
Programa de Doctorado en
Matemáticas y Estadística

Tesis Doctoral:
Algoritmos Cuánticos

para Estructuras Algebraicas

Jefferson Miguel Hernández Cáceres

Directores:
Ignacio Fernández Rúa, Elías Fernández-Combarro Álvarez

Oviedo
2024

F
O

R
-M

A
T

-V
O

A
-0

1
0

 (
R

eg
.2

0
1

8
)

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

1.- Título de la Tesis

Español/Otro Idioma:

Algoritmos cuánticos para estructuras

algebraicas

Inglés:

Quantum Algorithms for Algebraic

Structures

2.- Autor

Nombre:

Jefferson Miguel Hernández Cáceres

Programa de Doctorado: Matemáticas y Estadística

Órgano responsable: : Centro Internacional de Postgrado

RESUMEN (en español)

La computación cuántica es un paradigma de computación bien asentado desde el punto de
vista teórico [NC11] y prometedor desde el punto de vista práctico [Aea19].

Por otra parte, el estudio de estructuras algebraicas a través de técnicas computacionales es
bien conocido y constituye una línea de investigación habitual en Algebra [vzGG99, CCS99].
En concreto, entre unas de las estructuras algebraicas que han sido estudiadas usando esta
metodología se encuentran los semicuerpos finitos [Knu65]. Para ellos, se han desarrollado
algunas técnicas computacionales para su estudio y potenciales aplicaciones. En el primer
aspecto, se incluye la clasificación computacional de semicuerpos finitos [RCR09, RCR12]; en
el segundo, la construcción de S-cajas criptográficas a partir de ellos [RC18]. En todos los
casos mencionados anteriormente, los algoritmos considerados son clásicos.

Para el modelo de computación cuántica, se han propuesto algunos algoritmos para el estudio
de estructuras algebraicas. Por ejemplo, consideremos el caso de determinar si una estructura
(algebra, anillo, grupo) es conmutativa o no. Este es un problema estudiado en diferentes
contextos desde un punto de vista estrictamente teórico [Jac45, MW05, Pso84]. Desde el punto
de vista efectivo, esto es, computacional, se ha estudiado especialmente en el caso de grupos,
para los que se han propuesto algoritmos (no solamente clásicos aleatorizados sino también
cuánticos) [MN05, Pak12].

En el caso de las algebras finito dimensionales, la necesidad de un procedimiento efectivo para
determinar la conmutatividad de la estructura es un problema natural en el contexto del estudio
computacional de semicuerpos finitos. Para este problema se han propuesto diferentes
algoritmos cuánticos, basados en el algoritmo de Grover [CRR19a], en métodos adiabáticos
[CRR19c] y en caminos cuánticos [CRR19b]. En todos estos casos la detección de pares de
constantes de estructura que no coinciden es el elemento fundamental sobre el que se
articulan los algoritmos cuánticos considerados. Como consecuencia de estos estudios se ha
desarrollado una abstracción de diversas técnicas cuánticas de detección bajo el formalismo de
los Quantum Abstract Detecting Systems (QADS) [CRR20].

En esta tesis presentamos dos familias de QADS, llamadas QADS Combinatorios y QADS
Rotacionales que, respectivamente, generalizan los sistemas de detección basados en puertas
controladas por un solo qubit y en el algoritmo de Grover. Además, estudiamos sus
propiedades, entre estas, el cierre algorítmico de cada familia, y demostramos que algunos de
estos QADS son equivalentes (en el sentido de tener la misma tasa de detección) a otros
construidos a partir del producto tensorial de operadores controlados y sus raíces cuadradas.
también aplicamos la construcción de QADS combinatorios a un problema de decisión de
valores propios, problema de estimación de fase y, adicionalmente, al problema de determinar
la conmutatividad de algebras finito-dimensionales. La segunda familia, QADS rotacionales,
incluye un caso particular, los QADS de la búsqueda de Grover [HCCR22].

En relación con los métodos cuánticos que resuelven el problema del subgrupo oculto (por
ejemplo, el algoritmo de Shor), como segunda parte de esta tesis, presentamos algoritmos
cuánticos que encuentran subestructuras de manera eficiente, al formularlo como una instancia
del problema del subgrupo oculto. Estos algoritmos cuánticos tienen orden de complejidad
polinomial (cuántica) en la dimensión del algebra [JER23].

Por último, desarrollamos métodos cuánticos para la clasificación computacional de
semicuerpos finitos mediante técnicas computacionales cuánticas (basadas en el algoritmo de
Grover) y su implementación, incluida la clasificación efectiva mediante simuladores cuánticos
de semicuerpos finitos de tamaños pequeños [HCR23].

RESUMEN (en Inglés)

On one hand, quantum computing is a well-established computing paradigm, from a theoretical
point of view [NC11], and promising, from a practical point of view [Aea19].

On the other hand, the study of algebraic structures using computational techniques is well
known and constitutes a common line of research in Algebra [vzGG99, CCS99]. Specifically, in
the study and applications of finite Semifields [Knu65]. For these structures, some
computational techniques have been developed for their classification. For instance, [RCR09,
RCR12]; and also, for the construction of cryptographic S-boxes from them [RC18]. In all these
cases, the algorithms considered are classical, understood as those that can be executed on an
ordinary computer, that is, not quantum.

For the quantum computing model, some algorithms have been proposed for the study of
algebraic structures. For example, consider the case of determining whether a structure
(algebra, ring, group) is commutative or not. This is a problem studied in different contexts from
a strictly theoretical point of view [Jac45, MW05, Pso84]. From the effective point of view, that
is, computational, it has been studied especially in the case of groups, for which algorithms
have been proposed (not only randomized classical, but also quantum) [MN05, Pak12].

In the case of finite-dimensional algebras, the need for an effective procedure to determine the
commutativity of the structure is a natural problem in the context of the computational study of
finite semifields. For this problem, different quantum algorithms have been proposed, based on
Grover’s algorithm [CRR19a], adiabatic methods [BF28] and quantum walks [CRR19b]. In all
these cases, the detection of pairs of structure constants that do not coincide is the fundamental
element on which the considered quantum algorithms are articulated. As a consequence of
these studies, an abstraction of various quantum detection techniques has been developed
under the formalism of Quantum Abstract Detecting Systems (QADS) [CRR20].

So, in this thesis we introduce two family of QADS, namely Combinatorial QADS and Rotational
QADS which, respectively, generalize detecting systems based on single qubit controlled gates
and on Grover’s algorithm. Additionally, we study their properties, namely, the algorithmic
closure of each family, and prove that some of these QADS are equivalent (in the sense of
having the same detection rate) to others constructed from tensor product of controlled
operators and their square roots. We also apply the combinatorial QADS construction to a
problem of eigenvalue decision, and to a problem of phase estimation. Also to the problem of
determining the commutativity of finite dimensional algebras. The second family, Rotational
QADS includes as a particular case the QADS from Grover’s search [HCCR22].

Next, in connection with the quantum methods that solve the hidden subgroup problem (such as
Shor’s algorithm), the study of problems related to the calculation of substructures is proposed.
In fact, we introduce quantum algorithms that find substructures efficiently, by formulating it as
an instance of the Hidden Subgroup Problem. These quantum algorithms has a polynomial
(quantum) complexity order in the dimension of the algebra [JER23].

Finally, we develop quantum methods for the computational classification of finite semifields by
quantum computational techniques (based on Grover’s algorithm) and their implementation,
including the effective classification by quantum simulators of finite semifields of small sizes
[HCR23].

SR. PRESIDENTE DE LA COMISIÓN ACADÉMICA DEL PROGRAMA DE DOCTORADO
EN MATEMÁTICAS Y ESTADÍSTICA

Contents

Resumen v
Publicaciones . vii

Abstract vii
Publications . xi

1 Introduction 1
Overview of the Contents . 5
Notation and Conventions . 6
Acknowledgment . 7

2 Algebraic Foundations 9
2.1 Groups . 9
2.2 Rings and Modules . 11
2.3 K-algebras . 13
2.4 Finite Semifields . 16
2.5 Character Theory of Finite Abelian Groups 19
2.6 Probability of Generating a Group . 21

3 Quantum preliminaries 23
3.1 Quantum Circuit Model . 23

3.1.1 Braket Notation . 23
3.1.2 Qubits . 24
3.1.3 Measurement . 27
3.1.4 Quantum gates . 28

3.2 Quantum Circuits . 31
3.2.1 Oracles . 37

3.3 Quantum Fourier Transform over Abelian Groups 40
3.3.1 QFT over (Z/pZ)n . 43

3.4 Quantum Optimization . 45

4 Some Quantum Algorithms 49
4.1 Simon’s Algorithm . 49
4.2 The Hidden Subgroup Problem . 52

i

ii Contents

4.3 Quantum Phase Estimation . 58
4.4 Grover’s Search Algorithm . 60
4.5 Technique For Listing All Elements Marked By An Oracle 65
4.6 Quantum Abstract Detecting Systems (QADS) 67

4.6.1 Algorithmic closure of QADS . 69
4.6.2 Properties of QADS . 71
4.6.3 Detection with a QADS . 71

5 Combinatorial and Rotational QADS 73
5.1 m-Combinatorial QADS . 73
5.2 Rotational QADS . 82
5.3 Application: Decision on Eigenvalues . 89
5.4 Application: Phase estimation . 91

5.4.1 Generalized Hadamard Test . 91
5.4.2 Dichotomy search . 95
5.4.3 Hybrid methodology . 95

5.5 Application: Commutativity of Finite Algebras with Combinatorial QADS. . . 98

6 Efficient Quantum Algorithms To Find Substructures On Finite Algebras 103
6.1 Substructures . 104
6.2 The classical approach . 107

6.2.1 Hiding functions . 107
6.2.2 Classical solution . 108

6.3 The quantum approach . 110
6.3.1 Oracle of the hiding function . 110
6.3.2 Quantum Algorithm To Find Substructures 112
6.3.3 Classical post processing . 115
6.3.4 Examples . 116

7 An approach to the Classification of Finite Semifields by Quantum Computing 125
7.1 Quantum Computational Search of Finite Semifields with Grover’s algorithm . 125

7.1.1 Semifield of Order 8 . 127
7.1.2 Description of Semifields of Order 16 133
7.1.3 Estimation of costs for the general case, in terms of Quantum Gates . . 152

7.2 Quantum Computational Search of Finite Semifields with Quantum Optimization155

8 Conclusions 159

Conclusiones 160

Appendices 163
A Codes for Chapter 5 . 163
B Codes for Chapter 6 . 173
C Codes for Chapter 7 . 183

Contents iii

Bibliography 205

Index 213

iv Contents

Resumen

La computación cuántica es un paradigma de computación bien asentado desde el punto de vista
teórico [NC11] y prometedor desde el punto de vista práctico [Aea19].

Por otra parte, el estudio de estructuras algebraicas a través de técnicas computacionales es
bien conocido y constituye una línea de investigación habitual en Álgebra [vzGG99, CCS99].
En concreto, entre unas de las estructuras algebraicas que han sido estudiadas usando esta
metodología se encuentran los semicuerpos finitos [Knu65]. Para ellos, se han desarrollado
algunas técnicas computacionales para su estudio y potenciales aplicaciones. En el primer as-
pecto, se incluye la clasificación computacional de semicuerpos finitos [RCR09, RCR12]; en el
segundo, la construcción de S-cajas criptográficas a partir de ellos [RC18]. En todos los casos
mencionados anteriormente, los algoritmos considerados son clásicos.

Para el modelo de computación cuántica, se han propuesto algunos algoritmos para el estu-
dio de estructuras algebraicas. Por ejemplo, consideremos el caso de determinar si una estruc-
tura (álgebra, anillo, grupo) es conmutativa o no. Este es un problema estudiado en diferentes
contextos desde un punto de vista estrictamente teórico [Jac45, MW05, Pso84]. Desde el punto
de vista efectivo, esto es, computacional, se ha estudiado especialmente en el caso de grupos,
para los que se han propuesto algoritmos (no solamente clásicos aleatorizados sino también
cuánticos) [MN05, Pak12].

En el caso de las álgebras finito dimensionales, la necesidad de un procedimiento efec-
tivo para determinar la conmutatividad de la estructura es un problema natural en el contexto
del estudio computacional de semicuerpos finitos. Para este problema se han propuesto difer-
entes algoritmos cuánticos, basados en el algoritmo de Grover [CRR19a], en métodos adiabáti-
cos [CRR19c] y en caminos cuánticos [CRR19b]. En todos estos casos la detección de pares de
constantes de estructura que no coinciden es el elemento fundamental sobre el que se articulan
los algoritmos cuánticos considerados. Como consecuencia de estos estudios se ha desarrollado
una abstracción de diversas técnicas cuánticas de detección bajo el formalismo de los Quantum
Abstract Detecting Systems (QADS) [CRR20].

En esta tesis presentamos dos familias de QADS, llamadas QADS Combinatorios y QADS
Rotacionales que, respectivamente, generalizan los sistemas de detección basados en puertas
controladas por un solo qubit y en el algoritmo de Grover. Además, estudiamos sus propiedades,
entre estas, el cierre algorítmico de cada familia, y demostramos que algunos de estos QADS
son equivalentes (en el sentido de tener la misma tasa de detección) a otros construidos a partir
del producto tensorial de operadores controlados y sus raíces cuadradas. También aplicamos la
construcción de QADS combinatorios a un problema de decisión de valores propios, problema
de estimación de fase y, adicionalmente, al problema de determinar la conmutatividad de álge-

v

vi Contents

bras finito-dimensionales. La segunda familia, QADS rotacionales, incluye un caso particular,
los QADS de la búsqueda de Grover [HCCR22].

En relación con los métodos cuánticos que resuelven el problema del subgrupo oculto (por
ejemplo, el algoritmo de Shor), como segunda parte de esta tesis, presentamos algoritmos cuán-
ticos que encuentran subestructuras de manera eficiente, al formularlo como una instancia del
problema del subgrupo oculto. Estos algoritmos cuánticos tienen orden de complejidad polino-
mial (cuántica) en la dimensión del álgebra [JER23].

Por último, desarrollamos métodos cuánticos para la clasificación computacional de semicuer-
pos finitos mediante técnicas computacionales cuánticas (basadas en el algoritmo de Grover) y
su implementación, incluida la clasificación efectiva mediante simuladores cuánticos de semicuer-
pos finitos de tamaños pequeños [HCR23].

Contents vii

Publicaciones
Publicaciones en las que está basada esta tesis:

• Hernández Cáceres, J.M., Combarro, E.F. Rúa, I.F. Combinatorial and rotational quantum
abstract detecting systems. Quantum Inf Process 21, Paper No. 66, 27, (2022). [HCCR22]

• Hernández Cáceres, J.M., Rúa, I.F. An approach to the Classification of Finite Semifields
by Quantum Computing. Springer Proceedings in Mathematics & Statistics (PROMS,
volume 427) , 245-260, (2023) [HCR23]

• Hernández Cáceres, J.M., Rúa, I.F., Elías F. Combarro. Efficient Quantum Algorithms
To Find Substructures On Finite Algebras. Quantum Information & Computation Vol.23
No.15&16 (2023) [JER23]

viii Contents

Abstract

On one hand, quantum computing is a well-established computing paradigm, from a theoretical
point of view [NC11], and promising, from a practical point of view [Aea19].

On the other hand, the study of algebraic structures using computational techniques is well
known and constitutes a common line of research in Algebra [vzGG99, CCS99]. Specifically,
in the study and applications of finite Semifields [Knu65]. For these structures, some computa-
tional techniques have been developed for their classification. For instance, [RCR09, RCR12];
and also, for the construction of cryptographic S-boxes from them [RC18]. In all these cases,
the algorithms considered are classical, understood as those that can be executed on an ordinary
computer, that is, not quantum.

For the quantum computing model, some algorithms have been proposed for the study of
algebraic structures. For example, consider the case of determining whether a structure (algebra,
ring, group) is commutative or not. This is a problem studied in different contexts from a strictly
theoretical point of view [Jac45, MW05, Pso84]. From the effective point of view, that is,
computational, it has been studied especially in the case of groups, for which algorithms have
been proposed (not only randomized classical, but also quantum) [MN05, Pak12].

In the case of finite-dimensional algebras, the need for an effective procedure to determine
the commutativity of the structure is a natural problem in the context of the computational study
of finite semifields. For this problem, different quantum algorithms have been proposed, based
on Grover’s algorithm [CRR19a], adiabatic methods [BF28] and quantum walks [CRR19b]. In
all these cases, the detection of pairs of structure constants that do not coincide is the fundamen-
tal element on which the considered quantum algorithms are articulated. As a consequence of
these studies, an abstraction of various quantum detection techniques has been developed under
the formalism of Quantum Abstract Detecting Systems (QADS) [CRR20].

So, in this thesis we introduce two family of QADS, namely Combinatorial QADS and
Rotational QADS which, respectively, generalize detecting systems based on single qubit con-
trolled gates and on Grover’s algorithm. Additionally, we study their properties, namely, the
algorithmic closure of each family, and prove that some of these QADS are equivalent (in the
sense of having the same detection rate) to others constructed from tensor product of controlled
operators and their square roots. We also apply the combinatorial QADS construction to a
problem of eigenvalue decision, and to a problem of phase estimation. Also to the problem of
determining the commutativity of finite dimensional algebras. The second family, Rotational
QADS includes as a particular case the QADS from Grover’s search [HCCR22].

Next, in connection with the quantum methods that solve the hidden subgroup problem
(such as Shor’s algorithm), the study of problems related to the calculation of substructures

ix

x Contents

is proposed. In fact, we introduce quantum algorithms that find substructures efficiently, by
formulating it as an instance of the Hidden Subgroup Problem. These quantum algorithms has
a polynomial (quantum) complexity order in the dimension of the algebra [JER23].

Finally, we develop quantum methods for the computational classification of finite semi-
fields by quantum computational techniques (based on Grover’s algorithm) and their imple-
mentation, including the effective classification by quantum simulators of finite semifields of
small sizes [HCR23].

Contents xi

Publications
Publications this thesis is based on:

• Hernández Cáceres, J.M., Combarro, E.F. Rúa, I.F. Combinatorial and rotational quantum
abstract detecting systems. Quantum Inf Process 21, Paper No. 66, 27, (2022). [HCCR22]

• Hernández Cáceres, J.M., Rúa, I.F. An approach to the Classification of Finite Semifields
by Quantum Computing Springer Proceedings in Mathematics & Statistics (PROMS, vol-
ume 427) , 245-260, (2023). [HCR23]

• Hernández Cáceres, J.M., Rúa, I.F., Elías F. Combarro. Efficient Quantum Algorithms
To Find Substructures On Finite Algebras. Quantum Information & Computation. Vol.23
No.15&16 [JER23]

To Maira, Alejandro and Oriana.

Chapter 1

Introduction

Ideas for Quantum Computing date back to the pioneering work of Feymann, Manin, Benioff,
and others [Fey82], [Man80], [Ben80]. In fact, Quantum Computing emerges from the fields
of quantum mechanics and computer science, when back in 1980, Paul Benioff showed that
a computer could operate under the laws of quantum mechanics by introducing a Schrödinger
equation description of Turing machines.

But what is Quantum Computing? Quantum Computing is a computational model based on
exploiting quantum phenomena such as superposition (which gives the possibility that a qubit
(quantum memory units) can be in the states |0⟩ and |1⟩ simultaneously, so n qubits can handle
2n states in a moment), interference (which is used to affect probability amplitudes, in other
words, every possible outcome has some probability of occurring), and entanglement (which
refers to the fact that multiple qubits can be linked in such a way that their states are correlated,
even when they are very far apart).

It has been one of the most intense and promising areas of research in complexity theoreti-
cal computer science in recent years, with some brilliant and remarkable results of quantum
algorithms that outperform their classical counterparts.

For instance, in 1996, Lov Kumar Grover presents a quantum algorithm based on the concepts
of superposition, and quantum parallelism (which is the ability to perform many calculations
simultaneously, for example, the possibility that a function can be evaluated at many values at
once), for searching databases, that is quadratically faster than any possible classical algorithm
for the same purpose. More explicitly, a marked element in a list of N unordered ones (un-
structured search), can be found by Grover’s algorithm [Gro96] in expected time O(

√
N) (with

probability > 1/2), and it has been shown [BBBV97] that Grover’s algorithm is optimal in the
sense that no quantum Turing machine can do this in the less than O(

√
N) operations in the

black box model. Classicaly, this problem has complexity Ω(N).

In the computational (or effective) study of finite algebraic structures, Grover’s algorithm has
been successfully applied for testing the commutativity of a finite dimensional algebra [CRR19a],

1

2 Chapter 1. Introduction

achieving a quadratic speedup over the classical case [CRR19a]. Besides [CRR19a], there are
also some quantum procedures for solving this task, that outperform their classical counterpart,
which are: [CRR19b], based on quantum walks, and [CRR19c] based on adiabatic methods.

In all these cases, the authors were only interested in detecting if a witness of noncommu-
tativity exist, i.e., the detection of certain pairs of structure constants that do not coincide. As a
consequence of these studies, an abstraction of various quantum detection techniques has been
developed under the formalism of, Quantum Abstract Detecting Systems (QADS) [CRR20].
Indeed, QADS were introduced as a common framework for the study and design of detecting
algorithms in a quantum computing setting. Given a black-box oracle for a boolean function
f , the QADS construct an initial state and an operator that can be used to detect if the function
is identically zero or not. For instance, if U f denotes a quantum oracle evaluating f , then the
QADS related to Grover’s algorithm [Gro96] constructs a uniformly superposed initial state
|ϕ0⟩ , and a quantum operator G = UsU f , product of the quantum oracle and the diffusion op-
erator Us. Such an operator can be used to evolve the quantum system from the initial state,
so that measurement of the resulting state, Gk |ϕ0⟩, gives always |ϕ0⟩ when f is zero, where as
when f is not zero, it gives the initial state with non-zero probability. These facts can be used
to determine whether f is zero or not, i.e., to detect the existence of an element x such that
f (x) = 1.

There are two main advantages to the introduction of the QADS methodology. The first one
is that it helps to systematically analyse the effectiveness of the detection procedures under
study. Namely, the actual usefulness of a particular QADS can be analized in terms of a trade-
off between the precomputation cost of the QADS (efficient constructibility), and the number of
iterations required to achieve a bounded success probability. The second advantage is that the
methodology allows to construct new QADS from given ones, which might yield better detect-
ing probabilities. These transformed QADS are members of the algorithmic closure of QADS.
Most of these closure procedures are quite natural, such as extending the number of qubits used,
inverting the detecting operator, multiplication of detecting operators with the same initial state,
conjugation by a unitary operator, or control of a detecting operator with a qubit.

The possibility of constructing new QADS from existing ones leads to new families of QADS,
such as combinatorial and rotational QADS. In Chapter 5, we introduce these new families of
QADS. The combinatorial QADS generalise the well-known controlled operators. The rota-
tional QADS, includes as a particular case the QADS from Grover’s search. For them, we study
the expression of the state after application of the detecting operator on the initial state, and
their algorithmic closure. Interestingly, we derive some nice equivalences for these QADS in
terms of tensor products and products of square roots of the original QADS. We also apply the
combinatorial QADS construction to a problem of eigenvalue decision, to a problem of phase
estimation, and to the problem of determining the commutativity of a finite dimensional algebra
(which can be used to see whether a finite semifield is commutative or not).

So, as a second part of this thesis, we focus our attention on the classification of finite semi-
fields. In fact, finite semifields are finite nonassociative rings with an identity element such that

3

the set of nonzero elements is a loop under the product. Their number of elements is a prime
power, known as order. They were considered first by Dickson [Dic06], and studied by Albert
[Alb60] and Knuth [Knu65]. Finite Semifields of order 16 have been classified by Kleinfeld in
[Kle60], and of order 32 by Knuth in [Knu65] and by Walker in [Wal62]. The case of order 81
was solved by Dempwolff [Dem08].

The classification of finite semifields of order 64 was achieved by Rúa, Combarro, Ranilla in
[RCR09], and of order 243 by Rúa, Combarro, Ranilla in [RCR12], based on the fact that clas-
sification of finite semifields can be rephrased as a problem of finding certain sets of matrices
which can be solved by computer search. In this computer assited classifications, determining
the commutativity of millions of algebras is important. Additionally, in the computational clas-
sification of finite semifields, an important task is the determination of substructures such as the
right, middle, and left nuclei, the nucleus, and the center. Finding these structures may become
computationally expensive when there is no additional information about the algebra properties,
and there are millions of structures to classify.

On the other hand, if we carry on with quantum algorithms that outperform their classical
counterparts, we have Simon’s algorithm [Sim94]. Daniel Simon, in 1994, presented one of the
first quantum algorithms to show an exponential speed-up versus the best classical algorithm in
solving a specific problem.

Simon’s algorithm uses O(n) queries to solve Simon’s problem. In his paper, he shows that
the best classical algorithm requires Ω

(
2

n
4
)

queries (bounded error setting). Moreover, Simon’s
algorithm is significant because it paved the way for Shor’s algorithm [Sho97]. In 1994, and
based on the quantum Fourier transform (perhaps one of the most important unitary transfor-
mation in quantum computing), Peter Shor gave a quantum algorithm for factoring integers
in polynomial time, while no classical algorithm with such a complexity is known. This is a
breakthrough since, for instance, the RSA public-key cryptosystem is absolutely vulnerable to
attackers that use this algorithm. These two algorithms (Simon’s and Shor’s) can be regarded
under the framework of the hidden subgroup problem (HSP), which states the following:

Hidden Sugroup Problem. Let G be a finite group, and let H ≤ G be one of its sub-
groups. Let S be a set, and let g : G→ S be a function that distinguishes cosets of H, i.e.,
for all g1,g2 ∈ G, f (g1) = f (g2)⇔ g1H = g2H. The hidden subgroup problem (HSP)
is to determine a generating set for the subgroup H given access to a black box that
evaluates f on arbitrary elements.

Which can be rephrased as:

Given: The ability to evaluate a hiding function f , for a subgroup H of a finite
group G, (i.e., a function f that is constant on a subgroup H of G, and is distinct on
different cosets of H), on arbitrary elements of G.

Problem: Finding s1,s2, . . . ,sl, a generating set for H.

4 Chapter 1. Introduction

For specific groups, abelian for instance, efficient quantum algorithms solving the HSP are
known. As a second part of this thesis, we want to use this fact to efficiently compute substruc-
tures such as the right, middle, and left nuclei, the nucleus, and the center of finite algebras,
and in particular of finite semifields. Therefore, we turn our attention on the following prob-
lem: Given the multiplication table of a Fp-algebra A, with Fp a finite field of order p, consider
the additive group G = (A,+). We want to find algebraic substructures of A, such as the right,
middle, and left nuclei, the nucleus and the center, using efficient quantum algorithms. These
sets, which can be written in terms of an Fp-basis β and the multiplication table of the algebra,
provide information about the algebra. For instance, when A is a finite semifield, i.e., a finite
division ring, these sets are related to properties of the corresponding coordinates projective
planes [Alb60].

So, our problem is, then, stated as follows:

Given: Multiplication table of a finite dimensional Fp-algebra A (Fp finite field of order
p).

Problem: Finding Nr(A),Nm(A),Nl(A),N(A), and Z(A).

Here Nr(A),Nm(A),Nl(A),N(A), and Z(A), denote the right, middle, and left nuclei, the
nucleus, and the center of the FP-algebra A, respectively. Now, in order to solve it with quantum
techniques, we will transform each problem of finding Nr(A),Nm(A),Nl(A),N(A) and Z(A) into
an instance of the HSP.

Thus, in Chapter 6, we explicitly and efficiently construct quantum circuits that, from the
multiplication table of the n-dimensional algebra over a finite field Fp, implement hiding func-
tions f that can be used to determine these sets using only a polynomial number of quantum
gates. Namely, of order O(n5r3), with O(nr) queries to the oracle to find those sets, where
r = ⌈log2(p)⌉ (i.e., with an asymptotically linear number of evaluations of the function f for
fixed p). This is achieved by suitable choices of functions f in the previous problem.

Finally, in this thesis we address the effective classification of finite binary semifields by quan-
tum techniques. It was pointed out on [CRR19a] and [RCR12], that the classification of all
finite semifields of size 128 is completely out of reach with current classical computing tech-
nology. Since Grover’s Algorithm has a quadratic speedup for finding marked items in long
lists, application of quantum computing to classify finite semifields seems promising.

So, we introduce a quantum procedure for classifying finite semifields with 8 and 16 elements,
based on Grover’s quantum search algorithm. We also discuss the scalability of the method to
higher orders in Chapter 7. Thus, in order to classify a finite semifield of order 2d, we show that
with this method at least d(d−1)2 qubits are required, together with an estimate on the number
of quantum gates needed to build up the quantum circuit, showing that this approach is not as
cheap as it would be desired. Indeed, we show, that the cost in terms of quantum gates would
be at least:

5

Number Gate
6a+b CNOT S
2a H
3a T †

4a T

where

a = (d +1)
d−1

∑
k=1

(
d−1

k

)
kd(d−1)!(d−2)

b =
d−1

∑
k=1

(
d−1

k

)
kd ((d−1)!−1)(1+d)+2d−1−1,

and d is the dimension of the binary finite semifield, over F2.

Overview of the Contents
More in detail, this thesis is organized in seven chapters. After this introductory chapter, Chap-
ter 2 is meant to sum up all the algebraic foundations required for this thesis. For instance,
we present notions on finite semifields and the way classification of finite semifields can be
rephrased as a problem of finding certain sets of matrices.

After the algebraic preliminaries are given, we also give a background on Quantum Com-
puting, that can be found in Chapter 3. There, we present notions on the quantum circuit model,
i.e., we collect some basic notions on qubits, measurements, quantum gates and oracles that
would be useful for the next chapters. Also, we recall the Quantum Fourier Transform over
Abelian Groups, which would be use in Chapter 6.

In Chapter 4, we explain some well known quantum algorithms, such as Simon’s Algorithm,
the solution to the Hidden Subgroup Problem for the abelian case, and Grover’s Algorithm.
They play an important role on this thesis, as we can see, from Chapter 5 through Chapter 7.
Lastly, in section 4.6, we explain what is a quantum abstract detecting system, that we use in
Chapter 5.

In Chapter 5, we introduce combinatorial QADS and study their algorithmic closure. Rota-
tional QADS are introduced and studied in Section 5.2, including their algorithmic closure. An
application of the combinatorial QADS construction to a concrete eigenvalue decision problem
is given in Section 5.3.

In Chapter 6, we model the problem of finding substructures in a finite-dimensional algebra
as an instance of the HSP, and we show that, in some cases, it can not be classically solved with
a polynomial number of function accesses to the hiding function f . In Section 6.3, we construct
an efficient quantum oracle for the function f and we build an efficient circuit for the solution
of the corresponding HSP.

6 Chapter 1. Introduction

Notation Description
|ϕ⟩ Known as ket, represent a vector in Cn.
⟨ϕ| Known as bra, is the transposed conjugate of |ϕ⟩.
|ϕ⟩⊗ |ψ⟩ Tensor product of |ϕ⟩ and |ψ⟩.
|ψ⟩ |ϕ⟩ Abbreviated notation for tensor product of |φ⟩ and |ψ⟩.
⟨ψ|U |ϕ⟩ Inner product between |ψ⟩ and U |ϕ⟩ (U is an n×n complex

matrix).
At Transpose of the matrix A.
A Complex conjugate of the matrix A.
A† A† = At .
In Denotes the identity matrix of size n×n.
arg z Denotes the argument of a complex number z.
Re z Denotes the real part of a complex number z.

Table 1.2: Table of notations used in this dissertation.

In Chapter 7, using a simulator for quantum circuits, we find the multiplication tables for
the finite semifield F8 (which is the only finite semifield of order 8), and for finite commutative
semifields of order 16, based on Grover’s quantum search algorithm. This chapter is meant to
be a compendium of possible (unsatisfactory) approaches to the problem of classifying binary
semifields using quantum computing techniques.

Finally, in Chapter 8, we give some conclusions of our study and print out some future work.

Additionally, a more detailed description of the contents of each chapter, and sections are given
at its beginning, together with the sources used, in order to guide the reader through the text.

Notation and Conventions
In what follows, C,R,Q,Z, and N stand for the field of complex numbers, the field of real
numbers, the field of rational numbers, the ring of integers, and the set of natural numbers
respectively. Z+ will denote the positive integers, and C∗ = C−{0}, denotes the complex
numbers without the zero. Matn×n(K), with K a field, stands for the set of matrices of size n×n
with entries in K. Z/pZ = {0,1, . . . , p− 1} stands for the additive group of integers modulo
p. For a real number x, by ⌊x⌉ we mean the nearest integer. We use the standard notation
of quantum mechanics for linear algebraic concepts. Namely, Dirac notation, as presented in
Table 1.2.

7

Acknowledgment
First and foremost, I would like to express my sincerest gratitude to my supervisors, Prof. Dr.
Iñaki, and Prof. Dr. Elías, for your kindness, patient, guidance, encouragement, and constant
support in every possible way, during all these years, virtually and in person. For the many
explanations given, they help me grow academically, specially with your book Prof Dr. Elías.
Thanks to both of you, for introducing me to such interesting path of research.

Prof. Dr. Iñaki thank you for support in many ways, not only academically, but also with
bureaucracy issues.

I am grateful to Prof. Dr. Santos, for your selfless support, for letting me join the Cybercamp
with the workshops and conferences. Also, I want to thank Dr. Luis Ovejero for the experience
and personal grow in Satec HUB.

Lastly, I am really grateful with my family, for their endless support, love, and motivation,
specially in tough times. Maira, Alejandro and Oriana you mean all to me.

8 Chapter 1. Introduction

Chapter 2

Algebraic Foundations

Nothing in this chapter is new, we only give overview of known facts. See, for instance, [DF04].

2.1 Groups

Definition 2.1. A group is a nonempty set G together with a binary operation ∗ on G such that
∗ is associative (that is, for any a,b,c ∈G, a∗ (b∗c) = (a∗b)∗c), there is an identity (or unity)
element e in G such that for all a ∈ G, a∗ e = e∗a = a, and for each a ∈ G, there exists an in-
verse element a−1 ∈G such that a∗a−1 = a−1 ∗a = e. The order of a finite group is the number
of its elements, and it is denoted by |G|.

If the group also satisfies that for all a,b ∈ G, a ∗ b = b ∗ a, then the group is called abelian.
Usually, multiplicative notation is used, i.e., ∗ is written as ·, or simply as juxtaposition.

Example 2.2. The set U(n) = {A ∈Matn×n (C) : A†A = AA† = In} is a group under multiplica-
tion of matrices, called unitary group.

Example 2.3. Let G1, . . . ,Gn be n groups, we consider G = G1× ·· ·×Gn to be the set of n-
tuples with xi ∈Gi, for i= 1, . . . ,n, and componentwise multiplication. Then, G is a group called
the direct product of groups, whose unit element is (e1, . . . ,en) (where ei is the unit element of
Gi).

An additive group is a group in which the group operation is to be thought of as addition,
and ∗ is usually written as +.

Example 2.4. The additive group of integers modulo n is the group with domain {0,1,2, . . . ,n−
1}, and with the operation of addition mod n. It is denoted as Z/nZ.

Definition 2.5. Let H ⊆ G. We say that H is a subgroup of G if H is nonempty, for every
a,b ∈ H,a∗b ∈ H, and for every a ∈ H, the inverse a−1 ∈ H.

9

10 Chapter 2. Algebraic Foundations

Example 2.6. The set SO(n) = {A ∈ O(n) : det(A) = 1} is a subgroup of the orthogonal group
O(n) = {A ∈Matn×n(C) : AtA = AAt = In}, called the special orthogonal subgroup.

Definition 2.7. Let G be a group and let S be a subset of G. We say that S generates G, if every
element of G can be expressed as a product x1 · · ·xn where each xi or x−1

i is in S. A cyclic group
is a group which has one generator, i.e., if there exists g ∈ G such that any x ∈ G can be written
as gn, for some integer number n.

Definition 2.8. The order of an element g ∈ G is the smallest positive natural number n such
that gn = e. If gr = e does not hold for all positive r, we say that the order is infinity.

In an additive group, the order of an element is the smallest positive integer n such that x+
(n
· · ·

+x = 0.

Definition 2.9. Let G be a group, and let H ⊆ G be a subgroup or G. A left coset of H in G is
a subset of the form aH = {ah : h ∈ H}, for some a ∈ G. The element a is a representative of
the coset aH. The collection of left cosets is denoted G/H. Likewise, a right coset is a subset
of the form Ha = {ha : h ∈ H}, for some a ∈ G.

If the group operation is written additively, as is often the case when the group is abelian,
the notation changes to a+H. Two elements of x,y ∈ G, are called equivalent with respect to
the subgroup H, if xH = yH, or, equivalently, if x−1y ∈ H. This defines an equivalence relation
in G, of which G/H is the quotient set. The number of left cosets of H is called the index of H
in G and is denoted by [G : H]. The well-known Lagrange’s Theorem states that the order of a
subgroup must divide the order of a finite group.

Theorem 2.10 (Lagrange’s Theorem). For any finite group G, if H is a subgroup of G, then
|G|= [G : H]|H|.

Definition 2.11. A subgroup N of a group G is called normal, if for every element of g ∈ G,
gNg−1 = N. Here gNg−1 = {gng−1 : n ∈ N}.

Note that every subgroup of an abelian group is a normal subgroup.

Definition 2.12. A quotient group is defined in G/N, for any normal subgroup N ⊆ G. It is
equipped with the operation (gN)◦ (hN) = (gh)N.

Definition 2.13. Let (G,∗) and (H, ·) be two groups. A group homomorphism from (G,∗) to
(H, ·) is a function φ : G→H such that, for all g1,g2 ∈G, it holds that φ(g1∗g2)= φ(g1) ·φ(g2).
A group homomorphism that is bijective, i.e., injective and surjective, is an isomorphism.

The following theorem says that a particular family of groups has a particular structure or
form.

Theorem 2.14 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian group G
is isomorphic to a direct product of cyclic groups

G∼= Z/n1Z×Z/n2Z×·· ·×Z/nkZ, (2.1)

where Z/niZ= {0,1, . . . ,ni−1} is the additive group of integers modulo ni.

2.2. Rings and Modules 11

2.2 Rings and Modules
Definition 2.15. A non-associative ring A is a set with two binary operations (addition and
multiplication) such that A is an abelian group with respect to addition (so that A has a zero
element, denoted by 0, and every x ∈ A has an additive inverse, −x), and multiplication is
distributive over addition, i.e. x(y+ z) = xy+ xz,(y+ z)x = yx+ zx, for all x,y,z ∈ A.

Definition 2.16. If a non-associative ring A satisfies the multiplicative associative law (x(yz) =
(xy)z, for x,y,z ∈ A), then we shall say that it is an associative ring, or simply a ring. If it
satisfies the commutative law (xy = yx, for all x,y ∈ A,) we will call it commutative.

We say that a non-associative ring A has identity or one, if there exists an element 1 ̸= 0∈ A,
such that 1x = x1 = x, for all x ∈ A.

Definition 2.17. A non-associative ring with identity is called a division ring if, for all x ∈ A,
there exists y,z ∈ A such that xy = zx = 1. When A is finite, then it is called a finite semifield.
When it is associative and commutative, then it is called a field.

Next, we shall assume that rings are (associative) commutative, and with identity.

Definition 2.18. A subset S of a ring A is called a subring, if S is a ring with the restrictions
of multiplication and addition to S. An ideal a of a ring A is a subset of A which is an additive
subgroup and is such that Aa= {ab : a ∈ A,b ∈ a} ⊆ a, and aA⊆ a. For any a ∈ A, the set Aa
is an ideal of A, known as ideal generated by a (or a principal ideal). It will be denoted as (a).

Definition 2.19. A zero-divisor in a ring A is a non-zero element x which divides 0, i.e., for
which there exists y ̸= 0 in A such that xy = 0. A ring with no zero-divisors is called an integral
domain.

A unit in A is an element x which divides 1, i.e., an element x such that xy = 1 for some
y ∈ A. The element y is then uniquely determined by x, and is written as x−1. The units in A
form an abelian group.

A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Example 2.20. For example, let K be a field, let x be an indeterminate over K, then K[x], called
the polynomial ring in x, with coefficients in K, is a principal ideal domain. It is well-known
that this makes K[x] a unique factorization domain, i.e., any non-constant polynomial can be
uniquely (up to the order of the factors) written as the product of irreducible polynomials (those
that can be only divided by constants and themselves, up to a multiplicative constant).

Definition 2.21. If a is an ideal of a ring A, then the quotient group A/a (whose elements are
the cosets of a in A) inherits a uniquely defined multiplication from A which makes it into a
ring, called the quotient ring A/a.

Definition 2.22. A (unitary) A-module is an abelian group M, written additively, together with
a map A×M→M, written by am for all a ∈ A, and all m ∈M, which satisfies that (a+b)x =
ax+bx, a(x+y) = ax+by, (ab)x= a(bx), for all a,b∈A, and for all x,y∈M; and also, 1m=m,
for all m ∈M.

12 Chapter 2. Algebraic Foundations

Example 2.23. Note that when A = K is a field, then the A-module M is a K-vector space.

Example 2.24. A commutative ring with identity A is an A-module, where the multiplicative
map is the ring product.

Definition 2.25. Let M,N be A-modules. A mapping f : M→ N is an A-module homorphism
if f (x+ y) = f (x)+ f (y), and f (ax) = a · f (x), for all a ∈ A and all x,y ∈ M (also note that
when A is a field, an A-module homomorphism is a linear transformation of vector spaces). A
module homomorphism is called a module isomorphism if it admits an inverse homomorphism;
in particular, it is a bijection. It will be denoted as M ∼= N.

Definition 2.26. A module M is cyclic if there exists an element x ∈M such that M is generated
by one element: M = Ax = {ax : a ∈ A}.

Example 2.27. If A is a commutative ring with identity, then any principal ideal a ⊂ A is a
cyclic A-module.

Definition 2.28. If M,N are A-modules, their direct sum M⊕N is the set of all pairs (x,y)
with x ∈M,y ∈ N. This is an A-module with componentwise addition an scalar multiplication
a(x,y) = (ax,ay).

Example 2.29. Let A = K[x] be the polynomial ring in the indeterminate x, with coefficients in
a field K. Let V be a finite dimensional vector space over K of dimension n. Let T : V →V be

a linear map, and let p(x) ∈ K[x]. Consider the action of the ring element p(x) =
n
∑

k=1
akxk on

v ∈V as

p(x)v =
n

∑
k=0

akT k(v),

where T k = T ◦ T ◦· · ·◦T, and ◦ denotes function composition (with T 0 = I : V →V the identity
map). With this map K[x]×V →V, V can be seen as a K[x]-module.

Recall the following notions from linear algebra. Let V be a K-vector space of dimension
n, and let T : V →V be a linear map.

Definition 2.30. Let λ be an indeterminate over a field K, and A∈Matn×n(K). We call pA(λ) =
det(λ In−A) the characteristic polynomial of A. If A is the coordinate matrix of T with respect
to one of its bases, then the polynomial pT (λ) = det(λ I−A) is called the characteristic poly-
nomial of T. It will be denoted as pT . It is independent of the choice of basis.

Definition 2.31. Let m(x) ∈ K[x] be the unique monic polynomial generating the annihilator
ideal of V in K[x], i.e., Ann(V) = {p(x) ∈ K[x] : p(T) = 0}. Equivalently, m(x) is the unique
monic polynomial of minimal degree annihilating V , i.e., such that m(T) = 0 (here 0 : V → V
is the null linear transformation) (And so, if f (x) ∈ K[x] is any polynomial annihilating V , then
m(x)| f (x)). It is called the minimal polynomial of T, and it will be denoted as mT (x) . The
unique monic polynomial of least degree which annihilates the matrix A ∈Matn×n(K), is called
the minimal polynomial of A (i.e., such that p(A) = 0), and it will be denoted as mA(x) .

2.3. K-algebras 13

The following theorem states the structure of the K[x]-module V.

Theorem 2.32. (Fundamental Theorem of endomorphisms of a finite dimensional vector space)
Let V a finite dimensional K-vector space, and let T : V → V be a linear map. Let x be an
indeterminate over K. Then as K[x]-modules,

1.
V ∼= K[x]/(a1(x))⊕K[x]/(a2(x))⊕·· ·⊕K[x]/(am(x))

where a1(x),a2(x), . . . ,am(x) are monic polynomials (called invariant factors) in K[x] of
degree at least one with the divisibility conditions

a1(x)|a2(x)| · · · |am(x).

2. Ann(V) = (am(x)). And so the minimal polynomial mT (x) is the largest invariant factor
of V . All the invariant factors of V divide mT (x).

3. The characteristic polynomial T is the product of all invariant factors of T .

4. (Cayley-Hamilton) The minimal polynomial of T divides the characteristic polynomial of
T.

5. The characteristic polynomial of T divides some power of the minimal polynomial of T.
In particular, they have the same irreducible factors.

As a consequence, we get:

Proposition 2.33. Let A ∈Matn×n(K). Then

1. (The Cayley-Hamilton Theorem) The minimal polynomial of A divides the characteristic
polynomial of A.

2. The characteristic polynomial of A divides some power of the minimal polynomial of A.
In particular, these polynomials have the same irreducible factors, not counting multiplic-
ities

2.3 K-algebras
Definition 2.34. A finite dimensional algebra A over a field K (or more simply a K-algebra) is
a non-associative ring A that has the structure of a K-vector space of dimension d, such that for
all b,c ∈ A and α ∈ K,α(b · c) = (αb) · c = b(αc).

Note that we not necessarily have a commutative nor associative product, or identity. Through-
out this thesis, we will use the term non-associative algebra to emphasize the fact that the
multiplication may not be associative, and non-commutative that might not be commutative.
An algebra is called a division algebra, if it is a division ring. Now, let S be a non-associative

14 Chapter 2. Algebraic Foundations

non-commutative finite dimensional algebra over a field K. Let us fix a K-basis β = {x1, . . . ,xd}
of S, so there exists a unique set of constants {Mi jk}d

i, j,k=1 ⊆ K, such that,

xi · x j =
d

∑
k=1

Mi jkxk, for all i, j ∈ {1, . . . ,d}.

That set is known as the multiplication table (or structure constants) of the algebra (with respect
to the basis β). For each x ∈ S, consider the maps Lx : S→ S, and Rx : S→ S, given by Lx(a) =
x ·a, and Rx(a) = a ·x, respectively. Both are K-linear homomorphisms. Additionally, Lxi(x j) =

xi · x j =
d
∑

k=1
Mi jkxk. Let x =

d
∑
j=1

αixi, with αi ∈ K. Then,

Lx(a) = x ·a =
d

∑
j=1

αixi ·a = α1(x1 ·a)+ · · ·+αd(xd ·a)

= α1Lx1(a)+ · · ·+αdLxd(a) =
d

∑
i=1

αiLxi(a).

So, the map Lx can be described by the maps Lx1, . . . ,Lxd . Denote the column coordinate matrix
of Lxi with respect to β by:

Ai =


Mi11 Mi21 Mi31 . . . Mid1
Mi12 Mi22 Mi32 . . . Mid2

...
...

...
Mi1d Mi2d Mi3d . . . Midd

 .

Consider the set M := {A1, . . . ,Ad} . Then, if x =
d
∑

i=1
αixi, with αi ∈ K, then Lx =

d
∑

i=1
αiLxi , and

so we have that the column coordinate matrix of Lx with respect to β is

Ax =
d

∑
i=1

αiAi.

Which justifies that M is a multiplication table for S (all the products can be described by d3

constants in K). Furthermore, we can see some properties of the algebra in terms of M. For
instance, note that x ̸= 0 is not a left zero divisor (i.e., there does not exist a y ̸= 0 such that
xy = 0), if and only if Lx is a K-linear isomorphism if and only if Ax is invertible. The same
holds for x ̸= 0 not being a right zero divisor. Since for any x there exist α1, . . . ,αd ∈K such that
x = α1x1 + · · ·αnxn, then S is a division algebra if and only if any non zero linear combination
of M is invertible.

Definition 2.35. Let A be a non-associative non-commutative finite dimension algebra. If a,b∈
A, we define the commutator as [a,b] = ab−ba. We define the associator as the multilinear map
[·, ·, ·] : A×A×A→ A, given by [x,y,z] = (xy)z− x(yz).

2.3. K-algebras 15

The commutator measures the non-commutativity of A. For instance, A is a commutative
algebra if and only if [xi,x j] = 0, for all i, j = 1, . . . ,d, i.e.,

0 = [xi,x j] = xix j− x jxi =
d

∑
k=1

Mi jkxk−
n

∑
k=1

M jikxk =
d

∑
k=1

Mi jkxk−M jikxk =
d

∑
k=1

(
Mi jk−M jik

)
xk,

if and only if Mi jk = M jik, for all i, j,k = 1, . . . ,n.

The associator measures the non-associativity of A, so A is associative if and only if, the as-
sociator is identically zero, i.e., for every i, j,k = 1, . . . ,d,

0 = [xi,x j,xk] =
(
xi · x j

)
xk− xi

(
x j · xk

)
=

(
d

∑
m=1

Mi jmxm

)
xk− xi

(
d

∑
m=1

M jkmxm

)

=
d

∑
m=1

Mi jmxm · xk−
d

∑
m=1

M jkmxi · xm

=
d

∑
m=1

d

∑
l=1

Mi jmMmklxl−
d

∑
m=1

d

∑
l=1

M jkmMimlxl

=
d

∑
m=1

d

∑
l=1

Mi jmMmklxl−M jkmMimlxl

=
d

∑
m=1

d

∑
l=1

(
Mi jmMmkl−M jkmMiml

)
xl.

So, A is associative if and only if for every i, j,k, l = 1, . . . ,d, we have that ,

d

∑
m=1

(
Mi jmMmklxl−M jkmMiml

)
= 0.

Definition 2.36. Consider the following sets, known as the right, middle, and left nuclei, the
nucleus and the center, of an algebra over K:

Nr(A) = {a ∈ A : [x,y,a] = 0, for all x,y ∈ A}
Nm(A) = {a ∈ A : [x,a,y] = 0, for all x,y ∈ A}
Nl(A) = {a ∈ A : [a,x,y] = 0, for all x,y ∈ A}
N(A) = Nr(A)∩Nm(A)∩Nl(A)
Z(A) = N(A)∩{a ∈ A : [a,x] = 0, for all x ∈ A}

These sets are subalgebras of A, i.e., K-vector subspaces closed under multiplication.

16 Chapter 2. Algebraic Foundations

2.4 Finite Semifields
In this section, we collect definitions and facts on finite semifields, which is the class of finite
division algebras. Proofs can be found, for instance, in [Knu65], [HR07]. The term finite
semifield was introduced in 1965 by Knuth. However, in 1906, and 1960, the concept of finite
semifield had been previously studied by Dickson [Dic06] and Albert [Alb60], respectively.

Definition 2.37. A finite non-associative ring D is called presemifield, if the set of nonzero
elements D∗ is closed under the product. If D has an identity element, then it is called (finite)
semifield (i.e., if it is a division ring).

Example 2.38. Any finite field Fq of q elements is a finite semifield.

If D is a finite semifield, then D∗ is a multiplicative loop. That is, there exists an element
e ∈D∗ (the identity of D) such that 1x = x1 = x, for all x ∈D, and for all a,b ∈D∗, the equation
ax = b (respectively xa = b) has a unique solution.

Definition 2.39. Let S be a finite semifield. Its cardinality is called order and denoted as |S|.
The additive order of the identity of S is called the characteristic of S.

Proposition 2.40. Let D be a finite semifield. The characteristic of D is a prime number p. Its
center is a finite field Fq of q = pc elements, where c ∈ N. Moreover, D is a finite-dimensional
algebra over Z(D) of dimension d, where |D|= qd. Also, the nuclei Nr(D),Nm(D),Nl(D), and
the nucleus N(D) of D are finite fields.

It is well known that for every prime p and every positive integer n there exists a finite field
with pn elements [LN96]. Any associative finite semifield is necessarily commutative and hence
a finite field (by Wedderburn’s Theorem [MW05]). Nevertheless, not every finite semifield is
necessarily associative. If a finite semifield is not associative, it is called proper.

Theorem 2.41 ([Knu65]). A proper semifield has order pn, where n≥ 3, and pn ≥ 16.

Knuth proved that a proper semifield has at least has 16 elements by showing that the only
finite semifield of order 23 is the finite field F8. As an example of a proper semifield we have:

Example 2.42. Consider the field F = F4, with the elements 0,1,ω and ω2 = 1+ω. Let V =
{u+λv : u,v ∈ F}, and define

+ : V ×V → V
(u1 +λv1,u2 +λv2) 7→ (u1 + v1)+λ (u2 + v2)

· : V ×V → V
(u1 +λv1,u2 +λv2) 7→

(
u1u2 + v2

1v2
)
+λ

(
v1u2 +u2

1v2 + v2
1v2

2
)

Then, V is a finite semifield with identity 1+λ0. Note that V is not commutative, and hence it
is a proper semifield.

Another example is Knuth’s binary semifield:

2.4. Finite Semifields 17

Example 2.43. Let n be odd, and mn > 3. Consider F2mn as an F2m-vector space, let f : F2mn →
F2m be the unique linear functional, i.e., f (αa+βb) = α f (a)+β f (b), for all a,b ∈ F2mn, and
all α,β ∈F2m , such that f (1)= 1, and f (x)= f (x2m

). Define a multiplication in F2mn as follows:

◦ : F2mn×F2mn → F2mn

(a,b) 7→ ab+(f (a)b+ f (b)a)2

Now, define a product ∗ in the vector vector space as (1 ◦ a) ∗ (1 ◦ b) = a ◦ b. It can be shown
that (F2mn,+,∗) is a proper commutative semifield, known as Knuth’s binary semifield.

It is well-known that, for a finite field Fq, the set F∗ = Fq−{0} is a cyclic group. We shall
call primitive element to any generator of F∗q. It is also well-known that, for any n∈N the Galois
group G

(
Fn

q|Fq
)

(i.e., the set of all Fq-automorphism of Fqn) is a cylic group of order n.

Example 2.44. Albert’s generalized twisted fields were introduced in [Alb61] as a generaliza-
tion of other families of semifields that Albert himself had previously discovered. Its construc-
tion is based on the deformation of the product of a finite field, hence the name of “twisted
fields”.

Let F = Fq with q = pr > 2, and K = Fm
q with m ≥ 3. Let σ ,τ : K → K be elements in the

Galois group G(K|F) such that

< σ >⊥ ∩< τ >⊥= F ∩F = F,

where < σ >⊥= {a ∈ K : σ(a) = a}. Consider the product operation defined as:

a •b = ab−gτ(a)σ(b),

for all a,b ∈ K, which makes the group (K,+) a finite presemifield. Thus, the applications
L•1,R

•
1 : K→ K are bijections, and the group (K,+) with the new operation:

a∗b = (R•1)
−1(a) • (L•1)

−1(b),

for all a,b∈K, is a finite semifield, called generalized twisted field. It is a proper finite semifield
if and only if σ ̸= τ .

Note that its identity is f = 1−g, and its nucleus and center are N = Z =F f , its right nucleus
Nr =< σ >⊥ f , its left nucleus Nl =< τ >⊥ f , and its middle nucleus is Nm = R•1(M) = L•1(M),
where M = {a ∈ K : σ(a) = τ(a)}.

Definition 2.45. Let D be a finite semifield, and a ∈ D. We inductively define the left principal
powers of a as

a(0 = 1, for all i ∈ N : a(i+1 = aa(i,

and the right principal powers of a as

a0) = 1, for all i ∈ N : ai+1) = aai).

18 Chapter 2. Algebraic Foundations

Definition 2.46. A finite semifield D is called left primitive semifield, if it possesses an element
ω such that D∗ is the set of all left principal powers of ω. The element ω is called a left primitive
element. D is called right primitive semifield, if it possesses an element ω such that D∗ is the
set of all right principal powers of ω. The element ω is called a right primitive element. The
semifield is called primitive, if its both left and right primitive.

Example 2.47. Any finite field is a primitive semifield.

Example 2.48. Knuth’s binary semifield of order 32 [Knu65] is neither left nor right primitive.
This was shown by [Rú04].

Definition 2.49. A polynomial f ∈ Fq[x] of degree m ≥ 1 is called primitive over Fq if f is
monic, f (0) ̸= 0, and ord(f) = qm−1. Here, the order of f (denoted as ord(f)) means the least
positive integer l for which f (x) divides xl−1. Any primitive polynomial is irreducible [LN83].

Proposition 2.50 ([HR07]). If D is a finite semifield of dimension d over its center Z(D) = Fq,
then ω ∈ D is a left primitive element of D if and only if the characteristic polynomial of the
linear map Lω : D→ D, is a primitive polynomial of degree d over Z(D).

Corollary 2.51 ([HR07]). If ω is a left primitive element of a finite semifield D, then {1,ω,ω(2, . . . ,
ω(d−1} is a Z(D)-basis of the algebra D.

An effective description of finite semifields can be given in terms of matrices, as the follow-
ing proposition shows.

Proposition 2.52 ([RCR09]). Any finite semifield D of order qd and center containing Fq can
be described by a set of d matrices {A1, . . . ,Ad}, known as standard basis, such that

1. A1 is the identity matrix.

2.
d
∑

i=1
αiAi is invertible for all nonzero tuples (α1, . . . ,αd) ∈ Fd

q.

3. The first column of the matrix Ai is the column vector with a 1 in the i-th position, and 0
everywhere else.

The semifield D can be identified with the algebra (Fd
q,+, ·), where the multiplication is

given by x · y = ∑
d
i=1 xiAiy. As a consequence of this proposition, we have:

Corollary 2.53. 1. [Alb60] If Fq is the center of D, then any non-scalar linear combination
of a standard basis (i.e., not of the form λA1) has a characteristic polynomial without
linear factors.

2. In the conditions of Proposition 2.52: [HR07] D is not left primitive if and only if for any
non-scalar linear combination of a standard basis, its characteristic polynomial is not a
primitive polynomial.

2.5. Character Theory of Finite Abelian Groups 19

2.5 Character Theory of Finite Abelian Groups

In this section, let G be a finite abelian group. By theorem 2.14, G is isomorphic to a product of
cyclic groups

G∼= Z/n1Z×Z/n2Z×·· ·×Z/nkZ, (2.2)

where Z/niZ = {0,1, . . . ,ni − 1} is the additive group of integers modulo ni. Let ϕ : G →
Z/n1Z×Z/n2Z×·· ·×Z/nkZ be a group isomorphism. For g ∈ G, denote ϕ(g) as k-tuples:
ϕ(g) = (g1, . . . ,gk) , with gi ∈ Z/niZ. Write −ϕ(g) for the (additive) inverse of g ∈ G in
Z/n1Z×Z/n2Z× ·· · ×Z/nkZ. Denote the identity of G as 1, so ϕ(1) = (0,0, . . . ,0) . Let
ϕ(e1) = β1 = (1,0,0, . . . ,0),ϕ(e2) = β2 = (0,1,0, . . . ,0), . . . ,ϕ(ek) = βk = (0,0,0 . . . ,1) ∈ G.
Then,

ϕ(g) =
k

∑
j=1

g jβ j.

We shall use this additive representation of G.

Definition 2.54. A character of a group G is a group homomorphism χ from G to the multi-
plicative group of nonzero complex numbers C∗ = C−{0},χ : G→ C∗.

Let g = (g1, . . . ,gk) ∈ G, so

χ(g) = χ

(
k

∑
j=1

g jβ j

)
=

k

∏
j=1

χ
(
β j
)g j .

Hence, χ is completely determined by β1, . . . ,βk. Since the order of β j is n j, χ
(
β j
)

has or-

der dividing n j, so χ
(
β j
)
= ω

h j
n j , for some h j ∈ Z/n jZ, and ωn j = exp

(
2πi
n j

)
(a complex prim-

itive n j-th root of unity). Now, any given character χ : G→ C∗ is determined by (h1, . . . ,hk) ,
with h j ∈ {0,1, . . . ,n j}. Therefore, each character χ can be labelled by an element of G. Recip-
rocally, any of such labellings determines a character χ .

Definition 2.55. For each g ∈ G, we define the character,

χg : G → C∗

h 7→ χg(h) =
k
∏
j=1

ω
g jh j
n j .

Proposition 2.56. Let χ(G) denote the set {χg : g ∈ G} of all such maps. Then, χ(G) is a
group under χg ·χh = χg+h, and χ(G) is isomorphic to G.

Definition 2.57. Given a subgroup H of a finite abelian group G, its orthogonal subgroup H⊥

is defined as the set of all elements in G orthogonal to H, i.e.,

H⊥ = {g ∈ G : χg(h) = 1, for all h ∈ H}.

20 Chapter 2. Algebraic Foundations

It follows that H⊥ is a subgroup of G, since the identity 1 ∈ G is in H⊥ (χ1(g) = 1, for
all g ∈ G), and if a,b ∈ H⊥ then, for any h ∈ H, we have χh(a− b) = χh(a)/χh(b) = 1, thus
a−b ∈ H⊥.

Proposition 2.58. H⊥ ∼= G/H, and
(
H⊥
)⊥

= H.

In particular, if G ∼= (Z/2Z)n , (Z/2Z)n naturally comes with a group structure given by
the (component-wise) XOR (addition mod 2) between bit vectors: let x,y ∈ (Z/2Z)n , with
x = (x1, . . . ,xn) , and y = (y1, . . . ,yn) . So, (x1, . . . ,xn)⊕ (y1, . . . ,yn) = (x1⊕ y1, . . . ,xn⊕ yn) . By
x · y, let us denote the inner product modulo 2 of x and y, i.e.,

x · y =

(
n

∑
i=1

xiyi

)
mod 2.

Therefore, if H is a subgroup of G, and since χx(y) =
n
∏
j=1

(−1)x jy j = 1 if and only if
n
∑
j=1

x jy j ≡ 0

mod 2, we have

H⊥ = {x ∈ G : χx(y) = 1, for all y ∈ H}= {x ∈ G : x · y = 0, for all y ∈ H}.

This means that, if x,y are binary vectors in an n-dimensional F2-vector space, then H is a
subspace, and H⊥ is the orthogonal complement to H (with respect to the inner product ·).

In general, if G∼= Z/n1Z×Z/n2Z×·· ·×Z/nkZ, let m be the least common multiple of all
ni’s. Any root of unity ωni can be written as a power of ωm, where m = lcm(n1, . . . ,nk). Indeed,

ωni = ω

m
ni
m . Let x = (g1,g2, . . . ,gn) ,y = (h1,h2, . . . ,hn) be elements of Z/n1Z×Z/n2Z×·· ·×

Z/nkZ. Then,

χg(h) =
k

∏
j=1

ω
g jh j
n j =

k

∏
j=1

(
ω

m
n j
m

)g jh j

=
k

∏
j=1

(
ω

mg jh j
n j

m

)
= ω

mg1h1
n1

+···+mgkhk
nk

m ,

which means that

H⊥ = {x ∈ G : χx(y) = 1, for all y ∈ H}=
{

x ∈ G :
mg1h1

n1
+ · · ·+ mgkhk

nk
= 0, for all y ∈ H

}
.

In particular, if G∼= (Z/pZ)n , then,

H⊥ = {x ∈ G : χx(y) = 1, for all y ∈ H}
= {x ∈ G : g1h1 + · · ·+gkhk = 0, for all y ∈ H}.

Finally, let us recall this well-known fact:

Proposition 2.59. Let ω be a complex n-th root of unity (i.e., ωn = 1, and ωk ̸= 1, if 1 < k < n),

and suppose that ω ̸= 1. Then,
n−1
∑

k=0
ωk = 0.

2.6. Probability of Generating a Group 21

2.6 Probability of Generating a Group
In this subsection, we follow [Pak00]. We are interested in the probability that a certain amount
of elements chosen uniformly at random from a finite group will generate the whole group.

Let ϕk(G) denote the probability that k random elements of G generate the entire group, i.e.,

ϕk(G) = Pr(⟨g1,g2, . . . ,gk⟩= G),

where gi are elements of G, chosen independently and uniformly at random from G. For a finite
cyclic group G = ⟨g⟩, we know that G = ⟨gk⟩ if and only if gcd(n,k) = 1. So, for instance,
if |G| = n, then G has ϕ(n) generators, where ϕ denotes the Euler Phi function. Hence, the
probability of any randomly chosen element to be a generator of the group is

ϕ(n)
n

=

n ∏
p|n

(
1− 1

p

)
n

= ∏
p|n

(
1− 1

p

)
.

In general, we have:

Lemma 2.60. Let G be any finite group or order |G| ≤ 2r,r ≥ 1. Then, for all t ≥ 1,ϕt(G) ≥
ϕt (Zr

2) .

As a consequence of

Lemma 2.61. ϕr+t (Zr
2)≥ 1− 1

2t , for t ≥ 0.

We get,

Theorem 2.62. Let G be a finite group. For an integer t ≥ 0, the probability that k = t+ log2 |G|
elements chosen uniformly at random from G will generate G is bounded by

ϕk(G)≥ 1− 1
2t ,

for t ≥ 0.

For completeness, in this section, we present a result on the probability of coprimality of
integers uniformly sampled from a fixed range.

Lemma 2.63 ([Lom04]). Suppose that we have k≥ 2 uniformly random samples t1, . . . , tk from
the integers {0, . . . ,d−1}, with d ≥ 2. Then

Pr(gcd(t1, . . . , tk) = 1)≥ 1−
(

1
2

) k
2

.

22 Chapter 2. Algebraic Foundations

Chapter 3

Quantum preliminaries

The main purpose of this chapter is to give an explicit explanation of the quantum circuit model,
one of the most popular quantum computing paradigms, in order to understand quantum algo-
rithms. Additionally, we give the conventions and choices of notation used throughout this
thesis. As a last section, we briefly give an explanation of another quantum computing model,
namely Adiabatic Quantum Computing.

3.1 Quantum Circuit Model

The quantum circuit model is a model for quantum computing. In it, qubits store data, oper-
ations are performed with quantum gates, and results are obtained via measurements. All of
these are ruled by the laws of quantum mechanics. We start by explaining some basic notions
on qubits and quantum gates that would be useful for the next chapters. Details can be found
for instance in [NC11], [CGC23], and [YM08].

3.1.1 Braket Notation

Let us begin with some notation. Let K be a field (usually C), and let V be a K-vector space. A
ket is an expression of the form |v⟩. Mathematically, it denotes a vector. Hence, |·⟩ notation is
used to indicate that the object is a vector and it is the standard quantum-mechanical notation for
a vector in a vector space. A bra is an expression of the form ⟨.| . Mathematically, it denotes a
linear map f : V →K. Letting the linear functional ⟨ f | act on a vector |v⟩ is written as ⟨ f |v⟩ ∈K.

Example 3.1. In the C-vector space Cn, the space of all n-tuples of complex numbers, kets can
be seen as column vectors and bras are the Hermitian conjugates of kets. That is, for a given
ket, the corresponding bra is a row vector (the transpose of a ket), where the elements have been
complex conjugated.

23

24 Chapter 3. Quantum preliminaries

Example 3.2. If Cn has the standard inner product, then for vectors |u⟩ and |v⟩ in Cn, i.e.,

|u⟩=


u1
u2
...

un

 , |v⟩=


v1
v2
...

vn

 ,
with ui,vi ∈ C, for all i = 1, . . . ,n, the bra of |u⟩ is the conjugate transpose of the vector |u⟩ ,
which is

(|u⟩)† =




u1
u2
...

un




t

=
[

u1 u2 . . . un
]
,

where the t superindex denotes the transpose of a matrix. Thus, the standard inner product in
Cn can be written as

⟨u|v⟩ := (|u⟩)† |v⟩=
n

∑
i=1

uivi,

and the norm of a vector |v⟩ is defined by

|| |v⟩||2 = ⟨v|v⟩=
n

∑
i=1

vivi =
n

∑
i=1
|vi|2.

Note that the product between |v⟩ and ⟨v| , called the outer product, yields a matrix of size n×n :

|v⟩⟨v|=


v1
v2
...

vn

[v1 v2 . . . vn
]
=


v1v1 v1v2 . . . v1vn
v2v1 v2v2 . . . v2vn

...
...

vnv1 vnv2 . . . vnvn

 .
Note that in the finite dimensional complex vector spaces that come up in quantum compu-

tation and quantum information, a Hilbert space is exactly the same thing as an inner product
space (since every finite dimensional normed vector space is complete).

The simplest quantum mechanical system, and the system which we will be the most concerned
with, is the qubit.

3.1.2 Qubits

Consider the set {|0⟩ , |1⟩} , where |0⟩ =
[

1 0
]t and |1⟩ =

[
0 1

]t
. It is an orthonormal

basis of C2. Indeed, ⟨0|1⟩= ⟨1|0⟩= 0 and ⟨0|0⟩= ⟨1|1⟩= 1, since

⟨0|1⟩= (|0⟩)† |1⟩=
[
1 0

][0
1

]
= 0.

3.1. Quantum Circuit Model 25

It is called the computational basis of C2. Now, let us talk about qubits. A quantum-bit or qubit
for short, is the minimal information unit in quantum computing. In contrast to normal bits,
which can be in state 0 or in state 1, it can be in state |0⟩ or |1⟩ , or it could be in a superposition
α |0⟩+β |1⟩ where α,β ∈ C, and |α|2 + |β |2 = 1.

The scalars α,β are called the amplitudes of the state. The quantity
√
|a|2 + |b|2 is called

the norm of the state, and, when its is 1, the state is normalised.

Example 3.3. For example,

• |+⟩ := 1√
2
(|0⟩+ |1⟩)

• |−⟩ := 1√
2
(|0⟩− |1⟩)

• |i+⟩= 1√
2
(|0⟩+ i |1⟩)

• |i−⟩= 1√
2
(|0⟩− i |1⟩)

are qubits states.

Definition 3.4. Superposition refers to the fact that any linear combination of two quantum
states, once normalized, will also be a valid quantum state.

A quantum computer contains several qubits. Thus, it is necessary to know how to construct
the combined state of a system of qubits given the states of the individual qubits. The joint state
of a system of qubits is described using an operation known as the tensor product⊗. The tensor
product of two vectors |u⟩ and |v⟩ of Cn, denoted as |u⟩⊗ |v⟩ is defined by

|u⟩⊗ |v⟩=


u1
u2
...

un

⊗


v1
v2
...

vm

=



u1v1
u1v2

...
u2vm
u2v2

...
u2vm
u3v1

...
unvm


,

with ui,vi ∈ C, for all i = 1, . . . ,n. Now, let us define the computational basis for C4. Denote
|i⟩⊗ | j⟩ as |i j⟩ for i, j ∈ {|0⟩ , |1⟩}, so

|00⟩= |0⟩⊗ |0⟩=
[

1 0 0 0
]t

|01⟩= |0⟩⊗ |1⟩=
[

0 1 0 0
]t

|10⟩= |1⟩⊗ |0⟩=
[

0 0 1 0
]t

|11⟩= |1⟩⊗ |1⟩=
[

0 0 0 1
]t
.

26 Chapter 3. Quantum preliminaries

The computational basis would be {|00⟩ , |01⟩ , |10⟩ , |11⟩}. For a more convenient notation, de-
note |00⟩= |0⟩, |01⟩= |1⟩ , |10⟩= |2⟩ , |11⟩= |3⟩ , so the computational basis for C4 would be
{|0⟩ , |1⟩ , |2⟩ , |3⟩}. A two-qubit state is of the form

|ψ⟩= α00 |00⟩+α01 |01⟩+α10 |10⟩+α11 |11⟩ ,

where α00,α01,α10,α11 ∈ C and |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

Example 3.5. The vectors

|00⟩+ |11⟩√
2

,
|00⟩− |11⟩√

2
,
|10⟩+ |01⟩√

2
,
|01⟩− |10⟩√

2
,

are two-qubit states. These four states are known as the Bell states, or the Bell base, or the EPR
pairs.

In general, one can see that the dimension of the state space grows exponentially with the
number of qubits n and the number of basis vectors is 2n. Indeed, the computational basis for
C2n

would be

{|0⟩⊗ |0⟩⊗ · · ·⊗ |0⟩ , |0⟩⊗ |0⟩⊗ · · ·⊗ |1⟩ , . . . , |1⟩⊗ |1⟩ · · ·⊗ |1⟩}
={|0⟩ , |1⟩ , . . . , |2n−1⟩},

so, a generic state of a multi-qubit system is |ψ⟩ =
2n−1
∑

i=0
αi |i⟩ where

2n−1
∑

i=0
|αi|2 = 1 and αi ∈ C

for 0≤ i≤ 2n−1.

Definition 3.6. Let |ψ⟩ be a state. We say that |ψ⟩ is a product state if there are two states |ϕ1⟩
and |ϕ2⟩ such that |ψ⟩ = |ϕ1⟩⊗ |ϕ2⟩, that is, |ψ⟩ can be written as the tensor product between
two states |ϕ1⟩ and |ϕ2⟩. If |ψ⟩ is not a state product, then we say it is entangled.

Example 3.7. For example, the state |01⟩−|10⟩√
2

is an entangled state. Indeed, let us suppose not.
Then, for some α1,β1,α2,β2 we would have

|00⟩− |10⟩√
2

= (α1 |0⟩+β1 |1⟩)⊗ (α2 |0⟩+β2 |1⟩)

= α1α2 |00⟩+α1β2 |01⟩+β1α2 |10⟩+β1β2 |11⟩

So, α1α2 = 0,α1β2 = 1√
2
,β1α2 = − 1√

2
,β1β2 = 0. Then, either α1 = 0 or α2 = 0. If α2 = 0,

then β1α2 = 0, which is not valid. If α1 = 0, then α1β2 = 0 which is not valid. Hence, |01⟩−|10⟩√
2

is an entangled state.

Lastly, let us define what is a quantum register,

Definition 3.8. A quantum register is a system comprising multiple qubits.

3.1. Quantum Circuit Model 27

3.1.3 Measurement
An important ingredient of quantum circuits is the measurement of a qubit in the computational
basis. It allows us to obtain classical values from quantum states, with two outcomes. In fact,
consider the state |ψ⟩ = α |0⟩+β |1⟩ with α,β ∈ C and |α|2 + |β |2 = 1. If we measure |ψ⟩ ,
then the probability of obtaining measurement outcome 0 is |α|2. And the probability of obtain-
ing measurement outcome 1 is |β |2. Naturally, these two probabilities must add up to one (i.e.,
the probability of finding the system in any of them is 1), hence the need for the normalisation
condition |α|2 + |β |2 = 1. The state after measurement in the two cases is |0⟩ and |1⟩ , respec-
tively.

Now, let |ψ⟩= ∑
2n−1
i=0 ai |i⟩ , with ai ∈C such that ∑

2n−1
i=0 |ai|2 = 1, be a generic state of a system

of n qubits. If we measure all the qubits of the system |ψ⟩, we obtain i with probability |ai|2,
and the state would collapse to |i⟩ . If we measure the i-th qubit, then we will obtain 0 with
probability ∑ j∈J |a j|2 where J is the set of numbers whose j-th bit is 0, and the state of the
system after measuring 0 will be

∑
j∈J

a j | j⟩√
∑
j∈J
|a j|2

.

The case in which we obtain 1 is analogous.

In general, if we have a state
∑

x∈{0,1}n,y∈{0,1}m

axy |x⟩ |y⟩ ,

and we measure the first n−qubit register, we will obtain |x0⟩ with probability ∑y∈{0,1}m |ax0y|2,
which is equivalent to ∣∣∣∣∣

∣∣∣∣∣ ∑
y∈{0,1}m

ax0y |y⟩

∣∣∣∣∣
∣∣∣∣∣
2

,

and the quantum state then collapses to

∑
y∈{0,1}m

ax0y |x0⟩ |y⟩√
∑

y∈{0,1}m
|ax0y|2

.

The case where the second register is measured is analogous as measuring the first register.
When we have more than two registers, the situation is also analogous.

Example 3.9. Suppose that we have the superposition

|ψ⟩= 1
2
(|000⟩+ |100⟩+ |101⟩− |111⟩) ,

28 Chapter 3. Quantum preliminaries

and we measure the third qubit. The probability that the measurement outcome is 0 is(
1
2

)2

+

(
1
2

)2

=
1
2
,

and in this case the resulting state is

1√
2
(|00⟩+ |10⟩) |0⟩= 1√

2
(|000⟩+ |100⟩) .

The probability that the measurement outcome is 1 is also 1
2 , and the resulting superposition is

1√
2
(|10⟩− |11⟩) |1⟩= 1√

2
(|101⟩− |111⟩) .

Note 1. There is a well-known principle called, The Principle of Deferred Measurement,
which states that measurements can always be moved from an intermediate stage of a quantum
circuit to the end of the circuit; if the measurement results are used at any stage of the circuit
then the classically controlled operations can be replaced by conditional quantum operations.
[[NC11], Section 4.4]. This principle will be used in Section 6.3.2.

3.1.4 Quantum gates
In order to perform computations, we need to manipulate the state of qubits. In the quantum
circuit model, operations are a special type of linear transformation applied to the vectors repre-
senting the states of the qubits. These linear transformations are unitary matrices and are called
quantum gates. Recall that a matrix U is unitary if U†U = UU† = In where In is the identity
matrix of size n× n, and † is the conjugate transpose (see Table 1.2). In other words, U is
unitary if U is invertible and U−1 =U†. Now, let us see some general properties that the unitary
matrices satisfy, and then we will give some examples of those matrices.

Proposition 3.10. Let T be a unitary matrix and λ an eigenvalue of T. Then |λ |= 1.

Proof. Suppose |v⟩ is not the zero vector, and T |v⟩= λ |v⟩ . Then

|λ |2 ⟨v|v⟩= ⟨λv|λv⟩= ⟨T v|T v⟩= (T |v⟩)†T |v⟩= ⟨v|T †T |v⟩= ⟨v|v⟩ .

Since ⟨v|v⟩= ||v||2 ̸= 0, then |λ |2 = 1 and hence |λ |= 1.

Proposition 3.11. Unitary matrices preserve inner products between vectors.

Proof. Let |v⟩ and |w⟩ be any two vectors, and U a unitary operator. Then,

⟨Uv|Uw⟩= ⟨v|U†U |w⟩= ⟨v| I |w⟩= ⟨v|w⟩ .

3.1. Quantum Circuit Model 29

Proposition 3.11 tell us that unitary matrices preserve the inner product, which means that
no matter how you transform a vector with a sequence of unitary matrices, the normalization
condition still holds. Indeed, if ⟨ψ|ψ⟩= 1 and U is unitary then let U |ψ⟩= |ψ ′⟩. It holds that〈

ψ
′∣∣ψ ′〉= ∣∣ψ ′〉† ∣∣ψ ′〉=U |ψ⟩†U |ψ⟩= ⟨ψ|U†U |ψ⟩= ⟨ψ| I |ψ⟩= ⟨ψ|ψ⟩= 1.

Proposition 3.12. The tensor product between two unitary matrices is a unitary matrix.

Proof. Let U1,U2 be two unitary matrices of size n1×n1 and n2×n2 respectively. On one hand

(U1⊗U2)
† (U1⊗U2) =

(
U†

1 ⊗U†
2

)
(U1⊗U2) =U†

1 U1⊗U†
2 U2 = In1⊗ In2 = In,

with n = n1 +n2, and on the other hand,

(U1⊗U2)(U1⊗U2)
† = (U1⊗U2)

(
U†

1 ⊗U†
2

)
=U1U†

1 ⊗U2U†
2 = In1⊗ In2 = In.

Hence, U1⊗U2 is unitary.

Now, let us see some examples of important one-qubit quantum gates:

I2 =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

S =

[
1 0
0 i

]
, T =

[
1 0
0 ei π

4

]
, H =

1√
2

[
1 1
1 −1

]
.

The X gate is the quantum version of the NOT gate and H is the Hadamard gate, one of
the most widely used single-qubit gates. The reason behind this is that the Hadamard gate can
be used to create superposition of states, as shown by its action on the computational basis:

|0⟩ H−→ 1√
2
|0⟩+ 1√

2
|1⟩ ,

|1⟩ H−→ 1√
2
|0⟩− 1√

2
|1⟩ .

Other examples of quantum gates are the parametrized gates

U1(λ) =

[
1 0
0 eiλ

]
,U2(φ ,λ) =

1√
2

[
1 −eiλ

eiφ ei(φ+λ)

]
.

Note that U1 (π) = Z,U1
(

π

2

)
= S,U1

(
π

4

)
= T, and U2 (0,π) = H. The U1(λ) gates are also

known as phase gates.

30 Chapter 3. Quantum preliminaries

So far we have only seen one-qubit gates. Let us start with two-qubit gates. Since the ten-
sor product between two unitary operators is unitary, two one-qubit gates acting on each qubit
independently would form a two-qubit gate whose action is given by

U |ψ1⟩⊗ |ψ2⟩= (U1⊗U2)(|ψ1⟩⊗ |ψ2⟩) =U1 |ψ1⟩⊗U2 |ψ2⟩ ,

where |ψ1⟩ , |ψ2⟩ are two states of qubits and U1 and U2 are one-qubit gate acting respectively
on states |ψ1⟩ and |ψ2⟩ .

However, there are unitary matrices that cannot be written as the tensor product of unitary
matrices. Indeed, an example of this is one of the most important two-qubit gate, the CNOT or
controlled-NOT given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
Note that

CNOT |00⟩= |00⟩ CNOT |10⟩= |1⟩NOT |0⟩= |11⟩
CNOT |01⟩= |01⟩ CNOT |11⟩= |1⟩NOT |1⟩= |10⟩ .

In general, for any quantum single-qubit gate U, its controlled version CU is given by

CU |00⟩= |00⟩ CU |10⟩= |1⟩U |0⟩
CU |01⟩= |01⟩ CU |11⟩= |1⟩U |1⟩ .

So, if U is given by

U =

[
a b
c d

]
,

then

CU =


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 .
It can be seen that if U is a unitary, CU is also unitary, and the application or not of U is
controlled by the first qubit

C1U = |0⟩⟨0|⊗ I + |1⟩⟨1|⊗U,

but if the first qubit is the target and the second qubit is the controlled one then

C2U = I⊗|0⟩⟨0|+U⊗|1⟩⟨1| .

3.2. Quantum Circuits 31

Now, an example of a three-qubit gate is the doubly-controlled NOT gate (CCNOT) or Toffoli
gate. Its matrix is given by

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

This gate behaves analogously to the CNOT gate, with the difference that both the first and
second qubits must be 1 in order for the third qubit to be negated.

Now, let us see an example of a n-qubit gate. If we take the gate H and make the tensor
product of itself n-times we would have an n-qubit gate H⊗

n
= H⊗H⊗·· ·⊗H.

Proposition 3.13. Let |x⟩ = |x1 · · ·xn⟩ denote a computational basis state on n qubits. That is,
x ∈ {0,1}n and each xi ∈ 0,1 denotes a particular bit value. Then

H⊗
n |x⟩= 1√

2n

n

∑
j=0

(−1)x· j | j⟩ .

where x · j = x1 j1⊕ x2 j2⊕·· ·⊕ xn jn, and ⊕ stands for XOR.

Proof. See, for instance, [Section 6.1, [YM08]].

3.2 Quantum Circuits
Let us now describe quantum circuits. In the circuit representation, the horizontal lines are
called wires and they represent the qubits that we are working with, and the circuit is read from
left to right. Gates are then drawn on the qubits they act on. This is done in sequence from left
to right. The initial state of the qubit is denoted at the beginning of each of the qubit lines. So
for instance, the circuit

|ψ⟩ H

represents a Hadamard transform applied to a single qubit, with state |ψ⟩. If the input is |ψ⟩ the
output is H |ψ⟩ .

Now, let us assume that we have two gates U and V , that both act on a qubit |ψ⟩ . When V
is put after U in a circuit, then the effect of the two gates can be described as a single gate VU
which is the product between the two matrices. It can be seen in the following quantum circuit

|ψ⟩ U V = |ψ⟩ VU

32 Chapter 3. Quantum preliminaries

Example 3.14. It can be proved that

|ψ⟩ H Z H = |ψ⟩ X

since X = HZH.

The measurement operator allows us to obtain classical values from quantum states. In
quantum circuits, it is denoted by the gauge symbol shown in Figure 3.1.

Figure 3.1: Quantum circuit symbol for measurement.

Example 3.15. Consider the following quantum circuit:

|0⟩ H U1(λ) H .

Let us see what it produces.

1. First, we apply the Hadamard gate on the first qubit to obtain

|0⟩ H−→ H |0⟩=
(
|0⟩+ |1⟩√

2

)
.

2. Then, we apply the phase gate U1(λ) to obtain(
|0⟩+ |1⟩√

2

)
U1(λ)−−−→ U1(λ)

(
|0⟩+ |1⟩√

2

)
=

(
|0⟩+ eiλ |1⟩√

2

)
.

3. Then, we apply the Hadamard gate to get(
|0⟩+ eiλ |1⟩√

2

)
H−→ H

(
|0⟩+ eiλ |1⟩√

2

)
=

1
2

(
|0⟩+ |1⟩+ eiλ (|0⟩− |1⟩)

)
= cos

λ

2
|0⟩− isin

λ

2
|1⟩ .

4. Finally, we measure. The probability of obtaining 0 is cos2 λ

2 , and the probability of
obtaining 1 is sin2 λ

2 .

3.2. Quantum Circuits 33

•

X

Figure 3.2: CNOT Representation.

The circuit representation of a controlled one qubit-gate U is

•

U .

This leads to an important example.

Example 3.16. The representation of the CNOT gate in a quantum circuit can be seen in Fig-
ure 3.2.
As an example, the operation a⊕ b, with a,b Boolean variables, can be implemented with 1
CNOT gate as

|a⟩ • |a⟩

|b⟩ X |a⊕b⟩

Now, if we have two quantum gates U and V in parallel, with U acting on a qubit |ψ⟩ and V
acting on a qubit |ϕ⟩ , this is equivalent to the gate U⊗V acting on |ψ⟩⊗ |ϕ⟩ , as it is shown in
the following circuit:

|ψ⟩ U |ψ⟩

U⊗V=

|ϕ⟩ V |ϕ⟩

Example 3.17. In general, the gate H⊗
n

acting on |0⟩⊗
n

in the quantum circuit representation
can be seen as

|0⟩ H

|0⟩ H
...

|0⟩ H


n inputs

Example 3.18. Consider the following quantum circuit:

|0⟩ H •

|0⟩ X

Let us see what it produces.

34 Chapter 3. Quantum preliminaries

1. First, we apply the Hadamard gate on the first qubit and, at the same time, we apply the
identity on the second qubit, and as we know this is in fact the tensor product between the
Hadamard gate and the identity. This give us

|0⟩ |0⟩ H⊗I−−→ (H⊗ I) |0⟩ |0⟩= H |0⟩⊗ I |0⟩=
(
|0⟩+ |1⟩√

2

)
⊗|0⟩= 1√

2
(|00⟩+ |10⟩) .

2. Then, we apply the CNOT gate to get

CNOT
(

1√
2
(|00⟩+ |10⟩)

)
=

1√
2
(CNOT |00⟩+CNOT |10⟩) = 1√

2
(|00⟩+ |11⟩) .

Thus, this quantum circuit prepares a Bell state.

Example 3.19 ([CEMM98] Hadamard Test). The Hadamard Test is a routine to estimate the
real part of the value ⟨ψ|U |ψ⟩ where |ψ⟩ is a quantum state and U is a unitary gate acting on
the space of |ψ⟩. Its quantum circuit is given in Figure 3.3.

|0⟩ H • H

|ψ⟩ U

Figure 3.3: Circuit of the Hadamard Test.

The action of this circuit can be described with the following steps:

1. First, apply H⊗ I to |0⟩⊗ |ψ⟩ to get

|0⟩⊗ |ψ⟩ H⊗I−−→ (|0⟩+ |1⟩)√
2

⊗|ψ⟩

=
1√
2
(|0⟩⊗ |ψ⟩+ |1⟩⊗ |ψ⟩) .

2. Then, we apply CU to obtain

1√
2
(|0⟩⊗ |ψ⟩+ |1⟩⊗ |ψ⟩) CU−−→ 1√

2
(|0⟩⊗ I |ψ⟩+ |1⟩⊗U |ψ⟩) .

3. Then, we apply H⊗ I to obtain

1√
2
(|0⟩⊗ I |ψ⟩+ |1⟩⊗U |ψ⟩) H⊗I−−→ 1√

2
(H |0⟩⊗ |ψ⟩+H |1⟩⊗U |ψ⟩)

=
1√
2

(
|0⟩+ |1⟩√

2
⊗|ψ⟩+ |0⟩− |1⟩√

2
⊗U |ψ⟩

)
=

1
2
(|0⟩⊗ (I +U)) |ψ⟩+ 1

2
(|1⟩⊗ (I−U) |ψ⟩) .

3.2. Quantum Circuits 35

Let us write |ψ⟩ as α |0⟩+β |1⟩ with α,β ∈ C and |α|2 + |β |2 = 1. There exist δ ,ε ∈ C,
such that U |ψ⟩= δ |0⟩+ ε |1⟩ . So,

1
2
(|0⟩⊗ (I +U)) |ψ⟩+ 1

2
(|1⟩⊗ (I−U) |ψ⟩)

=
1
2
(|0⟩⊗ ((α +δ) |0⟩+(β + ε) |1⟩))+ 1

2
(|1⟩⊗ ((α−δ) |0⟩+(β − ε) |1⟩)) .

4. Finally we measure the first qubit. The result is 0 with probability

1
4
(
|α +δ |2 + |β + ε|2

)
.

And, the result would be 1 with probability

1
4
(
|α−δ |2 + |β − ε|2

)
.

Now, we can obtain the desired result with a simple computation:

1
4
(
|α +δ |2 + |β + ε|2

)
(1)+

1
4
(
|α−δ |2 + |β − ε|2

)
(−1)

=
1
4
(
|α +δ |2−|α−δ |2 + |β + ε|2−|β − ε|2

)
=

1
4
((4Re(α)4Re(δ)+4Im(α)4Im(δ))+(4Re(β)4Re(ε)+4Im(β)4Im(ε)))

=Re(α)Re(δ)− Im(α) Im(δ)+Re
(

β

)
Re(ε)− Im

(
β

)
Im(ε)

=Re
(

αδ +βε

)
=Re⟨ψ|U |ψ⟩ .

Now, let us consider a particular case where |ψ⟩ is an eigenstate of the unitary operator U, so
U |ψ⟩= eiϕ |ψ⟩ , for ϕ ∈ [0,2π]. When we apply CU we obtain

1√
2
(|0⟩⊗ |ψ⟩+ |1⟩⊗ |ψ⟩) CU−−→ 1√

2
(|0⟩⊗ I |ψ⟩+ |1⟩⊗U |ψ⟩)

=
1√
2

(
|0⟩⊗ |ψ⟩+ |1⟩⊗

(
eiϕ |ψ⟩

))
=

1√
2

(
|0⟩⊗ |ψ⟩+ eiϕ |1⟩⊗ |ψ⟩

)
=

1√
2

((
|0⟩+ eiϕ |1⟩

)
⊗|ψ⟩

)
.

Then, applying H⊗ I we get

1√
2

((
|0⟩+ eiϕ |1⟩

)
⊗|ψ⟩

) H⊗I−−→ 1
2
((

1+ eiϕ) |0⟩+ (1− eiϕ) |1⟩⊗ |ψ⟩) .

36 Chapter 3. Quantum preliminaries

Now, if we measure the first qubit, we get 0 with probability

1
4

∣∣(1+ eiϕ)∣∣2 = 1
4

(
(1+ cosϕ)2 +(sinϕ)2

)
=

1
4
(2+2cosϕ)

=
1
4

(
2
(

2cos2
(

ϕ

2

)))
= cos2

(
ϕ

2

)
.

And we get 1 with probability,

1
4

∣∣(1− eiϕ)∣∣2 = 1
4

(
(1− cosϕ)2 +(−sinϕ)2

)
=

1
4
(2−2cosϕ)

=
1
4

(
4sin2

(
ϕ

2

))
.

= sin2
(

ϕ

2

)
.

As a last example, let us give the quantum circuit representation of the Toffoli gate. It is
known that the Toffoli gate is a universal reversible logic gate. In fact, it can be used to imple-
ment the AND gate. For instance, a∧ b (where ∧ is AND, a,b are Boolean variables) can be
constructed as in Figure 3.4.

|a⟩ • |a⟩
|b⟩ • |b⟩

|0⟩ X |a∧b⟩

Figure 3.4: Circuit for a∧b constructed with a Toffoli gate.

It is worth mentioning that the CNOT, Hadamard and T half-phase gates are a universal set
of gates [NC11] [Section 4.5], which means that we can approximate to any desired accuracy
any quantum transformation on an arbitrary number of qubits using only these gates. For ex-
ample, the circuit in Figure 3.5, shows a possible decomposition (or transpilation, which is the
process of rewriting a given input circuit to map the topology of a specific quantum device) of
a Toffoli gate, in the base [H,T,T †,CNOT] [[NC11] Section 4.2].

Lastly, let us define what is the size of a quantum circuit, and what we mean by efficient
quantum circuits, since most of this thesis is concerned with those concepts.

Definition 3.20. The size of a quantum circuit in a fixed basis of universal gates is the number
of gates it contains.

3.2. Quantum Circuits 37

• • • T •

• • T X T † X

H X T † X T X T † X T H

Figure 3.5: Descomposition of a Toffoli gate.

By efficient, we mean that as the size of the input grows, the size of the necessary quantum
gates such as NOT, Hadamard, T gates and CNOT should grow at most polynomially with the
size of the input.

3.2.1 Oracles

Many quantum algorithms are based on the analysis of some function f that is given as an
oracle. An oracle (also called black box) is a special kind of unitary transformation that is
defined by its action on the computational basis, and that is given as a gate that can be used in
a quantum circuit but whose inner workings cannot be inspected.

One of the main forms that oracles take is that of Boolean oracles. For a given Boolean
function f : {0,1}n→ {0,1}m, such a unitary operator, denoted U f , acts on quantum states in
(C2)⊗(n+m), where a ∈ {0,1}n and h ∈ {0,1}m, and is defined by

U f |a⟩ |h⟩= |a⟩ |h⊕ f (a)⟩ .

Observe that, when the second m−qubit register is |0⟩, application of U f yields an evaluation
of the content of the first n−qubit register.

We can represent such an oracle with the circuit shown in Figure 3.6.

|a⟩
U f

|a⟩

|h⟩ |h⊕ f (a)⟩

Figure 3.6: Representation of the oracle U f .

Example 3.21. Let f : {0,1} → {0,1} defined by f (0) = 1 and f (1) = 0. A unitary operator
U f that implements U f |a⟩ |h⟩= |a⟩ |h⊕ f (a)⟩ is

Another form of oracle is the phase oracle, defined as Pf |x⟩ = (−1) f (x) |x⟩ , where f (x) ∈
{0,1}. Note that, in fact, it can be obtained from a Boolean oracle. Indeed, consider the Boolean

38 Chapter 3. Quantum preliminaries

X • X

X

Figure 3.7: Representation of the oracle U f of example 3.21.

oracle U f that correspond to the same function. Then

U f (|x⟩⊗ |−⟩) = |x⟩⊗
(

1√
2
(|0⊕ f (x)⟩− |1⊕ f (x)⟩)

)
=

1√
2
(−1) f (x) |x⟩⊗ (|0⟩− |1⟩)

= (−1) f (x) |x⟩⊗ |−⟩
= Pf |x⟩⊗ |−⟩

Here, we have used the fact that |0⊕a⟩− |1⊕a⟩ = (−1)a (|0⟩− |1⟩) for a ∈ {0,1}. Also note
that |−⟩= H |1⟩ . Therefore, we can get a phase oracle from a Boolean oracle.

These oracles typically requires a number of ancillary qubits that are initially in a well-defined
state, usually |0⟩ , to store partial results, and must be returned to the same state at the end of
the computation. This technique is used so that the ancillary qubits can be re-used. In many
cases, uncomputing a quantum register can be achieved by the inverse of the steps required for
the computation [NC11][Chapter 4].

Example 3.22. Using CNOT gates and Toffoli gates, we can represent the oracle for the Boolean
function f given by

f : {0,1}4 −→ {0,1}
(a,b,c,d) 7−→ (a∧b)⊕ (c∧d),

with a,b,c,d Boolean variables. Indeed, we can achieve it with 4 Toffoli gates and 1 CNOT
gate, as we can see in the quantum circuit shown in Figure 3.8.

Example 3.23. Consider the Boolean function:

f : {0,1}3 −→ {0,1}
(a1,a2,a3) 7−→ (a1⊕a2)∧ (∼ a2⊕a3)∧ (a1⊕a3).

Here, ∼ stands for NOT. Now, let us build its corresponding oracle (see Figure 3.9).
As it can be seen, it has a quantum register of 4 qubits, and a ancillary register of 5 qubits, 13
CNOT, 4 NOT and 4 Toffoli gates.

3.2. Quantum Circuits 39

|a⟩ • • |a⟩
|b⟩ • • |b⟩
|c⟩ • • |c⟩ Quantum Register
|d⟩ • • |d⟩

|0⟩ X | f (a,b,c,d)⟩

|0⟩ X X • X X |0⟩︸ ︷︷ ︸
Uncomputation Ancillary Register




Figure 3.8: Representation of the oracle U f of example 3.22

|a1⟩ • • • • |a1⟩
|a2⟩ • X • X X • X • |a2⟩
|a3⟩ • • • • |a3⟩
|0⟩ X | f (a1,a2,a3)⟩

|0⟩ X X • • X X |0⟩

|0⟩ X X • • X X |0⟩

|0⟩ X • • X |0⟩

|0⟩ X X • • X X |0⟩

|0⟩ X • X |0⟩

Figure 3.9: Representation of the oracle U f of example 3.23.

40 Chapter 3. Quantum preliminaries

3.3 Quantum Fourier Transform over Abelian Groups

Now, let us talk about one of the most important unitary transformations in quantum comput-
ing, which is the Quantum Fourier Transform (QFT) . The Quantum Fourier Transform is
the quantum implementation of the discrete Fourier transform over the amplitudes of a wave
function. And as a matter of fact, the QFT lies at the heart of quantum algorithms such as
Shor’s factoring algorithm, the quantum phase estimation algorithm and the algorithm used for
the Abelian HSP.

So, in this section we define the Quantum Fourier Transform over finite Abelian groups, and
for that, we require the basic elements of representation theory, given in Section 2.5. Then we
will see some particular examples we are interested in, together with their implementation.

Definition 3.24. Let G be a finite group. We can form a vector space over C which has the
group elements of G as a basis, denoted by {|g⟩ : g ∈ G}, such that the addition is given by

∑
g∈G

αg |g⟩+ ∑
g∈G

βg |g⟩ := ∑
g∈G

(αg +βg) |g⟩

where αg,βg ∈ C for all g ∈ G. Scalar multiplication is given by

λ ∑
g∈G

αg |g⟩= ∑
g∈G

λαg |g⟩ .

Definition 3.25. Let G = Z/NZ. Consider Cn′ such that 2n′ ≥ N = |G|, so that to each group
element g we can associate a basis element |g⟩. Then, the QFT over G is the transformation
with the following action on the basis states:

FG |g⟩=
1√
N ∑

h∈G
χg(h) |h⟩ ,

where χg(h) = e2πigh/N for g,h ∈ G. For basis elements that do not represent group elements
FG is the identity. For this reason, we usually omit the part of the QFT that acts as the identity.

Note 2. Equivalently, the Quantum Fourier Transform can be viewed as a unitary matrix

FG =
1√
N ∑

g,h∈G
χg(h) |h⟩⟨g| .

In fact, the equality holds, because, for a basis state | j⟩ , we have that

FG | j⟩=

(
1√
N ∑

g,h∈G
χg(h) |h⟩⟨g|

)
| j⟩= 1√

N ∑
g,h∈G

χg(h) |h⟩⟨g| j⟩=
1√
N ∑

h∈G
χ j(h) |h⟩ .

3.3. Quantum Fourier Transform over Abelian Groups 41

Now, let us see that it is unitary, i.e., FGF†
G = F†

GFG = IN . It holds that

FGF†
G =

(
1√
N ∑

g,h ∈ G
χg(h) |h⟩⟨g|

)(
1√
N ∑

g,h ∈ G
χg(h) |h⟩⟨g|

)†

=
1√
N

1√
N ∑

g,h ∈ G
χg(h)χg(h) |h⟩⟨g|(|h⟩⟨g|)†

=
1
N ∑

g,h ∈ G
χg(h)χg(h) |h⟩⟨g|g⟩⟨h|

=
1
N ∑

g,h ∈ G
|χg(h)|2 |h⟩⟨h|

=
1
N ∑

g,h ∈ G
1 |h⟩⟨h|

=
1
N ∑

h ∈ G
IN

=
1
N

NIN

= IN

The same holds for F†
GFG. Furthermore, from the unitary property it follows that the inverse of

the Quantum Fourier Transform is F†
G.

Now, let us see how we can implement the QFT. For that, let us first consider the case when
G=Z/NZ, with N = 2n. So far, we know that FG maps a basis element |x⟩ to 1√

N ∑
N−1
y=0 e2πixy/N |y⟩ .

However, if we use the fractional binary notation on the integer y, y/N = ∑
n
k=1 xk2−k or as

0.y1y2 . . .yn, the action of the quantum Fourier transform can be expressed as

FG|x⟩=
1√
N

N−1

∑
y=0

e
2πi
(

n
∑

k=1
yk2−k

)
x
|y1 . . .yn⟩

=
1√
N

N−1

∑
y=0

n

∏
k=0

e2πixyk2−k |y1 . . .yn⟩

=
1√
N

n⊗
k=0

(
|0⟩+ e2πix2−k |1⟩

)
=

1√
N

(
|0⟩+ e2πi[0.xn] |1⟩

)
⊗·· ·⊗

(
|0⟩+ e2πi[0.x1.x2...xn−1.xn] |1⟩

)
.

Then, the representation as a quantum circuit can be seen in Figure 3.10. The quantum gates

42 Chapter 3. Quantum preliminaries

used in the circuit of n qubits are the Hadamard gate H and the phase gate

Rk =

(
1 0
0 e2πi/2k

)
.

|x1⟩ H R2 R3 · · · Rn
|0⟩+e2πi[0.x1...xn]|1⟩√

2

|x2⟩ • H R2 · · · Rn−1
|0⟩+e2πi[0.x2...xn]|1⟩√

2

|x3⟩ • • · · · |0⟩+e2πi[0.x3...xn]|1⟩√
2...

|xn−1⟩ · · · H R2
|0⟩+e2πi[0.xn−1xn]|1⟩√

2

|xn⟩ • · · · • • H |0⟩+e2πi[0.xn]|1⟩√
2

Figure 3.10: Circuit of the Quantum Fourier Transform Case N = 2n.

The operations on each individual qubit can be implemented efficiently using one Hadamard
gate and a linear number of controlled phase gates. The first term requires one Hadamard gate
and (n− 1) controlled phase gates, the next term requires one Hadamard gate an (n− 2) con-
trolled phase gates, and the last step requires only one Hadamard gate. Hence, n+(n+ 1)+
. . .+ 1 = n(n+ 1)/2 = O(n2) quantum gates (which is quadratic in the number of qubits) are
needed. This means that it can be efficiently implemented.

One of the main reasons why we introduce the QFT, is that it lies at the heart of many applica-
tions of quantum computing and simulation that demonstrate exponential speed-ups compared
to the best-known classical counterparts. In particular, as part of the quantum phase estimation
sub-routine. In this procedure it is used the inverse of the Quantum Fourier Transform, so let us
see its quantum circuit.

To invert the QFT, we must run the circuit shown in Figure 3.10 in reverse, with the inverse
of each gate in place to achieve the transform

1√
N

N−1

∑
k=0

e2πi jk/N → | j⟩ .

Since the Hadamard gate is self-inverse, and the inverse of the rotations gate Rk is given by:

R†
k =

(
1 0
0 e−2πi/2k

)
,

the inverse QFT circuit is:

3.3. Quantum Fourier Transform over Abelian Groups 43

|x1⟩ R†
n R†

n−1 · · · R†
2 H

|x2⟩ R†
n−1 R†

n−2 · · · R†
2 H •

|x3⟩ · · · •
... · · · · · · · · ·

|xn−1⟩ R†
2 H · · · • · · · •

|xn⟩ H • • · · · •

Figure 3.11: Circuit of the Inverse Quantum Fourier Transform Case N = 2n.

Note that the quantum circuits shown in Figures 3.10 and 3.11, are only a valid implementation
of the QFT and the inverse of the QFT, when N is a power of 2. However, efficient quan-
tum circuits for the Fourier transform over Z/NZ with N odd are well studied. For instance,
see [Lom04] [Algorithm A.2.3] which use an implementation based on the Quantum Fourier
Transforms of powers of 2 to get an approximation of the odd one, within a desired error mea-
sured by the total variation distance defined as follows:

Definition 3.26. Given two probability distributions D and D′ over {0,1, . . . ,M− 1}, let |D−
D′|TV = ∑

M−1
k=0 |D(k)−D(k′)|.

Theorem 3.27. [Lom04] Given an odd integer N ≥ 13, and any
√

2≥ ε > 0. Then for FG with
G = Z/NZ,

1. There is a unit vector |ψ⟩ such that the output |v⟩ of the algorithm A.2.3 in [Lom04]
satisfies |||v⟩−FG |u⟩ |ψ⟩|| ≤ ε, with |u⟩ an element of G = {|0⟩ , |1⟩ , . . . , |N−1⟩}.

2. FG can be computed using at most ⌈12.53+ 3log2

√
N

ε
⌉ qubits, and the algorithm has

operation complexity

O
(

log2

√
N

ε

(
log2 log2

√
N

ε
+ log2

1
ε

))
.

3. The induced probability distributions Dv from the output of the algorithm, and D from
FG |u⟩⊗ |ψ⟩ satisfy that |Dv−D|TV ≤ 2ε + ε2.

Proof. The proof is fundamentally technical and it can be seen in [[Lom04] Appendix A].

3.3.1 QFT over (Z/pZ)n .

Now we know how to implement the QFT for Z/NZ when N = 2n and when N is odd. Consider
the Abelian group G = (Z/pZ)n with p a prime number. The vector space over C which has the

44 Chapter 3. Quantum preliminaries

group elements of G as a basis is isomorphic to the tensor product of each of the vector spaces
over C of Z/pZ, because we can map one basis to another by

|(x1,x2, . . . ,xn)⟩ 7→ |x1⟩⊗ |x2⟩⊗ · · ·⊗ |xn⟩

for xi ∈ Z/pZ. The QFT over a direct product of the cyclic groups Z/pZ is the tensor product
of the QFT over each group, i.e.,

FG =
n⊗

i=1

FZ/pZ,

which acts on the entire C-vector space of G. Indeed, note that it is unitary, since the tensor
product of unitary operators is unitary. Furthermore, since for any g,h ∈ (Z/pZ)n there exist
gi,hi ∈ Z/pZ for i = 1, . . .n, such that g = (g1, . . . ,gn) and h = (h1, . . . ,hn) , it holds that

n⊗
i=1

FZ/pZ

=
1
√

p

(
∑

g1,h1∈Z/pZ
χg1(h1) |h1⟩⟨g1|

)
⊗ 1
√

p

(
∑

g2,h2∈Z/pZ
χg2(h2) |h2⟩⟨g2|

)
⊗·· ·⊗

1
√

p

(
∑

gn,hn∈Z/pZ
χgn(hn) |hn⟩⟨gn|

)

=
1√
pn ∑

g1,h1∈Z/pZ
· · · ∑

gn,hn∈Z/pZ
χg1(h1) · · ·χgn(hn) |h1⟩⟨g1|⊗ · · ·⊗ |hn⟩⟨gn|

=
1√
pn ∑

g1,h1∈Z/pZ
· · · ∑

gn,hn∈Z/pZ
e

2πig1h1
p +···+ 2πignhn

p |h1⟩⟨g1|⊗ · · ·⊗ |hn⟩⟨gn|

=
1√
pn ∑

g,h∈(Z/pZ)n
χg(h) |h⟩⟨g| .

=FG. (3.1)

Then, we can implement the corresponding QFT s over Z/pZ. Now, each quantum circuit
is independent from each other and by Theorem 3.27, we have that for any

√
2 ≥ ε ′ > 0, the

FZ/pZ can be computed using at most ⌈12.53+3log2

√
p

ε ′ ⌉ qubits and with complexity of order,

O
(

log2

√
p

ε ′

(
log2 log2

√
p

ε ′
+ log2

1
ε ′

))
. (3.2)

Now, let Dv1 , . . . ,Dvn be the induced probability distributions from the output, and D1, . . . ,Dn
from each FZ/pZ |u⟩⊗ |0⟩. Define Dv and D as ∏

n
i=1 Dvi and D = ∏

n
i=1 Di, respectively. Then

by [LP17] [Section 4.7], the total variation distance between D and D′ is,

|Dv−D|TV ≤
n

∑
i=1
|Dvi−Di|TV . (3.3)

3.4. Quantum Optimization 45

So, for
√

2≥ ε ′ = ε

n > 0, each |Dvi−Di|TV ≤ 2 ε ′

n +
(

ε ′

n

)2
. Hence,

|Dv−D|TV ≤
n

∑
i=1
|Dvi−Di|TV ≤ n

(
2

ε

n
+
(

ε

n

)2
)
= 2ε +

(ε)2

n
. (3.4)

Thus, F(Z/pZ)n can be computed using at most n⌈12.53+3log2 n
√

p
ε
⌉, qubits, and the complexity

would be of,

O
(

log2 n
√

p
ε

(
log2 log2 n

√
p

ε
+ log2

n
ε

))
. (3.5)

Example 3.28. Let G = (Z/2Z)n. Then,

FG |g⟩=
1√
N ∑

h∈G

(
n

∏
i=1

(−1)gihi

)
|h⟩= 1√

N ∑
h∈G

(−1)g·h |h⟩

Thus, the Quantum Fourier Transform (QFT) over (Z/2Z)n is equal to H⊗
n
.

3.4 Quantum Optimization
In Chapter 7, we will be interested on finding the multiplication table of a non primitive binary
semifield of order 32 using quantum techniques. For that, first we will find a Boolean formula,
and then, in order to determine whether there are assignments that makes the formula true, we
will rephrase it as a Higher Order Binary Optimization problems, HOBO for short, so that we
can apply for instance, Quantum Approximate Optimization Algorithm, QAOA for short, or
Quantum Adabiatic Computing, for finding those assignments. Thus, in this section we will
give a brief explanation of Quadratic Unconstrained Binary Optimization problems, QUBO for
short, and HOBO. We follow [CGC23][Chapter 4-5].

Let us begin by defining what are QUBO problems. They are minimization problems in which
the cost function is a quadratic polynomial over binary variables with no restrictions. More
explicitly, they are problems of the form

Minimize q(x0, . . . ,xm)

subject to x j ∈ {0,1}, j = 0, . . . ,m,

where q(x0, . . . ,xm) is a quadratic polynomial on the x j variables. Now, optimization problems
in which we are asked to minimize a binary polynomial of any degree, with no additional restric-
tions, are called Higher Order Binary Optimization problems, HOBO for short, or Polynomial
Unconstrained Binary Optimization problems, PUBO for short.

Example 3.29. As an example, consider the following Boolean formula on binary variables,
given in conjuctive normal form (CNF),

(x0∨ ∼ x1∨ ∼ x2)∧ (∼ x0∨ x1∨ ∼ x2)∧ (x0∨ x1∨ x2) .

46 Chapter 3. Quantum preliminaries

We want to determine assignments of values that make the formula true, if they exist. For
that, let us rewrite the problem as an instance of a HOBO problem by mapping the operations
x∨ y,x∧ y and x to xy,x+ y and 1− x, respectively, so it can be represented as the polynomial,

q(x0,x1,x2) = (1− x0)x1 (1− x2)+ x0 (1− x1)x2 +(1− x0)(1− x1)(1− x2)

=−x0x1x2 +2x0x2− x0− x2 +1.

Hence our problem is,
Minimize q(x0,x1,x1)

subject to x0,x1,x2 ∈ {0,1}.
Thus, if the minimum of the polynomial is 0, then the formula will be satisfiable. Otherwise,
the formula will be unsatisfiable.

Now, one way of solving this HOBO problem is by transforming it into a QUBO problem by
introducing auxilary variables, so that the objective function is a binary quadratic polynomial.
For more detailes see, for instance, [CGC23][Section 5.1.5]. Then we can apply Quantum An-
nealing to find those assignments.

In fact, Quantum Annealing is a form of computation that efficiently samples the low-energy
configurations of a quantum system. However, it is not a universal quantum computing model,
but it is closely related to Adiabatic Quantum Computing, which is indeed universal. It was
introduced by Farhi et al. [FGGS00]. In contrast with quantum circuits, that rely in the applica-
tion of discrete operations, adiabatic quantum computing which is polynomially equivalent to
the quantum circuit model [AvDK+04], relies on the use of continuous transformations, namely
a time-dependent Hamiltonian H(t) of the form

H(t) = A(t)H0 +B(t)H1,

with H0 an initial Hamiltonian and H1 a final Hamiltonian whose ground state encodes the so-
lution to the problem of interest, and H(t) gradually changes the acting Hamiltonian from the
initial to the final one by using real-valued functions A,B that accept inputs over the interval
[0,T] for some time T and such that A(0) = B(T) = 1 and A(T) = B(0) = 0.

Now, in order to apply Quantum Annealing, the final Hamiltonian H1 has to be selected from a
certain, restricted class, for instance, an Ising Hamiltonian, which is of the form

−∑
j,k

J jkZ jZk−∑
j

h jZ j,

where each Zi is a Z gate acting on qubit i and the coefficients J jk,h j are real numbers. In our
case, after transforming from HOBO to QUBO, the QUBO can be seen as Ising Hamiltonian
by a suitable sustitution, x j = (1− Z)/2, which will be the Hamiltonian that encodes the as-
signemts that satisfies the Boolean formula.

3.4. Quantum Optimization 47

Another alternative for solving HOBO problems is using QAOA. This is a hybrid method in
which both a classical and a quantum computer are used. It was initially proposed by [FGG14]
as a discretization of Adiabatic Quantum Computing, so that it can approximate optimal so-
lutions to combinatorial optimization problems. It is a gate-based algorithm that can be un-
derstood to be the counterpart to quantum annealing in the quantum circuit model. In contrast
with quantum annealing, the binary polynomial can be of any degree, and we can transform it
directly into a Hamiltonian with the substitution xi =

1−Zi
2 . It can be seen that then we will have

a Hamiltonian that is a sum of tensor products of the matrix Z [CGC23][Section 5.1.5]. Thus,
in Chapter 7 we will study ways of formulating the problem of finding satisfying assignments
of a Boolean function f : {0,1}n→ {0,1} as QUBO and HOBO problems that can be solved
with QAOA and Quantum Annealing.

48 Chapter 3. Quantum preliminaries

Chapter 4

Some Quantum Algorithms

We have now introduced all the concepts that we need to study quantum algorithms. A quantum
algorithm consists in an initial state which is transformed by a series of quantum gates and
eventually measured. In this section, we explicitly give some highly influential examples of
quantum algorithms, such as Grover’s algorithm, Simon’s algorithm and the Quantum Phase
Estimation algorithm (which is a quantum algorithm that estimates the phase corresponding to
an eigenvalue of a given unitary operator), that we will use in the next chapters.

4.1 Simon’s Algorithm

In 1994, at the IEEE Symposium on the Foundation of Computer Science [Sim94], Daniel R.
Simon, introduced a problem that a quantum algorithm can solve exponentially faster than any
classical algorithm. In fact, it was one of the first quantum algorithms to show an exponen-
tial speed-up versus the classical algorithm for solving a specific problem, since any classical
deterministic algorithm that solves Simon’s problem requires Ω(

√
2n) queries [CQ18]. The

definition of Simon’s problem is as follows:

Given: A function f : {0,1}n→{0,1}n.

Promise: There exists a secret string s ∈ {0,1}n with s ̸= 0, such that for all
x1,x2 ∈ {0,1}n, f (x1) = f (x2)⇔ x1 = x2 or x2 = x1⊕ s.

Problem: Find s, the secret string.

The algorithm that gives solution to this problem uses a quantum subroutine and a classical
post-processing procedure. We first show the quantum part, which is the following:

49

50 Chapter 4. Some Quantum Algorithms

Algorithm 4.1 (Simon’s Algorithm-Quantum Procedure).
Input: An oracle that performs the operation U f |a⟩ |0⟩= |a⟩ | f (a)⟩ for a ∈ {0,1}n.

Quantum Procedure:

1. Initial state: |0⟩⊗n |0⟩⊗n.

2. Create superposition by applying H⊗n on the first register.

3. Apply the black box U f .

4. Apply the H⊗n on the first register.

5. Measure the registers.

Output: z ∈ {0,1}n which is an element in H⊥ = {x ∈ {0,1}n : x · s≡ 0 mod 2}.

The quantum procedure is implemented in the circuit of Figure 4.1.

|0⟩⊗n H⊗
n

U f
H⊗

n

|0⟩⊗n

Figure 4.1: Circuit of the Quantum Procedure to Solve Simon’s Problem.

Now, let us understand the outcome of the above circuit with a litte more detail.

Step 1 First, the algorithm starts with two registers, initialized to |0⟩⊗n |0⟩⊗n .

Step 2 Then, we apply the Hadamard transform to the first register, which gives the state

|0⟩⊗n |0⟩⊗n H⊗n⊗I−−−−→ 1√
2n

2n−1

∑
k=0
|k⟩ |0⟩⊗n .

Step 3 We apply the oracle U f to obtain

1√
2n

2n−1

∑
k=0
|k⟩ |0⟩⊗n U f−→ 1√

2n

2n−1

∑
k=0
|k⟩ | f (k)⟩ .

Step 4 We apply another Hadamard transform to the first register. This will produce the state

1√
2n

2n−1

∑
k=0
|k⟩ | f (k)⟩ H⊗n⊗I−−−−→ 1√

2n

2n−1

∑
k=0

(
1√
2n

2n−1

∑
j=0

(−1) jk | j⟩
)
| f (k)⟩

=
2n−1

∑
j=0
| j⟩
(

1
2n

2n−1

∑
k=0

(−1) jk | f (k)⟩
)
.

4.1. Simon’s Algorithm 51

Step 5 We measure the first register. The probability of finding the state | j⟩ is

∣∣∣∣∣
∣∣∣∣∣ 1
2n

2n−1

∑
k=0

(−1) jk | f (k)⟩

∣∣∣∣∣
∣∣∣∣∣
2

.

But since there exist exactly two elements x1,x2, such that f (x1) = f (x2) = z for each z ∈
Range(f), then

∣∣∣∣∣
∣∣∣∣∣ 1
2n

2n−1

∑
k=0

(−1) jk | f (k)⟩

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1
2n ∑

z∈Range(f)

(
(−1) jx1 +(−1) jx2

)
|z⟩

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1
2n ∑

z∈Range(f)

(
(−1) jx1 +(−1) j(x1⊕s)

)
|z⟩

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1
2n ∑

z∈Range(f)
(−1) jx1

(
1+(−1) js) |z⟩∣∣∣∣∣

∣∣∣∣∣
2

.

Now, when js is odd then the expression will vanish, but when js is even then the expression
is 2−(n−1). Thus, the output z ∈ {0,1}n is a uniformly random element of H⊥ = {x ∈ {0,1}n :
x · s ≡ 0 mod 2}. Now, we can run the quantum subroutine O(n) times to get a list of linearly
independent bitstrings z1, . . . ,zn. By Lemma 2.61, we can ensure that span{z1, . . . ,zn} = H⊥

with high probability.

The second step of Simon’s algorithm is a purely classical post-processing step given by:

Algorithm 4.2 (Simon’s Algorithm-Classical Procedure).
Input: z1, . . . ,zn ∈ {0,1}n

Classical Post processing: Apply Gaussian elimination to

z1
1x1 + z2

1x2 + · · · + zn
1xn ≡ 0 mod 2

...
...

...
...

...
z1

nx1 + z2
nx2 + · · · + zn

nxn ≡ 0 mod 2

Output: s ∈ {0,1}n.

Simon’s problem is a special case of the (Abelian) Hidden Subgroup Problem. For that, let
us introduce the Hidden Subgroup Problem, and see why Simon’s problem is a special case of
it.

52 Chapter 4. Some Quantum Algorithms

4.2 The Hidden Subgroup Problem

In this section, we start by stating the Hidden Subgroup Problem (HSP). Then, we see that
Simon’s problem is an instance of it. After that, we give a quantum procedure for finding
subgroups of the form ⟨d⟩ in a cyclic group (Z/NZ,+) (d ∈ Z/NZ). Lastly, we draw our
attention to a quantum algorithm that find subgroups H of an Abelain group, (Z/pZ)n, with p
a prime number. For that, we follow [Lom04].

Definition 4.3. Let G be a group and H ≤ G one of its subgroups. Let S be any set, and
f : G→ S be a function that distinguishes cosets of H, i.e., for all g1,g2 ∈ G, f (g1) =
f (g2)⇔ g1H = g2H. The hidden subgroup problem (HSP) is to determine a generating
set for the subgroup H given the ability to evaluate f on elements of G.

It is worth mentioning that classical query complexity of the HSP is known. In fact, suppose
that G has a set S of N subgroups such that H1∩H2∩ . . .∩HS = {e} (e the identity of G). Then,
a classical computer must make Ω(

√
N) queries to solve the HSP [HK18]. For example,

on Simon’s problem, we worked over the group (Z/2Z)n with the operation bitwise addition
modulo 2, and the subgroup H is {0n,s} (so the goal of finding s is equivalent to learning the
subgroup H). Then by [HK18], a classical computer must make Ω(

√
2n) queries to solve it.

However, as we saw in the previous section, there is a quantum algorithm that makes O(n)
queries to solve it.

Now, let us see a quantum procedure for finding subgroups of a cyclic group of order N.

Example 4.4. Let N be an integer greater than 1, let X be a finite set, and consider the addi-
tive group of integers mod N denoted by G = (Z/NZ,+) . Let us state the problem, and see a
solution.

Given: Suppose we are given a function f : G→ X that separates cosets of the subgroup
H = ⟨d⟩ of G.
Problem: Determine a generating set for H.

First, note that we can represent G and H as {|0⟩ , |1⟩ , . . . , |N−1⟩}, H = {|0⟩ , |d⟩ , . . . ,
|(M−1)d⟩}, where M = |H|. Second, assume we have U f that performs the unitary transform,

U f |x⟩ |y⟩= |x⟩ |y⊕ f (x)⟩ ,

for x,y ∈ G. In the quantum circuit model it would be represented by

|x⟩
U f

|x⟩

|y⟩ | f (x)⊕ y⟩ .

Now, let us determine a generating set for H, trying to reduce the number of queries to the
oracle U f . The algorithm is as follows:

4.2. The Hidden Subgroup Problem 53

Algorithm 4.5 (Abelian Hidden Subgroup Problem for Cyclic Groups).
Input: A black box that performs the operation U f |a⟩ |0⟩ = |a⟩ | f (a)⟩ for
a ∈ {|0⟩ , |1⟩ , . . . , |N−1⟩}.

Quantum Procedure:

1. Initial state: |0⟩ |0⟩ .

2. Create superposition over all elements of G by applying the Quantum Fourier
Transform 3.25 to the first register.

3. Apply the black box U f .

4. Measure the second register.

5. Apply the quantum Fourier transform to the first register.

6. Measure the first register.

Output: z ∈ {0,1}r1 , which is a bitstring that represents a multiple of M.

Let us see in more detail the steps of the algorithm:

Step 1 Initial state |0⟩ |0⟩.

Step 2 Apply the quantum Fourier transform to the first register of the zero state, with this,
we obtain a superposition over all elements of G:

|0⟩ |0⟩ QFT⊗I−−−−→ 1√
N

N−1

∑
j=0
| j⟩ |0⟩ .

Step 3 Now, apply U f , which is actually the coset separating function f , to obtain

1√
N

N−1

∑
j=0
| j⟩ |0⟩

U f−→ 1√
N

N−1

∑
j=0
| j⟩ | f (j)⟩ .

Step 4 Now, since we know that f is a function that distinguishes cosets of H, we measure the
second register collapsing the second register to some state | f (j)⟩ and leaving the first register
with those values where they agree on f , namely the coset j+H

1√
N

N−1

∑
j=0
| j⟩ | f (j)⟩ Measure−−−−−→ 1√

|H| ∑
h∈H
| j+h⟩ | f (j)⟩= 1√

M

M−1

∑
s=0
| j+ sd⟩ | f (j)⟩ .

54 Chapter 4. Some Quantum Algorithms

Step 5 Then, apply the quantum Fourier transform FN on the first register to get

1√
M

M−1

∑
s=0
| j+ sd⟩ QFT−−−→ 1√

M

M−1

∑
s=0

1√
N

N−1

∑
k=0

e2πi(j+sd)k/N |k⟩

=
1√
MN

N−1

∑
k=0

e2πi jk/N |k⟩
M−1

∑
s=0

e2πisdk/N .

Using that Md = N, we can evaluate the geometric series

M−1

∑
s=0

(
e2πik/M

)s

in which if M|k then there exist c ∈ Z+ such that k = Mc, so

M−1

∑
s=0

(
e2πik/M

)s
=

M−1

∑
s=0

(
e2πiMc/M

)s
=

M−1

∑
s=0

(
e2πic)s

=
M−1

∑
s=0

1s = M.

But when M ∤ k then

M−1

∑
s=0

(
e2πik/M

)s
=

1−
(

e2πikM/M
)

1− e2πik/M
=

1−
(
e2πik)

1− e2πik/M
=

0
1− e2πik/M

= 0.

Therefore

1√
MN

N−1

∑
k=0

e2πi jk/N |k⟩
M−1

∑
s=0

e2πisdk/N =
1√
MN

N−1

∑
k=0
M|k

e2πi jk/N |k⟩
M−1

∑
s=0

e2πisdk/N


+

1√
MN

N−1

∑
k=0
M∤k

e2πi jk/N |k⟩
M−1

∑
s=0

e2πisdk/N


=

1√
MN

N−1

∑
k=0
M|k

e2πi jk/N |k⟩M


=

M√
MN

(
d−1

∑
t=0

e2πi jtM/N |tM⟩
)

=
1√
d

(
d−1

∑
t=0

e2πi jtM/N |tM⟩
)
.

Step 6 Finally, measuring the first register, gives as a result a multiple of M in {0,M, . . . ,(d−
1)M} with uniform probability. We repeat this quantum procedure l times for some positive

4.2. The Hidden Subgroup Problem 55

integer l, and obtain l multiples of M, let us call them t1M, . . . , tlM. Then, we compute the
greater common divisor of all of them gcd(t1, . . . , tl) with the Euclidean algorithm. Now, by

Lemma 2.63 we know that Pr(gcd(t1, . . . , tl) = 1) ≥ 1−
(1

2

) l
2 , hence we determine M, and

therefore H (because d = N
M).

Quantum algorithm for the HSP over finite Abelian groups of the form (Z/pZ)n .(Z/pZ)n .(Z/pZ)n .

In Chapter 6 we will be interested on finding certain types of substructures of a finite dimen-
sional Algebra over Fp, with p a prime number. For that, we state the problem as an instance of
the (Abelian) HSP. Here, we present a quantum procedure to find a subgroup H of the Abelian
group (Z/pZ)n, with n a positive integer, based on [Lom04].

Let G∼= (Z/pZ)n . Suppose we are given a function f : G→ X to a finite set X such that there is
a subgroup H < G with the property that f separates cosets of H. We want to find a generating
set for H. Now, the pn = N elements of G which has the form of n-tuples x = (x1, . . . ,xn) can
be represented as |x1⟩ |x2⟩ · · · |xn⟩ . Let us see a quantum algorithm for the HSP over this kind of
finite Abelian groups. For now, we ignore the size of the quantum circuit. However in Chapter 6
we will give explicit details on the size of it. The algorithm is as follows:

Algorithm 4.6 (Finding the orthogonal of a subgroup H of a group of the form
(Z/pZ)n).
Input: A black box which performs the operation U f |x⟩ |0⟩ = |x⟩ | f (x)⟩ for x in the
vector space over C which contains the group elements of G.

Quantum Procedure:

1. Initial state: |0⟩⊗r1 |0⟩⊗r2 , for r1 = n⌈log2 p⌉ and r2 ∈ N (ancillary qubits for the
oracle U f).

2. Create superposition over all elements of G by applying the Quantum Fourier
Transform (Equation 3.1) to the first register.

3. Apply the black box U f .

4. Measure the second register.

5. Apply the Quantum Fourier Transform (Equation 3.1) on the first register.

6. Measure the first register.

Output: z ∈ {0,1}r1 a bitstring of an element in H⊥ (here H⊥, is as Definition 2.57).

Let us analyze the procedure step by step.

Step 1 Initial state |0⟩ |0⟩ .

56 Chapter 4. Some Quantum Algorithms

Step 2 Apply the Quantum Fourier Transform (Equation 3.1 from Subsection 3.3.1) to the
first register in order to obtain a superposition over all elements of G :

|0⟩ |0⟩ QFT⊗I−−−−→ 1√
|G| ∑g∈G

|g⟩ |0⟩ .

Step 3 Apply U f , to obtain

1√
|G| ∑g∈G

|g⟩ |0⟩
U f−→ 1√

|G| ∑g∈G
|g⟩ | f (g)⟩ .

Step 4 Measure the second register. So, since we know that f is a function that distinguishes
cosets of H, i.e., f returns the same value if and only if g1 and g2 belong to the same coset of H,
measuring the second register will collapse to some state | f (gz)⟩ and will leave the first register
with those values where they agree on f , namely the coset gz +H.

So, if {x1,x2, . . . ,xl} is a Z/pZ-basis of the subgroup H of G, then for all z ∈ Range(f),
there exists gz ∈ G such that z = f (gz + ∑

l
i=1 λixi), for all 0 ≤ λ1, . . . ,λl ≤ p− 1. So, the

probability of the outcome f (gz) is∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1√
|G| ∑

g∈G
such that f (g)=z

|g⟩

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

=
1
|G|
|H|,

and the state after the measurement is,

1√
|H|
|G|

1√
|G| ∑

g∈G
such that f (g)=z

|g⟩ |z⟩= 1√
|H|

p−1

∑
λ1,...,λl=0

∣∣∣∣∣gz +
l

∑
i=1

λixi

〉
|z⟩ .

Step 5 Apply the Fourier transform FG from Subsection 3.3.1, Equation 3.1, to the first register
to obtain

1√
|H|

p−1

∑
λ1,...,λl=0

∣∣∣∣∣gz +
l

∑
i=1

λixi

〉
|z⟩ QFT−−−→ 1√

|G|
1√
|H| ∑

g,h∈G

p−1

∑
λ1,...,λl=0

χg(h) |h⟩
〈

g

∣∣∣∣∣gz +
l

∑
i=1

λixi

〉
|z⟩

=
1√
|G|

1√
|H| ∑h∈G

p−1

∑
λ1,...,λl=0

χgz+∑
l
i=1 λixi

(h) |h⟩ |z⟩ .

From Section 2.5, for g,h ∈ G with g = (g1, . . . ,gn) ,h = (h1, . . . ,hn) and gi,hi ∈ Z/pZ, for all
i = 1, . . . ,n and ωp = exp

(
2πi
p

)
we have that,

χg(h) = ω
gh
p = ω

g1h1+···+gkhk
p .

4.2. The Hidden Subgroup Problem 57

Thus,

1√
|G|

1√
|H| ∑h∈G

p−1

∑
λ1,...,λl=0

χgz+∑
l
i=1 λixi

(h) |h⟩ |z⟩= 1√
|G|

1√
|H| ∑h∈G

(
p−1

∑
λ1,...,λl=0

ω
h(gz+∑

l
i=1 λixi)

p

)
|h⟩ |z⟩ .

Step 6 Measuring the first register, we obtain a random element uniformly distributed over H⊥.
Indeed, if we measure the first register, the probability of measuring a state |h⟩ is∣∣∣∣∣

∣∣∣∣∣ 1√
|G||H| ∑g∈G

∑
h∈G

(
p−1

∑
λ1,...,λl=0

ω
h(gz+∑

l
i=1 λixi)

p

)
|h⟩

∣∣∣∣∣
∣∣∣∣∣
2

.

Then extracting the common factor ωhgz, the probability becomes∣∣∣∣∣
∣∣∣∣∣ 1√
|G||H|

(
p−1

∑
λ1,...,λl=0

ω
h(gz+∑

l
i=1 λixi)

p

)
|z⟩

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1√
|G||H|

ω
hgz
p

l

∏
i=1

(
p−1

∑
λ1,...,λl=0

ω
hλixi
p

)
|z⟩

∣∣∣∣∣
∣∣∣∣∣
2

.

Now, when hxi ̸= 0 mod p for some i = 1, . . . , l, then by Proposition 2.59 we have that
p−1

∑
λi=0

ω
λhxi
p = 0.

Otherwise, h ∈ H⊥, and the probability of finding the state |h⟩ is,

1√
|G||H|2

∣∣∣∣∣ωhgz
p

l

∏
i=1

(
p−1

∑
λi=0

ω
0
p

)∣∣∣∣∣
2

=
1

pn pl (1 · p
l)2 = pl−n.

Thus, we obtain an element uniformly distributed over H⊥.

Run the algorithm t1 + ⌈log2 G⌉ times to obtain g1, . . . ,gt1+⌈log2 G⌉ elements of H⊥. Now, recall
that from Section 2.6 that ϕt1+⌈log2 G⌉(H⊥) denotes the probability that t1 + ⌈log2 G⌉ random
elements of H⊥ generate the entire subgroup. Thus, by Theorem 2.62 we know that

ϕt1+⌈log2 G⌉(H
⊥) = Pr

(
⟨g̃1, g̃2, . . . , g̃t1+⌈log2 G⌉⟩= H⊥

)
≥ 1− 1

2t1
.

Note that h∈H if and only if χh (g̃k) = 1 for g̃k ∈H⊥ with k = 1,2, . . . , t1+⌈log2 G⌉, which
is equivalent to h · g̃k = 0 for all k = 1,2, . . . , t1+⌈log2 G⌉ (see Section 2.5). Now, let us consider
the following system of t1 + ⌈log2 G⌉ linear equations:

g̃1
1x1 + g̃2

1x2 + · · · + g̃n
1xn ≡ 0 mod p

...
...

...
...

...
g̃1

t1+⌈log2 G⌉x1 + g̃2
t1+⌈log2 G⌉x2 + · · · + g̃n

t1+⌈log2 G⌉xn ≡ 0 mod p

The second step of the algorithm is a purely classical post-processing step in which, for instance,
an algorithm like Gaussian elimination can be used to compute the solution of the system over
Fp. In fact, taking t1 = s for s a positive integer and applying Gaussian elimination the solutions
will generate H with probability at least 1−2−s.

58 Chapter 4. Some Quantum Algorithms

4.3 Quantum Phase Estimation

As another application of the QFT, we have the Quantum Phase Estimation algorithm. It is used
to estimate the eigenvalue of an eigenvector of a unitary operator. The algorithm was initially
introduced by Alexei Kitaev in 1995 [Kit95]. The problem is formally stated as follows:

Given: U a unitary operator that operates on m qubits and an eigenvector |ψ⟩ of U such
that U |ψ⟩= e2πiθ |ψ⟩ , 0≤ θ < 1.

Problem: Find the eigenvalue e2πiθ of |ψ⟩ , which is equivalent to estimating the
value θ .

The phase estimation algorithm is:

Algorithm 4.7 (Quantum Phase Estimation).
Input: A black box which performs controlled U j operations, for any integer j, an
eigenstate |ψ⟩ of U with eigenvalue e2πiθ , and n qubits initialized to |0⟩.

Quantum Procedure:

1. Apply H⊗n to the first n qubits.

2. Apply all the n controlled operations CU2 j
for 0≤ j≤ n−1, on the second register.

3. Apply the inverse Quantum Fourier Transform on the first n qubits.

4. Measure the first n qubits.

Output: ⌊2nθ⌋ with probability greater or equal than 4
π2 , from which we can estimate θ .

The procedure is implemented in Figure 4.2.

|0⟩ H •

QFT †

... · · ·

|0⟩ H • |2nθ⟩

|0⟩ H •

|ψ⟩ U20
U21 . . . U2n−1




n

Figure 4.2: Circuit of the Quantum Phase Estimation

4.3. Quantum Phase Estimation 59

Let us analyze the steps of the procedure:

Step 1 Create superposition by applying H⊗n on the first register. We get,

|0⟩⊗n |ψ⟩ H⊗n⊗I−−−−→=
1√
2n

(
2n−1

∑
j=0
| j⟩
)
|ψ⟩ .

Step 2 Apply all the n controlled operations CU2 j
for 1 ≤ j ≤ n− 1. Note that, U2 j |ψ⟩ =

Ue2πi2 jθ , and the transformation implemented by the controlled gates applying U20
,U21

, . . . ,U2n−1

is |k⟩ |ψ⟩ 7→ |k⟩Uk |ψ⟩ . Indeed, let ∑
n−1
j=0 2n−1− jkn−1− j with k j ∈ {0,1} be the binary represen-

tation of k, so

U

n−1
∑

j=0
2n−1− jkn−1− j

=
n−1

∏
j=0

U2n−1− jkn−1− j .

Recall that the unitary CU operation applies the unitary operator U on the target register only if
its corresponding control qubit is |1⟩ . So, U2 jk j will only be apply if the qubit k j is 1. Therefore,

1√
2n

2n−1

∑
j=0
| j⟩ |ψ⟩ CU20

,CU21
,...,CU22n−1

−−−−−−−−−−−−−→ 1√
2n

2n−1

∑
k=0

e2πikθ |k⟩ |ψ⟩ .

Step 3 Apply the inverse Quantum Fourier Transform to obtain

1√
2n

2n−1

∑
k=0

e2πiθk |k⟩⊗ |ψ⟩ QFT−1

−−−−→ 1√
2n

2n−1

∑
k=0

e2πikθ 1√
2n

2n−1

∑
x=0

e−2πikx/2n |x⟩⊗ |ψ⟩

=
1
2n

2n−1

∑
x=0

2n−1

∑
k=0

e(−2πik)(x−2nθ)/2n |x⟩⊗ |ψ⟩ .

Step 4 Lastly, we perform a measurement of the first register. First, note that 2nθ can be written
as a+2nδ where a = ⌊2nθ⌋ and 0≤ |δ | ≤ 1

2n+1 , so

e−2πik(x−2nθ)/2n
= e−2πik(x−a−2nδ)/2n

= e−
2πik
2n (x−a)e2πikδ .

Then,

1
2n

2n−1

∑
x=0

2n−1

∑
k=0

e(−2πik)(x−2nθ)/2n |x⟩ |ψ⟩= 1√
2n

2n−1

∑
x=0

2n−1

∑
k=0

e−
2πik
2n (x−a)e2πikδ |x⟩ |ψ⟩ .

Thus, performing a measurement in the computational basis on the first register yields the result
|a⟩ with probability ∣∣∣∣∣ 1

2n

2n−1

∑
k=0

e−
2πik
2n (x−a)e2πikδ

∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣2
n−1

∑
k=0

e2πikδ

∣∣∣∣∣
2

,

60 Chapter 4. Some Quantum Algorithms

which is 1 if δ = 0. However if δ ̸= 0 then using the formula of the geometric series
n−1

∑
k=0

xk =
1− xn

1− x
,

we have that

1
22n

∣∣∣∣∣2
n−1

∑
k=0

e2πikδ

∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣∣∣
1−
(

e2πiδ
)2n

1− e2πiδ

∣∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣1− e2πiδ2n

1− e2πiδ

∣∣∣∣∣
2

.

Since |δ | ≤ 1
2n+1 , it follows that 2πδ2n ≤ π, and hence πδ2n ≤ π

2 . Now,∣∣∣1− e2π2nδ i
∣∣∣=√1−2cos(2πδ2n)+1 = 2 |sin(πδ2n)| ,

and ∣∣∣1− e2πδ i
∣∣∣=√1−2cos(2πδ)+1 = 2 |sin(πδ)| .

Since, |sin(πδ)| ≤ |πδ | and |sin(πδ2n)| ≥ 2πδ2n
π

2
= 4δ2n,

1
22n

∣∣∣∣∣1− e2πiδ2n

1− e2πiδ

∣∣∣∣∣
2

≥
(

1
2n

(
4δ2n

2πδ

))2

=
4

π2 .

4.4 Grover’s Search Algorithm
As we mentioned in the Introduction, another advantage that a quantum computer has over a
classical computer is in searching databases. Indeed, Lov Kumar Grover introduced a quan-
tum algorithm, based on the concepts of superposition and quantum parallelism, for searching
databases that is quadratically faster than any possible classical algorithm for the same purpose.
More explicitly, consider a list of N items in which we want to locate an element ω that we say
is marked. To find the marked element using classical computation, in the worst scenario, we
would have to check all of them. On a quantum computer, however, with Grover’s amplitude
amplification technique, the item ω can be found in O(

√
N) queries with probability at least 1

2 .
Now, let us present formally the problem and the quantum procedure of Grover’s algorithm
more explicitly:

Given: The search problem can conveniently be represented by a function f :
{0,1, . . . ,N−1}→ {0,1}, with N = 2n and n ∈ N such that

f (x) =

{
0 if x is not a marked element
1 if x is a marked element

Problem: Find x such that f (x) = 1 (that is, a marked element).

4.4. Grover’s Search Algorithm 61

Let us assume that we can access f in the form of a standard quantum oracle. This standard
oracle, denoted as U f , uses an ancillary qubit to compute

U f |x⟩ |y⟩= |x⟩ |y⊕ f (x)⟩ .

It holds that,

U f |x⟩ |y⟩=

{
|x⟩ |y⊕1⟩ for x = ω, (if and only if f (x) = 1)
|x⟩ |y⟩ for x ̸= ω, (if and only if f (x) = 0) .

Another vital ingredient is the reflection Us = 2 |s⟩⟨s|− I, where |s⟩ = 1√
N ∑

N−1
j=0 | j⟩, called the

diffusion operator. Its implementation can be seen in the circuit from Figure 4.3.

H X • X H

H X • X H

H X Z X H

n

Figure 4.3: Circuit of the diffusion operator.

Now, based on [J06] and [BBHT98] we present Grover’s algorithm, also known as the quantum
search algorithm, which is as follows:

Algorithm 4.8 (Grover’s quantum search).
Input: A black box U f which performs the transformation U f |x⟩ |y⟩ = |x⟩ |y⊕ f (x)⟩ ,
where f (x) = 0 for all 0≤ x < N = 2n except ω for which f (ω) = 1.

Quantum Procedure:

1. Initial state: |0⟩⊗n |0⟩.

2. Create superposition. Apply H⊗n to the first n qubits, and XH to the last qubit.

3. Apply G =UsU f , ⌊π
√

N
4 ⌋ times.

4. Measure the first n qubits, and apply H on the last qubit.

Output: ω, with probability greater or equal than 1
2 .

The quantum procedure is implemented in the circuit shown in Figure 4.4.
Let us analyze the algorithm step by step.

Step 1 The algorithm uses a register with n+ 1 qubits. It starts out with |0⟩n |0⟩ as the ini-
tial state.

62 Chapter 4. Some Quantum Algorithms

Repeat O(
√

N) times︷ ︸︸ ︷
|0⟩ H

U f

H X • X H · · ·

|0⟩ H H X • X H · · ·

|0⟩ H H X Z X H · · ·

|0⟩ X H · · · H

n

Figure 4.4: Circuit of Grover’s Quantum Search.

Step 2 We apply the NOT gate, and after that, we apply the Hadamard transform to the last
qubit,

|0⟩⊗n |0⟩ I⊗n⊗X−−−−→ |0⟩⊗n (|1⟩)
I⊗n⊗H−−−−→ |0⟩⊗n

(
|0⟩− |1⟩√

2

)
I⊗n⊗H−−−−→ |0⟩⊗n |−⟩ .

Now, we apply the Hadamard transform to the first n qubits, which gives the uniform superpo-
sition |s⟩ given by

|0⟩⊗n |−⟩ H⊗n
−−→ 1√

N

N−1

∑
j=0
| j⟩ |−⟩= |s⟩ |−⟩

Step 3 We apply the oracle U f to the state |s⟩. Now, after applying U f , we apply Us = 2 |s⟩⟨s|−
In, known as the diffusion operator. This transformation is, thus, UsU f , which correspond to a
rotation. Actually, it rotates the initial state |s⟩ closer towards |ω⟩. Let us see why. Consider the
following sets A = {x ∈ {0,1}n : f (x) = 1} and B = {x ∈ {0,1}n : f (x) = 0}. Denote a = |A|,
and b = |B|. Let us assume that a≤ N

2 . Additionally define

|A⟩= 1√
a ∑

x∈A
|x⟩ and |B⟩= 1√

b
∑
x∈B
|x⟩ ,

which are orthogonal unit vectors. Moreover, |s⟩ is a vector in the subspace spanned by
{|A⟩ , |B⟩}. Indeed

|s⟩=
√

a
N
|A⟩+

√
b
N
|B⟩ .

Let G =UsU f , and let us see how G acts on the states of |A⟩ and |B⟩ . Since they are orthogonal

4.4. Grover’s Search Algorithm 63

vectors and ⟨v|= (|v⟩)† , it holds that

G |A⟩ |−⟩=UsU f |A⟩ |−⟩
= (2 |s⟩⟨s|− In)(−|A⟩) |−⟩
= ((−2 |s⟩⟨s|) |A⟩+ |A⟩) |−⟩
= (−2⟨s|A⟩ |s⟩+ |A⟩) |−⟩

=

(
−2
√

a
N

(√
a
N
|A⟩+

√
b
N
|B⟩
)
+ |A⟩

)
|−⟩

=

((
1− 2a

N

)
|A⟩− 2

√
ab

N
|B⟩
)
|−⟩ ,

analogously for G |B⟩ we have

G |B⟩ |−⟩=UsU f |B⟩ |−⟩
= (2 |s⟩⟨s|− In) |B⟩ |−⟩
= ((2 |s⟩⟨s|) |B⟩− |B⟩) |−⟩
= (2⟨s|B⟩ |s⟩− |B⟩) |−⟩

=

(
2

√
b
N

(√
a
N
|A⟩+

√
b
N
|B⟩
)
−|B⟩

)
|−⟩

=

(
2
√

ab
N
|A⟩+

(
2b
N
−1
)
|B⟩
)
|−⟩ .

=

(
2
√

ab
N
|A⟩−

(
1− 2b

N

)
|B⟩
)
|−⟩ .

Therefore, G maps the subspace spanned by {|A⟩ , |B⟩} to the subspace spanned by {|A⟩ , |B⟩}.
Furthermore, the action of G on the space spanned by {|A⟩ , |B⟩} can be seen as the following
matrix where the first row and column correspond to |B⟩ and the second row and column to |A⟩ :[

−
(
1− 2b

N

)
−2
√

ab
N

2
√

ab
N

(
1− 2a

N

)]= [−(N−2b
N

)
−2
√

ab
N

2
√

ab
N

(N−2a
N

)]

=

[
−
(a+b−2b

N

)
−2
√

ab
N

2
√

ab
N

(a+b−2a
N

)]

=

[
−
(a−b

N

)
−2
√

ab
N

2
√

ab
N

(b−a
N

)] .

64 Chapter 4. Some Quantum Algorithms

Note that  √ b
N −

√ a
N√ a

N

√
b
N

2

=

[
−
(a−b

N

)
−2
√

ab
N

2
√

ab
N

(b−a
N

)] .
Now, take θ ∈

(
0, π

2

)
such that sinθ =

√ a
N and cosθ =

√
b
N . Recall that, in two dimensions,

the standard rotation matrix has the form[
cosφ −sinφ

sinφ cosφ

]
for φ ∈ [0,2π]. So, using a rotation of angle 2θ we get[

cos(2θ) −sin(2θ)
sin(2θ) cos(2θ)

]
=

[
cos2 θ − sin2

θ −cosθ sinθ − sinθ cosθ

sinθ cosθ + cosθ sinθ −sin2
θ + cos2 θ

]
=

[
cosθ −sinθ

sinθ cosθ

]2

=

 √ b
N −

√ a
N√ a

N

√
b
N

2

=

[
−
(a−b

N

)
−2
√

ab
N

2
√

ab
N

(b−a
N

)] .
Therefore, G=UsU f is a rotation of angle 2θ in the two-dimensional space spanned by {|A⟩ , |B⟩}
rotating the space by 2θ radians per application of G, with θ = arcsin

√ a
N . Also

|s⟩=
√

a
N
|A⟩+

√
b
N
|B⟩= sinθ |A⟩+ cosθ |B⟩ .

Applying G k times, we get

Gk |s⟩ |−⟩= (cos((2k+1)θ) |B⟩+ sin((2k+1)θ) |A⟩) |−⟩ .

We would like the state of |s⟩ to be as close to |A⟩ as possible, i.e., sin((2k+1)θ) ≈ 1 or
(2k+1)θ ≈ π

2 which gives us k ≈ π

4θ
− 1

2 .

If a = 1, which is the case that we first consider, then θ = arcsin
√

1
N ≈

1√
N

, hence

k ≈ π

4θ
− 1

2
=

π

4 1√
N

− 1
2
=

π
√

N
4
− 1

2
,

and since k must be an integer, then we take

k =
⌊

π
√

N
4

⌋
.

4.5. Technique For Listing All Elements Marked By An Oracle 65

If a > 1, as before we want the state of |s⟩ to be as close to |A⟩ as possible, or equivalently
that cos((2k+1)θ) is close to 0 as possible. So, we would have that cos((2k+1)θ) = 0, when
k = (π−2θ)/4θ if that were an integer. Consider, k̃ = ⌊π/4θ⌋. Note that |k̃− k| ≤ 1

2 , hence∣∣∣(2k̃+1
)

θ − π

2

∣∣∣= ∣∣(2k̃+1
)

θ − (2k+1)θ
∣∣= ∣∣2θ

(
k− k̃

)∣∣≤ θ .

Therefore, |cos
(
(2k̃+1)θ

)
| ≤ |sinθ |, which will be used as a bound for computing the proba-

bility of not finding a marked element, after applying k times the G operator.

Step 4 Measurement. When we measure the first n qubits, after k̃ iterations, and since

|cos
(
(2k̃+1)θ

)
| ≤ |sinθ |,

the probability of not finding a marked element is,

cos2((2k̃+1)θ)≤ sin2
θ =

a
N
≤ 1

2
.

One must be careful in using this algorithm because the probability of success does not nec-
essarily increase with the number of iterations. For instance, if we have a list of 20 elements
and only one is marked, and if we apply ⌊π

2

√
20⌋ iterations of G the probability of finding the

marked element is 0.06. But if we apply ⌊π

4

√
20⌋ iterations, the probability is 0.94. Hence,

the estimation of the necessary number of iterations is one of the most important parts in the
algorithm. For this reason, in the next section, we are going to briefly explain how to apply
Grover’s algorithm in the case where we do not know how many marked elements there are,
following [CRO+24].

As a particular case, on Chapter 7, the methodology developed in [CRO+24] is going to be
use for finding satisfying assignments of a Boolean function f : {0,1}n→{0,1} .

4.5 Technique For Listing All Elements Marked By An Ora-
cle

In this section, we are going to introduce a technique for finding all marked elements from
a list of ν elements, with a quantum algorithm inspired by Grover’s quantum search, with a
desired probability. For that, we follow [CRO+24]. This technique, in particular, is of interest
to us, because it can be applied for finding satisfying assignments of a certain type of Boolean
functions f that we are going to deal with in Chapter 7.

From the previous section,we know that Grover’s algorithm only returns a marked element
with a certain probability. However, when the number of marked elements is unknown, we
do not know the number of oracle queries that we need to use. So, for that, let us suppose
we have an oracle U f , given by U f (|x⟩ |0⟩) = |x⟩ |1⟩ if x is marked, otherwise U f (|x⟩ |0⟩) =

66 Chapter 4. Some Quantum Algorithms

|x⟩ |0⟩ , such that mark exactly µ elements from a set of ν elements. Then, apply j times the
Grover’s operator, with j chosen randomly from {0, . . . ,⌊

√
ν⌋−1}. After that, let us measure,

and see if the result is correct, in case it is, we apply again Grover’s algorithm, but with a new
oracle, U ′f , such that the marked element found x0 is excluded from being marked by it (U ′f), so
U ′f (|x⟩ |0⟩) = |x⟩ |1⟩ if x is marked and x ̸= x0, otherwise U ′f (|x⟩ |0⟩) = |x⟩ |0⟩ . However if the
result x0 is not correct, the oracle is not modify, and we apply again Grover’s algorithm with j
times the Grover’s operator, and j chosen randomly from {0, . . . ,⌊

√
ν⌋−1}. This procedure is

applied iteratively until all elements are found. More explicitly the procedure is as follows:

Algorithm 4.9 (Algorithm 2 [CRO+24]).
Data: An oracle U f marking an unknown number of µ elements (upper bounded by a
known or estimated B) in a database of ν elements (0 ≤ µ ≤ B ≤ 3ν

4). A desired error
bound 0 < w < 1.
Result: A set of r marked database elements L = {x1, . . . ,xr}. With probability at least
1−w, we will have r = µ .
Procedure:

L← /0

R←


log
(

1−(1−w)
1
B

)
log(3

4)


f ound← f alse
done← f alse
while done = f alse do

l← 1;
while f ound = f alse and l ≤ R do

Choose j uniformly at random from the set {0, . . . ,⌊
√

ν⌋−1};
Run Grover’s algorithm with j applications of the oracle plus diffusion
operator;
Measure to obtain x;
if x is a marked element then f ound← true ;
else l← l +1 ;
end if

end while
if f ound = true then ;

L← L∪{x}; ▷ Add found element and search for another
f ound← f alse;
Modify the oracle so that it does not mark x

else done← true ; ▷ Tried R times without finding anything
end if

end while
return L

Note that, in the case where the number of elements marked by the oracle is greater than

4.6. Quantum Abstract Detecting Systems (QADS) 67

0, by Lemma 2 and the proof of Theorem 3 in [BBHT98], the probability of finding a marked
element on the nested while, is δ (ν)≥ 1

4 , l with O(
√

ν) oracle calls. So, the overall probability
of finding a marked element is

1− (1−δ (ν))R(ν) ≥ 1−
(

3
4

)R(ν)

.

Since the loop of the first while must be independently repeated µ(ν) + 1 times for the
algorithm to succeed (the last iteration is the one forcing the output), the probability P′(ν) of
not finding all marked elements is

P′(ν) := 1−
(

1− (1−δ (ν))R(ν)
)µ(ν)

≤ 1−

(
1−
(

3
4

)R(ν)
)µ(ν)

which, in order to obtain a bounded algorithm, is required to be less than some w < 1, for all ν .
This yields

R(ν)≥
log
(

1− (1−w)
1

µ(ν)

)
log
(3

4

) .

Taking R(ν) to be 
log
(

1− (1−w)
1

µ(ν)

)
log
(3

4

)
 ,

we have that R(ν) = O(log(µ(ν))), and the procedure requires an overall number of

O
(√

νµ(ν) log(µ(ν))
)

oracle calls. Taking, B = 3ν

4

R(ν) =


log
(

1− (1−w)
1

B(ν)
)

log
(3

4

)
= O(log(B)),

and the overall asymptotic complexity is O
(√

νµ(ν) log(B(ν))
)
. For more details, see [CRO+24]

Appendix A].

4.6 Quantum Abstract Detecting Systems (QADS)
In this section, we give the definition of Quantum Abstract Detecting Systems (QADS), to-
gether with some of their properties, given in [CRR20].

68 Chapter 4. Some Quantum Algorithms

Quantum abstract detecting systems (QADS) were introduced in [CRR20] as a unified frame-
work for the study and design of detection algorithms in a quantum computing setting. Namely,
given a black-box oracle for a Boolean function f , the QADS constructs an initial state and an
operator that can be used to detect if the function is identically zero or not.

Definition 4.10. A quantum abstract detecting system (QADS) is any (classical deterministic)
algorithm that takes, from a set of inputs M, a Boolean function (given by a circuit) f : {0,1}k→
{0,1} and outputs a unitary transformation U =U f on a Hilbert space H whose dimension only
depends on k, together with a state |ϕ0⟩ ∈ H (that only depends on k too) such that

{x ∈ {0,1}k | f (x) = 1}= /0 =⇒U |ϕ0⟩= |ϕ0⟩

The transformation U is called detecting operator and |ϕ0⟩ is known as the initial state. The
input set M usually contains all Boolean functions. However there are some situations in which
restrictions on M may apply. The only conditions required of the set M are that it is infinite
(i.e., there is no K ∈ N such that all Boolean functions f belonging to M have domain {0,1}k

with k ≤ K), and that if f : {0,1}k→ {0,1} ∈M, then the constant zero function with domain
{0,1}k also belongs to M. These conditions guarantee that the addressed detecting problem is
not trivial.

In [CRR20], it is proved that Grover’s algorithm falls under this formalism. Indeed, if O
denotes a quantum oracle evaluating f : {0,1}k → {0,1}, then the QADS related to Grover’s
algorithm [Gro96] is the following: Grover’s algorithm requires a state space

(
C2)⊗k to look

for marked elements, i.e., those in W = {x ∈ {0,1}k | f (x) = 1}, and the initial state |s⟩ which
is the superposition of all the elements of the computational basis 1√

2k ∑
2k−1
x=0 |x⟩. The search

iterates two operators that can be effectively constructed, namely:

• Oracle: U f (|x⟩) = (−1) f (x) |x⟩, i.e., U f = I−2 ∑
x∈W
|x⟩⟨x|.

• Diffusion operator: US = 2 |s⟩⟨s|− I

The algorithm which constructs G :=UsU f from f is a QADS because if W = /0 then U f |s⟩= |s⟩
and

G |s⟩= (2 |s⟩⟨s|− I) |s⟩= 2 |s⟩⟨s|s⟩− I |s⟩= 2 |s⟩− |s⟩= |s⟩

QADS related to other well-known quantum computing search methodologies, such as
quantum walks [Sze04, Por13, San16, Won17] or the quantum abstract search [AKR05], and
even other non-search techniques (like Deutsch-Jozsa algorithm [DJ92]) have been considered
in [CRR20].

4.6. Quantum Abstract Detecting Systems (QADS) 69

4.6.1 Algorithmic closure of QADS

We can derive new QADS from other existing ones. For instance, the extension, inversion,
powers, roots, conjugation, and controlled detecting operator of a QADS is a QADS. Their
description as quantum circuits and operators is given in Table 4.1.

Proposition 4.11. Consider a QADS that generates a pair (|ϕ0⟩) , U) ∈ H ×U (H) for any
given Boolean input f from a set of inputs M, where U (H) is the group of unitary operators on
the Hilbert space H.

1. Algorithms generating the following pairs of initial state/unitary transformation, are also
QADS.

(a) Extension: (|ϕ0⟩ |0⟩⊗l , U⊗ I) ∈ H ′×U (H ′), where H ′ = H⊗ (C2)l .

(b) Inversion: (|ϕ0⟩ , U†) ∈ H×U (H).

(c) Powers: (|ϕ0⟩ , Un f) ∈ H×U (H), for all n f ∈ N.

(d) Roots: (|ϕ0⟩ , U1/n f) ∈ H×U (H), for all n f ∈ N.

(e) Conjugation: (T |ϕ0⟩ , TUT †) ∈ H×U (H), for all T ∈U (H). Moreover, conju-
gation induces an equivalence relation on the set of possible outputs of a QADS for
a given input f ∈M.

(f) Controlled detecting operator: (|+⟩ |ϕ0⟩ , CU) ∈ C2⊗H ×U (C2⊗H). where
CU |i⟩ |x⟩= |i⟩U i |x⟩.

2. If a second QADS generates pairs (
∣∣ϕ ′0〉 , U ′) ∈H ′×U (H ′) for Boolean functions from

the same set of inputs M, then:

(a) A QADS tensor product of QADS can be realized: (|ϕ0⟩
∣∣ϕ ′0〉 , U⊗U ′) ∈H⊗H ′×

U (H⊗H ′).

(b) If H ′ = H and
∣∣ϕ ′0〉= |ϕ0⟩, then a product of detecting operators can be considered

as a QADS: (|ϕ0⟩ , U ′U) ∈ H×U (H).

(c) The pair of QADS can be doubly controlled according to the following scheme:
(|+⟩ |ϕ0⟩

∣∣ϕ ′0〉 , (U⊗U ′)dc) ∈ C2⊗H⊗H ′×U (C2⊗H⊗H ′), where

(U⊗U ′)dc |i⟩ |x⟩
∣∣x′〉= |i⟩U i |x⟩U ′1−i ∣∣x′〉 .

Proof. See [CRR20], Appendix B]

70 Chapter 4. Some Quantum Algorithms

Name Initial state Detecting operator Circuit
QADS |ϕ0⟩ U

|ϕ0⟩ U

Extension |ϕ0⟩ |0⟩⊗l U⊗ I

|ϕ0⟩ U
|0⟩⊗l

Inversion |ϕ0⟩ U†

|ϕ0⟩ U†

Powers |ϕ0⟩ Un f

|ϕ0⟩ Un f

Roots |ϕ0⟩ U1/n f

|ϕ0⟩ U
1

n f

Conjugation T |ϕ0⟩ TUT †

T |ϕ0⟩ T † U T

Controlled |+⟩ |ϕ0⟩ CU |i⟩ |x⟩= |i⟩U i |x⟩
|+⟩ •
|ϕ0⟩ U

Tensor product |ϕ0⟩ |ϕ0
′⟩ U⊗U ′

|ϕ0⟩ U∣∣ϕ ′0〉 U ′

Product |ϕ0⟩(= |ϕ0
′⟩) U ′U

|ϕ0⟩ U U ′

Doubly controlled |+⟩ |ϕ0⟩ |ϕ0
′⟩ Udc |i⟩ |x⟩ |x′⟩

=|i⟩U i |x⟩U ′1−i |x′⟩ |+⟩ •
|ϕ0⟩ U∣∣ϕ ′0〉 U ′

Table 4.1: Transformations in the algorithmic closure of a QADS

4.6. Quantum Abstract Detecting Systems (QADS) 71

4.6.2 Properties of QADS
Here, we define when a QADS is efficiently constructible, which is when both unitary operator
and the initial state should be computed in polynomial time in the input size n. As an example,
Grover’s QADS is efficiently constructible. Also, we define when a QADS has an efficient
detection, that is, it should have a detection rate asymptotically independent of the input size.

Definition 4.12. A QADS is called efficiently constructible if for any input circuit f ∈M of size
n, the output pair initial state/unitary transformation can be computed in O(poly(n)) time and,
as a consequence, their circuits are of O(poly(n)) width, depth and number of gates.

Definition 4.13. Let (|ϕ0⟩ ,U = U(f)) be the output of a QADS on input f ∈ M. Then, for a
given 0 < δ ≤ 1, a function T : N→ N is a δ -quantum detecting time for the QADS if for all
nonzero f ∈M of input size k it holds that

∑
T (k)
t=0 | ⟨ϕ0|U t |ϕ0⟩ |2

T (k)+1
≤ 1−δ .

For instance, the QADS of Grover search provides efficient constructibility and a
√

2−1
4
√

2
−

detection time of order O(
√

2k), [Example 13, [CRR20]].

4.6.3 Detection with a QADS
In this subsection, we present an algorithm that is used in a decision procedure to detect the
existence of marked elements when we have a QADS i.e., existence of x such that f (x) = 1.

Algorithm 4.14 (Detection scheme).
Input: A QADS Q, a Boolean function f : {0,1}k→ {0,1} from the set of inputs M of
the QADS, and a natural number T .
Procedure:

• Precomputation of the initial state |ϕ0⟩ and the detecting operator U with Q on
input f .

• Computation:

– Choose t uniformly in the set {0,1, . . . ,T}
– Compute |ϕt⟩=U t |ϕ0⟩.

• Measurement of |ϕt⟩ on an orthonormal basis containing |ϕ0⟩

Output:

• NO: If the measurement is the initial state |ϕ0⟩.

• YES: Otherwise.

72 Chapter 4. Some Quantum Algorithms

The detection scheme is readily described by the circuit in Figure 4.5.

|ϕ0⟩ U(f) · · · U(f) |ϕ0⟩

Figure 4.5: Circuit of the detection scheme.

In general, the following result can be proved:

Theorem 4.15. [CRR20][Main Theorem] The detection scheme of Algorithm 4.14 always pro-
vides a correct output on input zero (i.e., when no marked elements exist), and so the probability
of error is fully attributed to nonzero inputs. That probability is equal to

∑
T
t=0 | ⟨ϕ0|U t |ϕ0⟩ |2

T +1

Therefore, if a QADS is both efficiently constructible and has a δ−detecting time, then the
detection scheme can be run in O(poly(n)) precomputation time, and the detection problem can
be solved by a one-side error quantum algorithm with error at most 1−δ .

Proof. See [CRR20], Appendix E]

Chapter 5

Combinatorial and Rotational QADS

In this chapter, we introduce new families of QADS, known as combinatorial and rotational,
which respectively generalize detecting systems based on single qubit controlled gates and on
Grover’s algorithm. We study the algorithmic closure of each family, and prove that some of
these QADS are equivalent (in the sense of having the same detection rate) to others constructed
from tensor product of controlled operators and their square roots. The aim is to improve
the detecting techniques used in the effective determination of the commutativity of a finite-
dimensional algebra. This is accomplished at the end of the chapter. Incidentally, we also apply
the new QADS to the problem of the phase estimation.

First, let us introduce the definition of combinatorial QADS.

5.1 m-Combinatorial QADS

Definition 5.1. If U f is the detecting operator of a QADS Q, |ϕ0⟩ is its inital state, and m is
a non-negative integer, we define the m−combinatorial QADS obtained from Q as the QADS
whose initial state is |0⟩⊗m |ϕ0⟩, and whose detecting operator is given by

C(m,U f) :=
(
H⊗m⊗ I

)
c1U f · · ·cmU f

(
H⊗m⊗ I

)
,

where ciU f is the unitary operator that applies U f to the second register if the i-th qubit of the
first register is |1⟩, and applies the identity if that qubit is |0⟩ (i.e. it is the operator U f controlled
by the i-th qubit of the first register).

Observe that, when m = 1, we recover the controlled QADS of [CRR20] (7−th entry in
Table 4.1). The following result guarantees that the m−combinatorial QADS is indeed a QADS,
and that it is efficiently constructible provided the original QADS is.

Proposition 5.2. If we have a QADS Q providing an output
(
U f , |ϕ0⟩

)
on input f , then for all

m ≥ 1, the algorithm that returns the operator depicted in circuit of Figure 5.1, and the state
|0⟩⊗m |ϕ0⟩ is also a QADS. What is more, if the original QADS is efficiently constructible, so
is the new QADS, for fixed m.

73

74 Chapter 5. Combinatorial and Rotational QADS

H • . . . H

H • . . . H
...

...
H . . . • H

U f U f . . . U f


|0⟩⊗m

|ϕ0⟩

Figure 5.1: Circuit of a m-Combinatorial QADS

Proof of Proposition 5.2. The new algorithm is a QADS because if f = 0, then U f |ϕ0⟩= |ϕ0⟩.
Therefore, ciU f |ψ⟩ |ϕ0⟩= |ψ⟩ |ϕ0⟩, for all |ψ⟩, and for all i. Consequently,

C(m,U f) |0⟩⊗m |ϕ0⟩=
[(

H⊗m⊗ I
)

c1U f · · ·cmU f
(
H⊗m⊗ I

)]
|0⟩⊗m |ϕ0⟩

= |0⟩⊗m |ϕ0⟩ ,

which shows that the m−combinatorial QADS is actually a QADS.

When the QADS is efficiently contructible, |ϕ0⟩ can be constructed in polynomial time (on
n, the size of f), and the same holds for the initial state |0⟩⊗m |ϕ0⟩, for fixed m. On the other
hand, because of [NC11][Section 4.3], any controlled operator ciU f can also be constructed in
polynomial time because of the constructibility of the QADS. Therefore, the m−combinatorial
QADS is efficiently constructible, with a cost of order O(m ·poly(n)).

The reason that justifies the name “combinatorial” for this type of QADS is given in the follow-
ing result, where the amplitude of the state

C(m,U f) |0⟩⊗m |ϕ0⟩ ,

related to the state |0⟩⊗m |ϕ0⟩ , is given.

Proposition 5.3. The amplitude of the state C(m,U f) |0⟩⊗m |ϕ0⟩ related to the basis state |0⟩⊗m |ϕ0⟩,
is

1
2m

m

∑
k=0

(
m
k

)
⟨ϕ0|Uk

f |ϕ0⟩ . (5.1)

A concrete and complete description of the state

C(m,U f) |0⟩⊗m |ϕ0⟩

is given in Proposition 5.5.

5.1. m-Combinatorial QADS 75

Proof of Proposition 5.3. Applying H⊗m⊗ I to the state |0⟩⊗m |ϕ0⟩, we get

1√
2m

2m−1

∑
x=0
|x⟩ |ϕ0⟩ .

Using the controlled versions of the U f operator, we get

|ψ⟩= 1√
2m

2m−1

∑
x=0
|x⟩U |x|f |ϕ0⟩ ,

where |x| is the Hamming weight of x, i.e., if x is described by exactly |x| ones and m− |x|
zeroes, then the controlled operators ciU f will contribute with exactly |x| hits of U f . Therefore,〈

|0⟩⊗m |ϕ0⟩
∣∣(H⊗m⊗ I) |ψ⟩

〉
=
〈
(H⊗m⊗ I) |0⟩⊗m∣∣|ψ⟩〉

=

〈
1√
2m

2m−1

∑
y=0
|y⟩ |ϕ0⟩

∣∣∣∣∣ 1√
2m

2m−1

∑
x=0
|x⟩U |x|f |ϕ0⟩

〉

=
1

2m

(
2m−1

∑
y=0
⟨y| ⟨ϕ0|

)(
2m−1

∑
x=0
|x⟩U |x|f |ϕ0⟩

)

=
1

2m

m

∑
k=0

(
m
k

)
⟨ϕ0|Uk

f |ϕ0⟩ ,

as desired.

Such an expression can be useful, for instance, for providing algebraic proofs of some of the
results related to the algorithmic closure of combinatorial QADS, that we introduce next. The
proofs below are first sketched by circuit depiction of the QADS operators. In these results, we
determine some procedures which leave the subclass of combinatorial QADS algorithmically
closed.

Proposition 5.4. The extension, powers, and roots of an m−combinatorial QADS, are also
m−combinatorial QADS.

Graphical sketch of proof. 1. Extension: It is straightforward to see that the following cir-
cuit

H • . . . H

H • . . . H
...

...
H . . . • H

U f U f . . . U f

I I . . . I

|0⟩⊗m

|ϕ0⟩

|0⟩⊗l

76 Chapter 5. Combinatorial and Rotational QADS

is equivalent to
H • . . . H

H • . . . H
...

...
H . . . • H

|ϕ0⟩ U f U f . . . U f

|0⟩⊗l I I . . . I .

|0⟩⊗m

2. Powers: Since H2 = I, and U f commutes with itself, we have the following equivalencies
for n f copies of the m−combinatorial detecting operator:

H • · · · H (n f)· · · H • · · · H

H • · · · H · · · H • · · · H
...

...
H · · · • H · · · H · · · • H

U f U f · · · U f · · · U f U f · · · U f

≡
H • (n f). . . • . . . H

H • . . . • . . . H
...

...
H • H

U f U f . . . U f U f . . . U f

≡
H • . . . H

H • . . . H
...

...
H . . . • H

Un f
f Un f

f . . . Un f
f

.

5.1. m-Combinatorial QADS 77

3. Roots: Since C
(
m,
√

U f
)2

=C
(
m,
√

U f
)
, then

H • . . . H

H • . . . H
...

...
H . . . • H√

U f
√

U f . . .
√

U f

|0⟩⊗m

|ϕ0⟩

H • . . . H

H • . . . H
...

...
H . . . • H√

U f
√

U f . . .
√

U f

|0⟩⊗m

|ϕ0⟩

≡
H • . . . • . . . H

H • . . . • . . . H
...

...
H • H√

U f
√

U f . . .
√

U f
√

U f . . .
√

U f

|0⟩⊗m

|ϕ0⟩

≡
H • . . . H

H • . . . H
...

...
H . . . • H

U f U f . . . U f .

|0⟩⊗m

|ϕ0⟩

Proof of Proposition 5.4. Consider a QADS that, on input f , provides an output
(
|ϕ0⟩ , U f

)
,

and let
(
|0⟩⊗m |ϕ0⟩ , C(m,U f)

)
be the output of the corresponding m−combinatorial QADS.

1. Extension: Observe that

(ciU f ⊗ I) |x⟩ |ψ⟩ |ξ ⟩= (α |0⟩ |ψ⟩+β |1⟩U f |ψ⟩) |ξ ⟩

= (α |0⟩+β |1⟩(U f ⊗ I)) |ψ⟩ |ξ ⟩= ci(U f ⊗ I) |x⟩ |ψ⟩ |ξ ⟩

where |x⟩= α |0⟩+β |1⟩ . So, C(m,U f)⊗ I =C(m,U f ⊗ I).

78 Chapter 5. Combinatorial and Rotational QADS

2. Powers: For any unitary operators U and V

cV cU |x⟩ |ϕ⟩= α |0⟩ |ϕ⟩+β |1⟩VU |ϕ⟩= c(VU) |x⟩ |ϕ⟩ ,

where |x⟩= α |0⟩+β |1⟩ . Also, notice that when U and V commute,

c2V c1U |x⟩ |y⟩ |ψ⟩= c2V (α |0⟩ |y⟩ |ψ⟩+β |1⟩ |y⟩U |ψ⟩)
= αγ |0⟩ |0⟩ |ψ⟩+αδ |0⟩ |1⟩V |ψ⟩+βγ |1⟩ |0⟩U |ψ⟩+βδ |1⟩ |1⟩VU |ψ⟩
= γα |0⟩ |0⟩ |ψ⟩+ γβ |1⟩ |0⟩U |ψ⟩+δα |0⟩ |1⟩V |ψ⟩+δβ |1⟩ |1⟩UV |ψ⟩
= c1U(γ |x⟩ |0⟩ |ψ⟩+δ |x⟩ |1⟩V |ψ⟩)
= c1Uc2V |x⟩ |y⟩ |ϕ⟩ ,

where |x⟩ = α |0⟩+ β |1⟩ , |y⟩ = γ |0⟩+ δ |1⟩ . Because H2 = I, we have C(m,U f)
n f =

C(m,U
n f
f).

3. Roots: Taking in the previous equation V = U
n f
f , we have that U f = V 1/n f , and that

C(m,V 1/n f)n f = C(m,V), i.e., C(m,V 1/n f) = C(m,V)1/n f . This shows that the n f−th
root of an m−combinatorial QADS is also an m−combinatorial QADS.

Some other operations in the algorithmic closure of QADS might not leave the subclass of
combinatorial QADS closed. This is, for instance, the case of the product of two combinatorial
QADS when the corresponding detecting operators do not commute.

Proposition 5.5. Given a QADS with output (|ϕ0⟩ ,U f), and a natural number m, the state of
the corresponding m−combinatorial QADS, after one hit of the detecting operator on the initial
state, is:

1
2m

2m−1

∑
y=0
|y⟩

 m

∑
k=0

⌊ k
2⌋

∑
s=0

(
|y|
2s

)(
m−|y|
k−2s

)
−
⌊ k−1

2 ⌋
∑
s=0

(
|y|

2s+1

)(
m−|y|

k−2s−1

)Uk
f

 |ϕ0⟩ .

Proof of Proposition 5.5. From the proof of Proposition 5.3, we get the state

1√
2m

2m−1

∑
x=0
|x⟩U |x|f |ϕ0⟩

after applying H⊗m⊗ I to the initial state |0⟩⊗m |ϕ0⟩, and then the controlled gates on the oper-
ators U f . Next, we apply H⊗m⊗ I to get

1√
2m

1√
2m

2m−1

∑
x=0

2m−1

∑
y=0

(−1)x·y |y⟩U |x|f |ϕ0⟩=
1

2m

2m−1

∑
y=0
|y⟩
(

2m−1

∑
x=0

(−1)x·yU |x|f

)
|ϕ0⟩ .

5.1. m-Combinatorial QADS 79

Now, we fix a binary array y with |y| ones and m−|y| zeroes. Assume that another array x of
the same length m, contains t ones colliding in positions of the array y with a one, and |x|− t
ones colliding in zero entries of the array y (its remaining entries are all zero). Without loss of
generality, this can be depicted as:

y = (1 . . . |y|.1 | 0 m−|y|.0)

x = (1 t. . . 1 | 0 |y|−t. . . 0 | 1 |x|−t. . . 1 | 0 m−|y|−|x|+t. . . 0).

The number of arrays x in this situation is(
|y|
t

)(
m−|y|
|x|− t

)
.

Now, x ·y = 0 if and only if t is even. In this case, the possible values of t are of the form t = 2s,
where x = 0,1, . . . ,

⌊
|x|
2

⌋
. On the other hand, x · y = 1 if and only if t is odd, and the possible

values of t are of the form t = 2s+1, where x = 0,1, . . . ,
⌊
|x|−1

2

⌋
. Summarizing, the number of

possible x such that x · y = 0 is

⌊ k
2⌋

∑
s=0

(
|y|
2s

)(
m−|y|
k−2s

)
,

whereas the number of possible x such that x · y = 1 is

⌊ k−1
2 ⌋

∑
s=0

(
|y|

2s+1

)(
m−|y|

k−2s−1

)
.

This gives us the desired expression for the final state of the m−combinatorial QADS.

Next, we provide a result relating the detecting times of the combinatorial and the original
QADS. Two technical lemmas are introduced first.

Lemma 5.6 ([Pet33]). Let α be a real number, and let 0 < θ < π

2 . If z1, . . . ,zn are complex
numbers such that

α−θ ≤ arg z j ≤ α +θ , for all j = 1, . . .n,

then ∣∣∣∣∣ n

∑
j=1

z j

∣∣∣∣∣≥ cosθ

n

∑
j=1

∣∣z j
∣∣ .

80 Chapter 5. Combinatorial and Rotational QADS

Proof of Lemma 5.6. Since |z| ≥ |Re(z)| ≥ Re(z), for all z ∈ C, then∣∣∣∣∣ n

∑
j=1

z j

∣∣∣∣∣=
∣∣∣∣∣e−iα

n

∑
j=1

z j

∣∣∣∣∣
≥

∣∣∣∣∣Re

(
e−iα

n

∑
j=1

z j

)∣∣∣∣∣
≥ Re

(
n

∑
j=1

∣∣z j
∣∣(cos

(
−α + arg z j

)
+ isin

(
−α + arg z j

)))

=
n

∑
j=1

∣∣z j
∣∣cos

(
−α + arg z j

)
≥ cosθ

n

∑
j=1

∣∣z j
∣∣ .

Lemma 5.7. Let m be a positive integer. Then,

m

∑
k=0

(
m
k

)2

=

(
2m
m

)
.

Proof of Lemma 5.7. Let us recall a well-known identity for binomial coefficients, namely, the
Vandermonde’s identity. It states that, for any nonnegative integers r,m,n,(

m+n
r

)
=

r

∑
k=0

(
m
k

)(
n

r− k

)
.

Indeed, note that, by the binomial theorem,

m+n

∑
r=0

(
m+n

r

)
xr = (1+ x)m+n = (1+ x)m (1+ x)n =

m

∑
i=0

(
m
i

)
xi

n

∑
r=0

(
n
j

)
x j

=
m+m

∑
i=0

r

∑
k=0

(
m
k

)(
n

r− k

)
xr.

In particular, when n = m and r = m,(
2m
m

)
=

(
m+m

m

)
=

m

∑
k=0

(
m
k

)(
m

m− k

)
=

m

∑
k=0

(
m
k

)(
m
k

)
=

m

∑
k=0

(
m
k

)2

.

5.1. m-Combinatorial QADS 81

Proposition 5.8. Let Q be a QADS, and let Q̃ be the corresponding m-combinatorial QADS.
Supposse S : N→N is a δ̃ -detecting time for Q̃, and let zl := ⟨ϕ0|U l

f |ϕ0⟩ for any l ∈N. Assume

that, for all w∈N, there exist aw ∈R, with αw ∈
(
0, π

2

)
, such that (1−δ̃)22m

cos2 αw(2m
m)
≤ 1−δ , with δ > 0,

and such that, for all l = 0, . . . ,m · S(k), arg(zl) ∈ [aw−αw,aw +αw]. Then, T : N→ N given
by T (w) = m ·S(w), for all w ∈ N, is δ

2m−detecting time for Q.

Proof of Proposition 5.8. Let w ∈ N be fixed, and denote T = T (w), S = S(w) = m · T (w),
a = aw, and α = αw. By Proposition 5.4, we have that, for all s ∈N, C(m,U f)

s =C(m,U s
f), and

by Proposition 5.3, we know the amplitude of the state C(m,U f) |0⟩⊗m |ϕ0⟩ , so

S
∑

s=0

∣∣⟨|0⊗m⟩ |ϕ0⟩|C(m,U f)
s ||0⊗m⟩ |ϕ0⟩⟩

∣∣2
S+1

=

S
∑

s=0

∣∣∣∣ m
∑

k=0

(m
k

)
⟨ϕ0|Uks

f |ϕ0⟩
∣∣∣∣2

22m(S+1)

=

S
∑

s=0

∣∣∣∣ m
∑

k=0

(m
k

)
zks

∣∣∣∣2
22m(S+1)

≤ 1− δ̃ .

Here, zks := ⟨ϕ0|Uks
f |ϕ0⟩ , for all k = 0, . . . ,m, and all s = 0, . . . ,S. Let us define the following

sets:

A0 := {0}
A0 := {1, . . . ,T}= {0, . . . ,T}\{A0}
Ak := {k,2k, . . . ,Sk} , for all 1≤ k ≤ m

Ak := {0, . . . ,T}\{Ak}.

Now, by Lemma 5.7,

T
∑

t=0

∣∣∣⟨ϕ0|U t
f |ϕ0⟩

∣∣∣2
T +1

=

T
∑

t=0
|zt |2

T +1
=

m
∑

k=0

(m
k

)2

(2m
m

) ·
T
∑

t=0
|zt |2

T +1
=

m
∑

k=0

(m
k

)2

(
∑

t∈Ak

|zt |2 + ∑

t∈Ak

|zt |2
)

(2m
m

)
(T +1)

.

82 Chapter 5. Combinatorial and Rotational QADS

But, since |zt | ≤ 1, |Ak|= T −S, for k > 0, and |z0|2 = 1, we find

m
∑

k=0

(m
k

)2

(
∑

t∈Ak

|zt |2 + ∑

t∈Ak

|zt |2
)

(2m
m

)
(T +1)

≤

(
|z0|2 +T

)
+

m
∑

k=1

(m
k

)2
(

S
∑

s=0
|zks|2 +(T −S)

)
(2m

m

)
(T +1)

=

m
∑

k=0

(m
k

)2
(

S
∑

s=0
|zks|2 +(T −S)

)
(2m

m

)
(T +1)

=

S
∑

s=0

m
∑

k=0

((m
k

)
|zks|

)2

(2m
m

)
(T +1)

+

m
∑

k=0

(m
k

)2

(2m
m

) · T −S
T +1

≤

S
∑

s=0

(
m
∑

k=0

∣∣(m
k

)
zks
∣∣)2

(2m
m

)
(T +1)

+
T −S
T +1

,

because
(m

k

)
|zks|=

∣∣(m
k

)
zks
∣∣≥ 0. Therefore, by Lemma 5.6, we have

S
∑

s=0

(
m
∑

k=0

∣∣(m
k

)
zks
∣∣)2

(2m
m

)
(T +1)

+
T −S
T +1

≤

S
∑

s=0

∣∣∣∣ m
∑

k=0

(m
k

)
zks

∣∣∣∣2
cos2 α

(2m
m

)
(T +1)

· 2
2m(S+1)

22m(S+1)
+

T −S
T +1

≤ (1− δ̃) · 22m(S+1)

cos2 α
(2m

m

)
(T +1)

+
T −S
T +1

≤ (1−δ) · S+1
T +1

+
T −S
T +1

≤ 1− δ

2m
,

since S+1
T+1 ≥

1
2m .

The conditions on the previous result are satisfied, for instance, for some families of QADS
known as rotational, that we introduce in the next section (see Corollary 5.16).

5.2 Rotational QADS
In some well-studied searching procedures, the iterating operator acts only on a small dimen-
sional invariant subspace, leaving the remaining directions unchanged. This is the case, for in-
stance, of the operator of Szegedy’s quantum walk with queries on the complete graph [San16],
which acts on an invariant three-dimensional space when only one vertex is marked, and on an
invariant four-dimensional space when multiple marked vertices are considered. Of course, this
is also the case of the operator of Grover’s search, which acts as a rotation in a two-dimensional
invariant subspace, and leaves the orthogonal directions unaltered [Gro96]. In this section, we

5.2. Rotational QADS 83

consider QADS in which the detecting operator U f behaves in this way, acting as a rotation in a
two-dimensional invariant subspace, with an operator described by a matrix in SO(2). As in the
case of the combinatorial QADS, we study their properties, such as an explicit expression of the
final amplitude, and their algorithmic closure. We also consider combinatorial QADS derived
from rotational QADS, concluding some interesting equivalences.

The definition of a rotational QADS is as follows.

Definition 5.9. If U f is the detecting operator of a QADS Q with initial state |ϕ0⟩, we shall
say that it is a rotational QADS if there exist α ∈ [0,2π), orthonormal states |ϕ1⟩ , |ϕ2⟩, and
β1,β2 ∈ R, such that

1. |ϕ0⟩= β1 |ϕ1⟩+β2 |ϕ2⟩

2. U f |ϕ1⟩= cosα |ϕ1⟩+ sinα |ϕ2⟩

3. U f |ϕ2⟩=−sinα |ϕ1⟩+ cosα |ϕ2⟩ .

As said before, the QADS associated to Grover’s search is a rotational QADS. The detecting
operator U f of a rotational QADS can be straightforwardly described by a matrix(

cosα −sinα

sinα cosα

)
∈ SO(2),

since the coordinate matrix of U f with respect to an orthonormal basis whose first two elements
are |ϕ1⟩ , |ϕ2⟩ is  cosα −sinα 0

sinα cosα 0
0 0 In−2

 .

In the following result, we obtain the amplitude of the state U f |ϕ0⟩, and a generalised version
for QADS that can be described by an arbitrary matrix in the orthogonal group O(n) (Proposi-
tion 5.11).

Proposition 5.10. Given a rotational QADS with output (|ϕ0⟩ ,U f), the state after k hits of the
detecting operator on the initial state is

Uk
f |ϕ0⟩= (β1 coskα−β2 sinkα) |ϕ1⟩+(β1 sinkα +β2 coskα) |ϕ2⟩ .

In particular, the amplitude of such a final state, related to the initial state |ϕ0⟩, is coskα .

Proof of Proposition 5.10. In terms of |ϕ1⟩ , |ϕ2⟩, for all k≥ 0, the action of Uk
f on |ϕ0⟩ is given

by the matrix (
cosα −sinα

sinα cosα

)k

=

(
coskα −sinkα

sinkα coskα

)
,

84 Chapter 5. Combinatorial and Rotational QADS

(the n− 2 invariant directions have been omitted). The final state has coordinates related to
|ϕ1⟩ , |ϕ2⟩ given by the array(

coskα −sinkα

sinkα coskα

)(
β1
β2

)
=

(
β1 coskα−β2 sinkα

β1 sinkα +β2 coskα,

)
as desired.

On the other hand,

⟨ϕ0|Uk
f |ϕ0⟩=

(
β1,β2

)(
β1 coskα−β2 sinkα

β1 sinkα +β2 coskα

)
= |β1|2 coskα +

(
β2β1−β1β2

)
sinkα + |β2|2 coskα

= coskα.

Proposition 5.11. Let Q be a QADS such that any input function U f can be described by an
orthogonal matrix with respect to a suitable orthonormal basis. Then, there exist an orthonormal
basis {

∣∣ϕ1
1
〉
,
∣∣ϕ1

2
〉
. . . ,
∣∣ϕ l

1
〉
,
∣∣ϕ l

2
〉
, |ϕ2l+1⟩ , . . . , |ϕn⟩}, angles θ1, . . . ,θl ∈ [0,2π), and real scalars

β 2
1 ,β

2
1 , . . . ,β

l
1,β

l
2,β2l+1, . . . ,βn, such that the final state U f |ϕ0⟩ is

Uk
f |ϕ0⟩=

l

∑
i=1

((β i
1 coskθi−β

i
2 sinkθi)

∣∣ϕ i
1
〉
+(β i

1 sinkθi +β
i
2 coskθi)

∣∣ϕ i
2
〉
)

+
n−1

∑
i=2l+1

βi |ϕi⟩+(±1)k
βn |ϕn⟩ .

As a consequence, the amplitude of such a final state, related to the initial state |ϕ0⟩, is

l

∑
i=1

((|β i
1|2 + |β i

2|2)coskθi)+
n−1

∑
i=2l+1

|βi|2 +(±1)k|βn|.

Proof of Proposition 5.11. Since U f admits a coordinate matrix in the orthogonal group O(n),
there must exist an orthonormal basis {

∣∣ϕ1
1
〉
,
∣∣ϕ1

2
〉
. . . ,
∣∣ϕ l

1
〉
,
∣∣ϕ l

2
〉
, |ϕ2l+1⟩ , . . . , |ϕn⟩} such that

the coordinate matrix of U f with respect to such a basis is the block diagonal matrix

Rθ1

Rθ2
. . .

Rθk

In−2l−1
±1


,

5.2. Rotational QADS 85

for some angles θ1, . . . ,θl ∈ [0,2π), where Rθi =

(
cosθi −sinθi
sinθi cosθi

)
, In−2l−1 is the identity

matrix, and the sign of the last diagonal entry depends on whether U f is a rotation or a reflection.
The initial state can be written as a linear combination of the basis, in the following way:

|ϕ0⟩=
l

∑
i=1

(β i
1
∣∣ϕ i

1
〉
+β

i
2
∣∣ϕ i

2
〉
)+

n

∑
i=2l+1

βi |ϕi⟩ ,

for real complex coordinates β 2
1 ,β

2
1 , . . . ,β

l
1,β

l
2,β2l+1, . . . ,βn. Straightforward application of the

same ideas of the previous proof yields the desired expression for Uk
f |ϕ0⟩, and ⟨ϕ0|Uk

f |ϕ0⟩.

Analogously as in the case of combinatorial QADS, we consider different procedures that
allow to derive new rotational QADS from others.

Proposition 5.12. The powers, roots, and inversion of a rotational QADS are also rotational
QADS. Also, if two rotational QADS share the same initial state, then their product is also a
rotational QADS.

Proof of Proposition 5.12. 1. Powers: The action of U
n f
f on |ϕ0⟩ is given by the matrix(

cosn f α −sinn f α

sinn f α cosn f α

)
(again, the n−2 invariant directions have been omitted).

2. Roots: The action of U
1

n f
f on |ϕ0⟩ is given by the matrixcos

(
α

n f

)
−sin

(
α

n f

)
sin
(

α

n f

)
cos
(

α

n f

)  .

3. Inversion: The action of U†
f on |ϕ0⟩ is given by the matrix(

cosα sinα

−sinα cosα

)
=

(
cos−α −sin−α

sin−α cos−α

)
.

Note that, in this case U† =U−1.

4. Product: The action of U fU ′f on |ϕ0⟩ is given by the matrix(
cos(α +α ′) −sin(α +α ′)
sin(α +α ′) cos(α +α ′)

)
.

Note that, in general, rotation matrices do not commute under multiplication. However,
if both rotations are taken with respect to the same initial state, then they do commute.

86 Chapter 5. Combinatorial and Rotational QADS

Like in the case of combinatorial QADS, some other operations in the algorithmic closure
of QADS might not leave the subclass of rotational QADS closed. This is for instance the case
of the extension of a rotational QADS, or the product of two rotational QADS when they do not
share the same initial state.

Proposition 5.13. Let m be a natural number, then

m

∑
k=0

(
m
k

)
coskα = 2m

(
cos
(

α

2

))m
cos
(

α

2
m
)
. (5.2)

Proof of Lemma 5.13. We know that cos(x) = eix+e−ix

2 . So,

m

∑
k=0

(
m
k

)
coskα =

m

∑
k=0

(
m
k

)
eikα + e−ikα

2

=
1
2

[
m

∑
k

(
m
k

)(
eiα)k

+
m

∑
k

(
m
k

)(
e−iα)k

]
.

Now, by the Binomial Theorem, we have that

m

∑
k=0

(
m
k

)(
eiα)k

+
m

∑
k

(
m
k

)(
e−iα)k

=
[(

1+ eiα)m
+
(
1+ e−iα)m

]
.

Therefore,

m

∑
k=0

(
m
k

)
coskα =

1
2

[(
1+ eiα)m

+
(
1+ e−iα)m

]
=

1
2

[
eiαm (1+ e−iα)m

+
(
1+ e−iα)m

]
=

1
2

[
ei α

2 m (1+ e−iα)m (
1+ eiαm)e−i α

2 m
]

=
1
2

[(
e
−iα

2 + e
iα
2

)m(
e

iα
2 m + e

−iα
2 m
)]

= 2m
(

cos
(

α

2

))m
cos
(

α

2
m
)
.

Corollary 5.14. Under the hypothesis of Proposition 5.11, the amplitude of the final state of
the corresponding m−combinatorial QADS, related to the initial state |0⟩m |ϕ0⟩, is

l

∑
i=1

(
(|β i

1|2 + |β i
2|2)cos

(
θi

2

)m

cos
(

θim
2

))
+

n−1

∑
i=2l+1

|βi|2 +δ+∗|βn|,

where ∗ ∈ {+,−}, depending on whether U f is a rotation or a reflection.

5.2. Rotational QADS 87

Next, we want to consider the m−combinatorial QADS of a rotational QADS. In particular,
we study the amplitude of the final state, related to the initial state, which is connected to the
detection rate when a single hit of the detecting operator is used. As a consequence of Propo-
sition 5.13, we conclude some interesting equivalences of detecting operators from different
QADS in the algorithmic closure, related to the square root QADS.

Theorem 5.15. If Q is a rotation QADS, m ∈ Z+, and we consider the corresponding m− com-
binatorial QADS, then the amplitude of the initial state after one hit of the detecting operator,
i.e., of C(m,U f) |0⟩m |ϕ0⟩, related to the initial state |0⟩m |ϕ0⟩, is

1
2m

m

∑
k=0

(
m
k

)
coskα =

(
cos
(

α

2

))m
cos
(

α

2
m
)
. (5.3)

Proof of Theorem 5.15. Equation (5.3) is a direct consequence of Propositions 5.3, 5.10, and 5.13.

On the other hand, note that:

• Since the QADS is rotational, we have that ⟨ϕ0|
√

U f |ϕ0⟩= cos
(

α

2

)
(applying the same

idea of Proposition 5.10).

• For a tensor QADS, we directly have ⟨ϕ0| ⟨ψ0|U f ⊗Vf |ϕ0⟩ |ψ0⟩= ⟨ϕ0|U f |ϕ0⟩⟨ψ0|Vf |ψ0⟩.

• For a product QADS, in terms of equality of the detecting operators, we have
√

U
√

U ≡ U .

• Since the QADS is rotational, in terms of one hit detection rate, we have√
U f •

≡√
U f U f .

This is because

⟨ψ0| ⟨ψ0|
√

U f ⊗
√

U f |ψ0⟩ |ψ0⟩=
(
⟨ψ0|

√
U f |ψ0⟩

)2

= cos
(

α

2

)2

=
1+ cosα

2
= ⟨ϕ0c|cU f |ϕ0c⟩

(proof of [CRR20][Proposition 2, item 3]).

Remark. Note that the last equivalence of the proof holds because the QADS is rotational. In
general, such an equivalence is not true. For instance, taking U f as the NOT gate.

As a consequence, the m−combinatorial QADS of a rotational QADS is equivalent, in terms of
detection rate, when one single hit of the detecting operator is taken, to the tensor product of m
copies of its square root QADS, tensored with the m− th power of its square root QADS:

88 Chapter 5. Combinatorial and Rotational QADS

H • . . . H

H • . . . H

...
... ≡

H . . . • H

U f U f . . . U f .


m

√
U f

√
U f

...√
U f


m

√
U f

√
U f . . .

√
U f .︸ ︷︷ ︸

m

In particular, when m is even, it is equivalent to the tensor product of m
2 copies of its con-

trolled QADS, tensored with its m
2−th power:

H • . . . H

H • . . . H

...
... ≡

H . . . • H

U f U f . . . U f


m

•

U f

•

U f

...

•

U f



m
2

U f U f . . . U f .︸ ︷︷ ︸
m
2

On the other hand, when m is odd, it is equivalent to the tensor product of m−1
2 copies of its

controlled QADS plus one copy of its square roots, tensored with a product of exactly the same
operators:

H • . . . H

H • . . . H
...

... ≡
H . . . • H

U f U f . . . U f

m

•
U f

•
U f
...•

U f√
U f

m−1
2

U f U f . . . U f︸ ︷︷ ︸
m−1

2

√
U f .

5.3. Application: Decision on Eigenvalues 89

Let us finish this section with the previously mentioned result on the detecting time of a
family of combinatorial from rotational QADS.

Corollary 5.16. Let Q be a rotational QADS with a rotation angle smaller than θw, on entries
f of size w, and let Q̃ be the corresponding m-combinatorial QADS. Supposse S : N→ N is
a δ̃ -detecting time for Q̃, such that m < min

{
1

4(1−δ̃)2 ,
π

2∆

}
, where ∆ ≥ θwS(w), for all w ∈ N.

Then, T : N→ N given by T (w) = m · S(w), for all w ∈ N, is δ

2m−detecting time for Q, where

δ = 1−2
√

m(1−δ̃)
2 > 0.

Proof of Corollary 5.16. For all w ∈ N, let us consider any possible input f of size w. For all
0≤ l ≤ T (w) = m ·S(w), we have that zl = cos(lθw)> 0, because 0≤ lθw≤m ·S(w)θw≤m∆ <
π

2 . Consequently, for all 0 ≤ l ≤ T (w), arg(zl) ∈ [0−αw,0+αw], with αw as close to zero as

desired. In particular, we can take αw such that (1−δ̃)22m

cos2 αw(2m
m)
≤ 1−δ , because

1−δ > 1−2δ = 2
√

m(1− δ̃)≥ 22m(2m
m

) · (1− δ̃),

and cos2 αw can be made as close as needed to 1. The result now follows from Proposition 5.8.

5.3 Application: Decision on Eigenvalues

Although the QADS methodology was initially introduced as a common framework to deal
with the detection problem, it can also be adapted to other problems. Consider, for instance,
the situation in which we are given a quantum state |ϕ0⟩ , and a unitary operator U , under
the promise that |ϕ0⟩ is one of its eigenvectors, and we want to check whether the associated
eigenvalue is eiα or not. Namely,

Input: A real value α , a quantum state |ϕ0⟩, Uβ ∈ {Uγ}γ∈[0,2π), such that Uβ |ϕ0⟩ =
eiβ |ϕ0⟩ .
Problem: Decide whether β = α or not (up to a certain prefixed accuracy, i.e., if |β −
α|< ε).

If α and |ϕ0⟩ are efficiently computable, then this problem can be approached with an effi-
ciently constructible m−combinatorial QADS. In fact, let us consider the unitary transformation
V = e−iαU . Then

V |ϕ0⟩= e−iαUβ |ϕ0⟩= ei(β−α) |ϕ0⟩= |ϕ0⟩ ,

where the last equality holds if, and only if, α = β .

90 Chapter 5. Combinatorial and Rotational QADS

Now, from the results of Section 5.1, we now that the projection of the final state C(m,V) |0⟩m |ϕ0⟩
on the m−combinatorial QADS initial state |0⟩m |ϕ0⟩ is

1
2m

m

∑
k=0

(
m
k

)
⟨ϕ0|V k |ϕ0⟩=

1
2m

m

∑
k=0

(
m
k

)(
ei(β−α)

)k
=

(
1+ ei(β−α)

2

)m

.

Thus, the probability of measuring |0⟩m |ϕ0⟩ is∣∣∣∣∣
(

1+ ei(β−α)

2

)m∣∣∣∣∣
2

=

∣∣∣∣∣∣
(

1+ ei(β−α)

2

)2
∣∣∣∣∣∣
m

=

(
|1+ cos(β −α)+ isin(β −α)|2

4

)m

=

(
1+2cos(β −α)+ cos2 (β −α)+ sin2 (β −α)

4

)m

=

(
2+2cos(β −α)

4

)m

=

(
1+ cos(β −α)

2

)m

=

(
cos
(

β −α

2

))2m

.

Therefore, we can think of the following procedure to decide whether α = β .

Algorithm 5.17 (For the eigenvalue decision problem).
Input: A real value α , a quantum state |ϕ0⟩, Uβ ∈ {Uγ}γ∈[0,2π), such that Uβ |ϕ0⟩ =
eiβ |ϕ0⟩ .
Procedure:

• Precomputation of the initial state |ϕ0⟩, the unitary operator V = e−iαU , and the
output of the corresponding m−combinatorial QADS (C(m,V), |0⟩m |ϕ0⟩), for a
chosen m.

• Computation:

– Compute |ϕ⟩=C(m,V) |0⟩m |ϕ0⟩.

• Measurement of |ϕ⟩ on an orthonormal basis containing |ϕ0⟩.

Output:

• YES: If the measurement is the initial state |ϕ0⟩.

• NO: Otherwise.

5.4. Application: Phase estimation 91

The observations above prove the following result.

Theorem 5.18. Algorithm 5.17 always provides a correct output when β ̸= α , and so the prob-
ability of error is fully attributed to the case β = α . Namely, such a probability is equal to

θ =

(
cos
(

β −α

2

))2m

.

Therefore, if the QADS is efficiently constructible, then the eigenvalue decision problem can be
solved in O(poly(n)) precomputation time of a one-side error quantum algorithm with error at
most θ , which decreases exponentially with m. The probability of success of the algorithm is
1−θ .

5.4 Application: Phase estimation

5.4.1 Generalized Hadamard Test

Another application of the QADS methodology is phase estimation. Consider again that we are
given a quantum state |ϕ0⟩ , and a unitary operator U , under the promise that |ϕ0⟩ is one of its
eigenvectors with associated eigenvalue is eiα . The aim is to estimate α .

Input: A quantum state |ϕ0⟩, Uβ ∈ {Uγ}γ∈[0,π), such that Uβ |ϕ0⟩= eiβ |ϕ0⟩ , and a natu-
ral number SHOTS.
Problem: PROBLEM: An approximation α of β , using at most SHOTS executions of
prefixed quantum circuit.

Of course, this problem can be solved with the well-known quantum phase estimation (QPE)
Algorithm 4.7. However, as pointed out in [OTT19] “the size and shallowness of the QPE
circuit is important since, in the absence of error correction or error mitigation, one expects
entropy build-up during computation.” In fact, it has been shown in [MOS+19] that, when
implemented on current quantum hardware, the accuracy of the QPE algorithm is “severely
constrained by NISQ’s physical characteristics such as coherence time and error rates.” For
these reasons, some authors have proposed replacing the QPE algorithm with less demanding
methods, that make implementing quantum algorithms that rely on it easier in practice (see, for
instance, [AR20, DJCS21, Nak20, Ral21, SUR+20, Wie19]).

A simpler algorithm, that sometimes is used for the phase estimation problem instead of QPE,
is the Hadamard test (Example 3.19). Which, in fact, consists in the quantum circuit of the
combinatorial QADS with m = 1, with a final measurement of the controlling qubit [ADZ93].

92 Chapter 5. Combinatorial and Rotational QADS

From Example 3.19, we get that the probability of measuring the quantum state |0⟩ |ϕ0⟩ is∣∣∣∣∣∣∣∣12 (1+ eiβ
)
|0⟩+ |1⟩

(
1− eiβ

)∣∣∣∣∣∣∣∣2 = ∣∣∣∣∣∣∣∣12 ((1+ cosβ)2 + sin2
β

)∣∣∣∣∣∣∣∣
=

1
4
(2(1+ cosβ))

=
1
4

(
2
(

2cos2
(

β

2

)))
= cos2

(
β

2

)
.

Running the test SHOTS times provides an approximation P of such a probability, from which
β can be estimated. Namely,

α = 2arcos
(√

P−1
)
.

If we follow a similar procedure with m > 1, i.e., with another combinatorial QADS, we obtain
a generalization of the Hadamard test. In this case, the probability of measuring the quantum
state |0⟩⊗n |ϕ0⟩ is ∣∣∣∣∣

∣∣∣∣∣
(

1+ eiβ

2

)m∣∣∣∣∣
∣∣∣∣∣
2

= cos
(

β

2

)2m

, (5.4)

and running the test SHOTS times provides an approximation P of such a probability, from
which β can be estimated as

α = arccos
(

2 m
√

P−1
)
.

We have tested this ‘m-Hadamard test’ with different values of m, and equispaced angles in
[0,π), with a number SHOTS equal to 104. We run the experiment, whose code can be found in
Appendix A.1, 103 times to get an estimation of the phase, measuring the mean absolute error
of such an estimation. The results are collected in Fig. 5.2. For convenience, the interval [0,π)
has been splitted in two subintervals [0, π

2) and [π

2 ,π). Observe the different scale of the two
figures. When the phase is “small” (namely in the first subinterval), m bigger yields a smaller
mean absolute error, and the opposite occurs for bigger phases. This can be easily explained by
the effect of the m−th root, since in the first case the cosines are closer to one, whereas in the
second one, cosines are closer to zero.

Another way of visualizing this fact is with the average error, whose code can be found in
Appendix A.2, for the different phases in the first and second interval, (in both cases for
m = 1,2,3,4,5), as depicted in Fig. 5.3. We can see that increasing m is better for the estimation
of angles in the first subinterval, but it is worse for those in the second subinterval. Therefore,
we can conclude that, unless the phase is promised to be in the first half of the interval [0,π),
the m−Hadamard test with m > 1 would be better avoided.

5.4. Application: Phase estimation 93

Figure 5.2: Mean absolute error of the estimated phase, with 103 experiments, of the m-
Hadmard test (with m = 1, . . . ,5), with 104 SHOTS in each experiment, for different equispaced
phase values.

94 Chapter 5. Combinatorial and Rotational QADS

Figure 5.3: Average error of the estimated phase with 103 experiments of the m−Hadamard test
(with m = 1,2,3,4,5), with 104 SHOTS, for the equispaced phase values in the first and second
halves of the interval [0,π).

5.4. Application: Phase estimation 95

5.4.2 Dichotomy search
An alternative for phase estimation is a dichotomy search based on the decision of eigenval-
ues procedure of the previous subsection. The idea is, as in the original dichotomy search, to
iteratively split the interval [0,π) in halves, deciding in each iteration to which half the phase
belongs to. The decision is based on comparing the phase against the angles that define each
subinterval. So, in the first iteration, the phase is compared against 0 and π , in the second one,
against 0 and π

2 , or against π

2 and π , and so on. For this decision, we also use Theorem 5.18,
choosing the “left” or “right” subinterval, depending on which extreme angle provides a bigger
probability θ (α takes the value of one or another extreme angle.)

We have tested this dichotomy test with different values of m, and 10 equispaced angles in
[0,π), with 10 iterations, and a number of SHOTS equal to 103 in each iteration. We run the
experiment 103 times to get an estimation of the phase, measuring the mean absolute error of
such an estimation, and the overall average error for different values of m. Its code can be found
in Appendix A.3. The results are collected in Fig. 5.4. It can be noticed that this method pro-
vides uniformly better results when m increases. However, the error is still bigger than the error
provided by the standard Hadamard test.

5.4.3 Hybrid methodology
As a consequence, we propose a hybrid approach which takes the advantages of each of the
methods presented above. First, we use the dichotomy search to “locate” the phase, and then,
we get an actual estimation by using the m-Hadamard test. We have experimented with this
hybrid methodology with different values of m, and 10 equispaced angles in [0,π), with 2
iterations of the dichotomy search, with a number of 103 SHOTS in each iteration. Another
8000 SHOTS are used in the m-Hadamard test. In order to apply the m-Hadamard test, we
hit the operator with a rotation of angle eiL , where L is the lower extreme of the interval in
which the phase is located. In the end, we add the m-Hadamard estimation to L. The results are
collected in Fig. 5.5. The code can by found in Appendix A.4. As in the case of the dichotomy
search, this methodology provides uniformly better results when m increases. Moreover, the
overall errors, when m > 1, beat those of the standard m-Hadamard test.

96 Chapter 5. Combinatorial and Rotational QADS

Figure 5.4: Mean absolute and average error of the estimated phase with 103 experiments of
the Dichotomy test (with m = 1,2,3,4,5), with 10 iterations and 104 overall SHOTS, for ten
equispaced phase values in the first and second halves of the interval [0,π).

5.4. Application: Phase estimation 97

Figure 5.5: Mean absolute and average errors of the estimated phase with 103 experiments of
the hybrid methodology, with 2 steps of the dichotomy search, and 103 SHOTS in each iteration,
plus 8000 SHOTS of the m-Hadamard test, for different equispaced phase values.

98 Chapter 5. Combinatorial and Rotational QADS

5.5 Application: Commutativity of Finite Algebras with Com-
binatorial QADS.

As we mentioned on Chapter 1, the need for an effective procedure to determine the commu-
tativity of the structure is a natural problem in the context of the computational study of finite
dimensional algebras [RCR09], [CRR11], [RC12]. As a solution for that, with quantum tech-
niques, an effective and faster algorithmic method for determining the commutativity of finite
dimensional algebras, based on Grover’s algorithm was proposed in [CRR19a]. As we know, an
abstraction of Grover’s Algorithm is Grover’s QADS. Hence, in this subsection, we perform ex-
periments applying QADS to the problem of the commutativity of algebras of small dimension,
comparing the Combinatorial QADS with other QADS.

Lemma 5.19. For all s,m ∈ N, and for any θ ∈ [0,2π],

m

∑
k=0

(
m
k

)
(sinθ sin((2ks+1)θ)+ cosθ cos((2ks+1)θ))

=
1
2

e−iθ
(

1+ e−2iθs
)m(

(cosθ + isinθ)+ e2iθ(1+sm) (cosθ − isinθ)
)
.

Proof. On one hand,

m

∑
k=0

(
m
k

)
sinθ sin((2ks+1)θ) = sinθ

m

∑
k=0

(
m
k

)
ie−i(2ks+1)θ − iei(2ks+1)θ

2

= sinθ
i
2

(
m

∑
k=0

(
m
k

)(
e−i2sθ

)k
e−iθ −

m

∑
k=0

(
m
k

)(
ei2sθ

)k
eiθ

)

= sinθ
i
2

(
e−iθ

m

∑
k=0

(
m
k

)(
e−i2sθ

)k
− eiθ

m

∑
k=0

(
m
k

)(
ei2sθ

)k
)

= sinθ
i
2

(
e−iθ

(
1+ e−i2sθ

)m
− eiθ

(
1+ ei2sθ

)m)
.

On the other hand,

m

∑
k=0

(
m
k

)
cosθ cos((2ks+1)θ) = cosθ

m

∑
k=0

(
m
k

)
ei(2ks+1)θ)+ e−i(2ks+1)θ

2

=
cosθ

2

(
m

∑
k=0

(
m
k

)(
ei2sθ

)k
eiθ +

m

∑
k=0

(
m
k

)(
e−i2sθ

)k
e−iθ

)

=
cosθ

2

(
eiθ

m

∑
k=0

(
m
k

)(
ei2sθ

)k
+ e−iθ

m

∑
k=0

(
m
k

)(
e−i2sθ

)k
)

=
cosθ

2

(
eiθ
(

1+ ei2sθ

)m
+ e−iθ

(
1+ e−i2sθ

)m)
.

5.5. Application: Commutativity of Finite Algebras with Combinatorial QADS. 99

Hence,

m

∑
k=0

(
m
k

)
(sinθ sin((2ks+1)θ)+ cosθ cos((2ks+1)θ))

=sinθ
i
2

(
e−iθ

(
1+ e−i2sθ

)m
− eiθ

(
1+ ei2sθ

)m)
+

cosθ

2

(
eiθ
(

1+ ei2sθ

)m
+ e−iθ

(
1+ e−i2sθ

)m)
=

1
2

e−iθ
(

isinθ

((
1+ e−2iθs

)m
− e2iθ

(
1+ e2iθs

)m))
+

1
2

e−iθ
(

cosθ

((
1+ e−2iθs

)m
+ e2iθ

(
1+ e2iθs

)m))
=

1
2

e−iθ
((

1+ e−2iθs
)m

(cosθ + isinθ)+ e2iθ
(

1+ e2iθs
)m

(cosθ − isinθ)
)

=
1
2

e−iθ
(

1+ e−2iθs
)m(

(cosθ + isinθ)+ e2iθ e2iθsm (cosθ − isinθ)
)

=
1
2

e−iθ
(

1+ e−2iθs
)m(

(cosθ + isinθ)+ e2iθ(1+sm) (cosθ − isinθ)
)
,

as desired.

Proposition 5.20. Let Q =
(

U f , |ϕ0⟩= 1√
N ∑

N−1
x=0

)
, with N = 2n, be the output of Grover’s

QADS, (Section 4.6). And denote by Q̃ its corresponding combinatorial QADS. Then, the
probability of error of the detection scheme (Algorithm 4.14) for Q̃ is

S
∑

s=0
cos2m(θs)cos2 (θsm)

(S+1)
.

Proof. By Proposition 5.4, we have that, for all s ∈ N, C(m,U f)
s = C(m,U s

f). By Proposi-
tion 5.3, we know the amplitude of the state C(m,U f) |0⟩⊗m |ϕ0⟩ . Also, by section 4.4, we
know that Uk

f |ϕ0⟩= cos((2k+1)θ) |B⟩+ sin((2k+1)θ) |A⟩ . Thus,

⟨ϕ0|Uk
f |ϕ0⟩= cos((2k+1)θ)cosθ + sin((2k+1)θ)sinθ .

100 Chapter 5. Combinatorial and Rotational QADS

And, by Lemma 5.19, we have that

S
∑

s=0

∣∣⟨|0⊗m⟩ |ϕ0⟩|C(m,U f)
s ||0⊗m⟩ |ϕ0⟩⟩

∣∣2
S+1

=

S
∑

s=0

∣∣∣∣ m
∑

k=0

(m
k

)
⟨ϕ0|Uks

f |ϕ0⟩
∣∣∣∣2

22m(S+1)

=

S
∑

s=0

∣∣∣∣ m
∑

k=0

(m
k

)
(sinθ sin((2ks+1)θ)+ cosθ cos((2ks+1)θ))

∣∣∣∣2
22m(S+1)

=

S
∑

s=0

∣∣∣1
2e−iθ (1+ e−2iθs)m

(
(cosθ + isinθ)+ e2iθ(1+sm) (cosθ − isinθ)

)∣∣∣2
22m(S+1)

=

S
∑

s=0

∣∣1
2e−iθ (1+ e−2iθs)m∣∣2 ∣∣∣(eiθ + e2iθ(1+sm)e−iθ

)∣∣∣2
22m(S+1)

=

S
∑

s=0

1
22 22m cos2m(θs)

∣∣(eiθ (1+ e2iθsm))∣∣2
22m(S+1)

=

S
∑

s=0

1
4 cos2m(θs)4cos2 (θsm)

(S+1)

=

S
∑

s=0
cos2m(θs)cos2 (θsm)

(S+1)
,

as desired.

Now, we apply the m-combinatorial QADS to the detection problem considered in [Section 5
[CRR20]]. Namely, detection among 32 elements, where exactly one is marked. We want to
find the probability of success with the detection scheme, Algorithm 4.14, for 50 iterations. By
applying the previous result on that situation, we found the results given in Figure 5.6.

Recall that, for m = 1, our QADS is Controlled-Grover, and for m = 2, our QADS is Con-
trolled Grover ⊗ Controlled Grover. So, we recover the probabilities of [CRR20]. For m > 2,
the m- combinatorial QADS yields higher success probabilities.

Now, let us consider the case where we have a non-commutative algebra A of dimension 3,
with multiplication table {Mi jk}3

i, j,k=1 such that Mi jk ̸= M jik, for exactly one (i, j,k), i.e., it is

5.5. Application: Commutativity of Finite Algebras with Combinatorial QADS. 101

Figure 5.6: Probability of success of Algorithm 4.14, with m = 1,2,3,4,10, for detecting a
unique marked elements among 32 elements.

not commutative, but only one pair of constants
(
Mi jk,M jik

)
is different (see Section 2.3). From

the same section, we know that the multiplication table of A would have the following form,

A1 =

M111 M121 M131
M112 M122 M132
M113 M123 M133

A2 =

M211 M221 M231
M212 M222 M232
M213 M223 M233

A3 =

M311 M321 M331
M312 M322 M332
M313 M323 M333

 .

So, without loss of generality, let us assume that only M123 ̸= M213. By [Lemma 1, [CRR19a]],
we can embed our algebra A of dimension 3 into an algebra Ã of dimension 22 = 4, so we have
64 constants in the multiplication table of Ã such that two of them are pairwise different. Thus,
the multiplication table would become as:

Ã1 =


M111 M121 M131 0
M112 M122 M132 0
M113 M123 M133 0

0 0 0 0

 Ã2 =


M211 M221 M231 0
M212 M222 M232 0
M213 M223 M233 0

0 0 0 0



Ã3 =


M311 M321 M331 0
M312 M322 M332 0
M313 M323 M333 0

0 0 0 0

 Ã4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

102 Chapter 5. Combinatorial and Rotational QADS

So, applying Algorithm 4.14, with m = 1,2,3,4,10, we can see that, for an m-combinatorial
QADS, the probability of success of finding the pair of different constants improves (see Fig-
ure 5.7, whose respective code can be found in Appendix A.6).

Consequently, the m-combinatorial QADS might be used in the computational study of
finite semifields providing better detection probabilities of non-commutativity that the methods
considered in [CRR20].

Figure 5.7: Probability of detecting with Algorithm 4.14, and an m-combinatorial QADS with
m = 1,2,3,4,10, the non-commutativity of a 3-dimensional algebra where only one pair of
constants

(
Mi jk,M jik

)
is different.

Chapter 6

Efficient Quantum Algorithms To Find
Substructures On Finite Algebras

In this chapter, we introduce quantum algorithms that find substructures of a given finite dimen-
sional algebra over a finite field Fp (such as the right, middle, and left nuclei, the nucleus, and
the center) from the multiplication table . We solve this task efficiently, by formulating it as an
instance of the Hidden Subgroup Problem (HSP) (Section 4.2). We give detailed constructions
of the quantum circuits involved in the process, and prove that the overall (quantum) complexity
of our algorithm is polynomial in the dimension of the algebra.

Let A be a non-associative and non-commutative K-algebra, with K = Fp a finite field of prime
cardinality p, and with a fixed basis β = {e1, . . . ,en}. Let {Mi jk}n

i, j,k=1 ⊆ K be the multipli-
cation table of the algebra with respect to β . Consider the additive group G = (A,+), i.e.,
the elements of the algebra with the addition operation. So, G is a finite abelian group, namely
G∼= (Z/pZ)n . Recall the following sets, known as the right, middle, and left nuclei, the nucleus
and the center:

Nr(A) = {a ∈ A : [x,y,a] = 0 for all x,y ∈ A}
Nm(A) = {a ∈ A : [x,a,y] = 0 for all x,y ∈ A}
Nl(A) = {a ∈ A : [a,x,y] = 0 for all x,y ∈ A}
N(A) = Nr(A)∩Nm(A)∩Nl(A)
Z(A) = N(A)∩{a ∈ A : [a,x] = 0 for all x ∈ A}.

These sets, which can be written in terms of the K-basis β and the multiplication table, provide
information about the algebra. For instance, when A is a finite semifield, i.e., a finite divi-
sion ring, these sets are related to properties of the corresponding coordinates projective planes
[Alb60]. Finding those sets can be stated in terms of the HSP, and it is important in the context
of effective classification of finite semifields, see for instance [RCR09], and [HCR23]. So, the
problem addressed in this chapter is as follows.

103

104 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Given: Multiplication table of a finite dimensional K-algebra A (K a finite field Fp).

Problem: To find Nr(A),Nm(A),Nl(A),N(A), and Z(A).

In order to solve it with quantum techniques, we will transform each problem of finding
Nr(A),Nm(A),Nl(A),N(A) and Z(A) into an instance of the HSP, which in general can be stated
as follows:

Given: The ability to evaluate a hiding function f for a subgroup H of a group G (i.e., a
function f that is constant on a subgroup H of G and is distinct on different cosets of H)
on arbitrary elements of G.

Problem: To Find s1,s2, . . . ,sl, a generating set for H.

In order to solve it, in Section 6.1, we show first that those substructures can be written in
terms of the given multiplication of the finite dimensional algebra. In Section 6.2.1, we model
the problem of finding substructures in a finite-dimensional algebra as an instance of the HSP,
and we show that, without the knowledge of extra information on the hiding function, this kind
of problem can not be classically solved with a polynomial number of function accesses to the
hiding function f (Section 6.2.2). In Section 6.3, we construct an efficient quantum oracle for
the function f , and we build an efficient circuit for the solution of the corresponding HSP.

6.1 Substructures
In this section, we show that the right nucleus, middle nucleus, left nucleus, nucleus and center
of a non-associative and non-commutative K-algebra A can be written in terms of the K-basis
and the structure constants.

Firstly, in terms of the K-basis: let x,y ∈ A, so there exist αi,β j ∈ K, for all i, j = 1, . . . ,n,

such that x =
n
∑

i=1
αiei,y =

n
∑
j=1

β je j. Let a ∈ A, then,

[x,y,a] = (xy)a− x(ya)

=

(
n

∑
i=1

n

∑
j=1

αiβ jeie j

)
a−

(
n

∑
i=1

αiei

)(
n

∑
j=1

β je ja

)

=
n

∑
i=1

n

∑
j=1

αiβ j
(
eie j
)

a−
n

∑
i=1

n

∑
j=1

αiβ jei
(
e ja
)

=
n

∑
i=1

n

∑
j=1

αiβ j
((

eie j
)

a− ei
(
e ja
))

6.1. Substructures 105

=
n

∑
i=1

n

∑
j=1

αiβ j[ei,e j,a].

Also,

[x,a,y] = (xa)y− x(ay)

=

(
n

∑
i=1

αi (eia)

)(
n

∑
j=1

β je j

)
−

(
n

∑
i=1

αiei

)(
n

∑
j=1

β jae j

)

=
n

∑
i=1

n

∑
j=1

αiβ j (eia)e j−
n

∑
i=1

n

∑
j=1

αiβ jei
(
ae j
)

=
n

∑
i=1

n

∑
j=1

αiβ j
(
(eia)e j− ei

(
ae j
))

=
n

∑
i=1

n

∑
j=1

αiβ j[ei,a,e j],

and

[a,x,y] = (ax)y−a(xy)

=

(
n

∑
i=1

αi (aei)

)(
n

∑
j=1

β je j

)
−a

(
n

∑
i=1

αiei

)(
n

∑
j=1

β je j

)

=
n

∑
i=1

n

∑
j=1

αiβ j (aei)e j−
n

∑
i=1

n

∑
j=1

αiβ ja
(
eie j
)

=
n

∑
i=1

n

∑
j=1

αiβ j
(
(aei)e j−a

(
eie j
))

=
n

∑
i=1

n

∑
j=1

αiβ j[a,ei,e j].

Therefore,

Nr(A) = {a ∈ A : [ei,e j,a] = 0 for i, j = 1, . . . ,n}
Nm(A) = {a ∈ A : [ei,a,e j] = 0 for i, j = 1, . . . ,n}
Nl(A) = {a ∈ A : [a,ei,e j] = 0 for i, j = 1, . . . ,n}.

And, since

[a,x] = ax− xa =
n

∑
i=1

αiaei−
n

∑
i=1

αieia =
n

∑
i=1

αi (aei− eia) =
n

∑
i=1

αi[a,ei],

the center is
Z(A) = N(A)∩{a ∈ A : [a,ei] = 0 for i = 1, . . . ,n}.

106 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

When the K-algebra is associative, then Nr(A) = Nm(A) = Nl(A) = N(A) = A, and Z(A) = {a ∈
A : [a,ei] = 0 for i = 1, . . . ,n}. And, when the K-algebra is both associative and commutative,
then Z(A) = A.

Secondly, in terms of the structure constants: let a =
n
∑

m=1
αmem, so the conmutator is

[a,ei] = aei− eia

=

(
n

∑
m=1

αmem

)
ei− ei

(
n

∑
m=1

αmem

)

=
n

∑
m=1

αmemei−
n

∑
m=1

αmeiem

=
n

∑
m=1

n

∑
k=1

αmMmikek−
n

∑
m=1

n

∑
k=1

αmMimkek

=
n

∑
m=1

n

∑
k=1

αm (Mmik−Mimk)ek,

and the associator [ei,e j,a] is

[ei,e j,a] =
(
eie j
)

a− ei
(
e ja
)

=

(
n

∑
k=1

Mi jkek

)(
n

∑
m=1

αmem

)
− ei

(
e j

(
n

∑
m=1

αmem

))

=
n

∑
k=1

Mi jkek

(
n

∑
m=1

αmem

)
− ei

n

∑
m=1

αme jem

=
n

∑
k=1

n

∑
m=1

αmMi jkekem−
n

∑
m=1

n

∑
k=1

αmeiM jmkek

=
n

∑
k=1

n

∑
m=1

n

∑
s=1

αmMi jkMkmres−
n

∑
m=1

n

∑
k=1

n

∑
s=1

αmM jmsMikses

=
n

∑
s=1

(
n

∑
m=1

(
n

∑
k=1

(
Mi jkMkms−M jmkMiks

)
αm

))
es.

Analogously, for the associators [ei,a,e j] and [a,ei,e j], we have

[ei,a,e j] =
n

∑
s=1

(
n

∑
m=1

(
n

∑
k=1

(
MimkMk js−Mm jkMiks

)
αm

))
es,

[a,ei,e j] =
n

∑
s=1

(
n

∑
m=1

(
n

∑
k=1

(
MmikMk js−Mi jkMmks

)
αm

))
es.

6.2. The classical approach 107

Thus,

Nr (A) ={a ∈ A :
(
Mi j1M111−M j11Mi11

)
α1 + · · ·+(Mi jnMnn1−M jnnMin1)

αn = 0, . . . ,
(
Mi j1M11n−M j11Mi1n

)
α1 + · · ·+(Mi jnMnnn−M jnn

Minn)αn = 0, for all i, j = 1, . . . ,n}.

In a similiar way, we can obtain expressions for Nm(A),Nl(A),N(A), and Z(A).

6.2 The classical approach
In this section, we model the problem of finding substructures in a finite-dimensional algebra
as a HSP, and we show that without the knowledge of extra information on the hidding func-
tion, this kind of problem can not be classically solved in a polynomial number of function
accesses to the hiding function f . In particular, we explicitly give the functions that hide the
right, middle, and left nuclei, nucleus and center of a finite dimensional K-algebra A, in terms
of its multiplication table.

6.2.1 Hiding functions
Namely, for Nr consider the following function:

fNr : A → An2

a 7→ fNr(a) = ([e1,e1,a], [e1,e2,a], . . . , [en,en,a]).

Note that fNr(a1) = fNr(a2) if and only if a1−a2 ∈ Nr(A). Indeed,

fNr(a1) = fNr(a2)⇔([e1,e1,a], . . . , [en,en,a]) = ([e1,e1,a], . . . , [en,en,a])
⇔([e1,e1,a1]− [e1,e1,a2], . . . , [en,en,a1]− [en,en,a2]) = (0, . . . ,0)
⇔[ei,e j,a1]− [ei,e j,a2] = 0, for all i, j = 1, . . . ,n

⇔
(
eie j
)

a1− ei
(
e ja1

)
−
(
eie j
)

a2 + ei
(
e ja2

)
= 0, for all i, j = 1, . . . ,n

⇔
(
eie j
)
(a1−a2)− ei

(
e j (a1−a2)

)
= 0, for all i, j = 1, . . . ,n

⇔(a1−a2) ∈ Nr(A).

Hence, we can say that f hides the subgroup Nr(A). For Nm(A),Nl(A), we consider the functions

fNm : A → An2

a 7→ fNm(a) = ([e1,a,e1], [e1,a,e2], . . . , [en,a,en]),

and
fNl : A → An2

a 7→ fNl(a) = ([a,e1,e1], [e1,a,e2], . . . , [en,a,en]).

108 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Analogously, as for fNr , it can be seen that fNm(a1) = fNm(a2) if and only if a1− a2 ∈ Nm(A),
and that fNl(a1) = fNl(a2) if and only if a1− a2 ∈ Nl(A). Hence, we can say that fNm and fNl

hide the subgroups Nm(A) and Nl(A), respectively. For N(A), consider the function

fN : A → A3n2

a 7→ fN(a) = (fNr(a), fNm(a), fNl(a)) .

So, fN(a1) = fN(a2) if and only if a1− a2 ∈ Nr(A)∩Nm(A)∩Nl(A) = N(A). And, for Z(A)
consider the following function

fZ : A → A3n2+n

a 7→ fZ1(a) = (fN(a), [a,e1], . . . , [a,en]) .

Hence, fZ(a1) = fZ(a2) if and only if a1− a2 ∈ N(A)∩{a ∈ A : [a,ei] = 0 for i = 1, . . . ,n} =
Z(A).

As we can see, all hiding functions are given in terms of commutators and associators of the
basis elements of the algebra and the argument of the hiding function. So, in order to show that
the hiding functions can be written in terms of the multiplication table of the algebra, we only
need to observe that, if a = ∑

n
m=1 αmem, then we have the conmutator

[a,ei] =
n

∑
k=1

(
n

∑
m=1

αm (Mmik−Mimk)

)
ek,

and the associator

[ei,e j,a] =
n

∑
s=1

(
n

∑
m=1

(
n

∑
k=1

(
Mi jkMkms−M jmkMiks

)
αm

))
es.

Analogously, for the associators [ei,a,e j], and [a,ei,e j].

6.2.2 Classical solution
Next, we consider the classical (i.e., non-quantum) solution to the HSP via the hiding output of
a hiding function. The idea is to show that, as long as there exist different subgroups hidden by
the same function, extra evaluations of such a hiding function are needed in order to distinguish
them. The following is a technical result.

Lemma 6.1. Let G be a finite group having N subgroups with trivial pairwise intersection.
Let g1, . . . ,gt ∈ G be such that m = N−

(t
2

)
≥ 1. Then, there exist m subgroups H1, . . . ,Hm,

out of the N, given by hiding functions f1, . . . , fm : G→ N, such that fi (gk) = f j (gk) , for all
1≤ i, j ≤ m, and 1≤ k ≤ t.

Proof. The proof follows by induction over t. For t = 2, define fi (g1) = 1, for every one of
the i = 1, . . . ,N subgroups, and extend it to G in the following way: fi(gk) = j if gkHi = e jHi,
where e1Hi,e2Hi, . . . ,etiHi are the different classes of G mod Hi.

6.2. The classical approach 109

Assume, for t > 2, that there exist m = N−
(t−1

2

)
subgroups H1, . . . ,Hm, with hiding func-

tions f1, . . . , fm, such that fi(gk) = f j(gk), for all 1 ≤ i, j ≤ m, 1 ≤ k ≤ t− 1. Take gt ∈ G, if
there exists a k < t such that gt = gk, the result follows directly. Otherwise, gt ̸∈ {g1, . . . ,gt−1},
and consider hk = g−1

t gk ̸= 1, for k = 1, . . . , t − 1. A fixed hk belongs, at most, to one of the
H1, . . . ,Hm subgroups (because hk ̸= 1). Take those Hl, out of the N given, such that hk ̸∈ Hl,
for k = 1, . . . ,m. We can redefine fl(gthl) = max{ fl(gk)}+ 1, for all hl ∈ Hl . This function
still can be seen to hide Hl, because g−1

t gk ̸∈ Hl, for all k = 1, . . . ,m. At most, there are t− 1
subgroups that are not taken in this step, so we are left with

m− (t−1) = N−
(

t−1
2

)
− (t−1) = N−

(
t
2

)
subgroups, thus the result follows.

Theorem 6.2. Under the conditions of the previous lemma, t evaluations of a general hiding
function f are not enough to solve the corresponding HSP via the hiding function in a classical
computer. This holds, in particular, if t ≤ ⌊

√
N⌋, and N ≥ 2.

Proof. Clearly, (
t
2

)
<

t2

2
≤ N

2
.

Then,

N−
(

t
2

)
=

N
2
+

N
2
−
(

t
2

)
≥ N

2
+1≥ 2.

Assume the existence of a HSP solver using t evaluations of the hiding function. Evaluations
in the t elements g1, . . . ,gt of the previous theorem provide the same information for the m
subgroups H1, . . . ,Hm. Consequently, they can not be distinguished by the HSP solver.

Corollary 6.3. Computing the right, middle, and left nuclei, center, and center of a finite dimen-
sional algebra A over a finite field K of q elements, with a HSP solver, and no extra knowledge
of the hiding function, on a classical computer, requires at least Ω(

√
pn) evaluations of the

corresponding hiding function.

Proof. In our case, if we consider the additive group of the algebra G = (A,+) ∼= Kn with
K = Fp, the number of 1−dimensional subspaces is 1+ p+ · · ·+ pn−1, all of them with trivial
pairwise intersection. Following the corollary, it is necessary at least ⌊

√
1+ p+ · · ·+ pn−1⌋=

Ω(
√

pn) evaluations for a HSP solver to compute each of the mentioned substructures.

As an aside note, observe that it is always possible to have a finite dimensional algebra
A for which Nl = Nm = Nr = N = Z is of dimension 1 over K. For instance, a Generalized
Twisted Field, for particular choice of its defining parameters [Alb61]. In detail, let F = Fq
with q = pr > 2, and K = Fm

q , with m ≥ 3 and odd. Let g ∈ K be a primitive element K.

Then the polynomial xq−1− g has no roots on K. This is because, if h ∈ K with hq−1 = g,

110 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

then 1− hqm−1 = h(q−1)(1+q+···+qm−1), and so the order of g is less than qm− 1, which is a
contradiction (the order of g is qm−1).

Let A= (K,+,∗) with the operation defined as in Example 2.44, i.e., a ·b= ab−gτ(a)σ(b),
with σ : K → K be such that σ(α) = αq, τ = σ−1, and a ∗ b = (R•1)

−1(a) • (L•1)
−1(b), for all

a,b ∈ K.

Thus, A is a finite semifield, where Nl = Nr = N = Z = F. Now, note that σ(a) = τ(a) if
and only if a = σ2(a). But, since m is odd, and ord(σ2) = ord(σ)

gcd(m,2) , then < σ2 >= Aut(K|F).

Then, |M|= |Fq|, where M = {a ∈ K : σ(a) = τ(a)}, hence Nm ∼= F (here, ord(σ) denotes the
order of σ as an element of the group Aut(K|F)).

6.3 The quantum approach

In this section, we solve the problem of finding substructures in a finite-dimensional algebra by
quantum procedures. In particular, we construct an efficient quantum oracle for the hiding func-
tions of the substructures, and we build an efficient circuit for the solution of the corresponding
HSP. Let us first give an overall picture of the whole procedure.

Algorithm 6.4 (Solution to the HSP for substructures of a finite algebra).
Input: Multiplication table of a finite dimensional K-algebra A with respect to a basis
{e1, . . . ,em} (K is a finite field of p elements)

Construction of quantum oracle: From the multiplication table, construct a quantum
oracle for the hiding function f of a specific subgroup H.

Quantum procedure: Construct a quantum circuit that, using the quantum ora-
cle, that returns tuples (α1, . . . ,αm) of elements in K, which provide cooordinates of
elements in the orthogonal complement of H, i.e., (α1, . . . ,αm) · (β1, . . . ,βm) = 0, for all
∑

m
i=1 βiei ∈ H.

Classical Post processing: Compute generators of H from Gaussian elimination
on the tuples given by the quantum procedure.

6.3.1 Oracle of the hiding function

Our first task is to show that an efficient quantum oracle (in terms of the number of quantum
gates) can be constructed from the multiplication table of the algebra, for each of the hiding
functions introduced in the previous section.

We consider the construction for Nr(A), as those for Nm(A),Nl(A),N(A),Z(A), follow the
same lines. From the previous section, fNr(a) can be written in terms of the structure constants,

6.3. The quantum approach 111

since if a = ∑
n
m=1 αmem, then for all i, j = 1, . . . ,n,

[ei,e j,a] =
n

∑
s=1

(
n

∑
m=1

(
n

∑
k=1

(
Mi jkMkms−M jmkMiks

)
αm

))
es

=
n

∑
s=1

(
n

∑
m=1

αmλi jms

)
es,

where λi jms =
n
∑

k=1

(
Mi jkMkms−M jmkMiks

)
are n4 constants in the finite field K = Fp. If we con-

sider the coordinates of such an expression, we can go further and expand it to get a coordinate
version of fNr namely(

n

∑
m=1

αmλ11m1, . . . ,
n

∑
m=1

αmλi jms, . . . ,
n

∑
m=1

αmλnnmn

)
∈ Kn3

.

Let us write, for all λi jms, with i, j,m,s = 1, . . . ,n, their binary representations {λ t
i jms} for

t = 1, . . . ,r = ⌈log2(p)⌉ (i.e., λi jms = ∑
r
t=1 2t−1λ t

i jms). Using the controlled-multiplier modulo p
of [VBE96], each λi jmsαm can be implemented by repeated modular additions (modulo p), re-
quiring 3r+1 ancillary qubits, and O(r2) gates (among NOT, CNOT and Toffoli gates). These
products can be computed in sequence, reusing the ancillary qubits, while carrying out the mod-
ular addition ∑

n
m=1 λi jmsαm. Again, by [VBE96], such a modular addition requires only r extra

ancillary qubits (to store intermediate values of λi jmsαm), and O((n−1)r) gates.

Overall, computing ∑
n
m=1 αmλi jms requires O(nr2) gates, and (3r + 1)+ r = 4r + 1 ancillary

qubits. Since there are n3 sums of that form, and all ancillary qubits can be reused, the UNR

oracle can be efficiently constructed with 4r+1 ancillary qubits.

In summary, in Table 6.1, we give the number of qubits corresponding to input, output, an-
cillary, and the order of the number of gates required to build each oracle UNr ,UNm,UNl ,UN ,UZ .

Oracle UNr ,UNm ,UNl UN UZ

Number of qubits

Input nr

Output n3r 3n3r 3n3r+n2r

Ancillary 4r+1

Number of gates O(n4r2)

Table 6.1: Cost in terms of number of qubits and gates of each oracle, for the hiding function
of Nr,Nm,Nl,N,Z.

112 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

6.3.2 Quantum Algorithm To Find Substructures
Next, we present a quantum efficient algortihm to find the substructures of a finite-dimensional
algebra over a finite field Fp, based on the above constructed quantum oracle and the ideas
of [Lom04, Section 3]. It uses an efficient computation of the quantum Fourier transform on
G = (A,+)∼= (Z/pZ)n , and it outputs elements of the orthogonal subgroup H to be found:

H⊥ =

{
α =

n

∑
i=1

αien ∈ G : α1β1 + · · ·+αnβn0≡mod p, for all β =
n

∑
i=1

βiei ∈ H

}
.

As before, we consider the construction for Nr(A), as that of Nm(A),Nl(A),N(A), or Z(A), fol-
low the same lines.

Algorithm 6.5 (Quantum procedure for finding the orthogonal of the Right Nucleus).
Input: A black box which performs the operation UNr |a⟩ |0⟩ = |a⟩ | fNr(a)⟩ for a ∈ A,
and ε ∈ R such that

√
2 ≥ ε > 0, so that the QFT on (Z/pZ)n can be computed with

error bounded by ε.

Quantum Procedure:

1. Initial state: |0⟩⊗r1 |0⟩⊗r2 |0⟩⊗r3 , with r1 = nr input qubits, r2 = n3r output qubits
plus r3 = 4r+1+n⌈12.53+3log2 n

√
p

ε
⌉, ancillary qubits.

2. Create superposition and remove elements which are ≥ p.

3. Apply the black box UNr .

4. Apply the Quantum Fourier Transform from Equation (3.1) on the first register.

5. Measure the first register.

Output: The binary expansion of the coordinates of an element in Nr(A)⊥.

As in many quantum algorithms, superposition is achieved by applying the Hadamard trans-
formation. However, we must notice that removal of elements greater or equal than p is needed,
as we are only interested in values mod p. After that, as it is standard in quantum solutions to
the HSP, an application of the quantum oracle UNr is followed by a QFT and a measurement.

Superposition and removal of elements greater or equal than p.

Let us explain with a litte more detail the second step of the quantum procedure. Each element
in the algebra is represented by the binary expansion of its coordinates. So, we need nr qubits
to deal with all the elements in the algebra in superposition. Let us divide then in n registers of
r qubits, each one encoding a single coordinate, which is an integer mod p. Therefore, since

6.3.2.0 Steps 3 to 5 in the algorithm. 113

we are only interested in a superposition of p constants (1√
p ∑

p−1
x=0 |x⟩), after a standard superpo-

sition of the r qubits with Hadamard gates (1√
2r ∑

2r−1
x=0 |x⟩), we need to remove those sumands

which are greater or equal than p.

This is accomplished by the use of an extra r qubit register, storing the binary representation of
the integer p (by an application of at most r X gates). We represented it on the circuit of Figure
6.1 as

p .

Now, for each of the n pairs of 2r qubit registers, we use the quantum bit string comparator
(QBSC) from [OR07] to remove the undesirable summands (see Figure 6.1). It has a total cost
of O(r) CNOT and single qubit gates, and 3r−1 ancillary qubits. The last two of them, Q1,Q2,
provide after measurement a comparison with p. Namely, the integer is smaller than p if and
only if Q1 = 1 and Q2 = 0. So, such a measurement yields the collapse of the first register to
the desired superposition. An undesired measurement forces a repetition of the process.

The probability of failure of one single comparison is 2r−p
2r < 1

2 . Therefore, if the process is
repeated t times, the probability of failure is at most 1

2t . Since this technique is to be applied in
parallel to each of the n different 2r−qubit registers, the overall probability of failure is at most
n
2t . Choosing t = ⌊log2

(n
δ

)
⌋+1 = O(log(n)), yields a bounded probability error 0 < δ < 1 of

the whole comparison procedure, that can be made arbitrarily small.

For a single coordinate, the number of ancillary qubits required in a single use of a QBSC
is 3(r− 1)+ 2, and the number of qubits measured are two. However, we can uncompute the
3(r− 1) qubits that were not measured, and reset the measured ones. We apply this process
t times sequentially for each 2r qubits from the pairs of the first register, giving an overall of
3(r− 1)+ 2 ancillary qubits. Since the r qubits from the state of p can be shared, we need an
overall number of 3(r−1)+2+ r = 4r−1 ancillary qubits.

Steps 3 to 5 in the algorithm.

After the previous step, we achieve the quantum state
1√
pn ∑

a∈A
|a⟩ |0⟩⊗r2 .

Here, summation is to be understood over coordinates of elements in A (ancillary qubits are
omited), and application of the oracle UNr yields

1√
pn ∑

a∈A
|a⟩ | fNr(a)⟩ ,

and application of the QFT from Subsection 3.3.1 (Equation 3.1) on the first register, gives

∑
b∈A
|b⟩
(

1
pn ∑

a∈A
ω

ab
p | fNr(a)⟩

)
,

114 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

|0⟩ H

QBSC

...
...

|0⟩ H

|0⟩
p...

|0⟩

|0⟩
...

...

|0⟩
|0⟩

|0⟩
|0⟩

r

r


3(r−1)+2

Figure 6.1: Quantum circuit of the step 2 of the quantum procedure for finding Nr(A).

6.3.2.0 Steps 3 to 5 in the algorithm. 115

where ωp = exp
(

2πi
p

)
. A measurement |b⟩ on the first register occurs with probability∣∣∣∣∣

∣∣∣∣∣ 1
pn ∑

a∈A
ω

ab
p | fNr(a)⟩

∣∣∣∣∣
∣∣∣∣∣
2

.

If {s1,s2, . . . ,sl} is a Z/pZ−basis of H, then, for all z ∈ Range(fNr), there exists az ∈ A such
that z = fNr(az +∑

l
i=1 λisi), for all 0≤ λ1, . . . ,λl ≤ p−1. So, the probability becomes∣∣∣∣∣

∣∣∣∣∣ 1
pn ∑

z∈Range(fNr)

(
p−1

∑
λ1,...,λl=0

ω
b(az+∑

l
i=1 λisi)

p

)
|z⟩

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣ 1

pn ∑
z∈Range(fNr)

ω
baz
p

l

∏
i=1

(
p−1

∑
λi=0

ω
bλ si
p

)
|z⟩

∣∣∣∣∣
∣∣∣∣∣
2

.

Now, when bsi ̸≡ 0 mod p, for some i = 1, . . . , l, then ∑
p−1
λi=0 ω

λibsi
p = 0 (because of Proposi-

tion 2.59), and the corresponding summand vanishes. Otherwise, b ∈ H⊥, and the probability
is

1
p2n ∑

z∈Range(fNr)

∣∣∣∣∣ωbaz
p

l

∏
i=1

(
p−1

∑
λi=0

ω
0
p

)∣∣∣∣∣
2

=
1

p2n pn−l(1 · pl)2 = pl−n

Thus, we obtain an element uniformly distributed in Nr(A)⊥.

6.3.3 Classical post processing
In order to determine the number of times that the quantum procedure should be run in order
to find a generator set of the subgroup Nr(A)⊥, we shall use Theorem 2.62. So, running the
quantum procedure s+ nr times, with s ≥ 0, gives a generator set {g1, . . . ,gs+nr} of Nr(A)⊥,
with probability at least 1− 1

2s (because Nr(A)⊥ is subgroup of (A,+), which has order at most
pn). Once that we have such a generating set, Gaussian elimination on the following system of
s+nr linear equations

g1
1x1 + g1

2x2 + · · · + g1
nxn ≡ 0 mod p

...
...

...
...

...
gs+nr

1 x1 + gs+nr
2 x2 + · · · + gs+nr

n xn ≡ 0 mod p
,

gives a generator set of Nr(A). We have the following main result:

Theorem 6.6. Given the multiplication table of a n-dimensional nonassociative noncommuta-
tive Fp-algebra A, for each substructure

H = Nr(A),Nm(A),Nl(A),N(A),Z(A)

of A, there exists a quantum algorithm that using the number of qubits and quantum gates of
Table 6.2, and together with a classical post-processing algorithm of complexity O(n3), finds H
with a bounded probability error.

116 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Substructure Nr,Nm,Nl N Z

Number of qubits n3r+nr 3n3r+nr 3n3r+n2r+nr

Number of ancillary qubits 4r+1+n⌈12.53+3log2 n
√

p
ε
⌉

Number of gates O
(
n5r3)

Number of oracle queries O(nr)

Table 6.2: Cost of Algorithm 6.5 in terms of number of qubits and gates, for the computation of
each substructure Nr(A),Nm(A),Nl(A),N(A),Z(A).

Remark. Observe that the number of ancillary qubits is upper-bound by the number of such
qubits involved in the quantum oracle. In other steps of the algorithm, ancillary qubits can be
reused, either by uncomputation, or by measuring and resetting them to zero.

Remark. Note that, when p is even, the number of ancillary qubits is 4r+1, but when p is odd
the number of ancillary qubits is 4r+1+n⌈12.53+3log2 n

√
p

ε
⌉ (see Section 3.3.1).

6.3.4 Examples
As a proof of concept, we shall apply our algorithm to binary algebras. So, we will illustrate
the behaviour of Algorithm 6.5 with two examples. In the first one, we compute the center
of an associative 3-dimensional F2-algebra which is not commutative. In the second one, we
obtain the right, left, middle nuclei, the nucleus, and the center of a non associative and non
commutative 4-dimensional F2-algebra. Recall that, in our notation, n is the dimension of the
F2-algebra, and r = ⌈log2(p)⌉, which in the case p = 2, gives r = 1.

Note that, when p = 2, we can skip the QBSC, and the picture of the quantum circuit from
the quantum procedure would look like

|0⟩⊗n H⊗n

UNr

H⊗n

|0⟩⊗n3 .

Recall that, over (Z/2Z)n, the Quantum Fourier Transform is H⊗n, see Section 3.3 (Exam-
ple 3.28).

Example 6.7. Consider the following set:

A =

{(
a b
0 c

)
: a,b,c ∈ F2

}
,

with ordinary matrix addition and multiplication. It is a 3-dimensional F2-algebra, associative
but not commutative. Since it is associative, Nr(A) = Nm(A) = Nl(A) = A, so N = A. Let us find

6.3.2.0 Steps 3 to 5 in the algorithm. 117

Z(A) with our algorithm. As a first step, we must find the multiplication table of the algebra. A
F2-basis of A is

β =

{
e1 =

(
1 0
0 0

)
,e2 =

(
0 1
0 0

)
,e3 =

(
0 0
0 1

)}
.

As we know, the multiplication table can be found by applying Lei(e j), for all i, j = 1,2,3. Thus,

Le1(e1) = 1e1 +0e2 +0e3, Le1(e2) = 0e1 + 1e2 + 0e3, Le1(e3) = 0e1 +0e2 +0e3

Le2(e1) = 0e1 +0e2 +0e3, Le2(e2) = 0e1 + 0e2 + 0e3, Le2(e3) = 0e1 +1e2 +0e3

Le3(e1) = 0e1 +0e2 +0e3, Le3(e2) = 0e1 + 0e2 + 0e3, Le3(e3) = 0e1 +0e2 +1e3,

Hence, the multiplication table of A is

M=

A1 =

1 0 0
0 1 0
0 0 0

 ,A2 =

0 0 0
0 0 1
0 0 0

 ,A3 =

0 0 0
0 0 0
0 0 1

 .

Now that we have the multiplication table, we would like to find the expansion of the function
fZ(A). Because A is associative, fN is identically zero, and we only need to consider the last 3
components of the fZ function. Each of the commutators in fZ has 3 coordinates in the basis β .
Using the code B.7, its expression is

(0,x2,0,0,x1 + x3,0,0,x2,0) ,

which can be shortened to (x2,x1 + x3) , where x1,x2,x3 ∈F2, by eliminating the coordinates that
are always 0. The quantum oracle that performs the unitary operation UZ |a⟩ |0⟩ = |a⟩ | fZ(a)⟩ ,
with a = x1e1 + x2e2 + x3e3, can be seen in Figure 6.2. And it can be simulated with the code

|x1⟩ •
|x2⟩ •
|x3⟩ •

|0⟩ X

|0⟩ X X

Figure 6.2: Oracle for UZ, in Example 6.7.

B.8. Now that we have our oracle, we have the circuit for our quantum procedure, which can be
seen with B.9, and we can simulated with B.10. Repeatedly using Algorithm 6.5, we find that
the elements that belong to the orthogonal of Z(A) are, with high probability,

{010,000,101,111} ,

118 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Figure 6.3: Elements in Z(A)⊥, after 10 repetitions of Algorithm 6.5.

(see Figure 6.3) following Theorem 2.62 (which have been obtained with 10 repetitions, so the
probability of not obtaining a complete set of generators for Z(A)⊥ is below 1%). This leads to
the system of equations(6.1).

0x1 + 0x2 + 0x3 ≡ 0 mod 2
0x1 + 1x2 + 0x3 ≡ 0 mod 2
x1 + 0x2 + x3 ≡ 0 mod 2
x1 + x2 + x3 ≡ 0 mod 2

(6.1)

So, by applying Gauss-Jordan, we found two solutions (x1 = 1,x2 = 0,x3 = 1), and (x1 = 0,x2 =
0,x3 = 0).

Therefore (x1 = 1,x2 = 0,x3 = 1) generates Z(A). This is, indeed, the correct solution, since
the only non-zero element that is mapped to (0,0) by the hiding function (x2,x1 + x3) is exactly
(1,0,1).

Example 6.8. Consider the following multiplication table for a 4-dimensional F2-algebra:

A1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 A2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

A3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

A4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


This algebra is neither associative nor commutative. Let us use our algorithm to find its right,
middle, and left nuclei, the nucleus, and the center.

Right Nucleus. First, let us find the coordinate expansion of the function fNr(A), using the
code B.11. After eliminating zeroes and repeated coordinates, we arrive at a hiding function
fNr(A), whose shortened coordinate expansion is given by

(x1 + x2,x3 + x4),

6.3.2.0 Steps 3 to 5 in the algorithm. 119

where x1,x2,x3,x4 ∈ F2. The quantum oracle that performs the unitary operation UNr |a⟩ |0⟩ =
|a⟩ | fNr(a)⟩ , with a = x1e1 + x2e2 + x3e3 + x4e4, can be seen in Figure 6.4.

|x1⟩ •
|x2⟩ •
|x3⟩ •
|x4⟩ •

|0⟩ X X

|0⟩ X X

Figure 6.4: Oracle for UNr , in Example 6.8.

The oracle together with the quantum procedure are given by the code B.12. As in example 6.7,
repeatedly using Algorithm 6.5, we can obtain (with high probability) that Nr(A)⊥ is generated
by {(1,1,0,0),(0,0,1,1)}. Simulations are in B.13, and the results can be seen in Figure 6.5.

Figure 6.5: Elements in Nr(A)⊥, after 10 repetitions of Algorithm 6.5.

Leading us to the system of equations(6.2).
0x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + x2 + 0x3 + 0x4 ≡ 0 mod 2

0x1 + 0x2 + x3 + x4 ≡ 0 mod 2
x1 + x2 + x3 + x4 ≡ 0 mod 2

(6.2)

So, by applying Gauss-Jordan, we found the elements of Nr(A), which are

{(0,0,0,0),(1,1,0,0),(0,0,1,1),(1,1,1,1)}.

120 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Thus, {(1,1,0,0),(0,0,1,1)} generates Nr(A).

Middle Nucleus. First, we find the expansion of the function fNm(A), using code B.14, which
is actually the same as the right nucleus. Hence, in this particular case, Nr(A) = Nm(A).

Left Nucleus. Let us find the coordinate expansion of the function fNl(A), using the code B.15.
After eliminating repeated coordinates, we arrive at a hiding function fNl(A), whose shortened
coordinate expansion is given by

(x2 + x3 + x4,x1),

where x1,x2,x3,x4 ∈ F2. The quantum oracle that performs the unitary operation UNr |a⟩ |0⟩ =
|a⟩ | fNl(a)⟩ , with a = x1e1 + x2e2 + x3e3 + x4e4, can be seen in Figure 6.6.

|x1⟩ •
|x2⟩ •
|x3⟩ •
|x4⟩ •

|0⟩ X X X

|0⟩ X

Figure 6.6: Oracle for UNl , in Example 6.8.

The oracle together with the quantum procedure are given by code B.16 and B.17, respectively.
After 10 repetitions of Algorithm 6.5, the probability of not finding elements in the orthogonal
N⊥l is also below 1%. The found elements can be seen in Figure 6.7. Leading us to the system

Figure 6.7: Elements in Nl(A)⊥, after 10 repetitions of Algorithm 6.5.

6.3.2.0 Steps 3 to 5 in the algorithm. 121

of equations(6.3). 
0x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2

0x1 + 1x2 + x3 + x4 ≡ 0 mod 2
x1 + x2 + x3 + x4 ≡ 0 mod 2

(6.3)

So, by applying Gauss-Jordan, we found the elements of Nl(A), which are

{(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)},
and so {(0,1,0,1),(0,1,1,0)} generates Nl(A).

Nucleus. Knowing the coordinate version of the hiding functions of the right, middle and
left nuclei, we can build the oracle of the coordinate version of the shortened hiding function
fN(A), which is

(x1 + x2,x3 + x4,x2 + x3 + x4,x1).

The quantum oracle that performs the unitary operation UNr |a⟩ |0⟩ = |a⟩ | fNr(a)⟩ , with a =
x1e1 + x2e2 + x3e3 + x4e4, can be seen in Figure 6.8.

|x1⟩ • •
|x2⟩ •
|x3⟩ • •
|x4⟩ • •

|0⟩ X X •

|0⟩ X X

|0⟩ X X X

|0⟩ X

Figure 6.8: Oracle for UN , in Example 6.8.

The quantum procedure is given by code B.18, and it is simulated with the code B.19. After
30 repetitions of Algorithm 6.5, we find the elements of N(A)⊥, with high probability (see
Figure 6.9). Leading us to the system of equations(6.4).

0x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2

0x1 + x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + 0x2 + x3 + x4 ≡ 0 mod 2

0x1 + x2 + x3 + x4 ≡ 0 mod 2
x1 + x2 + x3 + x4 ≡ 0 mod 2.

(6.4)

122 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Figure 6.9: Elements in N(A)⊥, after 30 repetitions of Algorithm 6.5.

So, by applying Gauss-Jordan, we found that {(0,0,1,1)} generates N(A). Which of course
coincides with Nr(A)∩Nm(A)∩Nl(A).

Center. Note that knowing the coordinate expansion of fN(A), we just need to find the coordi-
nate expansion of fZ(A) from the commutators. So, with the code B.20, and after eliminating
the coordinates that are always 0, we found its coordinate expansion:

(x1 + x2,x3 + x4,x2 + x3 + x4,x1,x3,x2).

The quantum oracle that performs the unitary operation UZ |a⟩ |0⟩= |a⟩ | fZ(a)⟩ , with a= x1e1+
x2e2 + x3e3 + x4e4, can be seen in Figure 6.10.
The quantum procedure is given by the code B.21, and it can be simulated with code B.22.
After 50 repetitions of Algorithm 6.5, we find the elements of Z(A)⊥, with high probability (see
Figure 6.11).

6.3.2.0 Steps 3 to 5 in the algorithm. 123

|x1⟩ • •
|x2⟩ • •
|x3⟩ • • •
|x4⟩ • •

|0⟩ X X •

|0⟩ X X

|0⟩ X X X

|0⟩ X

|0⟩ X

|0⟩ X

Figure 6.10: Oracle for UZ, in Example 6.8.

Figure 6.11: Elements on Z(A)⊥, after 50 repetitions of Algorithm6.5.

124 Chapter 6. Efficient Quantum Algorithms To Find Substructures On Finite Algebras

Leading us to the system of equations(6.5).

0x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + 0x2 + 0x3 + 0x4 ≡ 0 mod 2

0x1 + x2 + 0x3 + 0x4 ≡ 0 mod 2
x1 + x2 + 0x3 + 0x4 ≡ 0 mod 2

0x1 + 0x2 + x3 + 0x4 ≡ 0 mod 2
x1 + 0x2 + x3 + 0x4 ≡ 0 mod 2

0x1 + x2 + x3 + 0x4 ≡ 0 mod 2
x1 + x2 + x3 + 0x4 ≡ 0 mod 2

0x1 + 0x2 + 0x3 + x4 ≡ 0 mod 2
x1 + 0x2 + 0x3 + x4 ≡ 0 mod 2

0x1 + x2 + 0x3 + x4 ≡ 0 mod 2
x1 + x2 + 0x3 + x4 ≡ 0 mod 2

0x1 + 0x2 + x3 + x4 ≡ 0 mod 2
x1 + 0x2 + x3 + x4 ≡ 0 mod 2

0x1 + x2 + x3 + x4 ≡ 0 mod 2
x1 + x2 + x3 + x4 ≡ 0 mod 2.

(6.5)

So, by applying Gauss-Jordan we find that, {(0,0,0,0)}= Z(A).

Chapter 7

An approach to the Classification of Finite
Semifields by Quantum Computing

In this chapter, we address the problem of classification of finite semifields, using quantum
computational methods. Following [HR07], and [RCR09], in Proposition 2.52 of this disserta-
tion, it was stated that, any finite semifield D of order qd can be described by a set of d matrices,
known as standard basis. So, the effective classification of finite semifields can be rephrased
as a problem of finding certain sets of matrices. Hence, our main approach will be based on
Grover’s Algorithm.

In Section 7.1, we model the problem, and we present the results using a simulator for quan-
tum circuits to find some of the multiplication tables for the finite semifield F8 (which is the only
finite semifield of order 8), and for finite commutative semifields of order 16. Specifically, we
build an oracle for finding standard bases of those semifields with Grover’s quantum Algorithm.
In Section 7.1.3, we give an estimation of the cost for the general case, in terms of quantum gates
(for the sake of simplicity, we restrict to binary semifields). Additionally, we draw some con-
clusions from this approach to the general classification of finite semifields. In Section 7.2, we
look for an alternative of quantum computing techniques to study finite semifields: Quantum
Annealing, a form of computation that efficiently samples the low-energy configurations of a
quantum system [KN98]. So, we give an approach towards finding the multiplication table of
the binary primitive finite semifield of order 32.

7.1 Quantum Computational Search of Finite Semifields with
Grover’s algorithm

In this section, we introduce a procedure for the classification of finite semifiels using Grover’s
algorithm.

The multiplication table of a finite semifield D with qd elements is related to a standard basis, a
set of d matrices satisfying the properties of Proposition 2.52 (namely, take {x1 = 1,x2, . . . ,xd}
a Fq−basis of D, so that the coordinate matrices of the maps Lxi, for i = 1, . . . ,d, with respect

125

126 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

to such a basis satisfy those conditions). So, we focus our attention on finding standard bases
{A1,A2, . . . ,Ad}. In order to do that, we build up a Boolean function f , using the determinant
of each linear combination of the matrices in the standard basis, in terms of the operations of
XOR, AND, NOT. Such a Boolean function is used to construct an oracle with Toffoli and
CNOT gates, to be used in an implementation of Grover’s algorithm.

However, it is important to notice that there are two problems that need to be addressed. First,
we must know how many iterations are needed for the algorithm to succeed. Second, after a
series of runs of the algorithm, we need to make sure that we are not leaving out any solu-
tion (with high probability). To solve those problems, we use Algorithm 4.9. So, we apply
Grover’s algorithm, which gives tuples that are all the solutions for all the standard bases (with
a probability as high as desired). Finally, following [RCR09] and [RCR12], semifields can be
classically classified up to isomorphism, isotopy and S3-action.

In summary, the previous procedure can be seen in the following mind chart.

Theory Re-
duction (using

Proposition 2.52,
Corollary 2.53)

Standard basis
{A1,A2, . . . ,Ad}

where d stands for
the dimension of
the Binary Finite

Semifield over Fq.

Build the Oracle

Grover’s Algorithm

All Solutions:
Tuples of the form
(a1,a2, . . . ,ad(d−1)2)
where ai ∈ Fq for

i = 1, . . . ,d(d−1)2

Classification by
isomorphism, iso-

topy and S3-action.

Semifields of order
qd containing

Fq in the center.

Boolean Function

Algorithm 4.9

[RCR09]

[RCR12]

Note that, in order to apply Algorithm 4.9, we must show first that the number of satisfying
assignments of f , is actually less than three quarters of the total of elements of the domain of f .

Proposition 7.1. Among the set of ν = qd(d−1)2
potential standard bases of finite semifields

of order qd contaning Fq in the center with identity, there are at most µ ≤ B := ν

(
1− 1

q

)d−1

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 127

standard bases actually corresponding to finite semifields. In particular, when q = 2,d ≥ 3,
there are at most 3ν

4 potential bases corresponding to binary semifields.

Proof. Consider the set {A1, . . . ,Ad,} of coordinate matrices of Lxi, with i = 1, . . . ,d, where
{x1 = 1,x2, . . . ,xd} is a Fq basis of a d−dimensional algebra. Each matrix Ai, for i = 2, . . . ,d,
has a submatrix of size d× (d− 1), in which each entry belongs to Fq. Any choice of those
d(d−1)2 entries yields a potential standard bases of a finite semifield containing Fq in the cen-
ter. Therefore, ν = qd(d−1)2

.

Now, let us give an upper bound for µ. So, recall that all Ai, for i = 2, . . . ,d − 1, must be
invertible. For each Ai, we will have

d−1

∏
i=1

(
qd−qi

)d−1

choices. Now,

d−1

∏
i=1

(
qd−qi

)d−1
=

d−2

∏
i=1

(
qd−qi

)d−1(
qd−qd−1

)d−1

≤ qd(d−2)(d−1)qd(d−1)
(

1− 1
q

)d−1

≤ qd(d−1)2
(

1− 1
q

)d−1

.

Therefore, in the binary case, the conditions of Algorithm 4.9 are satisfied. Thus, we can
apply it, in order to find the multiplication tables of binary semifields. Note that, by section 4.5,
the worst case of number of oracle queries is O

(√
νB log

(3
4ν
))

.

7.1.1 Semifield of Order 8
In this subsection, we will apply Grover’s algorithm to the problem of classification of finite
semifields. We consider the small cases of orders 8 and 16 (commutative). For these cases, we
explicitly construct a boolean function that would become the oracle to be used on Grover’s
algorithm to the problem of classification of finite semifields.

Consider the following standard basis:{
A1 =

1 0 0
0 1 0
0 0 1

 , A2 =

0 a1 a4
1 a2 a5
0 a3 a6

 , A3 =

0 a7 a10
0 a8 a11
1 a9 a12

}.

128 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

If we want to classify finite semifields of order 8 by Proposition 2.52, we need to find a1, . . . ,a12 ∈
F2 such that each linear combination of the basis, except the trivial one, yields a matrix with
determinant different from zero, i.e.,

det(α1A1 +α2A2 +α3A3) = 1,

for each nonzero tuples (α1,α2,α3)∈F3
2. Now, in one hand, the determinant of a matrix is based

on multiplications and additions. On the other hand, the product mod 2 is an AND, and the
addition or subtraction mod 2 is an exclusive OR (XOR). Hence, we rewrite each determinant
in terms of AND, XOR and NOT, and create a boolean function from them. Namely,

f : {0,1}12 −→ {0,1}
(a1, . . . ,a12) 7−→ f (a1, . . . ,a12) ,

such that f (a1, . . . ,a12) = 1 if and only if the corresponding set of matrices satisfies the above-
mentioned conditions. Specifically, using the python code in C.23, we find that

f (a1, . . . ,a12) =(a10∧a8⊕a11∧a7)∧ (a1∧a6⊕a3∧a4)∧ (a1∧a11⊕a1∧a12⊕a1∧a5

⊕a1∧a6⊕a10∧a2⊕a10∧a3⊕a10∧a8⊕a10∧a9⊕a11∧a7⊕a12∧a7

⊕a2∧a4⊕a3∧a4⊕a4∧a8⊕a4∧a9⊕a5∧a7⊕a6∧a7)∧ (∼ a10⊕a12

⊕a8⊕a10∧a8⊕a11∧a7⊕a11∧a9⊕a12∧a8)∧ (∼ a1⊕a2⊕a6⊕a1

∧a6⊕a2∧a6⊕a3∧a4⊕a3∧a5)∧ (∼ a1⊕a10⊕a12⊕a2⊕a4⊕a6

⊕a7⊕a8⊕a1∧a11⊕a1∧a12⊕a1∧a5⊕a1∧a6⊕a10∧a2⊕a10∧a3

⊕a10∧a8⊕a10∧a9⊕a11∧a3⊕a11∧a7⊕a11∧a9⊕a12∧a2⊕a12

∧a7⊕a12∧a8⊕a2∧a4⊕a2∧a6⊕a3∧a4⊕a3∧a5⊕a4∧a8⊕a4∧a9

⊕a5∧a7⊕a5∧a9⊕a6∧a7⊕a6∧a8).

where ⊕ stands for XOR, ∧ for AND, ∼ for NOT. Note that this expression for f has 57 gates
AND, 60 XOR gates, and 3 NOT gates. This function is to be used in an oracle in order to
perform Grover’s Algorithm, as stated in the previous section. The quantum circuit can be build
in the same way as in Examples 3.8 and 3.9. Now, because of its length, we give the circuit for

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 129

((a10∧a8)⊕ (a11∧a7))∧ ((a1∧a6)⊕ (a3∧a4)) (the rest follows the same lines)

|a1⟩ • • |a1⟩
|a2⟩ |a2⟩
|a3⟩ • • |a3⟩
|a4⟩ • • |a5⟩
|a5⟩ |a5⟩
|a6⟩ • • |a6⟩
|a7⟩ • • |a7⟩
|a8⟩ • • |a8⟩
|a9⟩ |a9⟩
|a10⟩ • • |a10⟩
|a11⟩ • • |a11⟩
|a12⟩ |a12⟩

|0⟩ X • • X |0⟩

|0⟩ X X • X X • |0⟩

|0⟩ X • X |0⟩

|0⟩ X • • X |0⟩

|0⟩ X X • X X • |0⟩

|0⟩ X • X |0⟩

|0⟩ X |((a10∧a8 . . .))⟩

The whole circuit can be seen with code C.24 from appendix C. Notice that at least 61 ancil-
lary qubits are required. An alternative is using qiskit tools. For instance, for the grover oracle
function C.25, we could write down its quantum circuit, and use it as an oracle for Grover’s
algorithm. Now that we have already built the oracle, we apply Algorithm 4.9 from Section 4.5,
(which can be found in C.26), and we find eight solutions.

In fact, for a probability of failure w = 0.00001, we have

R =


log
(

1− (1−0.01)
1

3072

)
log
(3

4

)
= 68,

and we find fourteen solutions, as it can be seen in the following table:

Table 7.1: Results for the multiplication table of F8.

130 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

Iteration Valid Solution Solution Found Corresponding j
1 no 000111110001 4
2 yes 111101101100 47
3 no 010100011100 31
4 no 000010101111 10
5 no 111011001100 45
6 no 111011010111 54
7 no 110000011000 24
8 no 110110100011 9
9 no 010101110100 5
10 no 100110001001 40
11 no 101101001011 16
12 no 101010011001 20
13 no 110010011101 25
14 no 011100100011 7
15 no 010100011111 20
16 no 100001010001 61
17 no 110011000011 58
18 no 001000011000 51
19 no 001101010110 5
20 no 011001001000 21
21 no 010000011000 30
22 no 001000001111 0
23 no 111000110001 39
24 no 100011101111 0
25 no 000100111000 4
26 no 111100010111 1
27 no 100011111110 8
28 no 100001100101 23
29 no 011011101010 6
30 no 110110010111 1
31 yes 101110101011 6
32 no 011000011110 61
33 yes 010011011111 51
34 yes 110011011100 48
35 yes 010101101110 27
36 yes 011110110111 60
37 no 111010010000 6
38 yes 011001001110 26
39 yes 111110110101 29
40 no 000100000001 51

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 131

41 no 010100011100 10
42 no 110010010011 9
43 no 010111101010 42
44 no 111100100110 32
45 no 110000000010 24
46 no 011100100000 48
47 no 011100000000 14
48 no 000001000011 16
49 no 000000000001 14
50 no 100000111000 61
51 no 000100011010 7
52 no 101001010010 1
53 no 110101011001 8
54 no 011111101001 32
55 no 100000100000 13
56 no 011100000000 17
57 no 010000110111 57
58 no 101001001101 18
59 no 101110001001 12
60 no 001011101000 30
61 no 110111110110 42
62 no 101000110111 15
63 no 010110011110 15
64 no 101010110000 40
65 no 010011011000 54
66 no 100001101101 39
67 no 010111000011 37
68 no 101001010101 56
69 no 111011111000 38
70 no 111011000001 27
71 no 011100001110 26
72 no 110110101011 32
73 no 110011111010 34
74 no 010000101101 52
75 no 111100100000 34
76 no 101011010111 57
77 no 010101010100 16
78 no 101110000000 34
79 no 101000111000 18
80 no 101011010110 1
81 no 011001001101 27

132 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

82 no 010001111000 40
83 no 111011110000 4
84 no 111111011000 9
85 no 001011011101 56
86 no 110010101001 58
87 no 001001000100 33
88 no 011100111011 3
89 no 010110011010 47
90 no 111111101111 37
91 no 011111011000 54
92 no 011111001111 33
93 no 110111110001 47
94 no 110011011001 27
95 no 000011001010 59
96 no 011110010000 25
97 no 011011011011 23
98 no 000101100010 49
99 no 011001101101 0
100 no 000111000110 3
101 no 010010111111 51
102 no 100011010100 17
103 no 101010111111 15
104 no 111110001010 1
105 no 110101100001 46
106 no 000011010011 26
107 no 000010101111 5
108 no 011000000001 0
109 no 000110001110 29
110 no 011000010011 3
111 no 110101000010 28
112 no 001011100010 7
113 no 011111101100 51
114 no 001001111101 26
115 no 111101110000 39
116 no 011010101000 2
117 no 010000101111 50
118 no 101110000110 9
119 no 000010111011 38
120 no 010101000101 20
121 no 100001000110 12
122 no 000100110110 61

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 133

123 no 010010111011 0
124 no 110100000011 23
125 no 110111001111 56
126 no 011100011110 26
127 no 010100101110 36
128 no 011001010011 37
129 no 011101011000 8
130 no 111100000101 16
131 no 001110110100 1
132 no 010001101001 5
133 no 101101100100 57
134 no 000101110000 61
135 no 001000110001 32
136 no 111111101001 15

The solutions, for instance, the first one, 110011011100, must be read from right to left, i.e.,

a1 = 0,a2 = 0,a3 = 1,a4 = 1,a5 = 0,a6 = 1,a7 = 1,a8 = 0,a9 = 1,a10 = 1,a11 = 1,a12 = 1.

Which means that the multiplication table is{
A1 =

1 0 0
0 1 0
0 0 1

 , A2 =

0 0 1
1 0 0
0 1 1

 , A3 =

0 1 1
0 0 1
1 1 1

}.
The same applies to each result. Note that all the results satisfy the condition that, for all i, j the
i-th column of A j is the j-th column of Ai. This means that the corresponding finite semifield is
commutative. Actually, all of them provide standard bases of the only finite semifield of order
8: the Galois field F8.

Observe that the solutions are found in the very first iterations. The overall number of
iterations is bigger to ensure that no solutions are missed with the desired probability.

7.1.2 Description of Semifields of Order 16
Now, let us move to the case of semifields of order 16, where the corresponding standard bases
contain binary matrices of size 4×4. Consider the following set {A1,A2,A3,A4} , where

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A2 =


0 a1 a5 a9
1 a2 a6 a10
0 a3 a7 a11
0 a4 a8 a12



A3 =


0 a13 a17 a21
0 a14 a18 a22
1 a15 a19 a23
0 a16 a20 a24

 A4 =


0 a25 a29 a33
0 a26 a30 a34
0 a27 a31 a35
1 a28 a32 a36

 .

134 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

If we carry on the same track as before, we end up with an expression for a Boolean function
f : {0,1}36→ {0,1}, with 4189 AND, 2314 XOR, and 7 NOT gates, which make it really ex-
pensive writing its circuit. As proof of concept, we restrict ourselves to the commutative case
(which incidentally is interesting in general, because of what has been studied and mentioned
in [LS23]). Thus, we consider that for all i, j the i-th column A j is the j-th column of Ai.

In order to further reduce the number of variables, we will take A2 among a prefixed set of
matrices, according to the following theoretical reduction. From Corollary 2.53, for any fixed
non-scalar (i.e., not 0 or 1) element b in the semifield, the matrix Ab of left multiplication by
b has a characteristic polynomial without linear factors. So, there are 4 possibles characteristic
polynomials for the matrix A2:

x4 + x3 + x2 + x+1,x4 + x3 +1,x4 + x+1,x4 + x2 +1 = (x2 + x+1)2.

Because x4 + x3 + x2 + x+1 = (x+1)4 +(x+1)3 +1, we can change the element b by b+1,
and assume that there are 3 possibilities: x4 + x3 +1,x4 + x+1,x4 + x2 +1 = (x2 + x+1)2.

If the elements in β = {1,b,b(2,b(3} are linearly independent, we can change to basis β to
get A2 in the form of a companion matrix. If not, which can only happen with the third polyno-
mial, then a basis β = {1,b,c,bc} can be chosen so that A2 has the form(

C(x2 + x+1)
C(x2 + x+1)

)
.

Hence, we need to find binary values a1,a2, . . . ,a12, such that each linear combination of the
matrix in the standard basis, except for the trivial one, yields a matrix with determinant different
from zero. The second matrix can be chosen among the following ones:

1. Case 1: Characterisitc Polynomial x4 + x+1, A2 =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 .

So, {A1,A2,A3,A4} would become

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A2 =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0



A3 =


0 0 a1 a5
0 0 a2 a6
1 0 a3 a7
0 1 a4 a8

 A4 =


0 1 a5 a9
0 1 a6 a10
0 0 a7 a11
1 0 a8 a12

 .

And its Boolean function f1 : {0,1}12→{0,1} can be found with code C.27 (it is explic-
itly written after it). Such a Boolean Function has 141 AND, 156 XOR, and 5 NOT gates.

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 135

We found only one solution, after applying algorithm 4.9, with a probability of failure
w = 0.00001, so

R =


log
(

1− (1−0.01)
1

3072

)
log
(3

4

)
= 68.

See the following table:

Table 7.2: Results for the multiplication tables of commuta-
tive semifields of order 16, case 1.

Iteration Valid Solution Solution Found Corresponding j
1 yes 110001100011 50
2 no 010111011010 19
3 no 001001010110 2
4 no 000010010010 28
5 no 010001001000 41
6 no 000101011011 10
7 no 100011110101 23
8 no 000001011101 26
9 no 010001111010 59
10 no 111100110101 60
11 no 000001011011 48
12 no 010000010111 18
13 no 100010011010 4
14 no 001001001100 21
15 no 001111011100 8
16 no 101000110111 27
17 no 110111110000 44
18 no 000011011011 58
19 no 100000001101 21
20 no 100001001111 17
21 no 010101110000 39
22 no 001000010110 52
23 no 010100001000 8
24 no 011010111010 34
25 no 001100111100 49
26 no 101010101011 1
27 no 011101111111 10
28 no 111100101110 52
29 no 001110100100 53
30 no 010010110011 53

136 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

31 no 001001100110 46
32 no 101011110111 42
33 no 100110111010 14
34 no 010101111001 23
35 no 111000001111 48
36 no 011000111000 12
37 no 000111010010 35
38 no 011101000110 54
39 no 110011111001 58
40 no 100000011101 38
41 no 101100001101 42
42 no 110111110000 31
43 no 001111001101 60
44 no 001011010110 46
45 no 110000111111 56
46 no 011000011001 21
47 no 101011001110 42
48 no 011101111001 62
49 no 101000001111 27
50 no 011110000111 18
51 no 011001000100 29
52 no 100011000100 23
53 no 100011001111 38
54 no 100011111001 54
55 no 111010111111 55
56 no 010101001110 10
57 no 010011011110 2
58 no 111100110000 37
59 no 000000011100 29
60 no 110111001101 5
61 no 100000011010 39
62 no 100010110001 11
63 no 100010100001 36
64 no 111010011001 9
65 no 001111101101 41
66 no 111011001110 58
67 no 111000010101 48
68 no 000100100010 49
69 no 101101110001 19
70 no 010110110111 23
71 no 100010010100 50

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 137

72 no 000010100101 20
73 no 100011100100 59
74 no 010101001100 7
75 no 000000101110 21
76 no 011010110011 52
77 no 101001000011 22
78 no 001000110100 6
79 no 100010110110 12
80 no 000010001110 0
81 no 000111011100 40
82 no 100111100010 60
83 no 110101011001 20
84 no 101001111111 56
85 no 110011110011 49
86 no 101101001100 13
87 no 001110010101 16
88 no 101110001100 33
89 no 010000111010 7
90 no 000001001001 18
91 no 011000010010 56
92 no 011000000011 55
93 no 100111000111 32
94 no 111001011101 30
95 no 000001001010 14
96 no 110100000110 51
97 no 011100111110 41
98 no 011001011111 42
99 no 100011110010 1
100 no 001010111011 14
101 no 100010100111 54
102 no 011101000111 22
103 no 101000010001 61
104 no 110110110010 12
105 no 100000011001 40
106 no 010110101010 21
107 no 101011001001 59
108 no 110011010001 34
109 no 000001001000 51
110 no 001100100101 44
111 no 001010001010 6
112 no 111001101111 22

138 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

113 no 011111010100 61
114 no 000101101000 34
115 no 110010111101 49
116 no 000000010011 50
117 no 100000110110 27
118 no 111101001101 24
119 no 100111111101 21
120 no 001001011001 50
121 no 001011111000 32
122 no 101011111001 6
123 no 010001000010 5
124 no 101001001010 20
125 no 110010000010 49
126 no 110010000010 50
127 no 010011111000 34
128 no 001100001100 52
129 no 011101011010 47
130 no 100111011101 31
131 no 010110100100 45
132 no 101110001100 12
133 no 011110000100 42
134 no 110010110001 21
135 no 011000110101 10
136 no 001111011001 61

Analogously as before, we should read the result from left to right. So, for this case,

a1 = 1,a2 = 1,a3 = 0,a4 = 0,a5 = 0,a6 = 1,a7 = 1,a8 = 0,a9 = 0,a10 = 0,a11 = 1,a12 = 1.

Thus, the multiplication table isA1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,A2 =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 ,A3 =


0 0 1 0
0 0 1 1
1 0 0 1
0 1 0 0

 ,A4 =


0 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1


 .

2. Case 2: Characteristic polynomial x4 + x3 +1, A2 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1

 .

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 139

So, {A1,A2,A3,A4} would become

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A2 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1



A3 =


0 0 a1 a5
0 0 a2 a6
1 0 a3 a7
0 1 a4 a8

 A4 =


0 1 a5 a9
0 0 a6 a10
0 0 a7 a11
1 1 a8 a12

 .

So, changing A1,A2,A3,A4 in C.27,

1 A1 = Matrix([[1, 0, 0, 0],[0, 1, 0 ,0],[0, 0, 1 , 0],[0,0,0,1]])
2 A2 = Matrix([[0, 0, 0, 1],[1, 0, 0 ,0],[0, 1, 0 , 0],[0,0,1,1]])
3 A3 = Matrix([[0, 0, a[1], a[5]],[0, 0, a[2] ,a[6]],[1, 0, a[3] ,

a[7]],[0,1,a[4],a[8]]])↪→

4 A4 = Matrix([[0, 1, a[5], a[9]],[0, 0, a[6] ,a[10]],[0, 0, a[7] ,
a[11]],[1,1,a[8],a[12]]])↪→

we found its respective Boolean function f2, which can be seen in appendix C. The com-
plexity of the Boolean Function f2 is 149 AND, 174 XOR, and 9 NOT gates. As above,
we found only one solution, after applying algorithm 4.9 with a probability of failure
w = 0.00001, so

R =


log
(

1− (1−0.01)
1

3072

)
log
(3

4

)
= 68.

See the following table:

Table 7.3: Results for the multiplication tables of commuta-
tive semifields of order 16, case 2.

Iteration Valid Solution Solution Found Corresponding j
1 yes 111110111001 28
2 no 011101101011 50
3 no 110001000000 41
4 no 011011100110 23
5 no 111011000000 57
6 no 100011010001 10
7 no 101001101000 10
8 no 010001100100 46
9 no 110100110101 14

140 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

11 no 001110101001 26
12 no 001001010100 59
13 no 010111101000 56
14 no 010111100110 37
15 no 100111001011 42
16 no 111100011000 38
17 no 111001000010 22
18 no 100010111100 57
19 no 000001100001 52
20 no 111011011011 0
21 no 100001000110 4
22 no 000001110111 34
23 no 001001111110 40
24 no 101111010101 46
25 no 101000110100 42
26 no 010001001110 50
27 no 110101111000 45
28 no 100100101111 37
29 no 111110001101 29
30 no 110100100010 7
31 no 010011110011 38
32 no 010111110110 30
33 no 111111100100 52
34 no 110110000110 17
35 no 011111110111 43
36 no 000100110110 53
37 no 111011101000 44
38 no 110110001011 30
39 no 110111111101 22
40 no 010000100001 13
41 no 011111100001 6
42 no 000010100110 44
43 no 011101111101 10
44 no 010111100111 23
45 no 110010101100 5
46 no 010111010110 12
47 no 010111001000 26
48 no 010100000001 56
49 no 101111011101 11
50 no 000110011111 47
51 no 011000110001 55

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 141

52 no 000100100011 52
53 no 101101000111 59
54 no 110100010000 45
55 no 111110001000 22
56 no 100000010110 30
57 no 011101001101 29
58 no 101001011000 58
59 no 111111100001 7
60 no 010111100110 14
61 no 011000110000 46
62 no 110010001000 61
63 no 100111101011 7
64 no 101001100000 28
65 no 011011110111 38
66 no 001011110000 7
67 no 001000000000 35
68 no 110001110101 43
69 no 110010000010 3
70 no 111010010111 5
71 no 111001100100 23
72 no 100001110001 35
73 no 101011000111 19
74 no 110010000000 47
75 no 000011001110 34
76 no 110011111110 58
77 no 100111000011 39
78 no 101110110001 26
79 no 011000101111 3
80 no 011110111101 34
81 no 010111000001 56
82 no 110111111000 59
83 no 101101000000 62
84 no 000101110010 54
85 no 100010000011 11
86 no 100011001100 22
87 no 111000100001 50
88 no 010001000110 41
89 no 111001110100 6
90 no 100000100111 18
91 no 110110110000 29
92 no 001010110101 17

142 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

93 no 100101010100 21
94 no 100011110100 35
95 no 011000111100 12
96 no 011000111001 14
97 no 111000000111 32
98 no 001110000111 44
99 no 111101001001 33
100 no 001101110001 14
101 no 011000010000 30
102 no 011110011101 1
103 no 101010010010 4
104 no 001011101001 51
105 no 100011000111 27
106 no 100110101000 18
107 no 100111011010 31
108 no 011001111000 15
109 no 100001011110 49
110 no 011000011011 61
111 no 100010001100 2
112 no 000100001011 0
113 no 000010111001 55
114 no 101010110000 48
115 no 001111110011 61
116 no 001011100001 54
117 no 001100011011 23
118 no 101001010000 24
119 no 101010110110 29
120 no 010100010100 22
121 no 010000111110 16
122 no 111011111111 37
123 no 000100011101 5
124 no 110100000010 38
125 no 101101111011 53
126 no 001011101110 9
127 no 101001100101 2
128 no 110111110000 49
130 no 010001011000 55
131 no 001101101101 55
132 no 101110101100 57
133 no 110101110001 8
134 no 111011101000 12

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 143

135 no 001011001110 21
136 no 000001111110 56
137 no 110010001001 7
138 no 110100110100 60

So,

a1 = 1,a2 = 0,a3 = 0,a4 = 1,a5 = 1,a6 = 1,a7 = 0,a8 = 1,a9 = 1,a10 = 1,a11 = 1,a12 = 1.

So, the multiplication table isA1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,A2 =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1

 ,A3 =


0 0 1 1
0 0 0 1
1 0 0 0
0 1 1 1

 ,A4 =


0 1 1 1
0 0 1 1
0 0 0 1
1 1 1 1


 .

3. Case 3: Characteristic polynomial (x2 + x+1)2 A2 =


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 .

So, {A1,A2,A3,A4} would become,

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A2 =


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1



A3 =


0 0 a1 a5
0 0 a2 a6
1 0 a3 a7
0 1 a4 a8

 A4 =


0 0 a5 a9
0 0 a6 a10
0 1 a7 a11
1 1 a8 a12

 .

The Boolean Function f4 is found by changing A1,A2,A3,A4 by

1 C1 = Matrix([[1, 0, 0, 0],[0, 1, 0 ,0],[0, 0, 1 , 0],[0,0,0,1]])
2 C2 = Matrix([[0, 1, 0, 0],[1, 1, 0 ,0],[0, 0, 0 , 1],[0,0,1,1]])
3 C3 = Matrix([[0, 0, a[1], a[5]],[0,0, a[2] ,a[6]],[1, 0, a[3] ,

a[7]],[0,1,a[4],a[8]]])↪→

4 C4 = Matrix([[0, 0, a[5], a[9]],[0, 0, a[6] ,a[10]],[0, 1, a[7],
a[11]],[1,1,a[8],a[12]]])↪→

in code C.27 (it is given in appendix C). The Boolean function f3 has 161 AND, 194
XOR, and 9 NOT gates. We found seven solutions, after applying algorithm 4.9 with a

144 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

probability of failure w = 0.00001, so

R =


log
(

1− (1−0.01)
1

3072

)
log
(3

4

)
= 68.

See the following table:

Table 7.4: Results for the multiplication tables of commuta-
tive semifields of order 16, case 3.

Iteration Valid Solution Solution Found Corresponding j
1 yes 101001011111 40
2 no 111110111101 44
3 yes 101101101101 53
4 no 001001011011 40
5 no 110111101011 2
6 no 111101101101 12
7 no 001111000011 27
8 no 010101101011 43
9 no 110111101011 5
10 no 100011011100 48
11 no 111001111100 24
12 no 101000111101 32
13 no 001100111000 55
14 no 111100110111 7
15 yes 110110110110 14
16 no 101110011011 51
17 no 101000111101 35
18 no 010111111011 49
19 no 111101010110 46
20 no 011001101010 8
21 no 010101101011 12
22 no 111000100011 49
23 no 101001011011 37
24 no 001001011011 61
25 yes 010111111010 33
26 no 010101101011 8
27 no 111110011010 5
28 no 010010000101 55
29 no 001110100100 53
30 no 110111101011 11

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 145

31 no 111101100001 38
32 no 111111111011 17
33 yes 011111101001 13
34 no 110101011111 6
35 no 111111010000 54
36 yes 111010010111 47
37 no 101000111101 2
38 no 101011010101 23
39 no 110111011001 3
40 no 111110100101 62
41 no 010111000111 3
42 no 001100011001 16
43 no 111001000000 58
44 no 110101101011 57
45 no 111100100000 30
46 no 001111011110 59
47 yes 010111110010 58
48 no 001000001011 21
49 no 100010100110 36
50 no 000010001001 35
51 no 111000001111 34
52 no 000100110001 13
53 no 110111001000 48
54 no 011110000000 13
55 no 001110100111 1
56 no 111111110110 29
57 no 001111111010 12
58 no 011101111001 15
59 no 100101001010 2
60 no 010011100001 11
61 no 101111100110 49
62 no 100010101110 40
63 no 001111110000 28
64 no 101110110011 52
65 no 001001011011 26
66 no 001001011011 44
67 no 000001010001 54
68 no 100000001000 54
69 no 110001000100 45
70 no 111010010101 47
71 no 000110001110 32

146 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

72 no 011100100101 21
73 no 100010101101 17
74 no 001001110100 47
75 no 000001100011 45
76 no 111000101001 52
77 no 111101110101 48
78 no 101010100101 45
79 no 000000111110 55
80 no 101101111101 26
81 no 000110100000 44
82 no 000110110110 29
83 no 001100010111 62
84 no 010101110111 14
85 no 111000111001 0
86 no 110111100001 25
87 no 110111101011 55
88 no 011101101001 46
89 no 101111000001 47
90 no 011110000011 60
91 no 011100010101 10
92 no 100010101110 18
93 no 111000111001 9
94 no 101011000100 41
95 no 110110110001 60
96 no 100010101000 45
97 no 100001110000 20
98 no 110101000011 27
99 no 011001110000 30
100 no 100000011111 34
101 no 000010001000 54
102 no 100110001111 57
103 no 101101101111 33
104 no 111111101010 35
105 no 100010000110 43
106 no 001011101110 42
107 no 110001100111 48
108 no 111110011010 20
109 no 010000110000 18
110 no 010100011100 57
111 no 011101100101 24
112 no 000001100111 12

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 147

113 no 100000111111 51
114 no 000001011111 45
115 no 001101111010 46
116 no 111001010001 11
117 no 100101000010 18
118 no 100010111110 33
119 no 110111111011 25
120 no 000000011010 38
121 no 111001001010 57
122 no 101000010111 31
123 no 011100111010 44
124 no 100100110001 23
125 no 100001101010 16
126 no 010001001011 11
127 no 000011010001 8
128 no 111000001111 23
129 no 000100111010 12
130 no 111110011011 18
131 no 110111101011 25
132 no 101001011011 53
133 no 010101101011 35
134 no 111000001001 56
135 no 000010110100 56
136 no 001100011010 42

Finally, for this case, the first solution is

a1 = 1,a2 = 1,a3 = 1,a4 = 1,a5 = 1,a6 = 0,a7 = 1,a8 = 0,a9 = 0,a10 = 1,a11 = 0,a12 = 1.

Thus, one of the multiplication tables is:A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,A2 =


0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

 ,A3 =


0 0 1 1
0 0 1 0
1 0 1 1
0 1 1 0

 ,A4 =


0 0 1 0
0 0 0 1
0 1 1 0
1 1 0 1


 .

In all of the first three cases, the only semifield found is the finite field, as this is the only
commutative finite semifield of order 16 that exists.

4. Case 4: Characteristic polynomial x4 + x2 +1, A2 =


0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0

 .

148 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

So, {A1,A2,A3,A4} would become,

A1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 A2 =


0 0 0 1
1 0 0 0
0 1 0 1
0 0 1 0



A3 =


0 0 a1 a5
0 0 a2 a6
1 0 a3 a7
0 1 a4 a8

 A4 =


0 1 a5 a9
0 0 a6 a10
0 1 a7 a11
1 0 a8 a12

 .

The Boolean Function f4 is found by changing A1,A2,A3,A4 by

1 A1 = Matrix([[1, 0, 0, 0],[0, 1, 0 ,0],[0, 0, 1 , 0],[0,0,0,1]])
2 A2 = Matrix([[0, 0, 0, 1],[1, 0, 0 ,0],[0, 1, 0 , 1],[0,0,1,0]])
3 A3 = Matrix([[0, 0, a[1], a[5]],[0, 0, a[2] ,a[6]],[1, 0, a[3] ,

a[7]],[0,1,a[4],a[8]]])↪→

4 A4 = Matrix([[0, 1, a[5], a[9]],[0, 0, a[6] ,a[10]],[0, 1, a[7] ,
a[11]],[1,0,a[8],a[12]]])↪→

in code C.27 (it is given in appendix C). The Boolean function f4 has 137 AND, 162 XOR,
and 9 NOT gates. After applying algorithm 4.9 with a probability of failure w = 0.00001,
so

R =


log
(

1− (1−0.01)
1

3072

)
log
(3

4

)
= 68,

we find no solutions. See the following table:

Table 7.5: Results for the multiplication tables of commuta-
tive semifields of order 16, case 4.

Iteration Valid Solution Solution Found Corresponding j
1 no 001000100110 61
2 no 110111000100 56
3 no 101011110101 1
4 no 011111010110 45
5 no 101111100100 4
6 no 011010010101 34
7 no 110110111001 55
8 no 111011100001 17
9 no 001111111000 25
10 no 111110010101 50

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 149

11 no 001010010111 24
12 no 101111111100 58
13 no 111111110110 55
14 no 101100010001 40
15 no 010111010101 26
16 no 000010101010 7
17 no 110000011100 10
18 no 001110000000 35
19 no 010110110000 6
20 no 110110111010 21
21 no 100010001011 51
22 no 101101100001 36
23 no 100000011111 32
24 no 101011111101 56
25 no 010001101100 51
26 no 110010001010 43
27 no 000000101111 62
28 no 111011101001 60
29 no 110110101010 18
30 no 000100010111 25
31 no 111011010110 53
32 no 111001000110 18
33 no 010110111011 7
34 no 000110111100 50
35 no 110110010010 0
36 no 010110110001 62
37 no 111101010010 27
38 no 001101111100 34
39 no 100000011000 16
40 no 110001010101 53
41 no 010011010000 13
42 no 000101001001 57
43 no 011001100110 61
44 no 010001010111 33
45 no 100111001010 6
46 no 001000000110 16
47 no 000110110001 17
48 no 101111001001 11
49 no 110101010100 25
50 no 101100010010 33
51 no 101110111111 58

150 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

52 no 111000011110 47
53 no 001011010000 45
54 no 100001100110 17
55 no 011011001100 30
56 no 000110101100 42
57 no 101011000111 61
58 no 010110101110 25
59 no 001101011011 36
60 no 001010010011 22
61 no 100010110001 44
62 no 101110110011 8
63 no 100000010010 23
64 no 111110111001 57
65 no 110111001000 53
66 no 001101100000 1
67 no 011101010010 5
68 no 110110011011 41
69 no 101000000011 14
70 no 011001011001 19
71 no 000111101011 28
72 no 010100111000 28
73 no 110111110111 43
74 no 111100011101 3
75 no 001001110011 21
76 no 100000000101 26
77 no 011100101110 53
78 no 000101000011 12
79 no 011101010001 25
80 no 000110100010 55
81 no 100000100100 11
82 no 000001000001 54
83 no 100111110111 42
84 no 101111000101 0
85 no 011110001010 0
86 no 000010101001 7
87 no 101011111110 38
88 no 001111110011 40
89 no 011110100101 50
90 no 111000111110 46
91 no 100101100000 28
92 no 000011101000 41

7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 151

93 no 010111100000 30
94 no 101000110010 18
95 no 010000111101 49
96 no 101111010000 34
97 no 011100001101 39
98 no 110100000011 5
99 no 010001111001 54
100 no 011111011010 43
101 no 011101100010 42
102 no 000011000111 24
103 no 001111101010 29
104 no 101010011111 62
105 no 100000000010 10
106 no 111011001101 14
107 no 101110000100 57
108 no 011111111101 18
109 no 110000011111 6
110 no 011110000110 31
111 no 100011000111 24
112 no 101000100001 30
113 no 011001011000 32
114 no 101000100100 51
115 no 111010101011 47
116 no 110010000101 38
117 no 111101100111 50
118 no 001101100011 34
119 no 010101100000 45
120 no 011100100111 9
121 no 000100111111 30
122 no 101010011111 15
123 no 010001111101 19
124 no 000110110110 30
125 no 001000010101 27
126 no 000000110100 56
127 no 011100101011 55
128 no 100101001100 49
129 no 011111111010 18
130 no 100100110101 17
131 no 110000000100 27
132 no 010010111100 39
133 no 010110011010 52

152 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

134 no 101001010110 10
135 no 111101101010 10
136 no 100101111001 62

Finally, in this case, as we have seen, no solutions have been found. This can be explained
by the fact that the only possible solutions correspond to multiplication tables of the
finite field F16. It is well-known that, for any element in a finite field extension (such as
F16|F2), its minimal polynomial is always irreducible. Therefore, a solution in this case
would yield the existence of an element b ∈ F16 with minimal polynomial x4 + x2 +1 =
(x2 + x+1)2, which is not irreducible. Hence, the non-existence of solution.

7.1.3 Estimation of costs for the general case, in terms of Quantum Gates
In this section, for the sake of simplicity, we restrict to binary semifields. The aim is to obtain
an estimation of the complexity in terms of number of quantum gates, of the Boolean function
for the procedure described in this section.

Definition 7.2. Let A,B∈Matn×n(F2), then Γi
ndet

(
A/Bi) is defined as a sum of the combination

of determinants, in which subsets of i rows of A are substituted by the corresponding rows of B.
For example, let

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ,B =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 ,

in Mat3×3(F2), then

Γ
1
4 det

(
A/B1)= det


b11 b12 b13 b14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

+det


a11 a12 a13 a14
b21 b22 b23 b24
b31 b32 b33 b34
a41 a42 a43 a44



+det


a11 a12 a13 a14
a21 a22 a23 a24
b31 b32 b33 b34
a41 a42 a43 a44

+det


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
b41 b42 b43 b44

 ,

Γ
2
3 det

(
A/B2)=


b11 b12 b13 b14
b21 b22 b23 b24
a31 a32 a33 a34
a41 a42 a43 a44

+det


b11 b12 b13 b14
a21 a22 a23 a24
b31 b32 b33 b34
a41 a42 a43 a44



7.1. Quantum Computational Search of Finite Semifields with Grover’s algorithm 153

+det


a11 a12 a13 a14
b21 b22 b23 b24
b31 b32 b33 b34
a41 a42 a43 a44

+det


b11 b12 b13 b14
a21 a22 a23 a24
a31 a32 a33 a34
b41 b42 b43 b44



+det


a11 a12 a13 a14
b21 b22 b23 b24
a31 a32 a33 a34
b41 b42 b43 b44

+det


a11 a12 a13 a14
a21 a22 a23 a24
b31 b32 b33 b34
b41 b42 b43 b44

 ,

Γ
3
4 det

(
A/B1)= det


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
a41 a42 a43 a44

+det


b11 b12 b13 b14
b21 b22 b23 b24
a31 a32 a33 a34
b41 b42 b43 b44



+det


b11 b12 b13 b14
a21 a22 a23 a24
a31 a32 a33 a34
b41 b42 b43 b44

+det


a11 a12 a13 a14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 .

The following lemma shows an useful formula for our estimation.

Lemma 7.3 ([XDS93] Lemma 2). Let A,B ∈Matn×n(F2), then

det(A+B) = det(A)+det(B)+
n−1

∑
i=1

Γ
i
n det

(
A/Bi).

Estimation: Let D be a finite semifield of order 2d, that we want to describe with a standard
basis {A1,A2, . . . ,Ad}. Consider all possible linear combinations from S = {A2, . . . ,Ad}, i.e.,
without involving the identity matrix. There are

(d−1
1

)
of them of the form Ai, which have

the first column full of 0 except for one position, which is 1. Therefore, the determinant of
Ai would have (after expansion) at most (d− 1)!(d− 2) products, and (d− 1)!− 1, additions
(since we are working mod 2, subtractions can be seen as additions). Now, let us consider all
linear combinations of the form Ai +A j. The first column has two ones and d− 2 zeros, and
on the remaining columns each position ai j has one sum of 2 variables. So, the determinant of
Ai +A j would be the sum of two determinants, each one of a matrix of size (d− 1)× (d− 1)
in which each entrance is a sum of two different variables. So, the number of products would
be at most

(d
2

)
2d(d− 1)!(d− 2) products, and

(d
2

)
2d((d− 1)!− 1) additions. Now, if we take

154 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

k matrices, and add them together, they would have the following form: on the first column, k
ones and d− k zeroes, and in the remain columns each ai j position has k− 1 sums of k vari-
ables. There are

(d−1
k

)
matrices of this form, and the number of products would be at most(d

k

)
kd(d−1)!(d−2) multiplications, and

(d
k

)
kd((d−1)!−1) would be an upper bound for the

number of additions.

Now, consider the matrices B+A1, where B =
k
∑

i=2
Ai, for k = 3, . . . ,d. Then, by lemma 7.3,

det(B+A1) = det(A1)+det(B)+
d−1

∑
i=1

Γ
i
d det

(
B/Ai

1
)

= 1+det(B)+
d−1

∑
i=1

Γ
i
d det

(
B/Ai

1
)
.

Now, note that the number of products and additions of Γi
d det

(
B/Ai

1
)

is less or equal than those
of det(B). Hence, the number of products in det(B+A1) would be at most d times the products
of det(B), and for additions, d times the sums of det(B) plus one.

There are 2d−1− 1 non trivial linear combinations on S, and so, the number of matrices of
the form A1 +B is the same. So, joining all of them, we get 2d−2 determinants (removing that
of the identity matrix, and of the null matrix), the same ones that if we consider all of A1∪ S.
Therefore, the number of required products would be at most

d−1

∑
k=1

(
d−1

k

)
kd(d−1)!(d−2)+

d−1

∑
k=1

d
(

d−1
k

)
kd(d−1)!(d−2)

= (d +1)
d−1

∑
k=1

(
d−1

k

)
kd(d−1)!(d−2),

and the number of sums

d−1

∑
k=1

(
d−1

k

)
kd ((d−1)!−1)+

d−1

∑
k=1

(
d−1

k

)(
dkd ((d−1)!−1)+1

)
=

d−1

∑
k=1

(
d−1

k

)
kd ((d−1)!−1)(1+d)+

d−1

∑
k=1

(
d−1

k

)
=

d−1

∑
k=1

(
d−1

k

)
kd ((d−1)!−1)(1+d)+2d−1−1.

Now, in order to construct the Boolean function, we need d(d−1)2 variables, so f : {0,1}d(d−1)2

→{0,1}. On Section 3, in Figure 3.5, we showed a possible decomposition of the Toffoli gate.
We should mention that by the Solovay-Kitaev Theorem [NC11] [Appendix 3], the asymptotic
growth is the same whatever decomposition we choose. As we saw, every Toffoli gate in a

7.2. Quantum Computational Search of Finite Semifields with Quantum Optimization 155

Number Gate
6a+b CNOT

2a H
3a T †

4a T

Table 7.6: Cost in terms of quantum gates.

quantum circuit may execute up to six CNOT gates. Therefore, in Table 7.6 we give an estimate
of a lower bound, of the cost of our Boolean function, in terms of quantum gates. where

a = (d +1)
d−1

∑
k=1

(
d−1

k

)
kd(d−1)!(d−2)

b =
d−1

∑
k=1

(
d−1

k

)
kd ((d−1)!−1)(1+d)+2d−1−1.

Which shows that this approach is computationally unaffordable (it is indeed exponentially).

7.2 Quantum Computational Search of Finite Semifields with
Quantum Optimization

Apart from the method covered in the previous section, we also tried other approaches to obtain
a quantum search procedure for semifields with given properties. As an example, the purpose of
this section is to use quantum annealing to find the multiplication table of Knuth’s binary finite
semifield of order 32, which is neither left or right primitive. We shall explain our approach and
the difficulties found that prevented us from success.

Let us sketch our strategy with the problem of finding the finite field of order 8, which is
commutative. Thus, its standard basis is{

A1 =

1 0 0
0 1 0
0 0 1

 , A2 =

0 a7 a4
1 a8 a5
0 a9 a6

 , A3 =

0 a4 a1
0 a5 a2
1 a6 a3

}.
Analogously as before, by Corollary 2.53, we have that the characteristic polynomial of each
non-scalar linear combination of A1,A2,A3 has no linear factors. But the polynomials of degree
3 in F2[x] that have no linear factors are p(x)= x3+x+1, and p(x+1)= (x+1)3+(x+1)+1=
x3 + x2 +1. And so, we can assume without loss of generality, that A2 is the companion matrix
C(p(x)) (by a suitable change of basis). So, the standard basis is{

A1 =

1 0 0
0 1 0
0 0 1

 , A2 =

0 0 1
1 0 1
0 1 0

 , A3 =

0 1 a1
0 1 a2
1 0 a3

}.

156 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

Now, in order to find the multiplication table, (a∨b)∧ (c∨d) must be true, where a,b,c,d are
the clauses

a pA3(x) = p(x)

b pA1+A3(x) = p(x)

c pA2+A3(x) = p(x)

d pA1+A2+A3(x) = p(x).

We know that, from the Cayley–Hamilton theorem, every square matrix satisfies its own
characteristic equation. In other words, PA(A) = 0n, where 0n is the matrix in which each
entry is zero. However, it does not mean that, if p(A) = 0, then p(x) is the characteristic
polynomial of A. But, since p(x) is irreducible (because neither 0 nor 1 are roots), then in this
case pA(x) = mA(x), its minimal polynomial. Hence,

(a∨b)∧ (c∨d)⇔
((

A3
3 +A3 + I3 = 03

)
∨
(
A3

3 +A2
3 + I3 = 03

))
∧
((
(A2 +A3)

3 +(A2 +A3)+ I3 = 03
)
∨
(
(A2 +A3)

3 +(A2 +A3)
2 + I3 = 0

))
.

(7.1)

Now, by using the following code C.28, which is based on the expansion of the matrix expres-
sions in 7.1, we find the Boolean formula that satisfies the conditions mention above, which is

(((a1 ∧ a3⊕ a2)∧ (∼ a1)∧ (a1 ∧ a3⊕ a2 ∧ a3⊕ ∼ a2)∧ (a2 ∧ a3⊕ ∼ a2)∧ (a2)∧ (∼ (a1 ∧
a2))∧ (a1 ⊕ a3)∧ (a3)∧ (a2))∨ ((a1 ∧ a3 ⊕ a1 ⊕ a2)∧ (∼ a1)∧ (∼ a1 ⊕ (a2 ∧ a3)∧ ∼ (a2 ∧
a3))∧ a2 ∧ (a1⊕ a2⊕ ∼ (a2 ∧ a3))∧ (∼ a1)∧ (∼ a3)∧ (a1⊕ a2)))∧ (((a1 ∧ a3⊕ a1⊕ a2⊕ ∼
a3)∧ (a1∧ a3⊕ a2⊕ ∼ a3)∧ (a1∧ a2⊕ a1∧ a3⊕ a2∧ a3)∧ (a1⊕ a2∧ a3⊕ ∼ a3)∧ (a1⊕ a2∧
a3⊕ a2⊕ a3)∧ (a1∧ a2⊕ a1∧ a3⊕ a2⊕ ∼ a3)∧ (a1⊕ a2⊕ ∼ a3)∧ ∼ a1)∨ ((a1∧ a3⊕ a2⊕ ∼
a3)∧ (a1 ∧ a3⊕ a1⊕ a2⊕ a3)∧ (a1 ∧ a2⊕ a1⊕ a2 ∧ a3⊕ a2⊕ a3)∧ (a1⊕ a2 ∧ a3⊕ a2⊕ a3)∧
(a1⊕a2∧a3⊕a3)∧(a1∧a2⊕a1∧a3⊕a1⊕a2∧a2⊕a2)∧(a1⊕a2⊕a3)∧(a1⊕a2)∧(∼ a2))

In order to use quantum techniques, we could transform it into a conjuctive normal form
(CNF) expression by using, for instance, the Tseitn transformation (a standard way to con-
vert a Boolean expression to CNF) [Tse83]. It introduces additional variables, but keeps the
number of clauses and variables relatively small, obtaining a formula whose size grows linearly
with respect to the input formula1. Now, mapping the operations x∨ y,x∧ y and x to xy,x+ y
and 1− x, respectively, we find a polynomial, with at least 267 auxiliary variables 2, which is
rather large to be used in HOBO (see Section 3.4).

In that order of ideas, let us move to the case of the binary semifield of order 32 which is
not primitive (Section 2.4). Consider one of is standard bases {A1,A2,A2,A4,A5}. By Corol-
lary 2.53 item 2 the characteristic polynomial of each non-scalar linear combination of them is

1The procedur of Tseitin transformation can be seen in the following repository of github JMiguel01/Chapter-7-
An-approach-to-the-Classification-of-Finite-Semifields-by-Quantum-Computing/Tseitin Transformation, and its
Polynomial

2The entire polynomial can be seen in, the following repository of github JMiguel01/Chapter-7-An-approach-
to-the-Classification-of-Finite-Semifields-by-Quantum-Computing/Tseitin Transformation, and its Polynomial

7.2. Quantum Computational Search of Finite Semifields with Quantum Optimization 157

not primitive. By Corollary 2.53 item 1, they can not have linear factors either. But, since all
irreducible polynomials of degree n in F2[x] are primitive if and only if 2n−1 is a (Mersenne)
prime number, the admissible polynomials of degree 5 in F2[x] that are not primitive are the
product of an irreducible factor of degree 2, and an irreducible factor of degree 3. Namely,
p(x) = x5 + x+ 1, and p(x+ 1) = (x+ 1)5 +(x+ 1)+ 1 = x5 + x4 + 1, because they are re-
ducible without linear factors. Hence, the matrix A2 can be assumed to either be the companion
matrix C(p(x)) or C(p(x+1)). Let us suppose that A2 =C(p(x)) (as a change of basis can be
made otherwise), so the standard bases would become

A1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , A2 =


0 0 0 0 1
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , A3 =


0 0 a1 a6 a11
1 0 a2 a7 a12
0 1 a3 a8 a13
0 0 a4 a9 a14
0 0 a5 a10 a15



A4 =


0 0 a6 a16 a21
0 0 a7 a17 a22
0 0 a8 a18 a23
1 0 a9 a19 a24
0 1 a10 a20 a25

 , A5 =


0 1 a11 a21 a26
0 1 a12 a22 a27
0 0 a13 a23 a28
1 0 a14 a24 a29
0 0 a15 a25 a30

 .

In order to find the multiplication table of Knuth’s binary semifield, it has to be true that (a∨b)∧
(c∨d)∧(e∨ f)∧(g∨h)∧(i∨ j)∧(k∨ l)∧(m∨n)∧(o∨ p)∧(q∨ r)∧(s∨ t)∧(u∨ v)∧(w∨ x)∧
(y∨ z) must happen, where a,b,c,d,e, f ,g,h, i, j,k, l,m,n,o, p,q,r,s, t,u,v,w,x,y,z are the clauses

a pA3(x) = p(x)

b pA1+A3(x) = p(x)

c pA4(x) = p(x)

d pA1+A4(x) = p(x)

e pA5(x) = p(x)

f pA1+A5(x) = p(x)

g pA4+A5(x) = p(x)

h pA1+A4+A5(x) = p(x)

i pA3+A5(x) = p(x)

j pA1+A3+A5(x) = p(x)

k pA3+A4(x) = p(x)

l pA1+A3+A4(x) = p(x)

m pA3+A4+A5(x) = p(x)

n pA1+A3+A4+A5(x) = p(x)

o pA2+A5(x) = p(x)

p pA1+A2+A5(x) = p(x)

q pA2+A4(x) = p(x)

r pA1+A2+A4(x) = p(x)

s pA2+A3(x) = p(x)

t pA1+A2+A3(x) = p(x)

u pA2+A3+A5(x) = p(x)

v pA1+A2+A3+A5(x) = p(x)

158 Chapter 7. An approach to the Classification of Finite Semifields by Quantum Computing

w pA2+A3+A4(x) = p(x)

x pA1+A2+A3+A4(x) = p(x)

y pA2+A3+A4+A5(x) = p(x)

z pA1+A2+A3+A4+A5(x) = p(x)

Now, as before, p(A) = 05, where 05 is the matrix in which each entry is zero, does not
mean that p(x) is the characteristic polynomial of A. In order to see that, in this case, it is
indeed the characteristic polynomial, first note that x5 + x+1 = (x2 + x+1)(x3 + x2 +1). So it
is the product of irreducible polynomials of degree 2 and 3, respectively. Also, x5 + x4 +1 can
be factored as the product of irreducible polynomials, in fact as (x2 + x+1)(x3 + x+1).

Let us see the case for the polynomial x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1), since the
other one follows the same lines. For that, note that we might have the case that p(A) = 05,
because the matrix annihilates one of those irreducible factors. So, we must show that in fact
the minimal polynomial is neither of them. Indeed, without loss of generality, let us suppose
that the minimal polynomial is x3 +x+1, and consider the map T : (Z/2Z)5→ (Z/2Z)5 given
by T (v) = Av, for v ∈ (Z/2Z)5. So, from Theorem 2.32, we have that

(Z/2Z)5 ∼=
(
F2[x]/(x3 + x+1)

)m

for some m≥ 1 as F2[x]-modules. But F2[x]/(x3+x+1) has 8 elements, so this is not possible.
Therefore (x3 + x+1) can not be the minimal polynomial of A. Hence, both minimal and char-
acteristic polynomials must agree.

The boolean expression for the case (a∨ b) can be seen in C.29, which is very large. In this
case, it would not involve all variables, as we have on case z above. Thus, the polynomial for
the general expression would be too cumbersome. Therefore, we have been not able to apply
this method for the many qubits required.

Chapter 8

Conclusions

In this last chapter, we want to briefly summarize the main conclusions of this thesis and to
indicate possible lines for future work.

This thesis is based on the application of quantum computational techniques for the effective
study of algebraic structures. It is articulated around three problems. Firstly, the problem of
detecting pairs of different constants for determining the commutativity of a finite dimensional
algebra. Thus, based on the results found in [HCCR22], in Chapter 5, we study two specific
classes of QADS. The first are QADS of combinatorial type, which generalize the well-known
controlled operators. We have determined its efficient constructibility, the expression of the
state after the application of the detection operator and the closure of its algorithm as a subclass
of QADS. As an application, we have considered the problem of deciding whether, for a given
operator-eigenvector pair, the corresponding eigenvalue is a given one or not. The second fam-
ily are QADS of the rotational type, which include as a particular case the QADS of Grover’s
search. We have studied the expression of the state after the application of the detection op-
erator on the initial state, the algorithmic closure of this subclass of QADS, and we have also
considered its combinatorial QADS. Interestingly, we have derived some nice equivalences for
these QADS, in terms of tensor products and square root products of the original QADS. Fur-
thermore, we have successfully applied them to the problem of the commutativity of algebras
(Section 5.5), which was our original problem of interest.

As a future work, in relation to combinatorial QADS, we want to explore more applications
of them, for instance, if there exist an approximation to the QFT for Z/NZ with N odd and if
the Swap test can be seen as a particular case of those QADS, together with a generalization of
it. Furthermore, we want to study variations of combinatorial QADS for instance, a change on
the initial or final Hadamard gates by rotations like the QFT for Z/NZ with N a positive integer,
and explore other families of QADS that include measurements.

The second problem, studied in [JER23], is included in Chapter 6. We have shown that for
a given multiplication table, of a n-dimensional not necessarily associative and not necessarily
commutative Fp-algebra A, and for each substructure, right, middle and left nuclei, the nucleus
and the center of A, we can build an efficient quantum algorithm which calculates each sub-
structure. Our approach is based on the existence of a function that hides each substructure,

159

160 Chapter 8. Conclusions

for which a quantum oracle can be built efficiently, both in terms of the number of qubits and
the number of quantum gates. Our quantum algorithm uses such a black box, and the specific
number of qubits and quantum gates required can be found in Theorem 6.6. In those situations,
we have shown an exponential gain with our quantum algorithm.

As a future work, in relation to quantum methods that solve the hidden subgroup problems,
of which the Shor-type algorithm is the greatest exponent, we propose the study of problems
related to finding the order of an element, and the primitiveness of elements in finite semifields.

Finally, the problem studied in [HCR23] is collected in Section 7.1. We give some of the
multiplication tables for F8 and F16, based on the quantum search of Grover’s algorithm. Fur-
thermore, to classify a finite semifield of order 2d with this methodology, we show that at least
d(d−1)2 qubits are required. Additionally, we give an estimate of the number of quantum gates
needed to build the quantum circuit, showing that this approach is not asymptotically efficient.
As another alternative to quantum computing techniques for classifying finite semifields, we
tried to use Quantum Annealing, a form of computing that efficiently samples the low-energy
configurations of a quantum system [KN98], [FGGS00]. However, we end up with the problem
of expanding a huge polynomial, which makes it impossible for us to apply these techniques.
Thus, as a future work we want to find efficient quantum algorithms (or use classical and quan-
tum algorithms together) that classify them efficiently.

Conclusiones

En este capítulo, queremos resumir brevemente las principales conclusiones de esta tesis e in-
dicar posibles líneas de trabajo a futuro .

Esta tesis, centrada en la aplicación de tecnicas computacionales cuánticas para el estudio efec-
tivo de estructuras algebraicas, se articula sobre tres problemas. En primer lugar, el problema
de detección de pares de constantes diferentes para la determinación de la conmutatividad de un
álgebra finito dimensional. Así, a partir de los resultados encontrados en [HCCR22], en el capí-
tulo 5, estudiamos dos clases específicas de QADS. El primero son QADS de tipo combinatorio,
que generalizan los conocidos operadores controlados. Hemos determinado su constructibilidad
eficiente, la expresión del estado después de la aplicación del operador de detección y el cierre
de su algoritmo como una subclase de QADS. Como aplicación, hemos considerado el prob-
lema de decidir si, para un par operador-vector propio dado, el valor propio correspondiente es
uno dado o no. La segunda familia es la de QADS rotacionales, que incluyen como caso par-
ticular los QADS de la búsqueda de Grover. Hemos estudiado la expresión del estado después
de la aplicación del operador de detección sobre el estado inicial, el cierre algorítmico de esta
subclase de QADS, y también hemos considerado sus QADS combinatorios. Curiosamente,
hemos derivado algunas equivalencias agradables para estos QADS, en términos de productos
tensoriales y productos de raíces cuadradas de los QADS originales. Además, los hemos apli-
cado de forma satisfactoria al problema de la conmutatividad de álgebras (Sección 5.5), que era
nuestro objetivo original.

Como trabajo futuro, en relación con los QADS combinatorios, queremos explorar más aplica-
ciones de ellos, por ejemplo si existe una aproximación de la transformada cuántica de Fourier
para Z/NZ para N impar, y si el test de Swap puede verse como un caso particular de esos
QADS, junto con una generalización del mismo, tal como hicimos con el test de Hadamard.
Además, queremos estudiar variaciones de los QADS combinatorios, por ejemplo, un cambio
en las puertas de Hadamard inicial o final mediante rotaciones como la transformada cuántica de
Fourier para Z/NZ con N un entero positivo, y explorar otras familias de QADS que incluyan
medidas.

El segundo problema, estudiado en [JER23], se encuentra recogido en el Capítulo 6. Hemos
demostrado que para una tabla de multiplicación dada, de una Fp-algebra n-dimensional no
necesariamente asociativa y no necesariamente conmutativa A, y para cada subestructura, nú-
cleo por derecha, medio e izquierda, el núcleo y el centro de A, podemos construir un algoritmo
cuántico eficiente que calcula dicha subestructura. Nuestro enfoque se basa en la existencia de

161

162 Chapter 8. Conclusions

una función que oculta la subestructura, para la cual se puede construir un oráculo cuántico de
manera eficiente, tanto en términos de número de qubits como de número de puertas cuánticas.
Nuestro algoritmo cuántico utiliza una caja negra de este tipo, y la cantidad concreta de qubits
y puertas cuánticas requeridas se puede encontrar en Teorema 6.6. En esas situaciones, hemos
mostrado una ganancia exponencial con nuestro algoritmo cuántico.

Por lo que como trabajo futuro en relación con los métodos cuánticos que resuelven los prob-
lemas de subgrupos ocultos, de los cuales el algoritmo de tipo Shor es el máximo exponente,
proponemos el estudio de problemas relacionados con la búsqueda del orden de un elemento, y
la primitividad de elementos en semicuerpos finitos.

Por último, el problema estudiado en [HCR23], es recogido en la Sección 7.1. Damos algu-
nas de las tablas de multiplicar de F8 y F16, basadas en la búsqueda cuántica del algoritmo de
Grover. Además, para clasificar un semicuerpo finito de orden 2d con esta técnica, mostramos
que se requieren al menos d(d− 1)2 qubits. Además, damos una estimación del número de
puertas cuánticas necesarias para construir el circuito cuántico, lo que demuestra que este en-
foque no es asintóticamente eficiente. Como otra alternativa de las técnicas de computación
cuántica para clasificar semicuerpos finitos, intentamos usar Quantum Annealing, una forma
de computación que muestra eficientemente las configuraciones de baja energía de un sistema
cuántico [KN98], [FGGS00]. Sin embargo, terminamos con el problema de expandir un poli-
nomio descomunal, lo que nos hace imposible aplicar estas técnicas.

Por lo que como trabajo futuro queremos encontrar algoritmos cuánticos (o usar algoritmos
clásicos junto con algoritmos cuánticos) que sean eficientes para su clasificación.

Chapter

Appendices

A Codes for Chapter 5

Codes for Chapter 5 can also be found in: github.com/JMiguel01/Combinatorial − And −
Rotational−QADS

Code A.1.

1 import math
2 import numpy as np
3

4 import matplotlib.pyplot as plt
5 xaxisfigure21 = np.arange(0,1.8,0.2)
6 xaxisfigure22 = np.arange(1.6, math.pi+0.2,0.2)
7

8 def probabilityq(angle,m):
9 z = (math.cos(angle/2))**(2*m)

10 return(z)
11 def bernoulli(n, q):
12 n_success = 0
13 for i in range(n):
14 random_number = np.random.random()
15 if random_number < q:
16 n_success += 1
17 return(n_success)
18 def anglep(a,m):
19 p = a/(10**4)
20 alpha = math.acos(2*(p**(1/m))-1)
21 #alpha = 2*math.acos(p**(1/(2*m)))
22 return(alpha)
23 def mae(beta,n,m):
24 alphas = []

163

164 Chapter . Appendices

25 for i in range(n):
26 alphas.append(abs(anglep(bernoulli(10**4,

(probabilityq(beta,m))),m)-beta))↪→

27 #print(alphas)
28 Sum = sum(alphas)
29 #print(Sum)
30 result = Sum/n
31 #result = abs((Sum)/n)
32 return(result)
33

34 def yaxis(xaxis,m):
35 yaxisfigure = []
36 for i in xaxis:
37 yaxisfigure.append(mae(i,10**3,m))
38 return(yaxisfigure)
39

40 plt.plot(xaxisfigure21, yaxis(xaxisfigure21,1), color='blue', label =
"$m=1$")↪→

41 plt.plot(xaxisfigure21, yaxis(xaxisfigure21,2), color='orange', label =
"$m=2$")↪→

42 plt.plot(xaxisfigure21, yaxis(xaxisfigure21,3), color='green', label = "
$m=3$")↪→

43 plt.plot(xaxisfigure21, yaxis(xaxisfigure21,4) , color='red', label = "
$m=4$")↪→

44 plt.plot(xaxisfigure21, yaxis(xaxisfigure21,5) , color='purple', label =
"$m=5$")↪→

45

46 plt.xlabel("Angle")
47 plt.ylabel("Mean Absolute Error")
48

49 # Adding legend, which helps us recognize the curve according to it's color
50 plt.legend()
51

52 plt.show()
53

54 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,1), color='blue', label =
"$m=1$")↪→

55 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,2), color='orange', label =
"$m=2$")↪→

56 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,3), color='green', label =
"$m=3$")↪→

57 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,4) , color='red', label = "
$m=4$")↪→

58 plt.plot(xaxisfigure22, yaxis(xaxisfigure22,5) , color='purple', label =
"$m=5$")↪→

A. Codes for Chapter 5 165

59

60 plt.xlabel("Angle")
61 plt.ylabel("Mean Absolute Error")
62

63 # Adding legend, which helps us recognize the curve according to it's color
64 plt.legend()
65

66 plt.show()

Code A.2.

1 import math
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5

6 xaxisfigure21 = np.arange(0,1.8,0.2)
7 xaxisfigure22 = np.arange(1.6, math.pi+0.2,0.2)
8 def probabilityq(angle,m):
9 z = (math.cos(angle/2))**(2*m)

10 return(z)
11 def bernoulli(n, q):
12 n_success = 0
13 for i in range(n):
14 random_number = np.random.random()
15 if random_number < q:
16 n_success += 1
17 return(n_success)
18 def anglep(a,m):
19 p = a/(10**4)
20 alpha = math.acos(2*(p**(1/m))-1)
21 #alpha = 2*math.acos(p**(1/(2*m)))
22 return(alpha)
23 def mae(beta,n,m):
24 alphas = []
25 for i in range(n):
26 alphas.append(abs((anglep(bernoulli(10**4,

(probabilityq(beta,m))),m))-beta))↪→

27 #print(alphas)
28 Sum = sum(alphas)
29 #print(Sum)
30 result = Sum/n
31 #result = abs((Sum)/n)
32 return(result)
33 def yaxis(xaxis,m):

166 Chapter . Appendices

34 yaxisfigure = []
35 for i in xaxis:
36 yaxisfigure.append(mae(i,10**3,m))
37 return(yaxisfigure)
38 # Calculate the average
39 m1_mean = np.mean(yaxis(xaxisfigure21,1))
40 m2_mean = np.mean(yaxis(xaxisfigure21,2))
41 m3_mean = np.mean(yaxis(xaxisfigure21,3))
42 m4_mean = np.mean(yaxis(xaxisfigure21,4))
43 m5_mean = np.mean(yaxis(xaxisfigure21,5))
44 # Calculate the standard deviation
45 m1_std = np.std(yaxis(xaxisfigure21,1))
46 m2_std = np.std(yaxis(xaxisfigure21,2))
47 m3_std = np.std(yaxis(xaxisfigure21,3))
48 m4_std = np.std(yaxis(xaxisfigure21,4))
49 m5_std = np.std(yaxis(xaxisfigure21,5))
50 # Define labels, positions, bar heights and error bar heights
51 labels = ['1', '2', '3', '4', '5']
52 x_pos = np.arange(len(labels))
53 m = [m1_mean, m2_mean, m3_mean, m4_mean, m5_mean]
54 error = [m1_std, m2_std, m3_std, m4_std, m5_std]
55 # Build the plot
56 fig, ax = plt.subplots()
57 ax.bar(x_pos, m,
58 yerr=error,
59 align='center',
60 alpha=0.5,
61 ecolor='black',
62 capsize=10)
63 ax.set_ylabel('Average Error')
64 ax.set_xlabel('m')
65 ax.set_xticks(x_pos)
66 ax.set_xticklabels(labels)
67 ax.yaxis.grid(True)
68

69 # Save the figure and show
70 plt.show()
71

72 # Calculate the average
73 m12_mean = np.mean(yaxis(xaxisfigure22,1))
74 m22_mean = np.mean(yaxis(xaxisfigure22,2))
75 m32_mean = np.mean(yaxis(xaxisfigure22,3))
76 m42_mean = np.mean(yaxis(xaxisfigure22,4))
77 m52_mean = np.mean(yaxis(xaxisfigure22,5))
78 # Calculate the standard deviation

A. Codes for Chapter 5 167

79 m12_std = np.std(yaxis(xaxisfigure22,1))
80 m22_std = np.std(yaxis(xaxisfigure22,2))
81 m32_std = np.std(yaxis(xaxisfigure22,3))
82 m42_std = np.std(yaxis(xaxisfigure22,4))
83 m52_std = np.std(yaxis(xaxisfigure22,5))
84 # Define labels, positions, bar heights and error bar heights
85 labels = ['1', '2', '3', '4', '5']
86 x_pos = np.arange(len(labels))
87 m2 = [m12_mean, m22_mean, m32_mean, m42_mean, m52_mean]
88 error2 = [m12_std, m22_std, m32_std, m42_std, m52_std]
89 # Build the plot
90 fig2, ax2 = plt.subplots()
91 ax2.bar(x_pos, m2,
92 yerr=error2,
93 align='center',
94 alpha=0.5,
95 ecolor='black',
96 capsize=10)
97 ax2.set_ylabel('Average Error')
98 ax2.set_xlabel('m')
99 ax2.set_xticklabels(labels)

100 ax2.yaxis.grid(True)
101

102 # Save the figure and show
103 plt.show()

Code A.3.

1 import math
2 import numpy as np
3 import matplotlib.pyplot as plt
4 xaxisfigure21 = np.linspace(0,np.pi,10)
5 def probabilitytheorem3(beta,alpha,m):
6 z = (math.cos((beta-alpha)/2))**(2*m)
7 return(z)
8 def bernoulli(n, q):
9 n_success = 0

10 for i in range(n):
11 random_number = np.random.random()
12 if random_number < q:
13 n_success += 1
14 return(n_success)
15 def anglep1(a):
16 p1 = a/(10**4)
17 return(p1)

168 Chapter . Appendices

18 def dichotomy_search_1(beta,n,m):
19 k= 10
20 low = 0
21 high = np.pi
22 for i in range(k):
23 mid = (low + high) / 2.0
24 pl = anglep1(bernoulli(n,probabilitytheorem3(beta,low,m)))
25 ph = anglep1(bernoulli(n,probabilitytheorem3(beta,high,m)))
26 if (pl > ph):
27 high = mid
28 else:
29 low = mid
30 return(mid)
31 def dichomae(beta,n,m):
32 alphas = []
33 for i in range(n):
34 alphas.append(abs(dichotomy_search_1(beta,n,m)-beta))
35 Sum = sum(alphas)
36 result = Sum/n
37 return(result)
38 def dichoyaxis(xaxisfigure21,n,m):
39 yaxisfigure = []
40 for i in xaxisfigure21:
41 yaxisfigure.append(dichomae(i,n,m))
42 return(yaxisfigure)
43 plt.plot(xaxisfigure21, dichoyaxis(xaxisfigure21,10**3,1), color='blue',

label = "$m=1$")↪→

44 plt.plot(xaxisfigure21, dichoyaxis(xaxisfigure21,10**3,2), color='orange',
label = "$m=2$")↪→

45 plt.plot(xaxisfigure21, dichoyaxis(xaxisfigure21,10**3,3), color='green',
label = "$m=3$")↪→

46 plt.plot(xaxisfigure21, dichoyaxis(xaxisfigure21,10**3,4), color='red',
label = "$m=4$")↪→

47 plt.plot(xaxisfigure21, dichoyaxis(xaxisfigure21,10**3,5), color='purple',
label = "$m=5$")↪→

48

49 plt.xlabel("Angle")
50 plt.ylabel("Mean Absolute Error")
51

52 # Adding legend, which helps us recognize the curve according to it's color
53 plt.legend()
54

55 plt.show()
56 # Calculate the average
57 m1_mean = np.mean(dichoyaxis(xaxisfigure21,10**3,1))

A. Codes for Chapter 5 169

58 m2_mean = np.mean(dichoyaxis(xaxisfigure21,10**3,2))
59 m3_mean = np.mean(dichoyaxis(xaxisfigure21,10**3,3))
60 m4_mean = np.mean(dichoyaxis(xaxisfigure21,10**3,4))
61 m5_mean = np.mean(dichoyaxis(xaxisfigure21,10**3,5))
62 # Calculate the standard deviation
63 m1_std = np.std((dichoyaxis(xaxisfigure21,10**3,1)))
64 m2_std = np.std((dichoyaxis(xaxisfigure21,10**3,2)))
65 m3_std = np.std((dichoyaxis(xaxisfigure21,10**3,3)))
66 m4_std = np.std((dichoyaxis(xaxisfigure21,10**3,4)))
67 m5_std = np.std((dichoyaxis(xaxisfigure21,10**3,5)))
68 # Define labels, positions, bar heights and error bar heights
69 labels = ['1', '2', '3', '4', '5']
70 x_pos = np.arange(len(labels))
71 m = [m1_mean, m2_mean, m3_mean, m4_mean, m5_mean]
72 error = [m1_std, m2_std, m3_std, m4_std, m5_std]
73 # Build the plot
74 fig, ax = plt.subplots()
75 ax.bar(x_pos, m,
76 yerr=error,
77 align='center',
78 alpha=0.5,
79 ecolor='black',
80 capsize=10)
81 ax.set_ylabel('Average Error')
82 ax.set_xlabel('m')
83 ax.set_xticks(x_pos)
84 ax.set_xticklabels(labels)
85 ax.yaxis.grid(True)
86

87 # Save the figure and show
88 plt.show()

Code A.4.

1 import math
2 import numpy as np
3 import matplotlib.pyplot as plt
4 xaxisfigure21 = np.linspace(0,np.pi,10)
5 def probabilitytheorem3(beta,alpha,m):
6 z = (math.cos((beta-alpha)/2))**(2*m)
7 return(z)
8 def probabilityq(angle,m):
9 z = (math.cos(angle/2))**(2*m)

10 return(z)
11 def bernoulli(n, q):

170 Chapter . Appendices

12 n_success = 0
13 for i in range(n):
14 random_number = np.random.random()
15 if random_number < q:
16 n_success += 1
17 return(n_success)
18 def anglep(a,m):
19 p = a/(8000)
20 alpha = math.acos(2*(p**(1/m))-1)
21 #alpha = 2*math.acos(p**(1/(2*m)))
22 return(alpha)
23 def anglep1(a):
24 p1 = a/(10**3)
25 return(p1)
26 def dichotomy_search_1(beta,n,m):
27 k = 2
28 low = 0
29 high = np.pi
30 for i in range(k):
31 mid = (low + high) / 2.0
32 pl = anglep1(bernoulli(n,probabilitytheorem3(beta,low,m)))
33 ph = anglep1(bernoulli(n,probabilitytheorem3(beta,high,m)))
34 if (pl > ph):
35 high = mid
36 else:
37 low = mid
38 return(low,high)
39 def mae(beta,n,m):
40 alphas = []
41 for i in range(n):
42 alphas.append(abs(anglep(bernoulli(8000,
43 (probabilityq(beta-dichotomy_search_1(beta,10**3,m)[0],m))),
44 m)-(beta-dichotomy_search_1(beta,10**3,m)[0])))
45 Sum = sum(alphas)
46 result = Sum/n
47 return(result)
48 def y_axis(m):
49 y_axis_1 = []
50 for i in xaxisfigure21:
51 y_axis_1.append(mae(i,8000,m))
52 return(y_axis_1)
53 plt.plot(xaxisfigure21, y_axis(1), color='blue', label = "$m=1$")
54 plt.plot(xaxisfigure21, y_axis(2), color='orange', label = "$m=2$")
55 plt.plot(xaxisfigure21, y_axis(3), color='green', label = "$m=3$")
56 plt.plot(xaxisfigure21, y_axis(4), color='red', label = "$m=4$")

A. Codes for Chapter 5 171

57 plt.plot(xaxisfigure21, y_axis(5), color='purple', label = "$m=5$")
58

59 plt.xlabel("Angle")
60 plt.ylabel("Mean Absolute Error")
61

62 # Adding legend, which helps us recognize the curve according to it's color
63 plt.legend()
64 # Calculate the average
65 m1_mean = np.mean(y_axis(1))
66 m2_mean = np.mean(y_axis(2))
67 m3_mean = np.mean(y_axis(3))
68 m4_mean = np.mean(y_axis(4))
69 m5_mean = np.mean(y_axis(5))
70 # Calculate the standard deviation
71 m1_std = np.std(y_axis(1))
72 m2_std = np.std(y_axis(2))
73 m3_std = np.std(y_axis(3))
74 m4_std = np.std(y_axis(4))
75 m5_std = np.std(y_axis(5))
76 # Define labels, positions, bar heights and error bar heights
77 labels = ['1', '2', '3', '4', '5']
78 x_pos = np.arange(len(labels))
79 m = [m1_mean, m2_mean, m3_mean, m4_mean, m5_mean]
80 error = [m1_std, m2_std, m3_std, m4_std, m5_std]
81 # Build the plot
82 fig, ax = plt.subplots()
83 ax.bar(x_pos, m,
84 yerr=error,
85 align='center',
86 alpha=0.5,
87 ecolor='black',
88 capsize=10)
89 ax.set_ylabel('Average Error')
90 ax.set_xlabel('m')
91 ax.set_xticks(x_pos)
92 ax.set_xticklabels(labels)
93 ax.yaxis.grid(True)
94

95 # Save the figure and show
96 plt.show()

Code A.5.

1 import math
2 import numpy as np

172 Chapter . Appendices

3 import matplotlib.pyplot as plt
4 def try1(x,s,m):
5 z = ((math.cos(x*s))**(2*m))*((math.cos(x*s*m)**2))
6 return(z)
7 def try2(x,S,m):
8 First = []
9 Second = []

10 for i in range(S):
11 First.append(try1(x,i,m))
12 Sum = sum(First)
13 result = 1-Sum /((i+1))
14 Second.append(result)
15 return(Second)
16 def plotcombinatorial(x,S,m):
17 xaxisfigure1 = np.arange(0,51,1)
18 yaxisfigure1 = try2(x,S,m)
19 return(xaxisfigure1, yaxisfigure1)
20 plt.plot(xaxisfigure1, try2(0.177710,51,1), color='orange', label =

"C-Grover")↪→

21 plt.plot(xaxisfigure1, try2(0.177710,51,2), color='purple', label =
"C-Grover $ \otimes $ C-Grover")↪→

22 plt.plot(xaxisfigure1, try2(0.177710,51,3), color='red', label =
"Combinatorial $m=3$")↪→

23 plt.plot(xaxisfigure1, try2(0.177710,51,4) , color='green', label =
"Combinatorial $m=4$")↪→

24 plt.plot(xaxisfigure1, try2(0.177710,51,10) , color='blue', label =
"Combinatorial $m=10$")↪→

25 plt.title("Combinatorial Gover QADS")
26 plt.xlabel("Iterations")
27 plt.ylabel("Detection Probability")
28 plt.legend()
29 plt.plot()
30 plt.show()

Code A.6.

1 import math
2 import numpy as np
3 import matplotlib.pyplot as plt
4 def try1(x,s,m):
5 z = ((math.cos(x*s))**(2*m))*((math.cos(x*s*m)**2))
6 return(z)
7 def try2(x,S,m):
8 First = []
9 Second = []

B. Codes for Chapter 6 173

10 for i in range(S):
11 First.append(try1(x,i,m))
12 Sum = sum(First)
13 result = 1-Sum /((i+1))
14 Second.append(result)
15 return(Second)
16 def plotcombinatorial(x,S,m):
17 xaxisfigure1 = np.arange(0,51,1)
18 yaxisfigure1 = try2(x,S,m)
19 return(xaxisfigure1, yaxisfigure1)
20

21 plt.plot(xaxisfigure1, try2(0.1253278311,51,1), color='orange', label =
"C-Grover")↪→

22 plt.plot(xaxisfigure1, try2(0.1253278311,51,2), color='purple', label =
"C-Grover $ \otimes $ C-Grover")↪→

23 plt.plot(xaxisfigure1, try2(0.1253278311,51,3), color='red', label =
"Combinatorial $m=3$")↪→

24 plt.plot(xaxisfigure1, try2(0.1253278311,51,4) , color='green', label =
"Combinatorial $m=4$")↪→

25 plt.plot(xaxisfigure1, try2(0.1253278311,51,10) , color='blue', label =
"Combinatorial $m=10$")↪→

26 plt.title("Combinatorial Gover QADS")
27 plt.xlabel("Iterations")
28 plt.ylabel("Detection Probability")
29 plt.legend()
30 plt.plot()
31 plt.show()

B Codes for Chapter 6

Simulations for both examples in Chapter 5 can also be found in: github.com/JMiguel01/Chapter
−6−E f f icient−Quantum−Algorithms−To−Find−Substructures−On−Finite−Algebras−
Examples.

Code B.7.

1 from sympy import symbols, Matrix, pprint, collect, factor
2 from itertools import accumulate
3 import itertools
4 x = []
5 name = "x"
6 for i in range(1,5):
7 v = symbols(name+str(i))
8 x.append(v)

174 Chapter . Appendices

9 A1 = Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 0]])
10 A2 = Matrix([[0, 0, 0],[0, 0, 1],[0, 0, 0]])
11 A3 = Matrix([[0, 0, 0],[0, 0, 0],[0,0,1]])
12 def matrices(A1,A2,A3,A4):
13 MatrixA1 = {}
14 for i in range(3):
15 for j in range(3):
16 if (i == 0):
17 MatrixA1[i,j] = A1[i+j]
18 if (i == 1):
19 MatrixA1[i,j] = A1[2+i+j]
20 if (i == 2):
21 MatrixA1[i,j] = A1[4+i+j]
22 MatrixA2 = {}
23 for i in range(3):
24 for j in range(3):
25 if (i == 0):
26 MatrixA2[i,j] = A2[i+j]
27 if (i == 1):
28 MatrixA2[i,j] = A2[2+i+j]
29 if (i == 2):
30 MatrixA2[i,j] = A2[4+i+j]
31 MatrixA3 = {}
32 for i in range(3):
33 for j in range(3):
34 if (i == 0):
35 MatrixA3[i,j] = A3[i+j]
36 if (i == 1):
37 MatrixA3[i,j] = A3[2+i+j]
38 if (i == 2):
39 MatrixA3[i,j] = A3[4+i+j]
40 M = [MatrixA1, MatrixA2, MatrixA3]
41 return(M)
42 def functionZ(A):
43 s1 = []
44 s2 = []
45 for i in range(len(A)):
46 for k in range(len(A)):
47 for m in range(len(A)):
48 s1.append((A[m][k,i]- A[i][k,m])*x[m])
49 Input = s1
50 split = len(s1) / len(A)
51 length_to_split = []
52 for i in range(int(split)):
53 length_to_split.append(len(A))

B. Codes for Chapter 6 175

54 Output = [Input[x - y: x] for x, y in zip(accumulate(length_to_split),
length_to_split)]↪→

55 s4 = []
56 for i in range(len(Output)):
57 s3 = sum(Output[i])
58 s4.append(s3)
59 return(s4)
60 functionZ(Matrices(A1,A2,A3))

Code B.8.

1 # importing Qiskit
2 from qiskit import IBMQ, Aer
3 from qiskit.providers.ibmq import least_busy
4 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister,

transpile, assemble↪→

5 # import basic plot tools
6 from qiskit.visualization import plot_histogram
7

8 qreg = QuantumRegister(3)
9 creg = ClassicalRegister(3)

10 ancillary = QuantumRegister(2)
11 qc = QuantumCircuit(qreg, ancillary, creg)
12 qc.cx(qreg[1],ancillary[0])
13 qc.cx(qreg[0],ancillary[1])
14 qc.cx(qreg[2],ancillary[1])
15 qc.barrier(qreg)
16 qc.h(range(3))
17 qc.draw()

Code B.9.

1 qreg = QuantumRegister(3)
2 creg = ClassicalRegister(3)
3 ancillary = QuantumRegister(2)
4 qc = QuantumCircuit(qreg, ancillary, creg)
5 qc.h(range(3))
6 qc.barrier(qreg)
7 qc.cx(qreg[1],ancillary[0])
8 qc.cx(qreg[0],ancillary[1])
9 qc.cx(qreg[2],ancillary[1])

10 qc.barrier(qreg)
11 qc.h(range(3))
12 qc.measure(qreg[0],creg[0])
13 qc.measure(qreg[1],creg[1])
14 qc.measure(qreg[2],creg[2])

176 Chapter . Appendices

15 qc.draw()

Code B.10.

1 aer_sim = Aer.get_backend('aer_simulator')
2 transpiled_qc = transpile(qc, aer_sim)
3 qobj = assemble(transpiled_qc)
4 results = aer_sim.run(qobj,shots =10).result()
5 counts = results.get_counts()
6 print(counts)
7 plot_histogram(counts)

Code B.11.

1 from sympy import symbols, Matrix, pprint, collect, factor
2 import itertools
3 x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
4 x = []
5 name = "x"
6 for i in range(1,5):
7 v = symbols(name+str(i))
8 x.append(v)
9 MA1 = Matrix([[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0]])

10 MA2 = Matrix([[0, 0, 0, 0],[0, 0, 1, 0],[0, 0, 0, 0],[0, 0, 0, 0]])
11 MA3 = Matrix([[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0]])
12 MA4 = Matrix([[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0],[0, 0, 0, 0]])
13 def matrices(A1,A2,A3,A4):
14 MatrixAA1 = {}
15 for i in range(4):
16 for j in range(4):
17 if (i == 0):
18 MatrixAA1[i,j] = A1[i+j]
19 if (i == 1):
20 MatrixAA1[i,j] = A1[3+i+j]
21 if (i == 2):
22 MatrixAA1[i,j] = A1[6+i+j]
23 if (i == 3):
24 MatrixAA1[i,j] = A1[9+i+j]
25 MatrixAA2 = {}
26 for i in range(4):
27 for j in range(4):
28 if (i == 0):
29 MatrixAA2[i,j] = A2[i+j]
30 if (i == 1):
31 MatrixAA2[i,j] = A2[3+i+j]
32 if (i == 2):

B. Codes for Chapter 6 177

33 MatrixAA2[i,j] = A2[6+i+j]
34 if (i == 3):
35 MatrixAA2[i,j] = A2[9+i+j]
36 MatrixAA3 = {}
37 for i in range(4):
38 for j in range(4):
39 if (i == 0):
40 MatrixAA3[i,j] = A3[i+j]
41 if (i == 1):
42 MatrixAA3[i,j] = A3[3+i+j]
43 if (i == 2):
44 MatrixAA3[i,j] = A3[6+i+j]
45 if (i == 3):
46 MatrixAA3[i,j] = A3[9+i+j]
47 MatrixAA4 = {}
48 for i in range(4):
49 for j in range(4):
50 if (i == 0):
51 MatrixAA4[i,j] = A4[i+j]
52 if (i == 1):
53 MatrixAA4[i,j] = A4[3+i+j]
54 if (i == 2):
55 MatrixAA4[i,j] = A4[6+i+j]
56 if (i == 3):
57 MatrixAA4[i,j] = A4[9+i+j]
58 MMT = [MatrixAA1,MatrixAA2,MatrixAA3,MatrixAA4]
59 return(MMT)
60 def Selecting(X):
61 x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
62 X1 = []
63 for i in range(len(X)):
64 if (X[i] != 0):
65 X1.append(X[i])
66 return(X1)
67 def Equations(First):
68 BB31= First
69 Pl1 =[]
70 for i in range(len(BB31)):
71 Pl1.append(dict(BB31[i].as_coefficients_dict()))
72 ##Symplify computations of coefficients module 2
73 EQ1 =[]
74 for l in range(len(Pl1)):
75 for s in Pl1[l]:
76 if (Pl1[l][s] % 2) == 0:
77 Pl1[l][s] = 0

178 Chapter . Appendices

78 else:
79 Pl1[l][s] = 1
80 EQ1.append(sum([key * val for key, val in Pl1[l].items()]))
81 ##Selecting the equations we need
82 EQ3=[]
83 for l in range(len(EQ1)):
84 if (EQ1[l] != 0) and (EQ1[l]!=1):
85 EQ3.append(EQ1[l])
86 return(EQ3)
87 def functionNr1(A):
88 s1 = []
89 s2 = []
90 s3 = []
91 for i in range(len(A)):
92 for j in range(len(A)):
93 for s in range(len(A)):
94 for m in range(len(A)):
95 for k in range(len(A)):
96 s1.append(A[i][k,j]*A[k][s,m]- A[j][k,m]*A[i][s,k])
97 l1 = sum(s1)
98 s2.append(l1*x[m])
99 l2 = sum(s2)

100 s3.append(l2)
101 return(s3)
102 RN = Equations(Selecting(functionNr1(matrices(MA1,MA2,MA3,MA4))))
103 print(RN)

Code B.12.

1 # importing Qiskit
2 from qiskit import IBMQ, Aer
3 from qiskit.providers.ibmq import least_busy
4 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister,

transpile, assemble↪→

5 # import basic plot tools
6 from qiskit.visualization import plot_histogram
7 aer_sim = Aer.get_backend('aer_simulator')
8 qregrn1 = QuantumRegister(4)
9 cregrn1 = ClassicalRegister(4)

10 ancillaryrn1 = QuantumRegister(2)
11 qcrn1 = QuantumCircuit(qregrn1, ancillaryrn1, cregrn1)
12 qcrn1.h(range(4))
13 qcrn1.barrier(qregrn1)
14 qcrn1.cx(qregrn1[0],ancillaryrn1[0])
15 qcrn1.cx(qregrn1[1],ancillaryrn1[0])

B. Codes for Chapter 6 179

16 #######################################
17 qcrn1.barrier(qregrn1)
18 ###
19 qcrn1.cx(qregrn1[2],ancillaryrn1[1])
20 qcrn1.cx(qregrn1[3],ancillaryrn1[1])
21 #######################################
22 qcrn1.barrier(qregrn1)
23 ###
24 qcrn1.h(range(4))
25 for k in range(4):
26 qcrn1.measure(qregrn1[k],cregrn1[k])
27 qcrn1.draw()

Code B.13.

1 aer_sim = Aer.get_backend('aer_simulator')
2 transpiled_qcrn1 = transpile(qcrn1, aer_sim)
3 qobj1 = assemble(transpiled_qcrn1)
4 results1 = aer_sim.run(qobj1,shots =10).result()
5 counts1 = results1.get_counts()
6 print(counts1)
7 plot_histogram(counts1)

Code B.14.

1 def functionNm1(A):
2 s1 = []
3 s2 = []
4 s3 = []
5 for i in range(len(A)):
6 for j in range(len(A)):
7 for s in range(len(A)):
8 for m in range(len(A)):
9 for k in range(len(A)):

10 s1.append(A[i][k,m]*A[k][s,j]- A[m][k,j]*A[i][s,k])
11 l1 = sum(s1)
12 s2.append(l1*x[m])
13 l2 = sum(s2)
14 s3.append(l2)
15 return(s3)
16 MN = quations(Selecting(functionNm1(matrices(MA1,MA2,MA3,MA4))))
17 print(MN)

Code B.15.

180 Chapter . Appendices

1 def functionNl1(A):
2 s1 = []
3 s2 = []
4 s3 = []
5 for i in range(len(A)):
6 for j in range(len(A)):
7 for s in range(len(A)):
8 for m in range(len(A)):
9 for k in range(len(A)):

10 s1.append(A[m][k,i]*A[k][s,j]- A[i][k,j]*A[m][s,k])
11 l1 = sum(s1)
12 s2.append(l1*x[m])
13 l2 = sum(s2)
14 s3.append(l2)
15 return(s3)
16 LN = Equations(Selecting(functionNl1(matrices(MA1,MA2,MA3,MA4))))
17 print(LN)

Code B.16.

1 qregln = QuantumRegister(6) #------>33
2 cregln = ClassicalRegister(4)
3 qcln1 = QuantumCircuit(qregln,cregln)
4 qcln1.h(range(4))
5 qcln1.barrier(qregln)
6 qcln1.cx(qregln[1], qregln[4])
7 qcln1.cx(qregln[2], qregln[4])
8 qcln1.cx(qregln[3], qregln[4])
9 qcln1.barrier(qregln)

10 qcln1.cx(qregln[0], qregln[5])
11 qcln1.barrier(qregln)
12 qcln1.h(range(4))
13 qcln1.barrier(qregln)
14 for k in range(4):
15 qcln1.measure(qregln[k],cregln[k])
16 qcln1.draw()

Code B.17.

1 transpiled_qcln1 = transpile(qcln1, aer_sim)
2 qobjln1 = assemble(transpiled_qcln1)
3 resultsln1 = aer_sim.run(qobjln1,shots =10).result()
4 countsln1 = resultsln1.get_counts()
5 print(countsln1)
6 plot_histogram(countsln1)

B. Codes for Chapter 6 181

Code B.18.

1 qregn = QuantumRegister(8)
2 cregn = ClassicalRegister(4)
3

4 qcn = QuantumCircuit(qregn,cregn)
5

6 qcn.h(range(4))
7

8 ###
9 qcn.barrier(qregn)

10 ###
11

12 qcn.cx(qregn[0], qregn[4])
13 qcn.cx(qregn[1], qregn[4])
14 #######################################
15 qcn.barrier(qregn)
16 ###
17 qcn.cx(qregn[2], qregn[5])
18 qcn.cx(qregn[3], qregn[5])
19 ###
20 qcn.barrier(qregn)
21 ###
22 qcn.cx(qregn[1], qregn[6])
23 qcn.cx(qregn[2], qregn[6])
24 qcn.cx(qregn[3], qregn[6])
25 ###
26 qcn.barrier(qregn)
27 ###
28 qcn.cx(qregn[0], qregn[7])
29

30 qcn.h(range(4))
31

32 ###
33 qcn.barrier(qregn)
34 ###
35

36 for k in range(4):
37 qcn.measure(qregn[k],cregn[k])
38

39 qcn.draw()

Code B.19.

182 Chapter . Appendices

1 transpiled_qcn = transpile(qcn, aer_sim)
2 qobjn = assemble(transpiled_qcn)
3 resultsn = aer_sim.run(qobjn,shots = 30).result()
4 countsn = resultsn.get_counts()
5 print(countsn)
6 plot_histogram(countsn)

Code B.20.

1 from itertools import accumulate
2 def functionZ(A):
3 s1 = []
4 s2 = []
5 for i in range(len(A)):
6 for k in range(len(A)):
7 for m in range(len(A)):
8 s1.append((A[m][k,i]- A[i][k,m])*x[m])
9 Input = s1

10 split = len(s1) / len(A)
11 length_to_split = []
12 for i in range(int(split)):
13 length_to_split.append(len(A))
14 Output = [Input[x - y: x] for x, y in zip(accumulate(length_to_split),

length_to_split)]↪→

15 s4 = []
16 for i in range(len(Output)):
17 s3 = sum(Output[i])
18 s4.append(s3)
19 return(s4)
20 functionZ(matrices(MA1,MA2,MA3,MA4))

Code B.21.

1 qregc = QuantumRegister(4)
2 ancillaryc = QuantumRegister(6)
3 cregc = ClassicalRegister(4)
4

5 qcc = QuantumCircuit(qregc, ancillaryc, cregc)
6

7 qcc.h(range(4))
8

9 ###
10 qcc.barrier(qregc)
11 ###
12 qcc.cx(qregc[0],ancillaryc[0])
13 qcc.cx(qregc[1],ancillaryc[0])

C. Codes for Chapter 7 183

14 #######################################
15 qcc.barrier(qregc)
16 ###
17 qcc.cx(qregc[2],ancillaryc[1])
18 qcc.cx(qregc[3],ancillaryc[1])
19 #######################################
20 qcc.barrier(qregc)
21

22 qcc.cx(qregc[1], ancillaryc[2])
23 qcc.cx(qregc[2], ancillaryc[2])
24 qcc.cx(qregc[3], ancillaryc[2])
25 qcc.barrier(qregc)
26 qcc.cx(qregc[0], ancillaryc[3])
27 qcc.barrier(qregc)
28 ###
29 qcc.barrier(qregc)
30 ###
31 qcc.cx(qregc[2], ancillaryc[4])
32 qcc.cx(qregc[1], ancillaryc[5])
33

34 ###
35 qcc.barrier(qregc)
36 ###
37 qcc.h(range(4))
38 ###
39 qcc.barrier(qregc)
40 ###
41 for k in range(4):
42 qcc.measure(qregc[k],cregc[k])
43 qcc.draw()

Code B.22.

1 aer_sim = Aer.get_backend('aer_simulator')
2 transpiled_qcc = transpile(qcc, aer_sim)
3 qobjc1 = assemble(transpiled_qcc)
4 resultsc1 = aer_sim.run(qobjc1,shots = 50).result()
5 countsc1 = resultsc1.get_counts()
6 print(countsc1)
7 plot_histogram(countsc1, figsize=(12,5))

C Codes for Chapter 7
In this appendix we present the codes in python used in Chapter 7. Also they can be seen in
htt ps : //github.com/JMiguel01/Chapter−7−An−approach− to− the−Classi f ication−

184 Chapter . Appendices

o f −Finite−Semi f ields−by−Quantum−Computing

Code C.23.

1 from sympy import symbols, Matrix, pprint, collect, factor
2 from sympy import *
3 import itertools
4 a = []
5 name = "a"
6 for i in range(0,13):
7 v = symbols(name+str(i))
8 a.append(v)
9 CN31 = Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]])

10 CN32 = Matrix([[0, a[1], a[4]],[1, a[2], a[5]],[0, a[3], a[6]]])
11 CN33 = Matrix([[0, a[7], a[10]],[0, a[8], a[11]],[1, a[9], a[12]]])
12 aCN3=[]
13 cCN3=[]
14 for i in range(0,8):
15 aCN3.append('{0:03b}'.format(i))
16 M=int(aCN3[i][0])*CN31+int(aCN3[i][1])*CN32+int(aCN3[i][2])*CN33
17 cCN3.append(M.det())
18 def Equations(First):
19 BB31= First
20 Pl1 =[]
21 for i in range(len(BB31)):
22 Pl1.append(dict(BB31[i].as_coefficients_dict()))
23 ##Symplify computations of coefficients module 2
24 EQ1 =[]
25 for l in range(len(Pl1)):
26 for s in Pl1[l]:
27 if (Pl1[l][s] % 2) == 0:
28 Pl1[l][s] = 0
29 else:
30 Pl1[l][s] = 1
31 EQ1.append(sum([key * val for key, val in Pl1[l].items()]))
32 ##Selecting the equations we need
33 EQ3=[]
34 for l in range(len(EQ1)):
35 if (EQ1[l] != 0) and (EQ1[l]!=1):
36 EQ3.append(EQ1[l])
37 return(EQ3)
38 def Polynomial1(w):
39 h_test1=[]
40 w_test1=[]
41 w_final_test1=[]
42 for n in range(len(w)):

C. Codes for Chapter 7 185

43 if (w[n] == 1) or (w[n] == 0):
44 w_test1.append(w[n])
45 else:
46 h_test1.append(w[n].make_args(w[n]))
47 g_test1 =[]
48 for m in range(len(h_test1)):
49 g_test1.append(list(h_test1[m]))
50 for l in range(len(h_test1[m])):
51 if(h_test1[m][l]==1):
52 g_test1[m][1]=~(g_test1[m][1])
53 del g_test1[m][l]
54 w_final_test1 = '&'.join([str(item) for item in g_test1])
55 w_final_test1 = w_final_test1.replace("*","&")
56 w_final_test1 = w_final_test1.replace(","," ^")
57 return(w_final_test1)
58 Polynomial1(Equations(cCN3))

Code C.24. htt ps : //github.com/JMiguel01/Multiplication− table−GF−8

Code C.25.

1 from qiskit.circuit import classical_function, Int1
2 @classical_function
3 def grover_oracle(a1: Int1, a2: Int1, a3: Int1, a4: Int1, a5: Int1, a6:

Int1, a7: Int1, a8: Int1, a9:Int1, a10: Int1, a11: Int1, a12:Int1) ->
Int1:

↪→

↪→

4 return ((a10&a8 ^ a11&a7)&(a1&a6 ^ a3&a4)&(a1&a11 ^ a1&a12 ^ a1&a5 ^
a1&a6 ^ a10&a2 ^ a10&a3 ^ a10&a8 ^ a10&a9 ^ a11&a7 ^ a12&a7 ^ a2&a4
^ a3&a4 ^ a4&a8 ^ a4&a9 ^ a5&a7 ^ a6&a7)&((not a10) ^ a12 ^ a8 ^
a10&a8 ^ a11&a7 ^ a11&a9 ^ a12&a8)&((not a1) ^ a2 ^ a6 ^ a1&a6 ^
a2&a6 ^ a3&a4 ^ a3&a5)&((not a1) ^ a10 ^ a12 ^ a2 ^ a4 ^ a6 ^ a7 ^
a8 ^ a1&a11 ^ a1&a12 ^ a1&a5 ^ a1&a6 ^ a10&a2 ^ a10&a3 ^ a10&a8 ^
a10&a9 ^ a11&a3 ^ a11&a7 ^ a11&a9 ^ a12&a2 ^ a12&a7 ^ a12&a8 ^ a2&a4
^ a2&a6 ^ a3&a4 ^ a3&a5 ^ a4&a8 ^ a4&a9 ^ a5&a7 ^ a5&a9 ^ a6&a7 ^
a6&a8))

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

5 quantum_circuitnc = grover_oracle.synth()
6 quantum_circuitnc.draw()
7

Code C.26. htt ps : //github.com/JMiguel01/Chapter−7−An−approach− to− the−
Classi f ication−o f −Finite−Semi f ields−by−Quantum−Computing

Code C.27.

1 from sympy import symbols, Matrix, pprint, collect, factor
2 from sympy import *

186 Chapter . Appendices

3 import itertools
4

5 a = []
6 name = "a"
7 for i in range(0,13):
8 v = symbols(name+str(i))
9 a.append(v)

10

11 A1 = Matrix([[1, 0, 0, 0],[0, 1, 0 ,0],[0, 0, 1 , 0],[0,0,0,1]])
12 A2 = Matrix([[0, 0, 0, 1],[1, 0, 0 ,1],[0, 1, 0 , 0],[0,0,1,0]])
13 A3 = Matrix([[0, 0, a[1], a[5]],[0, 0, a[2] ,a[6]],[1, 0, a[3] ,

a[7]],[0,1,a[4],a[8]]])↪→

14 A4 = Matrix([[0, 1, a[5], a[9]],[0, 1, a[6] ,a[10]],[0, 0, a[7] ,
a[11]],[1,0,a[8],a[12]]])↪→

15 aC41=[]
16 A=[]
17 for i in range(0,16):
18 aC41.append('{0:04b}'.format(i))
19 M=int(aC41[i][0])*A1+int(aC41[i][1])*A2+int(aC41[i][2])*A3

+int(aC41[i][3])*A4↪→

20 A.append(M.det())
21 def Equations(First):
22 BB31= First
23 Pl1 =[]
24 for i in range(len(BB31)):
25 Pl1.append(dict(BB31[i].as_coefficients_dict()))
26 ##Symplify computations of coefficients module 2
27 EQ1 =[]
28 for l in range(len(Pl1)):
29 for s in Pl1[l]:
30 if (Pl1[l][s] % 2) == 0:
31 Pl1[l][s] = 0
32 else:
33 Pl1[l][s] = 1
34 EQ1.append(sum([key * val for key, val in Pl1[l].items()]))
35 ##Selecting the equations we need
36 EQ3=[]
37 for l in range(len(EQ1)):
38 if (EQ1[l] != 0) and (EQ1[l]!=1):
39 EQ3.append(EQ1[l])
40 return(EQ3)
41 def Polynomial1(w):
42 h_test1=[]
43 w_test1=[]
44 w_final_test1=[]

C. Codes for Chapter 7 187

45 for n in range(len(w)):
46 if (w[n] == 1) or (w[n] == 0):
47 w_test1.append(w[n])
48 else:
49 h_test1.append(w[n].make_args(w[n]))
50 g_test1 =[]
51 for m in range(len(h_test1)):
52 g_test1.append(list(h_test1[m]))
53 for l in range(len(h_test1[m])):
54 if(h_test1[m][l]==1):
55 g_test1[m][1]=~(g_test1[m][1])
56 del g_test1[m][l]
57 w_final_test1 = '&'.join([str(item) for item in g_test1])
58 w_final_test1 = w_final_test1.replace("*","&")
59 w_final_test1 = w_final_test1.replace(","," ^")
60 return(w_final_test1)
61 Polynomial1(Equations(A))

f1 (a1, . . . ,a12) =(a10∧a7⊕a11∧a5⊕a11∧a6⊕a7∧a9)∧ (a1∧a6⊕a2∧a5)

∧ (a1∧a10⊕a1∧a11⊕a1∧a12⊕a1∧a6⊕a1∧a7⊕a1∧a8

⊕a10∧a3⊕a10∧a4⊕a10∧a5⊕a10∧a7⊕a10∧a8⊕a11∧a2

⊕a11∧a5⊕a11∧a6⊕a12∧a2⊕a12∧a5⊕a12∧a6⊕a2∧a5

⊕a2∧a7⊕a2∧a8⊕a2∧a9⊕a3∧a5⊕a3∧a6⊕a3∧a9⊕a4

∧a5⊕a4∧a6⊕a4∧a9⊕a6∧a9⊕a7∧a9⊕a8∧a9)∧ (∼ a11

⊕a5⊕a6⊕a8⊕a9⊕a10∧a5⊕a10∧a7⊕a11∧a5⊕a11∧a6

⊕a11∧a8⊕a12∧a5⊕a12∧a7⊕a6∧a9⊕a7∧a9⊕a8∧a9)

∧ (∼ a1⊕a2⊕a3⊕a4⊕a5⊕a1∧a6⊕a1∧a7⊕a1∧a8⊕a2

∧a5⊕a3∧a5⊕a4∧a5)∧ (∼ a10⊕a11⊕a3⊕a4⊕a6⊕a8

⊕a10∧a3⊕a10∧a4⊕a10∧a7⊕a10∧a8⊕a11∧a2⊕a11

∧a4⊕a11∧a6⊕a11∧a8⊕a12∧a2⊕a12∧a3⊕a12∧a6

⊕a12∧a7⊕a2∧a7⊕a2∧a8⊕a3∧a6⊕a3∧a8⊕a4∧a6

⊕a4∧a7)∧ (a10⊕a10∧a7⊕a11∧a6)∧ (∼ a1⊕a3⊕a6⊕a8

⊕a1∧a6⊕a1∧a8⊕a2∧a5⊕a2∧a7⊕a3∧a6⊕a3∧a8⊕a4

∧a5⊕a4∧a7)∧ (a2⊕a6⊕a1∧a10⊕a1∧a6⊕a10∧a4⊕a10

∧a5⊕a10∧a8⊕a12∧a2⊕a12∧a6⊕a2∧a5⊕a2∧a8⊕a2

∧a9⊕a4∧a6⊕a6∧a9)∧ (a11⊕a12⊕a9⊕a10∧a5⊕a10

∧a7⊕a10∧a8⊕a11∧a6⊕a11∧a8⊕a12∧a5⊕a12∧a6⊕a12

∧a7⊕a6∧a9⊕a8∧a9)∧ (a1⊕a3⊕a4⊕a5⊕a7⊕a8⊕a1

188 Chapter . Appendices

∧a6⊕a1∧a7⊕a2∧a5⊕a2∧a7⊕a2∧a8⊕a3∧a5⊕a3∧a6

⊕a3∧a8⊕a4∧a6⊕a4∧a7)∧ (∼ a1⊕a11⊕a12⊕a4⊕a5⊕a7

⊕a1∧a11⊕a1∧a12⊕a1∧a7⊕a1∧a8⊕a11∧a4⊕a11∧a5

⊕a11∧a8⊕a12∧a3⊕a12∧a5⊕a12∧a7⊕a3∧a5⊕a3∧a8

⊕a3∧a9⊕a4∧a5⊕a4∧a7⊕a4∧a9⊕a7∧a9⊕a8∧a9)

Boolean function f2

f2 (a1, . . . ,a12) =(a10∧a7⊕a11∧a6)∧ (a1∧a6⊕a2∧a5)∧ (a10∧a3⊕a10∧a4⊕a10

∧a7⊕a10∧a8⊕a11∧a2⊕a11∧a6⊕a12∧a2⊕a12∧a6⊕a2∧a7

⊕a2∧a8⊕a3∧a6⊕a4∧a6)∧ (∼ a11⊕a5⊕a6⊕a8⊕a9⊕a10∧a5

⊕a10∧a7⊕a11∧a5⊕a11∧a6⊕a11∧a8⊕a12∧a5⊕a12∧a7⊕a6

∧a9⊕a7∧a9⊕a8∧a9)∧ (∼ a1⊕a2⊕a3⊕a4⊕a5⊕a1∧a6⊕a1

∧a7⊕a1∧a8⊕a2∧a5⊕a3∧a5⊕a4∧a5)∧ (∼ a1⊕a10⊕a11⊕a3

⊕a4⊕a6⊕a8⊕a9⊕a1∧a10⊕a1∧a12⊕a1∧a6⊕a1∧a8⊕a10∧a3

⊕a10∧a4⊕a10∧a5⊕a10∧a7⊕a10∧a8⊕a11∧a2⊕a11∧a4⊕a11

∧a6⊕a11∧a8⊕a12∧a2⊕a12∧a3⊕a12∧a5⊕a12∧a6⊕a12∧a7

⊕a2∧a5⊕a2∧a7⊕a2∧a8⊕a2∧a9⊕a3∧a6⊕a3∧a8⊕a4∧a5

⊕a4∧a6⊕a4∧a7⊕a4∧a9⊕a6∧a9⊕a8∧a9)∧ (∼ a12⊕a7⊕a9

⊕a11∧a5⊕a11∧a8⊕a12∧a7⊕a7∧a9)∧ (∼ a1⊕a3⊕a6⊕a8

⊕a1∧a6⊕a1∧a8⊕a2∧a5⊕a2∧a7⊕a3∧a6⊕a3∧a8⊕a4∧a5

⊕a4∧a7)∧ (∼ a1⊕a10⊕a12⊕a2⊕a3⊕a7⊕a8⊕a9⊕a1∧a11

⊕a1∧a12⊕a1∧a7⊕a1∧a8⊕a10∧a3⊕a10∧a4⊕a10∧a7⊕a10

∧a8⊕a11∧a2⊕a11∧a4⊕a11∧a5⊕a11∧a6⊕a11∧a8⊕a12∧a2

⊕a12∧a3⊕a12∧a5⊕a12∧a6⊕a12∧a7⊕a2∧a7⊕a2∧a8⊕a3

∧a5⊕a3∧a6⊕a3∧a8⊕a3∧a9⊕a4∧a5⊕a4∧a6⊕a4∧a7⊕a4

∧a9⊕a7∧a9⊕a8∧a9)∧ (∼ a10⊕a6⊕a8⊕a9⊕a10∧a5⊕a10∧a8

⊕a12∧a5⊕a12∧a6⊕a6∧a9⊕a8∧a9)∧ (∼ a2⊕a3⊕a5⊕a7⊕a8

⊕a1∧a6⊕a1∧a7⊕a2∧a5⊕a2∧a7⊕a2∧a8⊕a3∧a5⊕a3∧a6

⊕a3∧a8⊕a4∧a6⊕a4∧a7)∧ (∼ a10⊕a2⊕a3⊕a5⊕a7⊕a9⊕a1

∧a10⊕a1∧a11⊕a1∧a6⊕a1∧a7⊕a10∧a3⊕a10∧a5⊕a10∧a7

⊕a11∧a2⊕a11∧a5⊕a11∧a6⊕a2∧a5⊕a2∧a7⊕a2∧a9⊕a3∧a5

⊕a3∧a6⊕a3∧a9⊕a6∧a9⊕a7∧a9)

Boolean function f3

f3 (a1, . . . ,a12) =(a10∧a5⊕a6∧a9)∧ (a1∧a6⊕a2∧a5)∧ (a1∧a10⊕a1∧a6⊕a10

∧a5⊕a2∧a5⊕a2∧a9⊕a6∧a9)∧ (∼ a11⊕a5⊕a6⊕a7⊕a8⊕a9

C. Codes for Chapter 7 189

⊕a10∧a5⊕a10∧a7⊕a11∧a6⊕a11∧a8⊕a12∧a5⊕a12∧a7⊕a6

∧a9⊕a8∧a9)∧ (∼ a2⊕a3⊕a4⊕a5⊕a6⊕a7⊕a1∧a6⊕a1∧a7

⊕a1∧a8⊕a2∧a5⊕a2∧a8⊕a3∧a5⊕a3∧a8⊕a4∧a5⊕a4∧a6

⊕a4∧a7)∧ (∼ a1⊕a10⊕a11⊕a3⊕a4⊕a5⊕a6⊕a8⊕a1∧a10

⊕a1∧a11⊕a1∧a6⊕a1∧a7⊕a10∧a3⊕a10∧a4⊕a10∧a5⊕a10

∧a7⊕a10∧a8⊕a11∧a2⊕a11∧a4⊕a11∧a5⊕a11∧a6⊕a11∧a8

⊕a12∧a2⊕a12∧a3⊕a12∧a6⊕a12∧a7⊕a2∧a5⊕a2∧a7⊕a2

∧a8⊕a2∧a9⊕a3∧a5⊕a3∧a6⊕a3∧a8⊕a3∧a9⊕a4∧a6⊕a4

∧a7⊕a6∧a9⊕a7∧a9)∧ (∼ a10⊕a12⊕a6⊕a7⊕a9⊕a10∧a5

⊕a10∧a7⊕a10∧a8⊕a11∧a5⊕a11∧a6⊕a11∧a8⊕a12∧a6

⊕a12∧a7⊕a6∧a9⊕a7∧a9)∧ (∼ a1⊕a3⊕a6⊕a8⊕a1∧a6

⊕a1∧a8⊕a2∧a5⊕a2∧a7⊕a3∧a6⊕a3∧a8⊕a4∧a5⊕a4∧a7)

∧ (∼ a1⊕a12⊕a2⊕a3⊕a6⊕a7⊕a8⊕a9⊕a1∧a10⊕a1∧a11

⊕a1∧a12⊕a1∧a6⊕a1∧a7⊕a1∧a8⊕a10∧a4⊕a10∧a5⊕a10

∧a8⊕a11∧a4⊕a11∧a5⊕a11∧a8⊕a12∧a2⊕a12∧a3⊕a12∧a5

⊕a12∧a6⊕a12∧a7⊕a2∧a5⊕a2∧a8⊕a2∧a9⊕a3∧a5⊕a3∧a8

⊕a3∧a9⊕a4∧a5⊕a4∧a6⊕a4∧a7⊕a4∧a9⊕a6∧a9⊕a7∧a9

⊕a8∧a9)∧ (∼ a10⊕a11⊕a12⊕a5⊕a8⊕a10∧a5⊕a10∧a8⊕a11

∧a5⊕a11∧a8⊕a12∧a5⊕a12∧a6⊕a12∧a7⊕a6∧a9⊕a7∧a9

⊕a8∧a9)∧ (∼ a1⊕a2⊕a4⊕a5⊕a7⊕a8⊕a1∧a6⊕a1∧a7⊕a2

∧a5⊕a2∧a7⊕a2∧a8⊕a3∧a5⊕a3∧a6⊕a3∧a8⊕a4∧a6⊕a4

∧a7)∧ (∼ a10⊕a11⊕a12⊕a2⊕a4⊕a5⊕a7⊕a9⊕a1∧a10⊕a1

∧a12⊕a1∧a6⊕a1∧a8⊕a10∧a3⊕a10∧a5⊕a10∧a7⊕a11∧a2

⊕a11∧a4⊕a11∧a6⊕a11∧a8⊕a12∧a3⊕a12∧a5⊕a12∧a7⊕a2

∧a5⊕a2∧a7⊕a2∧a9⊕a3∧a6⊕a3∧a8⊕a4∧a5⊕a4∧a7⊕a4

∧a9⊕a6∧a9⊕a8∧a9)

f4 (a1, . . . ,a12) = (a10 ∧ a5⊕ a10 ∧ a7⊕ a11 ∧ a6⊕ a6 ∧ a9)∧ (a1 ∧ a6⊕ a2 ∧ a5)∧ (a10 ∧ a3⊕
a10 ∧ a4⊕ a10 ∧ a7⊕ a10 ∧ a8⊕ a11 ∧ a2⊕ a11 ∧ a6⊕ a12 ∧ a2⊕ a12 ∧ a6⊕ a2 ∧ a7⊕ a2 ∧ a8⊕
a3∧a6⊕a4∧a6)∧ (∼ a11⊕a6⊕a8⊕a10∧a7⊕a11∧a6⊕a11∧a8⊕a12∧a7)∧ (∼ a1⊕a2⊕
a3⊕ a4⊕ a5⊕ a1 ∧ a6⊕ a1 ∧ a7⊕ a1 ∧ a8⊕ a2 ∧ a5⊕ a3 ∧ a5⊕ a4 ∧ a5)∧ (∼ a1⊕ a10⊕ a11⊕
a3⊕ a4⊕ a5⊕ a6⊕ a8⊕ a1 ∧ a10⊕ a1 ∧ a11⊕ a1 ∧ a6⊕ a1 ∧ a7⊕ a10 ∧ a3⊕ a10 ∧ a4⊕ a10 ∧
a5⊕a10∧a7⊕a10∧a8⊕a11∧a2⊕a11∧a4⊕a11∧a5⊕a11∧a6⊕a11∧a8⊕a12∧a2⊕a12∧
a3⊕ a12 ∧ a6⊕ a12 ∧ a7⊕ a2 ∧ a5⊕ a2 ∧ a7⊕ a2 ∧ a8⊕ a2 ∧ a9⊕ a3 ∧ a5⊕ a3 ∧ a6⊕ a3 ∧ a8⊕
a3∧a9⊕a4∧a6⊕a4∧a7⊕a6∧a9⊕a7∧a9)∧ (∼ a10⊕a12⊕a6⊕a7⊕a9⊕a10∧a5⊕a10∧
a7⊕ a10 ∧ a8⊕ a11 ∧ a5⊕ a11 ∧ a6⊕ a11 ∧ a8⊕ a12 ∧ a6⊕ a12 ∧ a7⊕ a6 ∧ a9⊕ a7 ∧ a9)∧ (∼
a1⊕a3⊕a6⊕a8⊕a1∧a6⊕a1∧a8⊕a2∧a5⊕a2∧a7⊕a3∧a6⊕a3∧a8⊕a4∧a5⊕a4∧a7)∧(∼
a1⊕a12⊕a3⊕a7⊕a8⊕a9⊕a1∧a11⊕a1∧a12⊕a1∧a7⊕a1∧a8⊕a11∧a4⊕a11∧a5⊕a11∧

190 Chapter . Appendices

a8⊕ a12∧ a3⊕ a12∧ a5⊕ a12∧ a7⊕ a3∧ a5⊕ a3∧ a8⊕ a3∧ a9⊕ a4∧ a5⊕ a4∧ a7⊕ a4∧ a9⊕
a7∧ a9⊕ a8∧ a9)∧ (∼ a10⊕ a5⊕ a6⊕ a7⊕ a9⊕ a10∧ a7⊕ a11∧ a5⊕ a11∧ a6⊕ a7∧ a9)∧ (∼
a1⊕a2⊕a4⊕a5⊕a7⊕a8⊕a1∧a6⊕a1∧a7⊕a2∧a5⊕a2∧a7⊕a2∧a8⊕a3∧a5⊕a3∧a6⊕
a3∧ a8⊕ a4∧ a6⊕ a4∧ a7)∧ (∼ a1⊕ a10⊕ a4⊕ a6⊕ a8⊕ a9⊕ a1∧ a10⊕ a1∧ a12⊕ a1∧ a6⊕
a1∧a8⊕a10∧a4⊕a10∧a5⊕a10∧a8⊕a12∧a2⊕a12∧a5⊕a12∧a6⊕a2∧a5⊕a2∧a8⊕a2∧
a9⊕a4∧a5⊕a4∧a6⊕a4∧a9⊕a6∧a9⊕a8∧a9)

Code for boolean formula in section 7.2.

Code C.28.

1 import sympy
2 from sympy import symbols, Matrix, pprint, collect, factor
3 from sympy import *
4 import itertools
5 a1, a2, a3, a4, a5 = symbols('a1 a2 a3 a4 a5')
6 A31 = Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]])
7 A32 = Matrix([[0, 0, 1],[1, 0, 1],[0, 1, 0]])
8 #A322 = Matrix([[0, 0, 1],[1, 0, 0],[0, 1, 1]])
9 A33 = Matrix([[0, 1, a1],[0, 1, a2],[1, 0, a3]])

10 #A332 = Matrix([[0, 1, a1],[0, 1, a2],[1, 0, a3]])
11 ##checking for some matrices print((A33+A32)**3+(A33+A32)+A31)

print((A32+A31)**3+(A32+A31)+A31) print((A33)**3+(A33)+A31↪→

12

13 b31=[]
14 B31=[]
15 B32=[]
16 ONES=Matrix([[1, 1, 1],[1, 1, 1],[1, 1, 1]])
17 for i in range(0,4):
18 b31.append('{0:03b}'.format(i))
19 M31=int(b31[i][1])*A32+int(b31[i][2])*A33
20 N31=M31**3+M31+A31+ONES
21 N32=(M31+A31)**3+(M31+A31)+A31+ONES
22 B31.append(N31)
23 B32.append(N32)
24 #Now, we collect each polynomial from each entry of each matrix
25 def Equations(First,Second):
26 BB31=[]
27 BB32=[]
28 for m in range(0,4):
29 for n in range(0,9):
30 BB31.append(expand(First[m][n]))
31 BB32.append(expand(Second[m][n]))
32 ##Reduce the exponent
33 Pl1 =[]
34 Pl2 = []

C. Codes for Chapter 7 191

35 for i in range(len(BB31)):
36 for j in range(len(a)):
37 for k in range(1,len(a)+1):
38 BB31[i] = BB31[i].replace(a[j]**k,a[j])
39 BB32[i] = BB32[i].replace(a[j]**k,a[j])
40

41 Pl1.append(dict(BB31[i].as_coefficients_dict()))
42 Pl2.append(dict(BB32[i].as_coefficients_dict()))
43 #print(BB31)
44 ##Symplify computations of coefficients module 2
45 EQ1 =[]
46 EQ2 =[]
47 for l in range(len(Pl1)):
48 for s in Pl1[l]:
49 if (Pl1[l][s] % 2) == 0:
50 Pl1[l][s] = 0
51 else:
52 Pl1[l][s] = 1
53 EQ1.append(sum([key * val for key, val in Pl1[l].items()]))
54 #print(EQ1)
55 #print(len(EQ1))
56 for i in range(len(Pl2)):
57 for k in Pl2[i]:
58 if (Pl2[i][k] % 2) == 0:
59 Pl2[i][k] = 0
60 else:
61 Pl2[i][k] = 1
62 EQ2.append(sum([key * val for key, val in Pl2[i].items()]))
63 #print(EQ2)
64 #print(len(EQ2))
65 ##Selecting the equations we need
66 EQ3=[]
67 for l in range(len(EQ1)):
68 if (EQ1[l] != 0) and (EQ1[l]!=1):
69 EQ3.append(EQ1[l])
70 #print(EQ3)
71 #print(len(EQ3))
72 EQ4=[]
73 for l in range(len(EQ2)):
74 if (EQ2[l] != 0) and (EQ2[l]!=1):
75 EQ4.append(EQ2[l])
76 #print(EQ4)
77 #I MUST split the list print(EQ3) print(EQ3[8]) print(EQ3[9]) print(EQ4)

print(EQ4[8]) print(EQ4[9])↪→

78 #Split the list of equations on the first half

192 Chapter . Appendices

79 new1 = []
80 new2 = []
81 new3 = []
82 for i in range(0, len(EQ3), 9):
83 new1.append(EQ3[i : i+9])
84 new2.append(EQ4[i : i+9])
85 for j in range(len(new1)):
86 new3.append(new1[j])
87 new3.append(new2[j])
88 return(new3)
89 print((Equations(B31,B32)))
90 def Polynomial1(w):
91 h_test1=[]
92 w_test1=[]
93 w_final_test1=[]
94 for n in range(len(w)):
95 if (w[n] == a1) or (w[n] == a2) or (w[n] == a3):
96 w_test1.append(w[n])
97 else:
98 h_test1.append(w[n].make_args(w[n]))
99 #print(h_test1)

100 g_test1 =[]
101 for m in range(len(h_test1)):
102 g_test1.append(list(h_test1[m]))
103 #print(g_test1)
104 # g_test2 = []
105 for l in range(len(h_test1[m])):
106 #print(h_test1[m][l])
107 if(h_test1[m][l]==1) and (h_test1[m][l+1]!=a1*a2):
108 g_test1[m][1]=~(g_test1[m][1])
109 del g_test1[m][l]
110 if(h_test1[m][l]==1) and (h_test1[m][l+1]==a1*a2):
111 g_test2 = (h_test1[m][l+1].make_args(h_test1[m][l+1]))
112 g_test1[m][1]=(~(g_test2[0]) | ~(g_test2[1]))
113 del g_test1[m][l]
114 #print(g_test2[0])
115

116 #g_test1[m][1]= ~(a[1])(*a[2])
117 #del g_test1[m][l]
118 w_final_test1 = '&'.join([str(item) for item in g_test1])
119 w_final_test1 = w_final_test1.replace("*","&")
120 w_final_test1 = w_final_test1.replace(","," ^")
121 return(w_final_test1)
122 def booleanformula(w):
123 boolean = []

C. Codes for Chapter 7 193

124 for i in range(len(w)):
125 boolean.append(Polynomial1(w[i]))
126 return(boolean)
127 booleanformula((Equations(B31,B32)))

Boolean Expression for a∨b

Code C.29.

[a1∧a10∧a13∧a4⊕a1∧a13∧a15∧a5⊕a1∧a14∧a5∧a8⊕a1∧a2∧a8⊕a1∧a3⊕
a1∧a4∧a8∧a9⊕a10∧a11∧a14∧a5⊕a10∧a11∧a15∧a4⊕a10∧a11∧a2⊕a10∧a11∧
a3∧ a4⊕ a10∧ a11∧ a4∧ a9⊕ a10∧ a14∧ a4∧ a6⊕ a11∧ a13∧ a5⊕ a11∧ a15∧ a3∧ a5⊕
a11∧a15∧a5⊕a11∧a3∧a5⊕a11∧a4∧a5∧a8⊕a12∧a5∧a6⊕a13∧a4∧a5∧a6⊕a14∧
a15∧a5∧a6⊕a14∧a3∧a5∧a6⊕a14∧a5∧a6∧a9⊕a2∧a3∧a6⊕a2∧a6∧a9⊕a3∧a4∧
a6∧a9⊕a3∧a4∧a6⊕a4∧a6∧a7⊕a4∧a6∧a8⊕a4∧a6∧(∼ a9))∧(a1∧a10∧a11⊕a1∧
a10∧a13∧a15⊕a1∧a10∧a13∧a3⊕a1∧a10∧a13∧a9⊕a1∧a10∧a14∧a8⊕a1∧a13∧
a5∧a8⊕a1∧a3∧a6⊕a1∧a3∧a8∧a9⊕a1∧a3∧a8⊕a1∧a4∧a8⊕a1∧a6∧a9⊕a1∧a7∧
a8⊕a1∧a8∧a9⊕a1∧a8⊕a10∧a11∧a13∧a5⊕a10∧a11∧a14⊕a10∧a11∧a15∧a9⊕
a10∧a11∧a15⊕a10∧a11∧a4∧a8⊕a10∧a11∧a7⊕a10∧a11∧a9⊕a10∧a12∧a6⊕a10∧
a13∧ a4∧ a6⊕ a10∧ a14∧ a15∧ a6⊕ a11∧ a15∧ a5∧ a8⊕ a11∧ a3∧ a5∧ a8⊕ a11∧ a5∧
a6⊕a11∧a5∧a8∧a9⊕a14∧a5∧a6∧a8⊕a2∧a6∧a8⊕a3∧a4∧a6∧a8⊕a4∧a6⊕a6∧
a9)∧ (a1∧a10∧a13∧a14∧a5⊕a1∧a10∧a13∧a15∧a4⊕a1∧a10∧a13∧a2⊕a1∧a10∧
a13∧a4∧a9⊕a1∧a10∧a14∧a4∧a8⊕a1∧a12∧a5∧a8⊕a1∧a13∧a15∧a5⊕a1∧a13∧
a3∧a5⊕a1∧a13∧a5⊕a1∧a14∧a15∧a5∧a8⊕a1∧a14∧a5∧a8∧a9⊕a1∧a2∧a8∧a9⊕
a1∧a3∧a4∧a8⊕a1∧a4∧a7∧a8⊕a1∧a4∧a8∧a9⊕a1∧a4∧a8⊕a10∧a11∧a12∧a5⊕
a10∧a11∧a14∧a3∧a5⊕a10∧a11∧a14∧a4⊕a10∧a11∧a14∧a5∧a9⊕a10∧a11∧a15∧
a2⊕a10∧a11∧a15∧a3∧a4⊕a10∧a11∧a15∧a4∧a9⊕a10∧a11∧a15∧a4⊕a10∧a11∧
a2∧a3⊕a10∧a11∧a2∧a9⊕a10∧a11∧a3∧a4∧a9⊕a10∧a11∧a3∧a4⊕a10∧a11∧a4∧
a7⊕ a10∧ a11∧ a4∧ a8⊕ a10∧ a11∧ a4∧ a9⊕ a10∧ a12∧ a4∧ a6⊕ a10∧ a13∧ a4∧ a6⊕
a10∧a14∧a15∧a4∧a6⊕a10∧a14∧a2∧a6⊕a10∧a14∧a3∧a4∧a6⊕a10∧a14∧a5∧
a6⊕a11∧a14∧a5∧a8⊕a11∧a15∧a4∧a5∧a8⊕a11∧a15∧a5⊕a11∧a2∧a5∧a8⊕a11∧
a3∧a5⊕a11∧a4∧a5∧a8∧a9⊕a11∧a5⊕a12∧a15∧a5∧a6⊕a12∧a3∧a5∧a6⊕a12∧
a5∧a6∧a9⊕a13∧a14∧a5∧a6⊕a13∧a15∧a4∧a5∧a6⊕a13∧a2∧a5∧a6⊕a13∧a4∧
a5∧a6∧a9⊕a14∧a15∧a3∧a5∧a6⊕a14∧a15∧a5∧a6∧a9⊕a14∧a15∧a5∧a6⊕a14∧
a3∧a5∧a6∧a9⊕a14∧a3∧a5∧a6⊕a14∧a5∧a6∧a7⊕a14∧a5∧a6∧a9⊕a2∧a3∧a6∧
a9⊕a2∧a3∧a6⊕a2∧a6∧a7⊕a2∧a6∧a9⊕a3∧a4∧a6∧a7⊕a3∧a4∧a6⊕a4∧a6∧a9⊕
a4∧a6)∧ (a1∧a10∧a11∧a15⊕a1∧a10∧a11∧a3⊕a1∧a10∧a11∧a9⊕a1∧a10∧a12∧
a8⊕a1∧a10∧a13∧a14⊕a1∧a10∧a13∧a15∧a3⊕a1∧a10∧a13∧a15∧a9⊕a1∧a10∧
a13∧a15⊕a1∧a10∧a13∧a3∧a9⊕a1∧a10∧a13∧a3⊕a1∧a10∧a13∧a5⊕a1∧a10∧
a13∧a7⊕a1∧a10∧a13∧a9⊕a1∧a10∧a13⊕a1∧a10∧a14∧a15∧a8⊕a1∧a10∧a14∧
a3∧a8⊕a1∧a10∧a14∧a6⊕a1∧a13∧a15∧a5∧a8⊕a1∧a13∧a5∧a6⊕a1∧a13∧a5∧
a8∧a9⊕a1∧a14∧a5∧a8⊕a1∧a2∧a8⊕a1∧a3∧a6∧a9⊕a1∧a3∧a6⊕a1∧a3∧a7∧
a8⊕a1∧a3∧a8⊕a1∧a4∧a6∧a8⊕a1∧a6∧a7⊕a1∧a6∧a9⊕a1∧a6⊕a10∧a11∧a12⊕
a10∧a11∧a13∧a3∧a5⊕a10∧a11∧a13∧a4⊕a10∧a11∧a13∧a5∧a9⊕a10∧a11∧a15∧

194 Chapter . Appendices

a4∧a8⊕a10∧a11∧a15∧a7⊕a10∧a11∧a15⊕a10∧a11∧a2∧a8⊕a10∧a11∧a3∧a4∧
a8⊕a10∧a11∧a5⊕a10∧a11∧a9⊕a10∧a12∧a15∧a6⊕a10∧a13∧a14∧a5∧a6⊕a10∧
a13∧a15∧a4∧a6⊕a10∧a13∧a2∧a6⊕a10∧a13∧a3∧a4∧a6⊕a10∧a14∧a15∧a6⊕
a10∧a14∧a6∧a9⊕a10∧a14∧a6⊕a11∧a13∧a5∧a8⊕a11∧a15∧a3∧a5∧a8⊕a11∧
a15∧a5∧a6⊕a11∧a15∧a5∧a8∧a9⊕a11∧a15∧a5∧a8⊕a11∧a3∧a5∧a6⊕a11∧a3∧
a5∧a8∧a9⊕a11∧a3∧a5∧a8⊕a11∧a4∧a5∧a8⊕a11∧a5∧a6∧a9⊕a11∧a5∧a7∧a8⊕
a11∧a5∧a8∧a9⊕a12∧a5∧a6∧a8⊕a13∧a4∧a5∧a6∧a8⊕a14∧a15∧a5∧a6∧a8⊕
a14∧a3∧a5∧a6∧a8⊕a14∧a5∧a6⊕a2∧a3∧a6∧a8⊕a2∧a6⊕a3∧a4∧a6∧a8⊕a3∧
a4∧a6⊕a4∧a6∧a8∧a9⊕a4∧a6∧a8⊕a6∧a7∧a9⊕a6∧a7⊕a6∧a9⊕a6)∧(a1∧a10∧
a11∧a14⊕a1∧a10∧a12∧a13⊕a1∧a10∧a13∧a14∧a3⊕a1∧a10∧a13∧a14∧a9⊕a1∧
a10∧a13∧a4⊕a1∧a10∧a14∧a8⊕a1∧a11∧a13∧a5⊕a1∧a11∧a15∧a3⊕a1∧a11∧
a15⊕a1∧a11∧a3⊕a1∧a11∧a4∧a8⊕a1∧a11⊕a1∧a12∧a15∧a8⊕a1∧a12∧a3∧a8⊕
a1∧a12∧a6⊕a1∧a12∧a8∧a9⊕a1∧a13∧a15∧a4∧a8⊕a1∧a13∧a2∧a8⊕a1∧a13∧
a3⊕a1∧a13∧a4∧a8∧a9⊕a1∧a14∧a15∧a3∧a8⊕a1∧a14∧a15∧a6⊕a1∧a14∧a15∧
a8∧a9⊕a1∧a14∧a15∧a8⊕a1∧a14∧a3∧a6⊕a1∧a14∧a3∧a8∧a9⊕a1∧a14∧a3∧
a8⊕a1∧a14∧a4∧a8⊕a1∧a14∧a6∧a9⊕a1∧a14∧a7∧a8⊕a1∧a14∧a8∧a9⊕a1∧a14∧
a8⊕a10∧a11∧a12∧a9⊕a10∧a11∧a13∧a2⊕a10∧a11∧a13∧a3∧a4⊕a10∧a11∧a13∧
a4∧a9⊕a10∧a11∧a14∧a15⊕a10∧a11∧a14∧a4∧a8⊕a10∧a11∧a14∧a7⊕a10∧a11∧
a14∧a9⊕a10∧a11∧a14⊕a10∧a11∧a4⊕a11∧a12∧a5∧a8⊕a11∧a13∧a15∧a5⊕a11∧
a13∧ a3∧ a5⊕ a11∧ a13∧ a4∧ a5∧ a8⊕ a11∧ a13∧ a5⊕ a11∧ a14∧ a3∧ a5∧ a8⊕ a11∧
a14∧a5∧a8∧a9⊕a11∧a15∧a4∧a6⊕a11∧a15⊕a11∧a2∧a6⊕a11∧a3∧a4∧a6⊕a11∧
a3∧a5⊕a11∧a4∧a6∧a9⊕a11⊕a12∧a13∧a5∧a6⊕a12∧a15∧a6∧a9⊕a12∧a15∧a6⊕
a12∧a4∧a6∧a8⊕a12∧a6∧a7⊕a12∧a6∧a9⊕a13∧a14∧a3∧a5∧a6⊕a13∧a14∧a5∧
a6∧a9⊕a13∧a15∧a2∧a6⊕a13∧a15∧a3∧a4∧a6⊕a13∧a15∧a4∧a6∧a9⊕a13∧a15∧
a4∧a6⊕a13∧a2∧a3∧a6⊕a13∧a2∧a6∧a9⊕a13∧a3∧a4∧a6∧a9⊕a13∧a3∧a4∧a6⊕
a13∧a4∧a5∧a6⊕a13∧a4∧a6∧a7⊕a13∧a4∧a6∧a8⊕a13∧a4∧a6∧a9⊕a14∧a15∧
a4∧a6∧a8⊕a14∧a15∧a6∧a7⊕a14∧a15∧a6⊕a14∧a2∧a6∧a8⊕a14∧a3∧a4∧a6∧
a8⊕a14∧a4∧a6⊕a14∧a5∧a6∧a8⊕a14∧a6∧a9)∧ (a1∧a12∧a5⊕a1∧a4∧a7⊕a10∧
a12∧a14∧a5⊕a10∧a12∧a15∧a4⊕a10∧a12∧a2⊕a10∧a12∧a3∧a4⊕a10∧a12∧a4∧
a9⊕a10∧a13∧a2∧a4⊕a10∧a14∧a4∧a7⊕a11∧a2∧a5⊕a12∧a13∧a5⊕a12∧a15∧
a3∧a5⊕a12∧a15∧a5⊕a12∧a3∧a5⊕a12∧a4∧a5∧a8⊕a12∧a5∧a7⊕a13∧a15∧a2∧
a5⊕a13∧a4∧a5∧a7⊕a14∧a15∧a5∧a7⊕a14∧a2∧a5∧a8⊕a14∧a3∧a5∧a7⊕a14∧
a5∧a7∧a9⊕a2∧a3∧a7⊕a2∧a3⊕a2∧a4∧a6⊕a2∧a4∧a8∧a9⊕a2∧a7∧a9⊕a2∧a8⊕
a3∧a4∧a7∧a9⊕a3∧a4∧a7⊕a4∧a7∧a8⊕a4∧a7∧a9⊕a4∧a7)∧ (a1∧a2∧a8⊕a10∧
a11∧a2⊕a10∧a12∧a13∧a5⊕a10∧a12∧a14⊕a10∧a12∧a15∧a9⊕a10∧a12∧a15⊕
a10∧a12∧a4∧a8⊕a10∧a12∧a9⊕a10∧a13∧a15∧a2⊕a10∧a13∧a2∧a3⊕a10∧a13∧
a2∧a9⊕a10∧a13∧a4∧a7⊕a10∧a14∧a15∧a7⊕a10∧a14∧a2∧a8⊕a12∧a15∧a5∧
a8⊕a12∧a3∧a5∧a8⊕a12∧a5∧a6⊕a12∧a5∧a8∧a9⊕a13∧a2∧a5∧a8⊕a14∧a5∧
a7∧a8⊕a2∧a3∧a6⊕a2∧a3∧a8∧a9⊕a2∧a3∧a8⊕a2∧a4∧a8⊕a2∧a6∧a9⊕a2∧a8∧
a9⊕a3∧a4∧a7∧a8⊕a4∧a6∧a7⊕a7∧ (∼ a9))∧ (a1∧a10∧a12∧a4⊕a1∧a12∧a15∧
a5⊕a1∧a14∧a5∧a7⊕a1∧a2∧a3⊕a1∧a2∧a7⊕a1∧a2⊕a1∧a4∧a7∧a9⊕a10∧a11∧
a2∧a4⊕a10∧a12∧a14∧a3∧a5⊕a10∧a12∧a14∧a4⊕a10∧a12∧a14∧a5∧a9⊕a10∧
a12∧a15∧a2⊕a10∧a12∧a15∧a3∧a4⊕a10∧a12∧a15∧a4∧a9⊕a10∧a12∧a15∧a4⊕

C. Codes for Chapter 7 195

a10∧ a12∧ a2∧ a3⊕ a10∧ a12∧ a2∧ a9⊕ a10∧ a12∧ a3∧ a4∧ a9⊕ a10∧ a12∧ a3∧ a4⊕
a10∧a12∧a4∧a8⊕a10∧a12∧a4∧a9⊕a10∧a12∧a5⊕a10∧a13∧a14∧a2∧a5⊕a10∧
a13∧a15∧a2∧a4⊕a10∧a13∧a2∧a4∧a9⊕a10∧a13∧a2⊕a10∧a13∧a4∧a7⊕a10∧
a14∧a15∧a4∧a7⊕a10∧a14∧a2∧a4∧a8⊕a10∧a14∧a2∧a7⊕a10∧a14∧a3∧a4∧a7⊕
a10∧a14∧a5∧a7⊕a11∧a12∧a5⊕a11∧a15∧a2∧a5⊕a11∧a4∧a5∧a7⊕a12∧a14∧
a5∧a8⊕a12∧a15∧a4∧a5∧a8⊕a12∧a15∧a5∧a7⊕a12∧a15∧a5⊕a12∧a3∧a5∧a7⊕
a12∧a3∧a5⊕a12∧a4∧a5∧a6⊕a12∧a4∧a5∧a8∧a9⊕a12∧a5∧a7∧a9⊕a13∧a14∧
a5∧a7⊕a13∧a15∧a2∧a5⊕a13∧a15∧a4∧a5∧a7⊕a13∧a2∧a3∧a5⊕a13∧a2∧a5∧
a7⊕a13∧a2∧a5⊕a13∧a4∧a5∧a7∧a9⊕a14∧a15∧a2∧a5∧a8⊕a14∧a15∧a3∧a5∧
a7⊕a14∧a15∧a5∧a7∧a9⊕a14∧a15∧a5∧a7⊕a14∧a2∧a5∧a6⊕a14∧a2∧a5∧a8∧
a9⊕a14∧a3∧a5∧a7∧a9⊕a14∧a3∧a5∧a7⊕a14∧a5∧a7∧a9⊕a14∧a5∧a7⊕a2∧a3∧
a4∧a8⊕a2∧a3∧a7∧a9⊕a2∧a3∧a7⊕a2∧a3⊕a2∧a4∧a6∧a9⊕a2∧a4∧a7∧a8⊕a2∧
a4∧a8∧a9⊕a2∧a4∧a8⊕a2∧a6⊕a2∧a7∧a9⊕a2∧a7⊕a2∧a8∧a9⊕a2⊕a4∧a6∧a7⊕
a4∧a7∧a9)∧(a1∧a10∧a13∧a2⊕a1∧a12∧a5∧a8⊕a1∧a2∧a6⊕a1∧a2∧a8∧a9⊕a1∧
a4∧a7∧a8⊕a10∧a11∧a12∧a5⊕a10∧a11∧a15∧a2⊕a10∧a11∧a2∧a3⊕a10∧a11∧
a2∧a9⊕a10∧a11∧a4∧a7⊕a10∧a12∧a13∧a3∧a5⊕a10∧a12∧a13∧a4⊕a10∧a12∧
a13∧a5∧a9⊕a10∧a12∧a15∧a4∧a8⊕a10∧a12∧a15⊕a10∧a12∧a3∧a4∧a8⊕a10∧
a12∧a4∧a6⊕a10∧a12∧a9⊕a10∧a12⊕a10∧a13∧a14∧a2⊕a10∧a13∧a14∧a5∧a7⊕
a10∧a13∧a15∧a2∧a3⊕a10∧a13∧a15∧a2∧a9⊕a10∧a13∧a15∧a2⊕a10∧a13∧a15∧
a4∧a7⊕a10∧a13∧a2∧a3∧a9⊕a10∧a13∧a2∧a3⊕a10∧a13∧a2∧a5⊕a10∧a13∧a2∧
a9⊕a10∧a13∧a3∧a4∧a7⊕a10∧a14∧a15∧a2∧a8⊕a10∧a14∧a15∧a7⊕a10∧a14∧
a2∧a3∧a8⊕a10∧a14∧a2∧a6⊕a10∧a14∧a7∧a9⊕a10∧a14∧a7⊕a11∧a2∧a5∧a8⊕
a12∧a13∧a5∧a8⊕a12∧a15∧a3∧a5∧a8⊕a12∧a15∧a5∧a6⊕a12∧a15∧a5∧a8∧a9⊕
a12∧a15∧a5∧a8⊕a12∧a3∧a5∧a6⊕a12∧a3∧a5∧a8∧a9⊕a12∧a3∧a5∧a8⊕a12∧
a4∧a5∧a8⊕a12∧a5∧a6∧a9⊕a12∧a5∧a8∧a9⊕a13∧a15∧a2∧a5∧a8⊕a13∧a2∧a5∧
a6⊕a13∧a2∧a5∧a8∧a9⊕a13∧a4∧a5∧a7∧a8⊕a14∧a15∧a5∧a7∧a8⊕a14∧a2∧a5∧
a8⊕a14∧a3∧a5∧a7∧a8⊕a14∧a5∧a6∧a7⊕a2∧a3∧a6∧a9⊕a2∧a3∧a6⊕a2∧a3∧
a8⊕a2∧a6∧a9⊕a2∧a8∧a9⊕a2∧a8⊕a3∧a4∧a6∧a7⊕a3∧a4∧a7∧a8⊕a4∧a7∧a8∧
a9⊕a4∧a7∧a8)∧(a1∧a11∧a2⊕a1∧a12∧a13∧a5⊕a1∧a13∧a15∧a2⊕a1∧a13∧a4∧
a7⊕a1∧a14∧a2∧a8⊕a10∧a11∧a12∧a4⊕a10∧a11∧a14∧a2⊕a10∧a12∧a13∧a3∧
a4⊕a10∧a12∧a13∧a4∧a9⊕a10∧a12∧a14∧a15⊕a10∧a12∧a14∧a4∧a8⊕a10∧a12∧
a14∧a7⊕a10∧a12∧a14∧a9⊕a10∧a12∧a14⊕a10∧a12∧a9⊕a10∧a13∧a14∧a2∧a3⊕
a10∧a13∧a14∧a2∧a9⊕a10∧a13∧a2∧a4⊕a10∧a14∧a2∧a8⊕a11∧a12∧a3∧a5⊕
a11∧a14∧a5∧a7⊕a11∧a15∧a2∧a3⊕a11∧a15∧a2⊕a11∧a15∧a4∧a7⊕a11∧a2∧
a3⊕a11∧a2∧a4∧a8⊕a11∧a2∧a7⊕a11∧a3∧a4∧a7⊕a11∧a4∧a7∧a9⊕a12∧a13∧
a15∧a5⊕a12∧a13∧a3∧a5⊕a12∧a13∧a4∧a5∧a8⊕a12∧a13∧a5∧a7⊕a12∧a13∧
a5⊕a12∧a14∧a3∧a5∧a8⊕a12∧a14∧a5∧a6⊕a12∧a14∧a5∧a8∧a9⊕a12∧a15∧a2∧
a8⊕a12∧a15∧a7∧a9⊕a12∧a15∧a7⊕a12∧a15⊕a12∧a2∧a3∧a8⊕a12∧a2∧a6⊕
a12∧a2∧a8∧a9⊕a12∧a4∧a7∧a8⊕a12∧a5∧a8⊕a12∧a7∧a9⊕a12∧a7⊕a12⊕a13∧
a14∧a3∧a5∧a7⊕a13∧a14∧a5∧a7∧a9⊕a13∧a15∧a2∧a4∧a8⊕a13∧a15∧a2∧a7⊕
a13∧ a15∧ a2⊕ a13∧ a15∧ a3∧ a4∧ a7⊕ a13∧ a15∧ a4∧ a7∧ a9⊕ a13∧ a15∧ a4∧ a7⊕
a13∧a2∧a3∧a7⊕a13∧a2∧a3⊕a13∧a2∧a4∧a6⊕a13∧a2∧a4∧a8∧a9⊕a13∧a2∧
a7∧ a9⊕ a13∧ a2∧ a8⊕ a13∧ a3∧ a4∧ a7∧ a9⊕ a13∧ a3∧ a4∧ a7⊕ a13∧ a4∧ a5∧ a7⊕

196 Chapter . Appendices

a13∧a4∧a7∧a8⊕a13∧a4∧a7∧a9⊕a13∧a4∧a7⊕a14∧a15∧a2∧a3∧a8⊕a14∧a15∧
a2∧a6⊕a14∧a15∧a2∧a8∧a9⊕a14∧a15∧a2∧a8⊕a14∧a15∧a4∧a7∧a8⊕a14∧a2∧
a3∧a6⊕a14∧a2∧a3∧a8∧a9⊕a14∧a2∧a3∧a8⊕a14∧a2∧a4∧a8⊕a14∧a2∧a6∧a9⊕
a14∧a2∧a8∧a9⊕a14∧a3∧a4∧a7∧a8⊕a14∧a4∧a6∧a7⊕a14∧a5∧a7∧a8⊕a14∧
a7∧a9)∧(a1∧a3⊕a1⊕a10∧a11∧a4⊕a10∧a13∧a14∧a5⊕a10∧a13∧a15∧a4⊕a10∧
a13∧a2⊕a10∧a13∧a4∧a9⊕a10∧a14∧a4∧a8⊕a11∧a15∧a5⊕a12∧a5∧a8⊕a13∧
a15∧a5⊕a13∧a3∧a5⊕a13∧a5⊕a14∧a15∧a5∧a8⊕a14∧a5∧a6⊕a14∧a5∧a8∧a9⊕
a2∧a6⊕a2∧a8∧a9⊕a3∧a4∧a8⊕a3⊕a4∧a6∧a9⊕a4∧a7∧a8⊕a4∧a8∧a9⊕a4∧(∼
a8))∧(a1∧a10∧a13⊕a1∧a6⊕a1∧a8∧a9⊕a10∧a11∧a15⊕a10∧a11∧a3⊕a10∧a11∧
a9⊕ a10∧ a12∧ a8⊕ a10∧ a13∧ a14⊕ a10∧ a13∧ a15∧ a3⊕ a10∧ a13∧ a15∧ a9⊕ a10∧
a13∧a15⊕a10∧a13∧a3∧a9⊕a10∧a13∧a3⊕a10∧a13∧a5⊕a10∧a13∧a7⊕a10∧a13∧
a9⊕a10∧a14∧a15∧a8⊕a10∧a14∧a3∧a8⊕a10∧a14∧a6⊕a11∧a5∧a8⊕a13∧a15∧
a5∧a8⊕a13∧a5∧a6⊕a13∧a5∧a8∧a9⊕a14∧a5∧a8⊕a2∧a8⊕a3∧a6∧a9⊕a3∧a6⊕
a3∧a7∧a8⊕a3∧a8⊕a6∧a7⊕a6∧a9⊕a8∧a9)∧ (a1∧a3⊕a10∧a11∧a14∧a5⊕a10∧
a11∧a15∧a4⊕a10∧a11∧a2⊕a10∧a11∧a4∧a9⊕a10∧a12∧a13∧a5⊕a10∧a12∧a4∧
a8⊕a10∧a13∧a14∧a4⊕a10∧a13∧a14∧a5∧a9⊕a10∧a13∧a15∧a2⊕a10∧a13∧a15∧
a4∧a9⊕a10∧a13∧a15∧a4⊕a10∧a13∧a2∧a9⊕a10∧a13∧a3∧a4⊕a10∧a13∧a4∧
a7⊕a10∧a13∧a4∧a9⊕a10∧a14∧a15∧a4∧a8⊕a10∧a14∧a2∧a8⊕a10∧a14∧a4∧
a6⊕ a10∧ a14∧ a5∧ a8⊕ a11∧ a15∧ a5⊕ a11∧ a3∧ a5⊕ a12∧ a15∧ a5∧ a8⊕ a12∧ a5∧
a6⊕a12∧a5∧a8∧a9⊕a13∧a15∧a3∧a5⊕a13∧a15∧a5⊕a13∧a3∧a5⊕a14∧a15∧a5∧
a6⊕a14∧a15∧a5∧a8∧a9⊕a14∧a15∧a5∧a8⊕a14∧a3∧a5∧a8⊕a14∧a5∧a6∧a9⊕
a14∧a5∧a7∧a8⊕a14∧a5∧a8∧a9⊕a2∧a3∧a8⊕a2∧a6∧a9⊕a2∧a7∧a8⊕a2∧a8∧
a9⊕a3∧a4∧a6⊕a3∧a4∧a8∧a9⊕a3∧a4∧a8⊕a4∧a6∧a7⊕a4∧a6∧a9⊕a4∧a8∧(∼
a9))∧(a1∧a10∧a11⊕a1∧a10∧a13∧a15⊕a1∧a10∧a13∧a9⊕a1∧a10∧a14∧a8⊕a1∧
a3∧a8⊕a1∧a6∧a9⊕a1∧a7∧a8⊕a1∧a8∧a9⊕a1∧a8⊕a10∧a11∧a14⊕a10∧a11∧
a15∧a3⊕a10∧a11∧a15∧a9⊕a10∧a11∧a15⊕a10∧a11∧a3∧a9⊕a10∧a11∧a3⊕a10∧
a11∧a7⊕a10∧a11∧a9⊕a10∧a12∧a13⊕a10∧a12∧a15∧a8⊕a10∧a12∧a3∧a8⊕a10∧
a12∧a6⊕a10∧a13∧a14∧a3⊕a10∧a13∧a14∧a5∧a8⊕a10∧a13∧a15∧a3∧a9⊕a10∧
a13∧ a15∧ a7⊕ a10∧ a13∧ a15⊕ a10∧ a13∧ a3∧ a7⊕ a10∧ a13∧ a3⊕ a10∧ a13∧ a4⊕
a10∧a13∧a5∧a9⊕a10∧a13∧a9⊕a10∧a14∧a15∧a3∧a8⊕a10∧a14∧a15∧a6⊕a10∧
a14∧a15∧a8⊕a10∧a14∧a3∧a6⊕a10∧a14∧a3∧a8⊕a10∧a14∧a8∧a9⊕a10∧a14∧
a8⊕a11∧a15∧a5∧a8⊕a11∧a5∧a6⊕a11∧a5∧a8∧a9⊕a12∧a5∧a8⊕a13∧a15∧a5∧
a6⊕a13∧a15∧a5∧a8∧a9⊕a13∧a15∧a5∧a8⊕a13∧a3∧a5∧a8⊕a13∧a5∧a6∧a9⊕
a13∧a5∧a7∧a8⊕a13∧a5∧a8∧a9⊕a13∧a5∧a8⊕a14∧a15∧a5∧a8⊕a3∧a4∧a8⊕
a3∧a6∧a7⊕a3∧a6⊕a3∧a7∧a8⊕a3∧a8∧a9⊕a3∧a8⊕a4∧a6⊕a4∧a8∧a9⊕a4∧
a8⊕a6∧a9⊕a7∧a8∧a9⊕a7∧a8⊕a8∧a9⊕a8)∧(a1∧a10∧a13∧a14⊕a1∧a11∧a15⊕
a1∧ a12∧ a8⊕ a1∧ a13∧ a15⊕ a1∧ a13∧ a3⊕ a1∧ a13⊕ a1∧ a14∧ a15∧ a8⊕ a1∧ a14∧
a6⊕a1∧a14∧a8∧a9⊕a10∧a11∧a12⊕a10∧a11∧a14∧a3⊕a10∧a11∧a14∧a9⊕a10∧
a12∧ a13∧ a3⊕ a10∧ a12∧ a13∧ a9⊕ a10∧ a13∧ a14∧ a15⊕ a10∧ a13∧ a14∧ a3∧ a9⊕
a10∧a13∧a14∧a3⊕a10∧a13∧a14∧a4∧a8⊕a10∧a13∧a14∧a7⊕a10∧a13∧a14∧a9⊕
a10∧a13∧a14⊕a10∧a13∧a2⊕a10∧a13∧a4∧a9⊕a10∧a14∧a3∧a8⊕a10∧a14∧a6⊕
a11∧a15∧a4∧a8⊕a11∧a15⊕a11∧a2∧a8⊕a11∧a3⊕a11∧a4∧a6⊕a11∧a4∧a8∧a9⊕
a11∧a5⊕a12∧a15∧a3∧a8⊕a12∧a15∧a6⊕a12∧a15∧a8∧a9⊕a12∧a15∧a8⊕a12∧

C. Codes for Chapter 7 197

a3∧a6⊕a12∧a3∧a8∧a9⊕a12∧a3∧a8⊕a12∧a4∧a8⊕a12∧a6∧a9⊕a12∧a7∧a8⊕
a12∧a8∧a9⊕a13∧a15∧a2∧a8⊕a13∧a15∧a3⊕a13∧a15∧a4∧a6⊕a13∧a15∧a4∧
a8∧a9⊕a13∧a15∧a4∧a8⊕a13∧a15∧a5⊕a13∧a15⊕a13∧a2∧a6⊕a13∧a2∧a8∧a9⊕
a13∧a3∧a4∧a8⊕a13∧a3∧a5⊕a13∧a3⊕a13∧a4∧a6∧a9⊕a13∧a4∧a7∧a8⊕a13∧
a4∧a8∧a9⊕a13∧a4∧a8⊕a13∧a5⊕a13⊕a14∧a15∧a3∧a6⊕a14∧a15∧a3∧a8∧a9⊕
a14∧a15∧a4∧a8⊕a14∧a15∧a6∧a9⊕a14∧a15∧a6⊕a14∧a15∧a7∧a8⊕a14∧a15∧
a8⊕a14∧a2∧a8⊕a14∧a3∧a6∧a9⊕a14∧a3∧a6⊕a14∧a3∧a7∧a8⊕a14∧a3∧a8⊕
a14∧a5∧a8⊕a14∧a6∧a7⊕a14∧a6∧a9⊕a14∧a8∧a9)∧ (a1∧a14∧a5⊕a1∧a2⊕a1∧
a4∧a9⊕a10∧a12∧a4⊕a10∧a13∧a4⊕a10∧a14∧a15∧a4⊕a10∧a14∧a2⊕a10∧a14∧
a3∧a4⊕a10∧a14∧a5⊕a11∧a4∧a5⊕a12∧a15∧a5⊕a12∧a3∧a5⊕a12∧a5∧a9⊕a13∧
a14∧a5⊕a13∧a15∧a4∧a5⊕a13∧a2∧a5⊕a13∧a4∧a5∧a9⊕a14∧a15∧a3∧a5⊕a14∧
a15∧a5∧a9⊕a14∧a15∧a5⊕a14∧a3∧a5∧a9⊕a14∧a3∧a5⊕a14∧a5∧a7⊕a14∧a5∧
a9⊕a2∧a3∧a9⊕a2∧a3⊕a2∧a7⊕a2∧a9⊕a3∧a4∧a7⊕a3∧a4⊕a4∧a6⊕a4∧a9)∧
(a1∧ a4∧ a8⊕ a10∧ a11∧ a4⊕ a10∧ a12∧ a15⊕ a10∧ a13∧ a14∧ a5⊕ a10∧ a13∧ a15∧
a4⊕ a10∧ a13∧ a2⊕ a10∧ a13∧ a3∧ a4⊕ a10∧ a14∧ a15⊕ a10∧ a14∧ a9⊕ a10∧ a14⊕
a12∧a5∧a8⊕a13∧a4∧a5∧a8⊕a14∧a15∧a5∧a8⊕a14∧a3∧a5∧a8⊕a14∧a5∧a6⊕
a2∧a3∧a8⊕a2∧a6⊕a3∧a4∧a6⊕a3∧a4∧a8⊕a4∧a8∧a9⊕a4∧a8⊕a7∧a9⊕a7⊕(∼
a9))∧ (a1∧ a10∧ a14∧ a4⊕ a1∧ a12∧ a5⊕ a1∧ a14∧ a15∧ a5⊕ a1∧ a14∧ a5∧ a9⊕ a1∧
a2∧ a9⊕ a1∧ a3∧ a4⊕ a1∧ a4∧ a7⊕ a1∧ a4∧ a9⊕ a1∧ a4⊕ a10∧ a11∧ a4⊕ a10∧ a12∧
a15∧a4⊕a10∧a12∧a2⊕a10∧a12∧a3∧a4⊕a10∧a13∧a14∧a4∧a5⊕a10∧a13∧a15∧
a4⊕a10∧a14∧a15∧a2⊕a10∧a14∧a15∧a3∧a4⊕a10∧a14∧a15∧a4⊕a10∧a14∧a2∧
a3⊕a10∧a14∧a3∧a4⊕a10∧a14∧a3∧a5⊕a10∧a14∧a4∧a9⊕a10∧a14∧a4⊕a11∧
a14∧ a5⊕ a11∧ a15∧ a4∧ a5⊕ a11∧ a2∧ a5⊕ a11∧ a4∧ a5∧ a9⊕ a12∧ a13∧ a5⊕ a12∧
a15∧ a3∧ a5⊕ a12∧ a15∧ a5∧ a9⊕ a12∧ a15∧ a5⊕ a12∧ a3∧ a5∧ a9⊕ a12∧ a3∧ a5⊕
a12∧ a5∧ a7⊕ a12∧ a5∧ a9⊕ a13∧ a14∧ a5∧ a9⊕ a13∧ a15∧ a2∧ a5⊕ a13∧ a15∧ a4∧
a5∧a9⊕a13∧a15∧a4∧a5⊕a13∧a2∧a5∧a9⊕a13∧a3∧a4∧a5⊕a13∧a4∧a5∧a7⊕
a13∧a4∧a5∧a9⊕a13∧a4∧a5⊕a14∧a15∧a3∧a5∧a9⊕a14∧a15∧a5∧a7⊕a14∧a15∧
a5⊕ a14∧ a3∧ a5∧ a7⊕ a14∧ a3∧ a5⊕ a14∧ a5∧ a8⊕ a14∧ a5∧ a9⊕ a2∧ a3∧ a7⊕ a2∧
a3⊕a2∧a8⊕a2∧a9⊕a3∧a4∧a7⊕a3∧a4∧a8⊕a3∧a4∧a9⊕a3∧a4⊕a4∧a7∧a9⊕
a4∧a7⊕a4∧a8∧a9⊕a4∧a8⊕a4∧a9⊕a4)∧ (a1∧a10∧a13∧a4⊕a1∧a14∧a5∧a8⊕
a1∧ a2∧ a8⊕ a1∧ a4∧ a6⊕ a10∧ a11∧ a14∧ a5⊕ a10∧ a11∧ a15∧ a4⊕ a10∧ a11∧ a2⊕
a10∧ a11∧ a3∧ a4⊕ a10∧ a12∧ a13∧ a5⊕ a10∧ a12∧ a15⊕ a10∧ a12∧ a9⊕ a10∧ a13∧
a14∧a3∧a5⊕a10∧a13∧a15∧a2⊕a10∧a13∧a15∧a3∧a4⊕a10∧a13∧a15∧a4⊕a10∧
a13∧a2∧a3⊕a10∧a13∧a3∧a4⊕a10∧a13∧a4∧a5⊕a10∧a13∧a4∧a9⊕a10∧a14∧
a15∧a9⊕a10∧a14∧a15⊕a10∧a14∧a9⊕a11∧a4∧a5∧a8⊕a12∧a15∧a5∧a8⊕a12∧
a3∧a5∧a8⊕a12∧a5∧a6⊕a13∧a14∧a5∧a8⊕a13∧a15∧a4∧a5∧a8⊕a13∧a2∧a5∧
a8⊕a13∧a4∧a5∧a6⊕a14∧a15∧a3∧a5∧a8⊕a14∧a15∧a5∧a6⊕a14∧a15∧a5∧a8⊕
a14∧a3∧a5∧a6⊕a14∧a3∧a5∧a8⊕a14∧a5∧a8∧a9⊕a2∧a3∧a6⊕a2∧a3∧a8⊕a2∧
a8∧a9⊕a3∧a4∧a6⊕a3∧a4∧a8∧a9⊕a3∧a4∧a8⊕a4∧a6∧a9⊕a4∧a8∧a9⊕a7∧(∼
a9))∧ (a1∧a11∧a4⊕a1∧a13∧a14∧a5⊕a1∧a13∧a15∧a4⊕a1∧a13∧a2⊕a1∧a13∧
a4∧a9⊕a1∧a14∧a4∧a8⊕a10∧a12⊕a10∧a13∧a4⊕a10∧a14∧a15⊕a10∧a14∧a9⊕
a10∧a14⊕a11∧a12∧a5⊕a11∧a14∧a3∧a5⊕a11∧a14∧a5∧a9⊕a11∧a15∧a2⊕a11∧
a15∧a3∧a4⊕a11∧a15∧a4∧a9⊕a11∧a15∧a4⊕a11∧a2∧a3⊕a11∧a2∧a9⊕a11∧a3∧

198 Chapter . Appendices

a4∧a9⊕a11∧a3∧a4⊕a11∧a4∧a7⊕a11∧a4∧a8⊕a11∧a4∧a9⊕a12∧a13∧a3∧a5⊕
a12∧a13∧a5∧a9⊕a12∧a15∧a4∧a8⊕a12∧a15∧a7⊕a12∧a15⊕a12∧a2∧a8⊕a12∧
a3∧a4∧a8⊕a12∧a4∧a6⊕a12∧a9⊕a13∧a14∧a15∧a5⊕a13∧a14∧a3∧a5∧a9⊕a13∧
a14∧ a3∧ a5⊕ a13∧ a14∧ a4∧ a5∧ a8⊕ a13∧ a14∧ a5∧ a7⊕ a13∧ a14∧ a5∧ a9⊕ a13∧
a14∧a5⊕a13∧a15∧a2∧a3⊕a13∧a15∧a2∧a9⊕a13∧a15∧a2⊕a13∧a15∧a3∧a4∧
a9⊕a13∧a15∧a4∧a7⊕a13∧a15∧a4∧a8⊕a13∧a15∧a4⊕a13∧a2∧a3∧a9⊕a13∧a2∧
a3⊕a13∧a2∧a5⊕a13∧a2∧a7⊕a13∧a2∧a9⊕a13∧a3∧a4∧a7⊕a13∧a3∧a4⊕a13∧
a4∧a5∧a9⊕a13∧a4∧a6⊕a13∧a4∧a9⊕a14∧a15∧a2∧a8⊕a14∧a15∧a3∧a4∧a8⊕
a14∧a15∧a4∧a6⊕a14∧a15∧a4∧a8⊕a14∧a15∧a7⊕a14∧a15∧a9⊕a14∧a15⊕a14∧
a2∧a3∧a8⊕a14∧a2∧a6⊕a14∧a3∧a4∧a6⊕a14∧a3∧a4∧a8⊕a14∧a3∧a5∧a8⊕a14∧
a4∧a8∧a9⊕a14∧a4∧a8⊕a14∧a5∧a6⊕a14∧a7∧a9⊕a14∧a7⊕a14∧a9⊕a14)∧(a1∧
a10∧a4⊕a1∧a15∧a5⊕a10∧a12∧a5⊕a10∧a14∧a3∧a5⊕a10∧a14∧a4⊕a10∧a14∧
a5∧a9⊕a10∧a15∧a2⊕a10∧a15∧a3∧a4⊕a10∧a15∧a4∧a9⊕a10∧a15∧a4⊕a10∧
a2∧a3⊕a10∧a2∧a9⊕a10∧a3∧a4∧a9⊕a10∧a3∧a4⊕a10∧a4∧a7⊕a10∧a4∧a8⊕
a10∧a4∧a9⊕a11∧a5⊕a14∧a5∧a8⊕a15∧a4∧a5∧a8⊕a15∧a5⊕a2∧a5∧a8⊕a3∧
a5⊕a4∧a5∧a6⊕a4∧a5∧a8∧a9)∧(a1∧a5∧a8⊕a10∧a11∧a5⊕a10∧a12⊕a10∧a13∧
a3∧a5⊕a10∧a13∧a4⊕a10∧a13∧a5∧a9⊕a10∧a15∧a4∧a8⊕a10∧a15∧a7⊕a10∧
a15⊕a10∧a2∧a8⊕a10∧a3∧a4∧a8⊕a10∧a4∧a6⊕a10∧a9⊕a13∧a5∧a8⊕a15∧a3∧
a5∧a8⊕a15∧a5∧a6⊕a15∧a5∧a8∧a9⊕a15∧a5∧a8⊕a3∧a5∧a6⊕a3∧a5∧a8∧a9⊕
a3∧a5∧a8⊕a4∧a5∧a8⊕a5∧a6∧a9⊕a5∧a7∧a8⊕a5∧a8∧a9)∧(a1∧a10∧a14∧a5⊕
a1∧a10∧a15∧a4⊕a1∧a10∧a2⊕a1∧a10∧a4∧a9⊕a1∧a15∧a5⊕a1∧a3∧a5⊕a1∧a5⊕
a10∧a12∧a3∧a5⊕a10∧a12∧a4⊕a10∧a12∧a5∧a9⊕a10∧a13∧a4⊕a10∧a14∧a15∧
a5⊕ a10∧ a14∧ a2⊕ a10∧ a14∧ a3∧ a4⊕ a10∧ a14∧ a3∧ a5∧ a9⊕ a10∧ a14∧ a3∧ a5⊕
a10∧a14∧a4∧a5∧a8⊕a10∧a14∧a5∧a7⊕a10∧a14∧a5∧a9⊕a10∧a14∧a5⊕a10∧
a15∧a2∧a3⊕a10∧a15∧a2∧a9⊕a10∧a15∧a2⊕a10∧a15∧a3∧a4∧a9⊕a10∧a15∧
a4∧a7⊕a10∧a15∧a4∧a8⊕a10∧a15∧a4⊕a10∧a2∧a3∧a9⊕a10∧a2∧a3⊕a10∧a2∧
a7⊕a10∧a2∧a9⊕a10∧a3∧a4∧a7⊕a10∧a3∧a4⊕a10∧a4∧a6⊕a10∧a4∧a9⊕a12∧
a5∧a8⊕a13∧a15∧a5⊕a13∧a3∧a5⊕a13∧a5⊕a14∧a5∧a6⊕a14∧a5∧a8∧a9⊕a15∧
a2∧a5∧a8⊕a15∧a3∧a5⊕a15∧a4∧a5∧a6⊕a15∧a4∧a5∧a8∧a9⊕a15∧a4∧a5∧a8⊕
a15∧a5⊕a2∧a5∧a6⊕a2∧a5∧a8∧a9⊕a3∧a4∧a5∧a8⊕a3∧a5⊕a4∧a5∧a6∧a9⊕a4∧
a5∧a7∧a8⊕a4∧a5∧a8∧a9⊕a4∧a5∧a8⊕a5)∧(a1∧a10∧a13∧a5⊕a1∧a10∧a4∧a8⊕
a1∧a15∧a5∧a8⊕a1∧a5∧a6⊕a1∧a5∧a8∧a9⊕a10∧a11∧a3∧a5⊕a10∧a11∧a4⊕
a10∧a11∧a5∧a9⊕a10∧a13∧a15∧a5⊕a10∧a13∧a2⊕a10∧a13∧a3∧a4⊕a10∧a13∧
a3∧a5∧a9⊕a10∧a13∧a3∧a5⊕a10∧a13∧a4∧a5∧a8⊕a10∧a13∧a5∧a7⊕a10∧a13∧
a5∧a9⊕a10∧a13∧a5⊕a10∧a14∧a15⊕a10∧a14∧a9⊕a10∧a14⊕a10∧a15∧a2∧a8⊕
a10∧a15∧a3∧a4∧a8⊕a10∧a15∧a4∧a6⊕a10∧a15∧a4∧a8⊕a10∧a15∧a7⊕a10∧
a15∧a9⊕a10∧a15⊕a10∧a2∧a3∧a8⊕a10∧a2∧a6⊕a10∧a3∧a4∧a6⊕a10∧a3∧a4∧
a8⊕a10∧a4∧a8∧a9⊕a10∧a4∧a8⊕a10∧a7∧a9⊕a10∧a7⊕a10∧a9⊕a10⊕a11∧a5∧
a8⊕a13∧a5∧a6⊕a13∧a5∧a8∧a9⊕a14∧a5∧a8⊕a15∧a3∧a5∧a6⊕a15∧a3∧a5∧
a8∧a9⊕a15∧a4∧a5∧a8⊕a15∧a5∧a6∧a9⊕a15∧a5∧a6⊕a15∧a5∧a7∧a8⊕a15∧
a5∧a8⊕a2∧a5∧a8⊕a3∧a5∧a6∧a9⊕a3∧a5∧a6⊕a3∧a5∧a7∧a8⊕a3∧a5∧a8⊕a5∧
a6∧a7⊕a5∧a6∧a9⊕a5∧a8∧a9)∧ (a1∧a10∧a13∧a4⊕a1∧a11∧a5⊕a1∧a14∧a5∧
a8⊕a10∧a11∧a2⊕a10∧a11∧a3∧a4⊕a10∧a11∧a4∧a9⊕a10∧a12∧a15⊕a10∧a12∧

C. Codes for Chapter 7 199

a4∧a8⊕a10∧a12∧a7⊕a10∧a12∧a9⊕a10∧a13∧a15∧a4⊕a10∧a13∧a2∧a3⊕a10∧
a13∧ a2∧ a9⊕ a10∧ a13∧ a3∧ a4∧ a9⊕ a10∧ a13∧ a3∧ a4⊕ a10∧ a13∧ a4∧ a7⊕ a10∧
a13∧a4∧a8⊕a10∧a13∧a4∧a9⊕a10∧a14∧a15∧a9⊕a10∧a14∧a15⊕a10∧a14∧a2∧
a8⊕a10∧a14∧a3∧a4∧a8⊕a10∧a14∧a4∧a6⊕a10∧a14∧a9⊕a11∧a15∧a5⊕a11∧
a3∧a5⊕a11∧a4∧a5∧a8⊕a12∧a3∧a5∧a8⊕a12∧a5∧a6⊕a12∧a5∧a8∧a9⊕a13∧
a15∧a3∧a5⊕a13∧a15∧a5⊕a13∧a2∧a5∧a8⊕a13∧a3∧a5⊕a13∧a4∧a5∧a6⊕a13∧
a4∧a5∧a8∧a9⊕a14∧a15∧a5∧a8⊕a14∧a3∧a5∧a6⊕a14∧a3∧a5∧a8∧a9⊕a14∧
a3∧a5∧a8⊕a14∧a4∧a5∧a8⊕a14∧a5∧a6∧a9⊕a14∧a5∧a7∧a8⊕a14∧a5∧a8∧ (∼
a9)]∨ [a1∧a10∧a13∧a4⊕a1∧a13∧a15∧a5⊕a1∧a14∧a5∧a8⊕a1∧a2∧a8⊕a1∧a3⊕
a1∧a4∧a8∧a9⊕a1⊕a10∧a11∧a14∧a5⊕a10∧a11∧a15∧a4⊕a10∧a11∧a2⊕a10∧
a11∧a3∧a4⊕a10∧a11∧a4∧a9⊕a10∧a14∧a4∧a6⊕a11∧a13∧a5⊕a11∧a15∧a3∧
a5⊕a11∧a15∧a5⊕a11∧a3∧a5⊕a11∧a4∧a5∧a8⊕a12∧a5∧a6⊕a13∧a4∧a5∧a6⊕
a14∧a15∧a5∧a6⊕a14∧a3∧a5∧a6⊕a14∧a5∧a6∧a9⊕a2∧a3∧a6⊕a2∧a6∧a9⊕a3∧
a4∧a6∧a9⊕a3∧a4∧a6⊕a4∧a6∧a7⊕a4∧a6∧a8⊕a4∧a6∧a9⊕1)∧(a1∧a10∧a11⊕
a1∧a10∧a13∧a15⊕a1∧a10∧a13∧a3⊕a1∧a10∧a13∧a9⊕a1∧a10∧a14∧a8⊕a1∧
a13∧a5∧a8⊕a1∧a3∧a6⊕a1∧a3∧a8∧a9⊕a1∧a3∧a8⊕a1∧a4∧a8⊕a1∧a6∧a9⊕a1∧
a7∧a8⊕a1∧a8∧a9⊕a1∧a8⊕a10∧a11∧a13∧a5⊕a10∧a11∧a14⊕a10∧a11∧a15∧
a9⊕a10∧a11∧a15⊕a10∧a11∧a4∧a8⊕a10∧a11∧a7⊕a10∧a11∧a9⊕a10∧a12∧a6⊕
a10∧a13∧a4∧a6⊕a10∧a14∧a15∧a6⊕a11∧a15∧a5∧a8⊕a11∧a3∧a5∧a8⊕a11∧
a5∧a6⊕a11∧a5∧a8∧a9⊕a14∧a5∧a6∧a8⊕a2∧a6∧a8⊕a3∧a4∧a6∧a8⊕a4∧a6⊕
a6∧a9⊕a6)∧ (a1∧a10∧a13∧a14∧a5⊕a1∧a10∧a13∧a15∧a4⊕a1∧a10∧a13∧a2⊕
a1∧a10∧a13∧a4∧a9⊕a1∧a10∧a14∧a4∧a8⊕a1∧a12∧a5∧a8⊕a1∧a13∧a15∧a5⊕
a1∧a13∧a3∧a5⊕a1∧a13∧a5⊕a1∧a14∧a15∧a5∧a8⊕a1∧a14∧a5∧a8∧a9⊕a1∧a2∧
a8∧a9⊕a1∧a3∧a4∧a8⊕a1∧a3⊕a1∧a4∧a7∧a8⊕a1∧a4∧a8∧a9⊕a1∧a4∧a8⊕a1⊕
a10∧a11∧a12∧a5⊕a10∧a11∧a14∧a3∧a5⊕a10∧a11∧a14∧a4⊕a10∧a11∧a14∧a5∧
a9⊕a10∧a11∧a15∧a2⊕a10∧a11∧a15∧a3∧a4⊕a10∧a11∧a15∧a4∧a9⊕a10∧a11∧
a15∧a4⊕a10∧a11∧a2∧a3⊕a10∧a11∧a2∧a9⊕a10∧a11∧a3∧a4∧a9⊕a10∧a11∧
a3∧a4⊕a10∧a11∧a4∧a7⊕a10∧a11∧a4∧a8⊕a10∧a11∧a4∧a9⊕a10∧a12∧a4∧a6⊕
a10∧a13∧a4∧a6⊕a10∧a14∧a15∧a4∧a6⊕a10∧a14∧a2∧a6⊕a10∧a14∧a3∧a4∧
a6⊕ a10∧ a14∧ a5∧ a6⊕ a11∧ a14∧ a5∧ a8⊕ a11∧ a15∧ a4∧ a5∧ a8⊕ a11∧ a15∧ a5⊕
a11∧a2∧a5∧a8⊕a11∧a3∧a5⊕a11∧a4∧a5∧a8∧a9⊕a12∧a15∧a5∧a6⊕a12∧a3∧
a5∧a6⊕a12∧a5∧a6∧a9⊕a13∧a14∧a5∧a6⊕a13∧a15∧a4∧a5∧a6⊕a13∧a2∧a5∧
a6⊕a13∧a4∧a5∧a6∧a9⊕a14∧a15∧a3∧a5∧a6⊕a14∧a15∧a5∧a6∧a9⊕a14∧a15∧
a5∧a6⊕a14∧a3∧a5∧a6∧a9⊕a14∧a3∧a5∧a6⊕a14∧a5∧a6∧a7⊕a14∧a5∧a6∧a9⊕
a2∧a3∧a6∧a9⊕a2∧a3∧a6⊕a2∧a6∧a7⊕a2∧a6∧a9⊕a3∧a4∧a6∧a7⊕a3∧a4∧a6⊕
a4∧a6∧a9)∧ (a1∧a10∧a11∧a15⊕a1∧a10∧a11∧a3⊕a1∧a10∧a11∧a9⊕a1∧a10∧
a12∧a8⊕a1∧a10∧a13∧a14⊕a1∧a10∧a13∧a15∧a3⊕a1∧a10∧a13∧a15∧a9⊕a1∧
a10∧a13∧a15⊕a1∧a10∧a13∧a3∧a9⊕a1∧a10∧a13∧a3⊕a1∧a10∧a13∧a5⊕a1∧
a10∧a13∧a7⊕a1∧a10∧a13∧a9⊕a1∧a10∧a13⊕a1∧a10∧a14∧a15∧a8⊕a1∧a10∧
a14∧a3∧a8⊕a1∧a10∧a14∧a6⊕a1∧a13∧a15∧a5∧a8⊕a1∧a13∧a5∧a6⊕a1∧a13∧
a5∧a8∧a9⊕a1∧a14∧a5∧a8⊕a1∧a2∧a8⊕a1∧a3∧a6∧a9⊕a1∧a3∧a6⊕a1∧a3∧a7∧
a8⊕a1∧a3∧a8⊕a1∧a4∧a6∧a8⊕a1∧a6∧a7⊕a1∧a6∧a9⊕a1∧a6⊕a1∧a8⊕a10∧
a11∧a12⊕a10∧a11∧a13∧a3∧a5⊕a10∧a11∧a13∧a4⊕a10∧a11∧a13∧a5∧a9⊕a10∧

200 Chapter . Appendices

a11∧a15∧a4∧a8⊕a10∧a11∧a15∧a7⊕a10∧a11∧a15⊕a10∧a11∧a2∧a8⊕a10∧a11∧
a3∧a4∧a8⊕a10∧a11∧a5⊕a10∧a11∧a9⊕a10∧a11⊕a10∧a12∧a15∧a6⊕a10∧a13∧
a14∧a5∧a6⊕a10∧a13∧a15∧a4∧a6⊕a10∧a13∧a2∧a6⊕a10∧a13∧a3∧a4∧a6⊕a10∧
a14∧a15∧a6⊕a10∧a14∧a6∧a9⊕a10∧a14∧a6⊕a11∧a13∧a5∧a8⊕a11∧a15∧a3∧
a5∧a8⊕a11∧a15∧a5∧a6⊕a11∧a15∧a5∧a8∧a9⊕a11∧a15∧a5∧a8⊕a11∧a3∧a5∧
a6⊕a11∧a3∧a5∧a8∧a9⊕a11∧a3∧a5∧a8⊕a11∧a4∧a5∧a8⊕a11∧a5∧a6∧a9⊕a11∧
a5∧a7∧a8⊕a11∧a5∧a8∧a9⊕a12∧a5∧a6∧a8⊕a13∧a4∧a5∧a6∧a8⊕a14∧a15∧a5∧
a6∧a8⊕a14∧a3∧a5∧a6∧a8⊕a14∧a5∧a6⊕a2∧a3∧a6∧a8⊕a2∧a6⊕a3∧a4∧a6∧
a8⊕a3∧a4∧a6⊕a4∧a6∧a8∧a9⊕a4∧a6∧a8⊕a6∧a7∧a9⊕a6∧a7)∧(a1∧a10∧a11∧
a14⊕a1∧a10∧a12∧a13⊕a1∧a10∧a13∧a14∧a3⊕a1∧a10∧a13∧a14∧a9⊕a1∧a10∧
a13∧a4⊕a1∧a10∧a14∧a8⊕a1∧a11∧a13∧a5⊕a1∧a11∧a15∧a3⊕a1∧a11∧a15⊕
a1∧a11∧a3⊕a1∧a11∧a4∧a8⊕a1∧a11⊕a1∧a12∧a15∧a8⊕a1∧a12∧a3∧a8⊕a1∧
a12∧a6⊕a1∧a12∧a8∧a9⊕a1∧a13∧a15∧a4∧a8⊕a1∧a13∧a2∧a8⊕a1∧a13∧a3⊕
a1∧a13∧a4∧a8∧a9⊕a1∧a13⊕a1∧a14∧a15∧a3∧a8⊕a1∧a14∧a15∧a6⊕a1∧a14∧
a15∧a8∧a9⊕a1∧a14∧a15∧a8⊕a1∧a14∧a3∧a6⊕a1∧a14∧a3∧a8∧a9⊕a1∧a14∧
a3∧a8⊕a1∧a14∧a4∧a8⊕a1∧a14∧a6∧a9⊕a1∧a14∧a7∧a8⊕a1∧a14∧a8∧a9⊕a1∧
a14∧a8⊕a10∧a11∧a12∧a9⊕a10∧a11∧a13∧a2⊕a10∧a11∧a13∧a3∧a4⊕a10∧a11∧
a13∧a4∧a9⊕a10∧a11∧a14∧a15⊕a10∧a11∧a14∧a4∧a8⊕a10∧a11∧a14∧a7⊕a10∧
a11∧a14∧a9⊕a10∧a11∧a14⊕a10∧a11∧a4⊕a11∧a12∧a5∧a8⊕a11∧a13∧a15∧a5⊕
a11∧a13∧a3∧a5⊕a11∧a13∧a4∧a5∧a8⊕a11∧a13∧a5⊕a11∧a14∧a3∧a5∧a8⊕a11∧
a14∧a5∧a8∧a9⊕a11∧a15∧a4∧a6⊕a11∧a2∧a6⊕a11∧a3∧a4∧a6⊕a11∧a3∧a5⊕
a11∧a4∧a6∧a9⊕a12∧a13∧a5∧a6⊕a12∧a15∧a6∧a9⊕a12∧a15∧a6⊕a12∧a4∧a6∧
a8⊕a12∧a6∧a7⊕a12∧a6∧a9⊕a13∧a14∧a3∧a5∧a6⊕a13∧a14∧a5∧a6∧a9⊕a13∧
a15∧a2∧a6⊕a13∧a15∧a3∧a4∧a6⊕a13∧a15∧a4∧a6∧a9⊕a13∧a15∧a4∧a6⊕a13∧
a2∧a3∧a6⊕a13∧a2∧a6∧a9⊕a13∧a3∧a4∧a6∧a9⊕a13∧a3∧a4∧a6⊕a13∧a4∧a5∧
a6⊕a13∧a4∧a6∧a7⊕a13∧a4∧a6∧a8⊕a13∧a4∧a6∧a9⊕a14∧a15∧a4∧a6∧a8⊕
a14∧a15∧a6∧a7⊕a14∧a15∧a6⊕a14∧a2∧a6∧a8⊕a14∧a3∧a4∧a6∧a8⊕a14∧a4∧
a6⊕a14∧a5∧a6∧a8⊕a14∧a6∧a9⊕a14∧a6)∧(a1∧a12∧a5⊕a1∧a4∧a7⊕a10∧a12∧
a14∧a5⊕a10∧a12∧a15∧a4⊕a10∧a12∧a2⊕a10∧a12∧a3∧a4⊕a10∧a12∧a4∧a9⊕
a10∧a13∧a2∧a4⊕a10∧a14∧a4∧a7⊕a11∧a2∧a5⊕a12∧a13∧a5⊕a12∧a15∧a3∧
a5⊕a12∧a15∧a5⊕a12∧a3∧a5⊕a12∧a4∧a5∧a8⊕a12∧a5∧a7⊕a13∧a15∧a2∧a5⊕
a13∧a4∧a5∧a7⊕a14∧a15∧a5∧a7⊕a14∧a2∧a5∧a8⊕a14∧a3∧a5∧a7⊕a14∧a5∧
a7∧a9⊕a2∧a3∧a7⊕a2∧a3⊕a2∧a4∧a6⊕a2∧a4∧a8∧a9⊕a2∧a7∧a9⊕a2∧a8⊕a2⊕
a3∧a4∧a7∧a9⊕a3∧a4∧a7⊕a4∧a7∧a8⊕a4∧a7∧a9⊕a4∧a7)∧ (a1∧a2∧a8⊕a10∧
a11∧a2⊕a10∧a12∧a13∧a5⊕a10∧a12∧a14⊕a10∧a12∧a15∧a9⊕a10∧a12∧a15⊕
a10∧a12∧a4∧a8⊕a10∧a12∧a9⊕a10∧a13∧a15∧a2⊕a10∧a13∧a2∧a3⊕a10∧a13∧
a2∧a9⊕a10∧a13∧a4∧a7⊕a10∧a14∧a15∧a7⊕a10∧a14∧a2∧a8⊕a12∧a15∧a5∧
a8⊕a12∧a3∧a5∧a8⊕a12∧a5∧a6⊕a12∧a5∧a8∧a9⊕a13∧a2∧a5∧a8⊕a14∧a5∧a7∧
a8⊕a2∧a3∧a6⊕a2∧a3∧a8∧a9⊕a2∧a3∧a8⊕a2∧a4∧a8⊕a2∧a6∧a9⊕a2∧a8∧a9⊕
a3∧a4∧a7∧a8⊕a4∧a6∧a7⊕a7∧a9⊕a7⊕1)∧(a1∧a10∧a12∧a4⊕a1∧a12∧a15∧a5⊕
a1∧a14∧a5∧a7⊕a1∧a2∧a3⊕a1∧a2∧a7⊕a1∧a2⊕a1∧a4∧a7∧a9⊕a10∧a11∧a2∧
a4⊕a10∧a12∧a14∧a3∧a5⊕a10∧a12∧a14∧a4⊕a10∧a12∧a14∧a5∧a9⊕a10∧a12∧
a15∧a2⊕a10∧a12∧a15∧a3∧a4⊕a10∧a12∧a15∧a4∧a9⊕a10∧a12∧a15∧a4⊕a10∧

C. Codes for Chapter 7 201

a12∧a2∧a3⊕a10∧a12∧a2∧a9⊕a10∧a12∧a3∧a4∧a9⊕a10∧a12∧a3∧a4⊕a10∧a12∧
a4∧a8⊕a10∧a12∧a4∧a9⊕a10∧a12∧a5⊕a10∧a13∧a14∧a2∧a5⊕a10∧a13∧a15∧
a2∧a4⊕a10∧a13∧a2∧a4∧a9⊕a10∧a13∧a2⊕a10∧a13∧a4∧a7⊕a10∧a14∧a15∧
a4∧a7⊕a10∧a14∧a2∧a4∧a8⊕a10∧a14∧a2∧a7⊕a10∧a14∧a3∧a4∧a7⊕a10∧a14∧
a5∧a7⊕a11∧a12∧a5⊕a11∧a15∧a2∧a5⊕a11∧a4∧a5∧a7⊕a12∧a14∧a5∧a8⊕a12∧
a15∧a4∧a5∧a8⊕a12∧a15∧a5∧a7⊕a12∧a15∧a5⊕a12∧a3∧a5∧a7⊕a12∧a3∧a5⊕
a12∧a4∧a5∧a6⊕a12∧a4∧a5∧a8∧a9⊕a12∧a5∧a7∧a9⊕a12∧a5⊕a13∧a14∧a5∧
a7⊕a13∧a15∧a2∧a5⊕a13∧a15∧a4∧a5∧a7⊕a13∧a2∧a3∧a5⊕a13∧a2∧a5∧a7⊕
a13∧a2∧a5⊕a13∧a4∧a5∧a7∧a9⊕a14∧a15∧a2∧a5∧a8⊕a14∧a15∧a3∧a5∧a7⊕
a14∧a15∧a5∧a7∧a9⊕a14∧a15∧a5∧a7⊕a14∧a2∧a5∧a6⊕a14∧a2∧a5∧a8∧a9⊕
a14∧a3∧a5∧a7∧a9⊕a14∧a3∧a5∧a7⊕a14∧a5∧a7∧a9⊕a14∧a5∧a7⊕a2∧a3∧a4∧
a8⊕a2∧a3∧a7∧a9⊕a2∧a3∧a7⊕a2∧a4∧a6∧a9⊕a2∧a4∧a7∧a8⊕a2∧a4∧a8∧a9⊕
a2∧a4∧a8⊕a2∧a6⊕a2∧a7∧a9⊕a2∧a7⊕a2∧a8∧a9⊕a4∧a6∧a7⊕a4∧a7∧a9⊕a4∧
a7)∧(a1∧a10∧a13∧a2⊕a1∧a12∧a5∧a8⊕a1∧a2∧a6⊕a1∧a2∧a8∧a9⊕a1∧a4∧a7∧
a8⊕a10∧a11∧a12∧a5⊕a10∧a11∧a15∧a2⊕a10∧a11∧a2∧a3⊕a10∧a11∧a2∧a9⊕
a10∧a11∧a4∧a7⊕a10∧a12∧a13∧a3∧a5⊕a10∧a12∧a13∧a4⊕a10∧a12∧a13∧a5∧
a9⊕a10∧a12∧a15∧a4∧a8⊕a10∧a12∧a15⊕a10∧a12∧a3∧a4∧a8⊕a10∧a12∧a4∧
a6⊕a10∧a12∧a9⊕a10∧a13∧a14∧a2⊕a10∧a13∧a14∧a5∧a7⊕a10∧a13∧a15∧a2∧
a3⊕a10∧a13∧a15∧a2∧a9⊕a10∧a13∧a15∧a2⊕a10∧a13∧a15∧a4∧a7⊕a10∧a13∧
a2∧a3∧a9⊕a10∧a13∧a2∧a3⊕a10∧a13∧a2∧a5⊕a10∧a13∧a2∧a9⊕a10∧a13∧a3∧
a4∧a7⊕a10∧a14∧a15∧a2∧a8⊕a10∧a14∧a15∧a7⊕a10∧a14∧a2∧a3∧a8⊕a10∧
a14∧a2∧a6⊕a10∧a14∧a7∧a9⊕a10∧a14∧a7⊕a11∧a2∧a5∧a8⊕a12∧a13∧a5∧a8⊕
a12∧a15∧a3∧a5∧a8⊕a12∧a15∧a5∧a6⊕a12∧a15∧a5∧a8∧a9⊕a12∧a15∧a5∧a8⊕
a12∧a3∧a5∧a6⊕a12∧a3∧a5∧a8∧a9⊕a12∧a3∧a5∧a8⊕a12∧a4∧a5∧a8⊕a12∧
a5∧a6∧a9⊕a12∧a5∧a8∧a9⊕a13∧a15∧a2∧a5∧a8⊕a13∧a2∧a5∧a6⊕a13∧a2∧a5∧
a8∧a9⊕a13∧a4∧a5∧a7∧a8⊕a14∧a15∧a5∧a7∧a8⊕a14∧a2∧a5∧a8⊕a14∧a3∧a5∧
a7∧a8⊕a14∧a5∧a6∧a7⊕a2∧a3∧a6∧a9⊕a2∧a3∧a6⊕a2∧a3∧a8⊕a2∧a6∧a9⊕
a2∧a8∧a9⊕a3∧a4∧a6∧a7⊕a3∧a4∧a7∧a8⊕a4∧a7∧a8∧a9⊕a4∧a7∧a8⊕a7∧a9⊕
a7)∧(a1∧a11∧a2⊕a1∧a12∧a13∧a5⊕a1∧a13∧a15∧a2⊕a1∧a13∧a4∧a7⊕a1∧a14∧
a2∧a8⊕a10∧a11∧a12∧a4⊕a10∧a11∧a14∧a2⊕a10∧a12∧a13∧a3∧a4⊕a10∧a12∧
a13∧a4∧a9⊕a10∧a12∧a14∧a15⊕a10∧a12∧a14∧a4∧a8⊕a10∧a12∧a14∧a7⊕a10∧
a12∧ a14∧ a9⊕ a10∧ a12∧ a14⊕ a10∧ a12∧ a9⊕ a10∧ a13∧ a14∧ a2∧ a3⊕ a10∧ a13∧
a14∧a2∧a9⊕a10∧a13∧a2∧a4⊕a10∧a14∧a2∧a8⊕a11∧a12∧a3∧a5⊕a11∧a14∧
a5∧a7⊕a11∧a15∧a2∧a3⊕a11∧a15∧a2⊕a11∧a15∧a4∧a7⊕a11∧a2∧a3⊕a11∧a2∧
a4∧a8⊕a11∧a2∧a7⊕a11∧a3∧a4∧a7⊕a11∧a4∧a7∧a9⊕a12∧a13∧a15∧a5⊕a12∧
a13∧a3∧a5⊕a12∧a13∧a4∧a5∧a8⊕a12∧a13∧a5∧a7⊕a12∧a13∧a5⊕a12∧a14∧
a3∧a5∧a8⊕a12∧a14∧a5∧a6⊕a12∧a14∧a5∧a8∧a9⊕a12∧a15∧a2∧a8⊕a12∧a15∧
a7∧a9⊕a12∧a15∧a7⊕a12∧a2∧a3∧a8⊕a12∧a2∧a6⊕a12∧a2∧a8∧a9⊕a12∧a4∧
a7∧a8⊕a12∧a5∧a8⊕a12∧a7∧a9⊕a12∧a7⊕a13∧a14∧a3∧a5∧a7⊕a13∧a14∧a5∧
a7∧a9⊕a13∧a15∧a2∧a4∧a8⊕a13∧a15∧a2∧a7⊕a13∧a15∧a2⊕a13∧a15∧a3∧a4∧
a7⊕a13∧a15∧a4∧a7∧a9⊕a13∧a15∧a4∧a7⊕a13∧a2∧a3∧a7⊕a13∧a2∧a3⊕a13∧
a2∧a4∧a6⊕a13∧a2∧a4∧a8∧a9⊕a13∧a2∧a7∧a9⊕a13∧a2∧a8⊕a13∧a2⊕a13∧a3∧
a4∧a7∧a9⊕a13∧a3∧a4∧a7⊕a13∧a4∧a5∧a7⊕a13∧a4∧a7∧a8⊕a13∧a4∧a7∧a9⊕

202 Chapter . Appendices

a13∧a4∧a7⊕a14∧a15∧a2∧a3∧a8⊕a14∧a15∧a2∧a6⊕a14∧a15∧a2∧a8∧a9⊕a14∧
a15∧a2∧a8⊕a14∧a15∧a4∧a7∧a8⊕a14∧a2∧a3∧a6⊕a14∧a2∧a3∧a8∧a9⊕a14∧
a2∧a3∧a8⊕a14∧a2∧a4∧a8⊕a14∧a2∧a6∧a9⊕a14∧a2∧a8∧a9⊕a14∧a3∧a4∧a7∧
a8⊕a14∧a4∧a6∧a7⊕a14∧a5∧a7∧a8⊕a14∧a7∧a9⊕a14∧a7)∧(a1∧a3⊕a1⊕a10∧
a11∧a4⊕a10∧a13∧a14∧a5⊕a10∧a13∧a15∧a4⊕a10∧a13∧a2⊕a10∧a13∧a4∧a9⊕
a10∧a14∧a4∧a8⊕a11∧a15∧a5⊕a12∧a5∧a8⊕a13∧a15∧a5⊕a13∧a3∧a5⊕a13∧
a5⊕a14∧a15∧a5∧a8⊕a14∧a5∧a6⊕a14∧a5∧a8∧a9⊕a2∧a6⊕a2∧a8∧a9⊕a3∧a4∧
a8⊕a4∧a6∧a9⊕a4∧a7∧a8⊕a4∧a8∧a9⊕a4∧a8)∧(a1∧a10∧a13⊕a1∧a6⊕a1∧a8∧
a9⊕a10∧a11∧a15⊕a10∧a11∧a3⊕a10∧a11∧a9⊕a10∧a12∧a8⊕a10∧a13∧a14⊕
a10∧ a13∧ a15∧ a3⊕ a10∧ a13∧ a15∧ a9⊕ a10∧ a13∧ a15⊕ a10∧ a13∧ a3∧ a9⊕ a10∧
a13∧a3⊕a10∧a13∧a5⊕a10∧a13∧a7⊕a10∧a13∧a9⊕a10∧a14∧a15∧a8⊕a10∧a14∧
a3∧a8⊕a10∧a14∧a6⊕a11∧a5∧a8⊕a13∧a15∧a5∧a8⊕a13∧a5∧a6⊕a13∧a5∧a8∧
a9⊕a14∧a5∧a8⊕a2∧a8⊕a3∧a6∧a9⊕a3∧a6⊕a3∧a7∧a8⊕a3∧a8⊕a6∧a7⊕a6∧
a9⊕a8∧a9⊕a8)∧ (a1∧a3⊕a1⊕a10∧a11∧a14∧a5⊕a10∧a11∧a15∧a4⊕a10∧a11∧
a2⊕a10∧a11∧a4∧a9⊕a10∧a12∧a13∧a5⊕a10∧a12∧a4∧a8⊕a10∧a13∧a14∧a4⊕
a10∧a13∧a14∧a5∧a9⊕a10∧a13∧a15∧a2⊕a10∧a13∧a15∧a4∧a9⊕a10∧a13∧a15∧
a4⊕ a10∧ a13∧ a2∧ a9⊕ a10∧ a13∧ a3∧ a4⊕ a10∧ a13∧ a4∧ a7⊕ a10∧ a13∧ a4∧ a9⊕
a10∧a14∧a15∧a4∧a8⊕a10∧a14∧a2∧a8⊕a10∧a14∧a4∧a6⊕a10∧a14∧a5∧a8⊕
a11∧a15∧a5⊕a11∧a3∧a5⊕a12∧a15∧a5∧a8⊕a12∧a5∧a6⊕a12∧a5∧a8∧a9⊕a13∧
a15∧a3∧a5⊕a13∧a15∧a5⊕a13∧a3∧a5⊕a13∧a5⊕a14∧a15∧a5∧a6⊕a14∧a15∧
a5∧a8∧a9⊕a14∧a15∧a5∧a8⊕a14∧a3∧a5∧a8⊕a14∧a5∧a6∧a9⊕a14∧a5∧a7∧a8⊕
a14∧a5∧a8∧a9⊕a2∧a3∧a8⊕a2∧a6∧a9⊕a2∧a7∧a8⊕a2∧a8∧a9⊕a3∧a4∧a6⊕
a3∧a4∧a8∧a9⊕a3∧a4∧a8⊕a4∧a6∧a7⊕a4∧a6∧a9⊕a4∧a8∧a9⊕a4∧a8⊕1)∧(a1∧
a10∧a11⊕a1∧a10∧a13∧a15⊕a1∧a10∧a13∧a9⊕a1∧a10∧a14∧a8⊕a1∧a3∧a8⊕
a1∧a6∧a9⊕a1∧a7∧a8⊕a1∧a8∧a9⊕a1∧a8⊕a10∧a11∧a14⊕a10∧a11∧a15∧a3⊕
a10∧a11∧a15∧a9⊕a10∧a11∧a15⊕a10∧a11∧a3∧a9⊕a10∧a11∧a3⊕a10∧a11∧a7⊕
a10∧a11∧a9⊕a10∧a12∧a13⊕a10∧a12∧a15∧a8⊕a10∧a12∧a3∧a8⊕a10∧a12∧a6⊕
a10∧a13∧a14∧a3⊕a10∧a13∧a14∧a5∧a8⊕a10∧a13∧a15∧a3∧a9⊕a10∧a13∧a15∧
a7⊕a10∧a13∧a15⊕a10∧a13∧a3∧a7⊕a10∧a13∧a3⊕a10∧a13∧a4⊕a10∧a13∧a5∧
a9⊕a10∧a13∧a9⊕a10∧a13⊕a10∧a14∧a15∧a3∧a8⊕a10∧a14∧a15∧a6⊕a10∧a14∧
a15∧a8⊕a10∧a14∧a3∧a6⊕a10∧a14∧a3∧a8⊕a10∧a14∧a8∧a9⊕a10∧a14∧a8⊕
a11∧a15∧a5∧a8⊕a11∧a5∧a6⊕a11∧a5∧a8∧a9⊕a12∧a5∧a8⊕a13∧a15∧a5∧a6⊕
a13∧a15∧a5∧a8∧a9⊕a13∧a15∧a5∧a8⊕a13∧a3∧a5∧a8⊕a13∧a5∧a6∧a9⊕a13∧
a5∧a7∧a8⊕a13∧a5∧a8∧a9⊕a13∧a5∧a8⊕a14∧a15∧a5∧a8⊕a3∧a4∧a8⊕a3∧a6∧
a7⊕a3∧a6⊕a3∧a7∧a8⊕a3∧a8∧a9⊕a4∧a6⊕a4∧a8∧a9⊕a4∧a8⊕a6∧a9⊕a6⊕a7∧
a8∧a9⊕a7∧a8)∧ (a1∧a10∧a13∧a14⊕a1∧a11∧a15⊕a1∧a12∧a8⊕a1∧a13∧a15⊕
a1∧a13∧a3⊕a1∧a13⊕a1∧a14∧a15∧a8⊕a1∧a14∧a6⊕a1∧a14∧a8∧a9⊕a10∧a11∧
a12⊕a10∧a11∧a14∧a3⊕a10∧a11∧a14∧a9⊕a10∧a12∧a13∧a3⊕a10∧a12∧a13∧
a9⊕ a10∧ a13∧ a14∧ a15⊕ a10∧ a13∧ a14∧ a3∧ a9⊕ a10∧ a13∧ a14∧ a3⊕ a10∧ a13∧
a14∧a4∧a8⊕a10∧a13∧a14∧a7⊕a10∧a13∧a14∧a9⊕a10∧a13∧a14⊕a10∧a13∧a2⊕
a10∧a13∧a4∧a9⊕a10∧a14∧a3∧a8⊕a10∧a14∧a6⊕a11∧a15∧a4∧a8⊕a11∧a15⊕
a11∧a2∧a8⊕a11∧a3⊕a11∧a4∧a6⊕a11∧a4∧a8∧a9⊕a11∧a5⊕a11⊕a12∧a15∧
a3∧a8⊕a12∧a15∧a6⊕a12∧a15∧a8∧a9⊕a12∧a15∧a8⊕a12∧a3∧a6⊕a12∧a3∧a8∧

C. Codes for Chapter 7 203

a9⊕a12∧a3∧a8⊕a12∧a4∧a8⊕a12∧a6∧a9⊕a12∧a7∧a8⊕a12∧a8∧a9⊕a13∧a15∧
a2∧a8⊕a13∧a15∧a3⊕a13∧a15∧a4∧a6⊕a13∧a15∧a4∧a8∧a9⊕a13∧a15∧a4∧a8⊕
a13∧a15∧a5⊕a13∧a2∧a6⊕a13∧a2∧a8∧a9⊕a13∧a3∧a4∧a8⊕a13∧a3∧a5⊕a13∧
a4∧a6∧a9⊕a13∧a4∧a7∧a8⊕a13∧a4∧a8∧a9⊕a13∧a4∧a8⊕a13∧a5⊕a14∧a15∧
a3∧a6⊕a14∧a15∧a3∧a8∧a9⊕a14∧a15∧a4∧a8⊕a14∧a15∧a6∧a9⊕a14∧a15∧a6⊕
a14∧a15∧a7∧a8⊕a14∧a15∧a8⊕a14∧a2∧a8⊕a14∧a3∧a6∧a9⊕a14∧a3∧a6⊕a14∧
a3∧a7∧a8⊕a14∧a3∧a8⊕a14∧a5∧a8⊕a14∧a6∧a7⊕a14∧a6∧a9⊕a14∧a8∧a9⊕
a14∧a8)∧ (a1∧a14∧a5⊕a1∧a2⊕a1∧a4∧a9⊕a10∧a12∧a4⊕a10∧a13∧a4⊕a10∧
a14∧a15∧a4⊕a10∧a14∧a2⊕a10∧a14∧a3∧a4⊕a10∧a14∧a5⊕a11∧a4∧a5⊕a12∧
a15∧a5⊕a12∧a3∧a5⊕a12∧a5∧a9⊕a13∧a14∧a5⊕a13∧a15∧a4∧a5⊕a13∧a2∧a5⊕
a13∧a4∧a5∧a9⊕a14∧a15∧a3∧a5⊕a14∧a15∧a5∧a9⊕a14∧a15∧a5⊕a14∧a3∧a5∧
a9⊕a14∧a3∧a5⊕a14∧a5∧a7⊕a14∧a5∧a9⊕a2∧a3∧a9⊕a2∧a3⊕a2∧a7⊕a2∧a9⊕
a3∧a4∧a7⊕a3∧a4⊕a4∧a6⊕a4∧a9⊕a4)∧ (a1∧a4∧a8⊕a10∧a11∧a4⊕a10∧a12∧
a15⊕a10∧a13∧a14∧a5⊕a10∧a13∧a15∧a4⊕a10∧a13∧a2⊕a10∧a13∧a3∧a4⊕a10∧
a14∧a15⊕a10∧a14∧a9⊕a10∧a14⊕a12∧a5∧a8⊕a13∧a4∧a5∧a8⊕a14∧a15∧a5∧
a8⊕a14∧a3∧a5∧a8⊕a14∧a5∧a6⊕a2∧a3∧a8⊕a2∧a6⊕a3∧a4∧a6⊕a3∧a4∧a8⊕
a4∧a8∧a9⊕a4∧a8⊕a7∧a9⊕a7)∧ (a1∧a10∧a14∧a4⊕a1∧a12∧a5⊕a1∧a14∧a15∧
a5⊕a1∧a14∧a5∧a9⊕a1∧a2∧a9⊕a1∧a3∧a4⊕a1∧a4∧a7⊕a1∧a4∧a9⊕a1∧a4⊕
a10∧a11∧a4⊕a10∧a12∧a15∧a4⊕a10∧a12∧a2⊕a10∧a12∧a3∧a4⊕a10∧a13∧a14∧
a4∧a5⊕a10∧a13∧a15∧a4⊕a10∧a14∧a15∧a2⊕a10∧a14∧a15∧a3∧a4⊕a10∧a14∧
a15∧a4⊕a10∧a14∧a2∧a3⊕a10∧a14∧a3∧a4⊕a10∧a14∧a3∧a5⊕a10∧a14∧a4∧
a9⊕a10∧a14∧a4⊕a11∧a14∧a5⊕a11∧a15∧a4∧a5⊕a11∧a2∧a5⊕a11∧a4∧a5∧a9⊕
a12∧a13∧a5⊕a12∧a15∧a3∧a5⊕a12∧a15∧a5∧a9⊕a12∧a15∧a5⊕a12∧a3∧a5∧
a9⊕a12∧a3∧a5⊕a12∧a5∧a7⊕a12∧a5∧a9⊕a13∧a14∧a5∧a9⊕a13∧a15∧a2∧a5⊕
a13∧a15∧a4∧a5∧a9⊕a13∧a15∧a4∧a5⊕a13∧a2∧a5∧a9⊕a13∧a3∧a4∧a5⊕a13∧
a4∧a5∧a7⊕a13∧a4∧a5∧a9⊕a13∧a4∧a5⊕a14∧a15∧a3∧a5∧a9⊕a14∧a15∧a5∧
a7⊕a14∧a15∧a5⊕a14∧a3∧a5∧a7⊕a14∧a3∧a5⊕a14∧a5∧a8⊕a14∧a5∧a9⊕a14∧
a5⊕a2∧a3∧a7⊕a2∧a3⊕a2∧a8⊕a2∧a9⊕a2⊕a3∧a4∧a7⊕a3∧a4∧a8⊕a3∧a4∧a9⊕
a4∧a7∧a9⊕a4∧a7⊕a4∧a8∧a9⊕a4∧a8)∧(a1∧a10∧a13∧a4⊕a1∧a14∧a5∧a8⊕a1∧
a2∧a8⊕a1∧a4∧a6⊕a10∧a11∧a14∧a5⊕a10∧a11∧a15∧a4⊕a10∧a11∧a2⊕a10∧
a11∧a3∧a4⊕a10∧a12∧a13∧a5⊕a10∧a12∧a15⊕a10∧a12∧a9⊕a10∧a13∧a14∧a3∧
a5⊕a10∧a13∧a15∧a2⊕a10∧a13∧a15∧a3∧a4⊕a10∧a13∧a15∧a4⊕a10∧a13∧a2∧
a3⊕a10∧a13∧a3∧a4⊕a10∧a13∧a4∧a5⊕a10∧a13∧a4∧a9⊕a10∧a14∧a15∧a9⊕
a10∧a14∧a15⊕a10∧a14∧a9⊕a10∧a14⊕a11∧a4∧a5∧a8⊕a12∧a15∧a5∧a8⊕a12∧
a3∧a5∧a8⊕a12∧a5∧a6⊕a13∧a14∧a5∧a8⊕a13∧a15∧a4∧a5∧a8⊕a13∧a2∧a5∧
a8⊕a13∧a4∧a5∧a6⊕a14∧a15∧a3∧a5∧a8⊕a14∧a15∧a5∧a6⊕a14∧a15∧a5∧a8⊕
a14∧a3∧a5∧a6⊕a14∧a3∧a5∧a8⊕a14∧a5∧a8∧a9⊕a2∧a3∧a6⊕a2∧a3∧a8⊕a2∧
a8∧a9⊕a3∧a4∧a6⊕a3∧a4∧a8∧a9⊕a3∧a4∧a8⊕a4∧a6∧a9⊕a4∧a8∧a9⊕a4∧a8⊕
a7∧a9⊕a7⊕1)∧(a1∧a11∧a4⊕a1∧a13∧a14∧a5⊕a1∧a13∧a15∧a4⊕a1∧a13∧a2⊕
a1∧a13∧a4∧a9⊕a1∧a14∧a4∧a8⊕a10∧a12⊕a10∧a13∧a4⊕a10∧a14∧a15⊕a10∧
a14∧a9⊕a10∧a14⊕a11∧a12∧a5⊕a11∧a14∧a3∧a5⊕a11∧a14∧a5∧a9⊕a11∧a15∧
a2⊕a11∧a15∧a3∧a4⊕a11∧a15∧a4∧a9⊕a11∧a15∧a4⊕a11∧a2∧a3⊕a11∧a2∧a9⊕
a11∧a3∧a4∧a9⊕a11∧a3∧a4⊕a11∧a4∧a7⊕a11∧a4∧a8⊕a11∧a4∧a9⊕a12∧a13∧

204 Chapter . Appendices

a3∧a5⊕a12∧a13∧a5∧a9⊕a12∧a15∧a4∧a8⊕a12∧a15∧a7⊕a12∧a15⊕a12∧a2∧
a8⊕a12∧a3∧a4∧a8⊕a12∧a4∧a6⊕a12∧a9⊕a12⊕a13∧a14∧a15∧a5⊕a13∧a14∧
a3∧a5∧a9⊕a13∧a14∧a3∧a5⊕a13∧a14∧a4∧a5∧a8⊕a13∧a14∧a5∧a7⊕a13∧a14∧
a5∧a9⊕a13∧a14∧a5⊕a13∧a15∧a2∧a3⊕a13∧a15∧a2∧a9⊕a13∧a15∧a2⊕a13∧
a15∧a3∧a4∧a9⊕a13∧a15∧a4∧a7⊕a13∧a15∧a4∧a8⊕a13∧a15∧a4⊕a13∧a2∧a3∧
a9⊕a13∧a2∧a3⊕a13∧a2∧a5⊕a13∧a2∧a7⊕a13∧a2∧a9⊕a13∧a3∧a4∧a7⊕a13∧
a3∧a4⊕a13∧a4∧a5∧a9⊕a13∧a4∧a6⊕a13∧a4∧a9⊕a13∧a4⊕a14∧a15∧a2∧a8⊕
a14∧a15∧a3∧a4∧a8⊕a14∧a15∧a4∧a6⊕a14∧a15∧a4∧a8⊕a14∧a15∧a7⊕a14∧
a15∧a9⊕a14∧a2∧a3∧a8⊕a14∧a2∧a6⊕a14∧a3∧a4∧a6⊕a14∧a3∧a4∧a8⊕a14∧
a3∧a5∧a8⊕a14∧a4∧a8∧a9⊕a14∧a4∧a8⊕a14∧a5∧a6⊕a14∧a7∧a9⊕a14∧a7)∧
(a1∧a10∧a4⊕a1∧a15∧a5⊕a10∧a12∧a5⊕a10∧a14∧a3∧a5⊕a10∧a14∧a4⊕a10∧
a14∧a5∧a9⊕a10∧a15∧a2⊕a10∧a15∧a3∧a4⊕a10∧a15∧a4∧a9⊕a10∧a15∧a4⊕
a10∧a2∧a3⊕a10∧a2∧a9⊕a10∧a3∧a4∧a9⊕a10∧a3∧a4⊕a10∧a4∧a7⊕a10∧a4∧
a8⊕a10∧a4∧a9⊕a11∧a5⊕a14∧a5∧a8⊕a15∧a4∧a5∧a8⊕a15∧a5⊕a2∧a5∧a8⊕
a3∧a5⊕a4∧a5∧a6⊕a4∧a5∧a8∧a9⊕a5)∧ (a1∧a5∧a8⊕a10∧a11∧a5⊕a10∧a12⊕
a10∧a13∧a3∧a5⊕a10∧a13∧a4⊕a10∧a13∧a5∧a9⊕a10∧a15∧a4∧a8⊕a10∧a15∧
a7⊕a10∧a15⊕a10∧a2∧a8⊕a10∧a3∧a4∧a8⊕a10∧a4∧a6⊕a10∧a9⊕a10⊕a13∧a5∧
a8⊕a15∧a3∧a5∧a8⊕a15∧a5∧a6⊕a15∧a5∧a8∧a9⊕a15∧a5∧a8⊕a3∧a5∧a6⊕a3∧
a5∧a8∧a9⊕a3∧a5∧a8⊕a4∧a5∧a8⊕a5∧a6∧a9⊕a5∧a7∧a8⊕a5∧a8∧a9)∧ (a1∧
a10∧a14∧a5⊕a1∧a10∧a15∧a4⊕a1∧a10∧a2⊕a1∧a10∧a4∧a9⊕a1∧a15∧a5⊕a1∧
a3∧a5⊕a1∧a5⊕a10∧a12∧a3∧a5⊕a10∧a12∧a4⊕a10∧a12∧a5∧a9⊕a10∧a13∧a4⊕
a10∧a14∧a15∧a5⊕a10∧a14∧a2⊕a10∧a14∧a3∧a4⊕a10∧a14∧a3∧a5∧a9⊕a10∧
a14∧ a3∧ a5⊕ a10∧ a14∧ a4∧ a5∧ a8⊕ a10∧ a14∧ a5∧ a7⊕ a10∧ a14∧ a5∧ a9⊕ a10∧
a14∧a5⊕a10∧a15∧a2∧a3⊕a10∧a15∧a2∧a9⊕a10∧a15∧a2⊕a10∧a15∧a3∧a4∧
a9⊕a10∧a15∧a4∧a7⊕a10∧a15∧a4∧a8⊕a10∧a15∧a4⊕a10∧a2∧a3∧a9⊕a10∧a2∧
a3⊕a10∧a2∧a7⊕a10∧a2∧a9⊕a10∧a3∧a4∧a7⊕a10∧a3∧a4⊕a10∧a4∧a6⊕a10∧
a4∧a9⊕a10∧a4⊕a12∧a5∧a8⊕a13∧a15∧a5⊕a13∧a3∧a5⊕a13∧a5⊕a14∧a5∧a6⊕
a14∧a5∧a8∧a9⊕a15∧a2∧a5∧a8⊕a15∧a3∧a5⊕a15∧a4∧a5∧a6⊕a15∧a4∧a5∧a8∧
a9⊕a15∧a4∧a5∧a8⊕a2∧a5∧a6⊕a2∧a5∧a8∧a9⊕a3∧a4∧a5∧a8⊕a4∧a5∧a6∧a9⊕
a4∧a5∧a7∧a8⊕a4∧a5∧a8∧a9⊕a4∧a5∧a8)∧(a1∧a10∧a13∧a5⊕a1∧a10∧a4∧a8⊕
a1∧a15∧a5∧a8⊕a1∧a5∧a6⊕a1∧a5∧a8∧a9⊕a10∧a11∧a3∧a5⊕a10∧a11∧a4⊕
a10∧a11∧a5∧a9⊕a10∧a13∧a15∧a5⊕a10∧a13∧a2⊕a10∧a13∧a3∧a4⊕a10∧a13∧
a3∧a5∧a9⊕a10∧a13∧a3∧a5⊕a10∧a13∧a4∧a5∧a8⊕a10∧a13∧a5∧a7⊕a10∧a13∧
a5∧a9⊕a10∧a13∧a5⊕a10∧a14∧a15⊕a10∧a14∧a9⊕a10∧a14⊕a10∧a15∧a2∧a8⊕
a10∧a15∧a3∧a4∧a8⊕a10∧a15∧a4∧a6⊕a10∧a15∧a4∧a8⊕a10∧a15∧a7⊕a10∧
a15∧a9⊕a10∧a2∧a3∧a8⊕a10∧a2∧a6⊕a10∧a3∧a4∧a6⊕a10∧a3∧a4∧a8⊕a10∧
a4∧a8∧a9⊕a10∧a4∧a8⊕a10∧a7∧a9⊕a10∧a7⊕a11∧a5∧a8⊕a13∧a5∧a6⊕a13∧
a5∧a8∧a9⊕a14∧a5∧a8⊕a15∧a3∧a5∧a6⊕a15∧a3∧a5∧a8∧a9⊕a15∧a4∧a5∧a8⊕
a15∧a5∧a6∧a9⊕a15∧a5∧a6⊕a15∧a5∧a7∧a8⊕a15∧a5∧a8⊕a2∧a5∧a8⊕a3∧a5∧
a6∧a9⊕a3∧a5∧a6⊕a3∧a5∧a7∧a8⊕a3∧a5∧a8⊕a5∧a6∧a7⊕a5∧a6∧a9⊕a5∧a8∧
a9⊕a5∧a8)∧(a1∧a10∧a13∧a4⊕a1∧a11∧a5⊕a1∧a14∧a5∧a8⊕a10∧a11∧a2⊕a10∧
a11∧a3∧a4⊕a10∧a11∧a4∧a9⊕a10∧a12∧a15⊕a10∧a12∧a4∧a8⊕a10∧a12∧a7⊕
a10∧a12∧a9⊕a10∧a13∧a15∧a4⊕a10∧a13∧a2∧a3⊕a10∧a13∧a2∧a9⊕a10∧a13∧

C. Codes for Chapter 7 205

a3∧ a4∧ a9⊕ a10∧ a13∧ a3∧ a4⊕ a10∧ a13∧ a4∧ a7⊕ a10∧ a13∧ a4∧ a8⊕ a10∧ a13∧
a4∧a9⊕a10∧a14∧a15∧a9⊕a10∧a14∧a15⊕a10∧a14∧a2∧a8⊕a10∧a14∧a3∧a4∧
a8⊕a10∧a14∧a4∧a6⊕a10∧a14∧a9⊕a10∧a14⊕a11∧a15∧a5⊕a11∧a3∧a5⊕a11∧
a4∧a5∧a8⊕a12∧a3∧a5∧a8⊕a12∧a5∧a6⊕a12∧a5∧a8∧a9⊕a13∧a15∧a3∧a5⊕
a13∧a15∧a5⊕a13∧a2∧a5∧a8⊕a13∧a3∧a5⊕a13∧a4∧a5∧a6⊕a13∧a4∧a5∧a8∧
a9⊕a13∧a5⊕a14∧a15∧a5∧a8⊕a14∧a3∧a5∧a6⊕a14∧a3∧a5∧a8∧a9⊕a14∧a3∧
a5∧a8⊕a14∧a4∧a5∧a8⊕a14∧a5∧a6∧a9⊕a14∧a5∧a7∧a8⊕a14∧a5∧a8∧ (∼ a9)]

206 Chapter . Appendices

Bibliography

[ADZ93] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys. Rev.
A, 48:1687–1690, Aug 1993.

[Aea19] Frank Arute and et al. Quantum supremacy using a programmable superconduct-
ing processor. Nature, 574:505–510, 2019.

[AKR05] Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum
walks faster. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’05, pages 1099–1108, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[Alb60] A. A. Albert. Finite division algebras and finite planes. Proc. Symp. Appl. Math,
10:53–70, 1960.

[Alb61] A. A. Albert. Generalized twisted fields. Pac. J. of Math., 11:1–8, 1961.

[AR20] Scott Aaronson and Patrick Rall. Quantum approximate counting, simplified. Al-
gorithms, 24:32, 2020.

[AvDK+04] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Loyd, and O. Regev. Adia-
batic quantum computation is equivalent to standard quantum computation. Pro-
ceedings of, 45:42–51, 2004.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM Journal on Computing,
26(5):1510–1523, 1997.

[BBHT98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight bounds on quantum search-
ing. Fortschr. Phys, 46 (4-5):493–505, 1998.

[Ben80] P. Benioff. The computer as a physical system: a microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines. Journal
of statistical physics, 22 (5):563–591, 1980.

[BF28] M. Born and V. Fock. Beweis des adiabatensatzes. Zeitschrift für Physik, 51
(3-4):165–180, 1928.

207

208 Bibliography

[CCS99] Arjeh M. Cohen, Hans Cuypers, and Hans Sterk, editors. Some tapas of computer
algebra, volume 4 of Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, 1999.

[CEMM98] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revis-
ited. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1969):339–354, 1998.
Quantum coherence and decoherence (Santa Barbara, CA, 1996).

[CGC23] E. F. Combarro and S. González-Castillo. A Practical Guide to Quantum Machine
Learning and Quantum Optimization: Hands-on Approach to Modern Quantum
Algorithms. Packt Publising, ISBN: 978-1804613832, 2023.

[CQ18] Guangya Cai and Daowen Qiu. Optimal separation in exact query complexities
for Simon’s problem. J. Comput. System Sci., 97:83–93, 2018.

[CRO+24] E. F. Combarro, I. F. Rúa, F. Orts, G. Ortega, A. M. Puertas, and E. M. Garzón.
Quantum algorithms to compute the neighbour list of N-body simulations. Quan-
tum Inf. Process., 23(2):Paper No. 61, 2024.

[CRR11] E. F. Combarro, I. F. Rúa, and J. Ranilla. New advances in the computational
exploration of semifields. International Journal of Computer Mathematics, 88
(9):1990–2000, 2011.

[CRR19a] E. F. Combarro, J. Ranilla, and I.F. Rúa. A quantum algorithm for the commuta-
tivity of finite dimensional algebras. IEEE Access, 7:45554–45562, 2019.

[CRR19b] Elías F. Combarro, José Ranilla, and I. F. Rúa. Quantum walks for the determi-
nation of commutativity of finite dimensional algebras. J. Comput. Appl. Math.,
354:496–506, 2019.

[CRR19c] Elías F. Combarro, José Ranilla, and Ignacio F. Rúa. Experiments testing the
commutativity of finite-dimensional algebras with a quantum adiabatic algorithm.
volume 1, pages e1009,11, 2019.

[CRR20] Elías F. Combarro, José Ranilla, and Ignacio Fernández Rúa. Quantum abstract
detecting systems. Quantum Information Processing, 19(8):258, 2020.

[Dem08] Ulrich Dempwolff. Semifield planes of order 81. J. Geom., 89(1-2):1–16, 2008.

[DF04] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons,
Inc., Hoboken, NJ, third edition, 2004.

[Dic06] Leonard Eugene Dickson. Linear algebras in which division is always uniquely
possible. Transactions of the American Mathematical Society, 7(3):370–390,
1906.

Bibliography 209

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum com-
putation. Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 439(1907):553–558, 1992.

[DJCS21] Grinko Dmitry, Gacon Julien, Zoufal Christa, and Woerner Stefan. Iterative quan-
tum amplitude estimation. npj Quantum Inf, 7(1):1–6, 2021.

[Fey82] R. Feynman. Simulating physics with computers. International Journal of Theo-
retical Physics, 21 (6):467–488, 1982.

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm, 2014.

[FGGS00] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
computation by adiabatic evolution. arXiv: Quantum Physics, 2000.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[HCCR22] J. M. Hernández Cáceres, E. F. Combarro, and I. F. Rúa. Combinatorial and
rotational quantum abstract detecting systems. Quantum Inf. Process., 21(2):Paper
No. 66, 27, 2022.

[HCR23] J. M. Hernández Cáceres and I. F. Rúa. An approach to the classification of finite
semifields by quantum computing. In Non-associative algebras and related topics,
volume 427 of Springer Proc. Math. Stat., pages 245–260. Springer, Cham, 2023.

[HK18] Kelsey Horan and Delaram Kahrobaei. The hidden subgroup problem and post-
quantum group-based cryptography. In Mathematical software—ICMS 2018, vol-
ume 10931 of Lecture Notes in Comput. Sci., pages 218–226. Springer, Cham,
2018.

[HR07] I. R. Hentzel and I. F. Rúa. Primitivity of finite semifields with 64 and 81 elements.
Internat. J. Algebra Comput., 17(7):1411–1429, 2007.

[J06] Watrous J. Quantum computation lecture notes. Waterloo Lecture notes, 2006.

[Jac45] N. Jacobson. Structure theory for algebraic algebras of bounded degree. Ann. of
Math, 46:695–707, 1945.

[JER23] Hernández Cáceres J.M., Combarro Elías, and I.F. Rúa. Efficient quantum algo-
rithms to find substructures on finite algebras. Quantum Information & Computa-
tion, 23 No.15& 16, 2023.

[Kit95] A. Yu. Kitaev. Quantum measurements and the abelian stabilizer problem.
arXiv:quant-ph/9511026, 1995.

210 Bibliography

[Kle60] Erwin Kleinfeld. Techniques for enumerating veblen-wedderburn systems. J.
ACM, 7:330–337, 1960.

[KN98] T. Kadowaki and H. Nishimori. Quantum annealing in the transverse ising model.
Physical Review E, 58.5355:5355–5363, 1998.

[Knu65] D. E. Knuth. Finite semifields and projective planes. Journal of Algebra, 2:182–
217, 1965.

[LN83] R. Lidl and H. Niederreiter. Finite fields. Encyclopedia of mathematics and its
applications, 20, 1983.

[LN96] Rudolf Lidl and Harald Niederreiter. Finite fields and their applications, volume 1
of Handb. Algebr. Elsevier/North-Holland, Amsterdam, 1996.

[Lom04] Chris Lomont. The hidden subgroup problem - review and open problems.
arXiv:quant-ph/0411037, 2004.

[LP17] David A. Levin and Yuval Peres. Markov chains and mixing times. American
Mathematical Society, Providence, RI, second edition, 2017.

[LS23] Michel Lavrauw and John Sheekey. Symplectic 4-dimensional semifields of order
84 and 94. Designs, Codes and Cryptography, 91:1–15, 02 2023.

[Man80] Y. Manin. Vychislimoe i nevychislimoe. Sov. Radio, pages 13–15, 1980.

[MN05] F. Magniez and A. Nayak. Quantum Complexity of Testing Group Commutativity.
Springer, Lecture Notes in Computer Science 3580, 2005.

[MOS+19] Hamed Mohammadbagherpoor, Young-Hyun Oh, Anand Singh, Xianqing Yu, and
Andy J. Rindos. Experimental challenges of implementing quantum phase esti-
mation algorithms on ibm quantum computer. arXiv, 1903.07605, 2019.

[MW05] J. H. Maclagan-Wedderburn. A theorem on finite algebras. Trans. Amer. Math.
Soc., 6(3):349–352, 1905.

[Nak20] Kouhei Nakaji. Faster amplitude estimation. Quantum Inf. Comput., 20(13-
14):1109–1123, 2020.

[NC11] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, 2011.

[OR07] David Oliveira and Rubens Ramos. Quantum bit string comparator: Circuits and
applications. Quantum Computers and Computing, 7, 01 2007.

[OTT19] Thomas E O’Brien, Brian Tarasinski, and Barbara M Terhal. Quantum phase esti-
mation of multiple eigenvalues for small-scale (noisy) experiments. New Journal
of Physics, 21(2):023022, feb 2019.

Bibliography 211

[Pak00] Igor Pak. Probability of generating a finite group. pages 1–22, 2000.

[Pak12] I. Pak. Testing commutativity of a group and the power of randomization. LMS
Journal of Computation and Mathematics, 15:38–43, 2012.

[Pet33] M. Petrovic. Théorème sur les intégrales curvilignes. Math, de l’Univ. Beograd,
2:45–59, 1933.

[Por13] R. Portugal. Quantum Walks and Search Algorithms. Springer New York, 2013.

[Pso84] E. Psomopoulos. Commutativity theorems for rings and groups with constraints
on commutators. Int. J. Math, 7 (3):513–517, 1984.

[Ral21] Patrick Rall. Faster coherent quantum algorithms for phase, energy, and amplitude
estimation. Quantum, 5:566, 2021.

[RC12] I. F. Rúa and E. F. Combarro. Commutative semifields of order 35. Comm. Alge-
bra, 40(3):988–996, 2012.

[RC18] Ignacio F. Rúa and Elías F. Combarro. Cryptographic uncertainness: some ex-
periments on finite semifield based substitution boxes, volume 142 of Stud. Syst.
Decis. Control. Springer, Cham, 2018.

[RCR09] I. F. Rúa, E. F. Combarro, and J. Ranilla. Classification of semifields of order 64.
J. of Algebra, 322 (11):941–961, 2009.

[RCR12] I. F. Rúa, E. F. Combarro, and J. Ranilla. Determination of division algebras with
243 elements. Finite Fields and Their Applications, 18:1148–1155, 2012.

[Rú04] Ignacio Rúa. Primitive and non primitive finite semifields. Communications in
Algebra, 32:793–803, 03 2004.

[San16] Raqueline A. M. Santos. Szegedy’s quantum walk with queries. Quantum Infor-
mation Processing, 15(11):4461–4475, 2016.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[Sim94] D. R. Simon. On the power of quantum computation. In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, SFCS ’94, pages 116–
123, USA, 1994. IEEE Computer Society.

[SUR+20] Yohichi Suzuki, Shumpei Uno, Rudy Raymond, Tomoki Tanaka, Tamiya On-
odera, and Naoki Yamamoto. Amplitude estimation without phase estimation.
Quantum Information Processing, 19(2), jan 2020.

212 Bibliography

[Sze04] Mario Szegedy. Quantum speed-up of markov chain based algorithms. In Pro-
ceedings of the 45th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS ’04, pages 32–41, Washington, DC, USA, 2004. IEEE Computer
Society.

[Tse83] G. S. Tseitin. On the complexity of derivation in propositional calculus. pages
466–483, 1983.

[VBE96] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elemen-
tary arithmetic operations. Phys. Rev. A (3), 54(1):147–153, 1996.

[vzGG99] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cam-
bridge University Press, New York, 1999.

[Wal62] R.J Walker. Determination of division algebras with 32 elements. Proc. Symp.
Appl. Math. AMS, 15:83–85, 1962.

[Wie19] C. R. Wie. Simpler quantum counting. Quantum Information and Computation,
19(11 & 12), sep 2019.

[Won17] T.G. Wong. Equivalence of Szegedy’s and coined quantum walks. Quantum Inf
Process, 16 (215), 2017.

[XDS93] S.J. Xu, M. Darouach, and J. Schaefers. Expansion of det(a+b) and robustness
analysis of uncertain state space systems. IEEE Transactions on Automatic Con-
trol, 38(11):1671–1675, 1993.

[YM08] Noson S. Yanofsky and Mirco Mannucci. Quantum Computing for Computer
Scientists. Cambridge University Press, 2008.

Index

Bell States, 26

Character, 19

Division Algebra, 14

Field, 11
Finite Algebras, 13
Finite Semifield, 16

Group, 9
Orthogonal, 10
Special Orthogonal, 10

Hadamard Test, 34

Ideal, 11
Principal, 11

Integral Domain, 11
Principle, 11

Ket, 23

Measurement, 27
Multi-qubit, 26
Multiplication table, 14

Oracle
Phase, 38

Oracles, 37
Orthogonal subgroup, 20

QADS, 67
Combinatorial, 73
Rotational, 82

Quantum Algorithm, 49

Grover’s Search Algorithm, 61
Hidden Subgroup Problem, 52
Quantum Phase Estimation, 58
Simon’s Algorithm, 49

Quantum Circuit
Efficient, 37
Size, 36

Quantum Circuits, 31
Quantum Fourier Transform, 40
Quantum Gate, 28

π/8 half-phase gate, 29
CNOT gate, 30
Hadamard gate, 29
Not gate, 29
Toffoli, 31

Qubit, 25
Ancilla, 38

Quotient
Ring, 11

Register, 26
Ring, 11

Division Ring, 11
Non-associative, 11

State
Entangled, 26
Superposition, 25

Structure Constants, 14
Subgroup, 9

Theorem
Fundamental Theorem of Abelian

Groups, 10

213

214 Index

Lagrange Theorem, 10

Uncomputation, 38
Unit, 11

Unitary Matrix, 28

Zero Divisor, 11

	Resumen
	Publicaciones
	Abstract
	Publications

	Introduction
	Overview of the Contents
	Notation and Conventions
	Acknowledgment

	Algebraic Foundations
	Groups
	Rings and Modules
	
	Finite Semifields
	Character Theory of Finite Abelian Groups
	Probability of Generating a Group

	Quantum preliminaries
	Quantum Circuit Model
	Braket Notation
	Qubits
	Measurement
	Quantum gates

	Quantum Circuits
	Oracles

	Quantum Fourier Transform over Abelian Groups
	

	Quantum Optimization

	Some Quantum Algorithms
	Simon's Algorithm
	The Hidden Subgroup Problem
	Quantum Phase Estimation
	Grover's Search Algorithm
	Technique For Listing All Elements Marked By An Oracle
	Quantum Abstract Detecting Systems (QADS)
	Algorithmic closure of QADS
	Properties of QADS
	Detection with a QADS

	Combinatorial and Rotational QADS
	QADS
	Rotational QADS
	Application: Decision on Eigenvalues
	Application: Phase estimation
	Generalized Hadamard Test
	Dichotomy search
	Hybrid methodology

	Application: Commutativity of Finite Algebras with Combinatorial QADS.

	Efficient Quantum Algorithms To Find Substructures On Finite Algebras
	Substructures
	The classical approach
	Hiding functions
	Classical solution

	The quantum approach
	Oracle of the hiding function
	Quantum Algorithm To Find Substructures
	Classical post processing
	Examples

	An approach to the Classification of Finite Semifields by Quantum Computing
	Quantum Computational Search of Finite Semifields with Grover's algorithm
	Semifield of Order 8
	Description of Semifields of Order 16
	Estimation of costs for the general case, in terms of Quantum Gates

	Quantum Computational Search of Finite Semifields with Quantum Optimization

	Conclusions
	Conclusiones
	Appendices
	Codes for Chapter 5
	Codes for Chapter 6
	Codes for Chapter 7

	Bibliography
	Index

