 we get

cos(20) —sin(20) | cos> @ —sin’ @ —cosBsinB —sin 6 cos O
sin(20) cos(20) | | sin@cos@ 4+ cos Osin O —sin’@ +cos? @

cosO® —sinb 2
sin@ cos0
- 2
\/Z _ /@
_ N N
\/Z \/Z
| VN N

[- () ——Zﬁ’?]
- 2Vab b—a
L ()

Therefore, G = U,Uy is a rotation of angle 26 in the two-dimensional space spanned by {|A),|B)}
rotating the space by 26 radians per application of G, with 8 = arcsin \/% . Also

|s) = \/%MH—\/%B) =sinf|A) +cosO|B).

Applying G k times, we get
G*|s)|—) = (cos ((2k+1) 0) |B) +sin((2k+1)0) |A))|-).

We would like the state of |s) to be as close to |A) as possible, i.e., sin((2k+1)0) ~ 1 or

(2k+1) 6 ~ % which gives us k ~ % — 1.

If a = 1, which is the case that we first consider, then 6 = arcsin \/% ~ \/LN, hence

i Pl 1 a/N 1
40 2 4o 2 42
and since k must be an integer, then we take
(= [247).

4.5. Technique For Listing All Elements Marked By An Oracle 65

If a > 1, as before we want the state of |s) to be as close to |A) as possible, or equivalently
that cos((2k+1)0) is close to 0 as possible. So, we would have that cos((2k+1)0) = 0, when
k = (m—20) /40 if that were an integer. Consider, k = [77/46 |. Note that |k — k| < 1, hence

(2F+1)0-T| = [(2K+1) - (2k+1)6] = [20 (k—F)| < 6.

Therefore, |cos((2k+1)6)| < |sin 6|, which will be used as a bound for computing the proba-
bility of not finding a marked element, after applying k times the G operator.

Step 4 Measurement. When we measure the first n qubits, after k iterations, and since
|cos((2k+1)6)| < [sin6],
the probability of not finding a marked element is,
cos?((2k+1)0) < sin’6 =

<

Zl=
N =

One must be careful in using this algorithm because the probability of success does not nec-
essarily increase with the number of iterations. For instance, if we have a list of 20 elements
and only one is marked, and if we apply L%@j iterations of G the probability of finding the
marked element is 0.06. But if we apply L%@J iterations, the probability is 0.94. Hence,
the estimation of the necessary number of iterations is one of the most important parts in the
algorithm. For this reason, in the next section, we are going to briefly explain how to apply
Grover’s algorithm in the case where we do not know how many marked elements there are,
following [CRO™24].

As a particular case, on Chapter 7, the methodology developed in [CRO"24] is going to be
use for finding satisfying assignments of a Boolean function f : {0,1}"* — {0,1} .

4.5 Technique For Listing All Elements Marked By An Ora-
cle

In this section, we are going to introduce a technique for finding all marked elements from
a list of v elements, with a quantum algorithm inspired by Grover’s quantum search, with a
desired probability. For that, we follow [CRO"24]. This technique, in particular, is of interest
to us, because it can be applied for finding satisfying assignments of a certain type of Boolean
functions f that we are going to deal with in Chapter 7.

From the previous section,we know that Grover’s algorithm only returns a marked element
with a certain probability. However, when the number of marked elements is unknown, we
do not know the number of oracle queries that we need to use. So, for that, let us suppose
we have an oracle Uy, given by Uy (|x)[0)) = |x) |1) if x is marked, otherwise Us(|x)|0)) =

66 Chapter 4. Some Quantum Algorithms

|x) |0) , such that mark exactly u elements from a set of v elements. Then, apply j times the
Grover’s operator, with j chosen randomly from {0,...,[/V] — 1}. After that, let us measure,
and see if the result is correct, in case it is, we apply again Grover’s algorithm, but with a new
oracle, U }, such that the marked element found xg is excluded from being marked by it (U]’c), SO
Ug(1x)0)) = |x)[1) if x is marked and x # xo, otherwise Uy (|x) |0)) = |x) |0) . However if the
result xp is not correct, the oracle is not modify, and we apply again Grover’s algorithm with j
times the Grover’s operator, and j chosen randomly from {0,...,|+/V] — 1}. This procedure is
applied iteratively until all elements are found. More explicitly the procedure is as follows:

Algorithm 4.9 (Algorithm 2 [CRO"24]).
Data: An oracle Uy marking an unknown number of u elements (upper bounded by a
known or estimated B) in a database of v elements (0 < u < B < %’). A desired error
bound 0 <w < 1.
Result: A set of r marked database elements L = {xi,...,x,}. With probability at least
1 —w, we will have r = .
Procedure:

L0

log(lf(lfw)%)
AN T

found < false
done < false
while done = false do
[+ 1;
while found = false and [<R do
Choose j uniformly at random from the set {0, ..., [v/V] —1};
Run Grover’s algorithm with j applications of the oracle plus diffusion
operator;
Measure to obtain x;
if x is a marked element then found < true ;
else/ «—[+1;
end if
end while
if found = true then ;
L+ LU{x}; > Add found element and search for another
found <+ false;
Modify the oracle so that it does not mark x
else done < true ; > Tried R times without finding anything
end if
end while
return L

Note that, in the case where the number of elements marked by the oracle is greater than

4.6. Quantum Abstract Detecting Systems (QADS) 67

0, by Lemma 2 and the proof of Theorem 3 in [BBHT98], the probability of finding a marked
element on the nested while, is 6(v) > }‘, 1 with O(1/V) oracle calls. So, the overall probability
of finding a marked element is

1— (1 _6(‘/)>R(v) > <%)R(V)

Since the loop of the first while must be independently repeated p(v)+ 1 times for the
algorithm to succeed (the last iteration is the one forcing the output), the probability P'(Vv) of
not finding all marked elements is

Pv)=1-(1-(-8w)f) " <1 (1 _ G)R(v))uw)

which, in order to obtain a bounded algorithm, is required to be less than some w < 1, for all v.
This yields

log 1—(1—w)ﬁ
R(v) > (1og(§))

Taking R(V) to be
1
log (1 —(1 —W)W>
log (3)

we have that R(v) = O (log(u(v))), and the procedure requires an overall number of

O (Vvu(v)log(u(v)))

. _3
oracle calls. Taking, B = 3/

R(v) = = O(log(B)),

and the overall asymptotic complexity is O (v/V(v)log(B(V))). For more details, see [CRO"24]
Appendix Al].

4.6 Quantum Abstract Detecting Systems (QADS)

In this section, we give the definition of Quantum Abstract Detecting Systems (QADS), to-
gether with some of their properties, given in [CRR20].

68 Chapter 4. Some Quantum Algorithms

Quantum abstract detecting systems (QADS) were introduced in [CRR20] as a unified frame-
work for the study and design of detection algorithms in a quantum computing setting. Namely,
given a black-box oracle for a Boolean function f, the QADS constructs an initial state and an
operator that can be used to detect if the function is identically zero or not.

Definition 4.10. A quantum abstract detecting system (QADS) is any (classical deterministic)
algorithm that takes, from a set of inputs M, a Boolean function (given by a circuit) f : {0, 1}¥ —
{0, 1} and outputs a unitary transformation U = U on a Hilbert space H whose dimension only
depends on k, together with a state |¢y) € H (that only depends on k too) such that

{re {01} f(x) =1} = 0= Ulgn) = |9v)

The transformation U is called detecting operator and |@p) is known as the initial state. The
input set M usually contains all Boolean functions. However there are some situations in which
restrictions on M may apply. The only conditions required of the set M are that it is infinite
(i.e., there is no K € N such that all Boolean functions f belonging to M have domain {0, 1}*
with k < K), and that if f: {0,1}¥ — {0,1} € M, then the constant zero function with domain
{0, 1}* also belongs to M. These conditions guarantee that the addressed detecting problem is
not trivial.

In [CRR20], it is proved that Grover’s algorithm falls under this formalism. Indeed, if O
denotes a quantum oracle evaluating f : {0,1}* — {0,1}, then the QADS related to Grover’s
algorithm [Gro96] is the following: Grover’s algorithm requires a state space (Cz)®k to look
for marked elements, i.e., those in W = {x € {0,1}* | f(x) = 1}, and the initial state |s) which
is the superposition of all the elements of the computational basis %2722501 |x). The search

X
iterates two operators that can be effectively constructed, namely:

* Oracle: Uy(|x)) = (=)™ x), ie., Ur=1-2Y% |x) (x|
xew

* Diffusion operator: Us = 2|s) (s| — I

The algorithm which constructs G := U;Uy from f is a QADS because if W = 0 then Uy |s) = |s)
and
Gls) = (2]s) (sl = 1) |s) = 21s) (sls) =1 |s) = 21s) — |s) = s)

QADS related to other well-known quantum computing search methodologies, such as
quantum walks [Sze04, Por13, San16, Wonl17] or the quantum abstract search [AKRO05], and
even other non-search techniques (like Deutsch-Jozsa algorithm [DJ92]) have been considered
in [CRR20].

4.6. Quantum Abstract Detecting Systems (QADS) 69

4.6.1 Algorithmic closure of QADS

We can derive new QADS from other existing ones. For instance, the extension, inversion,
powers, roots, conjugation, and controlled detecting operator of a QADS is a QADS. Their
description as quantum circuits and operators is given in Table 4.1.

Proposition 4.11. Consider a QADS that generates a pair (|¢g)) , U) € H x % (H) for any
given Boolean input f from a set of inputs M, where % (H) is the group of unitary operators on
the Hilbert space H.

1. Algorithms generating the following pairs of initial state/unitary transformation, are also
QADS.

(a) Extension: (|@o)|0®" , U®1) € H' x % (H'), where H' = H @ (C?)..
(b) Inversion: (|@o) , U") € H x % (H).

(c) Powers: (|@o) , U") e Hx% (H),forall ny € N.

(d) Roots: (|@o) , U'/") € Hx % (H), for all ns € N.

(e) Conjugation: (T |@y) , TUT") € H x % (H), for all T € % (H). Moreover, conju-
gation induces an equivalence relation on the set of possible outputs of a QADS for
a given input f € M.

(f) Controlled detecting operator: (|+)|@o) , CU) € C*@H x % (C*® H). where
CU i) |x) = |5) U'[x).

2. If a second QADS generates pairs (|@)) , U') € H' x % (H') for Boolean functions from
the same set of inputs M, then:

(a) A QADS tensor product of QADS can be realized: (|¢p)]go(’)> ,UU')e HRH' x
% (H®H').

(b) If H/ = H and ‘(p(’)> = | o), then a product of detecting operators can be considered
as a QADS: (|¢o) , U'U) e Hx % (H).

(c) The pair of QADS can be doubly controlled according to the following scheme:
(1+) o) |0)) » (URU")ae) € C°0H®H x % (C*®H®H'), where

U SV aeli) 19 |2) = [U) U).

Proof. See [CRR20], Appendix B] [

70

Chapter 4. Some Quantum Algorithms

|®0)
|9))

Name Initial state Detecting operator Circuit
QADS |po) U
|@o)
Extension |@o) [0)*" Ul
|90)
0y ———
Inversion |@o) Ut
[P0) —UT
Powers |oo) Uns
|90) —{U™
Roots |®o) U'ins
|®0) U#
Conjugation T | o) TUT?
T|po) — 17 U
Controlled 1+) |9o) CU i) |x) = |i))U' |x)
+)
|#0)
Tensor product |0o0) | @0 vaU’
|90)
)
Product loo) (= 1]90")) U'u
g0)
Doubly controlled | |+) [¢o) |@o”) Uge 1) |x) ¥/
U U |y

U/

Table 4.1: Transformations in the algorithmic closure of a QADS

4.6. Quantum Abstract Detecting Systems (QADS) 71

4.6.2 Properties of QADS

Here, we define when a QADS is efficiently constructible, which is when both unitary operator
and the initial state should be computed in polynomial time in the input size n. As an example,
Grover’s QADS is efficiently constructible. Also, we define when a QADS has an efficient
detection, that is, it should have a detection rate asymptotically independent of the input size.

Definition 4.12. A QADS is called efficiently constructible if for any input circuit f € M of size
n, the output pair initial state/unitary transformation can be computed in O(poly(n)) time and,
as a consequence, their circuits are of O(poly(n)) width, depth and number of gates.

Definition 4.13. Let (|¢p),U = U(f)) be the output of a QADS on input f € M. Then, for a
given 0 < 0 < 1, a function T : N — N is a d-quantum detecting time for the QADS if for all
nonzero f € M of input size k it holds that

L0 el U) 2 _
T(k)+1 - '

For instance, the QADS of Grover search provides efficient constructibility and a Vol_

42
detection time of order O(v/2%), [Example 13, [CRR20]].

4.6.3 Detection with a QADS

In this subsection, we present an algorithm that is used in a decision procedure to detect the
existence of marked elements when we have a QADS i.e., existence of x such that f(x) = 1.

Algorithm 4.14 (Detection scheme).

Input: A QADS Q, a Boolean function f : {0,1}* — {0,1} from the set of inputs M of
the QADS, and a natural number 7.

Procedure:

* Precomputation of the initial state |@y) and the detecting operator U with Q on
input f.

» Computation:

— Choose ¢ uniformly in the set {0,1,...,T}
— Compute |@;) = U" |@y).

» Measurement of |¢;) on an orthonormal basis containing |¢g)
Output:
* NO: If the measurement is the initial state |@p).

* YES: Otherwise.

72 Chapter 4. Some Quantum Algorithms

The detection scheme is readily described by the circuit in Figure 4.5.

90) — U F— - — U —A— o)

Figure 4.5: Circuit of the detection scheme.

In general, the following result can be proved:

Theorem 4.15. [CRR20][Main Theorem] The detection scheme of Algorithm 4.14 always pro-
vides a correct output on input zero (i.e., when no marked elements exist), and so the probability
of error is fully attributed to nonzero inputs. That probability is equal to

Yol {90|U" |9o) |”
T+1

Therefore, if a QADS is both efficiently constructible and has a §—detecting time, then the
detection scheme can be run in O(poly(n)) precomputation time, and the detection problem can
be solved by a one-side error quantum algorithm with error at most 1 — 4.

Proof. See [CRR20], Appendix E]]

Chapter 5

Combinatorial and Rotational QADS

In this chapter, we introduce new families of QADS, known as combinatorial and rotational,
which respectively generalize detecting systems based on single qubit controlled gates and on
Grover’s algorithm. We study the algorithmic closure of each family, and prove that some of
these QADS are equivalent (in the sense of having the same detection rate) to others constructed
from tensor product of controlled operators and their square roots. The aim is to improve
the detecting techniques used in the effective determination of the commutativity of a finite-
dimensional algebra. This is accomplished at the end of the chapter. Incidentally, we also apply
the new QADS to the problem of the phase estimation.
First, let us introduce the definition of combinatorial QADS.

5.1 m-Combinatorial QADS

Definition 5.1. If Uy is the detecting operator of a QADS Q,|¢y) is its inital state, and m is
a non-negative integer, we define the m—combinatorial QADS obtained from Q as the QADS
whose initial state is [0)®" @), and whose detecting operator is given by

C(m,Uy) == (H*" @I) ciUy--cnUy (H*" Q1)

where c;Uy is the unitary operator that applies Uy to the second register if the i-th qubit of the
first register is | 1), and applies the identity if that qubit is |0) (i.e. it is the operator U controlled
by the i-th qubit of the first register).

Observe that, when m = 1, we recover the controlled QADS of [CRR20] (7—th entry in
Table 4.1). The following result guarantees that the m—combinatorial QADS is indeed a QADS,
and that it is efficiently constructible provided the original QADS is.

Proposition 5.2. If we have a QADS Q providing an output (U 2 |g00>) on input f, then for all
m > 1, the algorithm that returns the operator depicted in circuit of Figure 5.1, and the state
10)“"™ | @) is also a QADS. What is more, if the original QADS is efficiently constructible, so
is the new QADS, for fixed m.

73

74 Chapter 5. Combinatorial and Rotational QADS

(—H] |H]—
0y ——{H] (H]—

—H] —e—{H]—
|po) U Ur — — Uy

Figure 5.1: Circuit of a m-Combinatorial QADS

Proof of Proposition 5.2. The new algorithm is a QADS because if f = 0, then Ur |@p) = |¢y).
Therefore, c;Ur |y) |@o) = |¥) |@o), for all |y), and for all i. Consequently,

Cm,Up)10)" |go) = [(H" @1) e1Uy - culy (H*" ©1)] [0)°" | o)
= 0" |gv)

which shows that the m—combinatorial QADS is actually a QADS.

When the QADS is efficiently contructible, |@y) can be constructed in polynomial time (on
n, the size of f), and the same holds for the initial state [0)*"" |@y), for fixed m. On the other
hand, because of [NC11][Section 4.3], any controlled operator ¢;Uy can also be constructed in
polynomial time because of the constructibility of the QADS. Therefore, the m—combinatorial
QADS is efficiently constructible, with a cost of order O(m - poly(n)).

]

The reason that justifies the name “combinatorial” for this type of QADS is given in the follow-
ing result, where the amplitude of the state

C(m,Uy)0)"" | @v)

related to the state |0)“" |@p) , is given.

Proposition 5.3. The amplitude of the state C(m,Uy) |0)*™ | @) related to the basis state |0) " |@p),
1s

1 & (m

o (k)<<po!Ujﬁl<po>- (5.1)
k=0

A concrete and complete description of the state

C(m,Uy) [0)*™ |@o)

is given in Proposition 5.5.

5.1. m-Combinatorial QADS 75

Proof of Proposition 5.3. Applying H®™ @1 to the state |0)“" |@y), we get
m_]

Using the controlled versions of the Uy operator, we get

where |x| is the Hamming weight of x, i.e., if x is described by exactly |x| ones and m — |x|
zeroes, then the controlled operators ¢;Uy will contribute with exactly |x| hits of U . Therefore,

(10" |u) |[(H=" @ 1) [y)) = ((H" @ 1)[0)"|[w))
2m—1 2m—1
<\/2—mZ|y|§Do Zo X U] ey >
2m—1
=zi,,,<z ol <Po|> (Z) U"\%)
y=0

=5 2 () (wlttion)

as desired. L]

Such an expression can be useful, for instance, for providing algebraic proofs of some of the
results related to the algorithmic closure of combinatorial QADS, that we introduce next. The
proofs below are first sketched by circuit depiction of the QADS operators. In these results, we
determine some procedures which leave the subclass of combinatorial QADS algorithmically
closed.

Proposition 5.4. The extension, powers, and roots of an m—combinatorial QADS, are also
m—combinatorial QADS.

Graphical sketch of proof. 1. Extension: It is straightforward to see that the following cir-

cuit
(H] [H—
|0>® @ @_
(] ——{H}-
|po) — U Up— ... qUp——

T

|O>®l

Chapter 5. Combinatorial and Rotational QADS

is equivalent to

0)®

90) ——UrYr— - Ur——

0)°" U=

2. Powers: Since H> =1, and U '+ commutes with itself, we have the following equivalencies
for ny copies of the m—combinatorial detecting operator:

@ @ ('"‘f‘)—@ @—
{H] . (H} -] (H}-
usHuy, _@ v, Hu, _@7
) & o -
4] [H}
] —y—{H}
UrH Uy UsHUy @_
i 1 -
8 -
{1 ——{A}

] Unf || U}’f __Unf -

5.1. m-Combinatorial QADS 77

3. Roots: Since C (m, \/U_f)2 =C (m,/Uy) , then

0)® _@ @\m@ _@ . H]

o —VOHVTE VT e —VGHVG VT

B]
oy o
] o]

]

Proof of Proposition 5.4. Consider a QADS that, on input f, provides an output (|¢@o) , Uy),
and let (|0)*" |@y) , C(m,Uy)) be the output of the corresponding m—combinatorial QADS.

1. Extension: Observe that
(cUr@1)|x)[w)|8) = (]0) [y) + B [1)Ur|y))|E)

= (a]0)+B[1) (Ur@1)) W) |8) = ci(Up 1) |x) [y) |S)
where |x) = a|0) + B |1). So, C(m,Us) @I = C(m, Uy ®1I).

78 Chapter 5. Combinatorial and Rotational QADS

2. Powers: For any unitary operators U and V
VeUlx) @) = al0)[@)+B 1) VU @) = c(VU) |x) |@),

where |x) = a|0) + B |1). Also, notice that when U and V commute,

e2VerUlx) [y) [w) = 2V (et |0) [y) [w) + B 1) [») Uly)
= ay[0)0) [y) + s [0))V [y) + By[1) [0)U [w) +BS[1) [1) VU |y)
=ya[0)0) [y) +yB (1) [0)U |y) +6a|0) 1)V [y) + 6B (1) [1) UV |y)
=caU(y0)[0)ly)+61x) 1)V]y))
=cUcV[x)|y) o),

where |x) = ot|0) + B|1),[y) = 7|0) + & |1). Because H> = I, we have C(m,Us)" =

C(m,U}lf).

3. Roots: Taking in the previous equation V = U;f , we have that Uy = V1/7 | and that
C(m, V") = C(m,V), ie., C(m,V'/") = C(m,V)"/"s. This shows that the ny—th
root of an m—combinatorial QADS is also an m—combinatorial QADS.

]

Some other operations in the algorithmic closure of QADS might not leave the subclass of
combinatorial QADS closed. This is, for instance, the case of the product of two combinatorial
QADS when the corresponding detecting operators do not commute.

Proposition 5.5. Given a QADS with output (|@g) ,Uy), and a natural number m, the state of
the corresponding m—combinatorial QADS, after one hit of the detecting operator on the initial
state, 1s:

S 1 o1 b LT R AR TR) P I

Proof of Proposition 5.5. From the proof of Proposition 5.3, we get the state

2" —1

77 L U7 9o

after applying H*™ ® I to the initial state |0)*" | @), and then the controlled gates on the oper-
ators Uy. Next, we apply H*" ®1 to get

0

1 2m—12"—1 " —1 2" —1 . "
w—mﬂ—m L L C07mufie = Z) (Z 1>”U}-')|<po>.

5.1. m-Combinatorial QADS 79

Now, we fix a binary array y with |y| ones and m — |y| zeroes. Assume that another array x of
the same length m, contains ¢ ones colliding in positions of the array y with a one, and |x| —¢
ones colliding in zero entries of the array y (its remaining entries are all zero). Without loss of
generality, this can be depicted as:

X = (1 o | 0 |y_|'—'t0 | 1 |x|—t 1 | 0m—|){|:|x|+t O).
The number of arrays x in this situation is
V[(m =1yl
t x| —t /)

Now, x-y =0 if and only if # is even. In this case, the possible values of 7 are of the form ¢ = 25,
where x =0,1,..., L'%'J . On the other hand, x-y = 1 if and only if # is odd, and the possible

values of ¢ are of the form t = 25+ 1, where x =0,1,.. ., UX‘T_'J . Summarizing, the number of

3 ()2

whereas the number of possible x such that x-y =1 is

DG

This gives us the desired expression for the final state of the m—combinatorial QADS. U

possible x such that x-y =0 is

Next, we provide a result relating the detecting times of the combinatorial and the original
QADS. Two technical lemmas are introduced first.

Lemma 5.6 ([Pet33]). Let o be a real number, and let 0 < 6 < % If z1,...,2, are complex
numbers such that

o—0< argz;<o+0, forall j=1,...n,

then

80 Chapter 5. Combinatorial and Rotational QADS

Proof of Lemma 5.6. Since |z| > |Re(z)| > Re(z), for all z € C, then

n
)z
=1

. n
e ' Z Zj
j=1

n
j=1

n
> Re (Z |2j| (cos (—a+arg z;) +isin (—a +arg Zj)))
=1

>

n
=Y |zj| cos (—ar+arg z;)
=1

> cos 6 zn: ’zj’.
j=1

Lemma 5.7. Let m be a positive integer. Then,

£()-()

i=o \k mn
Proof of Lemma 5.7. Let us recall a well-known identity for binomial coefficients, namely, the
Vandermonde’s identity. It states that, for any nonnegative integers r,m,n,

(") =5 ()0

Indeed, note that, by the binomial theorem,
m-+n m . n)
F (") == e = 3 () (1)
r=0 r :
AN
= x".
20 im0 \k/) \r—k

In particular, when n = m and r = m,

(=) =E060)-x

|
1=
VR
=~ 3
N————
N
>~ 3
N——
|
s
VR
=~ 3
N———
[\)

5.1. m-Combinatorial QADS 81

Proposition 5.8. Let O be a QADS, and let Q be the corresponding m-combinatorial QADS.
Supposse S : N — N is a §-detecting time for 0, and let z; := (@] U]lc |@p) forany I € N. Assume

that, for all w € N, there exist a,, € R, with &, € (O, %) , such that % <1-0,withd >0,
and such that, for all / =0,...,m-S(k), arg(z;) € [ay — 04y, ay, + Oy 'lThen, T :N — N given
by T(w) =m-S(w), forall w € N, is %—detecting time for Q.

Proof of Proposition 5.8. Let w € N be fixed, and denote 7 = T'(w), S = S(w) =m-T(w),
a = ay, and o = a,. By Proposition 5.4, we have that, for all s € N, C(m, Uy)* = C(m,U}), and
by Proposition 5.3, we know the amplitude of the state C(m,Uy) |0)“™ |@p), so

S S m 2
E (107l Clm,Up* 07 o)) 2| X () (ol U gw)
S m 2
_ SEO k§0<k)st
22m S-l—l)
<1-6

Here, zis := (@p U]’Es |@o), forall k =0,...,m, and all s =0,...,S. Let us define the following
sets:

Ao = {O}

Ag:={1,....,T} ={0,....,T}\ {Ao}
Ay =1k, 2k,...,Sk} ,forall 1 <k <m

A :=10,..., T\ {A}.

Now, by Lemma 5.7,

; t 2 m\ 2 I 2 v (m)\2 t2 t2
L (@l U) (0 Lhf X6 (ng\zl +thAk\z|>

T+l T+l () T+l G +1)

T
Y |z
=0

Eand
I

82 Chapter 5. Combinatorial and Rotational QADS

But, since |z,| < 1,|A;| = T =, for k > 0, and |z9|* = 1, we find

mn 2 2 2 m N
m + 2 m\ 2 2 _
k);o(k) (tEZAk|Zt| re):/Tk|Zt|) < <|zo| +T>+k§1<k> (;,0|st| +(T S)>
BT +1) B G +1)
£ (L b+ r-9)
_ k=0 Ko\E
(™(T +1)
m 2 mn m
B E’ g ((k)|zks|) N E’ (k) T—S
221) Gn T+
E st) +T—S
(n’?)T +1) T+1'
because (7)) |zks| = ’ ") st‘ > 0. Therefore, by Lemma 5.6, we have
2 S lm 2
O(Z‘ st|> T—S< SE g()zks 22m(S—|—1)+T—S
(m)(T—|—1) T+17 cosla (") (T+1)) 22m(S+1) T+1
2m _
<(1-§).— 841 o
cos?o("N(T+1) T+I1
S+1 T-S§ o
SR ET R T

S+1

1
since T4 > m

ot

O

The conditions on the previous result are satisfied, for instance, for some families of QADS
known as rotational, that we introduce in the next section (see Corollary 5.16).

5.2 Rotational QADS

In some well-studied searching procedures, the iterating operator acts only on a small dimen-
sional invariant subspace, leaving the remaining directions unchanged. This is the case, for in-
stance, of the operator of Szegedy’s quantum walk with queries on the complete graph [San16],
which acts on an invariant three-dimensional space when only one vertex is marked, and on an
invariant four-dimensional space when multiple marked vertices are considered. Of course, this
is also the case of the operator of Grover’s search, which acts as a rotation in a two-dimensional
invariant subspace, and leaves the orthogonal directions unaltered [Gro96]. In this section, we

5.2. Rotational QADS 83

consider QADS in which the detecting operator Uy behaves in this way, acting as a rotation in a
two-dimensional invariant subspace, with an operator described by a matrix in SO(2). As in the
case of the combinatorial QADS, we study their properties, such as an explicit expression of the
final amplitude, and their algorithmic closure. We also consider combinatorial QADS derived
from rotational QADS, concluding some interesting equivalences.

The definition of a rotational QADS is as follows.

Definition 5.9. If Uy is the detecting operator of a QADS Q with initial state |@p), we shall
say that it is a rotational QADS if there exist o € [0,27), orthonormal states |@;),|@,), and
B1, B> € R, such that

L. |@o) = Bi|o1) + B2 |@2)
2. Us|@y) =cosa |@p) +sino [¢2)
3. Ur|g) = —sina @) +cosa |@2).

As said before, the QADS associated to Grover’s search is a rotational QADS. The detecting
operator Uy of a rotational QADS can be straightforwardly described by a matrix

cosa —sino
sinx coso

> € S0(2),

since the coordinate matrix of Uy with respect to an orthonormal basis whose first two elements

are |@1),[@2) is

cosox —sina | O
sinot coso 0
0 0 [Li-o

In the following result, we obtain the amplitude of the state Uy |¢y), and a generalised version
for QADS that can be described by an arbitrary matrix in the orthogonal group O(n) (Proposi-
tion 5.11).

Proposition 5.10. Given a rotational QADS with output (|¢p),Uy), the state after & hits of the
detecting operator on the initial state is

Uf o) = (Bicosko— By sinkar) |@1) + (B sinkor+ By coskat) |2) .
In particular, the amplitude of such a final state, related to the initial state |¢@y), is coska.

Proof of Proposition 5.10. Interms of |@),|@,), for all k > 0, the action of U J’f on |@p) is given

by the matrix
. k .
cosoe —sina\ [coska —sinko
sinot cosQ - \sinkae coska)’

84 Chapter 5. Combinatorial and Rotational QADS

(the n — 2 invariant directions have been omitted). The final state has coordinates related to
|@1),|@2) given by the array

coskaa —sinka\ (Bi1\ [Bicosko — Bpsinko
sinkot coska B) \PBisinka+ B coska,
as desired.
On the other hand,

(a7 (Bicoska — By sinka
(@0l U |po) = <Bl,ﬁ2> (ﬁi sinkoc+ﬁ22coska)

= |B1|*coska + (Eﬁl —E[b) sinka + | Ba|* cos ko

= cosk.

]

Proposition 5.11. Let Q be a QADS such that any input function Uy can be described by an
orthogonal matrix with respect to a suitable orthonormal basis. Then, there exist an orthonormal
basis {}(p1) ..., |¢! . |®n)}, angles 6;,...,6; € [0,27), and real scalars

Bz, B2,. ﬁl,ﬁzl,B2[+l,...,ﬁn, such that the final state Uy |@p) is

!
UJ’f- lpo) = Z((B{ coskB; — B;sink6;) }(pi> + (B sink®; + B, cosk6;) ‘(p§>)

=

—_

n—1

+ Z Bi lgi) + (il)kﬁn @) -

i=21+1
As a consequence, the amplitude of such a final state, related to the initial state |¢@p), is

l

Z ((IB{I* + |BiI*) cosk;) + Z |Bil* + (£ 1)F|Bal.

i=1 i=21+1

Proof of Proposition 5.11. Since Uy admits a coordinate matrix in the orthogonal group O(n),
there must exist an orthonormal basis {|@] e |eh) | 98) . 19us1) .-, |@n)} such that
the coordinate matrix of Uy with respect to such a basis is the block diagonal matrix

Rg

1

Ry

2

k
L2

+1

5.2. Rotational QADS 85

cosB; —sin6;
sinf; cos6;
matrix, and the sign of the last diagonal entry depends on whether Uy is a rotation or a reflection.
The initial state can be written as a linear combination of the basis, in the following way:

for some angles 6y,...,6; € [0,27), where Ry, = , I,_>;_1 is the identity

[n
|po) = ;(ﬁf o)+ B3 o))+ Y. Biles),

i=2l+1

for real complex coordinates 82, 872,..., B!, BS, Bars1,- - -, Bu. Straightforward application of the
same ideas of the previous proof yields the desired expression for U]’5 |@o), and (@o| U]’? lpo). O

Analogously as in the case of combinatorial QADS, we consider different procedures that
allow to derive new rotational QADS from others.

Proposition 5.12. The powers, roots, and inversion of a rotational QADS are also rotational
QADS. Also, if two rotational QADS share the same initial state, then their product is also a
rotational QADS.

Proof of Proposition 5.12. 1. Powers: The action of U}lf on |@p) is given by the matrix

cosngQ —sinngo
sinng@t cosnyo

(again, the n — 2 invariant directions have been omitted).

1
2. Roots: The action of U ;f on |@p) is given by the matrix

o . o
cos (W) —sin (W)
sin (ﬁ> cos (ﬁ)

ng ny

3. Inversion: The action of U } on |@p) is given by the matrix

cosa sino) [cos—o —sin—o
—sina cosa) \sin—o cos—a /°
Note that, in this case UT = U~1.

4. Product: The action of U;U } on |@p) is given by the matrix
cos(a+a') —sin(a+a’)
sin(c+0o') cos(ax+a'))°

Note that, in general, rotation matrices do not commute under multiplication. However,
if both rotations are taken with respect to the same initial state, then they do commute.
]

86 Chapter 5. Combinatorial and Rotational QADS

Like in the case of combinatorial QADS, some other operations in the algorithmic closure
of QADS might not leave the subclass of rotational QADS closed. This is for instance the case
of the extension of a rotational QADS, or the product of two rotational QADS when they do not
share the same initial state.

Proposition 5.13. Let m be a natural number, then

5 (1) costar =27 (con ()" cos ().

k=0

Proof of Lemma 5.13. We know that cos(x) = 'x+e * . So,

m m m elk(x_|_eflk06

Z()cosk ()

im0 \k 0 k

() @' 5 (7)o
[k (k

Now, by the Binomial Theorem, we have that

B () e R (2) = [orenr ey

k=0

NI*—‘ *‘

Therefore,

i (’Z) coskor =

k=0

N =N =D = N =

Il
N
3
/N
(@]
o
w
/N
| R
N———
N————
3
o
o
w2
/N
| R
3
N———

]

Corollary 5.14. Under the hypothesis of Proposition 5.11, the amplitude of the final state of
the corresponding m—combinatorial QADS, related to the initial state |0)™ |@y), is

¥ (08t gPreon(5) eos (7)) 4 5 1820

where x € {+,—}, depending on whether Uy is a rotation or a reflection.

5.2. Rotational QADS 87

Next, we want to consider the m—combinatorial QADS of a rotational QADS. In particular,
we study the amplitude of the final state, related to the initial state, which is connected to the
detection rate when a single hit of the detecting operator is used. As a consequence of Propo-
sition 5.13, we conclude some interesting equivalences of detecting operators from different
QADS in the algorithmic closure, related to the square root QADS.

Theorem 5.15. If Q is a rotation QADS, m € 7", and we consider the corresponding m— com-
binatorial QADS, then the amplitude of the initial state after one hit of the detecting operator,
i.e., of C(m,Uy)|0)" | @), related to the initial state |0)™ | @), is

2Lmkm0 (Zl) cosko = (cos (%))mcos (%m) . (5.3)

Proof of Theorem 5.15. Equation (5.3) is a direct consequence of Propositions 5.3, 5.10, and 5.13.
O

On the other hand, note that:

* Since the QADS is rotational, we have that (@] /Uy |@o) = cos (%) (applying the same
idea of Proposition 5.10).

* For a tensor QADS, we directly have (@o| (Wo| Ur@V¢|@o) |Wo) = (00| Ur|9o) (Wo| V¢ |Wo).

* For a product QADS, in terms of equality of the detecting operators, we have

—VU VU = U

* Since the QADS is rotational, in terms of one hit detection rate, we have

AU —e—

—\/U—f— —Urt-

This is because

(Wol (Wol /U7 © /T5 |w0) [wo) = ((wol /Ty o))

o 2
= COS (5)

1+cosa
-—
= (o[cUr |@o.)
(proof of [CRR20][Proposition 2, item 3]).

Remark. Note that the last equivalence of the proof holds because the QADS is rotational. In
general, such an equivalence is not true. For instance, taking Uy as the NOT gate.

As a consequence, the m—combinatorial QADS of a rotational QADS is equivalent, in terms of
detection rate, when one single hit of the detecting operator is taken, to the tensor product of m
copies of its square root QADS, tensored with the m —th power of its square root QADS:

88 Chapter 5. Combinatorial and Rotational QADS

r_\/ﬁf_
) (A
) A |
w)] "
s - o -
) -

Ur — Uy 4@7 —~ VO VU = - — /Ty

m

In particular, when m is even, it is equivalent to the tensor product of 7 copies of its con-
trolled QADS, tensored with its 5 —th power:

=] =]

SN

S
ﬁﬂl
T

=
<
<

NN

On the other hand, when m is odd, it is equivalent to the tensor product of ’"T_l copies of its
controlled QADS plus one copy of its square roots, tensored with a product of exactly the same
operators:

3
L

=] [=] [=]

<1
T4 44
]

5.3. Application: Decision on Eigenvalues 89

Let us finish this section with the previously mentioned result on the detecting time of a
family of combinatorial from rotational QADS.

Corollary 5.16. Let Q be a rotational QADS with a rotation angle smaller than 6,,, on entries
f of size w, and let Q be the corresponding m-combinatorial QADS. Supposse S : N — N is

a S-detecting time for Q, such that m < min {m, %} where A > 6,,S(w), for all w € N.

Then, T : N — N given by T(w) =m-S(w), for allw € N, is %—detecting time for Q, where
5= 1-2/m(1-5)
— f > 0.

Proof of Corollary 5.16. For all w € N, let us consider any possible input f of size w. For all
0<1<T(w)=m-S(w), we have that z; = cos(16,,) > 0, because 0 <16,, <m-S(w)0,, <mA <
%. Consequently, for all 0 <1 < T(w), arg(z;) € [0 — 0,04 o,], with o, as close to zero as

_S\n2m
desired. In particular, we can take q, such that C(l 0)2 <'1-— 0, because

92m
@]
and cos® o, can be made as close as needed to 1. The result now follows from Proposition 5.8.
]

1-86>1-26=2ym(1-5)> (1=96),

5.3 Application: Decision on Eigenvalues

Although the QADS methodology was initially introduced as a common framework to deal
with the detection problem, it can also be adapted to other problems. Consider, for instance,
the situation in which we are given a quantum state |¢y), and a unitary operator U, under
the promise that |@) is one of its eigenvectors, and we want to check whether the associated
eigenvalue is ¢/* or not. Namely,

Input: A real value a, a quantum state (@), Ug € {Uy}ye(027)- Such that Ug @) =
P |go).
Problem: Decide whether B = a or not (up to a certain prefixed accuracy, i.e., if | —
al < e).

If o and |¢y) are efficiently computable, then this problem can be approached with an effi-
ciently qonstructible m—combinatorial QADS. In fact, let us consider the unitary transformation
V =e '*U. Then

Vo) = e “Ug |@o) = ¢'P = |gp) = |eo),

where the last equality holds if, and only if, @ = .

90 Chapter 5. Combinatorial and Rotational QADS

Now, from the results of Section 5.1, we now that the projection of the final state C(m, V) [0)™ |@o)
on the m—combinatorial QADS initial state |0)" |@p) is

L n m k 1 n m i(ﬁ*(x) k_ 1+ei([3706) "

Thus, the probability of measuring |0)™ |@g) is

1 eB-0\"> | (14 eiB-\?
2 I\ 2

m

- <|1+COS B- O‘)4+isin(ﬁ_a)|2)m
_ <:+jcos N j+cos4(ﬁa)+sin2(ﬁa))m
_ [2F2cos a

ElJrCOS B—a) >)

:<cos(ﬁ;“))2m.

Therefore, we can think of the following procedure to decide whether o = 3.

Algorithm 5.17 (For the eigenvalue decision problem).
Input: A real value a, a quantum state |@p), Ug € {Uy}yec(0,27)> such that Ug|¢p) =

e'P | o) .
Procedure:

» Precomputation of the initial state |@y), the unitary operator V = e~'*U, and the
output of the corresponding m—combinatorial QADS (C(m,V),|0)" |¢y)), for a
chosen m.

* Computation:
— Compute |@) = C(m,V)[0)" o).
* Measurement of |¢) on an orthonormal basis containing |¢@y).
Output:
* YES: If the measurement is the initial state |¢@p).

¢ NO: Otherwise.

5.4. Application: Phase estimation 91

The observations above prove the following result.

Theorem 5.18. Algorithm 5.17 always provides a correct output when B # @, and so the prob-
ability of error is fully attributed to the case B = o. Namely, such a probability is equal to

- o59)”

Therefore, if the QADS is efficiently constructible, then the eigenvalue decision problem can be
solved in O(poly(n)) precomputation time of a one-side error quantum algorithm with error at

most 0, which decreases exponentially with m. The probability of success of the algorithm is
1—6.

5.4 Application: Phase estimation

5.4.1 Generalized Hadamard Test

Another application of the QADS methodology is phase estimation. Consider again that we are
given a quantum state @), and a unitary operator U, under the promise that | @) is one of its
eigenvectors with associated eigenvalue is ¢'®. The aim is to estimate «.

Input: A quantum state [¢o), Ug € {Uy},e(0,x), such that Ug [@g) = ¢ |@p) , and a natu-
ral number SHOTS.

Problem: PROBLEM: An approximation & of f3, using at most SHOTS executions of
prefixed quantum circuit.

Of course, this problem can be solved with the well-known quantum phase estimation (QPE)
Algorithm 4.7. However, as pointed out in [OTT19] “the size and shallowness of the QPE
circuit is important since, in the absence of error correction or error mitigation, one expects
entropy build-up during computation.” In fact, it has been shown in [MOS™19] that, when
implemented on current quantum hardware, the accuracy of the QPE algorithm is “severely
constrained by NISQ’s physical characteristics such as coherence time and error rates.” For
these reasons, some authors have proposed replacing the QPE algorithm with less demanding
methods, that make implementing quantum algorithms that rely on it easier in practice (see, for
instance, [AR20, DJCS21, Nak20, Ral21, SUR™20, Wiel9]).

A simpler algorithm, that sometimes is used for the phase estimation problem instead of QPE,
is the Hadamard test (Example 3.19). Which, in fact, consists in the quantum circuit of the
combinatorial QADS with m = 1, with a final measurement of the controlling qubit [ADZ93].

92 Chapter 5. Combinatorial and Rotational QADS

From Example 3.19, we get that the probability of measuring the quantum state |0) |@p) is

H% (1+€P)10)+1) (1—ei5>"2: H% ((1+cos/3)2+sin2;3)H

1
= Z<2(1 +cosf))

CEr(2)
ot (B).

Running the test SHOTS times provides an approximation P of such a probability, from which
B can be estimated. Namely,
o = 2arcos <\/I_3— 1) :

If we follow a similar procedure with m > 1, i.e., with another combinatorial QADS, we obtain
a generalization of the Hadamard test. In this case, the probability of measuring the quantum

state |0)*" @) is
mi|2
1+4¢P B B\

and running the test SHOTS times provides an approximation P of such a probability, from
which f can be estimated as

o = arccos (2(1/1_3— 1))

We have tested this ‘m-Hadamard test’ with different values of m, and equispaced angles in
[0, 7r), with a number SHOTS equal to 10*. We run the experiment, whose code can be found in
Appendix A.1, 10° times to get an estimation of the phase, measuring the mean absolute error
of such an estimation. The results are collected in Fig. 5.2. For convenience, the interval [0,)
has been splitted in two subintervals [0, %) and [, 7). Observe the different scale of the two
figures. When the phase is “small” (namely in the first subinterval), m bigger yields a smaller
mean absolute error, and the opposite occurs for bigger phases. This can be easily explained by
the effect of the m—th root, since in the first case the cosines are closer to one, whereas in the
second one, cosines are closer to zero.

Another way of visualizing this fact is with the average error, whose code can be found in
Appendix A.2, for the different phases in the first and second interval, (in both cases for
m=1,2,3,4,5), as depicted in Fig. 5.3. We can see that increasing m is better for the estimation
of angles in the first subinterval, but it is worse for those in the second subinterval. Therefore,
we can conclude that, unless the phase is promised to be in the first half of the interval [0, 7),
the m—Hadamard test with m > 1 would be better avoided.

5.4. Application: Phase estimation 93

0.010

0.008 1

0.006 -

0.004 -

Mean Absolute Error

0.002 1

0.000 -

Mean Absolute Error

Figure 5.2: Mean absolute error of the estimated phase, with 10° experiments, of the m-
Hadmard test (withm = 1,...,5), with 10* SHOTS in each experiment, for different equispaced

phase values.

94 Chapter 5. Combinatorial and Rotational QADS

0.010

0.008 ~

0.006

Average Error

0.004

0.002 -

0.000 -

0.4

0.3

0.2

Average Error

0.1 1

0.04—

Figure 5.3: Average error of the estimated phase with 10 experiments of the m—Hadamard test
(withm =1,2,3,4,5), with 10* SHOTS, for the equispaced phase values in the first and second
halves of the interval [0, 7).

5.4. Application: Phase estimation 95

5.4.2 Dichotomy search

An alternative for phase estimation is a dichotomy search based on the decision of eigenval-
ues procedure of the previous subsection. The idea is, as in the original dichotomy search, to
iteratively split the interval [0, 7) in halves, deciding in each iteration to which half the phase
belongs to. The decision is based on comparing the phase against the angles that define each
subinterval. So, in the first iteration, the phase is compared against 0 and 7, in the second one,
against 0 and %, or against % and 7, and so on. For this decision, we also use Theorem 5.18,
choosing the “left” or “right” subinterval, depending on which extreme angle provides a bigger
probability 0 (o takes the value of one or another extreme angle.)

We have tested this dichotomy test with different values of m, and 10 equispaced angles in
[0,), with 10 iterations, and a number of SHOTS equal to 10° in each iteration. We run the
experiment 10° times to get an estimation of the phase, measuring the mean absolute error of
such an estimation, and the overall average error for different values of m. Its code can be found
in Appendix A.3. The results are collected in Fig. 5.4. It can be noticed that this method pro-
vides uniformly better results when m increases. However, the error is still bigger than the error
provided by the standard Hadamard test.

5.4.3 Hybrid methodology

As a consequence, we propose a hybrid approach which takes the advantages of each of the
methods presented above. First, we use the dichotomy search to “locate” the phase, and then,
we get an actual estimation by using the m-Hadamard test. We have experimented with this
hybrid methodology with different values of m, and 10 equispaced angles in [0, 7), with 2
iterations of the dichotomy search, with a number of 10> SHOTS in each iteration. Another
8000 SHOTS are used in the m-Hadamard test. In order to apply the m-Hadamard test, we
hit the operator with a rotation of angle e'" , where L is the lower extreme of the interval in
which the phase is located. In the end, we add the m-Hadamard estimation to L. The results are
collected in Fig. 5.5. The code can by found in Appendix A.4. As in the case of the dichotomy
search, this methodology provides uniformly better results when m increases. Moreover, the
overall errors, when m > 1, beat those of the standard m-Hadamard test.

96 Chapter 5. Combinatorial and Rotational QADS

— m=1
0.030 E——
— m=3
5 0025 — i
u — m=5
£ 0020
g 0015
[
m
£ so10
0.005

00 05 10 15 20 25 30
Angle

Figure 5.4: Mean absolute and average error of the estimated phase with 103 experiments of
the Dichotomy test (with m = 1,2,3,4,5), with 10 iterations and 10* overall SHOTS, for ten
equispaced phase values in the first and second halves of the interval [0, 7).

5.4. Application: Phase estimation 97

0.008 1

£ 0006

g 0.004 1

Mean

0.002 1

0.000 1

0.0 05 10 15 20 25 30
Angle

0.010 ¢

0.008 1

Average Error
(=
8
h

%

0.002 1

0.000 -

Figure 5.5: Mean absolute and average errors of the estimated phase with 103 experiments of
the hybrid methodology, with 2 steps of the dichotomy search, and 10° SHOTS in each iteration,
plus 8000 SHOTS of the m-Hadamard test, for different equispaced phase values.

98 Chapter 5. Combinatorial and Rotational QADS

5.5 Application: Commutativity of Finite Algebras with Com-
binatorial QADS.

As we mentioned on Chapter 1, the need for an effective procedure to determine the commu-
tativity of the structure is a natural problem in the context of the computational study of finite
dimensional algebras [RCR09], [CRR11], [RC12]. As a solution for that, with quantum tech-
niques, an effective and faster algorithmic method for determining the commutativity of finite
dimensional algebras, based on Grover’s algorithm was proposed in [CRR19a]. As we know, an
abstraction of Grover’s Algorithm is Grover’s QADS. Hence, in this subsection, we perform ex-
periments applying QADS to the problem of the commutativity of algebras of small dimension,
comparing the Combinatorial QADS with other QADS.

Lemma 5.19. For all s,m € N, and for any 0 € [0,27|,

m

Z (’Z) (sin@sin((2ks+1)0) +cosBcos((2ks+1)0))
k=0

| , ,
zie*’e (1 +e*2’9“>m ((cos 6 +isin0) + €201+ (cos @ — isin 9)) .

Proof. On one hand,

m —i(2ks+1)0 _;,i(2ks+1)6
m\ ie e
)y (k) sin O sin((2ks+1)0) =sin6 Y (k) 3

k=0 k=0
—sin6— —i250 e i0 (> 61250 e 9)
oy (£ (1)1 > 5 (0
i 2o (m ,
Y —if —i2s0 619 () 61239)
(£ (=) £ (7))
_ ’ (e (1 +e—1259>m_ei9 (1 +ei2s0>m>
On the other hand,
i(2ks+1)0) | ,—i(2ks+1)6
f (m> cochos((st—i—l)G):cosGi <m) < e
i—o \K i—o \K 2

5.5. Application: Commutativity of Finite Algebras with Combinatorial QADS. 99

Hence,

m

™) (sin 8 sin((2ks + 1)0) + cos O cos((2ks + 1)@
3 () tsimosinf2ks-+ 1)0) +coscos((2ks+ 1)6)

:sineé (e—ie (1 +e—i259>m_ei0 (1 +ei2s0>m>

N 00289 (e,'e <1 +ei2s€)m+e—i0 <1 +e—i256>m>

1
256719 <lSln9 <(1 +672195>m _6219 <1 +62193>m))
n %eie (cose <<1 _|_€f2i6s>m L 20 (1 +ezl~es>m>>

1 . : : .
:56_19 ((1 —|—e_2’9s>m (cos O +isin) + e <1 + e2’93>m (cos O —isin 9))

1 . . m . .
:Ee_’e (1 +e_2’95> ((cos 0 +isin0) + e*% %9 (cos @ — isin 9)>

1 . . m .
:Ee_’e (1 +e_2’95> ((cos 6 +isin6) + €201+ (cos @ — isin 6)))

as desired. L]

Proposition 5.20. Let Q = <U f100) = \/LN xN;()l), with N = 2", be the output of Grover’s

QADS, (Section 4.6). And denote by 0 its corresponding combinatorial QADS. Then, the
probability of error of the detection scheme (Algorithm 4.14) for Q is

N
Y cos?”(0s)cos? (Osm)
s=0

(S+1)

Proof. By Proposition 5.4, we have that, for all s € N, C(m,U;)* = C(m,U}). By Proposi-

tion 5.3, we know the amplitude of the state C(m,U;)|0)*" |@y). Also, by section 4.4, we
know that U; |@o) = cos((2k+1)0)|B) +sin((2k+1)0)|A) . Thus,

<(p0|U} |@o) = cos((2k+1)0)cos O +sin((2k+1)0)sin 6.

100 Chapter 5. Combinatorial and Rotational QADS

And, by Lemma 5.19, we have that

107)| COm U 07)
S+1
£ () (oolUf o)
22m(§+41)

2

2

i g (7:) (sin@sin((2ks+1)0) +cos O cos((2ks+1)6))
s=0 [k=0

22m(S+1)
2

%e*"e (1 +e*2i9s)m ((cos 0 +isin0) + 200+ (cos 0 — isine)) ‘

22m(S+1)
%efie (1 _{_672i03>m|2 ’ (eie +ezie(usm)eﬂ'e) ‘2

22m(S+1)

i
T
[[{ye!

i%22mcos2m(9s)|(ei9(1_‘_62i95m))‘2

22m(S+1)

S
Y 1cos?(0s)4cos? (Osm)

_s:

(S+1)

S
Y. cos?"(0s)cos? (Osm)
5s=0

(S+1) ’

as desired. O]

Now, we apply the m-combinatorial QADS to the detection problem considered in [Section 5
[CRR20]]. Namely, detection among 32 elements, where exactly one is marked. We want to
find the probability of success with the detection scheme, Algorithm 4.14, for 50 iterations. By
applying the previous result on that situation, we found the results given in Figure 5.6.

Recall that, for m = 1, our QADS is Controlled-Grover, and for m = 2, our QADS is Con-
trolled Grover ® Controlled Grover. So, we recover the probabilities of [CRR20]. For m > 2,
the m- combinatorial QADS yields higher success probabilities.

Now, let us consider the case where we have a non-commutative algebra A of dimension 3,
with multiplication table {M; J'k}i3, k=1 such that M # M i, for exactly one (i, j,k), i.e., it is

5.5.

Application: Commutativity of Finite Algebras with Combinatorial QADS.

101

Combinatorial Gover QADS

0.8

o
[=)]
I

Detection Probability
o
iy

0.2 1

0.0 1

C-Grover

C-Grover ® C-Grover
Combinatorial m=3
Combinatorial m=4
Combinatorial m=10

20
terations

40 50

Figure 5.6: Probability of success of Algorithm 4.14, with m = 1,2,3,4,10, for detecting a
unique marked elements among 32 elements.

not commutative, but only one pair of constants (Mi koM j,-k) is different (see Section 2.3). From
the same section, we know that the multiplication table of A would have the following form,

Ay

M1

M3

My

M3,
M2 Min Mz | A=
M3 Mis3

My

M»yy
Ma1y My Moz | Az =

My13 Mpos

Mp3; M3 M3y Mssg
M3 Mz Mssz;
M>33 M313 M3z M33;3

So, without loss of generality, let us assume that only M3 # M313. By [Lemma 1, [CRR19a]],
we can embed our algebra A of dimension 3 into an algebra A of dimension 2> = 4, so we have
64 constants in the multiplication table of A such that two of them are pairwise different. Thus,
the multiplication table would become as:

M1y
M2
M3

M2
Mo
M3

M3
M3,
Mi33

S o o O

o o o O

> =

My My Mpsy
M1, Moy Mp3
M1z Maz Mass
0 0 0

o O O O

oo oo
(el el
S oo O
(= el el

102 Chapter 5. Combinatorial and Rotational QADS

So, applying Algorithm 4.14, with m = 1,2,3,4,10, we can see that, for an m-combinatorial
QADS, the probability of success of finding the pair of different constants improves (see Fig-
ure 5.7, whose respective code can be found in Appendix A.6).

Consequently, the m-combinatorial QADS might be used in the computational study of
finite semifields providing better detection probabilities of non-commutativity that the methods
considered in [CRR20].

Combinatorial Gover QADS

0.8
Fry
= 0.6
[i+]
el
g
o
5
= 0.4 1
(&)
@
R
a
C-Grover
0.2 1 —— C-Grover ® C-Grover
—— Combinatorial m=3
—— Combinatorial m=4
0.0 - —— Combinatorial m=10
T T T T T T
0 10 20 30 40 50
Iterations

Figure 5.7: Probability of detecting with Algorithm 4.14, and an m-combinatorial QADS with
m = 1,2,3,4,10, the non-commutativity of a 3-dimensional algebra where only one pair of
constants (M;jx,M) is different.

Chapter 6

Efficient Quantum Algorithms To Find
Substructures On Finite Algebras

In this chapter, we introduce quantum algorithms that find substructures of a given finite dimen-
sional algebra over a finite field IF, (such as the right, middle, and left nuclei, the nucleus, and
the center) from the multiplication table . We solve this task efficiently, by formulating it as an
instance of the Hidden Subgroup Problem (HSP) (Section 4.2). We give detailed constructions
of the quantum circuits involved in the process, and prove that the overall (quantum) complexity
of our algorithm is polynomial in the dimension of the algebra.

Let A be a non-associative and non-commutative K-algebra, with K = IF, a finite field of prime
cardinality p, and with a fixed basis § = {e1,...,e,}. Let {M;j}] ji=1 E K be the multipli-
cation table of the algebra with respect to 3. Consider the additive group G = (A,+), i.e.,
the elements of the algebra with the addition operation. So, G is a finite abelian group, namely
G (Z/pZ)" . Recall the following sets, known as the right, middle, and left nuclei, the nucleus
and the center:

These sets, which can be written in terms of the K-basis and the multiplication table, provide
information about the algebra. For instance, when A is a finite semifield, i.e., a finite divi-
sion ring, these sets are related to properties of the corresponding coordinates projective planes
[Alb60]. Finding those sets can be stated in terms of the HSP, and it is important in the context
of effective classification of finite semifields, see for instance [RCR09], and [HCR23]. So, the
problem addressed in this chapter is as follows.

103

104 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Given: Multiplication table of a finite dimensional K-algebra A (K a finite field I)).

Problem: To find N,(A),N,,(A),N;(A),N(A), and Z(A).

In order to solve it with quantum techniques, we will transform each problem of finding
N,(A),Nu(A),N;(A),N(A) and Z(A) into an instance of the HSP, which in general can be stated
as follows:

Given: The ability to evaluate a hiding function f for a subgroup H of a group G (i.e., a
function f that is constant on a subgroup H of G and is distinct on different cosets of H)
on arbitrary elements of G.

Problem: To Find s1,s»,...,s;, a generating set for H.

In order to solve it, in Section 6.1, we show first that those substructures can be written in
terms of the given multiplication of the finite dimensional algebra. In Section 6.2.1, we model
the problem of finding substructures in a finite-dimensional algebra as an instance of the HSP,
and we show that, without the knowledge of extra information on the hiding function, this kind
of problem can not be classically solved with a polynomial number of function accesses to the
hiding function f (Section 6.2.2). In Section 6.3, we construct an efficient quantum oracle for
the function f, and we build an efficient circuit for the solution of the corresponding HSP.

6.1 Substructures

In this section, we show that the right nucleus, middle nucleus, left nucleus, nucleus and center
of a non-associative and non-commutative K-algebra A can be written in terms of the K-basis
and the structure constants.

Firstly, in terms of the K-basis: let x,y € A, so there exist o;,3; € K, for all i,j = 1,...,n,

n
such thatx = Y oye;,y =
= j

1

n
Bjej. Leta € A, then,
=1

~—

a—x(ya)

aiﬁjeiej> a— (
i

o;f; ((eiej) a—e; (eja))

ey, a] = (xy

<
Q

N
I
_
~.
I
_

Il
R
1=
=
8
D
~
~
TP
=
S
Q
~

Il
1=
1=

2
2
—~

o
8
SN—

s

|
1=
1=

2
2
ko
\Q
&

N
I
—_
~
I
—_
~.
I
—_
~
I
—_

[
-
D=

N
|

~
I

6.1. Substructures

105

i=1j=1
Also,
[x,a,y] = (xa)y — x(ay)
— (Z o (e,a)) (Z ﬁjej) — (Z (X,e,) <Z Bjaej>
=1 j=1 i=1 j=1
=Y Y aBjleia)ej— Y Y oiBjei(ae))
i=1j=1 i=1j=1
= $ 3 oyl —eiae)
i=1j=
_ Y'Y apilenae))
i=1j=1
and
[a,x,y] = (ax)y — a(xy)
= (Z o (aei)> (Z e]> —a (Z (X,el> (Z ﬁjej>
i=1 j=1 j=1
= Z Z a;Bj(ae;)e; Z Z o;Bja (e,ej)
i=1 j=1 i=1 j=1
= Zl .Z:Iaiﬁj ((ae Jej—a (ele]))
i=1j=
= i i Ociﬁj[a,ei,ej].
i=1j=1
Therefore,
Ny(A)={acA:lejejal=0fori,j=1,...,n}
Nu(A)={acA:leja,ej]=0fori,j=1,...,n}
Ni(A)={acA:[a,eje;]=0fori,j=1,...,n}.
And, since

n n
la,x] = ax —xa = Z o;ae; — Z Qieja = Z o; (ae; — eja
i=1 i=1 i=1

the center is

Z(A)=NA)N{a€A:|a,el

=0fori=1,...,

n
- Y alecl

106 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

When the K-algebra is associative, then N,(A) = N,,(A) =N;(A) =N(A) =A,and Z(A) = {a €
A:la,ei] =0for i=1,...,n}. And, when the K-algebra is both associative and commutative,
then Z(A) = A.

n
Secondly, in terms of the structure constants: leta = Y e, so the conmutator is

I
1=
£
$
~
D
D
T/~
1=
£
$
~

|
M=§
$
)
3
R
I
g
$
)
®
3

3
[N
3
L

I
M:
M:
S
=
SO
|
™
g
S
=
s

3
I
_
-
Il
—_
3
|
_
-
Il
—_

Il
=
1=

O (Mipite — Mimic) ek,

3
I
—
-
I
_

and the associator [e;,e;,a] is

leisej,a] = (eiej) a—ei(eja)

(o) () o 5-)

n n
Mijkek (Z amem> — € Z e jenm

I
D=

~
I
—_

n

n
OM; jrerem — Z Z OmeiM jier
m=1k=

n o n on
Oy ljkMkmres Z Z Z M]msMLkses

I
Nt
D=

~
I
—_
3
Il
—_

~
I
—_
i)
I
—_

1

M:
T M=

M=

z]kMkms - M/mkMzks) O

=)
I
—_

Il
(ngE
TR
M:
T~
M:

Analogously, for the associators [e;,a,e;] and [a,e;,e;], we have

n n
lei,a, ej = Z (Z (Z MMy js — My jkMis am)

)) s,
s=1 \im=1 =
Yot | | e

n n
la el7ej = Z (Z (Z MypixMy js — M jkMpis) Om)
m=1 \k=1

s=1

6.2. The classical approach 107

Thus,

Ny (A)={a€A: (M;uMi11 —MjiiMj1) o+ -+ (MijnMunt — M junMiny)
o = O, ceey (Milelln _MjllMiln) op+---+ (Ml]}’lM}’ll’ll’l _Mjrm
M), =0, foralli,j=1,...,n}.

In a similiar way, we can obtain expressions for N, (A),N;(A),N(A), and Z(A).

6.2 The classical approach

In this section, we model the problem of finding substructures in a finite-dimensional algebra
as a HSP, and we show that without the knowledge of extra information on the hidding func-
tion, this kind of problem can not be classically solved in a polynomial number of function
accesses to the hiding function f. In particular, we explicitly give the functions that hide the
right, middle, and left nuclei, nucleus and center of a finite dimensional K-algebra A, in terms
of its multiplication table.

6.2.1 Hiding functions

Namely, for N, consider the following function:

2

fo: A = An
a = fNr(Cl):([6176’1,61],[6’1,82,61],...,[en,enya]).

Note that fy (a1) = fn.(az) if and only if a; —ap € N,(A). Indeed,

v (ar) = fu,(az) < ([er,er,d],...,|en,en,a]) = (le1,e1,4],...,[en, en,a])
@([elaebal]_[el7e17a2]7"'7[€n7enval]_[enaenaaﬂ) == (0770)
Slei,ej,ar) —leiej,a] =0, foralli,j=1,...,n

& (eiej) ap—e; (ejal) — (eiej) a»+e; (ejaz) =0, foralli,j=1,...,n
& (eiej) (a1 —az) —e; (ej (a1 —az)) =0, foralli,j=1,...,n
~ (a1 — az) € Nr(A).

Hence, we can say that f hides the subgroup N,(A). For N,,,(A),N;(A), we consider the functions

2

meZ A — Al

a — me(a) = ([61761761]’[elaaan]v"'7[en7a7en])a
and ,
le A — A"

a — le(a) = ([a7e17el]7[el7a7e2]7"'a[enaa7en]>-

108 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Analogously, as for fy, it can be seen that fy, (a;) = fy, (a2) if and only if a; — ay € Ny (A),
and that fy,(a1) = fw,(a2) if and only if a; —ay € Nj(A). Hence, we can say that fy, and fy,
hide the subgroups N,,(A) and N;(A), respectively. For N(A), consider the function

2

fv: A — A3
a — fy(a)=(fn(a),fn,(a), /N (a)).

So, fy(ai) = fy(az) if and only if a; —ay € N.(A) NN, (A)NN;(A) = N(A). And, for Z(A)
consider the following function

fz: A — A3n2+n

a le (a) = (fN(a)7 [avel]v"'v[avenb'

Hence, fz(a1) = fz(a2) if and only if aj —ay e N(A)N{a €A :[a,ej]=0fori=1,...,n} =
Z(A).

As we can see, all hiding functions are given in terms of commutators and associators of the
basis elements of the algebra and the argument of the hiding function. So, in order to show that
the hiding functions can be written in terms of the multiplication table of the algebra, we only
need to observe that, if a =Y, 0e,, then we have the conmutator

la,ei] = i (
k=1 \um

n

O (Mipire — Mimk)> ek,
|

and the associator

n

n n
[ehejaa] = Z (Z (Z (MijkMkms _MjmkMiks) am)) s
s=1 1 \k=1

m=

Analogously, for the associators [e;,a,e;], and [a, e;, e;].

6.2.2 Classical solution

Next, we consider the classical (i.e., non-quantum) solution to the HSP via the hiding output of
a hiding function. The idea is to show that, as long as there exist different subgroups hidden by
the same function, extra evaluations of such a hiding function are needed in order to distinguish
them. The following is a technical result.

Lemma 6.1. Let G be a finite group having N subgroups with trivial pairwise intersection.
Let g1,...,8 € G be such that m = N — (;) > 1. Then, there exist m subgroups Hy,...,H,,
out of the N, given by hiding functions fi,...,fm: G = N, such that f;(gx) = f;(&k), for all
1<i,j<myand1 <k<t.

Proof. The proof follows by induction over ¢. For t = 2, define f;(g;) = 1, for every one of
the i = 1,...,N subgroups, and extend it to G in the following way: fi(g«) = j if gxH; = e ;H;,
where e H;, e H;, . . ., e, H; are the different classes of G mod H,.

6.2. The classical approach 109

Assume, for t > 2, that there exist m = N — (t 51) subgroups Hi,...,H,, with hiding func-
tions fi,..., fm, such that fi(gx) = fj(g), forall 1 <i,j <m, 1 <k <t—1. Take g; € G, if
there exists a k < ¢ such that g, = g, the result follows directly. Otherwise, g; € {g1,---,8—1},
and consider h; = g[lgk #1,fork=1,...,t — 1. A fixed h; belongs, at most, to one of the
Hi,...,Hy, subgroups (because h; # 1). Take those H;, out of the N given, such that i & H,
for k =1,...,m. We can redefine f;(g;h;) = max{f;(gr)}+ 1, for all h; € H;. This function
still can be seen to hide H;, because gt_lgk ¢ Hj, for all k =1,...,m. At most, there are r — 1
subgroups that are not taken in this step, so we are left with

m—(t—1)=N— (t;)—(z—l):N— (;)

subgroups, thus the result follows. [

Theorem 6.2. Under the conditions of the previous lemma, t evaluations of a general hiding
function f are not enough to solve the corresponding HSP via the hiding function in a classical
computer. This holds, in particular, ift < |\/N|, and N > 2.

t <t2<N
2 2 — 2

N t_N+N t>N+l>2
2/ 2 2 2] =2 -7

Assume the existence of a HSP solver using ¢ evaluations of the hiding function. Evaluations
in the ¢ elements gy,...,g; of the previous theorem provide the same information for the m
subgroups Hi,...,H,. Consequently, they can not be distinguished by the HSP solver. [

Proof. Clearly,

Then,

Corollary 6.3. Computing the right, middle, and left nuclei, center, and center of a finite dimen-
sional algebra A over a finite field K of q elements, with a HSP solver, and no extra knowledge
of the hiding function, on a classical computer, requires at least Q(,/p") evaluations of the
corresponding hiding function.

Proof. In our case, if we consider the additive group of the algebra G = (A,+) = K" with
K =T, the number of 1—dimensional subspacesis 1 +p—+---+ p”_l, all of them with trivial

pairwise intersection. Following the corollary, it is necessary at least L\/ l+p+-+prl] =
Q(+/p") evaluations for a HSP solver to compute each of the mentioned substructures. [l

As an aside note, observe that it is always possible to have a finite dimensional algebra
A for which Ny = N,, = N, = N = Z is of dimension 1 over K. For instance, a Generalized
Twisted Field, for particular choice of its defining parameters [AlIb61]. In detail, let ' = F,
with ¢ = p" > 2, and K = 7/, with m > 3 and odd. Let g € K be a primitive element K.
Then the polynomial x9~! — g has no roots on K. This is because, if h € K with 9! = g,

110 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

then 1 — he"—1 = pla=D(1+a++0"") "and 5o the order of g is less than ¢" — 1, which is a
contradiction (the order of g is ¢ — 1).

Let A = (K, +,*) with the operation defined as in Example 2.44,i.e.,a-b =ab—gt(a)o(b),
with 6 : K — K be such that 6(a¢) = a4, T= 0!, and axb = (R}) "' (a) e (L}) "1 (b), for all
a,beKk.

Thus, A is a finite semifield, where N; = N, = N = Z = F. Now, note that 6(a) = 7(a) if
and only if @ = 62(a). But, since m is odd, and ord(c?) = g?;d(ﬁf;), then < 62 >= Aut(K|F).
Then, M| = |F,|, where M = {a € K : o(a) =1(a)}, hence N,, = F (here, ord(c) denotes the
order of ¢ as an element of the group Aut(K|F)).

6.3 The quantum approach

In this section, we solve the problem of finding substructures in a finite-dimensional algebra by
quantum procedures. In particular, we construct an efficient quantum oracle for the hiding func-
tions of the substructures, and we build an efficient circuit for the solution of the corresponding
HSP. Let us first give an overall picture of the whole procedure.

Algorithm 6.4 (Solution to the HSP for substructures of a finite algebra).
Input: Multiplication table of a finite dimensional K-algebra A with respect to a basis
{e1,...,em} (K is a finite field of p elements)

Construction of quantum oracle: From the multiplication table, construct a quantum
oracle for the hiding function f of a specific subgroup H.

Quantum procedure: Construct a quantum circuit that, using the quantum ora-

cle, that returns tuples (¢,...,0,) of elements in K, which provide cooordinates of
elements in the orthogonal complement of H, i.e., (ay,...,Qy) - (Bi,...,Bn) = 0, for all
YL BieicH.

Classical Post processing: Compute generators of H from Gaussian elimination
on the tuples given by the quantum procedure.

6.3.1 Oracle of the hiding function

Our first task is to show that an efficient quantum oracle (in terms of the number of quantum
gates) can be constructed from the multiplication table of the algebra, for each of the hiding
functions introduced in the previous section.

We consider the construction for N,(A), as those for N,,(A),N;(A),N(A),Z(A), follow the
same lines. From the previous section, fy,(a) can be written in terms of the structure constants,

6.3. The quantum approach 111

sinceifa=1Y, | Oyen, thenforalli,j=1,...,n,

n n
[eiueba] = Z (Z ((MijkMkms _MjmkMiks) am)) €s
s=1 \m=1 \k=1
n
=2
s=1

n
O‘m)tijms s,
m=1

n
where A;jms = L (Mi kMg — M jmkMiks) are n* constants in the finite field K = F p- If we con-
k=1

=

sider the coordinates of such an expression, we can go further and expand it to get a coordinate
version of fy namely

n n n
3
Z am)'llml?"w Z amﬂ‘ijmﬁ---a Z am)“nnmn eK".
m=1 m=1 m=1

Let us write, for all A;ju, with i, j,m,s = 1,...,n, their binary representations {Afjms} for
t=1,...,r=1[log,(p)] G.e., Aijms =Y, 2 ’lki’jms). Using the controlled-multiplier modulo p
of [VBE96], each A; ;0 can be implemented by repeated modular additions (modulo p), re-
quiring 37 + 1 ancillary qubits, and O(r?) gates (among NOT, CNOT and Toffoli gates). These
products can be computed in sequence, reusing the ancillary qubits, while carrying out the mod-
ular addition Y _; A;jmsOn. Again, by [VBE96], such a modular addition requires only r extra
ancillary qubits (to store intermediate values of A;jus0,), and O((n— 1)r) gates.

Overall, computing Y| 0 A;jms requires O(nr?) gates, and (3r + 1) +r = 4r + 1 ancillary
qubits. Since there are n? sums of that form, and all ancillary qubits can be reused, the Un,
oracle can be efficiently constructed with 4r + 1 ancillary qubits.

In summary, in Table 6.1, we give the number of qubits corresponding to input, output, an-
cillary, and the order of the number of gates required to build each oracle Uy,,Un,,,Uy,,Un,Uz.

m

Oracle Un,,Un,,, Uy, Un Uz
Input nr
Number of qubits Output nr 3n3r 3n3r+nr
Ancillary 4r+1
Number of gates O(n*r?)

Table 6.1: Cost in terms of number of qubits and gates of each oracle, for the hiding function
of Ny,N,,, N;,N,Z.

112 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

6.3.2 Quantum Algorithm To Find Substructures

Next, we present a quantum efficient algortihm to find the substructures of a finite-dimensional
algebra over a finite field IF,, based on the above constructed quantum oracle and the ideas
of [LomO04, Section 3]. It uses an efficient computation of the quantum Fourier transform on
G=(A,+)=(Z/pZ)", and it outputs elements of the orthogonal subgroup H to be found:

1

n
H+ = {a:ZaienEG:a1ﬁ1+---+an/3n0£modp, forall B =
=1

1

n
Biei €EH,.
=1

As before, we consider the construction for N,(A), as that of N, (A),N;(A),N(A), or Z(A), fol-
low the same lines.

Algorithm 6.5 (Quantum procedure for finding the orthogonal of the Right Nucleus).
Input: A black box which performs the operation Uy, |a) |0) = |a) |fn,(a)) for a € A,
and € € R such that v/2 > £ > 0, so that the QFT on (Z/pZ)" can be computed with
error bounded by €.

Quantum Procedure:

1. Initial state: |0)*"*[0)*"2|0)*"3, with r; = nr input qubits, r, = n>r output qubits
plus r3 =4r+1+n[12.53+ 3log, n%ﬁ , ancillary qubits.

2. Create superposition and remove elements which are > p.

3. Apply the black box Uy, .

4. Apply the Quantum Fourier Transform from Equation (3.1) on the first register.
5. Measure the first register.

Output: The binary expansion of the coordinates of an element in N,(A)~.

As in many quantum algorithms, superposition is achieved by applying the Hadamard trans-
formation. However, we must notice that removal of elements greater or equal than p is needed,
as we are only interested in values mod p. After that, as it is standard in quantum solutions to
the HSP, an application of the quantum oracle Uy, is followed by a QFT and a measurement.

Superposition and removal of elements greater or equal than p.

Let us explain with a litte more detail the second step of the quantum procedure. Each element
in the algebra is represented by the binary expansion of its coordinates. So, we need nr qubits
to deal with all the elements in the algebra in superposition. Let us divide then in n registers of
r qubits, each one encoding a single coordinate, which is an integer mod p. Therefore, since

6.3.2.0 Steps 3 to 5 in the algorithm. 113

we are only interested in a superposition of p constants (\/%5 Zf;é |x)), after a standard superpo-

1
V2"

sition of the r qubits with Hadamard gates (2)26;701 |x)), we need to remove those sumands

which are greater or equal than p.

This is accomplished by the use of an extra r qubit register, storing the binary representation of
the integer p (by an application of at most r X gates). We represented it on the circuit of Figure

6.1 as

Now, for each of the n pairs of 2r qubit registers, we use the quantum bit string comparator
(QBSC) from [OR07] to remove the undesirable summands (see Figure 6.1). It has a total cost
of O(r) CNOT and single qubit gates, and 3r — 1 ancillary qubits. The last two of them, Q;, 0>,
provide after measurement a comparison with p. Namely, the integer is smaller than p if and
only if Q1 =1 and @, = 0. So, such a measurement yields the collapse of the first register to
the desired superposition. An undesired measurement forces a repetition of the process.

.-o
The probability of failure of one single comparison is 2,p

< % Therefore, if the process is
repeated ¢ times, the probability of failure is at most % Since this technique is to be applied in
parallel to each of the n different 2r—qubit registers, the overall probability of failure is at most
#. Choosing 1 = |log, (%)] +1 = O(log(n)), yields a bounded probability error 0 < § < 1 of
the whole comparison procedure, that can be made arbitrarily small.

For a single coordinate, the number of ancillary qubits required in a single use of a QBSC
is 3(r — 1) 42, and the number of qubits measured are two. However, we can uncompute the
3(r — 1) qubits that were not measured, and reset the measured ones. We apply this process
t times sequentially for each 2r qubits from the pairs of the first register, giving an overall of
3(r — 1)+ 2 ancillary qubits. Since the r qubits from the state of p can be shared, we need an
overall number of 3(r — 1) + 2 +r = 4r — 1 ancillary qubits.

Steps 3 to 5 in the algorithm.

After the previous step, we achieve the quantum state

1 o
mag'” 0)°"=.

Here, summation is to be understood over coordinates of elements in A (ancillary qubits are
omited), and application of the oracle Uy, yields

¥) (@),

and application of the QFT from Subsection 3.3.1 (Equation 3.1) on the first register, gives

Y |b) (in y wsb|fN,<a>>) ,

beA 2=y

114 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

L |0) 1 OBSC

3(r—1)+2

0)
[0) ———

Figure 6.1: Quantum circuit of the step 2 of the quantum procedure for finding N,(A).

6.3.2.0 Steps 3 to 5 in the algorithm. 115

2mi

7) . A measurement |b) on the first register occurs with probability

If {s1,s2,...,81} is a Z/pZ—basis of H, then, for all z € Range(fy,), there exists a, € A such
that z = fi, (a; + Y| Ais;), forall 0 < Ay,...,4; < p— 1. So, the probability becomes

where), = exp (

2

1% Y | fi (a))

acA

2

1 P payl Asi)
S I B
p z€Range(fy,) \A1,...,44=0
1 Ry ’

SRR | (O

z€Range(fy,) i=1 \4;=0
Now, when bs; # 0 mod p, for some i = 1,...,/, then Zi;lo a)f;ib“"' = 0 (because of Proposi-

tion 2.59), and the corresponding summand vanishes. Otherwise, b € H, and the probability

1S
2

l
1,
= —p2np” ‘a-p'yP=p

o TI(X o)

i=1 \1—0

1

L

P zcRange(fy,)

[—n

Thus, we obtain an element uniformly distributed in N, (A)*.

6.3.3 Classical post processing

In order to determine the number of times that the quantum procedure should be run in order
to find a generator set of the subgroup N,(A)*, we shall use Theorem 2.62. So, running the
quantum procedure s -+ nr times, with s > 0, gives a generator set {g',...,g**""} of N,(A)*,
with probability at least 1 — 5 (because N,(A)* is subgroup of (A, +), which has order at most
p™"). Once that we have such a generating set, Gaussian elimination on the following system of
s + nr linear equations

glxy + gx + -+ gy, = 0 modp
gsl+nrx1 + g;+nrx2 + . 4+ ngF”rxn = 0 modp

gives a generator set of N.(A). We have the following main result:

Theorem 6.6. Given the multiplication table of a n-dimensional nonassociative noncommuta-
tive ¥ ,-algebra A, for each substructure

H = Ny(A),N(A),Ni(A),N(A), Z(A)

of A, there exists a quantum algorithm that using the number of qubits and quantum gates of
Table 6.2, and together with a classical post-processing algorithm of complexity 0(n3), finds H
with a bounded probability error.

116 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Substructure N;,N,.,N, N Z
Number of qubits nr+nr 3 r+nr 3 r+n®r+nr
Number of ancillary qubits 4r+1+n[12.53 4 31log, n%ﬁ}
Number of gates 0 (n5 r3)
Number of oracle queries O (nr)

Table 6.2: Cost of Algorithm 6.5 in terms of number of qubits and gates, for the computation of
each substructure N,(A),N,,(A),N;(A),N(A),Z(A).

Remark. Observe that the number of ancillary qubits is upper-bound by the number of such
qubits involved in the quantum oracle. In other steps of the algorithm, ancillary qubits can be
reused, either by uncomputation, or by measuring and resetting them to zero.

Remark. Note that, when p is even, the number of ancillary qubits is 47+ 1, but when p is odd
the number of ancillary qubits is 4r+ 1+n[12.53 4+ 3log, n%ﬁ} (see Section 3.3.1).

6.3.4 Examples

As a proof of concept, we shall apply our algorithm to binary algebras. So, we will illustrate
the behaviour of Algorithm 6.5 with two examples. In the first one, we compute the center
of an associative 3-dimensional [F>-algebra which is not commutative. In the second one, we
obtain the right, left, middle nuclei, the nucleus, and the center of a non associative and non
commutative 4-dimensional [F>-algebra. Recall that, in our notation, n is the dimension of the
[F,-algebra, and r = [log,(p)]|, which in the case p = 2, gives r = 1.

Note that, when p = 2, we can skip the QBSC, and the picture of the quantum circuit from
the quantum procedure would look like

|0>®” H®" U H®n
N,

r

‘O> on’

Recall that, over (Z/27Z)", the Quantum Fourier Transform is H®", see Section 3.3 (Exam-
ple 3.28).

Example 6.7. Consider the following set:

a b
A {(2) wbeens)

with ordinary matrix addition and multiplication. It is a 3-dimensional [F,-algebra, associative
but not commutative. Since it is associative, N(A) = N,,(A) = N;j(A) =A, so N = A. Let us find

6.3.2.0 Steps 3 to 5 in the algorithm. 117

Z(A) with our algorithm. As a first step, we must find the multiplication table of the algebra. A

[F>-basis of A is
B dei— (1 O e (O 1) ey (00
17\ 0)27 0 0)% o 1)

As we know, the multiplication table can be found by applying L, (¢;), for all i, j = 1,2,3. Thus,
Lo (e1) = le; +0ex+0e3, L (€2) = Oey + ley + Oez, L, (e3) =0e; 4 0ez + Oe3
Le,(e1) =0e; +0e2+0e3, Le,(e2) = Oey + Oex + Oe3, Le,(e3) = 0ey + lex + 0e3
Le,(e1) =0e1 +0e2+0e3, Ley(e2) = Oep + Oex + Oez, L, (e3) = 0eg +0es + les,

Hence, the multiplication table of A is

1
M = Al =10 7A2: 7A3:
0

S = O
S O O
S O O
o O O
o = O
N eNe
o O O
—_ O O

Now that we have the multiplication table, we would like to find the expansion of the function
J7(a)- Because A is associative, fy is identically zero, and we only need to consider the last 3
components of the fz function. Each of the commutators in fz has 3 coordinates in the basis 3.
Using the code B.7, its expression is

(O7x270707'x1 +x370707x270))

which can be shortened to (x,x] +x3), where x1,xp,x3 € [F», by eliminating the coordinates that
are always 0. The quantum oracle that performs the unitary operation Uz |a) |0) = |a) | fz(a)),
with a = x1e] + xpe2 + x3e3, can be seen in Figure 6.2. And it can be simulated with the code

Figure 6.2: Oracle for Uz, in Example 6.7.

B.8. Now that we have our oracle, we have the circuit for our quantum procedure, which can be
seen with B.9, and we can simulated with B.10. Repeatedly using Algorithm 6.5, we find that
the elements that belong to the orthogonal of Z(A) are, with high probability,

{010,000, 101,111},

118 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

0.60

0.500

0.45 1
0300

0.30 1
0.15 1

0.100 0.100
0.00 B l

] — ~ ~
8§ g < ~

Figure 6.3: Elements in Z(A)", after 10 repetitions of Algorithm 6.5.

Probabilities

(see Figure 6.3) following Theorem 2.62 (which have been obtained with 10 repetitions, so the
probability of not obtaining a complete set of generators for Z(A)~ is below 1%). This leads to
the system of equations(6.1).

Ox; + Oxp + Ox3 = 0 mod2

Ox; + Ixx + Ox3 = 0 mod?2 ©6.1)
x1 4+ O0x, + x3 = 0 mod2 ’
X1 4+ x 4+ x3 = 0 mod2

So, by applying Gauss-Jordan, we found two solutions (x; = 1,x, =0,x3 = 1), and (x; =0,x, =
O,X3 = 0).

Therefore (x; = 1,x, = 0,x3 = 1) generates Z(A). This is, indeed, the correct solution, since
the only non-zero element that is mapped to (0,0) by the hiding function (x,x; + x3) is exactly
(1,0,1).

Example 6.8. Consider the following multiplication table for a 4-dimensional [F;-algebra:

0 00O 0 00O 0 00O 0 00O
0 00O 0 010 00O00O 0 00O
A=1ooo0o] 25looo o[{000 0|™|0o0o0 o0
0 00O 0 00O 00O00O 0 00O

This algebra is neither associative nor commutative. Let us use our algorithm to find its right,

middle, and left nuclei, the nucleus, and the center.

Right Nucleus. First, let us find the coordinate expansion of the function fy (A), using the
code B.11. After eliminating zeroes and repeated coordinates, we arrive at a hiding function
fn,(A), whose shortened coordinate expansion is given by

(x1 +x2,X3 +x4),

6.3.2.0 Steps 3 to 5 in the algorithm. 119

where x1,x2,x3,x4 € F5. The quantum oracle that performs the unitary operation Uy, |a) |0) =
la) | fn.(a)), with a = xje; + x2e2 + x3€3 + x4e4, can be seen in Figure 6.4.

X1
|x2

)
)
|x3)
)
)

x4

|0

o) —— [x)-

Figure 6.4: Oracle for Uy,, in Example 6.8.

The oracle together with the quantum procedure are given by the code B.12. As in example 6.7,
repeatedly using Algorithm 6.5, we can obtain (with high probability) that N,(A)* is generated
by {(1,1,0,0),(0,0,1,1)}. Simulations are in B.13, and the results can be seen in Figure 6.5.

0.32 0.300 0.300

0.24 1
0200 0.200
0.16 1
0.08 1
0.00-
o ~
S ~
§ 8

~
5
fs

Probabilities

-I_lao

Figure 6.5: Elements in N,(A)*, after 10 repetitions of Algorithm 6.5.

Leading us to the system of equations(6.2).

Ox; + Oxp + Ox3 + Ox4y = 0 mod2

x1 4+ x + Ox3 4+ Ox4q = 0 mod2 6.2)
Oxg; + Oxp, + x3 + x» = 0 mod?2 ’
X1 + x» 4+ x3 + x4 = 0 mod2

So, by applying Gauss-Jordan, we found the elements of N,(A), which are

{(0,0,0,0),(1,1,0,0),(0,0,1,1),(1,1,1,1)}.

120 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Thus, {(1,1,0,0),(0,0,1,1)} generates N,(A).

Middle Nucleus. First, we find the expansion of the function fy, (A), using code B.14, which
is actually the same as the right nucleus. Hence, in this particular case, N,-(A) = Ny, (A).

Left Nucleus. Let us find the coordinate expansion of the function fy,(A), using the code B.15.
After eliminating repeated coordinates, we arrive at a hiding function fy,(A), whose shortened

coordinate expansion is given by
(2 +x3 4 x4, X1),

where x1,x2,x3,x4 € F5. The quantum oracle that performs the unitary operation Uy, |a) |0) =
|la) | fn,(a)) , with a = x1e1 +x2e5 + x3€3 + X4e4, can be seen in Figure 6.6.

Figure 6.6: Oracle for Uy,, in Example 6.8.

The oracle together with the quantum procedure are given by code B.16 and B.17, respectively.
After 10 repetitions of Algorithm 6.5, the probability of not finding elements in the orthogonal
Nll is also below 1%. The found elements can be seen in Figure 6.7. Leading us to the system

0.32 0.300 0.300
0.24
k] 0.200 0200
E
§ 0.16
&
0.08
0.00
(=] Loy } =] ~
o (] ~ ~
§] ~ ~

Figure 6.7: Elements in N;(A)~, after 10 repetitions of Algorithm 6.5.

6.3.2.0 Steps 3 to 5 in the algorithm. 121

of equations(6.3).

Ox; + Oxp + Ox3 + Oxy = 0 mod2
x1 4+ Oxp + Ox3 + Ox4 = 0 mod2 6.3)
Ox; + Ixx + x3 + x4 = 0 mod2)
x1 + x 4+ x3 + x4 = 0 mod2

So, by applying Gauss-Jordan, we found the elements of N;(A), which are
{(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)},

and so {(0,1,0,1),(0,1,1,0)} generates N;(A).

Nucleus. Knowing the coordinate version of the hiding functions of the right, middle and
left nuclei, we can build the oracle of the coordinate version of the shortened hiding function
fn(A), which is

(x1 +x2,X3 + X4,X2 + X3 + X4, X1).
The quantum oracle that performs the unitary operation Uy, |a)|0) = |a)|fy,(a)), with a =
x1e1 +xpex +x3e3 + xqe4, can be seen in Figure 6.8.

|x1

|x2

)
)
|x3)
)
)

x4

|0

]

0) X Hx]|

0) X Hx Hx ——
0 X}

Figure 6.8: Oracle for Uy, in Example 6.8.

The quantum procedure is given by code B.18, and it is simulated with the code B.19. After
30 repetitions of Algorithm 6.5, we find the elements of N(A)+, with high probability (see
Figure 6.9). Leading us to the system of equations(6.4).

(Ox 1 + Oxp + Ox3 + Oxy = 0 mod2
x1 4+ Oxp + Ox3 + Ox4 = 0 mod2
Ox; + x + Ox3 + Oxyq = 0 mod2
x1 + x 4+ Ox3 + Oxy = 0 mod2 (6.4)
x1 + Oxp + x3 + x4 = 0 mod2
Ox; + x» 4+ x3 + x4 = 0 mod2
X1 + x» 4+ x3 + x4 = 0 mod2.

\

122 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

0233
0.24 1

o
H
o

Probabilities
o
S
N

0.06 1

0.00 -
S o
~ ~y

o ~
S5 5
~ ~

s 8§ 5 7
e & & @8

Figure 6.9: Elements in N(A)~, after 30 repetitions of Algorithm 6.5.

So, by applying Gauss-Jordan, we found that {(0,0,1,1)} generates N(A). Which of course
coincides with N,(A) NN, (A) NN;(A).

Center. Note that knowing the coordinate expansion of fy(A), we just need to find the coordi-
nate expansion of fz(A) from the commutators. So, with the code B.20, and after eliminating

the coordinates that are always 0, we found its coordinate expansion:

(X1 +Xx2,X3 +X4,X2 + X3 +X4,X1,X3,X2).

The quantum oracle that performs the unitary operation Uz |a) |0) = |a) | fz(a)) , witha =x1e; +

Xpe +x3e3 +x4e4, can be seen in Figure 6.10.
The quantum procedure is given by the code B.21, and it can be simulated with code B.22.

After 50 repetitions of Algorithm 6.5, we find the elements of Z(A)", with high probability (see
Figure 6.11).

6.3.2.0 Steps 3 to 5 in the algorithm.

123

Probabilities

0.100 1~

b
o
~
v

o
o
v
o

0.025 1

0.000 -

=
]

0) X
0) (X

Figure 6.10: Oracle for Uz, in Example 6.8.

0.100 0.100

0.080 0.080 0.080 0.080

0.060 0060

0.060 0060

$ 55373 s
g & & S ~

1101

(=]
=
~

Len g ~ = ~ ~
o s & g 5
Q ~ ~ ~ ~

O ~ © o~
§ § § &

Figure 6.11: Elements on Z(A)", after 50 repetitions of Algorithm6.5.

124 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Leading us to the system of equations(6.5).

(OX1
X1
0x1
X1
OX1
X1
O0x;
X1
OX1
X1
Ox1
X1
Ox1
X1
OX1
X1

\

So, by applying Gauss-Jordan we find that, {(0,0,0,0)} = Z(A).

+t+++++ At F A+

0x»
Ox>
X2
X2
0)62
0x2
X2
X2
OXQ
0X2
X2
X2
Oxo
0)C2
X2
X2

t++++++ A+

OX3
Ox3
Ox3
OX3
X3
X3
X3
X3
OX3
OX3
OX3
Ox3
X3
X3
X3
X3

t+++++ A+

Ox4
Ox4
Ox4
0X4
0)64
OX4
Ox4
Ox4
X4
X4
X4
X4
X4
X4
X4
X4

SleoNoNoNoNoNoNoNoN ool ol ool oo

mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2
mod 2

mod 2.

(6.5)

Chapter 7

An approach to the Classification of Finite
Semifields by Quantum Computing

In this chapter, we address the problem of classification of finite semifields, using quantum
computational methods. Following [HRO7], and [RCR09], in Proposition 2.52 of this disserta-
tion, it was stated that, any finite semifield D of order qd can be described by a set of d matrices,
known as standard basis. So, the effective classification of finite semifields can be rephrased
as a problem of finding certain sets of matrices. Hence, our main approach will be based on
Grover’s Algorithm.

In Section 7.1, we model the problem, and we present the results using a simulator for quan-
tum circuits to find some of the multiplication tables for the finite semifield 'g (which is the only
finite semifield of order 8), and for finite commutative semifields of order 16. Specifically, we
build an oracle for finding standard bases of those semifields with Grover’s quantum Algorithm.
In Section 7.1.3, we give an estimation of the cost for the general case, in terms of quantum gates
(for the sake of simplicity, we restrict to binary semifields). Additionally, we draw some con-
clusions from this approach to the general classification of finite semifields. In Section 7.2, we
look for an alternative of quantum computing techniques to study finite semifields: Quantum
Annealing, a form of computation that efficiently samples the low-energy configurations of a
quantum system [KN98]. So, we give an approach towards finding the multiplication table of
the binary primitive finite semifield of order 32.

7.1 Quantum Computational Search of Finite Semifields with
Grover’s algorithm

In this section, we introduce a procedure for the classification of finite semifiels using Grover’s
algorithm.

The multiplication table of a finite semifield D with ¢? elements is related to a standard basis, a

set of d matrices satisfying the properties of Proposition 2.52 (namely, take {x; = 1,x,...,x4}
a F,—basis of D, so that the coordinate matrices of the maps Ly, for i = 1,...,d, with respect

125

126 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

to such a basis satisfy those conditions). So, we focus our attention on finding standard bases
{A1,A2,...,As}. In order to do that, we build up a Boolean function f, using the determinant
of each linear combination of the matrices in the standard basis, in terms of the operations of
XOR, AND, NOT. Such a Boolean function is used to construct an oracle with Toffoli and
CNOT gates, to be used in an implementation of Grover’s algorithm.

However, it is important to notice that there are two problems that need to be addressed. First,
we must know how many iterations are needed for the algorithm to succeed. Second, after a
series of runs of the algorithm, we need to make sure that we are not leaving out any solu-
tion (with high probability). To solve those problems, we use Algorithm 4.9. So, we apply
Grover’s algorithm, which gives tuples that are all the solutions for all the standard bases (with
a probability as high as desired). Finally, following [RCR09] and [RCR12], semifields can be
classically classified up to isomorphism, isotopy and S3-action.

In summary, the previous procedure can be seen in the following mind chart.

Standard basis

Theory Re- {A1,Az,..., Ay}
duction (using where d stands for
Proposition 2.52, the dimension of
Corollary 2.53) the Binary Finite

Semifield over [F,.

Boolean Function

Build the Oracle

Semifields of order
g¢ containing
F; in the center.

Algorithm 4.9

Grover’s Algorithm

All Solutions:
Tuples of the form [RCRO9] .Classiﬁce‘ltion ‘by
(a1,a2,. .., a404-1)) isomorphism, iso-
where a; € F, for [RCRI2] topy and Sz-action.
i=1,...,d(d—1)?

Note that, in order to apply Algorithm 4.9, we must show first that the number of satisfying
assignments of f, is actually less than three quarters of the total of elements of the domain of f.

(d—1)?

Proposition 7.1. Among the set of v = ¢ potential standard bases of finite semifields

d—1
of order ¢? contaning [F, in the center with identity, there are at most 4 < B := vV (1 — é)

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 127

standard bases actually corresponding to finite semifields. In particular, when g = 2,d > 3,
there are at most %T" potential bases corresponding to binary semifields.

Proof. Consider the set {Ay,...,Ay, } of coordinate matrices of L, with i = 1,...,d, where
{x1 =1,x2,...,x4} is a F, basis of a d—dimensional algebra. Each matrix A;, fori =2,...,d,
has a submatrix of size d x (d — 1), in which each entry belongs to F,. Any choice of those
d(d —1)? entries yields a potential standard bases of a finite semifield containing [F, in the cen-
ter. Therefore, v = qd(d_l)z.

Now, let us give an upper bound for u. So, recall that all A;, for i =2,...,d — 1, must be
invertible. For each A;, we will have

d—1

I_Il<q —q> -

choices. Now,

ﬁ(q —q> Ijl(q —q)d_l<qd—qd_1>d_l

AN

)
Y

=

=

>

=
=

S
B

QU

| =
N
p—

| —
~_
T

]

Therefore, in the binary case, the conditions of Algorithm 4.9 are satisfied. Thus, we can
apply it, in order to find the multiplication tables of binary semifields. Note that, by section 4.5,
the worst case of number of oracle queries is O (v/VBlog (3v)).

7.1.1 Semifield of Order 8

In this subsection, we will apply Grover’s algorithm to the problem of classification of finite
semifields. We consider the small cases of orders 8 and 16 (commutative). For these cases, we
explicitly construct a boolean function that would become the oracle to be used on Grover’s
algorithm to the problem of classification of finite semifields.

Consider the following standard basis:

1 00
{Alz 010 ,A2: 1 ap dads ,A3: 0 ag dadji
0 01

128 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

If we want to classify finite semifields of order 8 by Proposition 2.52, we need to find ay, ...,aj3 €
[, such that each linear combination of the basis, except the trivial one, yields a matrix with
determinant different from zero, i.e.,

det(a1A1 + Ay + OC3A3) =1,

for each nonzero tuples (o, 0, 03) € IF% Now, in one hand, the determinant of a matrix is based
on multiplications and additions. On the other hand, the product mod 2 is an AND, and the
addition or subtraction mod 2 is an exclusive OR (XOR). Hence, we rewrite each determinant
in terms of AND, XOR and NOT, and create a boolean function from them. Namely,

f:{0,1}'2 —{0,1}

(al,...,alz) »—)f(al,...,alz),

such that f(ay,...,aj2) = 1 if and only if the corresponding set of matrices satisfies the above-
mentioned conditions. Specifically, using the python code in C.23, we find that

f(al,...,a12> :(alo/\ag Dan /\a7)/\(a1 /\a6€Ba3/\a4)/\(a1 Nayl Day NayppDay Nas
DarNagDajgNar DajgNazDajgNagDajgNagDay; Na; Daip Nay
DayNasDazNagsDags NagDag NagDas/N\ay @a6/\a7)/\(~ apda
DagDajgNagDayr NasDar /\(1969(112/\618)/\(N a1 Dar DagDaq
NaeDar NagDaz NagDaj /\a5)/\(~ a1 DapDaiy DarDag D ag
Da;DagDarNajgt@ayNaypDarNasDay NagDajpgNa; Dayg/\az
DajpNagDajgNagDajg NazDajg Nasdayjg NagDap Na; dagr
Nar@apNagDar NasDary NagDazs NagsDaz NasDas NagDag N\ag
@asNayBasNag®ag Na;Hag/\ag).

where @ stands for XOR, A for AND, ~ for NOT. Note that this expression for f has 57 gates
AND, 60 XOR gates, and 3 NOT gates. This function is to be used in an oracle in order to
perform Grover’s Algorithm, as stated in the previous section. The quantum circuit can be build
in the same way as in Examples 3.8 and 3.9. Now, because of its length, we give the circuit for

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

129

((aroNag) ® (ar1 Nag)) A ((a1 ANag) @ (a3 Aay)) (the rest follows the same lines)

i

o

>
10) X

10)
10)

[((a0Aas...)))

The whole circuit can be seen with code C.24 from appendix C. Notice that at least 61 ancil-
lary qubits are required. An alternative is using qiskit tools. For instance, for the grover oracle
function C.25, we could write down its quantum circuit, and use it as an oracle for Grover’s
algorithm. Now that we have already built the oracle, we apply Algorithm 4.9 from Section 4.5,

(which can be found in C.26), and we find eight solutions.

In fact, for a probability of failure w = 0.00001, we have

log (1—(1—0.01)30%)
R= . — 68,
log (3)

and we find fourteen solutions, as it can be seen in the following table:

Table 7.1: Results for the multiplication table of Fg.

130 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

Iteration | Valid Solution | Solution Found | Corresponding j
1 no 000111110001 | 4
2 yes 111101101100 | 47
3 no 010100011100 | 31
4 no 000010101111 | 10
5 no 111011001100 | 45
6 no 111011010111 | 54
7 no 110000011000 | 24
8 no 110110100011 | 9
9 no 010101110100 | 5
10 no 100110001001 | 40
11 no 101101001011 | 16
12 no 101010011001 | 20
13 no 110010011101 | 25
14 no 011100100011 | 7
15 no 010100011111 | 20
16 no 100001010001 | 61
17 no 110011000011 | 58
18 no 001000011000 | 51
19 no 001101010110 |5
20 no 011001001000 | 21
21 no 010000011000 | 30
22 no 001000001111 | O
23 no 111000110001 | 39
24 no 100011101111 | O
25 no 000100111000 | 4
26 no 111100010111 | 1
27 no 100011111110 | 8
28 no 100001100101 | 23
29 no 011011101010 | 6
30 no 110110010111 | 1
31 yes 101110101011 | 6
32 no 011000011110 | 61
33 yes 010011011111 | 51
34 yes 110011011100 | 48
35 yes 010101101110 | 27
36 yes 011110110111 | 60
37 no 111010010000 | 6
38 yes 011001001110 | 26
39 yes 111110110101 | 29
40 no 000100000001 | 51

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

131

41 no 010100011100 | 10
42 no 110010010011 | 9

43 no 010111101010 | 42
44 no 111100100110 | 32
45 no 110000000010 | 24
46 no 011100100000 | 48
47 no 011100000000 | 14
48 no 000001000011 | 16
49 no 000000000001 | 14
50 no 100000111000 | 61
51 no 000100011010 | 7

52 no 101001010010 | 1

53 no 110101011001 | 8

54 no 011111101001 | 32
55 no 100000100000 | 13
56 no 011100000000 | 17
57 no 010000110111 | 57
58 no 101001001101 | 18
59 no 101110001001 | 12
60 no 001011101000 | 30
61 no 110111110110 | 42
62 no 101000110111 | 15
63 no 010110011110 | 15
64 no 101010110000 | 40
65 no 010011011000 | 54
66 no 100001101101 | 39
67 no 010111000011 | 37
68 no 101001010101 | 56
69 no 111011111000 | 38
70 no 111011000001 | 27
71 no 011100001110 | 26
72 no 110110101011 | 32
73 no 110011111010 | 34
74 no 010000101101 | 52
75 no 111100100000 | 34
76 no 101011010111 | 57
77 no 010101010100 | 16
78 no 101110000000 | 34
79 no 101000111000 | 18
80 no 101011010110 | 1

81 no 011001001101 | 27

132 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

82 no 010001111000 | 40
83 no 111011110000 | 4

84 no 111111011000 | 9

85 no 001011011101 | 56
86 no 110010101001 | 58
87 no 001001000100 | 33
88 no 011100111011 |3

89 no 010110011010 | 47
90 no 111111101111 | 37
91 no 011111011000 | 54
92 no 011111001111 | 33
93 no 110111110001 | 47
94 no 110011011001 | 27
95 no 000011001010 | 59
96 no 011110010000 | 25
97 no 011011011011 | 23
98 no 000101100010 | 49
99 no 011001101101 | O

100 no 000111000110 | 3

101 no 010010111111 | 51
102 no 100011010100 | 17
103 no 101010111111 | 15
104 no 111110001010 | 1

105 no 110101100001 | 46
106 no 000011010011 | 26
107 no 000010101111 |5

108 no 011000000001 | O

109 no 000110001110 | 29
110 no 011000010011 | 3

111 no 110101000010 | 28
112 no 001011100010 |7

113 no 011111101100 | 51
114 no 001001111101 | 26
115 no 111101110000 | 39
116 no 011010101000 | 2

117 no 010000101111 | 50
118 no 101110000110 | 9

119 no 000010111011 | 38
120 no 010101000101 | 20
121 no 100001000110 | 12
122 no 000100110110 | 61

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 133

123 no 010010111011 | O
124 no 110100000011 | 23
125 no 110111001111 | 56
126 no 011100011110 | 26
127 no 010100101110 | 36
128 no 011001010011 | 37
129 no 011101011000

130 no 111100000101 | 16
131 no 001110110100

132 no 010001101001

133 no 101101100100 | 57
134 no 000101110000 | 61
135 no 001000110001 | 32
136 no 111111101001 | 15

The solutions, for instance, the first one, 110011011100, must be read from right to left, i.e.,
aj :07a2 :O,Cl3 - 1,(14 - 1,(15 :0,06 - 1,617 - 1,(18 :0,(19 - 1,(11() - 17‘111 = 1,(1]2 =1.
Which means that the multiplication table is
1 00 0 01 01 1
{A1: 01 0),A=|1020],A3=({0 0 1 }
0 0 1 011 1 11

The same applies to each result. Note that all the results satisfy the condition that, for all i, j the
i-th column of A; is the j-th column of A;. This means that the corresponding finite semifield is
commutative. Actually, all of them provide standard bases of the only finite semifield of order
8: the Galois field [Fg.

Observe that the solutions are found in the very first iterations. The overall number of
iterations is bigger to ensure that no solutions are missed with the desired probability.

7.1.2 Description of Semifields of Order 16

Now, let us move to the case of semifields of order 16, where the corresponding standard bases
contain binary matrices of size 4 x 4. Consider the following set {A},A>,A3,A4}, where

1 000 0 a; as ag

A= 01 00 Ay = 1 ay ag ajo
0010 0 az aj dadipl

0 0 01 0 a4 ag dajpp

0 a3 a7 ay 0 azs az as;

Ay = 0 ajy a1y ax Ay = 0 ax az axu
1 a5 a9 ax 0 a7 az ass

0 aje ax axu I ax a3 asz

134 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

If we carry on the same track as before, we end up with an expression for a Boolean function
£:{0,1}3¢ — {0,1}, with 4189 AND, 2314 XOR, and 7 NOT gates, which make it really ex-
pensive writing its circuit. As proof of concept, we restrict ourselves to the commutative case
(which incidentally is interesting in general, because of what has been studied and mentioned
in [LS23]). Thus, we consider that for all 7, j the i-th column A} is the j-th column of A;.

In order to further reduce the number of variables, we will take A, among a prefixed set of
matrices, according to the following theoretical reduction. From Corollary 2.53, for any fixed
non-scalar (i.e., not O or 1) element b in the semifield, the matrix A, of left multiplication by
b has a characteristic polynomial without linear factors. So, there are 4 possibles characteristic
polynomials for the matrix A,:

Al xR L LA 1 = (x2+x+ 1)2.

Because x* + x> + x> +x+1 = (x+1)*+ (x+ 1) + 1, we can change the element b by b+ 1,
and assume that there are 3 possibilities: x* + x> + 1,x* +x+ 1,x* + x> +1 = (x> +x+ 1)

If the elements in B = {Lb,b(z,b@} are linearly independent, we can change to basis 8 to
get A in the form of a companion matrix. If not, which can only happen with the third polyno-
mial, then a basis § = {1,b,c,bc} can be chosen so that A, has the form

Cx*+x+1)
C(x*+x+1))°
Hence, we need to find binary values aj,as,...,a2, such that each linear combination of the

matrix in the standard basis, except for the trivial one, yields a matrix with determinant different
from zero. The second matrix can be chosen among the following ones:

0 001
.. .4 1 001
1. Case 1: Characterisitc Polynomial x™ +x+1, Ay = 0100
0010
So, {A1,A2,A3,A4} would become
1 000 0001
0100 1 001
A=10 01 0 A2=10 10 0
0 001 0010
0 0 a; as 0 1 as a9
_ 10 0 a2 ac _ |10 1 ag aip
A3 - 1 0 as ay A4 N 00 ajy aipg
01 a4 asg 10 ag ain

And its Boolean function fi : {0,1}!2 — {0, 1} can be found with code C.27 (it is explic-
itly written after it). Such a Boolean Function has 141 AND, 156 XOR, and 5 NOT gates.

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 135

We found only one solution, after applying algorithm 4.9, with a probability of failure
w = 0.00001, so

log (1—(1—0.01)ﬁ>
log (3)

R: :68.

See the following table:

Table 7.2: Results for the multiplication tables of commuta-
tive semifields of order 16, case 1.

Iteration | Valid Solution | Solution Found | Corresponding j
1 yes 110001100011 | 50
2 no 010111011010 | 19
3 no 001001010110 | 2
4 no 000010010010 | 28
5 no 010001001000 | 41
6 no 000101011011 | 10
7 no 100011110101 | 23
8 no 000001011101 | 26
9 no 010001111010 | 59
10 no 111100110101 | 60
11 no 000001011011 | 48
12 no 010000010111 | 18
13 no 100010011010 | 4
14 no 001001001100 | 21
15 no 001111011100 | 8
16 no 101000110111 | 27
17 no 110111110000 | 44
18 no 000011011011 | 58
19 no 100000001101 | 21
20 no 100001001111 | 17
21 no 010101110000 | 39
22 no 001000010110 | 52
23 no 010100001000 | 8
24 no 011010111010 | 34
25 no 001100111100 | 49
26 no 101010101011 | 1
27 no 011101111111 | 10
28 no 111100101110 | 52
29 no 001110100100 | 53
30 no 010010110011 | 53

136 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

31 no 001001100110 | 46
32 no 101011110111 | 42
33 no 100110111010 | 14
34 no 010101111001 | 23
35 no 111000001111 | 48
36 no 011000111000 | 12
37 no 000111010010 | 35
38 no 011101000110 | 54
39 no 110011111001 | 58
40 no 100000011101 | 38
41 no 101100001101 | 42
42 no 110111110000 | 31
43 no 001111001101 | 60
44 no 001011010110 | 46
45 no 110000111111 | 56
46 no 011000011001 | 21
47 no 101011001110 | 42
48 no 011101111001 | 62
49 no 101000001111 | 27
50 no 011110000111 | 18
51 no 011001000100 | 29
52 no 100011000100 | 23
53 no 100011001111 | 38
54 no 100011111001 | 54
55 no 111010111111 | 55
56 no 010101001110 | 10
57 no 010011011110 | 2

58 no 111100110000 | 37
59 no 000000011100 | 29
60 no 110111001101 | 5

61 no 100000011010 | 39
62 no 100010110001 | 11
63 no 100010100001 | 36
64 no 111010011001 | 9

65 no 001111101101 | 41
66 no 111011001110 | 58
67 no 111000010101 | 48
68 no 000100100010 | 49
69 no 101101110001 | 19
70 no 010110110111 | 23
71 no 100010010100 | 50

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

137

72 no 000010100101 | 20
73 no 100011100100 | 59
74 no 010101001100 | 7

75 no 000000101110 | 21
76 no 011010110011 | 52
77 no 101001000011 | 22
78 no 001000110100 | 6

79 no 100010110110 | 12
80 no 000010001110 | O

81 no 000111011100 | 40
82 no 100111100010 | 60
83 no 110101011001 | 20
84 no 101001111111 | 56
85 no 110011110011 | 49
86 no 101101001100 | 13
87 no 001110010101 | 16
88 no 101110001100 | 33
89 no 010000111010 | 7

90 no 000001001001 | 18
91 no 011000010010 | 56
92 no 011000000011 | 55
93 no 100111000111 | 32
94 no 111001011101 | 30
95 no 000001001010 | 14
96 no 110100000110 | 51
97 no 011100111110 | 41
98 no 011001011111 | 42
99 no 100011110010 | 1

100 no 001010111011 | 14
101 no 100010100111 | 54
102 no 011101000111 | 22
103 no 101000010001 | 61
104 no 110110110010 | 12
105 no 100000011001 | 40
106 no 010110101010 | 21
107 no 101011001001 | 59
108 no 110011010001 | 34
109 no 000001001000 | 51
110 no 001100100101 | 44
111 no 001010001010 | 6

112 no 111001101111 | 22

138 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

113 no 011111010100 | 61
114 no 000101101000 | 34
115 no 110010111101 | 49
116 no 000000010011 | 50
117 no 100000110110 | 27
118 no 111101001101 | 24
119 no 100111111101 | 21
120 no 001001011001 | 50
121 no 001011111000 | 32
122 no 101011111001 | 6

123 no 010001000010 | 5

124 no 101001001010 | 20
125 no 110010000010 | 49
126 no 110010000010 | 50
127 no 010011111000 | 34
128 no 001100001100 | 52
129 no 011101011010 | 47
130 no 100111011101 | 31
131 no 010110100100 | 45
132 no 101110001100 | 12
133 no 011110000100 | 42
134 no 110010110001 | 21
135 no 011000110101 | 10
136 no 001111011001 | 61

Analogously as before, we should read the result from left to right. So, for this case,

ay = 1,612: 1,(13:07614:0,615 20,616: 17a7: 1,(18:0,619:0,61]0:0,6111 = 1,61]2: 1.

Thus, the multiplication table is

1.0 00 0 0 0 1 0010 0100
01 00O 1 0 01 00 11 01 10
Ar=lo 01 0™ o1 o00|™ {100 1]™ oo 11
0 0 01 0010 01 00 1 0 01
0001
. .43 1 00O
2. Case 2: Characteristic polynomial x* +x° + 1, Ay = 0100
0011

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 139

So, {A1,A2,A3,A4} would become

1 000 0 0 01

01 00 1 00O
A=1001 0 A2=10 1 0 0
0 001 0011

0 0 a; as 0 1 as ag
. 0 0 ay ag 00 ag ajo
A3_ 1 0 az ay A4_ 00 ar dadii
0 1 a4 ag I 1 ag an

So, changing A{,A>,A3,A4 in C.27,

i Al = Matrix([[1, 0, O, 0],[0, 1, O ,0],[0, O, 1 , 0],[0,0,0,1] 1)
2 A2 = Matrix([[oj O’ O’ 1],[1) O, O ,O],[O) 1’ O 3 O]’[O’O’]"l]])
3 A3 = Matrix([[0, O, a[1], a[5]],[0, O, a[2] ,al6]],[1, O, al3] ,

- al[71]1,[0,1,a[4],al8]11])
4+ A4 = Matrix([[0, 1, a[5], al[9]1,[0, O, al[6] ,al1011,[0, O, al[7] ,
~ al111]1,[1,1,a[8],al12]1]1 1)

we found its respective Boolean function f>, which can be seen in appendix C. The com-
plexity of the Boolean Function f; is 149 AND, 174 XOR, and 9 NOT gates. As above,
we found only one solution, after applying algorithm 4.9 with a probability of failure
w = 0.00001, so

1

log (1 —(1—0.01)%)

R =
log (3)

= 68.

See the following table:

Table 7.3: Results for the multiplication tables of commuta-
tive semifields of order 16, case 2.

Iteration | Valid Solution | Solution Found | Corresponding j
1 yes 111110111001 | 28
2 no 011101101011 | 50
3 no 110001000000 | 41
4 no 011011100110 | 23
5 no 111011000000 | 57
6 no 100011010001 | 10
7 no 101001101000 | 10
8 no 010001100100 | 46
9 no 110100110101 | 14

140 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

11 no 001110101001 | 26
12 no 001001010100 | 59
13 no 010111101000 | 56
14 no 010111100110 | 37
15 no 100111001011 | 42
16 no 111100011000 | 38
17 no 111001000010 | 22
18 no 100010111100 | 57
19 no 000001100001 | 52
20 no 111011011011 | O

21 no 100001000110 | 4

22 no 000001110111 | 34
23 no 001001111110 | 40
24 no 101111010101 | 46
25 no 101000110100 | 42
26 no 010001001110 | 50
27 no 110101111000 | 45
28 no 100100101111 | 37
29 no 111110001101 | 29
30 no 110100100010 | 7

31 no 010011110011 | 38
32 no 010111110110 | 30
33 no 111111100100 | 52
34 no 110110000110 | 17
35 no 011111110111 | 43
36 no 000100110110 | 53
37 no 111011101000 | 44
38 no 110110001011 | 30
39 no 110111111101 | 22
40 no 010000100001 13
41 no 011111100001 | 6

42 no 000010100110 | 44
43 no 011101111101 | 10
44 no 010111100111 | 23
45 no 110010101100 | 5

46 no 010111010110 | 12
47 no 010111001000 | 26
48 no 010100000001 | 56
49 no 101111011101 | 11
50 no 000110011111 | 47
51 no 011000110001 | 55

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

141

52 no 000100100011 | 52
53 no 101101000111 | 59
54 no 110100010000 | 45
55 no 111110001000 | 22
56 no 100000010110 | 30
57 no 011101001101 | 29
58 no 101001011000 | 58
59 no 111111100001 | 7

60 no 010111100110 | 14
61 no 011000110000 | 46
62 no 110010001000 | 61
63 no 100111101011 | 7

64 no 101001100000 | 28
65 no 011011110111 | 38
66 no 001011110000 | 7

67 no 001000000000 | 35
68 no 110001110101 | 43
69 no 110010000010 | 3

70 no 111010010111 | 5

71 no 111001100100 | 23
72 no 100001110001 | 35
73 no 101011000111 | 19
74 no 110010000000 | 47
75 no 000011001110 | 34
76 no 110011111110 | 58
77 no 100111000011 | 39
78 no 101110110001 | 26
79 no 011000101111 | 3

80 no 011110111101 | 34
81 no 010111000001 | 56
82 no 110111111000 | 59
83 no 101101000000 | 62
84 no 000101110010 | 54
85 no 100010000011 | 11
86 no 100011001100 | 22
87 no 111000100001 | 50
88 no 010001000110 | 41
89 no 111001110100 | 6

90 no 100000100111 | 18
91 no 110110110000 | 29
92 no oo1oioilioror | 17

142 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

93 no 100101010100 | 21
94 no 100011110100 | 35
95 no 011000111100 | 12
96 no 011000111001 | 14
97 no 111000000111 | 32
98 no 001110000111 | 44
99 no 111101001001 | 33
100 no 001101110001 | 14
101 no 011000010000 | 30
102 no 011110011101 1

103 no 101010010010 | 4

104 no 001011101001 | 51
105 no 100011000111 | 27
106 no 100110101000 | 18
107 no 100111011010 | 31
108 no 011001111000 | 15
109 no 100001011110 | 49
110 no 011000011011 | 61
111 no 100010001100 | 2

112 no 000100001011 | O

113 no 000010111001 | 55
114 no 101010110000 | 48
115 no 001111110011 | 61
116 no 001011100001 | 54
117 no 001100011011 | 23
118 no 101001010000 | 24
119 no 101010110110 | 29
120 no 010100010100 | 22
121 no 010000111110 | 16
122 no 1101111111t | 37
123 no 000100011101 |5

124 no 110100000010 | 38
125 no 101101111011 | 53
126 no 001011101110 |9

127 no 101001100101 | 2

128 no 110111110000 | 49
130 no 010001011000 | 55
131 no 001101101101 | 55
132 no 101110101100 | 57
133 no 110101110001 | 8

134 no 111011101000 | 12

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 143

135 no 001011001110 | 21
136 no 000001111110 | 56
137 no 110010001001 | 7

138 no 110100110100 | 60

So,
ay = 1,612:(),613 :0,614: 1,05: 1,616: 1,617207618: 1,619: 17a10: 1;(111 - 1,6112: 1.

So, the multiplication table is

1 0 00 00 01 00 1 1 01 1 1
01 00 1 0 0O 0 0 0 1 0 01 1
A=lo o1 o™ o1 00|™ 1000 {0001
0 0 0 1 0 0 1 1 01 11 1 1 1 1
01 00
. o s 1100
3. Case 3: Characteristic polynomial (x“+x+ 1)~ Ay = 000 1
0011
So, {A1,A2,A3,A4} would become,
1 000 0100
01 00 1 100
A=10 01 0 A2=100 0 1
0 0 01 0011
00 ayp das 00 as a9
. 00 ar dg 00 de aio
A3_ 1 O asz ay A4_ 0 1 ay aig
0 1 a4 ag 1 1 ag ap

The Boolean Function f4 is found by changing A,A;,A3,A4 by

1 C1 = Matrix([[1, O, O, 0],[0, 1, O ,0],[0, O, 1, 0],[0,0,0,1] 1)
» C2 = Matrix(([[0, 1, O, 0],[1, 1, 0 ,0],[0, O, O, 11,[0,0,1,1] 1)
3 C3 = Matrix([[0, O, a[l], a[5]]1,[0,0, a[2] ,al6]],[1, O, a[3] ,
~ al7]11,[0,1,al4],al811 1)
+ C4 = Matrix([[0, 0, a[5], al91],[0, O, al6] ,alt10]],[0, 1, al7],
al1111,[1,1,al8],al12]1]1 1)

in code C.27 (it is given in appendix C). The Boolean function f3 has 161 AND, 194
XOR, and 9 NOT gates. We found seven solutions, after applying algorithm 4.9 with a

144 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

probability of failure w = 0.00001, so

log (1 —q —0.01)ﬁ>

See the following table:

log (3)

= 068.

Table 7.4: Results for the multiplication tables of commuta-
tive semifields of order 16, case 3.

Iteration | Valid Solution | Solution Found | Corresponding j
1 yes 101001011111 | 40
2 no 111110111101 | 44
3 yes 101101101101 | 53
4 no 001001011011 | 40
5 no 110111101011 | 2
6 no 111101101101 | 12
7 no 001111000011 | 27
8 no 010101101011 | 43
9 no 110111101011 | 5
10 no 100011011100 | 48
11 no 111001111100 | 24
12 no 101000111101 | 32
13 no 001100111000 | 55
14 no 111100110111 | 7
15 yes 110110110110 | 14
16 no 101110011011 | 51
17 no 101000111101 | 35
18 no 010111111011 | 49
19 no 111101010110 | 46
20 no 011001101010 | 8
21 no 010101101011 | 12
22 no 111000100011 | 49
23 no 101001011011 | 37
24 no 001001011011 | 61
25 yes 010111111010 | 33
26 no 010101101011 | 8
27 no 111110011010 | 5
28 no 010010000101 | 55
29 no 001110100100 | 53
30 no 110111101011 | 11

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

145

31 no 111101100001 | 38
32 no 111111111011 | 17
33 yes 011111101001 13
34 no 110101011111 | 6

35 no 111111010000 | 54
36 yes 111010010111 | 47
37 no 101000111101 | 2

38 no 101011010101 | 23
39 no 110111011001 | 3

40 no 111110100101 | 62
41 no 010111000111 |3

42 no 001100011001 | 16
43 no 111001000000 | 58
44 no 110101101011 | 57
45 no 111100100000 | 30
46 no 001111011110 | 59
47 yes 010111110010 | 58
48 no 001000001011 | 21
49 no 100010100110 | 36
50 no 000010001001 | 35
51 no 111000001111 | 34
52 no 000100110001 | 13
53 no 110111001000 | 48
54 no 011110000000 | 13
55 no 001110100111 | 1

56 no 111111110110 | 29
57 no 001111111010 | 12
58 no 011101111001 | 15
59 no 100101001010 | 2

60 no 010011100001 11
61 no 101111100110 | 49
62 no 100010101110 | 40
63 no 001111110000 | 28
64 no 101110110011 | 52
65 no 001001011011 | 26
66 no 001001011011 | 44
67 no 000001010001 | 54
68 no 100000001000 | 54
69 no 110001000100 | 45
70 no 111010010101 | 47
71 no 000110001110 | 32

146 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

72 no 011100100101 | 21
73 no 100010101101 | 17
74 no 001001110100 | 47
75 no 000001100011 | 45
76 no 111000101001 | 52
77 no 111101110101 | 48
78 no 101010100101 | 45
79 no 000000111110 | 55
80 no 101101111101 | 26
81 no 000110100000 | 44
82 no 000110110110 | 29
83 no 001100010111 | 62
84 no 010101110111 | 14
85 no 111000111001 | O

86 no 110111100001 | 25
87 no 110111101011 | 55
88 no 011101101001 | 46
89 no 101111000001 | 47
90 no 011110000011 | 60
91 no 011100010101 | 10
92 no 100010101110 | 18
93 no 111000111001 | 9

94 no 101011000100 | 41
95 no 110110110001 | 60
96 no 100010101000 | 45
97 no 100001110000 | 20
98 no 110101000011 | 27
99 no 011001110000 | 30
100 no 100000011111 | 34
101 no 000010001000 | 54
102 no 100110001111 | 57
103 no 101101101111 | 33
104 no 111111101010 | 35
105 no 100010000110 | 43
106 no 001011101110 | 42
107 no 110001100111 | 48
108 no 111110011010 | 20
109 no 010000110000 | 18
110 no 010100011100 | 57
111 no 011101100101 | 24
112 no 000001100111 | 12

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 147

113 no 100000111111 | 51
114 no 000001011111 | 45
115 no 001101111010 | 46
116 no 111001010001 | 11
117 no 100101000010 | 18
118 no 100010111110 | 33
119 no 110111111011 | 25
120 no 000000011010 | 38
121 no 111001001010 | 57
122 no 101000010111 | 31
123 no 011100111010 | 44
124 no 100100110001 | 23
125 no 100001101010 | 16
126 no 010001001011 | 11
127 no 000011010001 | 8

128 no 111000001111 | 23
129 no 000100111010 | 12
130 no 111110011011 | 18
131 no 110111101011 | 25
132 no 101001011011 | 53
133 no 010101101011 | 35
134 no 111000001001 | 56
135 no 000010110100 | 56
136 no 001100011010 | 42

Finally, for this case, the first solution is
aj=l,aa=1l,a3=1,a4=1,a5=1,a6=0,a7=1,a3 =0,a9 =0,a;0=1,a11 =0,a1p=1.

Thus, one of the multiplication tables is:

Ar= Ar = Az = Ay =

O = O O
- o O O
- o O O
—_—— O O
O = O O
- o O O
P—
S = O =
- o O O
—_—— O O
S = O =
- o = O

1
1
0
0

S O O
S o = O
o o = O

In all of the first three cases, the only semifield found is the finite field, as this is the only
commutative finite semifield of order 16 that exists.

4. Case 4: Characteristic polynomial x* +x>+1, Ay =

oSO = O
o= O O
- o O O
S = O =

148 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

So, {A1,A2,A3,A4} would become,

1 000 0001
0100 1 000
Ar=10 01 0 A2=10 10 1
0 0 01 0010
0 0 a; as 0 1 as a9
00 ar deg 00 dg daio
A3_ 1 0 as ay A4_ 01 ay aig
0 1 a4 ag I 0 ag an

The Boolean Function f4 is found by changing A{,A;,A3,A4 by

1 Al = Matrix([[1, O, O, O],[0, 1, O ,0],[0, O, 1, 0O],[0,0,0,1] 1)
2 A-2 = Matrlx([[o} O) O, 1]’[1) O’ O 70],[07 1, O , 1])[0701120]])
3 A3 = Matrix([[0, O, al1l, a[511,[0, O, a[2] ,al61],[1, O, al3] ,

-~ al711,[0,1,al4],al81] 1)
4+ A4 = Matrix([[O0, 1, al[5], al9]],[0, O, al6] ,alt0]1],[0, 1, al7] ,
-~ al11]]1,[1,0,al8],al12]] 1)

in code C.27 (it is given in appendix C). The Boolean function f; has 137 AND, 162 XOR,
and 9 NOT gates. After applying algorithm 4.9 with a probability of failure w = 0.00001,
SO

log (1—(1—0.01)301ﬁ>
log (3)

we find no solutions. See the following table:

R—

— 68,

Table 7.5: Results for the multiplication tables of commuta-
tive semifields of order 16, case 4.

Iteration | Valid Solution | Solution Found | Corresponding j
1 no 001000100110 | 61
2 no 110111000100 | 56
3 no 101011110101 | 1
4 no 011111010110 | 45
5 no 101111100100 | 4
6 no 011010010101 | 34
7 no 110110111001 | 55
8 no 111011100001 | 17
9 no 001111111000 | 25
10 no 111110010101 50

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

149

11 no 001010010111 | 24
12 no 101111111100 | 58
13 no 111111110110 | 55
14 no 101100010001 | 40
15 no 010111010101 | 26
16 no 000010101010 | 7

17 no 110000011100 | 10
18 no 001110000000 | 35
19 no 010110110000 | 6

20 no 110110111010 | 21
21 no 100010001011 | 51
22 no 101101100001 | 36
23 no 100000011111 | 32
24 no 101011111101 | 56
25 no 010001101100 | 51
26 no 110010001010 | 43
27 no 000000101111 | 62
28 no 111011101001 | 60
29 no 110110101010 | 18
30 no 000100010111 | 25
31 no 111011010110 | 53
32 no 111001000110 | 18
33 no 010110111011 | 7

34 no 000110111100 | 50
35 no 110110010010 | O

36 no 010110110001 | 62
37 no 111101010010 | 27
38 no 001101111100 | 34
39 no 100000011000 | 16
40 no 110001010101 | 53
41 no 010011010000 | 13
42 no 000101001001 | 57
43 no 011001100110 | 61
44 no 010001010111 | 33
45 no 100111001010 | 6

46 no 001000000110 | 16
47 no 000110110001 17
48 no 101111001001 | 11
49 no 110101010100 | 25
50 no 101100010010 | 33
51 no 101110111111 | 58

150 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

52 no 111000011110 | 47
53 no 001011010000 | 45
54 no 100001100110 | 17
55 no 011011001100 | 30
56 no 000110101100 | 42
57 no 101011000111 | 61
58 no 010110101110 | 25
59 no 001101011011 | 36
60 no 001010010011 | 22
61 no 100010110001 | 44
62 no 101110110011 | 8

63 no 100000010010 | 23
64 no 111110111001 | 57
65 no 110111001000 | 53
66 no 001101100000 | 1

67 no 011101010010 |5

68 no 110110011011 | 41
69 no 101000000011 | 14
70 no 011001011001 | 19
71 no 000111101011 | 28
72 no 010100111000 | 28
73 no 110111110111 | 43
74 no 111100011101 | 3

75 no 001001110011 | 21
76 no 100000000101 | 26
77 no 011100101110 | 53
78 no 000101000011 | 12
79 no 011101010001 | 25
80 no 000110100010 | 55
81 no 100000100100 | 11
82 no 000001000001 | 54
83 no 100111110111 | 42
84 no 101111000101 | O

85 no 011110001010 | O

86 no 000010101001 |7

87 no 101011111110 | 38
88 no 001111110011 | 40
89 no 011110100101 | 50
90 no 111000111110 | 46
91 no 100101100000 | 28
92 no 000011101000 | 41

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm

151

93 no 010111100000 | 30
94 no 101000110010 | 18
95 no 010000111101 | 49
96 no 101111010000 | 34
97 no 011100001101 | 39
98 no 110100000011 | 5

99 no 010001111001 | 54
100 no 011111011010 | 43
101 no 011101100010 | 42
102 no 000011000111 | 24
103 no 001111101010 | 29
104 no 101010011111 | 62
105 no 100000000010 | 10
106 no 111011001101 | 14
107 no 101110000100 | 57
108 no orrii1ririror | 18
109 no 110000011111 | 6

110 no 011110000110 | 31
111 no 100011000111 | 24
112 no 101000100001 | 30
113 no 011001011000 | 32
114 no 101000100100 | 51
115 no 111010101011 | 47
116 no 110010000101 | 38
117 no 111101100111 | 50
118 no 001101100011 | 34
119 no 010101100000 | 45
120 no 011100100111 |9

121 no 000100111111 | 30
122 no 101010011111 15
123 no 010001111101 | 19
124 no 000110110110 | 30
125 no 001000010101 | 27
126 no 000000110100 | 56
127 no 011100101011 | 55
128 no 100101001100 | 49
129 no 011111111010 | 18
130 no 100100110101 | 17
131 no 110000000100 | 27
132 no 010010111100 | 39
133 no 010110011010 | 52

152 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

134 no 101001010110 | 10
135 no 111101101010 | 10
136 no 100101111001 | 62

Finally, in this case, as we have seen, no solutions have been found. This can be explained
by the fact that the only possible solutions correspond to multiplication tables of the
finite field [F¢. It is well-known that, for any element in a finite field extension (such as
F16|F2), its minimal polynomial is always irreducible. Therefore, a solution in this case
would yield the existence of an element b € ;¢ with minimal polynomial x* + x> 4+ 1 =
(x> +x+1)2, which is not irreducible. Hence, the non-existence of solution.

7.1.3 Estimation of costs for the general case, in terms of Quantum Gates

In this section, for the sake of simplicity, we restrict to binary semifields. The aim is to obtain
an estimation of the complexity in terms of number of quantum gates, of the Boolean function
for the procedure described in this section.

Definition 7.2. Let A, B € Mat,, ., (F2), then I, det (A/B") is defined as a sum of the combination
of determinants, in which subsets of i rows of A are substituted by the corresponding rows of B.

For example, let

ajl ap ajz ay bi1 b1 b1z bus
A_ |G an an an| 5 byt by b3 boy
o b b b b ’
a1 azx ass a4 31 b3y b3z b
a41 Q42 Q43 Q44 by1 by baz by
in Mats,3(IF,), then
bi1 b1 b1z bus ailr ap ajz a4
a a a a b b b b
Il det (A/Bl) et |92t a2 @ an | o | bar D bas by
a1 az asz azs b31 b3y b3z bz
asl Q4 a43 Q44 asl Q4 a43 Q44
ajl a2 ajz ais ajl a2 ajz ais
a a a a a a a a
fdet| %21 @2 am | g |21 an axn au |
b31 b3y b3z bz az| azxp asz a4
a4 a4 43 Q44 by1 bar baz Dby
bi1 bia b1z bus bi1 bia b1z bus
b b b b a a a a
2 det (A/Bz) _ | b2t bxm Doz boa | o [@210 a2 axs an
a1 az asz azs b31 b3y b3z bz

ajs] a4 a43 agy ajs] a4 a43 a4

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 153

ajl app ajz a4 bi1 b1y b1z bus

ba1 by bz by a1 ax ax axy
+det +det

b31 b3y b3z bz a1 as asz azs

as1 a4y a43 Q44 bs1 by baz bu

+det +det
a1 as asz azs b31 b3y b3z bz

ajy aip a1z ap aijy app a1z ap

by by bz by a1 axp a3 ax

)
by1 bay D4z by byt bay D4z by

b31 b3y b3z bz az] a4z asz a4

by bip b1z b bii bix b1z b
I3 det (A/ 31) — det ba1 by bz by + det ba1 by bz by
a4l G4y 443 Q44 bs1 bay baz bay

az|1 a4z asz a4 b31 b3y b3z by

bi1 bix b1z b ajl app a4z ai
fdet | B2 @2 @3 an| o byr by bz by
bsy1 bay baz by by1 bay baz by

The following lemma shows an useful formula for our estimation.

Lemma 7.3 ([XDS93] Lemma 2). Let A,B € Matyx,(F2), then

det(A + B) = det(A) +det(B) + an I, det(A/B').
=1

1

Estimation: Let D be a finite semifield of order 29, that we want to describe with a standard
basis {A],As,...,A;}. Consider all possible linear combinations from S = {A»,...,As}, i.e.,
without involving the identity matrix. There are (dfl) of them of the form A;, which have
the first column full of 0 except for one position, which is 1. Therefore, the determinant of
A; would have (after expansion) at most (d — 1)!(d — 2) products, and (d — 1)! — 1, additions
(since we are working mod 2, subtractions can be seen as additions). Now, let us consider all
linear combinations of the form A; +A;. The first column has two ones and d — 2 zeros, and
on the remaining columns each position a;; has one sum of 2 variables. So, the determinant of
A;+A; would be the sum of two determinants, each one of a matrix of size (d —1) x (d — 1)
in which each entrance is a sum of two different variables. So, the number of products would
be at most (2)29(d — 1)!(d —2) products, and (4)2%((d — 1)! — 1) additions. Now, if we take

154 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

k matrices, and add them together, they would have the following form: on the first column, k&
ones and d — k zeroes, and in the remain columns each a;; position has k — 1 sums of k vari-

ables. There are (d?) matrices of this form, and the number of products would be at most
(Z) k?(d — 1)!(d — 2) multiplications, and (i)kd ((d—1)!'—1) would be an upper bound for the
number of additions.

k
Now, consider the matrices B+ A, where B=) A;, fork=3,...,d. Then, by lemma 7.3,
i=2

d—1
det(B4+A;) = det(A;)+det(B ZFddet B/A’)
i=1
d—1 '
= 1+det(B)+) TI'jdet(B/A}).
i=1

Now, note that the number of products and additions of I, det (B/A!) is less or equal than those
of det(B). Hence, the number of products in det(B+A;) would be at most d times the products
of det(B), and for additions, d times the sums of det(B) plus one.

There are 2¢~! — 1 non trivial linear combinations on S, and so, the number of matrices of
the form A| + B is the same. So, joining all of them, we get 2¢ — 2 determinants (removing that

of the identity matrix, and of the null matrix), the same ones that if we consider all of A; US.
Therefore, the number of required products would be at most

;()kd —1)i(d - 2+Zd(dk)kd(d—l)!(d—Z)

;(e na-2)

and the number of sums

di (d;)kd((d—l)!—l)fi‘,l (d_1> (dkd((d—l)z_1)+1)

k=1 k=1 k
-l /g1 =l /41
= kK ((d—1)'—=1)(14+d)+
L (" eannoa g (1)
d—1 d—
= K(d—1)!=1)(1+d)+291—1.
kl(k> (d—D1-1)(1+d) +

Now, in order to construct the Boolean function, we need d(d — 1)? variables, so f : {0, 1}“’(”1_1)2
— {0,1}. On Section 3, in Figure 3.5, we showed a possible decomposition of the Toffoli gate.
We should mention that by the Solovay-Kitaev Theorem [NC11] [Appendix 3], the asymptotic
growth is the same whatever decomposition we choose. As we saw, every Toffoli gate in a

7.2. Quantum Computational Search of Finite Semifields with Quantum Optimization 155

Number | Gate
6a+b | CNOT
2a H
3a T"
da T

Table 7.6: Cost in terms of quantum gates.

quantum circuit may execute up to six CNOT gates. Therefore, in Table 7.6 we give an estimate
of a lower bound, of the cost of our Boolean function, in terms of quantum gates. where

a = (d+1)le (d;1>kd(d—1)!(d—2)

k=1
o (d-1\ 4 d—1
= d—1)!— d —1.
b k;(.)k (d—1)'=1)(1+d)+2 1

Which shows that this approach is computationally unaffordable (it is indeed exponentially).

7.2 Quantum Computational Search of Finite Semifields with
Quantum Optimization

Apart from the method covered in the previous section, we also tried other approaches to obtain
a quantum search procedure for semifields with given properties. As an example, the purpose of
this section is to use quantum annealing to find the multiplication table of Knuth’s binary finite
semifield of order 32, which is neither left or right primitive. We shall explain our approach and
the difficulties found that prevented us from success.

Let us sketch our strategy with the problem of finding the finite field of order 8, which is
commutative. Thus, its standard basis is

1 00 0 a7 a4 0 a3 a
{Al =101 0 5 A2 = 1 ag as |, A3 =10 as ap }
0 01 0 a9 ag I ag a3

Analogously as before, by Corollary 2.53, we have that the characteristic polynomial of each
non-scalar linear combination of A1,A;,A3 has no linear factors. But the polynomials of degree
3 in [Fo[x] that have no linear factors are p(x) =x> +x-+1,and p(x+1) = (x+1)> + (x+1)+1=
x> + x>+ 1. And so, we can assume without loss of generality, that A, is the companion matrix
C(p(x)) (by a suitable change of basis). So, the standard basis is

1 00 0 01 01 o
{AIZ 010 ,AZZ 1 01 ,A3: 01 ar }
0 01 010 1 0 a3

156 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

Now, in order to find the multiplication table, (aV b) A (¢ V d) must be true, where a,b,c,d are
the clauses

a pa,(x) = p(x) C Pay+a;(x) = p(x)
b pa,+a;(x) = p(x) d pa,+A,+4;(x) = p(x).

We know that, from the Cayley—Hamilton theorem, every square matrix satisfies its own
characteristic equation. In other words, P4(A) = 0,, where 0, is the matrix in which each
entry is zero. However, it does not mean that, if p(A) = 0, then p(x) is the characteristic
polynomial of A. But, since p(x) is irreducible (because neither O nor 1 are roots), then in this
case pa(x) = my(x), its minimal polynomial. Hence,

(@aVb)A(cvd) & ((A3+A3+5=03) V(A3 +A3+ 1 =03))

A (((A2 +A3)3 + (A +A3)+ I = 03) V ((A2 +A3)3 + (A +A3)2 + 5= 0)) .
(7.1)

Now, by using the following code C.28, which is based on the expansion of the matrix expres-
sions in 7.1, we find the Boolean formula that satisfies the conditions mention above, which is

(((m Naz 69612) AN (N al) N (a1 NazDar NazPd ~ 612) VAN (az/\ag@ ~ az) AN (az) VAN (N (a1 A
az)) N (a1 @a3) A\ (a3) N (az)) V ((a1 Naz D ay EBaz) N (N al) A (N ar D (a2 /\ag,)/\ ~ (Clz A
a3)) Nax N\ (al Dard ~ (a2 /\a3)) VAN (N al) A (N a3) VAN (a1 @az))) VAN (((a1 NazDa ard ~
az)N(ai Na3®ary® ~az) N(ayNay Bay Naz P ay Naz) A\ (a1 Bax Naz® ~ az) A (a; ax A
a3@a2@a3)/\(al/\az@al/\a3®a2@Nag)/\(al@cu@~a3)/\~a1)v((a1/\a3@az@N
a3)/\(a1/\a3@a1@a2@a3)/\(a1/\az@al@az/\ag@az@a3)/\(a1@az/\ag,@az@ag,)/\
(@ ®ayNazs®az) A\ (ai NayBay NazsBay®ay ANay®ax) N (a1 Baxy®az) A (a1 Bax) A (~az))

In order to use quantum techniques, we could transform it into a conjuctive normal form
(CNF) expression by using, for instance, the Tseitn transformation (a standard way to con-
vert a Boolean expression to CNF) [Tse83]. It introduces additional variables, but keeps the
number of clauses and variables relatively small, obtaining a formula whose size grows linearly
with respect to the input formula'. Now, mapping the operations xV y,x Ay and x to xy,x +y
and 1 — x, respectively, we find a polynomial, with at least 267 auxiliary variables >, which is
rather large to be used in HOBO (see Section 3.4).

In that order of ideas, let us move to the case of the binary semifield of order 32 which is
not primitive (Section 2.4). Consider one of is standard bases {A|,A»,A2,A4,As5}. By Corol-
lary 2.53 item 2 the characteristic polynomial of each non-scalar linear combination of them is

I'The procedur of Tseitin transformation can be seen in the following repository of github JMiguel01/Chapter-7-
An-approach-to-the-Classification-of-Finite-Semifields-by-Quantum-Computing/Tseitin Transformation, and its
Polynomial

2The entire polynomial can be seen in, the following repository of github JMiguel01/Chapter-7-An-approach-
to-the-Classification-of-Finite-Semifields-by-Quantum-Computing/Tseitin Transformation, and its Polynomial

7.2. Quantum Computational Search of Finite Semifields with Quantum Optimization 157

not primitive. By Corollary 2.53 item 1, they can not have linear factors either. But, since all
irreducible polynomials of degree n in F; [x] are primitive if and only if 2” — 1 is a (Mersenne)
prime number, the admissible polynomials of degree 5 in F,[x| that are not primitive are the
product of an irreducible factor of degree 2, and an irreducible factor of degree 3. Namely,
p(x) =x +x+1,and p(x+1) = (x+1)>+ (x+1) + 1 = x° +x* + 1, because they are re-
ducible without linear factors. Hence, the matrix A, can be assumed to either be the companion
matrix C(p(x)) or C(p(x+1)). Let us suppose that A, = C(p(x)) (as a change of basis can be
made otherwise), so the standard bases would become

1 00 0O 00 001 0 0 a ag an
01 0 0O 1 00 01 1 0 ay ajy dai
A1= 001 O00O0 ,A2= 01 00O ,A3— 01 a3 dadg di3
00 0T1PO0 00100 0 0 az a9 ay4
00001 00010 0 0 as ap as

0 0 as aie ax 0 1 an an az

0 0 a7 a7 axn 0 I app axn ay

Ay=10 0 ag aig ax|,As=|0 0 a3 ax azg

1 0 a9 ayp axy 1 0 aiy ax axp

0 1 a0 ax as 0 0 a5 axs a3

In order to find the multiplication table of Knuth’s binary semifield, it has to be true that (a \V b) A
(evVd)N(eVHNEVRINGV JINKRVDAmMmNVn)A(oV p)A(gVF)A(sVE)A(uVV)A(wVx)A
(yV z) must happen, where a,b,c,d, e, f,g,h,i, j,k,l,m,n,0,p,q,r,s,t,u,v,w,x,y,z are the clauses

a pay(x) = p(x) I pay+As+4,(X) = p(x)

b pa,+a;(x) = p(x) M PAs+As+as(X) = p(x)

¢ pay(x) = p(x) N DA +As+Ag+45(X) = p(x)
d pa,+a,(x) = p(x) 0 Pay+as(x) = p(x)

e pas(x) = p(x) P PA+as+45(x) = p(x)

[paj+as(x) = p(x) q Paya,(x) = p(x)

8 Pasras(x) = p(x) r DA +Ay+A(X) = P(¥)

h DAy +As+as(¥) = p(x) S Pay+ay(X) = p(x)

i pay+as(x) = p(x) t Ay +Ar+a;(X) = p(x)

J Pay+asas (x) = p(x) U Pay+As+as(X) = p(x)

k PAs+A, (X) = p(X) v pA1+A2+A3+A5 (.X) = p(X)

158 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

W PAr+As+4,(X) = p(x) Y PAy+As+As+As(X) = p(x)
X DA +Ar+A3+Ay (x) = p(x) 2 DA +Ar+A3+A4+As (x) = p(x)

Now, as before, p(A) = 0s, where Os is the matrix in which each entry is zero, does not
mean that p(x) is the characteristic polynomial of A. In order to see that, in this case, it is
indeed the characteristic polynomial, first note that x> +x+1 = (x> +x+ 1)(x* +x*> + 1). So it
is the product of irreducible polynomials of degree 2 and 3, respectively. Also, x> +x*+ 1 can
be factored as the product of irreducible polynomials, in fact as (x* +x+4 1) (x> +x+1).

Let us see the case for the polynomial x° +x+ 1 = (x? +x+ 1)(x* +x? + 1), since the
other one follows the same lines. For that, note that we might have the case that p(A) = Os,
because the matrix annihilates one of those irreducible factors. So, we must show that in fact
the minimal polynomial is neither of them. Indeed, without loss of generality, let us suppose
that the minimal polynomial is x° 4+ x+ 1, and consider the map T : (Z/2Z)> — (Z/2Z)’ given
by T(v) = Av, for v € (Z/2Z)°. So, from Theorem 2.32, we have that

(2/22) = (Fafx]/ (x> +x+1))"

for some m > 1 as 5 [x]-modules. But F[x]/(x® + x4 1) has 8 elements, so this is not possible.
Therefore (x*> +x+ 1) can not be the minimal polynomial of A. Hence, both minimal and char-
acteristic polynomials must agree.

The boolean expression for the case (aV b) can be seen in C.29, which is very large. In this
case, it would not involve all variables, as we have on case z above. Thus, the polynomial for
the general expression would be too cumbersome. Therefore, we have been not able to apply
this method for the many qubits required.

Chapter 8

Conclusions

In this last chapter, we want to briefly summarize the main conclusions of this thesis and to
indicate possible lines for future work.

This thesis is based on the application of quantum computational techniques for the effective
study of algebraic structures. It is articulated around three problems. Firstly, the problem of
detecting pairs of different constants for determining the commutativity of a finite dimensional
algebra. Thus, based on the results found in [HCCR22], in Chapter 5, we study two specific
classes of QADS. The first are QADS of combinatorial type, which generalize the well-known
controlled operators. We have determined its efficient constructibility, the expression of the
state after the application of the detection operator and the closure of its algorithm as a subclass
of QADS. As an application, we have considered the problem of deciding whether, for a given
operator-eigenvector pair, the corresponding eigenvalue is a given one or not. The second fam-
ily are QADS of the rotational type, which include as a particular case the QADS of Grover’s
search. We have studied the expression of the state after the application of the detection op-
erator on the initial state, the algorithmic closure of this subclass of QADS, and we have also
considered its combinatorial QADS. Interestingly, we have derived some nice equivalences for
these QADS, in terms of tensor products and square root products of the original QADS. Fur-
thermore, we have successfully applied them to the problem of the commutativity of algebras
(Section 5.5), which was our original problem of interest.

As a future work, in relation to combinatorial QADS, we want to explore more applications
of them, for instance, if there exist an approximation to the QFT for Z/NZ with N odd and if
the Swap test can be seen as a particular case of those QADS, together with a generalization of
it. Furthermore, we want to study variations of combinatorial QADS for instance, a change on
the initial or final Hadamard gates by rotations like the QFT for Z/NZ with N a positive integer,
and explore other families of QADS that include measurements.

The second problem, studied in [JER23], is included in Chapter 6. We have shown that for
a given multiplication table, of a n-dimensional not necessarily associative and not necessarily
commutative [,-algebra A, and for each substructure, right, middle and left nuclei, the nucleus
and the center of A, we can build an efficient quantum algorithm which calculates each sub-
structure. Our approach is based on the existence of a function that hides each substructure,

159

160 Chapter 8. Conclusions

for which a quantum oracle can be built efficiently, both in terms of the number of qubits and
the number of quantum gates. Our quantum algorithm uses such a black box, and the specific
number of qubits and quantum gates required can be found in Theorem 6.6. In those situations,
we have shown an exponential gain with our quantum algorithm.

As a future work, in relation to quantum methods that solve the hidden subgroup problems,
of which the Shor-type algorithm is the greatest exponent, we propose the study of problems
related to finding the order of an element, and the primitiveness of elements in finite semifields.

Finally, the problem studied in [HCR23] is collected in Section 7.1. We give some of the
multiplication tables for Fg and ¢, based on the quantum search of Grover’s algorithm. Fur-
thermore, to classify a finite semifield of order 2¢ with this methodology, we show that at least
d(d —1)? qubits are required. Additionally, we give an estimate of the number of quantum gates
needed to build the quantum circuit, showing that this approach is not asymptotically efficient.
As another alternative to quantum computing techniques for classifying finite semifields, we
tried to use Quantum Annealing, a form of computing that efficiently samples the low-energy
configurations of a quantum system [KN98], [FGGS00]. However, we end up with the problem
of expanding a huge polynomial, which makes it impossible for us to apply these techniques.
Thus, as a future work we want to find efficient quantum algorithms (or use classical and quan-
tum algorithms together) that classify them efficiently.

Conclusiones

En este capitulo, queremos resumir brevemente las principales conclusiones de esta tesis € in-
dicar posibles lineas de trabajo a futuro .

Esta tesis, centrada en la aplicacion de tecnicas computacionales cudnticas para el estudio efec-
tivo de estructuras algebraicas, se articula sobre tres problemas. En primer lugar, el problema
de deteccion de pares de constantes diferentes para la determinacion de la conmutatividad de un
algebra finito dimensional. Asi, a partir de los resultados encontrados en [HCCR?22], en el capi-
tulo 5, estudiamos dos clases especificas de QADS. El primero son QADS de tipo combinatorio,
que generalizan los conocidos operadores controlados. Hemos determinado su constructibilidad
eficiente, la expresion del estado después de la aplicacion del operador de deteccidn y el cierre
de su algoritmo como una subclase de QADS. Como aplicacién, hemos considerado el prob-
lema de decidir si, para un par operador-vector propio dado, el valor propio correspondiente es
uno dado o no. La segunda familia es la de QADS rotacionales, que incluyen como caso par-
ticular los QADS de la bisqueda de Grover. Hemos estudiado la expresion del estado después
de la aplicacién del operador de deteccion sobre el estado inicial, el cierre algoritmico de esta
subclase de QADS, y también hemos considerado sus QADS combinatorios. Curiosamente,
hemos derivado algunas equivalencias agradables para estos QADS, en términos de productos
tensoriales y productos de raices cuadradas de los QADS originales. Ademads, los hemos apli-
cado de forma satisfactoria al problema de la conmutatividad de dlgebras (Seccion 5.5), que era
nuestro objetivo original.

Como trabajo futuro, en relaciéon con los QADS combinatorios, queremos explorar mds aplica-
ciones de ellos, por ejemplo si existe una aproximacion de la transformada cudntica de Fourier
para Z/NZ para N impar, y si el test de Swap puede verse como un caso particular de esos
QADS, junto con una generalizacién del mismo, tal como hicimos con el test de Hadamard.
Ademads, queremos estudiar variaciones de los QADS combinatorios, por ejemplo, un cambio
en las puertas de Hadamard inicial o final mediante rotaciones como la transformada cudntica de
Fourier para Z/NZ con N un entero positivo, y explorar otras familias de QADS que incluyan
medidas.

El segundo problema, estudiado en [JER23], se encuentra recogido en el Capitulo 6. Hemos
demostrado que para una tabla de multiplicacién dada, de una [F),-algebra n-dimensional no
necesariamente asociativa y no necesariamente conmutativa A, y para cada subestructura, nu-
cleo por derecha, medio e izquierda, el nicleo y el centro de A, podemos construir un algoritmo
cudntico eficiente que calcula dicha subestructura. Nuestro enfoque se basa en la existencia de

161

162 Chapter 8. Conclusions

una funcién que oculta la subestructura, para la cual se puede construir un ordculo cudntico de
manera eficiente, tanto en términos de nimero de qubits como de nimero de puertas cudnticas.
Nuestro algoritmo cudntico utiliza una caja negra de este tipo, y la cantidad concreta de qubits
y puertas cudnticas requeridas se puede encontrar en Teorema 6.6. En esas situaciones, hemos
mostrado una ganancia exponencial con nuestro algoritmo cudntico.

Por lo que como trabajo futuro en relacion con los métodos cuédnticos que resuelven los prob-
lemas de subgrupos ocultos, de los cuales el algoritmo de tipo Shor es el mdximo exponente,
proponemos el estudio de problemas relacionados con la bisqueda del orden de un elemento, y
la primitividad de elementos en semicuerpos finitos.

Por dltimo, el problema estudiado en [HCR23], es recogido en la Seccién 7.1. Damos algu-
nas de las tablas de multiplicar de Fg y [F¢, basadas en la bisqueda cuéntica del algoritmo de
Grover. Ademds, para clasificar un semicuerpo finito de orden 2¢ con esta técnica, mostramos
que se requieren al menos d(d — 1)? qubits. Ademds, damos una estimacién del nimero de
puertas cudnticas necesarias para construir el circuito cudntico, lo que demuestra que este en-
foque no es asintéticamente eficiente. Como otra alternativa de las técnicas de computacion
cudntica para clasificar semicuerpos finitos, intentamos usar Quantum Annealing, una forma
de computacion que muestra eficientemente las configuraciones de baja energia de un sistema
cudntico [KN98], [FGGS00]. Sin embargo, terminamos con el problema de expandir un poli-
nomio descomunal, lo que nos hace imposible aplicar estas técnicas.

Por lo que como trabajo futuro queremos encontrar algoritmos cudnticos (o usar algoritmos
clasicos junto con algoritmos cudnticos) que sean eficientes para su clasificacion.

Chapter

Appendices

A Codes for Chapter 5

Codes for Chapter 5 can also be found in: github.com/JMiguelOl /Combinatorial — And —
Rotational — QADS

Code A.1.

1 import math
2 import numpy as np

4 import matplotlib.pyplot as plt
s xaxisfigure2l = np.arange(0,1.8,0.2)
¢ xaxisfigure22 = np.arange(1.6, math.pi+0.2,0.2)

s def probabilityq(angle,m):

9 z = (math.cos(angle/2))**(2*m)

10 return(z)

11 def bernoulli(n, q):

12 n_success = 0

13 for i in range(n):

14 random_number = np.random.random()
15 if random_number < q:

16 n_success += 1

17 return(n_success)

15 def anglep(a,m):

19 p = a/(10%*4)

20 alpha = math.acos(2*(p**(1/m))-1)
21 #alpha = 2*math.acos (p**(1/(2%m)))
2 return(alpha)

23 def mae(beta,n,m):

24 alphas = []

163

164 Chapter . Appendices

25 for i in range(n):

2 alphas.append (abs (anglep(bernoulli (10**4,
- (probabilityq(beta,m))),m)-beta))

27 #print (alphas)

28 Sum = sum(alphas)

29 #print (Sum)

30 result = Sum/n

31 #result = abs((Sum)/n)

2 return(result)

33
3 def yaxis(xaxis,m):

35 yaxisfigure = []

36 for i in xaxis:

37 yaxisfigure.append (mae (i, 10**3,m))
38 return(yaxisfigure)

39
s plt.plot(xaxisfigure2l, yaxis(xaxisfigure21,1), color='blue', label =

AR Il$m=1$ll)

41 plt.plot(xaxisfigure2l, yaxis(xaxisfigure21,2), color='orange', label =
AR Il$m=2$ll)

2 plt.plot(xaxisfigure2l, yaxis(xaxisfigure21,3), color='green', label = "
= $m=3$")

4 plt.plot(xaxisfigure2l, yaxis(xaxisfigure21,4) , color='red', label = "
< $m=4$")

4 plt.plot(xaxisfigure2l, yaxis(xaxisfigure21,5) , color='purple', label =
o “$II1:5$“)

45
46 plt.xlabel("Angle")

47 plt.ylabel("Mean Absolute Error")

48

49 # Adding legend, which helps us recognize the curve according to <t's color
so plt.legend()

51

s2 plt.show()

53

s+ plt.plot(xaxisfigure22, yaxis(xaxisfigure22,1), color='blue', label =

o "$m=13%")

ss plt.plot(xaxisfigure22, yaxis(xaxisfigure22,2), color='orange', label =
o "$m=23%")

s6 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,3), color='green', label =
o "$m=33%$")

s7 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,4) , color='red', label = "
o $m=4$")

ss plt.plot(xaxisfigure22, yaxis(xaxisfigure22,5) , color='purple', label =
o ||$m=5$||)

A. Codes for Chapter 5

165

59

=Y

0

=)

1

62

=3
N

65

=y
=)

plt.xlabel("Angle")
plt.ylabel("Mean Absolute Error")

Adding legend, which helps us recognize the curve according to it's color

plt.

plt.

legend ()

show ()

Code A.2.

20

21

22

23

24

25

26

27

28

29

30

31

32

w

3

import math

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

xaxisfigure2l = np.arange(0,1.8,0.2)

xaxisfigure22

def

def

def

def

np.arange (1.6, math.pi+0.2,0.2)
probabilityq(angle,m) :
z = (math.cos(angle/2))**(2*m)
return(z)
bernoulli(n, q):
n_success = 0
for i in range(n):
random_number = np.random.random()
if random_number < q:
n_success += 1
return(n_success)
anglep(a,m):
p = a/(10%x4)
alpha = math.acos (2 (p**(1/m))-1)
#alpha = 2*math.acos (p**(1/(2*m)))
return(alpha)
mae (beta,n,m) :
alphas = []
for i in range(n):
alphas. append (abs ((anglep(bernoulli (10**4,
< (probabilityq(beta,m))),m))-beta))
#print (alphas)
Sum = sum(alphas)
#print (Sum)
result = Sum/n
#result = abs((Sum)/n)
return(result)

def yaxis(xaxis,m):

166 Chapter . Appendices

34 yaxisfigure = []

35 for i in xaxis:

36 yaxisfigure.append (mae (i, 10**3,m))
37 return(yaxisfigure)

8 # Calculate the average

3 ml_mean = np.mean(yaxis(xaxisfigure21,1))
20 m2_mean = np.mean(yaxis(xaxisfigure21,2))
s+ m3_mean = np.mean(yaxis(xaxisfigure21,3))
2 m4_mean = np.mean(yaxis(xaxisfigure21,4))
4 mb_mean = np.mean(yaxis(xaxisfigure21,5))
4 # Calculate the standard deviation

45 ml_std = np.std(yaxis(xaxisfigure21,1))
4 m2_std = np.std(yaxis(xaxisfigure21,2))

2 m3_std = np.std(yaxis(xaxisfigure21,3))
4 m4_std = np.std(yaxis(xaxisfigure21,4))
2 mb_std = np.std(yaxis(xaxisfigure21,5))

so # Define labels, postitions, bar hetghts and error bar hetghts
si labels = ['1', '2', '3', '4', '5']

s2 x_pos = np.arange(len(labels))

s3 m = [ml_mean, m2_mean, m3_mean, m4_mean, m5_mean]

s« error = [ml_std, m2_std, m3_std, m4_std, m5_std]

55 # Build the plot

s¢ fig, ax = plt.subplots()

57 ax.bar(x_pos, m,

58 yerr=error,
59 align='center',
60 alpha=0.5,

61 ecolor='black',
6 capsize=10)

63 ax.set_ylabel('Average Error')

¢ ax.set_xlabel('m')

6s ax.set_xticks(x_pos)

66 ax.set_xticklabels(labels)

¢7 ax.yaxis.grid(True)

68

¢ # Save the figure and show

70 plt.show()

71

72 # Calculate the average

73 ml12_mean = np.mean(yaxis(xaxisfigure22,1))
74 m22_mean = np.mean(yaxis(xaxisfigure22,2))
75 m32_mean = np.mean(yaxis(xaxisfigure22,3))
76 m42_mean = np.mean(yaxis(xaxisfigure22,4))
77 m52_mean = np.mean(yaxis(xaxisfigure22,5))
73 # Calculate the standard deviation

A. Codes for Chapter 5

167

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

mi12_std = np.std(yaxis(xaxisfigure22,1))
m22_std = np.std(yaxis(xaxisfigure22,2))
m32_std = np.std(yaxis(xaxisfigure22,3))
m42_std = np.std(yaxis(xaxisfigure22,4))
m52_std = np.std(yaxis(xaxisfigure22,5))

Define labels, positions, bar heights and error bar heights

labels = ['1', '2', '3', '4', '5']
x_pos = np.arange(len(labels))

m2 = [m12_mean, m22_mean, m32_mean, m42_mean, m52_mean]
error2 = [m12_std, m22_std, m32_std, m42_std, mb52_std]

Build the plot
fig2, ax2 = plt.subplots()
ax2.bar(x_pos, m2,
yerr=error2,
align='center',
alpha=0.5,
ecolor='black',
capsize=10)
ax2.set_ylabel('Average Error')
ax2.set_xlabel('m')
ax2.set_xticklabels(labels)
ax2.yaxis.grid(True)

Save the figure and show
plt.show()

Code A.3.

import math
import numpy as np
import matplotlib.pyplot as plt
xaxisfigure2l = np.linspace(0,np.pi,10)
def probabilitytheorem3(beta,alpha,m):
z = (math.cos((beta-alpha)/2))**(2%m)
return(z)
def bernoulli(n, q):
n_success = 0
for i in range(n):
random_number = np.random.random()
if random_number < q:
n_success += 1
return(n_success)
def anglepi(a):
pl = a/(10%xx*4)
return(pl)

168 Chapter . Appendices

s def dichotomy_search_1(beta,n,m):

19 k= 10

20 low = 0

21 high = np.pi

2 for i in range(k):

23 mid = (low + high) / 2.0

24 pl = anglepl(bernoulli(n,probabilitytheorem3(beta,low,m)))
25 ph = anglepl(bernoulli(n,probabilitytheorem3(beta,high,m)))
2 if (pl > ph):

27 high = mid

28 else:

29 low = mid

30 return(mid)

31 def dichomae(beta,n,m):

» alphas = []

33 for i in range(n):

34 alphas.append(abs(dichotomy_search_1(beta,n,m)-beta))
35 Sum = sum(alphas)

36 result = Sum/n

37 return(result)

33 def dichoyaxis(xaxisfigure2l,n,m):

39 yaxisfigure = []

40 for i in xaxisfigure2l:

41 yaxisfigure.append(dichomae(i,n,m))

® return(yaxisfigure)

4 plt.plot(xaxisfigure2l, dichoyaxis(xaxisfigure21,10#%*3,1), color='blue',
- label = "$m=1$")

plt.plot(xaxisfigure2l, dichoyaxis(xaxisfigure21,10%*3,2), color='orange',
- label = "$m=2$")

45 plt.plot(xaxisfigure2l, dichoyaxis(xaxisfigure21,10%%3,3), color='green',
- label = "$m=3$")

4 plt.plot(xaxisfigure2l, dichoyaxis(xaxisfigure21,10%%3,4), color='red',
~ label = "$m=4$")

4 plt.plot(xaxisfigure2l, dichoyaxis(xaxisfigure21,10%*3,5), color='purple',
- label = "$m=5$")

48

4 plt.xlabel("Angle")

so plt.ylabel("Mean Absolute Error")

51

52 # Adding legend, which helps us recognize the curve according to it's color

53 plt.legend()

54

ss plt.show()

ss # Calculate the average

s7 ml_mean = np.mean(dichoyaxis(xaxisfigure21,10%*3,1))

A. Codes for Chapter 5

169

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

m2_mean
m3_mean
m4_mean
mb5_mean

np
np
o
np

Calculate

ml_std
m2_std
m3_std
md_std
mb_std

Define

labels

np
np.
np
np.
np.

labels, positions, bar heights and error bar heights

['1

.mean(dichoyaxis(xaxisfigure2l,10%*3,2))
.mean(dichoyaxis(xaxisfigure21,10%%3,3))
.mean(dichoyaxis(xaxisfigure2l,10%*3,4))
.mean(dichoyaxis(xaxisfigure21,10%*3,5))
the standard deviation

.std((dichoyaxis(xaxisfigure21,10%*3,1)))

std((dichoyaxis(xaxisfigure21,10%%3,2)))

.std((dichoyaxis(xaxisfigure21,10%%*3,3)))

std((dichoyaxis(xaxisfigure21,10%%3,4)))
std((dichoyaxis(xaxisfigure21,10%%3,5)))

I’ I2I’ |3|, I4I’ |5|:|

x_pos = np.arange(len(labels))
m = [ml_mean, m2_mean, m3_mean, m4_mean, m5_mean]

error =

[m1_std, m2_std, m3_std, m4_std, m5_std]

Build the plot
plt.subplots()
ax.bar (x_pos, m,
yerr=error,
align="'center',
alpha=0.5,
ecolor='black',
capsize=10)
ax.set_ylabel('Average Error')
ax.set_xlabel('m')
ax.set_xticks(x_pos)
ax.set_xticklabels(labels)
ax.yaxis.grid(True)

fig, ax

Save the figure and show
plt.show()

Code A 4.

import math
import numpy as np
import matplotlib.pyplot as plt
xaxisfigure2l = np.linspace(0,np.pi,10)
def probabilitytheorem3(beta,alpha,m):
z = (math.cos((beta-alpha)/2))**(2*m)
return(z)
def probabilityq(angle,m):
z = (math.cos(angle/2))**(2*m)
return(z)
def bernoulli(n, q):

Chapter . Appendices

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

def

def

def

def

def

plt
plt
plt
plt

n_success = 0
for i in range(n):
random_number = np.random.random()
if random_number < q:
n_success += 1
return(n_success)
anglep(a,m):
p = a/(8000)
alpha = math.acos(2*(p**(1/m))-1)
#alpha = 2*math.acos(p**(1/(2%m)))
return(alpha)
anglepl(a):
pl = a/(10%*3)
return(pl)
dichotomy_search_1(beta,n,m):
k=2
low = 0O
high = np.pi
for i in range(k):
mid = (low + high) / 2.0
pl = anglepl(bernoulli(n,probabilitytheorem3(beta,low,m)))
ph = anglepl(bernoulli(n,probabilitytheorem3(beta,high,m)))
if (pl > ph):
high = mid
else:
low = mid
return(low,high)
mae (beta,n,m) :
alphas = []
for i in range(n):
alphas. append (abs (anglep(bernoulli (8000,
(probabilityq(beta-dichotomy_search_1(beta, 10**3,m) [0] ,m))),
m) - (beta-dichotomy_search_1(beta,10**3,m) [0])))
Sum = sum(alphas)
result = Sum/n
return(result)
y_axis(m) :
y_axis_1 = []
for i in xaxisfigure2l:
y_axis_1.append (mae(i,8000,m))
return(y_axis_1)

.plot(xaxisfigure21l, y_axis(1l), color='blue', label = "$m=1$")
.plot(xaxisfigure2l, y_axis(2), color='orange', label = "$m=23%")
.plot(xaxisfigure21, y_axis(3), color='green', label = "$m=3$")
.plot(xaxisfigure21l, y_axis(4), color='red', label = "$m=4%")

A. Codes for Chapter 5

171

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

plt.plot(xaxisfigure2l, y_axis(5), color='purple', label = "$m=53%")

plt.xlabel("Angle")
plt.ylabel("Mean Absolute Error")

Adding legend, which helps us recognize the curve according to it's color
plt.legend()
Calculate the average

ml_mean
m2_mean
m3_mean
m4_mean
m5_mean
Calcu
ml_std
m2_std
m3_std
md_std
m5_std
Defin
labels
X_pos =

error =

L

e

= np.mean(y_axis(1))
= np.mean(y_axis(2))
= np.mean(y_axis(3))
= np.mean(y_axis(4))
= np.mean(y_axis(5))

ate the standard deviation

np.std(y_axis(1))
np.std(y_axis(2))
np.std(y_axis(3))
np.std(y_axis(4))
np.std(y_axis(5))

labels, positions, bar heights and error bar heights

[|1|’ |2|’ |3|’ |4|’

np.arange(len(labels))
m = [ml_mean, m2_mean, m3_mean, m4_mean, m5_mean]
[m1_std, m2_std, m3_std, m4_std, m5_std]

Build the plot

fig, ax

= plt.subplots()

ax.bar (x_pos, m,

ax.set_ylabel('Average Error')

y
a

a
e
C

err=error,
lign="'center',
1pha=0.5,
color='black',
apsize=10)

ax.set_xlabel('m')
ax.set_xticks(x_pos)
ax.set_xticklabels(labels)
ax.yaxis.grid(True)

Save the figure and show
plt.show()

Code A.5.

1

import math
2 import numpy as np

|5|]

172 Chapter . Appendices

3 import matplotlib.pyplot as plt
4 def tryl(x,s,m):

5 z = ((math.cos(x*s))**(2*m))* ((math.cos (x*s*m)**2))
6 return(z)

7 def try2(x,S,m):

8 First = []

9 Second = []

10 for i in range(S):

1 First.append(tryl(x,i,m))

12 Sum = sum(First)

13 result = 1-Sum /((i+1))

14 Second . append (result)

15 return(Second)

16 def plotcombinatorial(x,S,m):

17 xaxisfigurel = np.arange(0,51,1)

18 yaxisfigurel = try2(x,S,m)

19 return(xaxisfigurel, yaxisfigurel)

20 plt.plot(xaxisfigurel, try2(0.177710,51,1), color='orange', label
~ "C-Grover")

21 plt.plot(xaxisfigurel, try2(0.177710,51,2), color='purple', label
~ "C-Grover $ \otimes $ C-Grover")

» plt.plot(xaxisfigurel, try2(0.177710,51,3), color='red', label =
<~ "Combinatorial $m=33%$")

3 plt.plot(xaxisfigurel, try2(0.177710,51,4) , color='green', label
—~ "Combinatorial $m=43%")

% plt.plot(xaxisfigurel, try2(0.177710,51,10) , color='blue', label
~ "Combinatorial $m=10$")

s plt.title("Combinatorial Gover QADS")

2% plt.xlabel("Iterations")

27 plt.ylabel("Detection Probability")

% plt.legend()

2% plt.plot()

3 plt.show()

Code A.6.

1 import math

2 import numpy as np

3 import matplotlib.pyplot as plt
4 def tryl(x,s,m):

5 z = ((math.cos(x*s))**(2*m))*((math.cos (x*s*m)**2))
6 return(z)

7 def try2(x,S,m):

8 First = []

9 Second = []

B. Codes for Chapter 6 173

10 for i in range(S):

1 First.append(tryl(x,i,m))

12 Sum = sum(First)

13 result = 1-Sum /((i+1))

14 Second. append (result)

15 return(Second)

16 def plotcombinatorial(x,S,m):

17 xaxisfigurel = np.arange(0,51,1)

18 yaxisfigurel = try2(x,S,m)

19 return(xaxisfigurel, yaxisfigurel)

2 plt.plot(xaxisfigurel, try2(0.1253278311,51,1), color='orange', label
< "C-Grover")

» plt.plot(xaxisfigurel, try2(0.1253278311,51,2), color='purple', label
< "C-Grover $ \otimes $ C-Grover")

3 plt.plot(xaxisfigurel, try2(0.1253278311,51,3), color='red', label =
< "Combinatorial $m=3$")

2 plt.plot(xaxisfigurel, try2(0.1253278311,51,4) , color='green', label
- "Combinatorial $m=4$")

»s plt.plot(xaxisfigurel, try2(0.1253278311,51,10) , color='blue', label
< "Combinatorial $m=10$")

2% plt.title("Combinatorial Gover QADS")

27 plt.xlabel("Iterations")

23 plt.ylabel("Detection Probability")

2 plt.legend()

3 plt.plot()

31 plt.show()

B Codes for Chapter 6

Simulations for both examples in Chapter 5 can also be found in: github.com/JMiguelO1/Chapter
—6—Ef ficient — Quantum — Algorithms — To — Find — Substructures — On — Finite — Algebras —
Examples.

Code B.7.

1 from sympy import symbols, Matrix, pprint, collect, factor
2 from itertools import accumulate

3 import itertools

+ x =[]

5 name = "x"

¢ for i in range(1,5):

7 v = symbols(name+str(i))

8 x . append (v)

174 Chapter . Appendices
9 Al = Matrix([[1, 0, 0],[0, 1, 0],[0, O, 011)
0 A2 = Matrix([[0, O, O0],[0, O, 11,[0, O, 011)
n A3 = Matrix([[0, 0, 0],[0, 0, 0],[0,0,111)
12 def matrices(A1,A2,A3,A4):

13 MatrixAl = {}

14 for i in range(3):

15 for j in range(3):

16 if (1 == 0):

17 MatrixA1[i,j] = A1[i+j]

18 if (4 == 1):

19 MatrixA1[i,j] = A1[2+i+j]
20 if (1 == 2):

21 MatrixA1[i,j] = A1[4+i+j]
2 MatrixA2 = {}

23 for i in range(3):

24 for j in range(3):

25 if (i == 0):

2% MatrixA2([i,j] = A2[i+j]

27 if (1 == 1):

28 MatrixA2[i,j]l = A2[2+i+j]
29 if (4 == 2):

30 MatrixA2[i,j] = A2[4+i+]j]
31 MatrixA3 = {}

) for i in range(3):

33 for j in range(3):

34 if (i == 0):

s MatrixA3[i,j] = A3[i+j]

36 if (1 == 1):

37 MatrixA3[i,j] = A3[2+i+j]
38 if (1 == 2):

39 MatrixA3[i,j] = A3[4+i+j]
40 M = [MatrixAl, MatrixA2, MatrixA3]

a1 return (M)

2 def functionZ(A):

e sl = []

44 s2 = []

45

46

47

48

49

50

51

52

5B

for i in range(len(A)):
for k in range(len(A)):
for m in range(len(A)):
s1.append ((A[m] [k,i]- A[i] [k,m])*x[m])

Input = sl
split = len(sl) / len(A)
length_to_split = []
for i in range(int(split)):

length_to_split.append(len(A))

B. Codes for Chapter 6 175

54 Output = [Input[x - y: x] for x, y in zip(accumulate(length_to_split),
— length_to_split)]

55 s4 = [1

56 for i in range(len(Output)):

57 s3 = sum(Output[i])

58 s4.append(s3)

59 return(s4)

0 functionZ(Matrices(A1l,A2,A3))

Code B.8.

1 # tmporting ({iskit

2 from qiskit import IBMQ, Aer

3 from qiskit.providers.ibmq import least_busy

4 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister,
— transpile, assemble

s # amport basic plot tools

6 from qiskit.visualization import plot_histogram

s gqreg = QuantumRegister(3)

9 creg = ClassicalRegister(3)

10 ancillary = QuantumRegister(2)

11 gqc = QuantumCircuit(qreg, ancillary, creg)
12 qc.cx(qregl[1],ancillary[0])

15 qc.cx(qregl0],ancillary[1])

14 qc.cx(qregl2] ,ancillary[1])

15 qc.barrier(qreg)

16 qc.h(range(3))

17 qc.draw()

Code B.9.

1 qreg = QuantumRegister(3)

» creg = ClassicalRegister(3)

3 ancillary = QuantumRegister(2)
4+ qc = QuantumCircuit(qreg, ancillary, creg)
s gc.h(range(3))

6 qc.barrier(qreg)

7 qc.cx(qregll] ,ancillary[0])

s qc.cx(qregl0] ,ancillary[1])

9 gc.cx(qregl2],ancillary[1])

10 qc.barrier(qreg)

11 gc.h(range(3))

12 qc.measure(qreg[0],cregl[0])

15 qc.measure(qreg[1],creg[1])

14 qc.measure(qreg[2],cregl[2])

176 Chapter . Appendices

15 qc.draw()

Code B.10.

1 aer_sim = Aer.get_backend('aer_simulator')

> transpiled_qc = transpile(qc, aer_sim)

3 gqobj = assemble(transpiled_qc)

4 results = aer_sim.run(qobj,shots =10) .result()
s counts = results.get_counts()

¢ print(counts)

7 plot_histogram(counts)

Code B.11.

1 from sympy import symbols, Matrix, pprint, collect, factor
2 import itertools
3 x1, x2, x3, x4 = symbols('x1l, x2, %3, x4')

+ x =[]

5 name = "x"

¢ for i in range(1,5):

7 v = symbols(name+str(i))

8 x . append (v)

o MA1 = Matrix([[0, O, 0, 01,[0, O, O, 01,[0, O, O, 0],[0, O, O, 011)
o MA2 = Matrix([[O, O, O, O],[0, O, 1, O],[0, O, O, O],[0, O, O, 011)
n MA3 = Matrix([[0, O, O, 0],[0, O, O, 0O1,[0, O, O, 0],[0, O, O, 011)
2 MA4 = Matrix([[O, O, O, O0],[0, O, O, O],[0, O, O, O],[0, O, O, OI1)
13 def matrices(A1,A2,A3,A4):

14 MatrixAAl = {}

it for i in range(4):

16 for j in range(4):

17 if (i == 0):

18 MatrixAA1[i,j] = A1[i+j]

19 if (1 == 1):

2 MatrixAA1[i,j] = A1[3+i+j]

21 if (1 == 2):

n MatrixAA1[i,j] = A1[6+i+j]

23 if (i == 3):

" MatrixAA1[i,j] = A1[9+i+j]

25 MatrixAA2 = {}

2% for i in range(4):

27 for j in range(4):

28 if (i == 0):

2 MatrixAA2[i,j] = A2[i+j]

30 if (i == 1):

o MatrixAA2[i,j] = A2[3+i+j]

3R if (1 == 2):

B. Codes for Chapter 6 177

3 MatrixAA2[i,j] = A2[6+i+j]
34 if (4 == 3):

s MatrixAA2[i,j] = A2[9+i+j]
36 MatrixAA3 = {}

37 for i in range(4):

38 for j in range(4):

39 if (i == 0):

" MatrixAA3[i,j] = A3[i+j]

41 if (1 = 1):

2 MatrixAA3([i,j] = A3[3+i+j]
43 if (i == 2):

“ MatrixAA3[i,j] = A3[6+i+j]
45 if (4 == 3):

w MatrixAA3[i,j] = A3[9+i+j]
47 MatrixAAd = {}

a8 for i in range(4):

49 for j in range(4):

50 if (i == 0):

st MatrixAA4[i,j] = A4[i+j]

52 if (1 = 1):

5 MatrixAA4[i,j] = A4[3+i+]]
54 if (i == 2):

55 MatrixAA4[i,j] = A4[6+i+]]
56 if (i == 3):

57 MatrixAA4[i,j] = A4[9+i+]j]
58 MMT = [MatrixAA1l,MatrixAA2,MatrixAA3,MatrixAA4]
59 return (MMT)

o0 def Selecting(X):

61 x1, x2, x3, x4 = symbols('xl, x2, x3, x4')
62 X1 =[]

63 for i in range(len(X)):

64 if (X[i] '= 0):

65 X1.append(X[il)

66 return(X1)

¢ def Equations(First):

68 BB31= First

9 P11 =[]

70 for i in range(len(BB31)):

71 P11 .append(dict(BB31[i] .as_coefficients_dict()))
72 ##Symplzfy computations of coefficients module 2
73 EQ1 =[]

7 for 1 in range(len(P1l1)):

7s for s in P11[1]:

76 if (P11[11[s] % 2) == O:

77 P11[1]1([s] = O

178 Chapter . Appendices

78 else:

79 P11[1][s] = 1

80 EQl.append(sum([key * val for key, val in P11[1].items()]))
81 ##Selecting the equations we need

82 EQ3=[]

83 for 1 in range(len(EQ1)):

84 if (EQ1[1] !'= 0) and (EQ1[1]!=1):
85 EQ3.append (EQ1[1])

%6 return (EQ3)

87 def functionNr1(A):

88 s1 =[]

89 s2 = []

9% s3 = [1

91 for i in range(len(A)):

9 for j in range(len(A)):

93 for s in range(len(A)):

94 for m in range(len(A)):

05 for k in range(len(A)):
96 s1.append(A[i] [k, jI*A[k] [s,m]- A[j][k,m]l*A[i] [s,k])
97 11 = sum(sl)

o8 s2.append (11*x [m])

% 12 = sum(s2)

100 s3.append(12)

101 return(s3)

12 RN = Equations(Selecting(functionNrl(matrices(MA1,MA2,MA3,MA4))))
3 print (RN)

1

=1

Code B.12.

1 # importing {iskit

2> from qiskit import IBMQ, Aer

3 from qgiskit.providers.ibmq import least_busy

4+ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister,
— transpile, assemble

s # amport basic plot tools

¢ from giskit.visualization import plot_histogram

7 aer_sim = Aer.get_backend('aer_simulator')

s qregrnl = QuantumRegister(4)

9 cregrnl = ClassicalRegister(4)

10 ancillaryrnl = QuantumRegister(2)

1 qcrnl = QuantumCircuit(qregrnl, ancillaryrnl, cregrnl)

12 qcrnl.h(range(4))

13 qcrnl.barrier(qregrnl)

14 qcrnl.cx(qregrnl[0],ancillaryrnl[0])

15 qcrnl.cx(qregrnl[1],ancillaryrnl[0])

B. Codes for Chapter 6 179

16 HARBHAAARAARRAARRAARBAARARARAARRAGHRARH

17 qcrnl.barrier(qregrnl)

18 HARBHAAAHAAARAARRAARBRARARARARRRAGRRABHRARAH
v qcrnl.cx(qregrnl[2],ancillaryrni[1])

20 qcrnl.cx(qregrnl[3],ancillaryrnl[1])

28 RARARRBHABRBRARRBRARARRARRBRRHRBRRHRHRS

» qcrnl.barrier(qregrnl)

3 HHBRRRBHARRGRRHRBRRRABRRBRBRRHRBRRHRBRRHAR A
2 qcrnl.h(range(4))

35 for k in range(4):

2 gcrnl .measure(qregrnl [k] ,cregrnl [k])

27 qcrnl.draw()

Code B.13.

1 aer_sim

= Aer.get_backend('aer_simulator')

> transpiled_qcrnl = transpile(qcrnl, aer_sim)

3 gqobjl =
4 results
5 countsl

1

assemble(transpiled_qcrnl)
= aer_sim.run(qobjl,shots =10) .result()
= resultsl.get_counts()

¢ print(countsl)
7 plot_histogram(countsl)

Code B.14.
1 def functionNmil(A):
2 sl = []
3 s2 = []
4 s3 = []
5 for i in range(len(A)):

for j in range(len(A)):
for s in range(len(A)):
for m in range(len(A)):
for k in range(len(A)):
s1.append(A[i] [k,m]*A[k] [s,j]- Alm] [k,jl*A[i] [s,k])

11 = sum(sl)
s2.append (11*x[m])
12 = sum(s2)

s3.append (12)

15 return(s3)
16 MN = quations(Selecting(functionNmil (matrices(MA1,MA2,MA3,MA4))))
17 print(MN)

Code B.15.

180 Chapter . Appendices

1 def functionN11(A):

2 s1 =[]

3 s2 =[]

4 s3 = []

5 for i in range(len(A)):

6 for j in range(len(A)):

7 for s in range(len(A)):

8 for m in range(len(A)):

9 for k in range(len(A)):
10 s1.append(A[m] [k,il*A[k] [s,j]- A[i] [k, jl*A[m] [s,k])
1 11 = sum(sl)

12 s2.append (11*x [m])

13 12 = sum(s2)

14 s3.append (12)

is return(s3)

16 LN = Equations(Selecting(functionN11(matrices(MA1,MA2,MA3,MA4))))
17 print (LN)

Code B.16.

1 qregln = QuantumRegister(6) #------ >33
2 cregln = ClassicalRegister(4)

3 gqclnl = QuantumCircuit(qregln,cregln)
4 qclnl.h(range(4))

s gclnl.barrier(qregln)

6 gqclnl.cx(qregln[1], qregln[4])

7 gclnl.cx(qregln[2], qregln[4])

s qclnl.cx(qregln[3], qregln[4])

9 gclnl.barrier(qregln)

10 qclnl.cx(qregln[0], qregln([5])

11 qclnl.barrier(qregln)

12 qclnl.h(range(4))

15 qclnl.barrier(qregln)

4 for k in range(4):

15 gclnl.measure(qregln[k],cregln[k])
16 qclnl.draw()

Code B.17.

1 transpiled_qclnl = transpile(qclnl, aer_sim)

2 gqobjlnl = assemble(transpiled_qclnl)

3 resultslnl = aer_sim.run(qobjlnl,shots =10).result()
4+ countslnl = resultslnl.get_counts()

s print(countslni)

6 plot_histogram(countslnl)

B. Codes for Chapter 6

181

Code B.18.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

gregn = QuantumRegister(8)
cregn = ClassicalRegister(4)

gcn = QuantumCircuit(qregn,cregn)
gcn.h(range(4))

HERBHRARRRARRAARRRARBRARARRRHARARARRRR G HRARHH
qcn.barrier(qregn)
HERBHAARRAARRAARRRARBRARRRRRHARRRARRRABHRARAH

gcn.cx(qregn[0], gregn[4])

gcn.cx(qregn[1], qregn([4])
HERBHRARRARRRAGHRAARRRARRRRRHRRRAGHRAHH
gcn.barrier(qregn)
HERBHRARRRRRRRGHRRBRRRBHRRRRRRBRARRRAGHRAHH
qcn.cx(qregn[2], qregn[5])

qcn.cx(qregn[3], qregn[5])
HERBHRAARAARRAARRRARBRARARRRRRRRRRRRA G HRARHH
qcn.barrier(qregn)
HERBHAAARAARRAARRRARARARARARHARARARHRAGHRAAH
qcn.cx(qregn[1], qregn[6])

qgcn.cx(qregn[2], qregnl[6])

gcn.cx(qregn[3], qregn[6])
HERBHRARRRRRRAARRABRRRARRRRRRRRRARRRAGBHRAHH
gcn.barrier(qregn)
HERBHRARRRBRRRGHRRBRRRBHRRRRRRRRARRRAGHRAHH
qcn.cx(qregn[0], qregn([7])

qcn.h(range(4))
HERBHRAARRARRAARRRARBRARARARHRRRRARRRRGHRARAH
qcn.barrier(qregn)

HERRBRBRBRRRABRRHRBRABHRRRBRRBRRR BB AR RH RS

for k in range(4):
qcn.measure (qregn[k] ,cregn[k])

gcn.draw()

Code B.19.

182

Chapter . Appendices

transpiled_qcn = transpile(qcn, aer_sim)

gqobjn = assemble(transpiled_qgcn)

resultsn = aer_sim.run(qobjn,shots = 30).result()
countsn = resultsn.get_counts()

print (countsn)

plot_histogram(countsn)

Code B.20.

1

from itertools import accumulate
def functionZ(A):

sl =[]
s2 = []
for i in range(len(A)):

for k in range(len(A)):

for m in range(len(A)):
sl.append((A[m] [k,i]- A[i] [k,m])*x[m])
Input = sl
split = len(sl) / len(A)
length_to_split = []
for i in range(int(split)):
length_to_split.append(len(A))

Output = [Input[x - y: x] for x, y in zip(accumulate(length_to_split),
~ length_to_split)]
s4 = []
for i in range(len(Output)):

s3 = sum(Output[il)

s4.append (s3)
return(s4)

functionZ(matrices(MA1,MA2,MA3,MA4))

Code B.21.

gregc = QuantumRegister(4)
ancillaryc = QuantumRegister(6)
cregc = ClassicalRegister(4)

gcc = QuantumCircuit(qregc, ancillaryc, cregc)
qcc.h(range(4))

RARRERABRBRERRRRERRBRBRARR BB RRBR R RR ARG R HH
gcc.barrier(qregc)
RARRBRABRBRGRRRRERRBRBRBRRBRARRBRARR BB RR RS
gcc.cx(qregc[0] ,ancillaryc[0])
gcc.cx(qrege[1],ancillaryc[0])

C. Codes for Chapter 7 183

1 RERBHAARRAARRAARRAARBRARARARAARRAGHRAAH

15 qcc.barrier(qregc)

16 HARBHAABRAAHRAARBAARBRAHRRRRRRRRAGHRABHRARAH
17 qcc.cx(qrege[2] ,ancillaryc[1])

15 qcc.cx(qregec[3],ancillaryc([1])

19 HABRBHABRBHARABRRHRBRBHABRBRRBRBHARRHHRARH

20 qcc.barrier(qregc)

21

» qcc.cx(qregec[1], ancillaryc[2])

1 qcc.cx(qrege[2], ancillaryc[2])

2 qcc.cx(qrege[3], ancillaryc[2])

35 gcc.barrier(qregc)

% qcc.cx(qregc[0], ancillaryc[3])

27 qcc.barrier(qregc)

28 HARARRBRARRBRARRBRRRABRRHRBRBHABRARARRA R RS
2 qgcc.barrier(qregc)

30 HARRRHABRRHRBRBHABRRHRBRGHARRGRRBRBRRRRHHRARH
51 qgcc.cx(qregec[2], ancillaryc[4])

» qcc.cx(qregell], ancillaryc([5])

33

34 HARRBHABRBHRBRBHABRRHRBRBHRRRGHRBRARRHRGHARH
35 qcc.barrier(qregc)

36 HARRARRAAHRAARAARRAARRAARRARHRABHARARAA RIS
3 qcc.h(range(4))

38 HARAARRAAHRAARRRARARARAARRAGHRABHARRRAA RS
3 qcc.barrier(qregc)

40 HRHARBABHRABHRARHRARRAARBAARRRRRRARRHRGHRAAH
s for k in range(4):

Py} gcc.measure(qregc [k] ,crege[k])

4 qcc.draw()

Code B.22.

1 aer_sim = Aer.get_backend('aer_simulator')

> transpiled_qcc = transpile(qcc, aer_sim)

3 gqobjcl = assemble(transpiled_qcc)

4+ resultscl = aer_sim.run(qobjcl,shots = 50).result()
s countscl = resultscl.get_counts()

6 print(countscl)

7 plot_histogram(countscl, figsize=(12,5))

C Codes for Chapter 7

In this appendix we present the codes in python used in Chapter 7. Also they can be seen in
https : | /github.com/JMiguelO1 /Chapter — 7 — An — approach — to — the — Classi fication —

184 Chapter . Appendices

of — Finite — Semifields — by — Quantum — Computing
Code C.23.
1 from sympy import symbols, Matrix, pprint, collect, factor

2 from sympy import *
3 import itertools

4+ a =[]

5 name = "a"

6 for i in range(0,13):

7 v = symbols(name+str(i))

8 a.append(v)

o CN31 = Matrix([[1, O, O0],[0, 1, 0],[0, O, 111)

0 CN32 = Matrix([[0, a[l], a[4]],[1, al2], a[5]],[0, al3], al6]1])
i CN33 = Matrix([[0, a[7], a[10]],[0, al8], ali11]],([1, al[9], al12]1]1])
12 aCN3=[]

13 cCN3=[]

4 for i in range(0,8):

15 aCN3.append('{0:03b}"'.format(i))

16 M=int (aCN3[i] [0])*CN31+int (aCN3[i] [1])*CN32+int (aCN3[i] [2])*CN33
17 cCN3.append(M.det())

13 def Equations(First):

19 BB31= First

20 P11 =[]

21 for i in range(len(BB31)):

2 P11.append(dict(BB31[i].as_coefficients_dict()))

23 ##Symplify computations of coefficients module 2

2 EQ1 =[]

2 for 1 in range(len(P1l1)):

26 for s in P11[1]:

27 if (P11[1]1[s] % 2) == O:

28 P11[1][s] = O

29 else:

30 P11[1][s] = 1

31 EQl.append(sum([key * val for key, val in P11[1].items()]))
32 ##Selecting the equations we need

33 EQ3=[]

34 for 1 in range(len(EQ1)):

3 if (EQL[1] '= 0) and (EQ1[1]'=1):

36 EQ3.append(EQ1[1])

37 return(EQ3)

33 def Polynomiall(w):

39 h_test1=[]

40 w_test1=[]

41 w_final_test1=[]

gy} for n in range(len(w)):

C. Codes for Chapter 7 185

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

if (wln] == 1) or (w[n] == 0):
w_testl.append(w[n])
else:
h_testl.append(w[n] .make_args(w[n]))
g_testl =[]
for m in range(len(h_testl)):
g_testl.append(list(h_testl[m]))
for 1 in range(len(h_testl[m])):
if (h_testl[m] [1]==1):
g_testl[m] [1]="(g_test1l[m] [1])
del g_test1[m] [1]
w_final_testl = '&'.join([str(item) for item in g_testl])
w_final_testl = w_final_testl.replace("*","&")
w_final_testl = w_final testl.replace(","," ~")
return(w_final_testl)

ss Polynomiall(Equations(cCN3))

Code C.24. https: //github.com/JMiguel01 /Multiplication —table — GF — 8
Code C.25.

1 from qiskit.circuit import classical_function, Intl
2 Qclassical_function

3 def

e

s

grover_oracle(al: Intl, a2: Intl, a3: Intl, a4: Intl, ab: Intl, a6:
Intl, a7: Intl, a8: Intl, a9:Intl, alld: Intl, all: Intl, al2:Intl) ->
Intl:

return ((al0%a8 ~ all&a7)&(al&a6 ~ a3&a4)&(al&all ~ al&al2 ~ al&ab5 ~

— al&ab6 -~ alO&a2 ~ alO%&a3 ~ alO&a8 ~ alO&a9 ~ all&a7 ~ al2&a7 -~ a2&ad
~ a3%a4 ~ a4&a8 ~ a4&a9 -~ ab&a7 ~ a6&a7)&((not all) -~ al2 - a8 ~
alO%a8 -~ all&a7 ~ all&a9 ~ al2&a8)&((not al) ~ a2 ~ a6 ~ alka6 ~
a2%a6 -~ al3%ad -~ a3&ab5)&((not al) ~ al0 ~ al2 ~ a2 ~ a4 ~ a6 ~ a7 ~
a8 ~ al&all -~ al&al2 = al&ab ~ al&ab ~ alO&a2 ~ alO%&a3 ~ alO&a8 ~
al0&a9 -~ all&a3 ~ all&a7 ~ all&a9 ~ al2%&a2 -~ al2&a7 ~ al2&a8 -~ a2&ad
~ a2%ab -~ a3&ad -~ a3%ab ~ ad&a8 ~ ad&a9 -~ ab&a7 -~ ab&a9 ~ ab&ar ~
ab&a8))

L

s quantum_circuitnc = grover_oracle.synth()
6 quantum_circuitnc.draw()

7

Code C.26. https: //github.com/JMiguelOl /Chapter — 7 — An — approach —to — the —
Classification — of — Finite — Semi fields — by — Quantum — Computing

Code C.27.

1 from sympy import symbols, Matrix, pprint, collect, factor

2 from sympy import *

186

Chapter . Appendices

20

21

22

23

24

25

26

27

28

29

30

31

32

Es)

34

35

36

37

38

39

40

41

42

43

import itertools

a =

(]

name = "a'"
for i in range(0,13):

Al
A2
A3

o

v = symbols(name+str(i))
a.append (v)

Matrix([[1, O, O, O],[0, 1, O ,0],[0, O, 1 , 0],[0,0,0,1] 1)
Matrix([[0, 0, O, 11,[1, O, O ,1],[0, 1, O , 01,[0,0,1,0] 1)
Matrix([[0, O, al[1], a[5]],[0, O, al[2] ,al6]1,[1, O, al3] ,
al711,[0,1,a[4],al81]1 1)

A4 = Matrix([[0, 1, a[5], af9]],[0, 1, al6] ,al10]],[0, O, al7] ,

P

al1111,[1,0,al8],al12]]1 1)

aC41=[]
A=[]

for i in range(0,16):

def

def

aC41.append('{0:04b}' .format(i))
M=int (aC41[i] [0])*Al+int (aC41[i] [1])*A2+int (aC41[i] [2])*A3
- +int(aC41[i] [3])*A4
A append(M.det())
Equations(First):
BB31= First
P11 =[]
for i in range(len(BB31)):
P11.append(dict(BB31[i].as_coefficients_dict()))
##Symplify computations of coefficients module 2
EQ1 =[]
for 1 in range(len(P1l1)):
for s in P11[1]:
if (P11[1]1[s] % 2) == O:
P11[11[s] = 0
else:
P11[1]1[s] = 1
EQl.append(sum([key * val for key, val in P11[1].items()]))
##Selecting the equations we need
EQ3=[]
for 1 in range(len(EQ1)):
if (EQL[1] '= 0) and (EQ1[1]'=1):
EQ3.append (EQ1[1])
return(EQ3)
Polynomiall (w) :
h_test1=[]
w_test1=[]
w_final_test1=[]

C. Codes for Chapter 7 187

a5 for n in range(len(w)):

46 if (wln] == 1) or (wln] == 0):

4 w_testl.append(w[n])

48 else:

49 h_testl.append(w[n] .make_args(w[n]))

50 g_testl =[]

51 for m in range(len(h_testl)):

52 g_testl.append(list(h_testl[m]))

53 for 1 in range(len(h_testl[m])):

54 if (h_testl[m] [1]==1):

55 g_testl[m] [1]1="(g_test1[m] [1])

56 del g_testl[m] [1]

57 w_final_testl = '&'.join([str(item) for item in g_testl])
58 w_final_testl = w_final testl.replace("*","&")
59 w_final_testl = w_final_testl.replace(","," ~")
60 return(w_final_testl)

Polynomiall(Equations(A))

=

fi(ai,...,apn) =(aioNa;®ai NasDay Nag®ar Aag) A (ay Nag D az Nas)
/\(a1 Naypg@arNajgt@ay NayppDar NagDay NagDay Nag
DapgNazDajgNasDagNas DajgNasDagNagDdair Nar
DayyNasDaji NagDapp NarDajp NasDajp NagDar N\as
DaxNagDayNagDay NagDaz NasDaz NaegDaz Nag D ay
Nas®ag Nag®ag Nag@ag NagPag Nag B agNag) N\ (~ ayy
DasDascDagDagDajoNasDajg/Na;Day NasDay; Nag
@ayNagDapNas®app NasBagANag®az NagHagAag)
N~a@adaz@Gas®asday NagBay Narda; Nag B ay
NasPazNasDagNas) N (~ajPa ®az®asPag®ag
DajpNazDapgNagsDaigNasDaypgNagDdar Nay Day
NasDaji NagDayg NagDaipp Nay Dajp ANaz D arp Nag
DapNaj@arNa;DarNagDaz NagDaz NagDag N\ ag
@asNag) A (alo®aipNayBai Nag) N (~ ay Baz S agHag
DarNagDar NagDar Nas Da NagDaz NaegDaz /NagDay
/\a569a4/\a7)/\(a269a669a1 Najg@ai NagDajg/NagsDaig
NasDajgNagDapp NayDappNagDar NasDax Nag P ap
/\ag@a4/\a6@a6/\a9)/\(a11 DQappDagDajpgNasDayg
NarjDajpNagdayy NagDdary NagdappNasdap Nagdain
Na7sBagNag®agNag) N\ (ay Bazdas®asda;dag®a

188 Chapter . Appendices

NagDair Na;Dar NasDary NajDar NagDaz NasDaz N\ag
@ag/\ag@a4/\a6@a4/\a7)/\(~ aida1©appDasdasDay
CagNann@arNapy@ay NagDayr NagDayg NagsDayp N\as
DanNagDappyNazDapp NasDap NagDaz Nas D az N\ag
DazNagBasNasDas Na; BasNag®ar Nag Hag Nay)

Boolean function f;

falay,...,an) =(aipNas®aj Nag) A\ (a; Nag B az Nas) A(ajpNazSajoNasSayo
NajDajpgNagDayy NarxDayi NagDaipNaxDapp NagDar \Nay
GayNag®az NagDag Nag) N (~ a1 ©as®agDag®ag®aipAas
DQajpgNarDaji NasDayy NagDayg NagDajp NasDap Na; Dag
Nag D aj N\ag @ag/\ag)/\(N agrbaybazDasDasDay NagDay
Nar®ai Nag®ar NasDazNasBasNas) N\ (~a Saygday Saz
DasPagDagPagDay NajgoPay NarpDai NagB ay Nag D ajpNas
DajpNas@ajoNasDajoNar;SapNagdayy NaxSayr Nasday
NagDajyn NagDaippyNarBappNazDaipyNasBaipp NagDaip Nay
DarNasBar NajDary NagPDar NagDaz NagPaz Nag D ag N\ as
DasNagPasNag®as Nag B agNag®agNag) A (~ app ®a;Pag
@ajNasDayy Nagdapp Nag@ar Nag) A\ (~ a) B az dagdag
DarNagDayr NagDarNas Dar Na;Daz NaegDaz NagDag N\ as
DagNar) \N(~ a1 Dajg®an®ay®az®a;©agdaygdaj Aaj
PayNapParNa;Dar NagDajgpNazDajgNasDajpgNayDayg
NagDajpnNayDayg NagsDayy NasDayg Nag@ayg NagDaip Nas
DapNazsDaipNasDajpp NagDapp NagDar NayBar Nag D az
NasDazNagDazsNagDaz NagDasNasDas NagDas Na; D ag
Nag®arNag®agNag) N\ (~ajg®agdag®ag®aygNasDajgag
DappNasDajp NagDaeg/\ag D ag /\ag)/\(N a) DazDasDay Dag
DarNagDayr NasDarNasDar NagDar NagDaz Nas Daz N\ag
@azNagPasNag®ag Nar) \(~ajg®ay®azPasDa;®agPa;
Nayo@ai Nayn DayNagDayr Nag BajgNazDaypgNasDajgN\ay
DanNarxDajitNas@ayy NagDarNasDar NasDar Nag D az N\as
@azNagBazNag®agNagHajN\ay)

Boolean function f3

f3 (al,...,a12) :(alo/\a5€9a6/\a9)/\(a1 /\a6@a2/\a5)/\(a1 Nay@ar Nag D ayg
Nas®a, NasBax NagBag Nag) A (~ aj; ®as ®ag®ar ®ag®ag

C. Codes for Chapter 7 189

DajpNasDajoNasDair NagDayn NagDdajpNasDap Nas Dag
Nag@agNag) N (~a®azBas®as®agBa;da; Nag®ay Nay
DayNagDarNasDarNagDaz NasD@az NagDag N\asDayg N\ag
DagNar) \N(~a ®ajg®ay Pazdas®as DagDag®a Nay
DayNanDarNagPar NagDajgoNazDajgNasDajgNasDayg
NajDajgNagDayy NarDajg NagsDayy NasDayg NagDay N\ag
DapNarDappyNazDapp NagDajppNagDary Nas Dar Na; D ay
NagDary NagDazNasDaz NagDazNagDaz Nag D ag N\ag®D as
Nar@ag Nag B ajNag) A (~ayPap®as®arBagPajgas
DajpNarDajpNagDayr NasDayy Nagbayy ANagdaix Nag
DapNas®agNagBajNag) \(~a, azPBag®agday Nag
@al/\ag@az/\a5@az/\a7@a3/\a6@a3/\a8@a4/\a5@a4/\a7)
AN(~ar@an®ardazdagda;BagBagBay Nayp®ap Nayy
DayNapParNagDay NagDay NagDagNagsDajg/NasDayg
NagDajnNagsDayg NasDajgr NagDaipNayDapp Naz DayyN\as
SapNagDappyNagDax Nas Dar NagDax Nag D az Nas Daz Nag
DazNagDagsNasDagNagDag/NajDas NagDaegN\agDar \ay
®agNayg) A (~ajg@Daj dapp®as®ag®aigNasDajpNag®ay
Nas®@ayy NagPappNas®aip NagPapp NayPagNagPa; N\ag
DagNag) \(~ayDarDasBasDa;dagda; NagDa Najday
NasDary NajDar NagDazNasDazNagDaz/NagDagN\aegDay
ANa7) A (~ay@ay Bay®ay®as®as®a;®ayg®ay Aay®Day
Napp@aiNagDay NagDajgoNazDajgNasDajgNa;Daig Nay
DannNasdanNagdayg NagdapNazdapp NasdappNasda
NasDary NagDay NagDaz NagDazNagDasNasDas /Na; Day
Nag ®agNag®ag Nag)

falay,...,an) = (apNasSajpgNa;day Nag®ag Nag) A (ay Nag®ax Nas) A (ajpNaz d
ajpNagDajgNarDapgNagbaig Naydayi Nagbaip NayDajp Nagdax Naydax Nag D
azNagBagNag) N\ (~ay Bagdag®ajpNarBajy Nag®ay NagBap Nay) A(~a;Bay®
azdasdas®a; NagBay NagDay NagDayNasDayNasDag Nas) N\ (~ay Dajday @
azDasPasDagDagPay NajgDar Nayg @ay NagDay Nag DajgNazDajg/NasDapN
asPajgNarDajgNagDayi Nax Lany NagsDayny NasDayr NagDayy NagDap Nax Dajpp A
azDapNagDappyNarDay NasDa Na; ar NagDar Nag Daz NasDaz NagDaz N\agd
azNag B asNagPag Nag®ag Nag®az Nag) A (~ ajo®ayy B ag®arBag®ajgNasDajg A
ar®ajpNag@ai NasDajg NagDayg Nag D ap Nag®ap Nag®ag\ag®ag Aag) N (~
a1@a3@a6@a3@a1/\a6@a1/\ag@az/\asEBaz/\a769a3/\aﬁ@ag,/\ag@a4/\a5@a4/\a7)/\(~
a1 Dapybazda;agDag@ar NajgrDayrNappDay Nasdayr NagDayy Nagsdar NasDajg N\

190

Chapter . Appendices

agDapNazDapNasDapp Nar;DazNasDazNagDazNagDagNasDagNajDags /\Nag D
arNag®ag ANag) A\ (~ajg®asBag®a; BagPajgNar@ay Nas@ay Aag®ag Aag) A (~
ar@ay®asdasDa;bagDar NagDay Na;Day Nas@a Na;Dax NagDaz NasDaz Nag®D
as /\ag@a4/\a6®a4/\a7)/\(~ arDapPasDagDagDagDay NajgDay Nap Bay NagD
aiNagbajgNasDajpgNasDajgNagDaippy NaxdaipNasDapp Nagdax NasDar Nagdax N

agPag Nas®ag Nag®ag Nag®agN\ayg®ag N ag)

Code for boolean formula in section 7.2.

Code C.28.

20

21

22

23

24

25

26

28

29

30

31

32

import sympy

from sympy import symbols, Matrix, pprint, collect, factor
from sympy import *

import itertools

al, a2, a3, a4, ab = symbols('al a2 a3 a4 ab')

A31 = Matrix([[1, O, O],[0, 1, 0], [0, O, 111)

A32 = Matrix([[0, O, 1],[1, O, 1],[0, 1, 01])

#4322 = Matriz([[0, 0, 1],[1, 0, 0],[0, 1, 1]])

A33 = Matrix([[0, 1, all,[0, 1, a2],[1, O, a3]])

#4332 = Matriz([[0, 1, all,[0, 1, a2],[1, 0, a3]])

##checking for some matrices print((433+432)**3+(433+432)+A31)
o print ((A32+431) #x3+(432+431)+431) print ((433)*+3+(433)+431

b31=[]
B31=[]
B32=[]
ONES=Matrix([[1, 1, 11,[1, 1, 11,[1, 1, 111)
for i in range(0,4):
b31.append('{0:03b}'.format(i))
M31=int (b31[i] [1])*A32+int (b31[i] [2])*A33
N31=M31**3+M31+A31+0NES
N32=(M31+A31) **3+(M31+A31) +A31+0NES
B31.append (N31)
B32.append (N32)
#Now, we collect each polynomial from each entry of each matriz
def Equations(First,Second):
BB31=[]
BB32=[]
for m in range(0,4):
for n in range(0,9):
BB31.append (expand (First [m] [n]))
BB32.append (expand (Second [m] [n]))
##Reduce the exponent
P11 =[]
P12 = []

C. Codes for Chapter 7 191

35 for i in range(len(BB31)):

36 for j in range(len(a)):

37 for k in range(1l,len(a)+1):

38 BB31[i] = BB31[i].replace(aljl**k,aljl)
3 BB32[i] = BB32[i] .replace(aljl**k,alj]l)
40

a1 P11.append(dict(BB31[i].as_coefficients_dict()))
a2 P12.append(dict (BB32[i] .as_coefficients_dict()))
5 #print (BB31)

44 ##Symplify computations of coefficients module 2

45 EQ1 =[]

46 EQ2 =[]

47 for 1 in range(len(P1l1)):

a8 for s in P11[1]:

49 if (P11[11[s] % 2) == O:

50 P11[1]1([s] = O

51 else:

52 P11[1]1[s] = 1

53 EQl.append(sum([key * val for key, val in P11[1].items()]))
54 #print (EQ1)

55 #print (len(EQ1))

56 for i in range(len(P12)):

57 for k in P12[i]:

58 if (P12[i][k] % 2) == O:

59 P12[il[k] = O

60 else:

61 P12[i]l[k] = 1

6 EQ2.append(sum([key * val for key, val in P12[i].items()]))
63 #print (EQ2)

64 #print (Len (EQ2))

65 ##Selecting the equations we need

66 EQ3=[]

6 for 1 in range(len(EQ1)):

68 if (EQ1[1] '= 0) and (EQ1[1]'=1):

6 EQ3.append(EQ1[1])

70 #print (EQ3)

71 #print (len(EQ3))

72 EQ4=[]

73 for 1 in range(len(EQ2)):

74 if (EQ2[1] !'= 0) and (EQ2[1]!'=1):

75 EQ4.append(EQ2[1])

76 #print (EQ4)

7 #I MUST split the list print(EQ3) print(EQ3[8]) print(EQ3[9]) print(EQ4)

o print(EQ4[8]) print(EQ4[9])
78 #Split the list of equations on the first half

192 Chapter . Appendices

79 newl = []

80 new2 = []

81 new3 = []

82 for i in range(O, len(EQ3), 9):
83 newl.append(EQ3[i : i+9])
84 new?2.append (EQ4[i : i+9])
85 for j in range(len(newl)):

86 new3. append (newl [j])

87 new3.append (new2[j])

88 return(new3)

9 print((Equations(B31,B32)))
9 def Polynomiall(w):

91 h_test1=[]

9 w_test1=[]

03 w_final_testl=[]

94 for n in range(len(w)):

95 if (wln]l == a1) or (wln] == a2) or (wln] == a3):

96 w_testl.append(w[n])

97 else:

o8 h_testl.append(w[n] .make_args(w[n]))

9 #print (h_testl1)

100 g_testl =[]

101 for m in range(len(h_testl)):

102 g_testl.append(list(h_testl[m]))

103 #print (g_testl)

04 # g_test2 = []

105 for 1 in range(len(h_testl[m])):

106 #print (h_testl[m] [1])

107 if (h_testl[m] [1]==1) and (h_testl[m] [1+1]!=al*a2):
108 g_testl[m] [1]1="(g_testl[m] [1])

109 del g_testl[m] [1]

110 if (h_testl[m] [1]==1) and (h_testl[m] [1+1]==alx*a2):
" g_test2 = (h_test1[m] [1+1] .make_args(h_testl[m] [1+1]))
12 g_testl[m] [1]1=("(g_test2[0]) | “(g_test2[1]))
113 del g_testl [m] [1]

114 #print (g_test2[0])

115

116 #g_testi[m][1]= ~(al1]) (*al2])

117 #del g_testl[m][l]

118 w_final_testl = '&'.join([str(item) for item in g_testl])
19 w_final_testl = w_final_testl.replace("*", "&")

120 w_final_testl = w_final_ testl.replace(","," ~")

121 return(w_final_testl)

122 def booleanformula(w):
123 boolean = []

C. Codes for Chapter 7 193

124 for i in range(len(w)):
125 boolean.append(Polynomiall(w[i]))
126 return(boolean)

127 booleanformula((Equations(B31,B32)))

Boolean Expression for a Vb
Code C.29.

[al NalOAal3ANad D al Nal3NalSNa5@al NaldNa5Na8Dal Na2 Na8Dal Na3®
alNadNa8ANa9PalONall ANaldNaSPalONall AalSNadPalONall Aa2BalOAall A
a3Nad S alONall Nad ANa9 B alONaldNad NabBall Aal3Na5SPall Nal5S5ANa3Na5D
allNal5SNaS@all Na3NaSDall NadNaSNa8Dal2NaSNabBal3Nad NaSNabDald N\
alSAhaSNabDaldNa3NaSNabDaldNaSNabNa9Da2Na3NabDa2 NabNa9Da3dNad N
abNa9Ba3Nad Nab6Dad Nab NaTlBad NabNa8Dad Nab N (~a9))A(al NalOAall ®al A
alOAal3ANal5®al NalOAal3ANa3Pal NalOANal3ANa9Pal ANalOAaldANa8Bal ANal3 A
aSNa8®al Na3Nab6Bal Na3Na8 Na9 Bal Na3Na8Pal Nad Na8Bal Nab Na9Bal NaTlAN
a8Pal Na8ANa9®al Na8PalOANall ANal3ANaSPalOAall AaldDalOAall Aal5SAa9 @
alOANall ANal5@®alOANall NadNa8PalOAall Aa7®alOAall ANa9DalOAal2 NabPDalOA
al3Nad NabPBalONaldNal5S5ANabDall NalSANaS5ANa8Pall Na3NaSNa8Dall Na5S AN
abPdall NaSNa8ANa9PDaldNaSNabNa8Da2NabNa8Pa3Nad NabNa8 P ad N\abdab N
a9 A (al NalOAal3NaldNaS@al NalOAal3NalSNhad@al ANalOANal3Na2@al NalOA
al3NadNa9Dal NalOAaldNad Na8Dal Nal2NaSNa8Dal Nal3Nal5SANa5Pal Aal3 A
a3haS®al Nal3NaS®al NaldANalSNaSNa8Pal AaldNaSNa8Aa9Tal Na2 Na8 \a9 D
alNa3NadNa8Pal NadNaTNa8Pal ANadNa8ANa9PBal Nad Na8BalOAall ANal2 N\a5P
alONallAaldNna3 N Na5PalONall AaldANadDalOAall AaldNaSAa9EalOANall Aal5SA
a2®alOANallNal5S5ANa3Nad@alOAall AalSAad N Na9DalOAall AalSAad®alOAall A
a2 Na3®alONall Na2 Na9 B alONall Na3Nad N Na9BalONall Na3NadPalOANall Nad N\
al®alONall ANadNa8PalOAall Aad ANa9 D alONal2ANad NabDalOAal3 ANad Aab®
alOANaldNnalSANadNab@alONald Na2 ANa6DalOAald Na3Nad NabDalOAald NaSA
ab6@all NaldNaSNa8Pall NalSANadNaSNa8DBall AalSANaSPall Aa2NaSNa8PBall A
a3NaS®all NadNa5SNa8Na9PBall NaS5Pal2Nal5S5Na5SNabPal2Na3Na5SNabPBal2 N
aSNabNa9PDalldNaldANaSNabDal3NalSANadNaSNabDal3Na2ANaSNabBal3 Nad N
aSNabNa9DaldNal5SNa3NaS5NabDaldNal5SNaSNabAa9DaldNal5SNa5SNabDald N
a3NaSANabNa9DaldNa3NaSNabDaldNaSNabNaTDaldNaSNabAa9Ba2Na3 Nab A
a9ba2Na3NabPa2NabNaT®a2NabNa9Ba3Nad ANabNalPDa3Nad NabDad NabNa9P
ad Nab) A\ (al NalOAall NalS@al ANalOAall ANa3@al NalOAall Aa9 B al AalOAal2 A
a8Pal NalOAal3ANald®al NalOANal3ANal5SAa3Pal AalOAal3Nal5S5ANa9Bal AalOA
al3Nal5®al NalOAal3ANa3ANa9Dal AalOANal3ANa3®al ANalOAal3ANaSDal AalOA
al3Na7®al NalONal3ANa9®al NalOANal3Eal NalONaldNalSANa8Eal ANalOAald N
a3Na8@®al NalONaldNab®al Nal3Nal5SANaSNa8Pal Aal3ANaSANabPal Nal3 NaS5 AN
a8Na9Dbal NaldNaSNa8Fal Na2Na8Bal ANa3NabNa9Pal Na3NabP®al Na3 ANaTl A
a8®@alNa3Na8Pal NadNabNa8Pal ANabANaT®al NabNa9Dal Aab®alOAall ANal2®
alOAallAal3ANa3Na5PalONall ANal3ANadDalOAall Aal3AaSAa9PalOAall Aal5A

194 Chapter . Appendices

adNa8®alONall NalSANaT®alONall ANal5®alONall Na2 A Na8BalOAall Aa3 Nad N
a8PalONall ANa5PalONall Aa9PalONal2ANal5SANa6PBalONal3ANaldNaSAabDalOA
al3NalSNadNab@alONal3ANa2 NabPalOAal3Na3Nad ANabPalOAald Nal5N\ab®
alONaldNabNa9 B alONaldANabDall Aal3NaSANa8Ball ANalSAa3NaSNa8PBall A
al5SNaSNab@all AalSAa5SNa8ANa9Dall AalSAaSNa8Pall Aa3NaSNabPall Aa3 A
aSANa8ANa9ball Na3NaSNa8Fall NadANa5SNa8Pall NaSNabAa9Dall Aa5SNaTl a8
allnaSNa8ANa9Dal2ANaSNabNa8Pal3NadNaSNabNa8Pald Nal5SANaS5SNab a8 P
aldNa3NaSNabNa8PaldNaSNab6Da2Na3NabNha8Pa2Nab@a3Nad NabNa8D a3 N
a4 NabBad Nab Na8Na9®ad NabNa8®abNaTNa9BabNaTlSabNa9dab)A(al NalOA
allANald®al NalOANal2Nal3@al AalOANal3ANaldNa3Bal AalOAal3ANaldANa9 Dal A
alONal3Nad P al NalOANaldAa8Dal Aall Aal3ANa5Pal Nall AalSAa3Pal Aall A
al5S5®al Nall ANa3Pal Nall ANadNa8Fal Aall ®al Nal2NalS5Na8Pal Nal2 ANa3 Na8P
alNal2Na6@al Nal2 N Na8ANa9 P al ANal3NalSNadNa8Pal Aal3ANa2ANa8Pal ANal3 A
a3®al Nal3Nad Na8Na9Dal NaldNal5SNa3Na8Dal NaldNal5SNabDal Nald Aal5N
a8ANa9Pal ANaldNalSNa8Dal NaldNa3NabDal NaldANa3Na8ANa9 Dal ANald Na3 N
a8®@al NaldNad Na8Dal NaldANabNa9Bal NaldNaTANa8Dal NaldAa8Na9Dal Aald N
a8PalONall ANal2Na9PalONall Nal3Aa2@al0ONall Aal3ANa3NadPalOAall Aal3 A
adNa9PalONall NaldNal5EalONall AaldAad Na8 B alOAall NaldNaTDalOAall A
aldNa9®alOANall ANaldDalOANall ANadDall Aal2 N Na5SANa8DBall Nal3NalSAa5Dall A
al3ANa3Na5S5®all Nal3ANad ANaSANa8 Ball Nal3ANaSDall ANaldNa3NaSANa8Dall A
aldnaSNa8ANa9Dall Nal5SAadNabDall Aal5Pall Na2ANab6@all Aa3NadNabDall A
a3NaSPall NadNabNa9Pall Bal2ANal3NaSANa6@al2Nal5S5NabAa9Bal2Nal5Nabd
al2ANad NabNa8Pal2NabNaTBal2NabNa9Bal3d3NaldNa3Na5SNabFal3ANald NaS5N
abNa9®al3Nal5SNa2 Nab6Pal3 Nal5SNa3Nad Nab6Pal3 Nal5SNad NabNa9Pal3 Nal5N
adNab®al3Nna2Na3Nab6@al3Na2NabANa9Dal3ANa3Nad NabNa9Dal3Na3Nad NabD
al3NadNaSNab@al3Nad NabANaTlDal3dNad NabNa8Dal3Nad NabNa9 Bald Aal5N
adNabNa8BaldNalSNabNaTP®aldNal5SNab6PBald ANa2 NabNa8Pald Na3 Nad Nab N\
a8@®ald Nad NabDald Na5Nab Na8Dald NabNa9) A (al Nal2 Na5@al Nad ANaTdalOA
al2NaldNaS®alOANal2NalSANadPalONal2Na2PalONal2 Na3NadPalOAal2 N\ad N
a9®alONal3ANa2NadBalONaldNad NalDBall ANa2 NaSDBal2Nal3ANaSBal2 Nal5 A
a3Na5Pal2NalSANaS®al2Na3Na5Pal2NadNaSNa8Dal2NaSANaTDal3NalSNa2 N
aSPald3nad NaSNaTDaldNalSANaSNaTDaldNa2NaSNa8DaldNa3NaSNaTlDaldN
aSANaTNa9®a2Na3NaTPa2Nad3®a2Nad NabDa2 Nad Na8Na9Pa2NaTNa9Ba2 Na8P
a3NadNaTNa9Ba3Nad NalDad NaTNa8DadNaTNa9DadNaT)A(al N\a2 Na8DalOA
allNa2®alOANal2ANal3Na5®Dal0OANal2ANald®alOANal2ANal5ANa9Bal0OAal2Aal5P
alONal2Nad Na8DalOAal2 ANa9®alONal3ANal5Na2®alOANal3ANa2ANa3Bal0ONAal3 N
a2Na9 D alOANal3NadNaT®alONaldANalSANaTPalONaldNa2 ANa8Dal2 AalSNaS5N
a8@®al2Na3Na5S5Na8Pal2Na5SNab6Pal2NaSNa8Na9®al3Na2NaSNa8Pald AaS N
aliNa8®a2Na3NabDa2Na3N a8 a9 Pa2Na3Na8Pa2Nad Na8Da2NabNa9Da2Na8 N
aS@a3Nad NaTNa8Bad NabNaTDaTlA(~a9))A(al NalONal2 N Nad@al Nal2 Nal5 A
aS®al NaldNaSNaT®al Na2Na3Dal Na2NaTDal ANa2@al NadANaTANa9DalOAall A
a2Nad@®alONal2 NaldNa3NaSPalONal2NaldNadBalONal2 N NaldANaSAa9Bal0A
al2Nal5Na2@®alONal2Nal5S5ANa3 N Nad@alOANal2Nal5Nad ANa9DBalOAal2 ANal5Nad®

C. Codes for Chapter 7 195

alONal2ANa2 N Na3PalONal2ANa2 Na9 D alONal2ANa3Nad Na9 B alOAal2 Na3 NadP
alOANal2ANad ANa8PalOANal2 ANad ANa9 P alONal2 ANaSPalOANal3NaldNa2 ANaSPalOA
al3NalSNa2 N Nad @ alONal3ANa2Nad Na9 DalONal3ANa2®alOAal3Nad NaT B alOA
aldNalSANadNaTDalONaldNa2 N had Na8BalOAaldNa2 NaTDalONaldNa3Nad NaT D
alONaldNaSNaT@®all Nal2ANa5Dall ANalSANa2ANaS5Dall ANad ANaSANaTDal2Nald N
aSANa8®al2Nal5S5Nad NaSNa8Pal2NalSANaSNaT®al2Nal5SNaS5@®al2Na3NaS5SNalP
al2ANa3ANaS@®al2Nad N NaSNab@al2Nad NaSNa8Na9Dal2NaSNaTNa9Pal3Nald N
aSNal®al3NalSNa2ANa5P®al3NalSNadNaSNaT®al3Na2N a3 Na5Pal3Na2Nad5N
al®aldNna2NaSDal3NadNaSNaTNa9DaldNal5SNa2NaSNa8Bald ANal5SNa3Nad5N
al®aldNalSANaSNaTANa9PaldNal5SNaSNaTlDaldNa2NaSNabDald Na2 a5 Na8 A
a9®aldNna3naSNaTANa9DaldNa3ANaSANaTDaldNaSNaTNa9PaldNaSNaTlDa2Na3 A
adNa8Ba2Na3NdTNa9Pa2N a3 NaT®a2Na3Ba2Nad NabNa9Pa2Nad NaTNa8PDa2 N
adNa8ANa9Fa2Nad Na8B a2 NabPa2 N NaTNa9Pa2NaTPBa2Na8Na9PBa2Pad NabNaTlP
ad NaTNa9) N (al AalOANal3Na2@al Nal2Na5Na8Dal Na2 NabDBal Na2 Aa8 Na9 Bal A
adNaTNa8PalONall Nal2ANa5PalOAall Nal5SAa2PalOAall Na2Aa3PBalOAall A
a2 Na9@®alOANall Nad NaT®alOANal2ANal3Na3ANaSPalOANal2Ahal3ANad B alOAal2 A
al3Na5SNa9®alONal2 Nal5S5ANad ANa8PalONal2 ANal5PalONal2ANa3Nad ANa8Bal0OA
al2Nad Na6PalONal2ANa9Pal0ONal2PalONal3NaldNa2@alOAal3NaldANaSNaTlP
alONal3ANal5S5Na2Na3PalONal3ANalSAa2 N Na9PalONal3NalSAa2@alOAal3Nal5A
adNadT®alONal3ANa2Na3Na9PalONal3Na2Na3Bal0OAal3ANa2ANa5PalONal3Na2 A
a9PalONal3Na3Nad NaT®alOANaldNalSNa2ANa8PalOANaldNal5SAaTPBalOAald A
a2Na3Na8®alONaldNa2 ANab6DalONaldNaTNa9DalONaldNaT®all Na2 Na5Na8P
al2Nal3Na5S5Na8PDal2 Nal5SNa3NaSNa8Pal2Nal5SANa5SNabDal2Nal5SNaSNa8N\a9 D
al2 Nal5S5Na5SNa8Pal2 Na3Na5SNabDBal2 Na3Na5S5Na8Na9Pal2 Na3Na5SNa8PBal2 N
adNaSNa8Pal2NaSNabNa9Dal2ANaSNa8 a9 Dal3Nal5SNa2NaSNa8Pal3ANa2 Na5 N
ab@®al3Na2 N Na5SNa8ANa9Dal3NadNaSNaTNa8DaldNal5SANaSNaTNa8DBaldANa2 ANa5 N
a8@®aldNna3NnaSNaTNa8BaldNaSNabNaTPa2Na3NabNa9Pa2Na3NabPa2 Na3 N
a8Pa2NabNa9Fa2Na8Na9Pba2Na8PBa3Nad NabNaT®a3Nad NaTNa8Pad NaTlNa8 N\
a9®ad NdTNa8) N(al Nall Na2@al ANal2 ANal3ANaSPBal Nal3NalSNa2Bal Aal3 ANad A
al@al NaldNa2Na8BalONall ANal2AhNadBalOANall NaldAa2@alOAal2Aal3 ANa3 A
adBalONal2Nal3NadNa9DalONal2NaldANalS5SDalONal2ANaldNad Aa8DalOAal2 A
aldNaTPalONal2NaldNa9PalOAal2Nald®alONal2ANa9PalONal3NaldNa2 Na3P
alONal3NaldNa2ANa9DalOAal3Na2 N NadPalONaldNa2ANa8Pall Aal2 ANa3 Na5P
allANaldNaSNaT@Eall NalSAa2Na3Pall ANalSANa2Pall NalSNad AaTDall Aa2 A
ad®all Na2Nad Na8PBall Na2 NaTDall Na3Nad NaTDall NadNaTNa9Bal2 ANal3 N
alSNaS®al2Nal3Na3NaS5Pal2 ANal3NadNaSNa8Bal2 Nal3ANa5SNaTDal2Nal3 A
aS®al2NhaldNa3ANaSNa8Dal2 NaldNaSNabDal2AhaldNaSAa8ANa9Dal2 Nal5Na2 A
a8@al2NalSNaTNa9Dal2Nal5SANaTlPal2Nal5Bal2Na2ANa3Na8Fal2Na2 N\abP
al2ANa2 N Na8ANa9®al2Nad NaTNa8Pal2NaSANa8Pal2NaTNa9Dal2NaTDal2Pal3 N
aldNa3NaSANaT®al3d3NaldNaSNaTNa9Pald3NalSNa2NadANa8Bal3NalSNa2 NaTld
al3Nal5SANa2@®al3NalSANa3Nad ANalBal3NalSNadNaTANa9 B al3NalSNad ANal @
al3Na2 N Na3 N NaTDal3Na2Na3®al3Na2Nad ANabDal3Na2Nad Na8Na9 Dal3 Na2 A
alNa9PaldNa2Na8Fald3Na3Nad NaTNa9Pal3Na3Nad Nal®al3Nad NaSN\aTlP

196 Chapter . Appendices

al3NadNaTNa8Pal3Nad NaTNa9Pal3Nad NaTBaldNal5SNa2N a3 Na8Bald Nal5N
a2NabPaldNalSNa2Na8Na9BaldNalSANa2Na8FaldNalSNad NaTANa8Bald Na2 N
a3Nab6®aldNa2N a3 a8 a9 D aldNa2 Na3 Na8PBaldNa2 Nad Na8PBald Na2 Nab a9 D
aldNa2 Na8 N Na9 DaldNa3NadNalNa8DaldANad NabNaTDaldNaSNaTNa8Pald N
alNa9) A (al Na3@al BalONall NadBalOAal3NaldNaSDalONal3Nal5NadDalOA
al3Na2®alOANal3Nad N Na9DalONaldNad Na8Pall NalSANa5Pal2 Na5Na8Pal3 N
alSANaS®al3Na3NaS5®al3Na5DaldNnalSANaSNa8PaldNaSNabDald NaSNa8Na9P
a2NabBa2Na8NaY a3 Nad Na8Da3Bad NabNa)Bad NaTNa8® a4 Na8Na9 D ad N (~
a8))A(al NalOANal3®al Nab6Bal Na8 ANa9DalOAall ANal5BalONall Aa3BalOAallA
a9®alONal2ANa8 D alOANal3NaldBalOAal3ANal5SANa3PalOANal3ANal5Aa9®alOA
al3Nal5®alONal3Na3Aa9PalONal3ANa3PalONal3NaSDalOANal3NaTPalOAal3 N
a9®alONaldNal5S5Na8PalOANaldNa3Na8DalOANaldNabBall NaSNa8Dal3Nal5 N
aSNa8Pal3NaSNabBaldNaSNa8Na9DaldNaSNa8Da2Na8F a3 NabNadPa3 Nab®
a3NalNa8Da3Na8Bab NaTlHabNa9Ba8Nad) A (al Na3BalONall ANald ANa5DalOA
allNal5Nad@alOANallANa2@alOAall AadANa9DalOAal2ANal3ANaSPal0OAal2Aad N
a8®alONal3ANaldNadDalOAal3AaldNaSNa9BalOAal3Nal5SAa2@al0Aal3Aal5A
adNa9PDalONal3Nal5S5NadBalONal3Na2ANa9PalONal3Na3NadBalOAal3 Aad N
al®alOAal3NadNa9PalONaldNalSANadNa8DalONaldNa2 Na8 B alOAald Aad N
ab @ alONaldNaSNa8Pall NalSNa5Ball Na3Na5SBal2Nal5SANaSNa8PBal2 Na5S N
ab®al2NaSNa8Na9®al3Nal5SANa3NaS5Pal3Nal5SNa5Fal3Na3NaSPaldNal5NaS5N
abPDaldNalSNaSNa8ANa9DaldNalSANaSNa8DaldNa3NaSNa8Dald NaSNab a9 D
aldNaSANaTNa8@®aldNaSNa8Na9Da2Na3Na8Pa2NabNa9Pa2 NalNa8B a2 Na8 N
a9®@a3NadNabDa3Nad Na8Na9Da3 Nad Na8Dad Nab NaTldad NabN\a9dad Na8 N (~
a9))N(al NalOAall@al AalOAal3Nnal5Bal NalOAal3Na9Bal AalOAaldNa8@al A
a3Na8Pal NabNa9Dal NaTNa8Bal Na8ANa9 Dal Na8 BalOAall Nald®alOAall A
al5SNa3®alONall AalSAa9PBalONall Aal5PBalONall Aa3Na9DalOAall Aa3PBalOA
allNa7®alONall Aa9DalOAal2Nal3®alONal2Nal5ANa8BalONal2N a3 Na8PalOAN
al2ANa6®alONal3ANaldNa3BalOANal3NaldNaSNa8DalONal3NalSANa3Na9Pal0A
al3Nal5S5NaT7®alONal3 ANalS5@alOAal3Na3 Nal B alOANal3ANa3PDalONal3 Nad®
alONal3Na5SNa9PalOAal3ANa9®alONaldNal5SAha3Na8DalOAaldANalSANabBalOA
aldNalS5ANa8PalOANaldNa3Nab6DalOANaldNa3Na8DalOANaldNa8Aa9 BalOAald N
a8®@allANalSANaSNa8@all ANaSNabDall AaSANa8ANa9Dal2NaSNa8Dal3 AalSAad5N
ab@®al3nalSNaSNa8ANa9Pal3Nal5S5NaSANa8Pal3Na3Na5Na8Pal3Na5NabA\a9 P
al3NaSNaTNa8Bal3NaSANa8ANa9Dal3NaSNa8PaldNalSNaSNa8 D a3 Nad Na8 D
a3NabNalPa3Nab®a3NaTNa8Pa3Na8Na9 P a3 Na8Bad Nab®ad Na8 Na9 D ad N\
a8®abNa9®aTNa8Na9BaTNa8®a8Na9Ba8) A(al NalOAal3Nald@al Nall Nal5®
alNal2ANa8Pal Nal3ANal5Pal Nal3ANa3Pal Nal3®al NaldNal5SNa8Pal Nald N
abPal NaldNa8ANa9®alOANall Nal2®alOAall AaldNa3BalOAall AaldAa9 DalOA
al2Nal3ANa3BalONal2ANal3ANa9PalONal3NaldANal5S5PalONal3ANald ANa3N\a9 P
alONal3ANaldNa3BalONal3NaldNad Na8DBalOAal3NaldNaTBalOAal3ANald Na9B
alOAal3Nnald@alONal3Nna2®alONal3Nad Na9DalOAaldNa3Na8PalOAald ANabd
allANalSANadNa8@allNal5Pall Na2Nha8Ball Aa3Pall NadNab6Dall Aad Na8 Na9 D
allANaS®al2Nal5S5Na3Na8PBal2ANal5Nab6Dal2Nal5Na8Na9PBal2Nal5Na8Bal2 N

C. Codes for Chapter 7 197

a3Nab®al2Na3Na8ANa9Dal2Na3Na8Pal2Nad Na8Bal2 NabNa9Bal2 NaT Na8P
al2Na8ANa9Pal3NalSNa2ANa8Dal3Nal5SANa3PBal3NalSNad NabBal3 Nal5ANad N\
a8ANa9®al3Nal5SNadNa8Fal3Nal5SNaSBal3NalSEal3Na2NabBal3Na2 Na8 a9 B
al3Na3Nad Na8Pal3Na3NaSPal3Na3Bal3Nad NabNa9Bal3Nad NaTlNa8DBal3 N
adNa8ANa9Dal3NadNa8Dal3NaS®al3PaldNal5SNa3NabDaldNalSANa3Na8ANa9D
aldNalSNadNa8PaldNal5S5ANabNa9PaldNal5S5ANabBaldNalSNaTlNa8BaldNal5N
a8@aldNna2Na8BaldNa3NabNa9 B aldNa3NabPaldNa3 N NaTNa8Bald Na3 Na8P
aldNaS5Na8@aldNabNaTBaldNabNa9Bald Na8Na9) A (al NaldNa5Bal Na2@al A
adNa9PalONal2NadDalOAal3NadDalONaldNalSAadDalONaldNa2BalONald A
a3Nad@alONaldNaSDall Nad N NaSDal2Nal5SNa5Dal2Na3NaS5Pal2Na5SNa9Dal3 N
aldNaS@®al3NalSNad N NaSDal3Na2ANa5Pal3Nad NaSNa9PaldNalSANa3NadSDald N
alSANaSNa9®aldNal5SNaS5BaldNa3 N NaSNa9PBaldNa3NaSPaldNaSNalPaldNa5N
aAOPa2Na3N a9 D a2 Na3B a2 NadTda2Na9Da3Nad NdTDa3 Nad S ad NabDad N\a9) A
(al NadNa8 B alONall Nad B alONal2 Nal5@alONal3 NaldNaSBalOAal3 Aal5SA
ad @ alONal3Na2®al0OAal3ANa3NadDalONald Nal5DalOANald ANa9 B al0Aaldd
al2 N NaS5Na8Pal3NadNaSANa8DaldNalSNaSANa8PaldNa3NaSANa8DaldNad5SNabd
a2Na3Na8®a2NabD a3 NadNabDa3Nad Na8DadNa8Na9Dad Na8DaTNa9®aTld (~
a9)) A (al NalONaldNad @ al Nal2 Na5@al NaldNal5SNaSDal ANaldNaSNa9 D al A
a2 Na9®al Na3NadDal NadANaTDal NadNa9 Dal AadPalONall ANad B alOAal2 A
alSNad@GalONal2Na2BalONal2Na3 N NadBalOANal3ANaldNad NaSBalONal3 NalSN
ad®alONaldNalSNa2PalOAaldNalSANa3NadPalOANaldNalSANadDalOANald Aa2 A
a3®alONaldNa3NadPalOANaldNa3 N a5PalONaldNad Na9 BalONaldNadPall A
aldnaSPall NalSNadANaSPall Na2ANa5Pall NadANaSNa9Dal2ANal3NaSDal2 N
alSANa3Na5@al2 NalSAa5SNa9Pal2 NalSANaSDal2ANa3Na5Na9 Dal2ANa3 Na5d
al2 NaSANaT®al2 N Na5SANa9@al3NaldNaSNa9Dal3NalSNa2NadSPDal3 Nal5Aad A
aSANa9Pal3d3NalSNad NaSPal3Na2NaSNa9Dal3Na3ANadNaSDald3Nad NaSNald
al3NadANaSNa9Bal3Nad NaSPaldNalSANa3Na5SNa9PaldNalSNaSANaT®aldNal5N
aS@®aldNa3NaSNaTBaldNa3NaS5PaldNaSANa8PDaldNaSNa9Pa2Na3NalDa2 N
a3®a2Na8Pa2Na9P a3 Nad NalBa3NadNa8PBa3Nad Na9 Ba3 Nad DB ad Nal a9 D
adNdT®ad Na8ANaS Bad Na8Bad Na9 B ad)A(al NalONal3 NadBal Nald NaSN\a8&
alNa2Na8®al Nad NabDalOANall NaldANaSDalOANall ANalSANad B alOAall Aa2 @
alONall Aa3Nad @ alONal2ANal3NaSBalOANal2 Nal5PalONal2Aa9 DalOAal3 A
aldNa3Na5®alOANal3Nal5S5ANa2Pal0ONal3ANal5SANa3NadPalOAal3Nal5ANadDal0A
al3Na2Na3PalONal3Na3ANadDalOANal3Nad Na5PalONal3Nad Aa9 DalOAald A
alS5Na9®alONaldNal5BalONaldNaSPall NadNaSNa8Bal2 ANal5SNa5SNa8Bal2 N
a3NaSNa8®al2Na5SNabDal3NaldNaSNa8Dal3 Nal5SANad NaSNa8Bal3Na2 a5 N
a8®@al3NadNaSNabBaldNal5SNa3Na5Na8DaldNalSANaSNabPaldNal5S5Na5SNa8D
aldNa3NaSNa6Pald Na3NaSNa8PaldNaSNa8ANa9Pa2Na3NabPa2 Na3 Na8Da2 N
a8Na9®a3Nad Nab® a3 Nad Na8 Na9 D a3 Nad Na8Dad NabNa9Dad Na8Na9DaTA (~
a9)) A (al Nall Nad@al Nal3 Nald Na5Dal Nal3Nal5SNad@al Nal3Na2@al ANal3 A
adNa9Pal NaldNad Na8 DalOANal2@alONal3NadBalONaldANal5PalONald Na9 D
alONald@®all ANal2Aa5Pall ANaldNna3 N Na5Pall AaldANaSAa9Dall AalSAa2@all A
alSNa3Nad@all NalSANadANa9DBall ANalSNadPall ANa2 N Na3Pall Aa2Na9PBall Aa3 A

198 Chapter . Appendices

adNa9®allANa3NadPall Nad NaTDall NadNa8Dall Nad Na9Dal2Nal3Na3N\a5®
al2ANal3ANa5SNa9Dal2NalSNadNa8Dal2NalSNaT®al2Nal5@al2Na2Na8Bal2 N
a3Nad Na8PBal2Nad Nab@Bal2Na9Pal3Nald Nal5SNaS5Pal3NaldNa3NaSNa9Bal3 N
aldNa3NaS®ald3NaldNad ANaSNa8 D al3d NaldNaSANalDal3NaldNa5SNa9Dal3 N
aldNaSPald3NalSNa2Na3@al3ANal5S5ANa2N a9 Pal3NalSANa2@®al3ANal5SNa3Nad N
a9 al3NnalSNad NaTPal3Nal5S5NadNa8Bal3NalSNad@al3Na2ANa3Na9PBal3Na2 N
ad3®al3na2ANaSPal3Na2NaTPBal3Na2Na9PDal3Na3NadNaTl®al3Na3NadBal3 N
adNaSNa9®al3Nad NabDal3Nad Na9 P ald Nal5SNa2Na8DBald Nal5SNa3 Nad N\a8D
aldNal5SNadNabDaldNalSNad Na8DaldNalSANaTDaldNalSANa9DaldNalSTaldN
a2Na3Na8PaldNa2 Nab6DaldANa3 N Nad NabDaldNa3Nad Na8BaldANa3 N NaSNa8Dald N
adNa8 a9 aldNad Na8DaldNa5SNabDaldNaTNa9DaldNaTDaldNa9Dald)A(al A
alONadPal Nal5SNa5PalONal2ANa5PBalOANaldNa3 N NaSPBalONaldNadDalOAald N
aSNa9PalOANalSNa2PalOANalSNa3NadBalONalSAad Na9 PalOAal5SNadPalOAN
a2 Na3dalONa2 Na9 B alOANa3Nad Na9 BalONa3Nad B alONad NaTlBalOANad N\a8D
alONad N Na9®all ANaSPaldNaSNa8BalSANad NaSNa8BalSNaSDa2NaSNa8Da3 N
aS@ad NaSNabdad NaSNa8Na9) A (al Na5Na8BalONall AaSBalONal2®al0Aal3A
a3Na5®alOANal3NadPalOANal3Na5Na9DalONalSAad Na8PalOAal5SNaTPalOAN
al5®alONa2Na8PalONa3ANad Na8BalONad NabPalONa9Bal3NaSNa8Pal5SAa3 N
aSNa8PalSNaSNab®alSNaSNa8ANa9PalSNaSNa8Pa3NaSNab6@a3NaSNa8Na9 D
a3NaSNa8®at NaSNa8®aSNabNa9Ba5NaTlNa8BaSNa8Na9) N (al NalOAaldNaS®
alANalOANalSAad®al NalOANa2@al AalOAadANa9Dal AalSNhaSDal Aa3ANaSPal Na5D
alOANal2Na3ANa5Pal0ONal2ANadPalONal2ANa5SNa9DalONal3Nad@®alOANald ANal5N
aS®alONnaldNa2PBalONaldANa3 N Nad B alOAaldNa3ANaS5Na9 DalOAald ANa3 Na5P
alONaldNad NaSNa8®alONaldNaSNalPBalONaldNaSNa9BalOANald NaSSalOAN
alSANa2 N Na3®alONal5SANa2ANa9PalOAalSANa2PalONalS5ANa3Nad ANa9 DalOAal5A
adNalPDalOANalSANadNa8DalONal5SNadDalOANa2ANa3Na9 DalOANa2ANa3DalOAa2 A
al®alONa2ANa9PalONa3Nad NaTDalONa3NadDalONad NabD®alONad Na9Bal2 N
aSANa8®al3Nal5SNaS®al3Na3NaS5Fal3NaS@®aldNaSNabBaldNaSNa8ANa9Dal5N
a2NadSNa8®alSNa3NaS®alSNadNaSNabDal5SNadNaSNa8Na9DalSNadNaSN\a8@
alSNaS@®a2Na5Nab6PBa2NaSNa8Na9PBa3 Nad NaSNa8Pa3 Na5SBad NaSNabNa9 P ad N\
aSNdTNa8®adNaSNa8Na9Bad NaSNa8BaS) A (al NalONal3NaS®al NalOAadNa8@
al NalSANaSNa8Bal NaSNabPal AaSNa8Na9 P alOAall Aa3ANadSPalOAall Aad D
alOANallNaSANa9PDalONal3ANal5SNa5@alONal3Na2®al0ONal3 a3 NadPalOANal3 N
a3naSNa9®alONal3Na3NaS5PalONal3NadNaSNa8PalOAal3ANaSNaTDalONal3 N
aSNa9P®alONal3Na5DalONaldNal5BalONaldNa9 BalONald@alONalSANa2 Na8 @
alONalSNa3NadNa8DalOANal5SANad NabDalONalSANad ANa8PalOAalSNaTPalOA
al5S5Na9®alOAal5DalONa2Na3 N Na8PalOANa2ANabPalONa3 Nad ANabDalOAa3 Aad N
a8PalONadNa8Na9PalONadANa8PalONaTNa9BalOANaTBalOANa9 P alOBall AadSA
a8Pal3NaSNabDal3NaSNa8ANa9DaldNaSNa8PBalSNa3NaSNabPalSNa3NaSN
a8ANa9DalSNadNaSNa8BalSANaSNabNa9 DalSNaSNab®alSAaSANaTNa8Pal5N
aSNa8®a2NaSNa8Fa3NaSNabNa9PBa3Na5SNab6Ba3NaSNaTNa8Ba3Na5SNa8H a5 N
abNdTdaSNabNa9BaSNa8Nad)A(al NalOANal3Nad@al Nall ANaS®al ANald ANaS A
a8PalONall Na2®alONall Aa3NadPalOANall ANad Na9DalOAal2Nal5BalOAal2 N

C. Codes for Chapter 7 199

adNa8PalONal2ANaTPalOANal2ANa9 D alOAal3Nal5SNad@BalONal3Na2Na3Eal0AN
al3Na2ANa9PBalONal3Na3ANad Na9 DalOAal3ANa3Nad D alONal3ANad NaTl D al0A
al3Nnad Na8PalOAal3Nad ANa9 DalONaldNal5SNa9DalOAaldNal5PalONald ANa2 N\
a8®alONaldNa3Nad Na8DalONaldNad NabDalONaldNa9Dall ANalSANaSPall A
a3NaS@all NadNaSNa8Dal2ANa3NaSNa8Dal2NaSNabDal2ANa5SNa8Na9 Bal3 A
alSANa3NaS5@®al3Nal5Na5@al3Na2Na5Na8PBal3Na3NaSPal3Nad NaSNabDal3 N
adNaSNa8ANa9DaldNalSANaSNa8PaldNad3NaSNabDaldNa3NaSNa8Aa9Dald N
a3NaSNa8@aldNad NaS5Na8BaldNaSNabNa9DaldNaSNaTNa8DaldNa5Na8 N (~
a9)|Vlal NalONal3Nad@al Nal3 NalSAaS@al NaldNaSNa8Bal Na2 Na8Bal Na3 &
alNadNa8ANa9Pal BalOANall AaldNhaSPalOAall ANalSAad@alOAall Aa2 P alOA
allNa3NadBalONall NadANa9DalOANaldNad Na6Dall Nal3NaSBall Aal5SAa3 A
aS®all NalSANaS5Pall ANa3Na5Ball AadNaSNa8Dal2NaSNab®al3 Nad NaS5N\abP
aldNalSANaSNabPDaldNa3NaSNabDaldNaSNabNa9PBa2Na3NabBa2NabN\a9 P a3 N
adNabNa9® a3 Nad Nab®ad NabNaTdadNabNa8DadNabNa9D 1) A (al NalOAall
alNalOANal3Nal5S5@al NalOAal3ANa3Dal ANalOAal3ANa9Dal ANalOAaldNa8Dal A
al3Na5SNa8®al Na3Nab6Dal Na3ANa8 N Na9Pal Aa3Na8Bal ANadNa8PBal ANabAa9PDal A
alNa8Pal Na8Na9Pal Na8BalOANall Aal3ANa5P®alOAall ANald®alOAall Aal5S A
a9PalONallANal5®alOAall NadANa8BalOAall ANaTPalONall Aa9PalOAal2NabP
alONal3Nnad Na6DalOANald ANalSNabDall ANalSAaSNa8Dall Aa3NaS5Na8 Dall A
aSNab@all NaSNa8Na9PBaldNaSNabNa8PBa2NabNa8D a3 Nad Nab \a8Had N\abd
ab Na9 ®ab) A (al NalOAal3NaldNaS@al NalOAal3Nal5ANadBal NalOANal3Na2 D
alANalOAal3Nad ANa9Dal NalOAaldNad Na8Bal Nal2NaSNa8Pal Aal3Nal5Na5P
alNal3Na3Na5Bal Nal3NnaS®al ANaldANalSAaSANa8Fal NaldNaSNa8ANa9Dal ANa2 N\
a8ANa9®al Na3NadNa8Dal ANa3Dal Aad NaTNa8Dal NadNa8Na9Dal Nad Na8Pal ®
alONallAal2 N Na5®alONall AaldANa3 A Na5PalOANall NaldANad@alOAall AaldANa5A
a9®alOANall ANalSANa2PalOAall AalSAa3ANadPalOANall ANalSAadANa9DalOAall A
alSNad®alONallNa2 Na3BalONall Aa2Aa9BalOANall ANa3Nad Aa9 DalOAall A
a3NadPalONall NadANaTBalONall AadNa8DBalOAall ANadNa9DalOAal2Nad NabP
alONal3Nad Nab6 BalOANaldNalSNadNabBalONaldNa2 NabPalOAald Na3 N\ad N\
ab®alONaldNaSNabDall NaldNaSANa8Dall NalSNadNaSNa8Dall Aal5Aadd
allNa2Na5SNa8®all Aa3NaSDall NadANaSANa8Na9 P al2NalSAaSNabBal2 Na3 A
aSANab@al2NaSNabANa9DaldNnaldNaSNabDal3NalSANadNaSAabDal3Na2NaS5A
ab®al3Nad NaSNabNa9DbaldNalSANa3Na5SNabFaldANalSANaSNabAa9PBald Nal5N
aSNab@®aldNa3ANaSNabNa9PaldNa3NaSNabDaldNaSNabANaTDaldNa5SN\abNa9P
a2Na3NabNaSb a2 Na3NabEa2NabNaTHa2NabNa9Ba3NadNabNaTHa3Nad Nabd
ad Nab Na9) A (al NalOAall Aal5@al AalOAall Na3@al NalOAall Aa9 Bal AalOA
al2ANa8®al NalONal3ANald®al NalOANal3ANal5S5ANa3®al NalOAal3ANal5ANa9Pal A
alONal3Nal5Bal NalOAal3ANa3Na9Pal ANalOANal3ANa3Eal ANalOAal3ANa5Dal A
alOANal3ANa7Pal NalOANal3ANa9Pal ANalOANal3Eal NalOAaldANal5SANa8Fal AalOA
aldNna3Na8Dal NalONaldNabDal ANal3Nal5SAa5SNa8Dal ANal3NaSNabDal Aal3 A
aSNa8Na9®al NaldNaSNa8Bal Na2Na8Bal Na3NabNa9Dbal Aa3NabBal Na3NaTN
a8Pal Na3Na8Bal NadNabNa8DBal NabAaTlDal NabANa9Dal AabDal Aa8 P alOA
allNal2®alONall Aal3Aa3ANa5®alONall Aal3ANad@®alOAall Aal3AnaSANa9PBalOA

200 Chapter . Appendices

allNalSAadNa8®alOAall Aal5SAaTPBalOAall Aal5®alOAall Aa2Na8PBalOAall A
a3NadNa8PalONall ANaS5PalONall Aa9BalONall BalOAal2Aal5NabBalOAal3 N
aldNaSNab6@BalOANal3NalSNad Nab6BalONal3Na2 NabFalONal3Na3 N Nad NabPBalOA
aldNal5S5Na6PDalOANaldNabANa9 DalOANaldNabDall ANal3AaSNa8Pall ANal5S5Aa3 N
aSNa8Dall ANalSANa5Nab6Dall AalSANaSNa8Na9Dall AalSANa5SNa8Pall Aa3ANad5N
ab@all ANa3NaSNa8ANa9Pall ANa3NaSNa8PBall NadNaSNa8PBall AaSANabAa9PBall A
aSNaTNa8Pall NaSNa8Na9PBal2NaSNabANa8Fal3Nad NaSNabNa8Pald Nal5Na5N
ab Na8®aldNa3NaSNabNa8BaldNaSNabB a2 Na3NabNa8PB a2 Nab® a3 Nad Nab N
a8® a3 Nad Nab@ad Nab Na8 Na9 D ad Nab Na8BabNaTNa9BabNaT)A(al AalOAall A
ald®al NalONal2ANal3®al NalOAal3NaldNa3PBal AalOAal3ANaldANa9Dal AalOA
al3Nad®al NalONaldNa8Dal Nall Nal3Na5Pal Nall ANal5SANa3@al ANall Aal5 @
alNallANa3®al Nall ANad ANa8Pal NallBal Nal2NalS5Na8Fal ANal2ANa3Na8EFal N
al2ANa6@®al Nal2Na8ANa9Pal Nal3Nal5SANadANa8Pal Nal3ANa2ANa8Pal Nal3ANa3d
alNal3NadNa8ANa9Dal ANal3Dal NaldNalSNa3Na8Pal NaldNal5SNabPal Aald N
al5SNa8ANa9PDal NaldANalSNa8Dal NaldANa3Nab@al NaldNa3ANa8ANa9 B al Aald N
a3Nha8®al NaldNad Na8Dal NaldANabANa9Dal AaldNaTNa8Pal NaldNa8Aa9Bal A
aldNa8PalONall Nal2ANa9FalONall Aal3Aa2@al0OANall Aal3ANa3 N NadPBalOAall A
al3NadNa9®alONall AaldANal5@BalOAall AaldNad Na8PBalOANall AaldNaTPHalOA
allANaldNa9PalONall Aald®alONall AadDall Nal2AaSNa8Dall Aal3ANalSNa5®
allNal3Na3Na5Pall ANal3NadNaSNa8Dall Aal3AaSPall AaldNa3NaSNa8Ball A
aldNaSNa8Na9Dall NalSAadNabDBall Na2ANabDall ANa3NadNabDall ANa3 NaSD
allNadANabNa9Bal2Nal3Na5Na6@al2Nal5SNabNa9Pal2Nal5S5NabFal2 Nad Aab N
a8Pal2NabNaTPal2Nab6Na9Pal3ANaldNa3NaSNabBal3NaldNaSNabANa9Pal3 N
alSNa2Nab6Pal3Nal5S5Na3Nad NabPBal3Nal5SNad NabNa9Pal3 Nal5SNad NabFal3 N
a2Na3Nab®al3Na2NabNa9Dal3Na3Nad NabNa9Dal3Na3Nad NabDal3Nad Na5N
ab@al3Nad NabNaTDal3Nad ANabNa8PDald3Nad NabNa9Dald AalSNad Nab a8 D
aldNal5SNabNalPaldNal5SNabBaldNa2NabNa8BaldNa3Nad NabNa8PBald Nad N\
ab®aldNaSNabNa8Bald NabNa9Dald Nab) A (al Nal2NaSDal Nad NaTDalONal2A
aldNaS®alONal2 NalS5Nad @ alOANal2 Na2PalONal2Na3NadDalOAal2 Nad Na9 B
alONal3Na2 Nad @ alONaldANad NaTBallNa2 N NaSDal2Nal3ANaSDal2 ANalSNa3 N
aS®al2Nal5S5Na5®al2ANa3ANaS@al2NadNaSNa8Pal2NaSANaTDal3ANalSAa2 NaSD
al3NadNaSANaT®aldNalSNaSANaTPaldNa2NaSNa8DaldNa3NaSNaTPald ANadSN
alNa9®a2Na3NaTPa2Na3Pa2NadNabDa2NadNa8Na9Pa2NalNa9PBa2Na8PDa2®
a3NadNaTNa9Ba3Nad NalDad NaTNa8DadNaTNa9DadNaT)A(al N\a2 Na8DalOA
allNa2®alOANal2ANal3Na5®Dal0OANal2 ANald@alOANal2ANal5Aa9Bal0OAal2Aal5 P
alONal2Nad Na8DalOANal2 ANa9®alONal3Nal5Na2®alOANal3ANa2ANa3Bal0NAal3 A
a2Na9PDalOANal3NadNaTBalONaldANalSANaTPalONaldNa2 ANa8Dal2 Aal5SNaS5 A
a8Pal2Na3NaSNa8Pal2Na5SNabDal2NaSNa8Na9Dal3Na2 NaSNa8PaldNaSNaTlN
a8Pa2Na3NabPa2Na3Na8ANa9Da2Na3Na8Da2Nad Na8P a2 NabNa9Pa2 Na8Na9 P
a3NadNaTNa8Bad NabNaT®dTNa9BaT B 1) A(al NalONal2Nad®al Nal2Nal5Na5d
alNaldNaSANaT@al Na2Na3Bal Na2 N NaTPal Na2Pal Nad N NalNa9PalOAall Aa2 A
ad®alONal2NaldNa3 N NaSBalOANal2NaldNadBalONal2ANaldNaSANa9PalOAal2 N
alSANa2®alONal2Nal5Na3NadPalONal2ANalSANadANa9PalOANal2ANal5NadPalOAN

C. Codes for Chapter 7 201

al2Na2Na3®alONal2Na2 N Na9PBalOAal2ANa3NadANa9PalOAal2ANa3NadBalOAal2 N
adNa8PalONal2Nad Na9 B alONal2 N Na5BalONal3NaldNa2NaSBalOAal3 ANalS5A
a2Nad D alONal3Na2 N Nad ANa9 D alOANal3Na2DalONal3Nad Aa7PalOAald ANal5A
adNadT®alONaldANa2 Nad Na8DalONaldNa2 NaTBalOANaldANa3 Nad NalDalOAald A
aSNaT@®all ANal2 N Na5®all NalSAa2ANa5Pall NadNaSNaT®al2NaldNa5SNa8Dal2 N
alSANadNaSNa8PDal2Nal5SNaSNaT®al2NalSNa5®al2Na3NaSNaTPal2Na3Na5P
al2ANad ANaSNa6@®al2Nad NaSNa8Na9Dal2NaSNaTNa9Dal2ANa5SPal3NaldNaS5 N
al®ald3NnalSNa2Na5Dal3NalSNadNaSNalPald3Na2Na3NaSPal3Na2NaSNald
al3Na2Na5Dal3Nnad ANaSNaTNa9DaldNalSNa2 N NaSNa8DaldNalSNa3NadSNald
aldNalSANaSNaTANa9DaldNalSANaSNaTDaldNa2NaSNabBald Na2 Na5Na8Na9D
aldNa3NaSNaTNa9DaldNa3 N NaSANaTDaldNaSNalNa9BaldNaSNalDa2Na3Nad N\
a8Pa2Na3NaTNa9Pa2Na3 N NaTlPa2NadNabNa9Da2Nad N NaTNa8Ba2Nad Na8Na9P
a2 Nad ANa8®a2NabB a2 NaTANa9 P a2 NaTBa2Na8ANa9Pad NabNaTDad NaTNa9Dad N\
al)A(al NalONal3na2@al Nal2Na5Na8@al Na2 Nab@al Na2Na8Na9 B al Nad NaT A
a8PalONall Nal2 N Na5@alONall AalSANa2PalOANall ANa2Aa3DalOAall ANa2 Na9 D
alOAallANad NaTDalOAal2Ahal3Na3Na5DPalOAal2Aal3AhadPalOAal2 ANal3ANadSA
a9®alONal2NalS5Nad Na8BalONal2Nal5FalONal2N a3 Nad Na8BalOAal2Nad N
ab®alONal2Na9PalOAal3NnaldNa2PalONal3AaldNaSAaTPalONal3ANal5SANa2 A
a3®alOANal3Nal5S5Na2Na9PalOANal3Nal5S5Na2®alONal3NalSNadNaTDBalOANal3 N
a2Na3Na9®alONal3Na2Na3PalONal3Na2Na5BalONal3ANa2ANa9PalONal3Na3 A
adNalTDalONaldNnal5S5ANa2Na8 DalOAaldNal5NalPalOANaldNa2 Na3Na8 B alOA
aldNa2 Na6@alONaldNaTANa9DBalOAaldNaTDall Aa2NaSNa8Dal2Nal3NaS5SNa8P
al2Nal5SANa3Na5SNa8Dal2Nal5SNaSNab6Bal2NalSAaSNa8Na9Dal2NalSNaSN\a8@
al2Na3Na5S5Nab®al2 Na3NaSNa8Na9 B al2 Na3Na5SNa8PBal2 Nad NaSNa8 B al2 N\
aSANabNa9®al2NaSNa8ANa9Dal3ANalSNa2NaSNa8PBal3Na2NaSNabBal3ANa2 Na5 N
a8Aa9Dal3Nad NaSANaTNa8BaldNalSNaSNaTNa8DBaldNa2 NaSNa8DaldANa3 Na5S A
alNa8®aldNaSNabNaTPa2Na3NabNa9Pa2Na3NabPa2Na3Na8Pa2Nab a9 P
a2 Na8ANa9Pba3NadNabNaT®a3 N NadNaTNa8Pad NaTNa8Na9Dad NalNa8PaTlNa9P
al)N(al NallNa2@®al Nal2 Nal3NaSSal Nal3Nal5SANa2@al Aal3NadNdT@al Aald A
a2Na8PalOAall ANal2 ANad @ alOAall AaldNha2P®alOANal2Nal3Na3NadDalOAal2 A
al3NadANa9PDalONal2NhaldANal5PBalONal2ANaldNad Na8DalONal2AaldNaTDalOA
al2NaldANa9 D alONal2NaldPalOANal2 ANa9 B alOAal3NaldNa2 ANa3PalOAal3 A
aldNa2 N Na9PalONal3Na2ANadDalOANaldNa2 Na8Pall Nal2 Na3ANaS5Dall Aald A
aSNaTPall NalSNa2ANa3Ball NalSAa2@all NalSAadNaTPall Aa2Na3PBall Aa2 A
adNa8Dall Na2 NaTDall Na3Nad NaTDall NadANaTNa9Dal2ANal3ANal5Na5Dal2 N
al3Na3NaSPal2 N Nal3Nad ANaSANa8Dal2Nal3NaSNaTBal2Nal3ANaSDal2ANald A
a3haSNa8®al2NaldNaSNabDal2NaldNaSNa8ANa9Dal2 NalSANa2Na8PDal2Nal5 A
alNa9®al2Nal5SNaT®al2Na2Na3Na8Pal2Na2NabFal2Na2Na8Na9 B al2 Nad N\
alNa8®al2NaSNa8Bal2NaTANa9Dal2NalPal3NaldNa3NaSNaT®al3NaldNa5N
aiNa9®al3NalSANa2 Nad N Na8Dal3 NalSNa2NaT@al3NalSANa2Pal3 ANal5Na3Nad N
al®al3NalSNadANaTNa9Dal3Nal5SNadNalDal3ANa2Na3NaTPal3Na2Na3Pal3 N
a2NadNab®al3Na2Nad Na8ANa9Pal3Na2 N NaTNa9Dal3Na2Na8Dal3Na2@al3Na3 A
aANaTNa9Dal3Na3Nad NaT®al3NadNaSNaTDal3d3NadNaTNa8DBal3Nad NaTlNa9P

202 Chapter . Appendices

al3NadNal®aldNal5SNa2N a3 N Na8PaldNalSNa2NabPaldNalSNa2Na8Na9Pald N
alSANa2Na8@&aldNalSNadNaTNa8PaldNa2 Na3Nab6Dald ANa2 ANa3Na8ANa9Pald N
a2Na3Na8DaldNa2Nad Na8DaldNa2NabNa9BaldNa2Na8Na9DaldNa3Nad NaTlN
a8®aldNad NabNdTDaldNaSNaTNa8DaldNaTNa9DaldNaT)A(al Na3@al ©alOA
allNad®alONal3NaldNa5DalOANal3Nal5S5NadPalOAal3Na2PalOANal3Nad ANa9 D
alONaldNad Na8Pall NalSNaSPal2 N NaSNa8Pal3Nal5Na5Fal3Na3Na5Pal3 N
aSPaldNnalSNaSNa8FaldNaSNab6Bald NaSAa8 N a9 B a2 Nab6D a2 Na8 a9 B a3 ANad N\
a8®ad Nab NaS a4 NaTNa8®ad Na8Na9Bad Na8) A (al NalONal3@al Aab6Dal Aa8 A
a9®alONall ANal5PalONall Aa3PalONall Aa9 D alONal2 ANa8 B alONal3Nald®
alOAal3ANal5ANa3@alONal3ANal5SANa9 P alONal3Nal5DalOANal3Na3 Aa9DalOA
al3Na3®alOANal3AnaSDalOAal3NaTPalOANal3Na9PalONaldNal5SAa8PalOAaldN
a3Na8PbalONaldNabBall NaSANa8Pal3NalSANaSNa8Bal3NaSNab®al3 Na5SNa8 N
a9PaldNaSNa8Pa2Na8Pa3NabNa9Da3Nab® a3 NaTNa8Da3 Na8PabNaT®dab N
aA9Pa8ANa9Da8) A (al Na3Pal DalONall ANaldNa5®alOANall Nal5SAadBalOAall A
a2®alONallANadANa9 DalOANal2 ANal3Na5PalONal2Nad ANa8PalOANal3Nald Nad D
alONal3AaldNaSNa9PalONal3NalSAa2PalOANal3NalSAadANa9DalOAal3 ANal5A
ad®alONnal3Na2Na9 B alOANal3Na3NadPalONal3Nad NalDalOAal3Nad N\a9 P
alONnaldNal5SANad Na8 DalOANaldNa2 Na8PalOANaldANad ANabPalOAald Na5Na8 P
allANalSANaS5®allNa3NaS@al2NalSANaSNa8Dal2Na5SNab6Bal2ANaSNa8Na9Dal3 N
alSNa3Na5@al3NalSNaSDBal3ANa3NaSDBal3NaSBaldNalSNa5NabBald Nal5S N
aSNa8ANa9PaldNalSNa5SNa8DaldNa3NaSNa8BaldNaSNabAa9DaldNaSNaTNa8D
aldNaSNa8ANa9Pa2Na3Na8Pa2NabNa9Pa2NaTNa8Pa2Na8 Na9 P a3 Nad \abd
a3NadNa8Na9Da3Nad Na8Dad NabN\aTDadNabNa9DadNa8 a9 DadNa8D 1) (al A
alONall ®al AalOAal3ANal5®al ANalOANal3Na9Pal NalOANald ANa8 B al ANa3 N\a8 D
alNabANa9Pal NaTNa8Dal Na8ANa9 Pal Na8PBalOANall ANaldPBalOAall ANal5SANa3®
alONallANal5SAa9®alOAall ANalSPalOAall Aa3Aa9DalOANall Aa3PalOAall AaT®
alONallANa9PalONal2Nal3PalOAal2ANal5Na8PBalOAal2Aa3Na8PBalONal2 Nab®
alOANal3AaldNna3PBal0ONal3NaldNaSANa8PalOAal3Nal5SNa3ANa9BalOAal3Aal5A
al®alONal3Nal5®alONal3Na3 N NaTPalOAal3ANa3®al0ONal3Nad@alONal3 AadSA
a9®alONal3Na9PalONal3DalOANaldNnalSAa3Na8PBalONaldNal5SNabBalOAaldN
alS5Na8®alONaldNa3Nab6PBalONaldNa3Na8PalOANaldNa8ANa9PDalOAald Na8D
all ANal5SAhaSNha8Pall ANaSNab@all ANaSNa8Aa9Pal2ANa5SNa8Pal3ANal5SANa5SNabd
al3ANal5S5NaSNa8ANa9PBal3d3NalSNaSNa8Bal3Na3NaSNa8DBal3NaSAabNa9Dal3 N
aSNadlNa8®al3NaSNa8ANa9Pal3NaSNa8DaldNal5SNaSNa8Da3Nad Na8Da3 Nab
al®a3Nab6Pa3NaTNa8Ba3Na8Na9PadNabBad Na8Na9Bad Na8BabNa9Pab®aTN
a8 Na9®aTNa8) A (al NalOANal3Nald®al ANall ANal5Bal Aal2Na8Bal Aal3 Nal5d
alNal3ANa3®al ANal3®al NaldNhalSAa8Dal AaldNabDal NaldANa8Aa9PDalOAall A
al2®alOAall AaldNa3PalONall NaldANa9PalONal2Nal3ANa3®al0Aal2 Aal3 A
a9 alONald3ANaldNal5DalONal3ANaldNa3ANa9 P alOAal3NaldANa3Pal0OANal3 A
aldnadNa8PBalONal3ANaldNaTDalOANal3NaldNa9DalOANal3NaldBalOANal3Na2®
alONal3ANad Na9DalONaldNa3ANa8 P alOAaldNabDall ANalSNadANa8Ball Aal5®
allhna2 Na8 D all ANa3Pall Nad ANabDall ANadNa8ANa9Dall NaSDall Dal2Aal5 A
a3Na8Pal2Nal5S5NabPal2Nal5S5Na8ANa9Dal2NalSANa8Pal2Na3Nab6Bal2 Na3 Na8 N

C. Codes for Chapter 7 203

a9bal2Na3Na8Pal2NadNa8Pal2NabNa9DBal2NaTNa8Bal2Na8Na9Pal3 Nal5AN
a2Na8Pal3Nal5SNa3Pal3Nal5SNadNab6Bal3NalSANadNa8Na9Dal3Nal5SNad Na8P
al3Nal5SNaS5@®al3Na2Nab6Pal3Na2Na8Na9Pal3Na3 N Nad Na8Bal3Na3NaSBal3 N
adNabNa9PDaldNad NaTNa8DaldNad Na8ANa9Dal3dNad Na8Dal3ANadSPald ANal5 N
a3Nnab@aldNal5SNa3N a8 a9 B aldNalSNadNa8DaldNalSAabANa9Dald Nal5N\NabD
aldNalSANaTNa8®aldNalSNa8PBaldNa2 Na8DPaldNa3NabNa9DaldNa3 NabPBald N
a3NalNa8PaldNa3Na8DaldNaSNa8Bald NabNalBaldNabNa9 B ald Na8 Na9 P
aldNa8) A(al NaldnaS@al Na2Bal NadNa9 B alONal2 NadBalONal3 Nad@SalOA
aldNal5SNad@alONaldANa2PalOAaldNa3 N NadBalONaldANaSDall Aad NaSDal2 N
alS5NaS@®al2Na3NaS5Dal2Na5Na9Dal3NaldNaS5Dal3NalSANadNaS5Dal3Na2Na5D
al3Nad NaSANa9DaldNalSNa3NaSDaldNalSANaSAa9DaldNalSNa5Dald Na3Na5A
a9PaldNa3NaSBaldNaSNaTBaldNaSNa9Pa2N a3 Na9Da2Na3B a2 NalPBa2Na9P
a3Nad NaTDa3NadDad NabDadNa9Dad) A (al NadNa8DalONall NadBalONal2 A
al5@®@alOAal3NaldNa5PalONal3NalSANadP@alONal3Na2PalONal3ANa3NadDalOA
aldNal5Dal0ONaldNa9DalONaldDal2NaSAa8Dal3ANad NaSNa8Dald Nal5ANadSN
a8®@aldNa3NaSANa8PaldNaSNabDa2Na3Na8Ba2Nab®a3Nad ANabD a3 Nad Na8D
adNa8Na9DadNa8DaTNa9DaT)A(al NalOAaldNad@al Nal2NaS@al NaldAal5SA
aS@al NaldNaSANa9Fal Na2Na9Pal Na3NadBal NadNaTlPal ANad Na9 D al Nad P
alONallANad@alONal2NalS5NadPBalONal2ANa2@alOANal2 N a3 N NadBalOAal3 Nald A
adNa5PalOAal3NalSANad@alOAaldNal5SAa2PalONaldNalSANa3NadDal0OAald A
alS5Nad®alONaldNa2 Na3BalONaldANa3 N NadBalONaldNa3 NaSBalOAald Aad N\
a9balONaldNnad®all AaldNaSBall NalSAadNa5Ball Na2 NaS5Pall Aad NaSNa9P
al2Nal3Na5Pal2NalSNa3ANa5S5@al2ANal5S5ANa5Na9Pal2Nal5SNaSPal2Na3 ANaS A
a9®al2Na3NaS5Pal2ANaSNaT®al2Na5SNa9Pal3NaldNaSNa9Pal3ANalSANa2 NaS5D
al3Nal5SNadNaSNa9Dal3NalSNadNaSDBal3Na2NaSNa9Dal3Na3Nad Na5Dal3 N
adNaSNalPDald3NadNaSNa9Pal3Nad NaSDaldNalSAa3NaSANa9DaldNal5SNaSA
al®aldNalSNaSPaldNa3NaSNaTPaldNa3NaSPaldNaSNa8DaldNa5SNa9Pald N
aSPa2Na3NaT®a2Na3Pa2Na8Pa2Na9Ba2Pa3NadNaTPa3NadNa8B a3 Nad Na9P
a4 NdTNa9 Dad NaTDadNa8Na9BadNa8) A (al NalOANal3NadBal NaldNa5Na8Dal A
a2 Na8PalNad Nab@alONall ANaldNaSPalOAall ANalSANadBalOAall Aa2 D alOA
allANa3ANadPDalONal2Nal3ANa5PalOANal2Ahal5BalOANal2Na9PBalOAal3Aald Na3 A
aS®alOANal3Nal5S5Na2Pal0ANal3NalSANa3NadPalOANal3ANalSAadPalOANal3ANa2 A
a3®alONal3ANa3NadDalOANal3NadNa5PalONal3Nad Na9PalONald Nal5Na9 P
alOANaldNnal5PalONaldANa9DalONaldPall Aad ANaSNa8Bal2 ANalSNa5SANa8Pal2 N
a3NaSNa8®al2NaSNabDBal3NaldNaSNa8Pal3 Nal5SANad NaSNa8Bal3 Na2 a5 N
a8®@al3NadNaSNab6BaldNal5SNa3Na5Na8DaldNalSANa5SNabPaldNal5NaSNa8D
aldNa3NaSNab@aldNa3NaSNa8DaldNaSNa8ANa9Da2Na3NabBa2Na3Na8Da2 A
a8Na9Pa3NadNabBa3NadNa8 N a9 Pa3NadNa8Pad NabNa9Pad Na8Na9 B ad Na8P
alnNa9@aT® 1) A(al Nall NadBal Nal3NaldNaS®al Nal3NalSNadBal Nal3Na2®
alNal3ANadNa9Dal NaldNad Na8DalOANal2®alOAal3NadDalONald Nal5Dal0A
aldnNa9®alONald®all Nal2Na5Pall AaldANa3ANaSDall ANaldANaSAa9Ball Aal5A
a2®all Nal5SNa3Nad@all ANal5SNad N Na9Ball AalSNadPBall ANa2ANa3Dall Na2Na9 D
allANa3NadNa9Dall Na3ANadDall NadANalDBall NadNa8Pall ANadANa9PBal2Nal3 N

204 Chapter . Appendices

a3NaS®al2ANal3Na5Na9Pal2NalS5NadNa8Pal2NalSNaTBal2Nal5Pal2Na2 N
a8@al2 N Na3Nad Na8Fal2Nad NabPal2Na9 B al2Pal3NaldNalSNa5Pal3Nald N
a3NnaSNa9®al3dNaldNa3NaSDal3NaldNadNaSNha8Bal3NaldANaSNaTlDal3NaldN
aSANa9DalldNaldNaSPal3ANalSNa2 N Na3@al3ANal5S5Na2N a9 P al3ANal5S5Na2Pal3 N
alSNa3NadNa9Dal3NalSNad NaTDal3Nal5SANadNa8DaldAalSNadDal3Na2Na3 N
a9®al3Nna2Na3Pal3Na2Na5Pal3Na2NaTPDal3Na2Na9Bald3Na3NadNaTBal3 N
a3NadPal3NadNaSNa9Dal3Nad NabDBal3Nad N Na9Dal3Nad®aldNal5SNa2 N\a8P
aldNalSNa3NadNa8Pald NalSNad NabDald NalSNad Na8Pald NalSNaTlPDald N
alSNa9®aldNa2 N Na3Na8BaldNa2 NabDald Na3Nad NabDald Na3 Nad Na8Dald N
a3NaSNa8®aldNad Na8NaSDaldNad Na8Bald NaSNabDBaldNdTNa9®aldNaT) A
(al NalOANad@al NalSNa5BalONal2 NaSDalOANaldNa3 NaSDalOANaldNadDalOA
aldNa5SNa9PalONalSNa2PalONalSANa3NadPalONalSNad ANa9BalOAal5Nadd
alONa2 ANa3PalONa2ANa9PalONa3Nad ANa9PalONa3NadBalOAad NaTBal0Aad N
a8®alONad Na9Pall NaSdaldNaSNa8BalSNad NaSNa8PalSNaSBa2NaSNa8d
a3Na5®adNa5NabBad NaSNa8Na9®aS) N (al Na5Na8BalONall Aa5BalONal2d
alONal3ANa3Na5PalONal3NadPalONal3NaSANa9BalONalSANad Na8BalONal5 A
al®alOANal5@alONa2Na8PalOANa3NadNa8DPalONad NabPalONa9PBalOPal3NaSN
a8®alSNa3NaSNa8Pal5SNa5SNabDalSNaSNa8ANa9Dal5SNa5SNa8Da3NaSNabBa3 N
aSNa8Na9® a3 NaSNa8® a4 NaSNa8daSNabNa9daSNaTlNa8Sa5Na8Na9) A (al A
alONaldNaS®al AalOAalSAad@al NalOANa2Dal AalOANad ANa9 Dal AalSAaSPal A
a3NaS5Pal NaSDalOAal2Na3 N a5 PalOAal2NadDalOANal2ANaSAa9 DalOANal3 NadD
alONaldANal5SANa5PalONaldNa2PalONaldNa3NadBalONaldNa3 N NaSA\Na9Bal0AN
aldNa3Na5PalOANaldNad ANaSNa8 P alONald ANaSNalDalOANald ANaSNa9Dal0A
aldNa5PalONalSNa2 N Na3PalONal5S5Na2ANa9 BalOANalSANa2PBalOAal5ANa3 Nad A\
a9®alONalSANadNaTDalONal5SANadANa8PBalOANalSNadP®alOANa2ANa3Na9PDalOAa2 N\
a3®@alONa2NaT®alONa2Aa9 DalOAa3Nad NaT®alONa3NadDalOANad NabDalOA
adNa9DalONadBal2 Na5SNa8Bal3NalSNa5Pal3d3Nna3Na5®al3Na5PaldNaSNabd
aldNnaSNa8ANa9PalSNa2Na5SNa8PalSANa3NaS®alSNad NaSNabPBalSANad ANad5Na8 N
a9®alSNad NaSNa8PBa2NaSNabPa2 NaSNa8Na9Pa3Nad Na5N\a8PBad Na5SN\abN\a9D
adNa5NaTNa8Dad Na5Na8Na9Pad NaSNha8) A (al NalOANal3Na5Dal AalONadAa8 &
al NalSANaSNa8Bal NaSANabBal AaSNa8ANa9 DalONall Aa3ANa5PalOAall Aad D
alOANallANaSANa9PalONal3ANal5SANa5®alONal3Na2@®al0ONal3Na3NadPalOANal3 N
a3NaSNa9®alOANal3Nna3Na5PalONal3NadNaSNa8PalONal3NaSAaTP®alOAal3 N
aSANa9DalOAal3Na5PalONaldANal5DalOANaldNa9PalONaldPalOAalSNa2 Na8P
alONalSNa3Nad Na8PalOANal5SANad NabDalONal5SANad ANa8PalOAalSNaTPalOA
al5SNa9®alONa2Na3Na8PalOANa2 ANabDalONa3Nad ANabDalOAa3Nad Na8DalOA
adNa8Aa9PalOANad Na8DalONaTANa9BalOANaT®all NaSANa8Pal3NaSNabDal3 N
aSANa8ANa9PbaldNaSNa8Pal5SNa3NaSNab6PalSANa3NaSNa8ANa9Dal5SNad NaSNa8P
alSAnaSNab6Na9P®alSNaSNabPalSNaSNalNa8DalSNaSNa8Da2NaSNa8Pa3NaSN
abNa9®a3NaSNabFa3NaSNaTNa8PBa3Na5SNa8PaSNabNaTda5SNabNa9dBaSNa8 A
a9®aSNa8) N (al NalONal3Nad@al Nall NaSBal AaldnaSNa8DalONall Aa2@BalOA
allANa3NadPalONall Aad Na9 D alONal2Nal5PalONal2Nad Na8BalONal2 \NaTl®
alOANal2Na9@®alOANal3Nal5S5NadPDalONal3Na2Na3Bal0ONal3Na2 A Na9PalOAal3 N

C. Codes for Chapter 7 205

a3NadNa9PBalONal3Na3ANad P alONal3Nad ANaTPalONal3Nad ANa8PalOANal3 A
adANa9PalONaldNal5S5ANa9FalONaldNal5FalONald a2 Na8BalOAald Aa3Nad N\
a8®alONaldNad NabPalONaldNa9PalONaldDall NalSAaSDall ANa3NaSDall A
adNaSNa8Pal2Na3Na5SNa8Pal2NaSNabDal2Na5SNa8Aa9Dal3 ANal5SNa3Na5d
al3Nal5S5ANa5®al3Na2Na5Na8Bal3Na3Na5DaldNnad NaSNabDal3 Nad ANaSNa8 A
a9®al3NnaS®aldNalSNaSNa8BaldNa3 N NaSNabBaldNa3 N NaSNa8 Na9Bald Na3 N
aSNa8PaldNad NaSNa8BaldNa5SNab Na9DaldNa5NaTNa8BaldNa5Na8 A (~ a9)]

206 Chapter . Appendices

Bibliography

[ADZ93]

[Aeal9]

[AKRO5]

[AIb60]

[Alb61]

[AR20]

[AVDK*04]

[BBBVI7]

[BBHT98]

[Ben&0]

[BF28]

Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys. Rev.
A, 48:1687-1690, Aug 1993.

Frank Arute and et al. Quantum supremacy using a programmable superconduct-
ing processor. Nature, 574:505-510, 2019.

Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum
walks faster. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 05, pages 10991108, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

A. A. Albert. Finite division algebras and finite planes. Proc. Symp. Appl. Math,
10:53-70, 1960.

A. A. Albert. Generalized twisted fields. Pac. J. of Math., 11:1-8, 1961.

Scott Aaronson and Patrick Rall. Quantum approximate counting, simplified. Al-
gorithms, 24:32, 2020.

D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Loyd, and O. Regev. Adia-
batic quantum computation is equivalent to standard quantum computation. Pro-
ceedings of, 45:42-51, 2004.

Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM Journal on Computing,
26(5):1510-1523, 1997.

M. Boyer, G. Brassard, P. Hgyer, and A. Tapp. Tight bounds on quantum search-
ing. Fortschr. Phys, 46 (4-5):493-505, 1998.

P. Benioff. The computer as a physical system: a microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines. Journal
of statistical physics, 22 (5):563-591, 1980.

M. Born and V. Fock. Beweis des adiabatensatzes. Zeitschrift fiir Physik, 51
(3-4):165-180, 1928.

207

208

Bibliography

[CCS99]

[CEMMO8]

[CGC23]

[CQI18]

[CRO"24]

[CRRI11]

[CRR19a]

[CRR19b]

[CRR19c¢]

[CRR20]

[DemO8]

[DFO04]

[Dic06]

Arjeh M. Cohen, Hans Cuypers, and Hans Sterk, editors. Some tapas of computer
algebra, volume 4 of Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, 1999.

R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revis-
ited. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1969):339-354, 1998.
Quantum coherence and decoherence (Santa Barbara, CA, 1996).

E. F. Combarro and S. Gonzalez-Castillo. A Practical Guide to Quantum Machine
Learning and Quantum Optimization: Hands-on Approach to Modern Quantum
Algorithms. Packt Publising, ISBN: 978-1804613832, 2023.

Guangya Cai and Daowen Qiu. Optimal separation in exact query complexities
for Simon’s problem. J. Comput. System Sci., 97:83-93, 2018.

E. F. Combarro, I. F. Ria, F. Orts, G. Ortega, A. M. Puertas, and E. M. Garzoén.
Quantum algorithms to compute the neighbour list of N-body simulations. Quan-
tum Inf. Process., 23(2):Paper No. 61, 2024.

E. F. Combarro, I. F. Rua, and J. Ranilla. New advances in the computational
exploration of semifields. [International Journal of Computer Mathematics, 88
(9):1990-2000, 2011.

E. F. Combarro, J. Ranilla, and LLF. Rda. A quantum algorithm for the commuta-
tivity of finite dimensional algebras. IEEE Access, 7:45554-45562, 2019.

Elias F. Combarro, José Ranilla, and I. F. Rda. Quantum walks for the determi-
nation of commutativity of finite dimensional algebras. J. Comput. Appl. Math.,

354:496-506, 2019.

Elias F. Combarro, José Ranilla, and Ignacio F. Rua. Experiments testing the
commutativity of finite-dimensional algebras with a quantum adiabatic algorithm.
volume 1, pages e1009,11, 2019.

Elias F. Combarro, José Ranilla, and Ignacio Ferndndez Ria. Quantum abstract
detecting systems. Quantum Information Processing, 19(8):258, 2020.

Ulrich Dempwolff. Semifield planes of order 81. J. Geom., 89(1-2):1-16, 2008.

David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons,
Inc., Hoboken, NJ, third edition, 2004.

Leonard Eugene Dickson. Linear algebras in which division is always uniquely
possible. Transactions of the American Mathematical Society, 7(3):370-390,
1906.

Bibliography 209

[DJ92]

[DJCS21]

[Fey82]

[FGG14]

[FGGSO00]

[Gro96]

[HCCR22]

[HCR23]

[HK18]

[HRO7]

[JO6]

[Jac45]

[JER23]

[Kit95]

David Deutsch and Richard Jozsa. Rapid solution of problems by quantum com-
putation. Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 439(1907):553-558, 1992.

Grinko Dmitry, Gacon Julien, Zoufal Christa, and Woerner Stefan. Iterative quan-
tum amplitude estimation. npj Quantum Inf, 7(1):1-6, 2021.

R. Feynman. Simulating physics with computers. International Journal of Theo-
retical Physics, 21 (6):467-488, 1982.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm, 2014.

Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
computation by adiabatic evolution. arXiv: Quantum Physics, 2000.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212-219, New York, NY, USA, 1996. ACM.

J. M. Hernandez Caceres, E. F. Combarro, and I. F. Ria. Combinatorial and
rotational quantum abstract detecting systems. Quantum Inf. Process., 21(2):Paper
No. 66, 27, 2022.

J. M. Herndndez Céceres and 1. F. Rda. An approach to the classification of finite
semifields by quantum computing. In Non-associative algebras and related topics,
volume 427 of Springer Proc. Math. Stat., pages 245-260. Springer, Cham, 2023.

Kelsey Horan and Delaram Kahrobaei. The hidden subgroup problem and post-
quantum group-based cryptography. In Mathematical software—ICMS 2018, vol-
ume 10931 of Lecture Notes in Comput. Sci., pages 218-226. Springer, Cham,
2018.

I. R. Hentzel and 1. F. Ruda. Primitivity of finite semifields with 64 and 81 elements.
Internat. J. Algebra Comput., 17(7):1411-1429, 2007.

Watrous J. Quantum computation lecture notes. Waterloo Lecture notes, 2006.

N. Jacobson. Structure theory for algebraic algebras of bounded degree. Ann. of
Math, 46:695-707, 1945.

Herndndez Céceres J.M., Combarro Elias, and L.LF. Rda. Efficient quantum algo-
rithms to find substructures on finite algebras. Quantum Information & Computa-
tion, 23 No.15& 16, 2023.

A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem.
arXiv:quant-ph/9511026, 1995.

210

Bibliography

[Kle60]

[KNOg]

[Knu65]

[LN83]

[LN96]

[LomO04]

[LP17]

[LS23]

[Man80]
[MNO5]

[MOS™19]

[MWO5]

[Nak20]

[NC11]

[ORO7]

[OTT19]

Erwin Kleinfeld. Techniques for enumerating veblen-wedderburn systems. J.
ACM, 7:330-337, 1960.

T. Kadowaki and H. Nishimori. Quantum annealing in the transverse ising model.
Physical Review E, 58.5355:5355-5363, 1998.

D. E. Knuth. Finite semifields and projective planes. Journal of Algebra, 2:182-
217, 1965.

R. Lidl and H. Niederreiter. Finite fields. Encyclopedia of mathematics and its
applications, 20, 1983.

Rudolf Lidl and Harald Niederreiter. Finite fields and their applications, volume 1
of Handb. Algebr. Elsevier/North-Holland, Amsterdam, 1996.

Chris Lomont. The hidden subgroup problem - review and open problems.
arXiv:quant-ph/0411037, 2004.

David A. Levin and Yuval Peres. Markov chains and mixing times. American
Mathematical Society, Providence, RI, second edition, 2017.

Michel Lavrauw and John Sheekey. Symplectic 4-dimensional semifields of order
84 and 94. Designs, Codes and Cryptography, 91:1-15, 02 2023.

Y. Manin. Vychislimoe 1 nevychislimoe. Sov. Radio, pages 13-15, 1980.

F. Magniez and A. Nayak. Quantum Complexity of Testing Group Commutativity.
Springer, Lecture Notes in Computer Science 3580, 2005.

Hamed Mohammadbagherpoor, Young-Hyun Oh, Anand Singh, Xianqing Yu, and
Andy J. Rindos. Experimental challenges of implementing quantum phase esti-
mation algorithms on ibm quantum computer. arXiv, 1903.07605, 2019.

J. H. Maclagan-Wedderburn. A theorem on finite algebras. Trans. Amer. Math.
Soc., 6(3):349-352, 1905.

Kouhei Nakaji. Faster amplitude estimation. Quantum Inf. Comput., 20(13-
14):1109-1123, 2020.

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, 2011.

David Oliveira and Rubens Ramos. Quantum bit string comparator: Circuits and
applications. Quantum Computers and Computing, 7, 01 2007.

Thomas E O’Brien, Brian Tarasinski, and Barbara M Terhal. Quantum phase esti-
mation of multiple eigenvalues for small-scale (noisy) experiments. New Journal
of Physics, 21(2):023022, feb 2019.

Bibliography 211

[PakO0]

[Pak12]

[Pet33]

[Porl3]

[Pso84]

[Ral21]

[RC12]

[RC18]

[RCRO9]

[RCRI12]

[Ru04]

[San16]

[Sho97]

[Sim94]

[SURT20]

Igor Pak. Probability of generating a finite group. pages 1-22, 2000.

I. Pak. Testing commutativity of a group and the power of randomization. LMS
Journal of Computation and Mathematics, 15:38-43, 2012.

M. Petrovic. Théoreme sur les intégrales curvilignes. Math, de I’Univ. Beograd,
2:45-59, 1933.

R. Portugal. Quantum Walks and Search Algorithms. Springer New York, 2013.

E. Psomopoulos. Commutativity theorems for rings and groups with constraints
on commutators. Int. J. Math, 7 (3):513-517, 1984.

Patrick Rall. Faster coherent quantum algorithms for phase, energy, and amplitude
estimation. Quantum, 5:566, 2021.

I. F. Rda and E. F. Combarro. Commutative semifields of order 3°. Comm. Alge-
bra, 40(3):988-996, 2012.

Ignacio F. Rua and Elias F. Combarro. Cryptographic uncertainness: some ex-
periments on finite semifield based substitution boxes, volume 142 of Stud. Syst.
Decis. Control. Springer, Cham, 2018.

I. E. Rua, E. F. Combarro, and J. Ranilla. Classification of semifields of order 64.
J. of Algebra, 322 (11):941-961, 2009.

I. F. Rua, E. F. Combarro, and J. Ranilla. Determination of division algebras with
243 elements. Finite Fields and Their Applications, 18:1148—1155, 2012.

Ignacio Rua. Primitive and non primitive finite semifields. Communications in
Algebra, 32:793-803, 03 2004.

Raqueline A. M. Santos. Szegedy’s quantum walk with queries. Quantum Infor-
mation Processing, 15(11):4461-4475, 2016.

Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484—
1509, 1997.

D. R. Simon. On the power of quantum computation. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, SFCS 94, pages 116—
123, USA, 1994. IEEE Computer Society.

Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka, Tamiya On-
odera, and Naoki Yamamoto. Amplitude estimation without phase estimation.
Quantum Information Processing, 19(2), jan 2020.

212

Bibliography

[Sze04]

[Tse83]

[VBE96]

[vzGG99]

[Wal62]

[Wiel9]

[Wonl7]

[XDS93]

[YMOS]

Mario Szegedy. Quantum speed-up of markov chain based algorithms. In Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 04, pages 32—41, Washington, DC, USA, 2004. IEEE Computer
Society.

G. S. Tseitin. On the complexity of derivation in propositional calculus. pages
466483, 1983.

Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elemen-
tary arithmetic operations. Phys. Rev. A (3), 54(1):147-153, 1996.

Joachim von zur Gathen and Jiirgen Gerhard. Modern computer algebra. Cam-
bridge University Press, New York, 1999.

R.J Walker. Determination of division algebras with 32 elements. Proc. Symp.
Appl. Math. AMS, 15:83-85, 1962.

C. R. Wie. Simpler quantum counting. Quantum Information and Computation,
19(11 & 12), sep 2019.

T.G. Wong. Equivalence of Szegedy’s and coined quantum walks. Quantum Inf
Process, 16 (215), 2017.

S.J. Xu, M. Darouach, and J. Schaefers. Expansion of det(a+b) and robustness
analysis of uncertain state space systems. IEEE Transactions on Automatic Con-
trol, 38(11):1671-1675, 1993.

Noson S. Yanofsky and Mirco Mannucci. Quantum Computing for Computer
Scientists. Cambridge University Press, 2008.

Index

Bell States, 26
Character, 19
Division Algebra, 14

Field, 11
Finite Algebras, 13
Finite Semifield, 16

Group, 9
Orthogonal, 10
Special Orthogonal, 10

Hadamard Test, 34

Ideal, 11
Principal, 11
Integral Domain, 11
Principle, 11

Ket, 23

Measurement, 27
Multi-qubit, 26
Multiplication table, 14

Oracle
Phase, 38
Oracles, 37
Orthogonal subgroup, 20

QADS, 67
Combinatorial, 73
Rotational, 82

Quantum Algorithm, 49

213

Grover’s Search Algorithm, 61
Hidden Subgroup Problem, 52
Quantum Phase Estimation, 58
Simon’s Algorithm, 49
Quantum Circuit
Efficient, 37
Size, 36
Quantum Circuits, 31
Quantum Fourier Transform, 40
Quantum Gate, 28
7 /8 half-phase gate, 29
CNOT gate, 30
Hadamard gate, 29

Not gate, 29

Toffoli, 31
Qubit, 25

Ancilla, 38
Quotient

Ring, 11

Register, 26

Ring, 11
Division Ring, 11
Non-associative, 11

State
Entangled, 26
Superposition, 25
Structure Constants, 14
Subgroup, 9

Theorem

Fundamental Theorem of Abelian

Groups, 10

214 Index

Lagrange Theorem, 10 Unitary Matrix, 28

Uncomputation, 38
Unit, 11 Zero Divisor, 11

	Resumen
	Publicaciones
	Abstract
	Publications

	Introduction
	Overview of the Contents
	Notation and Conventions
	Acknowledgment

	Algebraic Foundations
	Groups
	Rings and Modules
	
	Finite Semifields
	Character Theory of Finite Abelian Groups
	Probability of Generating a Group

	Quantum preliminaries
	Quantum Circuit Model
	Braket Notation
	Qubits
	Measurement
	Quantum gates

	Quantum Circuits
	Oracles

	Quantum Fourier Transform over Abelian Groups
	

	Quantum Optimization

	Some Quantum Algorithms
	Simon's Algorithm
	The Hidden Subgroup Problem
	Quantum Phase Estimation
	Grover's Search Algorithm
	Technique For Listing All Elements Marked By An Oracle
	Quantum Abstract Detecting Systems (QADS)
	Algorithmic closure of QADS
	Properties of QADS
	Detection with a QADS

	Combinatorial and Rotational QADS
	QADS
	Rotational QADS
	Application: Decision on Eigenvalues
	Application: Phase estimation
	Generalized Hadamard Test
	Dichotomy search
	Hybrid methodology

	Application: Commutativity of Finite Algebras with Combinatorial QADS.

	Efficient Quantum Algorithms To Find Substructures On Finite Algebras
	Substructures
	The classical approach
	Hiding functions
	Classical solution

	The quantum approach
	Oracle of the hiding function
	Quantum Algorithm To Find Substructures
	Classical post processing
	Examples

	An approach to the Classification of Finite Semifields by Quantum Computing
	Quantum Computational Search of Finite Semifields with Grover's algorithm
	Semifield of Order 8
	Description of Semifields of Order 16
	Estimation of costs for the general case, in terms of Quantum Gates

	Quantum Computational Search of Finite Semifields with Quantum Optimization

	Conclusions
	Conclusiones
	Appendices
	Codes for Chapter 5
	Codes for Chapter 6
	Codes for Chapter 7

	Bibliography
	Index

