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Abstract

This paper presents our recent advancements at the intersection ofmachine learning and control theory.

We focus specifically on utilizing control theoretical tools to elucidate the underlying mechanisms driving

the success of machine learning algorithms. By enhancing the explainability of these algorithms, we aim

to contribute to their ongoing improvement and more effective application. Our research explores several

critical areas:

Firstly, we investigate thememorization, representation, classification, and approximation properties of

residual neural networks (ResNets). By framing these tasks as simultaneous or ensemble control problems,

we have developed nonlinear and constructive algorithms for training. Our work provides insights into the

parameter complexity and computational requirements of ResNets.

Similarly, we delve into the properties of neural ODEs (NODEs). We demonstrate that autonomous

NODEs of sufficient width can ensure approximate memorization properties. Furthermore, we prove that

by allowing biases to be time-dependent, NODEs can track dynamic data. This showcases their potential for

syntheticmodel generation and helps elucidate the success ofmethodologies such as Reservoir Computing.

Next, we analyze the optimal architectures of multilayer perceptrons (MLPs). Our findings offer guide-

lines for designing MLPs with minimal complexity, ensuring efficiency and effectiveness for supervised

learning tasks.

The generalization and prediction capacity of trained networks plays a crucial role. To address these

properties, we present two nonconvex optimization problems related to shallow neural networks, captur-

ing the ”sparsity” of parameters and robustness of representation. We introduce a ”mean-field” model,

proving, via representer theorems, the absence of a relaxation gap. This aids in designing an optimal toler-

ance strategy for robustness and, through convexification, efficient algorithms for training.

In the context of large language models (LLMs), we explore the integration of residual networks with

self-attention layers for context capture. We treat ”attention” as a dynamical system acting on a collection of

points and characterize their asymptotic dynamics, identifying convergence towards special points called

leaders. These theoretical insights have led to the development of an interpretable model for sentiment

analysis of movie reviews, among other possible applications.

Lastly, we address federated learning, which enables multiple clients to collaboratively train models

without sharing private data, thus addressing data collection and privacy challenges. We examine train-

ing efficiency, incentive mechanisms, and privacy concerns within this framework, proposing solutions to

enhance the effectiveness and security of federated learning methods.

Our work underscores the potential of applying control theory principles to improve machine learning

models, resulting in more interpretable and efficient algorithms. This interdisciplinary approach opens

up a fertile ground for future research, raising profound mathematical questions and application-oriented

challenges and opportunities.

1. Introduction

The impact of machine learning (ML) and artificial intelligence (AI) in science is leading to rich and inno-

vative lines of research in applied mathematics. There is a significant need for theoretical foundations that

ensure the performance, reliability, and interpretability of ML methods. Specifically, mathematical models

are required to understand and optimize rapidly emerging computational architectures. This challenge can

be addressed through the lens of control theory, a combination that offers great potential.

In this paper, we discuss recent results from our group that explore the application of control tools to

some of the main architectures and methods in ML, namely neural networks, self-attention mechanisms,

and federated learning.

Control theory lies at the foundation of ML [15]. Aristotle anticipated control theory when he described

the need for automated processes to free humans from their heaviest tasks [4]. In the 1940s, NorbertWiener
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redefined the term ”cybernetics,” previously coined by André-Marie Ampère, as ”the science of communi-

cation and control in animals and machines,” which reflected the discipline’s definitive contribution to the

industrial revolution.

Wiener’s definition involves two conceptual binomials. The first is control-communication: the need for

quality information about the state of the system to make the right decisions, reach given objectives, and

avoid risky regimes. The second binomial is animal-machine: as anticipated by Aristotle, humans aim to

build machines to perform routine tasks. These concepts are integral to contemporary ML. The close link

between control theory and ML, and more generally AI, is thus inherent in Wiener’s definition. Once more,

we stand on the shoulders of giants.

2. Control-based supervised learning via neural networks

Supervised learning is one of the main paradigms of machine learning (ML), aiming to define a map that

approximates an unknown function 𝑓 ∶ 𝒳 → 𝒴 using a training dataset {(𝑥𝑖, 𝑦𝑖)}
𝑁
𝑖=1 . Neural networks form

a widely used class of functions to approximate 𝑓 , and among these, residual networks have proven to be

particularly effective. In the continuous-time limit, these discrete systems, like for instance Residual Neural

Networks (ResNets),

𝑥𝑘+1 = 𝑥𝑘 +𝑊𝑘𝝈(𝐴
𝑘𝑥𝑘𝑖 + 𝑏𝑘), 𝑘 ∈ [𝐿], (2.1)

transform into the so-called Neural ODE (NODE):

�
�̇�(𝑡) = 𝑊(𝑡)𝝈(𝐴(𝑡)𝑥(𝑡) + 𝑏(𝑡)), 𝑡 ∈ (0, 𝑇),

𝑥(0) = 𝑥𝑖,
(2.2)

for all 𝑖 ∈ [𝑁] ≔ {1,… ,𝑁} . Here, 𝑥 = 𝑥(𝑡) is the state if the system, representing the data under con-

sideration, evolving continuously on time in the ambient space, (𝑊(𝑡), 𝐴(𝑡), 𝑏(𝑡)) ∈ Θ𝑝 ∶= 𝐿∞�(0, 𝑇);

ℝ𝑑×𝑝 × ℝ𝑝×𝑑 × ℝ𝑝� are piecewise constant controls with 𝐿 discontinuities (which play the role of the

NN parameters to be trained), 𝐿, 𝑝 ≥ 1 represent the depth and the width of the model, respectively, and

𝝈 ∶ ℝ𝑝 → ℝ𝑝 is a Lipschitz-continuous non-linearity defined component-wise, a common example being the

rectified linear unit (ReLU): 𝑥 ↦ max{𝑥, 0} .

One of themain advantages of NODEs is the possibility to reinterpret severalmachine learning paradigms

using tools from differential equations and their control. For example, data classification can be formulated

as a simultaneous control problem for (2.2), the goal being to build controls (𝑊, 𝐴, 𝑏) driving all initial data

{𝑥𝑖}
𝑁
𝑖=1 to their corresponding targets {𝑦𝑖}

𝑁
𝑖=1 (prescribed according to the labels) through the flow map

generated by (2.2).

In [11], we prove the simultaneous controllability of (2.2) for the single-neuronwidth case (𝑝 = 1) via an

inductive algorithm that constructs explicit, piecewise constant controls (𝑊, 𝐴, 𝑏) to sequentially guide each

point 𝑥𝑖 to its target 𝑦𝑖 . Moreover, using similar techniques, we obtain a result of universal approximation

in ‖ ⋅ ‖𝐿2 for NODEs. Below, we state the two main results from [11]:

Theorem 2.1 (Controllability) Let 𝑁 ≥ 1 , 𝑑 ≥ 2 , and 𝑇 > 0 . Consider any dataset {𝑥𝑖, 𝑦𝑖}
𝑁
𝑖=1 ⊂ ℝ𝑑 with

𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 ≠ 𝑦𝑗 for 𝑖 ≠ 𝑗 . Then, there exists a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ1 (with 𝑝 = 1)

such that the flow map Φ𝑇 generated by (2.2) satisfies

Φ𝑇(𝑥𝑖) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁.

Furthermore, the depth of the model is 𝐿 = 3𝑁 .

Theorem 2.2 (Approximation) Let 𝑑 ≥ 2 , 𝑇 > 0 and a bounded set Ω ⊂ ℝ𝑑 . Then, for any 𝑓 ∈ 𝐿2(Ω;ℝ𝑑)

and 𝜀 > 0 there exists a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ1 (with 𝑝 = 1) such that the flow map Φ𝑇

generated by (2.2) satisfies
‖Φ𝑇 − 𝑓‖𝐿2(Ω) < 𝜀.

The simultaneous control result in theorem 2.1 and its proof opens paths for newmethodologies in data

classification, albeit requiring very high complexity (it scaleswith 𝑁). In [3], we reduce the complexity of the

controls for binary classification by proposing new algorithms based on predetermined point clusterings.

Our strategy aims to probabilistically reduce the number of parameters needed by leveraging the spatial

structure of the data distribution, assuming that the points are in general position, i.e., no 𝑑 + 1 points can

lie on the same hyperplane in ℝ𝑑 , which is generically fulfilled by random datasets.
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Theorem 2.3 Let 𝑑 ≥ 2 and 𝑁 ≥ 1 . For any dataset {(𝑥𝑖, 𝑦𝑖)}
𝑁
𝑖=1 ⊂ ℝ𝑑 × {1, 0} in general position and

any 𝑗 ∈ {1, … , 𝑑} , there exist 𝑇 > 0 and a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ1 (with 𝑝 = 1) with

𝐿 = 4⌈𝑚/𝑑⌉−1 discontinuities, where𝑚 = min (#{𝑖 ∶ 𝑦𝑖 = 1}, #{𝑖 ∶ 𝑦𝑖 = 0}) , such that the flowmapgenerated

by (2.2) satisfies

Φ𝑇(𝑥𝑖)
(𝑗) < 1 if 𝑦𝑖 = 1 and Φ𝑇(𝑥𝑖)

(𝑗) > 1 if 𝑦𝑖 = 0, for all 𝑖 = 1,… ,𝑁.

The described results are focused on the simplified version of (2.2) with 𝑝 = 1 neurons per layer. In [2],

we focus on the role played by the architecture through the interplay between the depth 𝐿 andwidth 𝑝 . Our

findings reveal a balancing trade-off, as shown in the following result:

Theorem 2.4 Let 𝑁 ≥ 1 , 𝑑 ≥ 2 , 𝑇 > 0 . Consider any dataset {𝑥𝑖, 𝑦𝑖}
𝑁
𝑖=1 ⊂ ℝ𝑑 with 𝑥𝑖 ≠ 𝑥𝑗 and 𝑦𝑖 ≠ 𝑦𝑗

if 𝑖 ≠ 𝑗 . For any 𝑝 ≥ 1 , there exists a piecewise constant control (𝑊, 𝐴, 𝑏) ∈ Θ𝑝 such that the flow map Φ𝑇

generated by (2.2) satisfies
Φ𝑇(𝑥𝑖) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁.

Furthermore, the depth of the model is 𝐿 = 2 ⌈𝑁/𝑝⌉ .

In the wide limit, where 𝐿 = 0 , the system (2.2) becomes autonomous and a separate study is required.

We address the relaxed problem of 𝜀 -approximate controllability of 𝑁 pairs of points and establish an ex-

plicit error decay by uniformly approximating a custom-built Lipschitz vector field that effectively interpo-

lates the dataset:

Theorem 2.5 Let 𝑁 ≥ 1 , 𝑑 ≥ 2 and 𝑇 > 0 be fixed. Consider any dataset {𝑥𝑖, 𝑦𝑖}
𝑁
𝑖=1 ⊂ ℝ𝑑 with 𝑥𝑖 ≠ 𝑥𝑗 . For

each 𝑝 ≥ 1 , there exists a control (𝑊, 𝐴, 𝑏) ∈ Θ𝑝 such that the flow map Φ𝑇 generated by (2.2) satisfies

sup
𝑖=1,…,𝑁

|𝑦𝑖 −Φ𝑇(𝑥𝑖)| ≤ 𝐶
log

2
(𝜅)

𝜅1/𝑑
,

where 𝜅 = (𝑑 + 2)𝑑𝑝 is the number of neurons in the model, and 𝐶 > 0 is a constant depending on 𝑑 , 𝑇 , but

independent of 𝜅 .

The study of the autonomous system is closely related to the turnpike principle paradigm, coined by John

vonNeumann, which ensures that optimal control strategies remain almost steady over long time periods. In

[5], we have analyzed the implications of this principle for designing simplified andmore stable architectures

for deep ResNets.

An extension of the developed theory reformulates the continuousmodel in terms of transport equations,

through the classical link between (2.2), seen as theODEof characteristics, and the hyperbolic transport PDE,

leading to the following neural transport model:

𝜕𝑡𝜌 + div𝑥(𝑊(𝑡)𝝈(𝐴(𝑡)𝑥 + 𝑏(𝑡))𝜌) = 0. (2.3)

Transforming one given probability measure into another, up to an arbitrarily small Wasserstein-1 error

[2, 11] or total variation error [12], can be reinterpreted as a control problem for (2.3). The first approach

allows us to build a bridgewith the theory of optimal transport, whereas the latter, whose theorem statement

we formulate below, has applications in generative modeling via the technique known as normalizing flows.

Theorem 2.6 Given two probability densities 𝜌0, 𝜌𝑇 ∈ 𝐿1(ℝ𝑑) , for any 𝑇 > 0 and for all 𝜀 > 0 , there exist

piecewise constant controls (𝑤, 𝑎, 𝑏) ∈ Θ1 such that the solution of (2.3) satisfies

‖𝜌(𝑇) − 𝜌𝑇‖𝐿1(ℝ𝑑) < 𝜀.

In addition to ResNets and NODEs, we have analyzed the so-called multilayer perceptron deep NN:

𝑥𝑘+1 = 𝝈𝑘+1(𝐴
𝑘𝑥𝑘 + 𝑏𝑘), 𝑘 ∈ [𝐿], (2.4)

where 𝑥𝑘 ∈ ℝ𝑑𝑘 denotes the state at layer/step 𝑘 ≥ 1 , 𝐴𝑘 ∈ ℝ𝑑𝑘+1×𝑑𝑘 , 𝑏𝑘 ∈ ℝ𝑑𝑘+1 , and {𝑑𝑘}
𝐿
𝑘=1 is a

sequence of positive integers determining the dimension of the state and the width of (2.4) at the layer 𝑘 .

Here, 𝝈𝑘+1 ∶ ℝ
𝑑𝑘+1 → ℝ𝑑𝑘+1 denotes the (component-wise) ReLU function, and max𝑘{𝑑𝑘} the total width of

(2.4). In [6], for a dataset of 𝑁 elements in ℝ𝑑, 𝑑 ≥ 1, and 𝑀 classes, we prove that (2.4) is simultaneously

controllable with width 2 and at most 2𝑁+4𝑀−1 layers. This is proven using an inductive algorithm that

provides explicit values for the parameters. This result is sharp in the sense that (2.4) with width 1 cannot

achieve simultaneous controllability. Additionally, in [6], the universal approximation (UA) for 𝐿𝑝(Ω;ℝ+)

functions (for 𝑝 ∈ [1,∞) and Ω ⊂ ℝ𝑑 bounded) is proven, using (2.4) with width 𝑑 + 1 , together with

explicit convergence rates for 𝑊1,𝑝 functions, which can be extended to changing-sign functions too.
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3. Representer theorem for shallow neural networks: sparsity and generalization

Besides NODEs, ResNets and deep NNs, we have also analysed the representational and generalization ca-

pacity of shallow NN, as conducted in [9]. The shallow NN is expressed as:

𝑓shallow(𝑥, Θ) ≔

𝑃

�

𝑗=1

𝜔𝑗𝜎(⟨𝑎𝑗, 𝑥⟩ + 𝑏𝑗), (3.1)

where Θ = {(𝜔𝑗, 𝑎𝑗, 𝑏𝑗) ∈ ℝ × Ω}𝑃𝑗=1 , 𝑃 denotes its width, and Ω is a compact subset of ℝ𝑑 containing a

neighborhood of 0 . We first investigate the representational capacity of (3.1).

Theorem 3.1 Assume that 𝜎 is continuous and 𝜎(𝑥) = 0 for 𝑥 ≤ 0 and 𝜎(𝑥) > 0 for 𝑥 > 0 . Fix any

consistent dataset {(𝑥𝑖, 𝑦𝑖) ∈ ℝ𝑑+1}𝑁𝑖=1 . If 𝑃 ≥ 𝑁 , then there exists Θ ∈ (ℝ × Ω)𝑃 such that

𝑓shallow(𝑥𝑖, Θ) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁.

For a fixed dataset {(𝑥𝑖, 𝑦𝑖) ∈ ℝ𝑑+1}𝑁𝑖=1 , Theorem 3.1 shows the existence of parameters for its exact

representation by (3.1), 𝑃 = 𝑁 being sufficient. Next, we consider an optimization problem, where the

objective is to minimize the ℓ1 norm of the neuron weights:

inf
{(𝜔𝑗,𝑎𝑗,𝑏𝑗)∈ℝ×Ω}

𝑁
𝑗=1

𝑁

�

𝑗=1

|𝜔𝑗|, s.t.

𝑁

�

𝑗=1

𝜔𝑗𝜎(⟨𝑎𝑗, 𝑥𝑖⟩ + 𝑏𝑗) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁. (P0)

When {𝑦𝑖}
𝑁
𝑖=1 represent observed labels affected by some level of noise, it is more meaningful to consider

the previous optimization problem under certain tolerance on the error of the prediction. This leads to the

following optimization problem parameterized by 𝜖 ≥ 0 :

inf
{(𝜔𝑗,𝑎𝑗,𝑏𝑗)∈ℝ×Ω}

𝑁
𝑗=1

𝑁

�

𝑗=1

|𝜔𝑗|, s.t. �

𝑁

�

𝑗=1

𝜔𝑗𝜎(⟨𝑎𝑗, 𝑥𝑖⟩ + 𝑏𝑗) − 𝑦𝑖� ≤ 𝜖, for all 𝑖 = 1,… ,𝑁. (P𝜖)

Problems (P0) and (P𝜖) are non-convex due to the non-linearity of 𝜎 , which induces the lack of convexity

in their feasible sets. To cure this lack of convexity we consider the following convex relaxation problems:

inf
𝜇∈ℳ(Ω)

‖𝜇‖TV, s.t.

ˆ
Ω

𝜎(⟨𝑎, 𝑥𝑖⟩ + 𝑏)𝑑𝜇(𝑎, 𝑏) = 𝑦𝑖, for all 𝑖 = 1,… ,𝑁; (PR0)

inf
𝜇∈ℳ(Ω)

‖𝜇‖TV, s.t. �

ˆ
Ω

𝜎(⟨𝑎, 𝑥𝑖⟩ + 𝑏)𝑑𝜇(𝑎, 𝑏) − 𝑦𝑖� ≤ 𝜖, for all 𝑖 = 1,… ,𝑁, (PR𝜖)

where ℳ(Ω) represents the space of Radonmeasures on Ω , and ‖⋅‖TV denotes the total variation norm. We

demonstrate that there is no gap between the primal problems and the relaxed ones, and that the extreme

points of the relaxed solution sets have an atomic structure.

Theorem 3.2 Under the setting of Theorem 3.1, the solution sets of (PR0) and (PR𝜖), denoted by 𝑆(PR0) and

𝑆(PR𝜖) , are non-empty, convex and compact in the weak-∗ sense. Moreover,

val(PR0) = val(P0), Ext(𝑆(PR0)) ⊆ �

𝑁

�

𝑗=1

𝜔𝑗𝛿(𝑎𝑗,𝑏𝑗) � (𝜔𝑗, 𝑎𝑗, 𝑏𝑗)
𝑁
𝑗=1 ∈ 𝑆(P0)� , (3.2)

val(PR𝜖) = val(P𝜖), Ext(𝑆(PR𝜖)) ⊆ �

𝑁

�

𝑗=1

𝜔𝑗𝛿(𝑎𝑗,𝑏𝑗) � (𝜔𝑗, 𝑎𝑗, 𝑏𝑗)
𝑁
𝑗=1 ∈ (P𝜖)� , (3.3)

where Ext(𝑆) represents the set of all extreme points of 𝑆 .

To study the generalization capacity of the shallow NN, we consider some testing dataset {(𝑋′, 𝑌′)} =

{(𝑥′𝑖 , 𝑦
′
𝑖 ) ∈ ℝ𝑑+1}𝑁

′

𝑖=1 with 𝑁′ ∈ ℕ+ , which differs from the training one. The generalization quality is de-

termined by the performance of this shallow NN on the testing set (𝑋′, 𝑌′) , which is assessed by comparing

the actual values {𝑦′𝑖 }
𝑁′

𝑖=1 with the predictions {𝑓shallow(𝑥
′
𝑖 , Θ)}

𝑁′

𝑖=1 . Rather than evaluating differences indi-

vidually, we analyze the discrepancies in their overall distributions to simplify the analysis. Let us denote

by

𝑚𝑥 =
1

𝑁

𝑁

�

𝑖=1

𝛿𝑥𝑖 , 𝑚𝑦 =
1

𝑁

𝑁

�

𝑖=1

𝛿𝑦𝑖 , �̄�𝑦 =
1

𝑁

𝑁

�

𝑖=1

𝛿𝑓shallow(𝑥𝑖,Θ);

𝑚′
𝑥 =

1

𝑁′

𝑁′

�

𝑖=1

𝛿𝑥′𝑖
, 𝑚′

𝑦 =
1

𝑁′

𝑁′

�

𝑖=1

𝛿𝑦′𝑖
, �̄�′

𝑦 =
1

𝑁′

𝑁′

�

𝑖=1

𝛿𝑓shallow(𝑥′𝑖 ,Θ)
.
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Theorem 3.3 Assume that 𝜎 is 𝐿 -Lipschitz. Let Θ be a solution of (P𝜖) for some 𝜖 ≥ 0 . Then,

𝑑KR(𝑚
′
𝑦, �̄�

′
𝑦) ≤ 𝑑KR(𝑚𝑦, 𝑚

′
𝑦) + �

𝜖 + 𝑑KR(𝑚𝑥, 𝑚
′
𝑥)𝐿𝐷 val(P𝜖), if 0 ≤ 𝜖 ≤ ‖𝑌‖ℓ∞ ,

‖𝑌‖ℓ∞ , otherwise,

where 𝐷 = sup
(𝑎,𝑏)∈Ω

‖𝑎‖ and 𝑑KR represents the Kantorovich–Rubinstein distance.

In view of Theorem 3.3, the problem of minimizing the right-hand-side upper bound with respect to 𝜖

arises:
inf

0≤𝜖≤‖𝑌‖ℓ∞
𝒰(𝜖) ≔ 𝜖 + 𝑑KR(𝑚𝑥, 𝑚

′
𝑥)𝐿𝐷 val(P𝜖). (UB)

By employing the dual analysis of problems (P𝜖) and (P0), we obtain the first-order optimality condition of

(UB) in the following theorem. Let us denote by 𝑐𝜖 (resp. 𝐶𝜖 ) the minimum (resp. maximum) value of the ℓ1

norm of the dual solutions of (PR𝜖) for any 𝜖 ≥ 0 .

Theorem 3.4 Under the setting of Theorem 3.1, the solution set of problem (UB), denoted by 𝑆(UB) , is non-

empty. Moreover, the following holds:

1. If 𝑑KR(𝑚𝑥, 𝑚
′
𝑥) < (𝐿𝐷𝑐0)

−1 , then 𝑆(UB) = {0} .

2. If 𝑑KR(𝑚𝑥, 𝑚
′
𝑥) ≥ (𝐿𝐷𝑐0)

−1 , then 𝜖 ∈ 𝑆(UB) if and only if 1/𝑑KR(𝑚𝑥, 𝑚
′
𝑥)𝐿𝐷 ∈ [𝑐𝜖, 𝐶𝜖].

Fig. 3.1 The red and blue curves represent point 1 and 2 of Theorem 3.4, respectively. According to Theorem 3.4, when

the distance between the training and testing sets is less than the threshold (𝐿𝐷𝑐0)
−1 , it suffices to consider the exact

representation problem (P0). If 𝑑KR(𝑚𝑥,𝑚
′
𝑥) exceeds this threshold, the optimal 𝜖 can be determined by solving the

dual problem of (PR𝜖).

4. Dynamical System Approximation via Semi-Autonomous NODEs

Going back to the NODE context, and with the aim of reducing their complexity, measured in terms of the

number of switchings of the parameters, while preserving the exact representation capacity, in the upcoming

work [7], we study NODEs of the form

�
�̇� = 𝑊𝝈(𝐴𝑥 + 𝑏(𝑡)), 𝑡 ∈ (0, 𝑇),

𝑥(0) = 𝑥𝑖,
(4.1)

where now the only time-dependent parameter is the bias 𝑏 = 𝑏(𝑡) . For this reason, we dub the model

Semi-Autonomous NODE (SA-NODE), which is still non-autonomous, but with a complexity which is greatly

reduced, since 𝑊 and 𝐴 are now time-independent. Theorem 2.1 continues to hold for (4.1) with no change

in the hypotheses. Furthermore, the semi-autonomous structure appears naturally in the proof, as the time-

dependency of the biases 𝑏(𝑡) is quickly seen to be necessary for tracking dynamic data, as the following

result assures, [7].

Theorem 4.1 Let 𝐾 ∈ ℝ𝑑 be a fixed compact set and consider the non-autonomous ODE

�
�̇�(𝑡) = 𝑓(𝒛, 𝑡), 𝑡 ∈ (0, 𝑇),

𝒛(0) = 𝒛0 ∈ 𝐾,
(4.2)

where 𝑓 ∶ ℝ𝑑×[0, 𝑇] → ℝ𝑑 is a continuous function and uniformly Lipschitz continuous in 𝒛 . For every 𝜀 > 0 ,

there exist 𝑝 = 𝑝(𝜀) , matrices 𝑊 ∈ ℝ𝑑×𝑝, 𝐴 ∈ ℝ𝑝×𝑑 , and a function 𝑏 = 𝑏(𝑡) ∈ 𝐿∞((0, 𝑇); ℝ𝑝) such that, for

every 𝒛0 ∈ 𝐾 , the solution 𝒙 = 𝒙(𝑡) to the SA-NODE

�
�̇� =

𝑝

�

𝑖=1

𝑤𝑖𝜎(𝑎𝑖 ⋅ 𝒙 + 𝑏𝑖(𝑡)),

𝒙(0) = 𝒛0,

(4.3)
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satisfies
‖𝒛 − 𝒙‖𝐿∞([0,𝑇];ℝ𝑑) ≤ 𝜀. (4.4)

In other words, SA-NODEs learn the global flow of the ODE, and not just the local information around one

single trajectory or just the final profiles at 𝑡 = 𝑇 .

(a) SA-NODEs and exact solutions of linear ODEs for �̇�1 = 𝑡 − 𝑧2, �̇�2 = 𝑧1 − 𝑡 .

(b) SA-NODEs and exact solutions of nonlinear ODEs for �̇�1 = 𝑧2, �̇�2 = −𝑧1 − 𝑧32 .

Fig. 4.1 SA-NODEs (left) and exact solutions (center) of linear and nonlinear ODEs. On the right, themean and standard

deviation bounds of the error 𝑒(𝑡) , computed as the euclidean distance between the exact value of the trajectory and

the predicted one.

Notably, the semi-autonomous structure emerges spontaneously, roughly because Cybenko’s universal

approximation theorem yields an approximation of 𝑓(𝒛, 𝑡) of the form

𝑓(𝒛, 𝑡) ∼

𝑝

�

𝑖=1

𝑤𝑖𝜎(𝑎𝑖 ⋅ (𝒛, 𝑡)
⊤ + 𝑏𝑖) =

𝑝

�

𝑖=1

𝑤𝑖𝜎(𝑎𝑖 ⋅ 𝒛 + 𝑎𝑑+1𝑖 𝑡 + 𝑏𝑖).

The SA-NODE structure arises naturally when renaming the term 𝑎𝑑+1𝑖 𝑡 + 𝑏𝑖 as 𝑏𝑖(𝑡) .

(a) SA-NODEs solutions

(b) Exact solutions

Fig. 4.2 SA-NODEs and exact solution of 2D transport equations 𝜌𝑡 + div𝒙 (𝑓(𝑥, 𝑦, 𝑡)𝜌) = 0 , where the velocity field

is 𝑓(𝑥, 𝑦, 𝑡) = �sin(𝑥)/(1 + 𝑡2), sin(𝑦)/(1 + 𝑡2)�
⊤
. The initial datum is the gaussian profile 𝑒−𝑥

2−𝑦2 .

Numerical results confirm that SA-NODEs are a promising architecture. They not only perform well on

benchmark examples, such as linear and nonlinear dynamical systems (see Figures 4.1a-4.1b), but also on

transport equations (as shown in Figure 4.2). In Figures 4.1a-4.1b, the simulated trajectories used for train-

ing are plotted in red. In contrast, the trajectories predicted from previously unseen initial data are plotted

in green, demonstrating the excellent generalization properties of SA-NODEs.

Enrique Zuazua

121



Furthermore, SA-NODEs significantly outperform vanilla NODEs in terms of the number of epochs and

neurons required to achieve suitable approximations of dynamical systems. On benchmark examples, and

for a fixed number of epochs and neurons, SA-NODEs consistently achieve significantly smaller errors than

vanilla NODEs, often by a couple of orders of magnitude. Additionally, even though the network widths are

the same, SA-NODEs require less time to train than vanilla NODEs. This is because the number of parameters

is reduced, with constant 𝑊 and 𝐴 . Consequently, by decreasing the number of parameters, SA-NODEs

mitigate the tendency of vanilla NODEs to overfit. This showcases the potential of SA-NODEs for synthetic

model generation and helps elucidate the success of methodologies such as Reservoir Computing.

5. Self-attention as a clustering mechanism and its role in LLMs

For supervised learning tasks in large language models (LLMs), capturing ”context” or how words relate to

one another in a sentence, is a key feature. The transformer is a state-of-the-art neural networks in LLMs,

which builds on ResNets by alternating with self-attention layers exploiting the data structure. Heuristically,

these layers capture the ”context” at the sample level by mixing its rows based on similarity between them.

For this reason, the data samples used to train suchmodels contain collections of words (i.e. sentences or

paragraphs). More precisely, the training dataset is of the form {(𝑍𝑠, 𝑦𝑠)}
𝑁
𝑠=1 , for matrices 𝑍𝑠 ∈ ℝ𝑛×𝑑 , whose

𝑛 rows encode words as points in Euclidean space ℝ𝑑 .

For a fixed data sample 𝑍 ∈ ℝ𝑛×𝑑 with rows 𝑧1, … , 𝑧𝑛 ∈ ℝ𝑑 , the (hardmax) self-attention model is given

by

𝑧𝑘+1𝑖 = 𝑧𝑘𝑖 +
𝛼

1 + 𝛼

1

|𝒞𝑖(𝑍
𝑘|

�

𝑗∈𝒞𝑖(𝑍
𝑘

�𝑧𝑘𝑗 − 𝑧𝑘𝑖 �, 𝑘 ≥ 0, (5.1a)

where 𝑧0𝑖 = 𝑧𝑖 , 𝑍
𝑘 contains the rows 𝑧𝑘1 , … , 𝑧𝑘𝑛 , 𝐴 ∈ ℝ𝑑×𝑑 is a symmetric positive definite matrix, 𝛼 > 0 ,

and
𝒞𝑖(𝑍

𝑘 = �𝑗 ∈ [𝑛] ∶ �𝐴𝑧𝑘𝑖 , 𝑧
𝑘
𝑗 � = max

ℓ∈[𝑛]
�𝐴𝑧𝑘𝑖 , 𝑧

𝑘
ℓ �� . (5.1b)

In [1], we study the asymptotic behaviour of the self-attention dynamics (5.1) as 𝑘 → ∞ . In particular, we

prove that it exhibits clustering behaviour towards special points called leaders. As an application, we use

our clustering results to design a simple and interpretable transformer-basedmodel to solve the supervised

learning task in LLMs of sentiment analysis. We use a benchmark dataset with movie reviews, labeled as

positive or negative. The proposed model contains only three components with distinct roles: the encoder,

mapping words to points in ℝ𝑑 , whose role is to select meaningful words as leaders; our transformer (5.1),

whose role is to capture ”context” by clustering themajority ofwords towards the fewmostmeaningful ones;

and the decoder, whose role is to project the final point values to a real prediction by dividing ℝ𝑑 in two half-

spaces and identifying each half-space with each sentiment. After training the model, our interpretation is

verified with examples (cf. Figure 5.1).

2 1 0 1 2
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1

2
Positive review (K = 0)

unoriginal

Justin
fantastic

plain makeup

2 1 0 1 2
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2

1

0
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unoriginal

Justin
fantastic
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Fig. 5.1 Evolution of the encoded words of a positive review as they are processed by 𝐾 = 8 transformer layers.

Points are colored according to the point they follow, leaders are stars and tagged with the word they encode, squares

are non-leaders who are followed by other points, circles are the remaining points, and the triangle is the mean word.

The dashed line is the hyperplane separating the negative class (red) from the positive class (green).

6. Federated learning: training, incentive, and privacy

With the growing amount of distributed data, federated learning (FL) has emerged as a promising paradigm

to address challenges like data collection and privacy protection in centralized learning approaches.

As in supervised learning, FL aims to learn a model to approximate 𝑓 ∶ 𝒳 → 𝒴 , but under the constraint

that training data and labels are stored across distributed clients. Given 𝑚 clients, the training of FL can be

formulated as

min
𝜃∈𝒲

𝑚

�

𝑘=1

𝑝𝑘ℓ𝑘(𝜃), (6.1)
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where 𝜃 ∈ 𝒲 are trainable parameters, ℓ𝑘 ∶ 𝒲 → ℝ is client 𝑘 ’s local loss function, commonly set as the

empirical risk over its local dataset, and 𝑝𝑘 ≥ 0 with ∑
𝑚
𝑘=1 𝑝𝑘 = 1 specifies the relative impact of client 𝑘 .

To solve (6.1) efficiently, we propose in [14] an inexact and self-adaptive algorithm termed FedADMM-

InSa. We design an inexactness criterion to guide each client to independently adjust its local training accu-

racy, leading to personalized training and better adaptation to heterogeneous data. Additionally, we present

a self-adaptive scheme that dynamically adjusts each client’s penalty parameter to enhance the robustness

of our algorithm.

As in [14], existing research on FL primarily focuses on designing efficient learning algorithms. Most

existing works do not consider that clients may be reluctant to engage without appropriate compensation

(rewards from the server) for their training efforts. We address this issue in [8] by formulating incentive

mechanisms in FL within a potential game framework. We investigate the uniqueness of the Nash equilib-

rium in these games and offer the server an easily calculable threshold for the reward, under which it can

achieve effective incentives concerning clients’ training efforts.

Moreover, the privacy benefits of FL (exchangingmodel parameters instead of data) can be compromised

by data reconstruction attacks. In [13], we propose an approximate and weighted attack method to recover

clients’ private data under the widely used multiple-step local update scenarios. Experimental results vali-

date the superiority of our attack method, emphasizing the need for effective defense mechanisms in FL to

enhance privacy.
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