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Abstract

Additive Manufacturing (AM) has become a widely used technique in 3D printing, but it has proven to

be a very costly process, even when optimizing parameters in existing models. Due to the characteristics of

AM, and in order to optimize its process, a new approach is introduced to the problem: the discretization

of each layer to be printed. This involves establishing an order relation based on the sequence in which

the layers should be printed. The valid orders for the execution of the process, referred to as compatible

with the order relation, will be characterized. Additionally, algorithms will be provided to obtain new com-

patible orders from others that were already compatible, and strategies will be presented to optimally and

efficiently reorder non-compatible orders, converting them into compatible ones.

1. Introduction

The presentation collects part of the ideas we developed to solve a problem presented to us by a company

for optimizing the 3D-printing of an object. This process falls within the context of Additive Manufacturing

(AM) in which, each object is created from a set of layers. The use of printing layers allows for the creation of

objects with a virtually unlimited variety of geometries, adaptable to any requirements of the final product.

Pairedwith the advantage of printing any imaginable geometry, it appears the drawback of the slowness and

cost of this production process. The technology, energy and human resources employed have a very high

cost, sominimizing processing time naturally becomes a desired goal for all companies using this production

method.

As usual, the problem consists of two well-differentiated parts: Modeling and Resolution. The talk starts

by explaining some results that have been found in modeling, and it will finish with others related to op-

timization. To model the problem were used binary relations, that means equivalence relations but more,

OrderRelations.To solve the problem, that is, tominimize the processing time, were usedGenetic Algorithms.

Each of the layers of the object contains a large set of points. This set of points is the unique piece of

information required to process the object, that means that having control over this set, turns into having

control over the production of the object. To get this, it was necessary to order and classify these points in

some way. The order in which the information is provided to the device is crucial since the execution time

depends strongly on this arrangement.

After performing a series of classifications on the set of points, using certain order and equivalence rela-

tions, were obtained a Partially Ordered Set (POSet) with a computationally acceptable number (10-120) of

elements (pieces). Observing the diagram associated with the POSet from the perspective of Graph Theory,

the problem consists of a particular version of the Traveling Salesman Problem (TSP). This version is due to

the idiosyncrasies of the machines we are working with; we might refer to it as the Constrained Traveling

Salesman Problem (CTSP). To solve it, they are used genetic algorithm techniques.

2. Initial Definitions and Properties

Definition 2.1 A binary relation 𝑅 defined on a set 𝑆 is a subset of 𝑆 × 𝑆. If (𝑎, 𝑏) ∈ 𝑅 it is said to be 𝑎 is

𝑅-related to 𝑏. 𝑅 is said to be an order relation or a partial order relation on 𝑆 if it is:

• reflexive: (𝑎, 𝑎) ∈ 𝑅 ∀𝑎 ∈ 𝑆

• antisymmetric: ∀𝑎, 𝑏 ∈ 𝑆 if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅 then 𝑎 = 𝑏

• transitive: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 if (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅 then (𝑎, 𝑐) ∈ 𝑅
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A set 𝑆 with a partial order relation is denoted by (𝑆, 𝑅) and is known as Partial Ordered Set or POSet. If

(𝑆, 𝑅) is a POSet, then 𝑎, 𝑏 ∈ 𝑆 are said to be comparable if 𝑎𝑅𝑏 or 𝑏𝑅𝑎.

Let𝑅 be a binary relation defined on a set 𝑆, it is said to be a total order relation if it is an order relation and

all the elements of 𝑆 are comparable. If 𝑅 is a total order (𝑆, 𝑅) is said to be a Totally Ordered Set, or TOSet.

Definition 2.2 Given a set 𝑆with 𝑛 elements, and a bijection from 𝐼 = {1, 2, … , 𝑛} to 𝑆

𝐼 → 𝑆

𝑖 → 𝑎𝑖

This establishes an indexing by means 𝐼 of the elements of 𝑆. Then, 𝑆 is said to be an 𝐼-indexed set or an

indexed set.

Definition 2.3 Given 𝜎 a permutation of elements of 𝐼

𝜎 ∶ 𝐼 → 𝐼

𝑖 → 𝜎(𝑖)

an ordering or permutation of elements of 𝑆 can be generated as

𝐼 → 𝑆

𝑖 → 𝑎𝜎(𝑖)

Wecan represent thepermutation𝜎by the imagesof thebijection that𝜎defines from 𝐼 to itself as (𝜎(1), 𝜎(2), … , 𝜎(𝑛)).

Definition 2.4 Let 𝑆 be an indexed set with 𝐶𝑎𝑟𝑑(𝑆) = 𝑛 and 𝑅 an order relation defined on 𝑆. We say that

a matrix𝑀 = (𝑚𝑖𝑗)𝑛×𝑛, is the adjacency matrix of (𝑆, 𝑅) if it satifies:

𝑚𝑅,𝑖𝑗 = �

1 if 𝑎𝑖𝑅𝑎𝑗

0 otherwise

Obviously, the adjacency matrix depends on the ordering in which the elements are taken. Thus, for each

permutation (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) of elements of 𝑆, a matrix will be obtained, denoted by 𝑀𝜎
𝑅 , and whose

elements are:

𝑚𝜎
𝑅,𝑖𝑗

= �

1 if 𝑎𝜎(𝑖)𝑅𝑎𝜎(𝑗)

0 otherwise

When there is nodoubt about theorder relation, the adjacencymatrix for thepermutationdefinedby𝜎 canbe

denoted𝑀𝜎, and, for simplicity, we denote by𝑀 the adjacencymatrix for themain permutation (1, 2, 3, … , 𝑛).

We denote by 𝑀𝑆(𝑅) the set of the adjacency matrices that represent the relation 𝑅 defined on the set 𝑆.

Proposition 2.5 Let be an indexed set 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛}, the total order relation 𝑅 such that

𝑎𝑖𝑅𝑎𝑗 if and only if 𝑗 ≤ 𝑖

i.e., the elements ordered from highest to lowest index, and the adjacency matrix 𝑀𝜎 for 𝑅 of a permutation

𝜎 = (𝜎(1), … , 𝜎(𝑛)) of elements of 𝑆, then for all 𝑖0 ∈ {1,… , 𝑛}

𝑛

�

𝑗=1

𝑚𝜎
𝑗 𝑖0

= 𝑛 − 𝜎(𝑖0) + 1

𝑛

�

𝑗=1

𝑚𝜎
𝑖0 𝑗

= 𝜎(𝑖0)

Proposition 2.6 Given an indexed set 𝑆 with 𝑛 elements and an order relation 𝑅

1 ≤ 𝐶𝑎𝑟𝑑(𝑀𝑆(𝑅) ≤ 𝑛!

If the order relation is total then 𝐶𝑎𝑟𝑑(𝑀𝑆(𝑅)) = 𝑛!
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3. Compatibility

Definition 3.1 Given a permutation 𝜎 = (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) of elements of 𝐼 = {1, 2, … , 𝑛}, we define the

relation induced by 𝜎 on 𝑆 and denote it by 𝑇𝜎 the relation defined as:

(𝑎𝑖, 𝑎𝑗) ∈ 𝑇𝜎 ⟺ 𝜎−1(𝑗) ≤ 𝜎−1(𝑖)

It is easy to see that, thus defined, this is a total order relation on 𝑆.

Definition 3.2 Let 𝑆 = {𝑎1, 𝑎2, … , 𝑎𝑛} be an indexed set and let 𝑅 be an order relation defined on 𝑆. A

permutation 𝜎 of the elements of 𝑆 is said to be compatible with the relation 𝑅 if 𝑅 ⊆ 𝑇𝜎. We denote the

set of permutations compatible with the relation 𝑅 by 𝐶(𝑆, 𝑅).

Theorem 3.3 Let (𝑆, 𝑅) be an ordered indexed set and 𝜎 a permutation of elements of 𝐼; then

𝜎 is compatible with the relation 𝑅 ⇔ 𝑀𝜎
𝑅 is lower triangular.

Theorem 3.4 Given an indexed POSet (𝑆, 𝑅) with 𝑛 elements, there is always a compatible permutation.

Proof In a finite POSet, there always exist maximal elements. Let’s assume there are 𝜇1 of these maximal

elements.

Consider these maximal elements of (𝑆, 𝑅),

𝑀11, 𝑀12, … ,𝑀1𝜇1

denoting by𝑀11 = 𝑎𝜎(1), 𝑀12 = 𝑎𝜎(2), … ,𝑀1𝜇1
= 𝑎𝜎(𝜇1), we construct

(𝜎(1), 𝜎(2), … , 𝜎(𝜇1))

which verifies that if 𝑖, 𝑗 ∈ {1, 2, … , 𝜇1}, 𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable.

Let us now consider the set 𝑆1 = 𝑆−{𝑎𝜎(1), 𝑎𝜎(2), … , 𝑎𝜎(𝜇1)}, and the restriction of𝑅 on 𝑆1 that we denote

𝑅1. As in the previous step, let’s suppose that there are 𝑟2 maximal elements, and, denoting 𝜇2 = 𝜇1 +𝑟2 and

𝑀21 = 𝑎𝜎(𝜇1+1), 𝑀22 = 𝑎𝜎(𝜇1+2), … ,𝑀2𝑟2
= 𝑎𝜎(𝜇2),

we add them to the previously constructed permutation, obtaining

(𝜎(1), 𝜎(2), … , 𝜎(𝜇1), 𝜎(𝜇1 + 1),… , 𝜎(𝜇2))

that verifies

• If 1 ≤ 𝑖, 𝑗 ≤ 𝜇1 ⇒ 𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable

• If 𝜇1 < 𝑖, 𝑗 ≤ 𝜇2 ⇒ 𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable

• If 1 ≤ 𝑖 ≤ 𝜇1 < 𝑗 ≤ 𝜇2 ⇒ as 𝑎𝜎(𝑗) is maximal in 𝑆1, 𝑎𝜎(𝑖) is maximal in 𝑆 and 𝑆1 ⊆ 𝑆 therefore

𝑎𝜎(𝑖) and 𝑎𝜎(𝑗) are not comparable or 𝑎𝜎(𝑗)𝑅𝑎𝜎(𝑖).

Repeating the process 𝑘 − 1 times considering the set 𝑆𝑘 = 𝑆 − {𝑎𝜎(1), … , 𝑎𝜎(𝜇𝑘)} and taking the maximal

elements of the poset (𝑆𝑘, 𝑅𝑘) being 𝑅𝑘, the restriction of 𝑅 to the set 𝑆𝑘, we will obtain, after a finite number

of steps, a permutation of the 𝑛 elements of 𝑆

𝜎 = (𝜎(1), 𝜎(2), .., 𝜎(𝜇1), 𝜎(𝜇1 + 1), .., 𝜎(𝜇2), .., 𝜎(𝜇𝑘), 𝜎(𝜇𝑘 + 1), .., 𝜎(𝑛))

which is compatible with the relation 𝑅 by construction. �

Definition 3.5 Let be an indexed ordered set (𝑆, 𝑅)with 𝑛 elements, 𝜎1 and 𝜎2, permutations of elements of

𝑆 and 𝑘 ∈ {1,… , 𝑛 − 1}, we call the 𝑘-cut offspring permutation of 𝜎1 and 𝜎2 the permutation 𝛾 defined as:

𝛾 = (𝜎1(1), 𝜎1(2), … , 𝜎1(𝑘), 𝜎2(𝑖1), … , 𝜎2(𝑖𝑛−𝑘))

where for all ℎ ∈ {𝑖1, 𝑖2, … , 𝑖𝑛−𝑘} such that 𝑖1 < 𝑖2 < … < 𝑖𝑛−𝑘 then 𝜎2(ℎ) ∉ {𝜎1(1), … , 𝜎1(𝑘)}.

Theorem 3.6 Given an indexed ordered set (𝑆, 𝑅) with 𝑛 elements and 𝑘 ∈ {1,… , 𝑛 − 1}, the 𝑘-cut offspring

permutation of two permutations, 𝜎1 and 𝜎2, compatible 𝑅 is a permutation compatible with 𝑅.
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Proof Let be 𝜎1 = (𝜎1(1), … , 𝜎1(𝑛)), 𝜎2 = (𝜎2(1), … , 𝜎2(𝑛)) two compatible permutation and 𝑘 ∈ {1,… , 𝑛−

1}.

The 𝑘-cut offspring permutation is

𝛾 = (𝜎1(1), 𝜎1(2), … , 𝜎1(𝑘), 𝜎2(𝑖1), … , 𝜎2(𝑖𝑛−𝑘))

where for all ℎ ∈ {𝑖1, 𝑖2, … , 𝑖𝑛−𝑘} such that 𝑖1 < 𝑖2 < … < 𝑖𝑛−𝑘 then 𝜎2(ℎ) ∉ {𝜎1(1), … , 𝜎1(𝑘)}.

Let’s denote 𝑆1 = {𝑎𝜎1(1), … , 𝑎𝜎1(𝑘)} and 𝑆
2 = {𝑎𝜎2(1), … , 𝑎𝜎2(𝑘)}

• If 𝑆1 = 𝑆2, the elements belonging to 𝑆1 are compatible with each other in the resulting permutation

due to their presence in the compatible permutation 𝜎1, and the remaining elements 𝑆 − 𝑆1 with each

other as well, because they are in 𝜎2.

The elements belonging to 𝑆1 are also compatible with those in 𝑆 − 𝑆1 by verifying the compatibility

of 𝜎2.

So, in this case we have a resulting permutation compatible with the relation.

• If 𝑆1 ≠ 𝑆2

– the elements of 𝑆1 and those of 𝑆 − 𝑆1, due to the compatibility of 𝜎1 and 𝜎2, respectively, are

compatible with each other in the resulting permutation;

– if 𝑎 ∈ 𝑆1 and 𝑏 ∈ (𝑆 − 𝑆1),

𝑎 = 𝑎𝜎1(𝑗𝑎) = 𝑎𝜎2(𝑖𝑎) and 𝑗𝑎 < 𝑘 𝑏 = 𝑎𝜎1(𝑗𝑏) = 𝑎𝜎2(𝑖𝑏) and 𝑗𝑏 > 𝑘

∗ if 𝑏 ∉ 𝑆2 ⟶ 𝑖𝑏 > 𝑘 then 𝑎 and 𝑏 are compatible in the resulting permutation;

∗ if 𝑏 ∈ 𝑆2 ⟶ 𝑖𝑏 < 𝑘

· if 𝑖𝑎 < 𝑖𝑏, they are in the same order in both permutations and are therefore compatible

in the resulting permutation.

· if 𝑖𝑏 < 𝑖𝑎, as 𝑗𝑎 < 𝑘 < 𝑗𝑏, then they are interchanged in both permutations and therefore,

by Proposition ??, they are not comparable and, therefore, are compatible in the resulting

permutation.

So, in this case, we also have a resulting permutation compatible with the order relation.

Then we can conclude that the permutation resulting from two compatible permutations with the relation

𝑅 is also a compatible one. �

Definition 3.7 The procedure described in Definition 3.5 can be extended recursively to the case of𝑚 > 2

permutations and a partition, 𝑘 = (𝑘1, … , 𝑘𝑚), of 𝑛, that is ∀𝑖 ∈ {1, … ,𝑚}𝑘𝑖 ∈ {1,… , 𝑛 − 1} and

𝑚

�

𝑖=1

𝑘𝑖 = 𝑛.

Given 𝜎𝑖 = (𝜎𝑖(1), 𝜎𝑖(2), … , 𝜎𝑖(𝑛)), 𝑖 ∈ {1, … ,𝑚} permutations of elements of 𝑆 and 𝑘 = (𝑘1, … , 𝑘𝑚 = 𝑛 −
𝑚−1

�

𝑖=1

𝑘𝑖), we construct 𝛾𝑚 as follows

�
𝛾2 = 𝑘1-cut offspring permutation of 𝜎1 and 𝜎2

𝛾𝑖 = �∑
𝑖−1
𝑖=1 𝑘𝑖�-cut offspring permutation of 𝛾𝑖−1 and 𝜎𝑖, if 𝑖 ∈ {3, …𝑚}

andwecall it �𝑘1, 𝑘2, … , 𝑘𝑚−1�-cut offspringpermutationof𝜎1, 𝜎2, … , 𝜎𝑚. 𝛾𝑚 is thatwhich the elements of the

positionsbetween

𝑖−1

�

𝑗=1

𝑘𝑗 and

𝑖

�

𝑗=1

𝑘𝑗 are the first𝑘𝑖 elements of permutation𝜎𝑖 that arenot in

𝑖−1

�

𝑗=1

{𝜎𝑗(𝑖𝑗1), … , 𝜎𝑗(𝑖𝑗𝑘𝑗
)}.

Theorem 3.8 Given an indexed ordered set (𝑆, 𝑅) with 𝑛 elements, the resulting permutation of 𝑚 permuta-

tions compatible with 𝑅, 𝑘 = (𝑘1, … , 𝑘𝑚) a partition of 𝑛, that is, as in the Definition 3.7,

𝑚

�

𝑖=1

𝑘𝑖 = 𝑛, is a

permutation compatible with the relation 𝑅.
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