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Problem solving in Engineering

Strategies
% Define the problem (analysis).

“* Find a model that represents the problem (abstraction).

\/

* Design an algorithm based on the model to solve the problem.

Abstraction Program

Problem » Model »y Solution
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Programs

The Quote

Programs = Data Structures + Algorithms

** Find ways to store data and to design algorithms able to solve
the tasks assigned to the processes.

Niclaus Wirth (Wikipedia)

¢ Term coined by Niclaus Wirth in 1976

. Turing Award 1984.

—  Designer of the programming languages Euler, Algol, Pascal, Modula, Modula-2
and Oberon.
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Data Type

Definition

“ Value set that may be assigned to a class property.

PDT (Predefined Data Type) constitute the default data types in a
programming language.

— Integer.

— Real.

—  Character.

—  Boolean.

— Reference.
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Data Structures

Definition
% Data set related to each other in a specify way'.

. The SDT (Structured Data Types) part of a programming language are
collections of data types stored in a sequential order.
—  Arrays.
—  Strings.
—  Classes and objects.

There are other default data structures, which are usually
iImplemented using classes.
— Array List.
—  List.
—  Hash Map.
—  Stack.

1 [
M W\ 'Weiss, Mark Allen; (2000) Estructuras de Datos En Java 2. Addison-Wesley Iberoamericana.
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Data Structures

Classification

% Main data structure families
Linear (lists, stacks and queues).
Network (graphs).
Hierarchical (trees).
Dictionaries (hash tables).

O-O-® O—p &
offe

vy

< They may be combined to create other structures.

> &
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Data Structures

What structure should | use?

% The selection of the right structure for a given scenario depends
on...
1. Adequacy of the structure to the model representation.

2. Efficiency of the structure.
—  Temporal (speed associated to the algorithms) — O+(n).
—  Spatial (memory required to implement the structure) — O,,(n).
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Algorithmic (essentials)

How many times is fest() executed?

Algorithm A Tp,=3 Algorithm B Tg =2
{ {
test () ; test () ;
test () ; test () ;
if (5%2 == 0) {
int 1=3; test () ;
return (i*test()); return (test () %2);
} }
return (0);
}

Data Structures
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Algorithmic (essentials)

How many times is fest() executed?

Tp(n) =5n+1

for (int 1i=0;

test ()
test ()
test ()
test ()
}

.
14
)
14
)
14

14

test () ;
test () ;
test () ;

Algorithm C Tc(nN)=4n +6
{

test () ;

test () ;

test () ;

i<n; i++) |

Algorithm D

{

for (int 1i=0;
test () ;
test () ;
test () ;
test () ;
test () ;
}

test () ;

i<n; i++) |

Data Structures
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Algorithmic (essentials)

Which is the fastest algorithm?

Execution Times

i T,(n) =&
D. T.(n) =7
T.(n) = 4n + &
T,(n) = 5n + &
....... - Ap
O(1) n

REMEMBER: in algorithmic research, n always assumes an infinite value [11] Jul-23




Algorithmic (essentials)

Hoy many times is test() executed?

Algorithm E

Te (n) =2n? + 1

{
for (int 1=0;
for (int 3=0;

test () ;
test () ;
}
test () ;

}

i<n; 1i++)
j<n; J++) |

Algorithm F Tg (n) = 2([log,n] + 1) + 1

Data Structures

{
while (n>0) {
test () ;
test () ;
n =n/2;

}

test () ;
}

www.martin-gonzalez.es
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Algorithmic (essentials)

Temporal Complexity

O(n?) : O(n)

Data Structures www.martin-gonzalez.es

Efficiency Rank
P

1. O(1)

2. O(log,n)
3. O(n)

4. O(nlog,n)
5. 0(n?)

6. O(n 2log2 )
7. O(n?3)

NP

1. 0(2™) = O(K")
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Algorithmic (essentials)

Relevance of the Temporal Efficiency

n Ta(n) =20 Tg(n) =n3

10 0.1 seconds 10 seconds
15 3.27 seconds 33.7 seconds
20 1.75 minutes 1.3 minutes
25 0.93 hours 2.5 minutes
30 29.8 hours 4.5 minutes
35 39.7 days 7.14 minutes
40 3.4 years 10.66 minutes
45 1.08 centuries 15.18 minutes

Data Structures

www.martin-gonzalez.es

[14] Jul-23




C58 Series

Network
Structures

Martin Gonzalez-Rodriguez, Ph D.

[15] Jul-23



Network Data Structures

Goal

< Modeling complex conceptual relationships between objects.

. Transport networks (roads, railways, underground, electricity, gas, oil, etc.).
. Communication networks (Internet, phone, mail, etc.)

. Social networks (Facebook, Instagram, debts, etc.).

. Structures (molecular, neuronal, genetics, etc.).
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What is a Graph?

“» A graph is mathematical model that represents arbitrary
relationships between objects.
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Formal Definition
“ A Graph is a pair (V, E) represented by G(V, E) where:
Vs afinite set of Vertices (also known as Nodes).

V={V,V,,..1}

« E is aset of pairs (v, w) belonging to V called edges.
—  They represent relationships between the node v and the node w.

E={(V,, Vy),...}
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Typologies

Types of Graphs

% If the pairs {v,w} are ordered pairs...
. They are called Arcs and the graph is known as directed graph or

digraph.

% If the pairs {v, w} are not ordered...
. They are called Edges and the graph is known as undirected graph.
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Types of Graphs
“* A Labeled Graph is a trio (V, E, W) represented by G(V, E, W)
where

W is a finite set of labels where each arc or edge has its own label.

W = {W1! WZ!"'}

. The labels can be;

— Numbers. These labels are called Weights and may represent costs
or benefits.

— Characters or Strings.

@ Road N-634 @
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Putting it all Together

Complete formal definition
V={V,, Vy, V; V,}
E ={(V,, V,), (V4, V), (Vy, V), (V3, V), (Vy, Vi)}

w={ 3, 1, 6, A, 2}

v,) 3 ?}

1\L 6
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Fundamentals

< Loop
 Arc or edge where its departing and arrival node is the same one.

<+ Degree of a node

Number of arcs or edges connected to the node.
—  Input Degree (ID) of a node:
»  Number of arcs or edges that arrive to the node.
—  Output Degree (OD) of a node:
»  Number of arcs or edges that depart from the node.

Degree =1 (ID=0; OD = 1)

/f Loop
}\“ Degree =4 (ID=3; OD = 2)

v

Degree =2 (ID =2; OD =0) V4\: /\13 @ Degree =0 (ID =0; OD =0)
Degree =2 (ID =0; OD = 2)
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Fundamentals

% Source node
« If OutputDegree > 0 and InputDegree = 0.

*» Drain Node
 If OutputDegree= 0 and InputDegree> 0.

% Isolated Node
 If OutputDegree= 0 and InputDegree= 0.

Source Node @ :}/XD‘_
Drain Node V4\: @ @ Isolated Node

Source Node
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Capacity of a Node

n = number of nodes in a graph
< n = Cardinality of the V set.

V={Vy, Vg, eeey Voy Vi

** The value of n is used as a parameter to calculate the
performance level of the graph’s methods.
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Capacity of a Node

Estimation of the number of arcs based on n
< A,in(n): Minimum number of arcs

OO
)

Amin(n) =0
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Capacity of a Node

Estimation of the number of arcs based on n
< A,.(n): Maximum number of arcs (Complete Graph)

A, ..(n)=n(n-1)=n?-n (without loops)

A, ..(n)=n?-n+n=n?(including loops)
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Memory Storage

Graph density
< Heavy Graphs: A(n) — n?.

. Number or arcs close to the number of arcs in a complete graph

. Maximum efficiency is reached when the graph is implemented on static
memory (matrix, arrays).

% Light Graphs: A(n) — n.
. An average of one arc per node.

. Maximum efficiency is reached when the graph is implemented on dynamic
memory (lists) as it requires very few links.
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Graph Class — Matrix

Adjacency Matrix

private boolean[][] edges;
private double[] [] weight;

ArrayList<GraphNode<T>> nodes;

int size; // number of nodes stored in the structure

(nodes.size)

\/

“* nodes: stores objects of the node class.

that departs from i and arrives to j.

from i and arrives to j.

. Weights can be null (0,0).
. If this arc does not exist, its value is null (0,0).

Data Structures

www.martin-gonzalez.es

< The cell edges]i,j] contains frue only when there is an edge

% The cell weight[i, j] stores the weight of the edge that departs
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Graph Class — Matrix
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Efficiency Analysis

Performance of Adjacency Matrixes

* Advantages
. Random access to the information contained in any matrix cell.

—  Access O(1).

*» Disadvantages
. It is difficult to determine a efficient size for the matrix.
— It should be the closed possible value to n.
. Wastage of memory when used with light graphs (empty matrix).

—  Memory required: Oy,(n?).

% Best scenario of application
. Heavy graphs.

[30] Jul-23
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Graph Class — List

Adjacency List

class Edge({
private double weight;
private Node target;

class Node <T> {
private T node;
private LinkedList<Edge> edges;

private LinkedList<Node> nodes;

R/

¢ Lists containing lists
. The main list (nodes) contains a collection V of nodes.

. Each list in this node contains a list including information regarding to its
adjacent nodes (the edges collection).
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Graph Class — List

< ! <
w N

2
4

(D=
S
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Efficiency Analysis

Performance of the Adjacency Lists

< Advantages

. The required memory depends on the actual number of nodes and the
number of edges.
—  Storage required: O,,(K,n + K,a), where K, = #bytes per node and K, = #bytes
per arc.

% Disadvantages
. It is required to make complex sequential searches over the lists.
—  Access O(n).

. If the graph is heavy, there is a high memory wastage level related to the
references (pointers) required to link the list nodes.
—  The highest level o memory wastage is produced in complete graphs.

“ Best scenario of application
. Light graphs.
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Graph Class — Basic Methods

Adjacency Matrix

Method Complexity
graph (constructor) O(1)
getNode O(n)
addNode O(n)
removeNode O(n)
existEdge? O(n)
addEdge O(n)
removeEdge O(n)

print O(n?)
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Graph Class — Basic Methods

graph (fragment) O(1)
size = 0;
nodes

size=0

DISCUSSION: What is the temporal complexity of this algorithm? [35] Jul-23



Graph Class — Basic Methods

getNode (Pseudo code)

O(n)

public int getNode (T node)

{
for (int 1=0,; i<size; 1i++)
1f (nodes[i].equals (node))

return (i); // returns the node’s position
return (-1); // search fails, node does not exist
}
nodes

DISCUSSION: What is the temporal complexity of this algorithm?
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Graph Class — Basic Methods

addNode (Pseudo code)

O(n)

public void addNode (T node)
{

// precondition: node does not exits and there is

// available space for the node.

1f (getNode (node)== -1 && size<nodes.length)

{

nodes[size] = node;

//inserts void edges
for (int i=0; i<=size; 1i++)
{
edges[size] [1]=false;
edges[1] [size]=false;
weight[size] [1]=0.0;
welght[1] [s1ze]=0.0;
}
++size;

}

}

DISCUSSION: What is the temporal complexity of this algorithm?
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Graph Class — Basic Methods

Before inserting V, Vi) 2 @
nodes 4
1
of1])[2]3] 4 [
Vi [l V2|l Vs V,
size = 3
edges weight
01(11/2]|3] 4 0i{11/2]|3]| 4
O|FIITIT[ 01{O0||2](|1]}"
1|[e||F][F] : 1]{o]lo]fo
2|[F|[T|F]| 2|ofl4]lo
R ; R —
4 size =3 4 size =3
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Graph Class — Basic Methods

After inserting V,

nodes

..................................... size — 4

edges weight

0111|2314 O1H1112(3]||4
O|F|T|ITI|F|- 0102|110 [~
11|{F||F|IF||F 11101010}l 0
2/1lF({|THHFI|F 2(101141(/0}{]0
3IIF||F||FI|lF 3(01|O[(O0O}|]lO
g ] Feeee ;;;;;:4 4 m"mm"mm";;;;:;

DISCUSSION: How to delete V,?
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Graph Class — Basic Methods

After deleting V, Vi) 2 g
nodesg i 5 4
: 1
oi|l1]l 2] 3| 4 '
Vi ‘V4 Vs || Va Y
size=3
odges - weight
ol[1|[21][3][4 01[1][2]|3])4
ollF El T F 01|0 1 0
[ [e][F|[F][F 11ojjof[o][
2 [EITF IE F 2|0 T 0 0
GITEEFIE {3l oltoltolto
4 size = 3 4 size=3

It is your turn! [40] Jul-23




Graph Class — Basic Methods

removeNode (Pseudo code)

O(n)

public void removeNode (T node) {
int 1 = getNode (node);

if (1>=0) {
--size;
if (1 != size+l) { // it 1is not the last node
nodes[i1] = nodes[size]; //replaces by the last node

//replace elements in the vectors edges and weights
for (int 3=0; j<=size; J++) {

edges[]] [1]=edges[]] [size];

edges[i] [J]=edges[size] []]:;

weight[i] [J]=weight[size] []];

welight[j] [1]=weight[]j] [size];

}

// loop (diagonal)

edges[1] [1] = edges|[size] [size];

welight[i] [1] = weight([size] [size];

[41] Jul-23
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Graph Class — Basic Methods

existsEdge (Pseudo code) O(n)

public boolean existskEdge (T origin, T destination)
{

int i=getNode (origin);

int j=getNode (destination);

// precondition: both nodes must exist.
// 1f don’t.. should we throw an exception?

if (i>=0 && J>=0)
return (edges[i][j]);
else
return (false);

DISCUSSION: How to implement the addEdge method? [42] Jul-23



Graph Class — Basic Methods

addEdge (Pseudo code)

O(n)

public void addEdge (T origin, T destination, double
edgeWeilght)

{

// precondition: the edge must not already exist.
if (!'existEdge(origin, destination))

{

int i=getNode (origin);

int j=getNode (destination);

edges[1] [J]=true;
weight[i] [J]=edgeWeight;
}

else
; // what about throwing an exception here?

DISCUSSION: How to implement the removeEdge method?
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Graph Class — Basic Methods

removeEdge (Pseudo code) O(n)

public void removekdge (T origin, T destination) {

// precondition: the edge must exist.
1if (existsEdge (origin, destination)) {
int i=getNode (origin) ;
int j=getNode (destination);

edges[i] [J]=false;

weight[1] []J]=0.0;

}
else

; // what about throwing an exception?

DISCUSSION: How to implement the print method? [44] Jul-23



Graph Class — Basic Methods

print (Pseudo code) O(n?)
public void print () {

for (int k=0; k<size; k++)
nodes [k] .print () ;

for (int 1i=0; i<size; i++) {
for (int 3=0; Jj<size; Jj++) {
System.out.print (edges[i] []
System.out.print (weight[1] [
}

System.out.println() ;

}

I+ 7N
Jjl + %) M)

DISCUSSION: What is the temporal complexity of this algorithm? [45] Jul-23



Graph Class — Advanced Methods

Adjacency Matrix

Method Complexity
Dijkstra O(n?)
Floyd O(n3)
Depth-first search O(n?)
Prim / Warshall O(n?)

Data Structures

www.martin-gonzalez.es
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More Graph Fundamentals

< Pathway between two nodes V,, V, (V; # V, )

Sequence of nodes (and their related edges) that allow to access
node V, from node V..
—  Pathway between V, and V;
» Cp=V,, Vs
»  Cg=V,V,,V; V, Vg
»  Cc=Vy, Vo Vs, Vo, Vs, Vi, Vy, Ve

»

< Length of a path between two nodes V,, V; (V; # V)
*  Numbers of edges required to reach V.

* ltis the number of nodes in the pathway minus one.
—  Longitude of pathways between V, and V;

»  L(C,) =1. | V
»  L(Cg) =4. \“2
»  L(Cp)=7.

9
<

PROBLEM: pathways of infinite length [47] Jul-23



More Graph Fundamentals

< Simple pathway between two nodes V;, V; (V; # V; )
 Is a pathway that does not contain any node more than one time.

Simple pathway theorem

If there is a pathway between a the nodes V; (origin) and

V, (destiny), the there is at least a simple pathway

between V; and Vj.

“ ltis possible to eliminate loops and cycles along the way to
convert it into a simple pathway.
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More Graph Fundamentals

<* Minimum Length pathway between two nodes V,, V; (V; # V))

 ltis the path that uses the minimum number of arcs.
—  The Minimum longitude pathway is simple.

—  Minimum longitude pathway between V, and V,
» C,=V,, V,(Longitude 1).

<* Minimum cost path between twonodes V;, V, (V, # V )

« ltis the path that uses those arcs whose sum of weights is the
minimum possible.
—  Minimum cost path between V,and V, C, =V, V,, V3, V,(Cost 9).
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Dijkstra Algorithm

Problem to solve

< Which is the minimum cost path to reach every node in a graph
departing from a specified node v?
. Which is the cheapest route for going to Barcelona from Oviedo?

. Which is the shortest path to reach Madrid from Oviedo?
— And the route to Valencia? And the pathway to Seville? And to Bilbao?... From Oviedo.

Edger Dijkstra (Wikipedia)

% Developed by the Dutchman researcher Edger Dijkstra in 1956
. Turing Award 1972.
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Dijkstra Algorithm

Products obtained

% Vector D (one-dimensional) AKA Minimum Costs

. Stores the minimum cost value for going from v to every other node in the
graph.

% Vector P (one-dimensional) AKA Minimum Cost Paths
. Stores the minimum cost path for going from v to every other node in the

graph.

Vector D Vector P
V, V, V, Ve Ve 21131141516
1 5 3 6 0 11141 11|3]] -

T T

Minimum cost for going from V, to all the other nodes

V, is reached via V,

Accessing V; requires visiting V, first
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Dijkstra Algorithm

Initialization

% Initial values for the Set S
. Nodes whose minimum access cost from v is already known.
. Started with node v. It is the only one whose minimum access cost is
already known (cost from vto vis 0).
— S ={v}

«» |nitial values for the Vector D of Minimum Cost

. Copy the row related to node v from a modified weight vector...
— ...replacing the values containing a cost equal to 0 by .

—  The cost to move from one node to another one using a (direct) way that does
not exist is infinite.

—  During the first iteration, only the costs of moving from v to any other node using
a direct path (size = 1) are already known.

Data Structures www.martin-gonzalez.es [52] Jul-23



Dijkstra Algorithm

Example

S ={A}

Data Structures

Vector D
C D
0 1

www.martin-gonzalez.es

Vector P

B

C

D
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Dijkstra Algorithm

Example

S = {A, D}

Data Structures

Vector D

D

www.martin-gonzalez.es

Vector P

B

C

D

D

D
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Dijkstra Algorithm

Example

S={A, D, B} Vector D Vector P
B C D B||C||D

3[4 ][ 1 NIEE
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Dijkstra Algorithm

Example

S={A,D, B, C}

Data Structures

Vector D

D

www.martin-gonzalez.es

Vector P

B

C

D

D

B
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Dijkstra Algorithm

The Algorithm

For each iteration...

1. Evaluate the cost of every arc {k, w} where k belongs
to the S set and w belongs to the V-S set.

2. Select the arc of minimum cost, adding w to the S set.
a. w 1s the node with the lowest cost in D!

3. For each node m in V-S update costs:

i

Dlm]) {
]

14

[m] = D[w] + weight[w]
[m] = w;

m

g O Hh

(D[w] + weight[w] [m] <
] [
]

% Stopping condition
. Set S == Set V (all the nodes in the graph have been evaluated).
— n -1 iterations done.
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Dijkstra Algorithm

. (v ) :
Exercise \Vy 1 "\ Vs
< Cost from V,. 1 3 6
vl v )2 V)
Vector D Vector P
it S w Vo [| Vo (| Vo [l Vs || Ve | |2]|3]]4]|5]]6
1 1 1 00 3 10 -- 1T1H-1H1THT1 -
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Dijkstra Algorithm

Exercise Vi 1 Vs [
< Cost from V,. 1 L
3 6
. 5 *
Vv, 1 Vs T 2 V4
Vector D Vector P
it S w o[ v, ([ va vl Vsl Ve |l2]|3]]4][5]|6
1 1 1 ([ = || 3 (|10 - |[1]|-||11[1]]-
2 1,2 2 1 |16 | 3 [[10] - |[1]21{1]{1][-
3 1,2, 4 4 [ rs [ s]iei[ - ][1]ialf1]ia[-
4| 1,234 |3 1[5 ] 3| 6 - |[1][4][1]3]]-
9 1,2,3,4,5 S 1 5 || 3 6 || - |[1]|4][1]|3]]-

It is your turn! [59] Jul-23




Dijkstra Algorithm

_ 4 8 3
Exercise @ @ :\Vs
< Cost from V,. 4/( 3 | 2
5
3
V3 V2
Vector D Vector P
it w Vo I V3 |l Vall Vs || Vs 3(|4]|5]|6
1 3 4 °0 8 00 111 -111]] -

And now it is your turn!
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Dijkstra Algorithm

. v 8 3 )
Exercise Vi T Vs 1 Ve
< Cost from V,. 4 3 | == 2
° |
3
Vector D Vector P
it S w v, |[v,|[v, | vilfvel|[2][3][4]l5]]e
1 1 3 (a8« [[1|l1]l-|1]-
2 1,2 2 3 (a8« [[1ll1]l-|1]-
| i | - -
3 1,2,3 3 [ 3]l a]l = | 7 = |[1][1][-]3]-
e i o i
4 1,2,3,5 5 | 3|l 4147 [i10:[1]1]5]3]5]
I_—_—_-I | I | —_—— [
5 [ 1,2,356 | 6 |3 4127 10][1]1]6]3]5
6 [1,23456| 4 | 3| 4] 12] 7]|[10][1][1][6][3]|5
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Dijkstra Algorithm

Conclusions

% Dijkstra assumes costs of going from one node to itself as 0
Therefore, D[v] is not calculated.

% The algorithm does not work with negative costs (bonuses)
The minimum cost path may not be a simple one!

@2@2 @
-4

1
The minimum cost path between V, and V, includes a infinite loop between V, and V,

% It can calculate the Minimum Length Path for a graph too
Substitute cost for 1 in weight!

DISCUSSION: What is the temporal complexity of this algorithm? [62] Jul-23



Dijkstra Algorithm

Temporal Complexity

For each iteraction... n — 1 iteractions
1. Evaluate the cost of every arc {k, w} where k 1s owned n
by the S set and w by the V-S set. >0(n)

2. Select the arc of minimum cost, adding w to the S set.
a. w 1s the node with the lowest cost in D! ]

3. For each node m in V-S do:

i D[m]) | — O(n)
17

[m] = D[w] + weight[w]
[m] = w;

o O Hh

(D[w] + weight[w] [m] <
] [
]

O(n?)
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Floyd-Warshall Algorithm

Problem to solve

% Calculates minimum costs between any pair of nodes

. What is the cheapest way to get to Barcelona from Oviedo, Seville or
Burgos?
—  Should we run Dijkstra n times? (one time per departing node?).

Robert Floyd (Wikipedia) Stephen Warshall (Wikipedia

% Developed by American researchers Robert Floyd and Stephen
Warshall in 1962

Data Structures www.martin-gonzalez.es [64] Jul-23




Obtained Products (1/2)
Vector A AKA Minimum Cost Vector

Stores the minimum cost for going from any node to every one else in
the graph.

Floyd-Warshall Algorithm

Vector A | V, Vo |l Vao Il V Vg
0 4 |12 || 7 | 10 |
o ~ |[10][ 5] 8 |
00 0 8 3 6
= « || 0 =
00 00 5 3
00 00 2 0

Data Structures

www.martin-gonzalez.es
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Floyd-Warshall Algorithm

Obtained Products(2/2)

*  Vector P AKA Minimum Cost Paths

. Stores the sequence of nodes part of all the paths of minimum cost.

printPath (fragment)

private void printPath(int i, 1int 7J)
{

int k = P[i][J];

if (k>0) |

printPath (1, k);

System.out.print (‘'-’ + k);

printPath (k, 7J);

}
}

System.out.print (departure);
printPath (departure, arrival);
System.out.println (‘- + arrival);

TEST: Print the path between V, and V

Matrix P 4115(|6
V, 6[13[|5
V, 6| -||5
V,; 6l -1|5
V, -1l -1l -
; 6]| - || -
6 - -

[66] Jul-23




Floyd-Warshall Algorithm

Starting

“ Initial values for the Vector A (minimum cost values)

. Copy the values of a modified weight vector in the same way as Dijkstra’s
algorithm does

—  Change the values of cost 0 by .
— But... include values of 0 in the main diagonal (costs of going from a node to
itself are considered null).
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Floyd-Warshall Algorithm

The Algorithm
Floyd (fragment) O(n3)
for (int k=0; k<size; k++) O(n)
for (int 1=0; i<size; 1++) O(n)
for (int 3=0; jJ<size; J++) O(n)

if (A[i][k] + A[k][3] < A[1i][3])

Ali][7] = A[1][k] + A[k][J]7
11031 = k

.
14

\/

% For each iteration, the node k is evaluated (all paths must go
through that node)

. There are n iterations
—  Equivalent to adding nodes into the S set in Dijkstra.

. Every iteration calculates the cost of going from any node i to any other
node j through the node k.

— If the cost of using k is lower than the recorded so far in vector A, the value of
Ali,j] and PYi,j] must be updated indicating that the minimum cost path uses k.

DISCUSSION: What is the temporal complexity of this algorithm? [68] Jul-23



Floyd-Warshall Algorithm

v, 8 fv\ 3

Exercise 1 "
< Vector Aq (V,) 4 3 7

Going from V, to V5 via V, (cost « + 4 = «) s cheaper that going with cost «?
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Floyd-Warshall Algorithm

v, 8 /1 3

Exercise 1 =Q/5 =Q/e
< Vector A, (V,) 4 3 | -

Going from V, to V;via V, (cost 3 + 5 = 8) is cheaper than going with cost A, 87

Data Structures www.martin-gonzalez.es [70] Jul-23




Floyd-Warshall Algorithm

8 [/ 3

Exercise 1 V, :\Vs =Q/e
< Vector A, (V,) |

5

Going from V, to V;via V; (cost 4 + 3 = 7) is cheaper than going with cost A, (8)?

it is your turn! [71] Jul-23




Floyd-Warshall Algorithm

Exercise 1
% Vector A; (V,)

SERA0AS

4 3 s 2
V, 3 V, V,
Vs || Vg | VectorP 3|4 6
7 V, - -
5 Vv, "1l - -
3 V,; -1l - -
V, -1l - -
0 V. -1l - -
= V, 1l - ]

Going from V; to Vg via V, (cost 7 + « = «) s cheaper than going with cost A, (3)?

Data Structures

www.martin-gonzalez.es
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Floyd-Warshall Algorithm

_ 8 3
Exercise 1 V, 1 Vs =Q/e

< Vector A, (Vs) 3 1 2

' '
' IC’IIU’I (&)} (o2}

Going from V, to V, via V; (cost 7 + 7 = 14) is cheaper than going with cost A; (~)?
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Floyd-Warshall Algorithm

8

Exercise 1 V, 1 Vs

< Vector A; (V) 4 3

Ve

ol A~

=
o |

()]

Ajljajjoa]| o

Going from V, to V,va V, (cost 10 + 2 = 10) is cheaper than going with cost A, (14)?

Data Structures www.martin-gonzalez.es
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Floyd-Warshall Algorithm

. 10 ‘
Exercise 2 Vi 'Q’s

. 1
% Vector A, (V,) 1 3 6

4115

VectorP|1||2]|]|3

Going from V, to V;via V, (cost = + 10 = «) is cheaper than going with cost 67

It is your turn! [75] Jul-23




Floyd-Warshall Algorithm

Exercise 2
% Vector A, (V,)

Going from V, to V5 via V, (cost 1 + 5 = 6) is cheaper than going with cost A, (< )?
[76] Jul-23

Data Structures

10
Vi 1 Vs

3
Vector P| 1 31141|5
V, || - 21 -1] -
annREE
V; || - -1l - || -
V, || - -1l - || -
Ve || - -1l - || -

www.martin-gonzalez.es



Floyd-Warshall Algorithm

. 10 .
Exercise 2 Vi 1 U
< Vector A, (V;) 1 3 6
5 2
VectorP|1112113||4]|5
.I__:-
V2 - - - = 3
Vo l[-1[-10-1 - 1] -
v - -1 - 1] - 113
Vs |- (-1 -1 -] -

Going from V, to V;via V; (cost 6 + 1 = 7) is cheaper than going with cost A, (10 )?
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Floyd-Warshall Algorithm

Exercise 2
% Vector A; (V,)

10
V, oV,
1 o
3
5
{ v, —2 V,
VectorP| 111213 ||4]||5
V1 - - |_4 - [;-
V2 - - - - 3
AN A B S
v ([-{l-{[-{-|3
V5 - - - - -

Going from V, to V5 via V, (cost 3 + 3 = 5) is cheaper than going with cost A, (6)?

Data Structures

www.martin-gonzalez.es
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Floyd-Warshall Algorithm

Exercise 2
% Matriz A, (Vs)

1

10

Vs

-

Vi
1
3
> V; 1 2 V,
VectorP|1]|2|]|3 || 4
Vi ll-1l-114]] -
Vo ll-11-11-1l-
Vo ll-11-1l-1-
Vaoll-11-1-1I -
Vo [l -11-1]-]f-

Going from V, to V, via V; (cost 6 + « = «) s cheaper than going with cost A; (1)?

Data Structures

www.martin-gonzalez.es
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Floyd-Warshall Algorithm

Floyd for special routes

% ltis possible to modify the algorithm to calculate paths going
through a specific set of nodes L.

Floyd (fragment)

for (int k=0; k<size; k++)
if (k in L)
for (int 1=0; i<size; 1i++)
for (int 3=0; Jj<size; Jj++)
if (A[1] [k] + A[k][J] < A[1][3])

A[1][J] = A[1][k] + A[k]I[J];
PI1][]] = k;
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Floyd-Warshall Algorithm

Center of a Directed Graph

\/

“* The center of a graph is the node v closest to the farthest
node.
. Where should be placed the distribution center for a region?
. Where should be placed the central railway or main hospital in a city?
“ Eccentricity

. The eccentricity of a node v is the maximum of the costs of all the paths
of minimum costs with destination v.

. The center of graph is located in the node with the minimum eccentricity.

Algorithm to obtain the center of graph

1. Run Floyd to obtain the wvector of minimum cost A.

2. Search for the maximum cost in each column
(eccentricity for each destination node).

3. Select the node with the minimum eccentricity as the
center of the graph.
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Floyd-Warshall Algorithm

Exercise

“* What node is the center of the graph?

o b ©

Get the minimum of the maximum

Vector A Original

v~
2

(v )4

Vector A Final

Vv, || v, ‘v4|

(v v [ v ][ va ][ vs
Vv, [ol[1][=] « ]| «
V[ «|[o][2] ][«
V| w || =[Ol 2] 4
V, [« |[1] 3] o]l
Vol w ||| =]|[5] o

] v
vi[o]l 1] 3
v2 0 |[ 2 6
V,|[=|[3][o] 2] 4
Vv, |[1]3][o]l7

- 0

O E

It is your turn! [82] Jul-23

Pick up the maximum in each column



Depth-First Search (DFPrint)

Problem to Solve

% Visit all the nodes in a graph from an initial node. Follow the
path pointed by its edges.
. Based on the strategy of visiting the children nodes first (depth-first).
. It is necessary to verify the visited nodes somehow.

resetVisited O(n)

public void resetVisited ()

{
for (int 1=0; i<size; i++)
nodes[i] .setVisited (false) ;

}
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Depth-First Search (DFPrint)

Problem to Solve

% Visit all the nodes in a graph from an initial one. Follow the path
pointed by its edges.
. Based on the strategy of visiting the children nodes first (depth-first).
. It is necessary to verify the visited nhodes somehow.

Deep-first print (pseudo code)

public void DFPrint (int wv)
nodes|[v] .setVisited (true
nodes [v] .print () ;

{
) ;

14

for each node w accessible from v do
1if (!'nodes[w].getVisited())
DEPrint (w) ;

Data Structures www.martin-gonzalez.es [84] Jul-23



Depth-First Search (DFPrint)

Exercise DFPrint (V)

< Before visiting V, V 2, Y
Y \r
3

0 1 2 3 | nodes 4

v, ||V, || Vs || V, \L S
FILFNFIF Gy:e \VDs_

1|[2]| 3| 4 |arcs
v,[F|[T|[T|[F]
V,[[F[F|[F|T
V. [[F[T|[F|F
V[ F[FI[T|T
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Depth-First Search (DFPrint)

Exercise DFPrint (V)
% VisitV, 9

<
()
w

0 1 2 3 | nodes 4

v, [V, [V, ||V, \L

).
N

1|[2]| 3| 4 |arcs
v, [FIIT|[T|[F]
V,[[F[F|[F|T
V. [[F[T|[F|F
V[ F[FI[T|T
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Depth-First Search (DFPrint)

Exercise DFPrint (V)

% Visit V,

0 1 2 3
VoIl Vs, |l Vs || Vq
T T F F
11121l 31| 4 |arcs

V. IFlIT|IT||F

Vo, |[F{IF|IF|| T

V. I[FIITIFI||F

V,IFIUFITHT

It is your turn! [87] Jul-23

nodes




Depth-First Search (DFPrint)

Exercise DFPrint (V)

% Visit V, 5
V1 V2
0 1 2 3 | nodes 1 4 3
v, ||V, || Vs || V, \L !
T T F T Gy: 6 V4
— |

11121 3 || 4 |arcs

V. [[F|[T||T|F

V,(FI[F[F|T

V. (|F|[T||F|F

V(I FI[FlTHT
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Depth-First Search (DFPrint)

Exercise DFPrint (V)

% Visit V,
o1 2] 3
Vo[ Vs || Vs || Vs
TT| T T
1|[2]| 3| 4 |arcs

V. [[F[T|[T|F

V,[[F[F|[F|T

V. [[FLTIF|F

V[ F[FI[T|T

Data Structures

nodes

www.martin-gonzalez.es
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Depth-First Search (DFPrint)

Exercise DFPrint (V)

% Continue visitin V, 2
Vv, (L
0 1 2 3 | nodes 1l 4 3
"AIRAIRAIR"2
TIT|TYT Vi =5 ] Ve
L
112 3| 4]|arcs
v, [FI[T|[T]|F
vV, |FI[FI[FI|fT
V,[F|[T|[FI|lF
vV, [FI[FI[T]iT
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Depth-First Search (DFPrint)

Exercise DFPrint (V)

% Continue visit in V, 2
Vi Vs,
0 1 2 3 | nodes 1l 4 3
VAR | RV VAR [ RV
TIT|TYT Vi =5 ] Ve
L
112 3| 4]|arcs
V., [F|[T[TYF
V,|F||[F||F||T
n
V,|F||T||F||F
V,|F|[F||T||T
n O(nZ)

DISCUSSION: What is the temporal complexity of this algorithm? [91] Jul-23



Depth-First Search (DFPrint)

Exercise DFPrint (V)
% VisitV, 5
v ) V,
0 1 2 3 | nodes 1 4

v, (| v, || Vs || v,
FIITI|FI|F

O=

1(12|3|| 4|arcs
V. IFIT|T ?
Vo, |[F{IF|IF|| T
V. I[FIITIFI||F
V,IFIUFITHT

It is your turn! [92] Jul-23




Depth-First Search (DFPrint)

Exercise DFPrint (V)
% Visit V, 9
v ) V,
0 1 2 3 | nodes 1 4 3
v, ||V, |[ v, || v, \L
F T F T Gy: 6 V4
L
1112 31| 4 |arcs
V., [FIIT|[T|F
V,[FlIFI[F[T
V,[[Fl|T|[F[F
V,[FIIFIITYT
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Depth-First Search (DFPrint)

Exercise DFPrint (V)

2 Visit V, 5
V1 V2
0 1 2 3 | nodes 1 4 3
v, || v, ||V, || v, !
FlT|T]T Vi 76 | Ve
—

1112l 3| 4 ]|arcs

v, [F|T|[T|F

V, (| F|F|F|T

V,|FliTIF]|F

vV, FlF|T|T
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Depth-First Search (DFPrint)

Exercise DFPrint (V,)

% Continue visitin V, 2
Vi \F
0 1 2 3 | nodes 1 4 3
V., [V, || V5 || V,
FIIT T T Vs 5 | Ve
L
111213 ]| 4|arcs
V. IF|(|T|IT|F
V,|F(|FIIF||T
V.|F(|T||F||F
V,|F(IFIIT]T
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Depth-First Search (DFPrint)

Making sure to visit all the nodes along the graph

Special call to DFPrint

resetVisited () ;

For (int 1=0; i<size; i++)
if (!'nodes[i].getVisited())
DFPrint (1)
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Depth-First Search (DFPrint)

Depth first search

< Improvement in the DFPrint algorithm to stop its execution once
a condition is verified true in a specific node.

DFSearch (pseudocode)

public boolean DFPrint (int wv) {
nodes|[v] .setVisited (true) ;
nodes [v].print () ;

if (boolean condition(v))
return (true);

for each node w accessible from v do
1if (!'nodes[w].getVisited())
DEPrint (w) ;

return (false);
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More Fundamentals

% Strongly connected node

When there is a direct path from every node to anyone else and
vice versa.

% Strongly connected graph

- If all the nodes in the graph are strongly connected.

— If there is a strongly connected node in the graph, everyone else will be strongly
connected as well, and therefore the graph itself.

W)

Strongly connected graph Weakly connected graph

\\_\<
©
S

-I>< /
Q<>:
<)

~~

see V)
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More Fundamentals

% Cycle over a node

. Path from one node to itself.
—  Cycle for V,
» C=V,V, V; V, (longitude 4).

<
2
(<

=)
<)
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More Fundamentals

v Trees

«  Connected graph without cycles
— Any tree with n > 0 nodes, has n - 1 edges.

— If we add an extra edge it will become part of a cycle (the graph would not be a
tree anymore!).
—  For any pair of nodes, there would be only one simple path connecting them

them.
@
®

)
.
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More Fundamentals

% Spanning Trees
« ltis atree that connects all the nodes in a given graph.

Data Structures www.martin-gonzalez.es [101] Jul-23



More Fundamentals

< Minimum Spanning Tree
« It atree where the sum of the weights of its edges reaches the

minimum possible.
—  Allows to connect all the components in a network in the cheapest possible way.

3 ()
N

O sra®

2 1 1

V; 3 V, 2 Ve

Data Structures www.martin-gonzalez.es [102] Jul-23



Prim’s Algorithm

Problem to Solve

J/

% Obtains the minimum spanning tree

. Which roads should be built to connect all the European cities in the
cheapest way?

. How to connect all the computers in a city with the minimum amount of
cable?

Robert C. Prim (Wikipedia)

\/

% Developed by the American researcher Robert C. Prim in 1957.
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Prim’s Algorithm

Initialization

\/

T Set (empty)
. Stores the edges part of the Minimum Spanning Tree.
% U set (starts with any node in the graph)

. Similar to the S set in the Dijkstra’s algorithm. It stores the nodes evaluated
in each iteration.

For each iteration (while U 1= V)

1. Evaluate all the edges {u, v} where u is part of U and
v 1s part of V — U selecting the edge with the lowest

% Stopping Condition
. U Set ==V Set (all nodes in the graph have been explored).
— n-—1iterations.
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Prim’s Algorithm

Exercise 1 V-
<%  Starting with V. <\ 3 2 /)
V3 V2
2 /{ 1 2 }\ 1
it U w

Data Structures www.martin-gonzalez.es [105] Jul-23



Prim’s Algorithm

3 1
Exercise 1 o
(—T—=[5,
2 /( 1 2 1
Vs 2 Vy 2 Ve
it U w

And now it is your turn! [106] Jul-23



Prim’s Algorithm

Exercise 1
it U
1 1
2 1, 2
3 1,2, 6

1
3 Vv,
3 2
) .
2 /( 1 2 1
Vs 2 Vy 2 Ve

Data Structures

www.martin-gonzalez.es
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Prim’s Algorithm

Exercise 1
% We could select V; too

it U w
1 1

2 1, 2 2
3 1,2,6 6
4 1,2,4,6 4

1
3 Vv,

T

1{
2 1 2 1

Data Structures

www.martin-gonzalez.es [108] Jul-23



Prim’s Algorithm

| 3 v 1
Exercise 1 1
3 2
V3 V2
2 1 2 1
Vs 2 Vy 2 Ve
it U w
1 1 1
v)
2 1,2 2
3 1,2, 6 6 @ QD
1 2
4 1,2,4,6 4 1
s Tiosac s (%)

Data Structures www.martin-gonzalez.es

[109] Jul-23



Prim’s Algorithm

Exercise 1

it U

1 1

2 1, 2

3 1,2,6

4 1,2,4,6
5| 1,2,3,4,6
6 | 1,23,4,56

Data Structures

a W A O DN

1
3 V.
3 2
V3 V2
2 1 2 1
Vs 2 Vy 2 Ve
1
V1
() (%)
1 2
2 1

www.martin-gonzalez.es [110] Jul-23




Prim’s Algorithm

Exercise 2
% Starting with V3.

it U w
1 3

2

3

4

5

And now it is your turn!
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Prim’s Algorithm

Exercise 2
% We could select V, too

it U w
1 3

2 3,5 5
3

4

5

Data Structures

Vs

www.martin-gonzalez.es
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Prim’s Algorithm

Exercise 2 2
V1 V5

3,4,5 4

Data Structures www.martin-gonzalez.es [113] Jul-23



Prim’s Algorithm

Exercise 2 y 2 y
< We could select V, too |7 : °
2

it U w

1 3 @ 2 (v

2 3,5 5

3 3,4,5 4 :

4| 1,345 |1 v, @
5

Data Structures www.martin-gonzalez.es [114] Jul-23




Prim’s Algorithm

Exercise 2 y 2 vV
% Alternative option: {V,, V,} : ;
2 2
v, 2 v, v, -
it U w
: 3 2
2 \E
3,5 5 2

3,4,5 4

2
3
4 1,3, 4,5 1 @
5

1,2,3,4,5 2

Data Structures www.martin-gonzalez.es
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Prim’s Algorithm

Conclusions

% The resulting tree depends upon...

. Starting node.

. Selection of the edge of minimum cost in each iteration.
—  There can be more than one edge of minimum cost.

For each iteration (while U 1= V) n

1. Evaluate all the edges {u, v} where u is part of U and

v 1s part of V — U selecting the one of the lowest cost n?
2. T =T + {u, v}
3. U =0 + {v}

O(n3)

DISCUSSION: What is the temporal complexity of this algorithm? [116] Jul-23



Prim’s Algorithm

% Optimization

« Using auxiliary sorted vectors to select the edge of minimum cost,

reducing the complexity to O(n).
— More speed obtained thanks to an increase in the use of memory.

For each iteration (while U 1= V) n

1. Evaluate all the edges {u, v} where u is part of U and
v 1s part of V — U selecting the one of the lowest cost

2. T =T + {u, v}

3. U =0 + {v}

Data Structures

www.martin-gonzalez.es

O(n?)
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C59 Series

Hierarchical
Structures

Dr. Martin Gonzalez-Rodriguez




Hierarchical Structures

Goal

** Modeling order relationships between elements.
. Social hierarchies (the army, the structure of a company, etc.).
. Grammar modeling (lexical trees, syntactical trees, etc.)
. Computer Science models (class hierarchy, file systems, etc.).

. Classification systems (taxonomic ranks, phylogenetic trees, genealogical,
sports, etc.).
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Fundamentals

What is a Tree?

\/

cycles including a root node.

% In Computer Science! a tree is a connected graph without

. Given a node called root and any other node v, there only exists one

directed path from the root to that node v.

Basic Elements

. Root.

. Children(direct descendant).
. Father (direct ascendant).

. Leaf (terminal node).

. Inner node.

. Node’ s degree.

. Tree’s degree.

. Node’s level.

. Height (depth) .

O O J o U1l i W DN

1In mathematics this concept is referred to as ‘arborescence’.

REMEMBER: A tree is a special type of graph

[120] Jul-23



Fundamentals

Complete Tree

% Tree containing the maximum number of nodes for its height h
and degree g.
Is a tree with all of its levels full of nodes.
Maximum performance when searching from the root.

@
- - n=2n"-1
fS? (15)
log,(n +1)=h

DISCUSSION: What is the maximum longitude for a search path (given n)? [121] Jul-23



Search Paths (Average Length)

% IP: Internal Path (node found) —
« Searching A=1. |

« SearchingB and C =2 p/u =4. A
« SearchingD and E = 3 p/u = 6.

« SearchingF, Gand H =4 p/u=12.
— Total = 23. B @
For 8 nodes =23 /8 = A/ IP =2.87

»
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Search Paths (Average Length)
% EP: External Path (node not found).

Data Structures

2%1=2
=3*4=12
=4*3=12
-=5*9 =45
Total = 71.

17 nodes =71/ 17.
» A EP=4.17.

www.martin-gonzalez.es
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Degree 2 Tree

“* Models hierarchical relationships between pairs of elements
related to a node located in an upper level.
Genealogical Trees.
Cup competitions.
Binary operators.
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Binary Search Tree (BST)

Binary Tree designed to make search efficient operations

% The following applies to each node...

Left sub tree: contains elements whose keys are smaller than the parent
node’s key.

Right sub tree: contains elements whose keys are greater than the parent
node’s key.
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Binary Search Tree (BST)

Structure and essential methods

Class BSTNode

public class BSTNode <T extends Comparable <T>>
{

private T element;

private BSTNode<T> left;

private BSTNode<T> right;

}

%+ Essential Methods

. Add.

. Search.

. Remove.
. toString.
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Binary Search Tree (BST)

Insert

Recursive Procedure

General Case 1:

— If the key of the node to be inserted is smaller than the current node's key, insert
the node to the left.

General Case 2:

— If the key of the node to be inserted is greater than the current node's key, insert
the node to the right.

Stop condition 1:

— If the key of the node to be inserted is the same as the current node’s key, the
node exists! Error: repeated keys are not allowed.

Stop condition 2:

— If the current node equals null a leaf has been reached. Create a new node and
insert it there.
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Binary Search Tree (BST)

add
private BSTNode<T> add (BSTNode<T> theRoot, T element) {
if (theRoot == null)

return new BSTNode<T> (element) ;

1if (element.compareTo (theRoot.getElement ()) == 0)
throw new RuntimeException ("element already exists!");

if (element.compareTo (theRoot.getElement()) < 0)
theRoot.setlLeft (add(theRoot.getlLeft (), element));

1f (element.compareTo (theRoot.getElement ()) > 0)
theRoot.setRight (add(theRoot.getRight (), element));

NEXT: exercises [128] Jul-23




CLASSWORK

PLAYGROUND

L)

DISCUSSION: What is the temporal complexity of this algorithm?

Exercise BST 1. start with an empty Binary Search Tree...

a) Add the following sequence of elements: 5,7, 9, 3, 1, 2, 6.
— Analyze the temporal complexity of each insertion.

Exercise BST 2. start with an empty Binary Search Tree...

a) Add the following sequence of elements: 7, 6, 5, 4, 3, 2, 1.
— Analyze the temporal complexity of each insertion.

b) Add node 8.
— Analyze the temporal complexity of adding this element.

Best case complexity: O(1)

Worst case complexity: O(n)
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Binary Search Tree (BST)

Search

private boolean search (BSTNode<T> theRoot, T element)
{
if (theRoot == null)
return false;
else
1f (element.compareTo (theRoot.getElement()) == 0)
return true;
else
if (element.compareTo (theRoot.getElement()) < 0)
return search (theRoot.getlLeft (), element);
else
if (element.compareTo (theRoot.getElement ()) > 0)
return search (theRoot.getRight (), element);

Best case complexity: O(1) Worst case complexity: O(n)

DISCUSSION: What is the temporal complexity of this algorithm?
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Binary Search Tree (BST)

Remove

private BSTNode<T> remove (BSTNode<T> theRoot, T element)
{

1f (theRoot == null)
throw new RuntimeException ("element does not exist!");
else
1f (element.compareTo (theRoot.getElement()) < 0)
theRoot.setleft (remove (theRoot.getlLeft (), element));
else
if (element.compareTo (theRoot.getElement()) > 0)
theRoot.setRight (remove (theRoot.getRight (), element));
else {

// node found
// How to delete it?

}

return theRoot;
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Binary Search Tree (BST)

Special sceneries of deletion

\/

% Scenery |: Deleting an element without children (leaves).
A null value is assigned to the reference.

ZOOM IN an]||
else { :
1
if (theRoot.getLeft() == null && I
theRoot.getRightDer () == null) i
return (null) ; 4 -

TASK: delete element 15 [132] Jul-23



Binary Search Tree (BST)

Special sceneries of deletion

% Scenery ll: Deleting an element with only one child.
The reference is reassigned to this only child.

ZOOM IN
else {
if (theRoot.getLeft() == null) |
return theRoot.getRight() ; I
else 4 h'“] (;%j

if (theRoot.getRight() ==
null) return theRoot.getLeft()

TASK: Delete element 12 [133] Jul-23



Binary Search Tree (BST)

Special sceneries of deletion

% Scenery lll: Deleting an element with two children.

«  Substitute the content of this node by the greatest node (pivot) in
its left sub tree.
—  Proceed to delete the pivot (we might face scenery | or Il but never scenery lil).

ZOOM IN
else {
if (theRoot.getleft () == null)

return theRoot.getRight () ;

else 4 9

1f (theRoot.getRight () == null) /

return theRoot.getLeft ()

oot oo
theRoot.setElement (getMax (theRoot.get
Left())):

TASK: Delete element 6 [134] Jul-23



Binary Search Tree (BST)

getMax
public T getMax (BSTNode<T> theRoot)
{
if (theRoot == null)
return null;
else

return getMaxRec (theRoot) ;

private T getMaxRec (BSTNode<T> theRoot)
{
1f (theRoot.getRight () == null)
return theRoot.getElement () ;
else
return getMaxRec (theRoot.getRight())

EXERCISE: Create a recursive method getMax [135] Jul-23




Binary Search Tree (BST)

getMax

private T getMax (BSTNode<T> theRoot)

{
while (theRoot.getRight () != null)

theRoot = theRoot.getRight () ;

return theRoot.getElement () ;
}

EXERCISE: Create an iterative method getMax [136] Jul-23



Binary Search Tree (BST)

Special sceneries of deletion

¥

¢ Scenery lll: Deleting an element with two children.

«  Substitute the content of this node by the greatest node (pivot) in
its left sub tree.
—  Proceed to delete the pivot (we will face scenery | or Il but never scenery Ill).

ZOOM IN
else {
if (theRoot.getleft () == null)
return theRoot.getRight () ;
else
1f (theRoot.getRight () == null)
return theRoot.getLeft ()
else {

theRoot.setElement (getMax (theRoot.getLeft (

)

)) ) ; i
theRoot.setLeft (remove (theRoot.getLeft(), :
1

\ 4

theRoot.getElement())) ;
} null

}
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Binary Search Tree (BST)

Special sceneries of deletion

\/

ZOOM IN
else {
if (theRoot.getlLeft () == null) return
theRoot.getRight () ;
else
1f (theRoot.getRight () == null)
return theRoot.getLeft ()
else {

theRoot.setElement (getMax (theRoot.getLeft
()))s

theRoot.setlLeft (remove
(theRoot.getLeft (), theRoot.getElement ()))
71}

% Scenery lll: Deleting an element with two children.

|

5 C
©

14

/4

EVENT: Deleting element 10
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Binary Search Tree (BST)

Special sceneries of deletion

% Scenery lll: Deleting an element with two children.

ZOOM IN
else {
if (theRoot.getlLeft () == null) return
theRoot.getRight () ;
else
1f (theRoot.getRight () == null)

return theRoot.getLeft ()
else {
theRoot.setElement (getMax (theRoot.getLeft
()))s
theRoot.setlLeft (remove
(theRoot.getLeft (), theRoot.getElement ()))

v

Data Structures

www.martin-gonzalez.es
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Binary Search Tree (BST)

Remove
private BSTNode<T> remove (BSTNode<T> theRoot, T element) {
1f (theRoot == null)
throw new RuntimeException ("element does not exist!");
else
1f (element.compareTo (theRoot.getElement ()) < 0)
theRoot.setleft (remove (theRoot.getlLeft (), element));
else
if (element.compareTo (theRoot.getElement()) > 0)
theRoot.setRight (remove (theRoot.getRight (), element));
else {
1f (theRoot.getLeft () == null) return theRoot.getRight()
else
1f (theRoot.getRight () == null) return theRoot.getLeft ()
else {
theRoot.setElement (getMax (theRoot.getLeft ())) ;
theRoot.setlLeft (remove (theRoot.getlLeft (), heRoot.getElement()))
b}
return theRoot; }
Best case complexity: O(1) Worst case complexity: O(n)

DISCUSSION: What is the temporal complexity of this algorithm? [140] Jul-23



Binary Search Tree (BST)

Traversing a Binary Tree

% pre order

. The node is analyzed first, followed by the sub trees.
—  N-LEFT-RIGHT or N-RIGHT-LEFT.
\/

“ in order
. The node is analyzed between the two sub trees.
- LEFT-N-RIGHT or RIGHT-N-LEFT.

% post order

. The node is analyzed after both sub trees.
—  LEFT-RIGHT-N or RIGHT-LEFT-N.

LEFT RIGHT
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Binary Search Tree (BST)

EXxercise
* Traverse the Tree

« preorder: *+3/42* 25 (prefix).
« inorder:3+4/2*2*5 (infix).
« postorder:342/+25** (reverse polish notation).
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Binary Search Tree (BST)

PLAYGROUND

» Traverse the Tree

O

« preorder: 6,4, 3,5, 12,9, 8, 11, 15. (prefix).
« inorder: 3,4,5,6, 8,9, 11, 12, 15. (infix).
« postorder: 3, 5, 4, 8, 11,9, 15, 12, 6 (postfix).
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Binary Search Tree (BST)

toString (Preorder traverse)

private String toString (BSTNode<T> theRoot)
{
if (theRoot != null)
return (theRoot.toString()
+ toString(theRoot.getLeft ())

+ toString(theRoot.getRight())):
else
return ("-");
}
Best case complexity: O(n) Worst case complexity: O(n)

DISCUSSION: What is the temporal complexity of this algorithm? [144] Jul-23



Binary Search Tree (BST)

Performance

J/

H range: [log,n, n]

% Performance in such kind of trees depends on their height

Method Best case complexity Worst case complexity
Insert O(1) O(n)
Search O(1) O(n)
Delete O(1) O(n)
Traverse O(n) O(n)
s Goal

Minimize the tree height, avoiding the creation of degenerated trees.

Data Structures www.martin-gonzalez.es
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PBT

Perfectly Balanced Trees (PBT)

“ Ensures the minimum height condition for a binary tree

. Condition: For every node n, [|#, - #4| <= 1.
#..+ = Number of nodes in the left sub tree.
#.gnt = NUMbers of nodes in the right sub tree.

LEFT RIGHT

< All PBTs are minimum height trees but...
. All minimum height trees are PBTs?
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BST vs PBT

Insertion and deletion have poor performance in PBTs

% These operations require destroying and rebuilding the tree
again after their execution.

Method BST(worst case) PBT (any case)
Insert O(n) O(n)

Search O(n) O(log,n)
Deletion O(n) O(n)

% PBTs make sense only when the number of searches is
massively higher than the use of other operations.
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AVL Trees

Problem to solve

% Designing a tree providing a log,(n) temporal complexity in the
worst case for the three basic operations
. Insert, Search, Deletion.

/3 ',T/
&Y

Georgii Adelson-Velskii (Wikipedia) Yevgeni Landis (Wikipedia)

“* Developed by the Soviet researchers Georgii Adelson-Velskii
and Yevgeniy Landis 1962.
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AVL Trees

Adelson-Velskii and Landis Trees
< AKA Weakly Balanced Trees

Condition: every node n must verify: |h - h
h.x = height of the left sub tree.
hign= height of the right sub tree.

rightl <=1.

RIGHT | h,y,
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AVL Trees

Examples

AVL? ., Yes
PBT? e Yes
Minimum Height? ...... Yes

AVL? ., No
PBT? e No
Minimum Height? ...... No
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AVL Trees

Examples

Data Structures

O

AVL? ., Yes
PBT? e No
Minimum Height? ...... Yes
AVL? ., No
PBT? e No
Minimum Height? ...... Yes

www.martin-gonzalez.es
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AVL Trees

Examples

AVL? ., Yes
PBT? e No
Minimum Height? ...... No
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AVL Trees

Properties

< Every PBT isan AVL
* Notevery AVL is a PBT.
* Not every AVL is a Minimum Height Tree.

“* Not any Minimum Height Tree is an AVL

As seen in the examples.

Minimum Height

AVL Trees
Trees
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AVL Trees

Ok, AVL are not Minimum Height Trees but...

% What is their maximum height?
. |s it lower enough to provide high performance in the basic operations?
. How far is this maximum height from the minimum height (log,n)?

R/

% Adelson-Velskii and Landis built a series of AVL tree with the
highest possible height for measuring the difference statistically

. They used Fibonacci trees.
— The AVL trees are built in the worst possible way to reach the maximum height.
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AVL Trees

Fibonacci Trees

% The height (h) is determined in advance.
 For h=0, use an empty tree(T,).
« Forh=1,Use(T,), ora single node tree.
« Forh>1,Use T, = (T X, Tio)-

hC=>1 h=2 h=3 h=4
I R

§o &2

O O
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AVL Trees

Adelson-Velskii and Landis demonstrated...

Limit for the maximum height in a Fibonacci tree

Nywrip (N) <= 1.44Log,n

Height range in an AVL tree

Nppr (N) <= huyp (N) <= ey (D)

Log,n <= h,y (n) <= 1.44Log,n

“ In the worst case, the height of an AVL exceeds the

height of an PBT in a 44%

Worst case temporal complexity in the three basic operations

O (Log,n) <= O(h,y(n)) <= 0(1.44Log,n)

O(l.44Log,n)

O (Log,n)

Data Structures www.martin-gonzalez.es
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AVL Trees

Balance Factor (BF)
@ BI:n = hright - hIeft

% Possible Scenarios:
* N > gy (BF, =-1). @ BF,=46-1-2
* Ny = hyge (BF, =0).
Niet < Piight BFR = 1) e — > ¥
% Unbalanced when Nt |LEFT
+  |BF,|>1. RIGHT [ hiign,
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AVL Trees

Insertion

% Insert the node using the standard procedure. If the height
changes proceed to...

 Recalculate the BF when coming back from the recursive calls
(updating the BF of the nodes being part of the search path).

« If|BF,| > 1 for any n rebalance the nodes (two possible scenarios).

Class AVLTreeNode

public class AVLNode <T extends Comparable <T>>{
private T element;
public AVLNode<T> left;
private AVLNode<T> right;
int BF; // int height;
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AVL Trees

Add (Pseudo code)

private AVLNode<T> add (AVLNode<T> theRoot, T element)

{
if (theRoot == null)
return new AVLNode<T> (element) ;

if (element.compareTo (theRoot.getElement()) == 0)
throw new RuntimeException ("the element already

exist!");
1f (element.compareTo (theRoot.getElement ()) < 0)
theRoot.setleft (add (theRoot.getLeft (), element));
else

theRoot.setRight (add (theRoot.getRight (), element));

return (updateBF (theRoot));
}

Data Structures www.martin-gonzalez.es
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AVL Trees

UpdateBF (Pseudo code)

private AVLNode<T> updateBF (AVLNode<T> theRoot) {

1f (theRoot.getBF () == -2)
{
1f (theRoot.getLeft () .getBF () <=0)
theRoot = singleleftRotation (theRoot);
else
theRoot = doubleleftRotation (theRoot):;

}
else if (theRoot.getBF () == 2)

{
1f (theRoot.getRight () .getBF () >= 0)

theRoot = (singleRightRotation (theRoot));
else
theRoot = (doubleRightRotation (theRoot)):;

}

theRoot.updateHeight () ;
return (theRoot)
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AVL Trees

Case la
< Simple balance (left)
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AVL Trees

Case Ib
< Simple Balance (right)

lBFB=«’I'2

..... 1 1 T :
II I T 1L II
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CLASSWORK

PLAYGROUND
< Exercise AVL 1. start with an empty AVL tree...

a) Insert the elements sequence 7, 6, 5, 4, 3, 2, 1.
— Analyze the temporal complexity of every insertion.

b) Insert the elements sequence 8, 9, 10.
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AVL Trees

Case lla
“* Double Balance (left)
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AVL Trees

Case lIb
“* Double Balance (right)
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CLASSWORK

PLAYGROUND

< Exercise AVL 2. start with an empty AVL tree...

. Insert the elements sequence 1, 2, 3, 4, 5, 6, 10, 11, 8, 7.
— Analyze the temporal complexity of every insertion.

< Exercise AVL 3. start with an empty AVL tree...
. Insert the elements sequence 5, 2, 10, 15, 12,9, 7, 8, 6.
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AVL Trees

Deletion
“* Delete as usual... if the tree’s height changes...
Recalculate the BFs coming back from the recursion calls (update

the BF in every node of the search path).
In terms of height change, the deletion of a node in the left sub tree is equivalent

to insert a node in the right sub tree.
« If|BF,| > 1 rebalance must be done.

* Balance must be applied to the whole search path!
Rebalancing of a subtrees does not ensure a full balance in the

whole tree.
Unlike insertion, deletion rebalancing must be done all the way long until reaching

the root.

[167] Jul-23
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AVL Trees

Remove (Pseudo code)

private AVLNode<T> remove (AVLNode<T> theRoot, T element)
{
1f (theRoot == null) throw new RuntimeException ("element does
not exist!");
else
1f (element.compareTo (theRoot.getElement()) < 0)
theRoot.setleft (remove (theRoot.getlLeft (), element));
else
if (element.compareTo (theRoot.getElement()) > 0)
theRoot.setRight (remove (theRoot.getRight (), element));
else {
1if (theRoot.getLeft () == null) return theRoot.getRight();
else {
1if (theRoot.getRight () == null) return theRoot.getLeft ();
else // copies the max value from the left subtree...
theRoot.setElement (getMax (theRoot.getLeft ())) ;
theRoot.setlLeft (remove (theRoot.getlLeft (), theRoot.getElement()));

I
return (updateBF (theRoot)) ;
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CLASSWORK

PLAYGROUND

< Exercise AVL 4. Starting from the resulting AVL tree of the
exercise AVL 2...

Delete the sequence of elements: 1, 3,4, 7, 11, 10.
— Analyze the temporal complexity of every insertion.
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CLASSWORK

PLAYGROUND

< Exercise AVL 5. Starting from this AVL tree...
 Delete the sequence of elements 20, 4, 10, 9, 6, 3.

f 6 > < 15 >
y | L
OO JONO
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AVL Trees

Performance

J/

»  Worst case

Rebalancing an AVL affects the search path only
—  Its longitude is O(log,n)

Log,n <= Search path longitude <= 1.44Log,n

Method PBT AVL

Insert O(n) O(log,n)
Search O(log,n) O(log,n)
Deletion O(n) O(log,n)

Data Structures www.martin-gonzalez.es
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B Trees (Bayer & McCreight)

Problem to Solve

* Building trees on secondary memory (disk) storing massive
amounts of elements supporting a logarithmic access
Reduce the tree’s height distributing multiple elements on each level.

oy
;;‘
N

il

Rudolf Bayer (Wikipedia)

dl

% Developed in 1972 by the German researcher Rudolf Bayer
and the Swiss researcher Edward M. McCreight.
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B Trees (Bayer & McCreight)

Storing trees on disk

% Itis more efficient to process multiple elements in RAM rather
to access them one by one in the hard disk.

data || left “ right
6 | 2 | 1
12 “

©

1
nEEEE

BEAE

BRAE

Detecting that an element does not exist in a AVL tree of 1.000.000 elements requires...

.. between 20 and 28 disk accesses
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B Trees (Bayer & McCreight)

Definition

\/
0‘0

Data Structures

An B Tree of order (B-n) is a tree where...
All the leaves are located in the same level.

Every node (usually called page) contains m elements (keys)
stored in a sorted way.

—  The root page contains 1 <= m <= 2n keys.
— Any non root page contains n <=m <= 2n keys.

Every non leave page has m + 1 children pages.
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B Trees (Bayer & McCreight)

Examples
v B-2trees

o
Lﬂﬁibfﬁﬁlll

/H\ln\
ooREoons FEoo e

[175] Jul-23



B Trees (Bayer & McCreight)

Bnode (Pseudo code)

int m;

Or...

int m;

class BPage <T extends Comparable <T>> {
private final static int n=
private final static int 2n = 2*n;

L]
e

T elements[l..2n];
BPage<T> links [0..2n];

class BPage <T extends Comparable <T>> {
private final static int n=
private final static int 2n = 2*n;

L]
Y 4

LinkedList<T> elements;
LinkedList<BPage> links;
// can be substituted by elements.size();

Data Structures www.martin-gonzalez.es
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B Trees (Bayer & McCreight)

Capacity of a B Tree of order n

% Given a B-n of height h, the minimum number of keys (Ny)

that it can store is...
The capacity of a degenerated B-n tree (maximum height).

Level || Pag. per Level Minimum m value Total
1 1 1 1
2 2 n 2n
3 2(n+1) n 2n*(n+1)
4 2(n + 1)? n 2n*(n+1)2
h 2(n + 1)h-2 n 2n*(n+1)h-2

Nyin =1 +2n* 31, (n + 1) -2
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B Trees (Bayer & McCreight)

Maximum height of a B-n tree
% h., Is defined as
« N=1+2n*¥"_ (n+1)-2
— N is the number of keys in the tree.

‘:’ hmaxz 1+ I—Ogn+1(N+1)/2
« If the constant n is greater enough, h
Nax = LOg,N.

may be estimated as:

max

Range for the height of a B-n tree

h < 1 + Log, , ;(N+1)/2

O (h) <=~ O(Log,N)

“* The higher the order of the tree (n) the lower its height.
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B Trees (Bayer & McCreight)

Capacity of a B Tree of order n
Given a B-n of height h, the maximum number of keys (N,;.,)

\/

.0

*

that it can store is...

The capacity of a complete (compact) B-n tree (minimum height).

Level || Pag. Per Level Maximum m value Total
1 1 2n 2n
2 (2n + 1) 2n 2n*(2n+1)
3 (2n + 1) 2n 2n*(2n +1)?
4 (2n + 1)3 2n 2n*(2n +1)3
h (2n + 1)h-1 2n 2n*(2n + 1)h-1

Data Structures

NMax=2n* ?=1(2n t 1)i_1

www.martin-gonzalez.es

[179] Jul-23




B Trees (Bayer & McCreight)

Minimum height of a B-n
% hy, IS calculated as...
« N=2n*¥" . (@2n+1)-".
— N is the number of keys in the tree.

K hmin =~ I—092n + ‘I(N+1 )
« If the constant n is great enough, h
- hmin = I—Og2nN'

may be estimated as:

min

Range for the height of a B-n tree

Log,, ;. ; (N+1) <~ h <~ 1 + Log, ., ,(N+1)/2

O (Log,,N) <= O(h) <= 0O (Log,N)

R/

% The higher the order of the tree (n) the lower its height.
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B Trees (Bayer & McCreight)

Searching

% Look for the element X among the elements in the page
Sequential search.
Binary search.

% If the search fails, the algorithm stops in the position |
(elements[j]) of the page such that 0 <= j <=m

Load the page links[j] and repeat the search over again.

This recursive process is repeated over and over again until finding X or
reaching a null link (determining that the element does not exist).

i 11
L41618114] L17 20]I 1 ]

DISCUSSION: What is the temporal complexity of this algorithm? [181] Jul-23



B Trees (Bayer & McCreight)

Temporal Complexity

<+ Best Case

. The element is found in the root
—  O(m)=0(1).
—  As1<=m<=2n, mit can be considered as constant value.

<+ Worst Case

. The search is performed in a degenerated tree and the element does not
exist
—  O(h)* O(m).
—  O(log,N) * O(1) = O(log,N).

Detecting that an element does not exist in a B-10 tree of 1.000.000 elements requires...

... between 5 and 6 disk accesses

... an AVL tree would require between 20 and 28 accesses
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B Trees (Bayer & McCreight)

Insertion

% Case l: Leaf page has m < 2*n keys.

Move all the elements with a key greater than that of the object to be
inserted one slot to the right in order to create a new empty slot.

sl 11
L04106108114] L1712501?1 ]

* Insertion is always done in the leaves and it is produced only
as a result of an unsuccessful search.

EVENT: Inserting element 19 [183] Jul-23



B Trees (Bayer & McCreight)

Insertion

% Case l: Leaf page has m < 2*n keys.

Move all the elements with a key greater than that of the object to be
inserted one slot to the right to create a new empty slot.

Ll .-
L04106108114] 17 || 19 201 ]

* Insertion is always done in the leaves and it is produced only
as a result of an unsuccessful search.

Data Structures www.martin-gonzalez.es [184] Jul-23



B Trees (Bayer & McCreight)

Insertion

\/

% Case 2: Leaf page has m = 2*n claves (Overflow).

«  Split the leaf in two and distribute the keys among them
—  Last (m+1)/2 keys in a new leaf.
—  First (m+1)/2 keys remain in the original leaf.
—  Central element (median) is inserted in the upper page to become a new index.

« If the upper page is full, the process is executed again. It can be
repeated over and over again until reaching the root.
—  Splitting the root in two is the only way that a B tree can increase its height.

113

L17 191201 j

EVENT: Inserting element 10 [185] Jul-23



B Trees (Bayer & McCreight)

Insertion

\/

% Case 2: Leaf page has m = 2*n claves (Overflow).

«  Split the leaf in two and distribute the keys among them
—  Last (m+1)/2 keys in a new leaf.
—  First (m+1)/2 keys remain in the original leaf.
—  Central element (median) is inserted in the upper page to become a new index.

« If the upper page is full, the process is executed again. It can be
repeated over and over again until reaching the root.
—  Splitting the root in two is the only way that a B tree can increase its height.

.-
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B Trees (Bayer & McCreight)

Insertion

\/

% Case 2: Leaf page has m = 2*n claves (Overflow).

«  Split the leaf in two and distribute the keys among them
—  Last (m+1)/2 keys in a new leaf.
—  First (m+1)/2 keys remain in the original leaf.
—  Central element (median) is inserted in the upper page to become a new index.

« If the upper page is full, the process is executed again. It can be
repeated over and over again until reaching the root.
—  Splitting the root in two is the only way that a B tree can increase its height.

08 J| 15 1 j
CEN N My Yy N
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B Trees (Bayer & McCreight)

Temporal Complexity for the Insertion operation

<+ Best Case

Element is inserted in the leaf of a minimum height tree with slots enough
to avoid splitting.
—  Of(logz,(N)) + O(m) = O(logy,(N)).

<+ Worst Case

Element is inserted in a maximum height tree and the insertion requires the
splitting of all the pages along the search path.

—  O(log,(N)) * O(n) = O(log,(N)).
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CLASSWORK

PLAYGROUND

<+ Exercise B Tree (Insertion). Starting from an empty B-2 tree...
a) Insert the key sequence 6, 11, 5, 4, 8, 9, 12.

) Insert the key 21.

) Insert the key sequence 14, 10, 19, 28.

) Insert the key sequence 3, 17, 32, 15, 16.

) Insert the key sequence 26, 27.

®O o O T
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B Trees (Bayer & McCreight)

Deletion

“* Deleting an inner element

«  Substitute the element by its successor
—  The successor is found in the first slot of the leftist leaf on the right sub tree.

 Delete the element in the source page.

EVENT: Deleting element 15 [190] Jul-23



B Trees (Bayer & McCreight)

Deletion

“* Deleting an inner element

«  Substitute the element by its successor
—  The successor is found in the first slot of the leftist leaf on the right sub tree.

* Delete the element from the source page.

)
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B Trees (Bayer & McCreight)

Deletion

\/

“* Deleting an inner element

«  Substitute the element by its successor
—  The successor is found in the first slot of the leftist leaf on the right sub tree.

« If the source page is under a critical situation...

—  Try to substitute the element by its predecessor (located in the last slot of the
rightist leaf of the left sub tree).

—  The page is under a critical situation if m=n before the substitution.
* Delete the element from the source page.

OooNEoDoUE fDoEE
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B Trees (Bayer & McCreight)

Deletion

\/

“* Deleting an inner element

«  Substitute the element by its successor
—  The successor is found in the first slot of the leftist leaf on the right sub tree.

« If the source page is under a critical situation...

—  Try to substitute the element by its predecessor (located in the last slot of the
rightist leaf on the left sub tree).

—  The page is under a critical situation if m=n before the substitution.
* Delete the element from the source page.

g Il 14 1 j
N N Ny O Y Yy Y
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B Trees (Bayer & McCreight)

Deletion

\/

“* Deleting an inner element

«  Substitute the element by its successor
—  The successor is found in the first slot of the leftist leaf on the right sub tree.

« If the source page is under a critical situation...

—  Try to substitute the element by its predecessor (located in the last slot of the
rightist leaf on the left sub tree).

—  The page is under a critical situation if m=n before the substitution.

« Ifthe source page is under a critical situation, substitute the
element by its successor.

 Delete the element from the source page.

EVENT: Deleting element 15 [194] Jul-23



B Trees (Bayer & McCreight)

Deletion

\/

“* Deleting an inner element
«  Substitute the element by its successor

—  The successor is found in the first slot of the leftist leaf on the right sub tree.

« If the source page is under a critical situation...

—  Try to substitute the element by its predecessor (located in the last slot of the
rightist leaf on the left sub tree).

—  The page is under a critical situation if m=n before the substitution.

« Ifthe source page is under a critical situation, substitute the
element by its successor.

* Delete the element from the source page.

ToE
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 1: the page has n < m keys.

—  Elements to right of the element are moved one position to the left (hiding the
now empty slot).

GO ) FE R
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 1: the page has n < m keys.

—  Elements to right of the element are moved one position to the left (hiding the
now empty slot).

ToE
ooEs|uoEsjooow
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 2: the page has n = m keys (underflow).

—  Search among the adjacent leaves in order to get someone with n < m to borrow
a key.

»  The page to the right is verified first (if it exists). If it can not provide any
key, the search process is attempted again on the page to the left.

»  The leaf can not provide keys when it its under a critical situation (n = m).

ToE
/
ooEs|uoEs oo
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 2: the page has n = m keys (underflow).
—  Borrowing is done through the upper page.

— The borrowed element is sent to the upper page to replace the index element.
The former index is sent down to the page requiring the extra element where it
replaces the deleted element.
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 2: the page has n = m keys (underflow).
—  Borrowing is done through the upper page.

— The borrowed element is sent to the upper page to replace the index element.
The former index is sent down to the page requiring the extra element where it
replaces the deleted element.

ToEw
ooEs|ouesjoowe
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 2b: the page has n = m keys (underflow) and no page can

provide elements.
—  Both adjacent pages (left and right) are under a critical situation.

—  The page merges with the page on the right (if it does not exist, the page is
merged with the one on the left).

»  The resulting page includes the elements of both pages plus the index
element that must be deleted from the upper page.

»  The deletion of the index in the upper page may conduct to a recursive
deletion in all the pages of the search path.

»  If this process reaches the root, it will reduce the height of the tree.

1}
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 2b: the page has n = m keys (underflow) and no page can

provide elements.
—  Both adjacent pages (left and right) are under a critical situation.
—  The page merges with the page on the right (if it does not exist, the page is
merged with the one on the left).
»  The resulting page includes the elements of both pages plus the index
element that must be deleted from the upper page.

»  The deletion of the index in the upper page may conduct to a recursive
deletion in all the pages of the search path.
»  If this process reaches the root, it will reduce the height of the tree.

IO
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B Trees (Bayer & McCreight)

Deletion

< Deleting an element from a leaf page

« Case 2b: the page has n = m keys (underflow) and no page can

provide elements.
—  Both adjacent pages (left and right) are under a critical situation.
—  The page merges with the page on the right (if it does not exist, the page is
merged with the one on the left).
»  The resulting page includes the elements of both pages plus the index
element that must be deleted from the upper page.

»  The deletion of the index in the upper page may conduct to a recursive
deletion in all the pages of the search path.
»  If this process reaches the root, it will reduce the height of the tree.

I .
L04106 1 j L101 151 191 32‘
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B Trees (Bayer & McCreight)

Temporal Complexity Deletion

< Best Case
Case 1 on a Minimum Height B tree: O(log,,(N)) + O(m) = O(log,,(N)).
< Worst Case

. Element deleted from a Maximum Height B Tree applying case 2b
triggering a page merging process from the leaves to the root

—  O(log,(N)) * O(n) = O(log,(N)).
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CLASSWORK

PLAYGROUND

< Exercise B Tree (deletion). Starting from the B-2 Tree used in

the last exercise...

a)
b)
c)
d)
e)
f)
g)
h)

Delete key 11.
Delete key 15.
Delete key 6.

Delete key 16.
Delete key 10.
Delete key 12.
Delete key 28.
Delete key 27.

Data Structures

www.martin-gonzalez.es
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Priority Queues

Goal

“* Model linear structures where their items are managed
according to an associated priority.
. Printing queues.
. Management of Air Traffic Control systems (ATC).
. Process management in CPUs.
. Emergency and contingency plans.
. Waiting queues in Hospitals.

Data Structures www.martin-gonzalez.es [206] Jul-23



Priority Queues

Problem to Solve

\/

% Optimizing two crucial operations...
1. Insert item (labeled with a priority level).
2. Remove the element with the highest priority level.

R/

“ Priority queues are frequently implemented using Binary
Heaps

. Provides a O(log,(n)) complexity for both operations.

. Can be implemented using vectors (avoiding the use of dynamic memory).

Data Structures www.martin-gonzalez.es [207] Jul-23



Binary Heaps

What is a Binary Heap?

% Itis a complete binary tree (except for the lowest level, which
may not be complete).
The last level is filled from left to right.

n—1 n=2 n=3

Y ;% gia

Range for the height of a Binary Heap
h = E[log,n] + 1

O (h) <= O(Log,n)

NEXT: What is the maximum height for a Binary Heap? [208] Jul-23



Binary Heaps

Properties
“ Any Binary Heap is also a Minimum Height Tree

Minimum Height

AVL Trees
Trees

Data Structures www.martin-gonzalez.es [209] Jul-23



Binary Heaps

Properties
“» Due to these constraints, Binary Heaps can be implemented
using vectors (does not need dynamic memory)
« The tree’s root is saved in the first slot of the vector.

« Given a node placed in the i slot of the vector:
— Its left children will be stored in the slot 2i +1.
— Its right children will be stored in the slot 2i + 2.

And now it is your turn! [210] Jul-23



Binary Heaps

Heaps are sorted and can not have duplicated items

*  Minimum Heap
« Every node has a key lower than that of its children.
 The item with the lowest key is placed in the heap’s root (slot 0 in

the vector).
—  Optimizes the operations Add and getMin.

< Maximum Heap
 Every node has a key greater than that of its children.

 The item with the greater key is placed in the heap’s root (slot 0

in the vector).
—  Optmizes the operations Add and getMax.

[211] Jul-23

NOTICE: From now on we will work on Minimum Heaps.



Binary Heaps

Insertion (Ascending Filtering)
1. Place the element to be inserted in the last slot of the wvector.
2. Repeat until the element reaches the root (slot 0 in the vector)

or 1ts key 1s greater than that of 1ts father.
e If the item’s key 1s lower than its father’s key

(placed in

the slot E[(i-1)/2]) interchange their positions.
4 12
{ L
® O ®©
T |
{3 N Best case Complexity : O(1)
N Worst case Complexity: O(log,n)

[212] Jul-23

DISCUSSION: What is the temporal complexity of this algorithm?



Binary Heaps

Exercise @

Compare Slot E[(i-1)/2]
Compare Slot E[(8-1)/2] = E[7/2] = 3

rF====1

1113 || 21|16 || 24 || 31 || 25 || 50 || 65 |i 18 i

EVENT: Insert item 18 [213] Jul-23




Binary Heaps

Exercise

Compare Slot E[(i-1)/2]

Compare Slot E[(3-1)/2] = E[2/2] = 1

1113 || 21|16 || 24 || 31 || 25 || 50 || 65 |i 18 i
213 || 21 16:18!31 25 || 50 || 65

And now it is your turn! [214] Jul-23



Binary Heaps

Exercise

Compare Slot E[(i-1)/2]
Compare Slot E[(1-1)/2] = E[0/2] =0

Data Structures

r====1

(26)
45
31 |[ 25
' 18 i[ 31 |[ 25
21 i[ 31 ][ 25

www.martin-gonzalez.es
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Binary Heaps

Remove (Descending Filtering)

1. Return the item placed in the root (minimum key). 9(1)
2. Place the last item of the vector in the root’s
position applying descending filtering.
3. Repeat until the pivot reaches a leaf or its key
is lower than that of both of its children. _'()UOQZn)
* Interchange the position of the pivot and the
children owning the lowest key.

DISCUSSION: What is the temporal complexity of this algorithm? [216] Jul-23



Binary Heaps

Exercise 1

Compare with Slots 2(0)+1 and 2(0)+2

EVENT: Remove item (13) [217] Jul-23



Binary Heaps

Exercise 1 V10
I

Compare with Slots 2(2)+1 and 2(2)+2 gzq @ @ @

1 (13 (| 18 || 16 || 21 || 31 || 25 || 50 || 65 || 24
2116 i| 18 || 16 || 21 [[ 31 || 25 || 50 || 55 || 24

Data Structures www.martin-gonzalez.es [218] Jul-23



Binary Heaps

Exercise 1 N
11

1 (13 (| 18 || 16 || 21 || 31 || 25 || 50 || 65 || 24

2116 i[18 |[16 ][ 21 ][ 31 ][ 25 |[ 50 |[ 65 || 24
3[16|[18]i 24 i[21][31][25][ 50 65 [ 24
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Binary Heaps

Exercise 2

Compare with Slots 2(0)+1 and 2(0)+2 @ @ @ @

1 (16 || 18 || 24 || 21 || 31 || 25 || S0 || 65

And now it is your turn! [220] Jul-23



Binary Heaps

Exercise 2 V1O
I

Compare with Slots 2(1)+1 and 2(1)+2 @ @ @ @

1 (16 || 18 || 24 || 21 || 31 || 25 || S0 || 65
2!18! 18 |1 24 || 21 || 31 || 25 || 50 || 65

Data Structures www.martin-gonzalez.es [221] Jul-23



Binary Heaps

Exercise 2 V1O
I

1 (16 || 18 || 24 || 21 || 31 || 25 || S0 || 65

2I18! 18 |1 24 || 21 || 31 || 25 || 50 || 65
3|18 I21_i 24 | 21 || 31 || 25 || 50 || 65

Data Structures www.martin-gonzalez.es [222] Jul-23
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Special Operations using Heaps

Returning the item with the highest key O(n)

Sequential search in the vector’s area included in
the range:
[size/2, size].

% Iltems with the greatest values are located in the tree’s leaves
It is enough to explore only half of the vector.

4 @
i
() () (o) () Cllelzllslsmelle

DISCUSSION: What is the temporal complexity of this algorithm? [224] Jul-23



Special Operations using Heaps

Changing the item’s priority O(log,n)

1. Access to it and modify its priority.

2. If the new value 1s lower than the original
* Apply ascending filtering
else
* Apply descending filtering.

DISCUSSION: What is the temporal complexity of this algorithm? [225] Jul-23



Special Operations using Heaps

Deletion O(log,n)

1. Change the item’s priority to -« in order to place
it in the root’s position.
2. Invoke the remove () method.

@ Delete element 4

DISCUSSION: What is the temporal complexity of this algorithm? [226] Jul-23



C60 Series

Dictionary
Structures

Dr. Martin Gonzalez-Rodriguez

[227] Jul-23



Dictionary Structures

Goal

% Save unrelated items in such way that it is possible to recover
them in fastest possible way.
. Gets the fastest access speed.
. Uses huge amounts of memory.
. Massively used in cache systems, web catalogs and databases.

Data Structures www.martin-gonzalez.es [228] Jul-23



Dictionary Structures

Goal

% Reaching a temporal complexity of O(1) for access tasks

Performance obtained in other operations is sacrificed.

Method Complexity
Insert O(1)
Search O(1)
Deletion O(1)
Print O(n)
Get Highest O(n)
Get Lowest O(n)

Data Structures

www.martin-gonzalez.es
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Hash Tables

Basic Elements

HashTable class

class HashTable<T> {
private ArraylList<HashNode<T>> associativeArray;

public HashTable (int B) {
associativeArray = new ArrayList<HashNode<T>> (B) ;

private int £ (T element) {
return (..); // converts T to an int value in the range
// [0, B-1].

Data Structures www.martin-gonzalez.es [230] Jul-23



Transform keys into indexes

% Receives the item’s key.
Usually a String or int.

% Returns the slot number (index) where the item should be
placed in the associativeArray.
Range for f: [0, B-1].

..............................................

Data Structures

- O

A~ W DN

ship f(“ship”) — 0
apple f("apple”) — 2
plane f(“plane”) — 3

www.martin-gonzalez.es
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Function f for integer keys

private int f (T element)

{

}

\O

return (element.hashCode() % B); // Module operation

** Module operation has an excellent performance.
. The elements are uniformly distributed if dealing with random keys.

1%4=1< .................................................
2%4=2 |
3%4=3 Collision
4% 4=0

5%4=1 ¢mmmmmmmmmj

Data Structures

www.martin-gonzalez.es
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Collisions

\/

% Two elements x and and are synonymous when...
+ fx)==1(y)
. Synonymous elements create collisions over the same vector’s slot.

% Collision Management
. Active Protection
— Avoiding or delaying the collision (designing the perfect hash function).

. Passive Protection
— Two or more elements share the same vector’s slot.

. Dynamic resizing

—  Dynamically increasing (or decreasing) the size of the vector (B) depending on
the number of used slots.

Data Structures www.martin-gonzalez.es [233] Jul-23



Perfect f function
P(f(X,)=0) == P(f(X,)=1) = .. == P(f(X,)=B-1) == 1/B

«* Ensures the lowest number of collisions.
. If there are n elements in the vector, there will be an average of n/B

collisions.
10 % 10 =0 10%7=3
20 % 10 =0 20% 7=6
30 % 10 =0 30% 7 =2
40 % 10 =0 40 % 7 =5
50 % 10 =0 50% 7 =1

< B should be a prime number!
. Helps reducing the number of collisions when there are not random keys.
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HashCode for Strings (Version 1)

public int convert (String t){ // <-> t.hashCode ()
int result = 0;

for (int i=0; i<t.length(); i++)
result += (int) t.charAt(1i);

return (result);

}

private int £ (String element)
{
return (convert (element) % B);

}

% Transforms the String key into an integer value which is used
as the parameter of hash function.

. The convert function is based on codes representing each character of the
string (adding them).
—  (ASCII code, EBDIC, etc.).
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Exercise

Transform the String “PLANE” assuming that the code for the
character A is 65.

\/
000

Character Code
P 80
L 76
A 65
N /8
E 69
Total 368
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
A B C D E F G H I J K L M N| O

And now it is your turn!

[236] Jul-23




Exercise

% Obtain the range for f assuming...
. Maximum String size equals to 8 characters.
. Code range [0, 127].
. B = 10,007 slots.

Range convert (String t)

[8%0, 8*127] = [0; 1,016]

Range f (String t)

[0, 1,016] % 10,007 = [0; 1,016]
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Disadvantages

< If B is a big number and the size of the key is small,
dispersion is concentrated in the upper area of the vector.
. If the size is small, the sum of the codes will be small too.

. When the module operator (%) is applied to a small number using a big B
parameter, the result will be a really small figure.

10.15% — } 1,016

— 10,007
89.85% —
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HashCode for Strings (Version 2)

public int convert (String t) {<-> t.hashCode ()
int result = 0;
int k =(t.length()>3)?3:t.length();

for (int 1=0; i<k; 1i++)
result += (int) Math.pow (27, 2-1) * (int) t.charAt(1i);

return (result);

% Assigns a weight to each character depending upon its position.
. The weight value (27) is the same as the length of the alphabet.
—  The weight is 2721 being i the position of the character in the String.
. It is possible to restrict the number of characters analyzed to a limit of k to
improve the efficiency.

— Inthe example, k <= 3.
—  The multiplication operation consumes much CPU time.

Convert (“PLANE”) =P * 272+ L * 271 + A* 270
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Example

J/

% Transform the String “PLANE” assuming that the code for the
character A is 65.

Character Weighted Code Total

P 80*272 58,320

L 76%27" 2,052

A 65*27° 65

N - -

E _ i
Total 60,437

60,437 % 10,007 = 395
Version 1 of Convert(“PLANE”) obtained 358 (358 % 10,007) = 358

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
A B C D E F G H I J K L M| NJ O
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Disadvantages

* Words starting with the same character combination produce

collisions.
«  “PLANE”, “PLANING”, “PLASTIC’, etc.

“ Assuming a vector size B = 10,007...

. In Theory...

—  For k=3 there are 27*26*25 (17,550) different combinations for the beginning of a
word (prior to invoke the convert function).

—  Since 17,550 > 10,007, the elements are distributed along the vector.
. But in Real Life...
—  Only 2,851 combinations out of 17,550 makes sense in Spanish language.
» For example, there are not words starting with ZYV, ZVW, XYV, etc.

—  Those 2,851 valid words only represent a 28.4% of the 10,007 available slots in
the vector.

It is necessary to explore all the characters in the String
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HashCode for Strings (Version 3)

public long convert
long result = 0;

for (int 1=0; i<t.length();
result += (int) Math.pow (32,
return (result);

}

(String t) {<-> t.hashCode ()

i4+4)

t.length()-1i-1) *

(int) t.charAt (i),

% How to optimize the algorithm to analyze the whole String?

. Using 32 as the weight, instead of 27.
—  Multiplying by 32 is equivalent to a shift of 5 bits at binary level (shifting is

faster than multiplying).
»  32=25

Convert (“PLANE”) =P * 324+ L* 323+ A* 322+ N * 32" + E * 320

DISCUSSION: How to reduce the number of calls to the Pow() method?
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HashCode for Strings (Version 4)

public long convert (String t) {<-> t.hashCode ()
long result = (int) t.charAt(0);

for (int i=1; i<t.length(); i++)
result = (32 * result) + (int) t.charAt(i);

return (result);

}

% Using the Horner's method

. Minimizes the number of multiplications using an alternative representation
of the Polynomial.

Convert (“PLANE”) =P * 324+ L* 323+ A* 322+ N * 32" + E * 320

Convert,,.... (“PLANE”) = (P * 32) + L) * 32) + A) * 32) + N) * 32 + E
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HashCode for Strings (Version 5)

public long convert (String t) {<-> t.hashCode()
long result = (int) t.charAt(0);

for (int i=1; i<t.length(); i++)
result = ((32 * result) + (int) t.charAt(i)) % B;

return (result);

}

% Avoiding Overflows
. Calculation generates such large numbers that can not be stored.

. The module operator (%) must be applied in every iteration in order to
reduce the size of the figures.
—  Overflow is avoided at the cost of a temporary penalty.

f(“PLANE”) =
((P*32)+L)%B*32)+A)% B*32)+N)%B*32+E)%B
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Transform

J/

% Transform the String “PLANE” assuming that the code for the
character A is 65.

Character Weighted Code Total

P 80*324 83,886,080

L 76*323 2,490,368

A 65*322 66,560

N 78%32] 2,496

E 69*320 69
Total 86,445,573

86,445,573 % 10,007 = 5,107
Version 2 of Convert(“PLANE”) obtained 60,437 % 10,007 = 395

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
A B C D E F G H I J K L M| NJ O

Data Structures www.martin-gonzalez.es [245] Jul-23



Passive Protection

Collisions are inevitable in the long term...

< The smaller the B the greater the probability of collision.

Certainty is achieved when...
- B=1.
—  Problem domains requires the use of duplicated keys.

< When two or more elements share the same vector slot...
There are several strategies to deal with collisions.

— Separate Chaining

— — Linear Probing

— Open Addresing Quadratic Probing

— Double Hashing
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Separate Chaining

Separate Chaining

* Each slot contains a dynamic data structure that stores the
synonyms.
. LinkedList.
. AVLTree.

HashTable class O(B) = O(1)

ppublic class HashTable<T>

{
private int B = 10007;

rivate ArrayList<AVLTree<T>> associlativeArray;

public HashTable (int B) {
this.B = B;
assocliativeArray = new ArrayList<AVLTree<T>>(B);

for (int i=0; i<associativeArray.size(); i++)
associativeArray.add (new AVLTree<T>());

}

}

DISCUSSION: What is the temporal complexity of this constructor? [247] Jul-23



Separate Chaining

add

O(n/B) — O(1)

public void add (T a) {
if (!'find(a))
assoclativeArray.get (f (a.hashCode())) .add(a);
}

find() and remove() behave in a similar way

? — 0(1)

| |
0 (0—(5)
1

o G For (int 1=0; i< 9; 1i++)
2 9 e table.add (new Integer (i));
3 33—
4 (4

DISCUSSION: What is the temporal complexity of this algorithm?
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Separate Chaining

Load Factor (LF)

% ltis calculated as the number of elements in the hash table
divided by its size.
LF = n/B.
Represents the average size of each linked list.

- O

LF=9/5=1.8

QICIOI0

A~ W DN

HEEE
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Separate Chaining

An efficient LF

Search taks Average of visited links
Unsuccessful LF
Successful 1+ LF/2

% Ensuring a good performance in Hash Tables based on Separate
Chaining requires LF smaller or equal than one (LF <= 1)

B = n (approximately).
Average size of the linked lists = 1.
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Open Addressing

Open Addressing

* Each slot can contain only one item.
. Whenever a collision is detected, the algorithm looks for an empty slot in
the surrounding slots.
. There are several different approaches to explore the vicinity.
—  Linear Probing.
—  Quadratic Probing.
—  Double Hashing.

HashTable class

public class HashTable <T>

{
private final static int B = 10007;

private ArraylList<HashNode<T>> associativeArray;

}
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Open Addressing

Linear Probing

% Consecutive search on the neighboring slots modifying the f
function.
f(x) =[x +i] % B.

- Where i represents the number of attempts used to find an empty slot. It assumes the following
values 0, 1, 2, 3...

add(4) >[4+ 0] % 5 =4

ol 22 b | add(13) — [13+ 0] % 5= 3
3 add(24) — [24 + 0] % 5 = 4
add(24) — [24 +1] % 5=0
2 ......... Prlmal’y ClUSteI’Ing ..........
3| 13 add(3) - [3+0] % 5=3
add(3) - [3+1] % 5=4
T I R T ———————— 2dd(3) > [3 + 2] % 5= 0

add(3) > [3+3]%5=1
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Open Addressing

Clustering

s Set of interrelated occupied slots.
. Clustering can be produced even on relatively empty hash tables.

. Any key distributed over a clustering area requires several attempts to

find its position in the vector.
— And what it is worst... when the item is finally added, it will join the clustering,
which becomes larger and larger.

% If the table is large enough, there will exist an empty slot for the

element...

. ...but finding it will require much time!
Search Approximate required attempt number
Unsuccessful (1 +1/(1 = LF)?)/2
Successful (1+1/(1-LF))/2
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Open Addresing

Theoretical studies about performance

LF Attempts per insertion (average)
0.90 50
0.75 8.5
0.50 2.5

/

s Itisrecommended touse aLF <=0.5
. B should be at least two times n.
The increment is the use of extra memory is remarkable.

Recommendation for Separate Chaining: LF <=1

Data Structures www.martin-gonzalez.es
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Open Addresing

Lazy Deletion

% Clustering prevents simple deletion.

The element is marked for deletion but it is not deleted until its slot is
selected to insert new items.

Marked elements are considered empty during insertions but occupied
during search tasks.

0|24 | delete(24) —[24+0]%5=4
11 3 delete(24) — [24 + 1] % 5 =0
2
find(3) - [3+0]% 5=3
313 |
find(3) > [3+1]% 5=4
414 find(3) > [3+2] % 5=0

Access to the key 3 is lost!
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Open Addresing

Lazy Deletion

HashTable class

public class HashNode <T>

{
public final static byte EMPTY = 0;
public final static byte VALID = 1;
public final static byte DELETED = 2;

private T element;
private byte status = EMPTY;
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Open Addressing

Lazy Deletion

HashTable class

public class HashTable<T>

{
private final static int B = 10007;

private ArraylList<HashNode<T>> associativeArray;

}

Before delete(24) — [24 + 0] % 5 = 4 After
1] 3 | VALID find(3) = [3+0]%5=3 1] 3 | VALID
5 EMPTY find(3) > [3+1] % 5=4 5 EMPTY
3 13 VALID flnd(3) - :3 + 2: % 5=0 3 13 VALID

find(3) > [3+3] % 5=1
4| 4 | VALID 4| 4 | VALID
add(15) > [15+0] % 5=0
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Open Addressing

Quadratic Probing

“* When a collision is detected, the algorithm looks for an empty
slot located at a quadratic distance from the first slot.
f(x) = [x +i°] % B.
—  Where i represents the attempt number. It assumes values of 0, 1, 2, 3...

add(4) — [4 +02] % 5 = 4

o[22 add(13) — [13+ 02] % 5 = 3

1 add(24) — [24 + 07 % 5 = 4
add(24) — [24 + 1] % 5 =0

21 3 add(3) - [3+ 02 % 5 = 3

3113 add(3) — [3 + 12] % 5 = 4

41 4 add(3) — [3+22] % 5 = 2
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Open Addressing

Quadratic Probing

\/

% Since the distance between verified slots (quadratic distance) is
really big, it is possible not to find an empty slot at all.

. Even though there may be free slots, exploring probing can jump over
them ignoring them!

Quadrating Probing Theorem

If using quadratic probing 1t holds that B is a prime number and

LF <= 0.5, it is always possible to find a position to insert an
item.

\/

“* Quadratic Probing eliminates primary clustering...
. ... but it can produce secondary clustering.
“ However secondary clustering may be acceptable...

. Simulation studies show that in order to avoid secondary clustering only
one jump is needed to find free slots.
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Open Addressing

Double Hashing

% Uses two hashing functions.
f(x) = [x + i*H,(X)] % B.
—  Where i represents the attempt number. It assumes values of 0, 1, 2, 3...

—  Where H, is the jumping function. It can be anyone. The next one is frequently
used for this purpose:

»  Hy(x)=R-x%R.
»  Where R is the prime number predecessor of B.

add(4) — [4 + 0*(3 — 4%3)] % 5 = 4

0 add(13) - [13 + 0*(3—=13%3)] % 5= 3

1 3 add(24) — [24 + 0%(3 —24%3)] % 5=4

2| 24 add(24) — [24 + 1*(3—=24%3)] % 5 =2
3113 add(3) > [3+0*(3-3%3)] % 5=3

4 4 add(3) > [3+ 1*(3=3%3)] % 5 =1

Solution: slots 4,1, 3 and 0

TEST: Which slots are checked to insert item 19? [260] Jul-23



Open Addressing

Evaluation of Double Hashing

“ Pros
. Avoids clustering.
. The number of attempts is really small.

R/

% Cons
. The use of a second mathematical function reduces the performance.
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Dynamic Resizing

Dynamically changes the size of the hash table

*  When LF increases to much...

. The performance in the hash table drops down remarkably.
— LF > 1 when using Separate Chaining.

. Open Addressing stops as it may be impossible to find empty slots.
— LF > 0.5is the limit when using Open Addressing.

“* Dynamic resizing recovers an acceptable LF as it moves the
items to a bigger hash table.

. The new B is designated as the prime number immediately over the
double of the original B parameter.

All the elements in the old table are sequentially moved to the new one.
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Dynamic Resizing

Exercise

\/

% Execute Dynamic Resizing using Quadratic Probing

Prime number immediately over the double of 5 is 11

add(24) — [24 + 02] % 11 = 2
add(3) — [3+02] % 11 =3
add(13) — [13 + 02] % 11 =2

0] 24 add(13) - [13+19] % 11 =3
1 add(13) - [13+29]% 11 =6
o 3 add(4) >[4 +0%] % 11 =4
3113
41 4
O(n)

DISCUSSION: What is the temporal complexity of this algorithm?

—_—

- O

24

13

o © 00 N O o b ODN
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Dynamic Resizing

Triggering Dynamic Resizing
< Dynamic resizing may be triggered automatically whenever...

a) ReachingalLF >0.5.

b) Aninsertion fails (there are not empty slots).

c) When it exceeds a certain threshold defined in the constructor of the hash
table.

* Inverse Resizing
. Reduces the size of the hash table to save up memory when there have
been many delete operations.

Type of Table LF’s threshold for Inverse Double Hashing

Separate Chaining 0.33
Open Addresing 0.16
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Appendix A

To Know More
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To Know More: Graphs

PLAYGROUND
“* Visit the entry for the Dijkstra Algorithm in the Wikipedia

L 2
«  Carefully read all the content for this entry.
— Pay attention on how the use of Priority queues can reduce the temporal

complexity of this algorithm.
—  The Priority Queue data structure will be later studied in the Hierarchical

Structures section.
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To Know More: Graphs

PLAYGROUND
% Visit the entry for the Floyd-Warshall Algorithm in the
Wikipedia

«  Carefully read all the content for this entry.
—  Find out what how the path reconstruction is done by this algorithm.

— Pay attention to how the Negative Cycles are managed and how they can be
detected by the algorithm.
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To Know More: Graphs

PLAYGROUND

% Visit the entry for the Prim’s Algorithm in the Wikipedia

«  Carefully read all the content for this entry.
—  Pay special attention to the algorithm proof of correctness.
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To Know More: Graphs

PLAYGROUND

% The problem of the minimum spanning tree was solved by the
American researcher Joseph Kruskal too.

% Visit the entry for the Kruskal’s Algorithm in the Wikipedia

«  Carefully read all the content for this entry.

— Pay attention the differences between the Kruskal’s Algorithm and the Prim’s
Algorithm.

Joseph Kruskal (Wikipedia)
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To Know More: Trees

PLAYGROUND

% Visit the entry for the Binary Search Tree in the Wikipedia

«  Carefully read all the content for this entry.
Pay attention to the concept of Optimal Binary Search Tree (OBST).
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To Know More: Trees

PLAYGROUND

% Visit the entry for the AVL Tree in the Wikipedia

«  Carefully read all the content for this entry.
—  Pay special attention to the comparison between AVL and red-black trees.
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To Know More: Trees

PLAYGROUND

% Visit the entry for the B Tree in the Wikipedia

«  Carefully read all the content for this entry.

— Pay attention to how this kind of trees can be used to provide concurrent access
to the data.
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To Know More: Binary Heaps

PLAYGROUND

% Visit the entry for the Binary Heap in the Wikipedia

«  Carefully read all the content for this entry.

— Pay attention to how an amortized analysis demonstrates tha insertions may have
a O(log n) complexity, while the delete operation may have O(1).
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To Know More: Hash Tables

PLAYGROUND

% Visit the entry for the Hash Table in the Wikipedia

«  Carefully read all the content for this entry.

—  Pay special attention to how alternative hashing policies like Robin Hood
hashing or Cuckoo hashing work.
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Exercises

Martin Gonzalez-Rodriguez, Ph. D.
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Unit 1

Algorithmics
and Design




E1. Execute the next recursive function (factorial) for f(5):
* Factorial
F(O!) =1
F(n!) = n(n-1)!
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E1. Execute the next recursive function (factorial):

_m
==0"

? 5*(4)
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E1. Execute the next recursive function (factorial):

_m
==0"

? 5*f(4)
4 4==07? 4*(3)
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E1. Execute the next recursive function (factorial):

_m
==0"

? 5%F(4)
4 4==07? 4*(3)
3 3==07 3%6(2)
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E1. Execute the next recursive function (factorial):

_m

4 4==07
3 3==07
2 2==07

Data Structures

5*f(4)
4*f(3)
3*1(2)
2*f(1)

www.martin-gonzalez.es
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E1. Execute the next recursive function (factorial):

_m

- N W

4==07
3==07
2==07

==07?

Data Structures

S*f( 4)
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E1. Execute the next recursive function (factorial):

_m

3
4
3
2
1
0

4==
3==
==

==07?

0==07?

Data Structures

0?
0?
0?

5*f(4)
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E1. Execute the next recursive function (factorial):

_m

3
4
3
2
1
0

4==
3==
==

==07?

0==07?

0?
0?
0?

Data Structures

5*f(4)
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E1. Execute the next recursive function (factorial):

_m

3
4
3
2
1
0

4==
3==
2=

0=

0?
0?

=0?
==07?
=0?

Data Structures

5*f(4)

2*1 =2
1"1 =1
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E1. Execute the next recursive function (factorial):

_m

3
4
3
2
1
0

4==
3==
2=

0=

0?
0?

=0?
==07?
=07

Data Structures

5*f(4)

3*2=06
2*1 =2
1"1 =1
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E1. Execute the next recursive function (factorial):

_m

3
4
3
2
1
0

4=
3==
2=

0=

=07?

0?

=0?
==07?
=07

Data Structures

5*f(4)

46 = 24
3*2=06

2*1 =2

1"1 =1

1
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E1. Execute the next recursive function (factorial):

_m

3
4
3
2
1
0

4=
3==
2=

0=

=07?

0?

=0?
==07?
=0?

Data Structures

5*f(4)

5*24 =120
46 = 24
3*2=06
2*1 =2
1"1 =1

1
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E2. Execute the next recursive function (sum) for f(2,5):

“  Sum (a, b)
F(a,0)=a
F(a, b) =1+ f(a, b-1)
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E2. Execute the next recursive function (sum):

ﬂﬂm

2 5 5== 1+1(2, 4)
2 4 4==07

It is your turn! [294] Jul-23




E2. Execute the next recursive function (sum):

Hﬂm

2 1+1(2, 4)
2 4 4==0? 1+1(2, 3)
2 3 3==0? 1+1(2,2)
2 2 2==0? 1+1f(2, 1)

Data Structures www.martin-gonzalez.es
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E2. Execute the next recursive function (sum):

Hﬂm

N DD N DD N DN
©S =~ NN W H

4=
3=
2=

0=

=0?
=0?
=0?
==0?
=0?

Data Structures

1+1(2, 4)
1+1(2, 3)
1+1(2, 2)
1+f(2,1)
1+f(2, 0)
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E2. Execute the next recursive function (sum):

Hﬂm

N DD N DD N DN
©S =~ N W H

4=
3=
2=

0=

Data Structures

=0?
=0?
=0?
==0?
=0?

1+1(2, 4)
1+1(2, 3)
1+1(2, 2)
1+f(2,1)
1+f(2, 0)

N WO & O1 O N
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E3. Execute the next recursive function (remainder) for
f(15,4): (15%4) ==
“* Remainder (a, b)

F(a, b) = a when a-b<0
F(a, b) = f(a-b, b) when a-b >=0
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E3. Execute the next recursive function (remainder):

a_|b|Condition |Fla-b,b) _______|Return _

15 4 15-4<07? f(11, 4)
11 4 11-4<07?

It is your turn! [299] Jul-23




E3. Execute the next recursive function (remainder):

uum

15-4<0? f(11, 4)
11 4 11-4<0? £(7,4)
7 4 7-4<0? £(3,4)
3 4 3-4<0? 3

[300] Jul-23
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E3. Execute the next recursive function (remainder):

uum

15-4<0? f(11, 4) 3
11 4 11-4<0? £(7,4) 3
7 4 7-4<0? £(3,4) 3
3 4 3-4<0? 3

Data Structures www.martin-gonzalez.es
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E4. Execute the next recursive function (sum-array) for ({2,
5, 6, 8}, 4):
% Sum-array (a, b)
F(V, n) = V[0] when n ==
F(V, n)=V[n-1] + f(V, n-1) when n > 1
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E4. Execute the next recursive function (sum-array):

L [Condion Ve e

{2,5,6,8 4 4== 8 +f({2, 5, 6, 8}, 3)
{2,5,6,8 3 3==1?

It is your turn! [303] Jul-23



E4. Execute the next recursive function (sum-array):

—nm

{2,5,6,8) 4 8 +f({2, 5, 6, 8}, 3)
{2,5,6,8 3 3==1? 6 + ({2, 5, 6, 8}, 2)
{2,5,6,8 2 2==1? 5+f({2, 5, 6, 8}, 1)
{2,5,6,8 1 1==1? 2

Data Structures www.martin-gonzalez.es
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E4. Execute the next recursive function (sum-array):

—nm

{2,5,6,8) 4 8 +f({2, 5, 6, 8}, 3)

{2,5,6,8 3 3==1? 6 +f({2,5,6,8),2) 13
{2,5,6,8 2 2==1? 5+f({2,5,6,8),1) 7
{2,5,6,8 1 1==1? 2
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Unit 2

Network
Structures

Dijkstra




Dijkstra Algorithm

E1. Minimum cost between A and F

» Cost from A.

it S

D
6
A 8
E 2
10
Vector D Vector P
B C D E CIIDI||E
2 00 00 All - -

Data Structures

www.martin-gonzalez.es

[307] Jul-23




Dijkstra Algorithm

E1. Minimum cost between A and F

» Cost from A.

it S

1 A

A C

A, B,C

A BCDE

2
3
4 A B,C,D
5
6

A,B,C,D,EF

Data Structures

M m O W O

Vector D
B C D
4 2 00
52 ]k
sz ]is
3 2 8
3 2 8
3 2 8

www.martin-gonzalez.es
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Dijkstra Algorithm

- 100
E2. Minimum cost from A A E
% Cost from A. 1 3 1
B 60
50 C D
20
Vector D Vector P
it S w B C D E BIIC|IDI||E
1 A 10 0 30 || 100 All - [|A||A
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Dijkstra Algorithm

E2. Minimum cost from A
Cost from A.

A,B,D

D

A BC,D

m O O W

A,B,C,D, E

Vector D
Blcl|[p]lE
10 || « || 30 |[100
10 |' 60 || 30 |[ 100
10 |1 50 || 30 |1 90 |
10 [ 50 |[ 30 ]! 60 |
10 |[ 50 ][ 30 |[ 60

Data Structures

www.martin-gonzalez.es
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Dijkstra Algorithm

E3. Minimum cost from A
% Cost from A.
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Dijkstra Algorithm

E3. Minimum cost from A
< |nit

(B _[C D |E |F |G [H |
D 8 9 5 0 00 00 00

P A A A A
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Dijkstra Algorithm

E3. Minimum cost from A

% PivotD

& S=[A, D]
B _/C D JE _|F |G |H |
D 8 9 5 9 ©0 (%) 6
P A A A A - - D
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Dijkstra Algorithm

E3. Minimum cost from A
< Pivot H

% S=[A, D, H]

. |B _|c D |E [F |G |H |
D 38 9 5 9 0 13 6

P A A A A - H D
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Dijkstra Algorithm

E3. Minimum cost from A
< Pivot B

% S=[A B,D,H]

. |B _|c D |E [F |G |H |
D 8 9 5 9 0 10 6

P A A A A - B D
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Dijkstra Algorithm

E3. Minimum cost from A
s Pivot C

% S=[AB,C,D,H]

. |B _|c D |E [F |G |H |
D 8 9 5 9 0 10 6

P A A A A - B D
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Dijkstra Algorithm

E3. Minimum cost from A
< Pivot E

% S=[AB,C,D,E,H]

. |B _|c D |E [F |G |H |
D 8 9 5 9 0 10 6

P A A A A - B D
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Dijkstra Algorithm

E3. Minimum cost from A
% Pivot G

*
\/

°oe S - [A, B, C, D, E, Ga H]
B _C D JE_|F G _|H |
D 8 9 5 9 16 10 6

P A A A A G B D
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Dijkstra Algorithm

E3. Minimum cost from A
%  Pivot F

*
\/

v S=[AB,CDEF, G, H]
B Cc D [E_|F G _H |
D 8 9 5 9 16 10 6

P A A A A G B D
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Dijkstra Algorithm

E4. Minimum cost from A
% Cost from A.
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Dijkstra Algorithm

E4. Minimum cost from A

o Init
B |C D |E |F |G [H |
D o0 5 ) 5 00 o0 00
P - A - A
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Dijkstra Algorithm

E4. Minimum cost from A

< Pivot C

% S =][C]
/B _|c D |E [F |G |H [
D 9 5 0 5 c0 12 00
P C A - A - C
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Dijkstra Algorithm

E4. Minimum cost from A

% Pivot E
& S=][C, E]
B _|c D |E |[F [G |[H |
D 9 5 0 5 0 12 00
P C A - A - C
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Dijkstra Algorithm

E4. Minimum cost from A
<  Pivot B

v S=[B,C,E]

/B _|c D |E [F |G [H [
D 9 5 00 5 13 11

(o0}

P C A - A B B
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Dijkstra Algorithm

E4. Minimum cost from A
<+  Pivot G

w S=[B,C,E, G]

/B _|c D |E [F |G [H [
D 9 5 00 5 13 11

(o0}

P C A - A B B
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Dijkstra Algorithm

E4. Minimum cost from A
%  Pivot F

*
\/

% S=I[B,C,E,F,G]
B _|c b |E |F |G |H |
D 9 5 0 5 13 11 22

P C A - A B B F
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Dijkstra Algorithm

E4. Minimum cost from A
< Pivot H

*
\/

v S=[B,C EF, G, H]
B Cc D [E_|F G _H |
D 9 5 00 5 13 11 22

P C A - A B B F
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Dijkstra Algorithm

E5. Minimum cost from E
s+ Cost from E.
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Dijkstra Algorithm

E5. Minimum cost from E
< |nit

A B _[C D | _[F G |H
D ) ) () 00 0 6 1

S - E E
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Dijkstra Algorithm

E5. Minimum cost from E

% Pivot H

%  S=[E, H]
A B _C D | |F |G |H
D ) ) 0 00 0 §) 1
P - - - - - E E
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Dijkstra Algorithm

E5. Minimum cost from E
<+  Pivot G

% S=[E, H,G]

. |A B |c D | |F [G [H
D 00 6 1

00 14 00 00

EE N e I - E E
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Dijkstra Algorithm

E5. Minimum cost from E
% Pivot C

% S=[C,E,H,G]

. [A B |Cc D | |[F [G |H
D 17 18 14 = 23 6 1

P C C G - C E E
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Dijkstra Algorithm

E5. Minimum cost from E
%  Pivot A

% S=[AC,E H,G]

. |A B [C D | [F |G |H
D 17 18 14 23 6 1

P C C G - C E E
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Dijkstra Algorithm

E5. Minimum cost from E
% PivotB

% S=[AB,C,EH,GQ]

. |A B [C D | [F |G |H
D 17 18 14 23 6 1

P C C G - C E E

Data Structures www.martin-gonzalez.es [334] Jul-23




Dijkstra Algorithm

E5. Minimum cost from E
< Pivot F

“ S=[A,B,CE,F H, (]

. |A B [C D | [F |G |H
D 17 18 14 23 6 1

P C C G - C E E
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Unit 3

Network
Structures

Search & Floyd




Depth First Search

E1. Draw the path starting navigation from node 1.
% Assume that nodes were inserted in order.
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Depth First Search

E1. Draw the path starting navigation from node A.
«» Assume that nodes were inserted in order.

{1}

{1, 2}

1,2, 3)

1,23, 4

{1,2,3,4,5)
{1,2,3,4,5,6)
{1,2,3,4,5,6,7)
{1,2,3,4,5,6,7, 8
{1,2,3,4,5,6,7,8, 9}
{1,2,3,4,5,6,7,8, 10}
{1,2,3,4,5,6,7,8,10, 11}
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Depth First Search

E2. Draw the path starting navigation from node A.
< Assume that nodes were inserted in alphabetical order.

-
® © B
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Depth First Search

E2. Draw the path starting navigation from node A.
< Assume that nodes were inserted in alphabetical order.

Path |
A}

{A, B}

{A, B, F}

{A, B, F, G}

{A,B, F, G, H}

{A,B,F,C, H, C}

{A,B,F,C,H,C,E}
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Depth First Search

E3. Draw the path starting navigation from node C.
< Assume that nodes were inserted in alphabetical order.
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Depth First Search

E3. Draw the path starting navigation from node C.
< Assume that nodes were inserted in alphabetical order.

I
{C}

{C, A}

{C,A B}

{C,A B, F}

{C,A B, F E}

{C,A B, F,E, H}

{C,A,B,F,E, H, G}

Data Structures www.martin-gonzalez.es
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Depth First Search

E4. Draw the path starting navigation from node D.
< Assume that nodes were inserted in alphabetical order.
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Depth First Search

E4. Draw the path starting navigation from node d.
< Assume that nodes were inserted in alphabetical order.

L
{D}

{D, B}

{D, B, A}

{D, B, A, E}

{D, B, A, E, H}

{D,B,A E, H, F}

{D,B,A E, H,F, G}

{D,B,A E,H,FG,C}
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Depth First Search

ES. Draw the path starting navigation from node H.
< Assume that nodes were inserted in alphabetical order.
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Depth First Search

ES. Draw the path starting navigation from node H.
< Assume that nodes were inserted in alphabetical order.

I
{H}

{H, G}

{H, G, E}

{H, G, E, F}

{H, G, E, F, B}

{H, G, E, F, B, A}

{H, G, E, F, B, A, C}
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Depth First Search

EG. Draw the path starting navigation from node A.
< Assume that nodes were inserted in alphabetical order.

e (e )

'a’o

www.martin-gonzalez.es
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Depth First Search

EG. Draw the path starting navigation from node A.
< Assume that nodes were inserted in alphabetical order.

A}

{A, B}

{A, B, E}

{A, B, E, H}

{A, B, E, H, L}
{A,B,E,H, LI}
{A,B,E,H, LI, M}
{A,B,E,H, L, I,M, O}
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Depth First Search

E7. Draw the path starting navigation from node E.
< Assume that nodes were inserted in alphabetical order.
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Depth First Search

E7. Draw the path starting navigation from node E.
< Assume that nodes were inserted in alphabetical order.

L
{E}

{E, A}

{E, A, B}

{E, A, B, H}

{E,A, B, H,L}

{E,A,B,H,L, I}

{E,A, B, H,L, I, M}

{E,A,B,H,L, 1, M, O}
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Width First Search

E8. Draw the path starting navigation from node 1.
< Assume that nodes were inserted in alphabetical order.
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Width First Search

E8. Draw the path starting navigation from node 1.
«» Assume that nodes were inserted in order.

Path  |Candidates
{1} {2, 6, 8)

1,2 (6, 8, 3)

(1,2, 6) (8,3, 7}
{1,2,6,8) {3,7,9, 10}
{1,2,86,8,3) {7,9, 10, 4, 5)
1,2,6,8,3,7) {9, 10, 4, 5
1,2,6,8,3,7,9 {10, 4, 5)
1,2,6,8,3,7,9, 10} {4, 5, 11}
{1,2,6,8,3,7,9, 10, 4} (5, 11}
1,2,6,8,3,7,9,10,4,5) {11}
1,2,6,8,3,7,9,10, 4,5, 11} {}
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Width First Search

E9. Draw the path starting navigation from node A.
< Assume that nodes were inserted in alphabetical order.
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Width First Search

E9. Draw the path starting navigation from node A.
< Assume that nodes were inserted in alphabetical order.

Path | Candidates

{A} {C, D, E}
{A, C} {D, E, B, F}
{A, C, D} {E, B, F, H}
{A, C, D, E} {B, F, H}
{A, C, D, E, B} {F, H, G}
{A,C,D,E, B, F} {H, G}
{A,C,D, E, B, F H} {G}
{A,C,D, E,B,F H, G} {}
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

\/

«» Initialization.

_|A |[B |[C |D [E . |A |B [c |D |E
5 1 o ow

A O A
B ®© 0 o 3 B
C oo oo (0 o 2 C
D 6 <~ e« 0 4 D
E o o o o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

\/

% lteration 1 (node A).

__JAle c D E BN 'AB C D E_
1 00 00

A 0 5 A
B [ 0 o 3 B
C (@ oo (0 e 2 C
D [6 o~ e« 0 4 D
E (@ o o o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

% lteration 1 (node A).
< AFTER ITERATION COMPLETION.

~_|AB |[c |D |E  [A'B [c D |E
1 w 0

A 0 5 A
B [ 0 o 3 B
C (@ oo (0 e 2 C
b (6 11 7 0 4 D A A
E (@ o o o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

\/

% lteration 2 (node B).

A |Bic D E NN A B (C D E_
1 00 00

A 0 5 A
B « O 3 B
C oo e (0 o 2 C
D 6 1 7 0 4 D A A
E o 0o o o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph
% lteration 2 (node B).
< AFTER ITERATION COMPLETION.

A B c D E BN A B C D
1 8 w

A 0 5 A B
B « O 3 B

C oo e (0 o 2 C

D 6 1 7 0 4 D A A

E o 0o o o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

% lteration 3 (node C).

A O
B
C o
D 6
E o

Data Structures

8§ N ©o 8§ =

CHEE
8 00

8§ © 8 W
o AN 3

m O O T >»

A B C_ID_

B

www.martin-gonzalez.es
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

% lteration 3 (node C).
% AFTER ITERATION COMPLETION.

A B J€ D E BN A B C D
8 3

A 0 5 1 A B C
B o 0 @ 3 B

C oo oo (0 o 2 C

D 6 11 7 0 4 D A A

E o o ‘e o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

% lteration 4 (node D).

A 8 3 A
B «© 0 e 3 B
C oo oo (0 e 2 C
D 6 11 7 0 4 D A A
E o o o e ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph
% lteration 4 (node D).
< AFTER ITERATION COMPLETION.

9 0 10
6 11

(o)

8
3
0

m o O @ >
g8 N O

o K~ N
m O O @ >
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph

\/

% lteration 5 (node E).

__|A_B_C_ID_ A B C_ID_
5 1 8

A O 3 A B C
B 9 O 10 3 7 B D D D
C oo oo (0 e 2 C

D 6 11 7 0 4 D A A

E ®© o o o ( E
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Floyd-Warshall

E10. Execute the Floyd-Warshall algorithm on this graph
% lteration 5 (node E).
< AFTER ITERATION COMPLETION.
< END OF THE EXECUTION.

__|A_B_C_ID_ A B C_ID_
5 1 8

A O 3 A B C
B 9 O 10 3 7 B D D D
C oo oo (0 e 2 C

D 6 11 7 0 4 D A A

E ®© o o o ( E
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Floyd-Warshall

E11. Execute Print Path between B and C

printPath (fragment)

private void printPath(int i, 1int 7J)
{
int k = P[i][J];
if (k>0) |
printPath (i, k);
System.out.print (‘'-' + k);
printPath (k, 7J);
}
}

System.out.print (departure);
printPath (departure, arrival);
System.out.println (‘- + arrival);

Data Structures

www.martin-gonzalez.es

A B C_ID_

A B C
B D D D
C
D A A
E
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

\/

A _|B_[C

T o T mooO o >r

Data Structures

«» Initialization.

0

8§ ®© O 8

8

©0

g8 N 8§ O N

8

o0 o0

§ & 8 O 8
§ © 8 © 8 N 38
N 8 © 8 W 8

8

www.martin-gonzalez.es

4 00 00 00 00
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 1 (node A).

A B _[C__

T o Mmoo O T >

Data Structures

0
14

(o0}

g8 © O '8

8

(o)

8§ O N

N

8

1M1A 00
00 2 %0
0 00 3
00 0 %0
6 00 0
00 9 %0
w o 2

www.martin-gonzalez.es

4

8

g O ~ O

4 00 00 00 00

(o0}

8 & 38

N
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 2 (node B).

T o T m o O o >r

Data Structures

§ © O 8

8

8§ © [N 8 Ne

N

8

1A ©
19B 2
0 o 3
00 0 %0
6 o 0
% 9 %
0w o 2

www.martin-gonzalez.es

4
12B

8

g O ~ O

4 00 00 00 00

(o0}

8 & 38

N
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 3 (node C).

T o T m o O o >»

Data Structures

0
7
15B

(o0}

22C

0

0
8

15C

8 N 8 O N 38

8

4 00 00 00 00

11A 4C
19B 2
0 00
26C O
9

8

www.martin-gonzalez.es

4
12B

8
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8 & 38

N
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 4 (node D).

T o m m oo o >»

Data Structures

7
15B

0

22C

0
8

15C

N

8

8

07D
11A 4C 14D
19B 2 22D
0 00 3
26C O 29D
6 00 0
00 0 00
00 00 2

www.martin-gonzalez.es
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 5 (node E).

T @ Mmoo o >

14 0
15B 8

(o0) (o0)

22C 15C

o0 (o0)

31E 24E

2 11A
0 19B
00 0

7 26C

16E 35E

07D
14D
22D
3

29D

o0

4 08E
07E O0G6E
S) 4
4 00
0 2
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 6 (node F).

T ' nmooOo o >r

22C 15C 7 26C

2 11A
0 19B
00 0
00 6
16E 35E
00 08F

N

§ © 8 O 38

07D
14D
22D
3

29D

11F o
4 08E
07E O06E
07F

N
8 N8 H 38

Data Structures

www.martin-gonzalez.es
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 7 (node G).

T @ m mooO o >»

Data Structures

15B
38G
22C
35G
31E
37G

35G
0

8

31G
15C
28G
24E
30G

27G 4

2
0
23G

20G
16E
22G

11A
19B
0

26C
6

35E
08F

20G 07D
4C 14D
2 22D
16G 3
0 29D
13G O
9 38E
15G 2
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Floyd-Warshall

E12. Execute the Floyd-Warshall algorithm on this graph

% lteration 8 (node H).

IrL O T m o O o >r

Data Structures

15B
38G
22C
35G
31E
37G

35G
0

8

31G
15C
28G
24E
30G

27G 4

2
0
23G

20G
16E
22G

11A
14H
0

12H
6

10H
08F

20G 07D
4C O8H
2 08H
16G 3
0 06H
13G O
9 04H
15G 2
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Unit 4

Hierarchical

Structures




BST Trees

E1. Create a Binary Search Tree and add the following

elements
» 10, 100, 60, 30, 2, -43, 70, 90, 23, 43, 65, 13, 230, 49, 7, 40,
50, 20, 15, 3

Data Structures www.martin-gonzalez.es [379] Jul-23



BST Trees

E2. Navigate in preorder, inorder and postorder.

Preorder: 10, 2, -43, 7, 3, 100, 60, 30, 23, 13, 20, 15, 43, 40, 49, 50, 70, 65, 90, 230
Inorder: -43, 2, 3, 7, 10, 13, 15, 20, 23, 30, 40, 43, 49, 50, 60, 65, 70, 90, 100, 230
Postorder: -43, 3, 7, 2 15, 20, 13, 23, 40, 50, 49, 43, 30, 65, 90, 70, 60, 230, 100, 10
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BST Trees

E3. Delete the next elements

% 46
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BST Trees

E3. Delete the next elements

% 40
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BST Trees

E3. Delete the next elements

o 15
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BST Trees

E3. Delete the next elements

o 30
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BST Trees

E3. Delete the next elements

o 70

Data Structures www.martin-gonzalez.es [385] Jul-23



BST Trees

E3. Delete the next elements

% 60
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BST Trees

E3. Delete the next elements
o 87
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BST Trees

E3. Delete the next elements
< 90
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BST Trees

E3. Delete the next elements
% 50
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BST Trees

E3. End

Data Structures www.martin-gonzalez.es [390] Jul-23



AVL Trees

E4. Create an AVL tree and add the following elements
< 10,16, 20

16

10 20
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AVL Trees

E4. Insert the following elements
“ 6,3

16

<\
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AVL Trees

E4. Insert the following elements
RIS
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AVL Trees

E4. Insert the following elements
o 9,80
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AVL Trees

E4. Insert the following elements
< 90
/ \
/

9

\

90

16
S 10 80
20
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AVL Trees

E4. Insert the following elements
o 4

6
/ \
4 16
<N\ /N
3 5 10 80
/ /
20

9

\

90
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AVL Trees

E4. Insert the following elements

v 1,18, 22
6
/ \
4 16

<N\ /N

3 5 10
/ / \
1 9 20 90

/
/NG
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AVL Trees

E4. Insert 24
6
/ \
4 16
<N\ /N
3 5 10 22
/ / /\
1 9 20 80
4 / N\
18 24 90
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AVL Trees

ES. Delete the following elements

& 9
6
/ \
4 22
<N\ /N
3 5 16 80
/ /N N\
1 10 20 24 90
/
18
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AVL Trees

ES. Delete the following elements

o 22
6
/ \
4 20

<N\ /N

3 5 16 80
/ /N N\
1 10 18 24 90
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AVL Trees

ES. Delete the following elements

w 5
6
/ \
3 20

AN /N

1 4 16 80
N N\
10 18 24 90
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AVL Trees

ES. Delete the following elements

B
4
/ \
3 20
/ /N
1 16 80
/N N\
10 18 24 90
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AVL Trees

ES. Delete the following elements

o 1

20
— \
4 80
S L
24 90

/- \

18

Data Structures www.martin-gonzalez.es [403] Jul-23



AVL Trees

ES. Delete the following elements

v 20
18
/ \
4 80

“ \ / \
3 16 24 90

/

10
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AVL Trees

ES. End
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Unit 5

Hierarchical

Structures




E1. Create a B2 and insert the following elements
< 190, 57, 89, 90

e
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B Trees

E1. Insert the following elements

o 121
L57 1 89 1 90 1190.

ol A ]
L) G L]
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B Trees

E1. Insert the following elements
< 170, 35, 48, 91

/\.“ A

L S i )

)."“ ]

8 1 57 1 89‘ 91 12111701190‘

r.
-
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B Trees

E1. Insert the following elements

 Eon
L L)
;\ -
CET I ) CPET
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E1. Insert the following elements
126

FELO) EEEA EEEE)
]

48 90 126

Do
wwsxanrulawuula
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E1. Insert the following elements
132, 80

(=1




E1. Delete the following elements
< 80, 91




E1. Delete the following elements
< 57

i L J."“lmlml Leedeed, b
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E1. Delete the following elements
< 170

48 N 132

1]

FEA CREE FE
-

48 N 126

CETI CEEO) FR L
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E1. Delete the following elements
48

48 || 126

1]

o e e 1
2

I.”J.“ J. ] I.*’“J.ml J. l Lesdeed ]
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E1. Delete the following elements

o 1206
89 fl 126 1 ‘

I | = e | [y REGY L
Il ]

L22135 1 ‘ L901121113211go‘
ata ructure
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E1. Delete the following elements

o 22

L CREE)
-

G CLEEL
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E1. Delete the following elements

< 90

CEL EE)
-

I."’T" 1 ] I.ml““l l I
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E1. Delete the following elements

o 89

Ledeod g el

LoLdd)
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Priority Queues

E2. Create a Priority Queue based on the following

parameters:
<  Minimums.
<  Size 16.
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Priority Queues

E2. Add the following elements:
< 60.

0 11 12 13 [4 |5 16 |7 [8 19 [10 111213 14 15
60
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Priority Queues

E2. Add the following elements:
48.

0 1 ]2 13 14 /5 16 17 |8 19 |10 11 1213 |14 115
60

0 1 ]2 13 14 /5 6 17 8 19 110 11 1213 |14 115

48 60
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Priority Queues

E2. Add the following elements:
< 80, 20.

0 1 ]2 13 14 /5 16 17 |8 19 |10 11 1213 |14 115

48 60

0 1 ]2 13 14 /5 6 17 8 19 110 11 1213 |14 115

20 48 80 60
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Priority Queues

E2. Add the following elements:
% 35, 65.

0 1 ]2 13 14 /5 16 17 |8 19 |10 11 1213 |14 115

20 48 80 60

0 1 ]2 13 14 /5 6 17 8 19 110 11 1213 |14 115

20 48 65 60 55 80
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Priority Queues

E2. Add the following elements:
% 063, 51.

0 1 ]2 13 14 /5 16 17 |8 19 |10 11 1213 |14 115

20 48 65 60 55 80

0 1 ]2 13 14 /5 6 17 8 19 110 11 1213 |14 115

20 48 63 51 55 80 65 60
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Priority Queues

E2. Add the following elements:
* 75,2

0 1 ]2 13 14 /5 16 17 |8 19 |10 11 1213 |14 115

20 48 63 51 55 80 65 60

20 63 51 48 80 65 60 75 55
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Priority Queues

E2. Add the following elements:
o 4

20 63 51 48 80 65 60 75 55

63 51 20 80 65 60 75 55 48
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Priority Queues

E2. Add the following elements:
< 90, 95,100

63 51 20 80 65 60 75 55 48

63 51 20 80 65 60 75 55 48 90 95 100
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Priority Queues

E2. Add the following elements:
o 41

63 51 20 80 65 60 75 55 48 90 95 100

20 80 63 60 75 55 48 90 95 100 @5
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Priority Queues

E2. Add the following elements:
o 42

20 80 63 60 75 55 48 90 95 100 @5

42 20 80 63 51 75 55 48 90 95 100 65 60
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Priority Queues

E2. Delete the following elements:
< 100

42 20 80 63 51 75 55 48 90 95 100 @65 60

42 20 80 63 51 75 55 48 90 95 60 65 60
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Priority Queues

E2. Delete the following elements:
“ 060

42 20 80 63 51 75 55 48 90 95 60 65 60

42 20 80 65 51 75 55 48 90 95 65 65 60
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Priority Queues

E2. Delete the following elements:
63

42 20 80 63 51 75 55 48 90 95 65 65 60

42 20 80 65 51 75 55 48 90 95 65 65 60
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Priority Queues

E2. Execute the remove method

42 20 80 65 51 75 55 48 90 95 65 65 60

20 41 42 48 80 65 51 75 55 95 90 95 65 65 60
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Unit 6

Dictionary
Structures

Open Addressing Hash Tables
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Separate Chaining

E1. Create a Hash Table using the following parameters:
% Separate Chaining

% Size 13.

\/

* Dynamic Resizing:
Increasing: LF >1
Inverse Dynamic Resizing: LF<0.33.
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Separate Chaining

E1. Add the following elements:
< 1,10, 15, 20

0 (1 ]2 13 14 151617 18[9 [1011]12

0 (1 ]2 13 14 /51617 18[9 101112
1 15 20 10

LF: 0.31
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Separate Chaining

E1. Add the following elements:
I

0 (1 ]2 13 14 /51617 18[9 [1011]12
1 15 20 10

0 (1 ]2 13 14 /51617 18[9 101112
1 15 20 10

v

LF: 0,38
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Separate Chaining

E1. Add the following elements:
“ 13,3,2,4,6,8, 18, 11

0 (1 ]2 13 14 /51617 18[9 [1011]12
1 15 20 10

v

13 1 15 3 18 6 20 8 10 11
2 7

LF: 1.00
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Separate Chaining

E1. Add the following elements:
o 12

13 1 15 3 18 6 20 8 10 11
2 7

2 3 4 10 11 12 13

15 16 117 [18 119 |20 |21 22 |23 24 |25 26 |27 128
15 18 20

LF: 0.48
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Open Addressing

E2. Create a Hash Table using the following parameters
% Open Addressing

»  Size 7.

* Linear Probing.

* Lazy deletion:
Empty.

Valid.
Deleted.

1)

o0

o0

o0
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Open Addressing

E2. Add the following elements:
o 4

LF: 0.14
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Open Addressing

E2. Add the following elements:

v 10
0 | 1 | 2 | 3 | 4 | 5 | 6
4
E E E E V E E

LF: 0.29
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Open Addressing

E2. Add the following elements:

e 12
0 | 1 | 2 | 3 | 4 | 5 | 6
10 4
E E E V V E E

LF: 0.43
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Open Addressing

E2. Add the following elements:

o 3
0 | 1 | 2 3 | 4 | 5 | 6
10 4 12
E E E V V V E

Collisions at 3, 4 and 5
LF: 0.57
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Open Addressing

E2. Add the following elements:

e 17
0 | 1 | 2 | 3 | 4 | 5 | 6
10 4 12 3
E E E Vv Vv Vv Vv

Collisions at 3, 4, 5, and 6
LF: 0.71
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Open Addressing

E2. Add the following elements:

& 15
0 | 1 | 2 | 3 | 4 | 5 | 6
17 10 4 12 3
V E E V V V V

LF: 0.85
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Open Addressing

E2. Add the following elements:

o 14
0 | 1 | 2 | 3 | 4 | 5 | 6

17 15 10 4 12 3

V V E V V V V

Collisions at 0, 1 and 2

LF: 1.00

Data Structures www.martin-gonzalez.es [449] Jul-23



Open Addressing

E3. Create a Hash Table using the following parameters
% Open Addressing

»  Size 7.

% Quadratic Probing.

* Lazy deletion:
Empty.

Valid.
Deleted.

1)

o0

o0

o0
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Open Addressing

E3. Add the following elements:
“ 4,10and 12

LF: 0.43
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Open Addressing

E3. Add the following elements:

e 17
0 | 1 | 2 | 3 | 4 | 5 | 6
10 4 12
E E E Vv Vv Vv E

Collisions at 3 and 4

LF: 0.57
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Open Addressing

E3. Add the following elements:

o 3
0 | 1 | 2 | 3 | 4 | 5 | 6
17 10 4 12
V E E V V V E

Collisions at 3, 4, 0, 5, 5, ...
LF: 0.57
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Open Addressing

E4. Create a Hash Table using the following parameters

\/

% Open Addressing
% Size.
** Double Hashing.

* Lazy deletion:
Empty.

Valid.
Deleted.

1)

o0

o0

o0

Data Structures
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Open Addressing

E4. Add the following elements:
“ 4,10and 12

LF: 0.43
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Open Addressing

E4. Add the following elements:

e 17
0 | 1 | 2 | 3 | 4 | 5 | 6
10 4 12
E E E Vv Vv Vv E

Collision at 3

LF: 0.57
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Open Addressing

E4. Add the following elements:

“ 3
0 | 1 | 2 | 3 | 4 | 5 | 6
10 4 12 17
E E E V V V V

Collisions at 3 and 6

LF: 0.71
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Open Addressing

E4. Add the following elements:

“ 5
0 | 1 | 2 | 3 | 4 | 5 | 6
3 10 4 12 17
V E E V V V V

Collisions at 5 and 3

LF: 0.86
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Open Addressing

E4. Add the following elements:

o V4
0 | 1 | 2 3 | 4 | 5 | 6
3 S 10 4 12 17
V V E V V V V

Collisions at 0, 3, 6 and 2
LF:1.0
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Open Addressing

ES. Create a Hash Table using the following parameters

»» Open Addressing
% Size 23.
* Linear Probing.
* Lazy deletion:
. Empty.
Valid.
Deleted.
% Dynamic Resizing:
Increasing: LF >0.5
Inverse Dynamic Resizing: LF<0.16.
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Open Addressing

ES. Add the following elements:
o 1,2,10,11,12,13, 15,16, 17,19

o[t 20 4 e e T e e el e e e a2

EEEEEEEEEEEEEEEEEEEETEEE

Dl L e e

10 11 12 13 15 16 17

EVVEEEEEEEVVVVEVYVYVEVYVEETE

LF: 0.43
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Open Addressing

ES. Delete the following elements:
o 2,13,19, 16,10

Dl e e e

10 11 12 13 15 16 17

EVVEEEEEEEVVVYVEVVYVEVETETE

Dl L e e

10 11 12 13 15 16 17

EVDEEEEEEEDVYVDEVDVEDTEEE

LF: 0.22
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Open Addressing

ES. Add the following elements:
o 21,9, 33

Dl e e e

10 11 12 13 15 16 17

EV DEEEEEEEDVYVDEVDVEUDEEE

IR NEREEE

g 33 11 12 13 15 16 17

EVDEEEEEEVVVVDEVDVEDEWVE

LF: 0.35
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Open Addressing

ES. Delete the following elements:
o 1,33,21,9, 11

SN REREEE

9 33 11 12 13 15 16 17

EVDEEEEEEVVVVDEVDVEDEVE

IR NEREEE

g 33 11 12 13 15 16 17

EDDEEEEEEDDDVDEVDVEDEDE

Inverse Resizing

LF: 0.13
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Open Addressing

ES. (Inverse resizing)

SN REREEE

9 33 11 12 13 15 16 17

E DDEEEEEEDDDVDEVDVEUDEDE

0 |1 12 [3 14 |5 16 |7 18 [9 |10
12 15 17

E Vv E E V E V E E E E

LF: 0.27
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Open Addressing

ES. Add the following elements:
o 3,94

0 11 12 |3 14 |5 16 |7 18 9 |10
12 15 17

E Vv E E V E V E E E E

15 4
E Vv E V V V V E E V E

Dynamic Resizing
LF: 0.54
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Open Addressing

ES. Dynamic Resizing

15 4
E VvV E VvV VvV V V E E V E

HEEESEEEEONEEREEEEEEEE
3 4 9 12 15 17

EEEVVEEEEVEEVEEVEVEEETEE

LF: 0.22

Data Structures www.martin-gonzalez.es [467] Jul-23




	Data_Structures
	eng



