
A numerical solution approach for non-smooth optimal control

problems based on the Pontryagin maximum principle

Daniel Wachsmuth

daniel.wachsmuth@uni-wuerzburg.de University of Würzburg

Abstract

We consider nonsmooth optimal control problems subject to a linear elliptic partial differential equa-

tion with homogeneous Dirichlet boundary conditions. It is well-known that local solutions satisfy the cel-

ebrated Pontryagin maximum principle. In this note, we will investigate an optimization method that is

based on the maximum principle. We prove that the discrepancy in the maximum principle vanishes along

the resulting sequence of iterates. Numerical experiments confirm the theoretical findings.

1. Introduction

In this note, we consider the following optimal control problem: Minimize

𝐽(𝑦, 𝑢) ∶=
1

2
‖𝑦 − 𝑦𝑑‖

2
𝐿2(Ω)

+�
Ω

𝑔(𝑢(𝑥)) d𝑥 (1.1)

over all 𝑢 ∈ 𝐿2(Ω) and 𝑦 ∈ 𝐻1
0 (Ω) satisfying

−Δ𝑦 = 𝑢 in Ω,

𝑦 = 0 on 𝜕Ω.

Here, Ω ⊂ ℝ𝑑 is a bounded domain, and 𝑔 ∶ ℝ → ℝ̄ = ℝ ∪ {+∞} is assumed to be proper and lower

semicontinuous. In addition, we require

lim
|𝑣|→∞

𝑔(𝑣)

|𝑣|
= +∞. (1.2)

Note, that we assume neither continuity nor convexity of 𝑔. Hence, it is impossible to prove existence of

solutions of (1.1). In fact, one can construct problemswithout solution, see [18, Section 4.5]. In this note, we

will work with the example

𝑔(𝑢) ∶=
𝛼

2
𝑢2 + 𝐼ℤ(𝑢) = �

𝛼

2
𝑢2 if 𝑢 ∈ ℤ

+∞ otherwise,
(1.3)

where 𝛼 > 0. If 𝑔 is assumed to be convex and continuous, then existence of solutions of (1.1) can be proven

by the direct method of the calculus of variations [17]. Let us remark that by the above assumptions 𝑔 is

bounded from below.

If solutions exist, then the Pontryagin maximum principle [11] is a necessary optimality condition. Its

main feature is that no differentiability with respect to the controls is needed, and so it is perfectly suited for

the problems considered here. In fact, due to the structure of the problem (linear state equation, convexity of

𝐽with respect to 𝑦), the maximum principle is sufficient. We refer to [2,4,5,12] for the Pontryaginmaximum

principle applied to optimal control problems for partial differential equations. The goal of this note is to

construct an algorithm to solve the maximum principle. We will comment on related work in Section 4.

2. Sensitivity analysis

In this section, we will perform a sensitivity analysis with respect to perturbations of the control with char-

acteristic functions. The setup is as follows: Let 𝑢, �̃� ∈ 𝐿2(Ω) be feasible controls, i.e., the integrals ∫
Ω
𝑔(𝑢) d𝑥

and ∫
Ω
𝑔(�̃�) d𝑥 exist. Let 𝐵 ⊂ Ω be measurable. We define

𝑢𝐵 ∶= 𝑢 + 𝜒𝐵(�̃� − 𝑢).
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Let 𝑦, 𝑦𝐵 be the uniquely determined weak solutions of

−Δ𝑦 = 𝑢 −Δ𝑦𝐵 = 𝑢𝐵 in Ω,

𝑦 = 0 𝑦𝐵 = 0 on 𝜕Ω.

Let 𝑝 ∈ 𝐻1
0 (Ω) be the weak solution of the adjoint equation

−Δ𝑝 = 𝑦 − 𝑦𝑑 in Ω,

𝑝 = 0 on 𝜕Ω.

The goal is now to estimate 𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) in terms of 𝑢, �̃�, 𝑝 and the Lebesgue measure |𝐵| of 𝐵. Here,

we have the following result.

Lemma 2.1 Under the assumptions above, we have

𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) = �
𝐵

(�̃� − 𝑢)𝑝 + 𝑔(�̃�) − 𝑔(𝑢) d𝑥 +
1

2
‖𝑦𝐵 − 𝑦‖2

𝐿2(Ω)
.

Proof This follows directly from the definition of 𝑝 and 𝑢𝐵:

𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) =
1

2
‖𝑦𝐵 − 𝑦𝑑‖

2
𝐿2(Ω)

+�
Ω

𝑔(𝑢𝐵) d𝑥 −
1

2
‖𝑦 − 𝑦𝑑‖

2
𝐿2(Ω)

−�
Ω

𝑔(𝑢) d𝑥

= �
Ω

(𝑦𝐵 − 𝑦)(𝑦 − 𝑦𝑑) +
1

2
(𝑦𝐵 − 𝑦)2 d𝑥 + �

𝐵

𝑔(�̃�) − 𝑔(𝑢) d𝑥

= �
𝐵

(�̃� − 𝑢)𝑝 + 𝑔(�̃�) − 𝑔(𝑢) d𝑥 +
1

2
‖𝑦𝐵 − 𝑦‖2

𝐿2(Ω)
.

�

Wewill now prove that ‖𝑦𝐵 − 𝑦‖2
𝐿2(Ω)

is of higher order with respect to the Lebesgue measure |𝐵| of 𝐵.

Lemma 2.2 There are constants 𝑐 > 0 and 𝜈 > 1/2 independent of 𝑢, �̃�, 𝐵 such that

‖𝑦𝐵 − 𝑦‖𝐿2(Ω) ≤ 𝑐 |𝐵|𝜈 ⋅ ‖�̃� − 𝑢‖𝐿∞(Ω),

where |𝐵| denotes the Lebesgue measure of 𝐵. The constant 𝜈 can be chosen as

𝜈 = �

1 if 𝑑 ≤ 3,

1 − 𝜖 if 𝑑 = 4 for 𝜖 > 0,
1

2
+

2

𝑑
if 𝑑 > 4.

Proof We prove the claim by a well-known duality argument. Assume 𝑑 ≤ 3. Let 𝑤 ∈ 𝐿2(Ω) be given. Let

𝑧, 𝑞 ∈ 𝐻1
0 (Ω) be the weak solutions of

−Δ𝑧 = 𝑤 −Δ𝑞 = 𝑧 in Ω,

𝑧 = 0 𝑞 = 0 on 𝜕Ω.

Due to [15], there is 𝑐 > 0 independent of𝑤, 𝑧 such that

‖𝑧‖𝐿∞(Ω) ≤ 𝑐‖𝑤‖𝐿2(Ω).

Testing the weak formulations with 𝑧 and 𝑞 yields

‖𝑧‖2
𝐿2(Ω)

= �
Ω

𝑤𝑞 d𝑥 ≤ ‖𝑤‖𝐿1(Ω)‖𝑞‖𝐿∞(Ω) ≤ 𝑐‖𝑤‖𝐿1(Ω)‖𝑧‖𝐿2(Ω).

This proves ‖𝑧‖𝐿2(Ω) ≤ 𝑐‖𝑤‖𝐿1(Ω). Applying this estimate to 𝑧 ∶= 𝑦𝐵 − 𝑦 and 𝑤 ∶= 𝑢𝐵 − 𝑢 yields the claim

with

‖𝑦𝐵 − 𝑦‖𝐿2(Ω) ≤ 𝑐‖𝑢𝐵 − 𝑢‖𝐿1(Ω) ≤ 𝑐 |𝐵| ⋅ ‖�̃� − 𝑢‖𝐿∞(Ω).

In case 𝑑 > 3 one can use the estimates from [3, Theorem 18]. �

Combining these results proves the following theorem.

Theorem 2.3 Let 𝑢, �̃� ∈ 𝐿∞(Ω). Let 𝐵 ⊂ Ω be measurable. Let �̃�, 𝑦𝐵, 𝑦, 𝑝 be defined as above. Then there are

𝛾 > 0 and 𝑐 > 0 independent of 𝑢, �̃�, 𝐵 such that

𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(𝑦, 𝑢) ≤ �
𝐵

(�̃� − 𝑢)𝑝 + 𝑔(�̃�) − 𝑔(𝑢) d𝑥 + 𝑐 |𝐵|1+𝛾‖�̃� − 𝑢‖2𝐿∞(Ω).
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3. Pontryagin maximum principle

With the help of Theorem 2.3 we can prove the Pontryagin maximum principle.

Theorem 3.1 Let �̄� ∈ 𝐿∞(Ω) be locally optimal with respect to 𝐿1(Ω) topology for the control problem (1.1).

Let �̄�, �̄� ∈ 𝐻1
0 (Ω) be the optimal state and adjoint solving

−Δ�̄� = �̄� −Δ�̄� = �̄� − 𝑦𝑑 in Ω,

�̄� = 0 �̄� = 0 on 𝜕Ω.

Let 𝑣 ∈ ℝ be such that 𝑔(𝑣) < +∞. Then

�̄�(𝑥)�̄�(𝑥) + 𝑔(�̄�(𝑥)) ≤ 𝑣�̄�(𝑥) + 𝑔(𝑣) for almost all 𝑥 ∈ Ω. (3.1)

Proof Let 𝑣 ∈ ℝ be such that 𝑔(𝑣) < +∞. Applying Theorem 2.3 with 𝑢 ∶= �̄�, �̃� ∶= 𝑣 yields

0 ≤ 𝐽(𝑦𝐵, 𝑢𝐵) − 𝐽(�̄�, �̄�) = �
𝐵

(𝑣 − �̄�)�̄� + 𝑔(�̃�) − 𝑔(�̄�) d𝑥 + 𝑜(|𝐵|).

By standard arguments based on the Lebesgue differentiation theorem, see, e.g., [10, Theorem2.1], the claim

follows. �

The maximum principle is a sufficient condition for the problem considered here.

Corollary 3.2 Let �̄� ∈ 𝐿2(Ω) satisfy the conclusion (3.1) of Theorem 3.1. Then �̄� is global optimal for (1.1).

Proof Let �̃� ∈ 𝐿2(Ω) be an admissible control with associated state �̃�. Then Lemma 2.1 with 𝐵 = Ω yields

𝐽(�̃�, �̃�) − 𝐽(�̄�, �̄�) = �
Ω

(�̃� − �̄�)�̄� + 𝑔(�̃�) − 𝑔(�̄�) d𝑥 +
1

2
‖�̃� − �̄�‖2

𝐿2(Ω)
.

Since �̄� satisfies (3.1), the first expression is non-negative,which implies 𝐽(�̃�, �̃�)−𝐽(�̄�, �̄�) ≥
1

2
‖�̃�−�̄�‖2

𝐿2(Ω)
≥ 0.

�

4. Construction of an algorithm

We will now apply Theorem 2.3 with 𝑢 ∶= 𝑢𝑘 and �̃� ∶= �̃�𝑘, where 𝑢𝑘 is the current iterate of the algorithm

to be devised. Let 𝑦𝑘 and 𝑝𝑘 be the associated state and adjoint. The control �̃�𝑘 has to be computed in each

iteration. Let 𝐵𝑘 be measurable. Then we have

𝐽(𝑦𝐵𝑘 , 𝑢𝐵𝑘) − 𝐽(𝑦𝑘, 𝑢𝑘) = �
𝐵𝑘

(�̃�𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 + 𝑜(|𝐵𝑘|). (4.1)

The idea is now to choose �̃�𝑘 and𝐵𝑘 such that 𝐽(𝑦𝐵𝑘 , 𝑢𝐵𝑘)− 𝐽(𝑦𝑘, 𝑢𝑘) is negative and to define the new iterate

by

𝑢𝑘+1 = 𝑢𝑘 + 𝜒𝐵𝑘(�̃�𝑘 − 𝑢𝑘).

In view of the maximum principle, Theorem 3.1, it is natural to choose �̃�𝑘 as a function satisfying

�̃�𝑘(𝑥) ∈ argmin
𝑣∈ℝ

𝑣𝑝𝑘 + 𝑔(𝑣). (4.2)

In addition, 𝐵𝑘 will be chosen to get sufficient descent.

Let us comment on related work. The classic algorithm of [8] chooses 𝐵𝑘 ∶= Ω, resulting in a fixed-point

scheme to solve the maximum principle. The min-h method of [7] uses the update 𝑢𝑘+1 ∶= 𝑢𝑘 + 𝑡(�̃�𝑘 − 𝑢𝑘)

with 𝑡 ∈ (0, 1], and is thus only suited for convex functions 𝑔. In the monograph [14], a method similar to

ours is presented to solve optimal control problems with ODEs. Let us also also mention the review papers

[6,16]. In [9] binary control problems are solved with a similar approach: there a trust-region globalization

is proposed, whereas we use an Armijo line-search to globalize.

As motivated above, we will compute �̃�𝑘 as a result of the pointwise minimization

�̃�𝑘(𝑥) ∈ argmin
𝑣∈ℝ

𝑣𝑝𝑘 + 𝑔(𝑣).
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Due to (1.2) this problem is solvable for all 𝑥. A measurable selection of this argmin-map exists [1]. For the

example of 𝑔 proposed in (1.3), we get

�̃�𝑘(𝑥) ∈ round�−
1

𝛼
𝑝𝑘(𝑥)� .

It remains to describe how 𝐵𝑘 is chosen. Here, we are faced with two competing goals: In order to make

the first term in (4.1) as small as possible, 𝐵𝑘 has to be chosen as large as possible. However, to control the

remainder term in (4.1), |𝐵𝑘| has to be chosen sufficiently small.

We propose the following line-search. Given 𝑡 ∈ (0, 1], choose 𝐵𝑡 such that

�
𝐵𝑡

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 ≤ 𝑡�
Ω

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥,

|𝐵𝑡| ≤ 𝑡 ⋅ |Ω|.

(4.3)

Due to the celebrated Lyapunov convexity theorem, see, e.g., [13, Theorem5.5], ameasurable set𝐵𝑡 satisfying

(4.3) exists. Given 𝑡 and 𝐵𝑡, we set 𝑢𝑡 ∶= 𝑢𝑘 + 𝜒𝐵𝑡(�̃�𝑘 − 𝑢𝑘). Let 𝑦𝑡 be the associated state.

The parameter 𝑡𝑘 is determined by the following procedure: Let 𝑡𝑘 be the largest number in {𝛽𝑙 ∶ 𝑙 ∈

ℕ ∪ {0}}, where 𝛽 ∈ (0, 1), that satisfies the descent condition

𝐽(𝑦𝑡, 𝑢𝑡) − 𝐽(𝑦𝑘, 𝑢𝑘) ≤ 𝜎�
𝐵𝑡

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 (4.4)

where 𝜎 ∈ (0, 1), and 𝐵𝑡 is a measurable set satisfying (4.3). This condition is inspired by the well-known

Armijo line-search in nonlinear optimization. If 𝑢𝑘 does not satisfy the maximum principle, there is an ad-

missible step-size 𝑡𝑘, and the resulting algorithm produces a new iterate with smaller value of the objective.

Lemma 4.1 Suppose that

�
Ω

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 < 0.

There is 𝑡0 > 0 such that for all 𝑡 ∈ (0, 𝑡0) condition (4.4) is satisfied.

Proof Due to Theorem 2.3, we have

𝐽(𝑦𝑡, 𝑢𝑡) − 𝐽(𝑦𝑘, 𝑢𝑘) − 𝜎�
𝐵𝑡

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥

≤ (1 − 𝜎)�
𝐵𝑡

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 + 𝑜(𝑡)

≤ 𝑡(1 − 𝜎)�
Ω

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 + 𝑜(𝑡),

which proves the claim. �

The resulting algorithm is sketched in Algorithm 1.

Let us now turn to the convergence analysis of Algorithm 1. Here, we follow the related analysis in [19].

Let us define

𝜌𝑘 ∶= �
Ω

(�̃�𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥.

Due to the choice of �̃�𝑘 in (4.2), it follows 𝜌𝑘 ≤ 0. If 𝜌𝑘 = 0 then 𝑢𝑘 satisfies themaximum principle Theorem

3.1, and the corresponding control 𝑢𝑘 is optimal by Corollary 3.2.

Lemma 4.2 Let (𝑢𝑘) be an infinite sequence generated by Algorithm 1. Then

∞

�

𝑘=0

𝑡𝑘‖𝜌𝑘‖𝐿1(Ω) < +∞.
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Algorithm 1Maximum-principle based descent algorithm

Choose 𝛽 ∈ (0, 1), 𝜎 ∈ (0, 1), 𝑢0 with ∫
Ω
𝑔(𝑢0) d𝑥 < ∞, 𝛿tol ≥ 0. Set 𝑘 ∶= 0.

loop ▷ Gradient descent

Compute state 𝑦𝑘 and adjoint 𝑝𝑘 associated to 𝑢𝑘.

Compute �̃�𝑘 as in (4.2).

if �∫
Ω
(�̃�𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥� ≤ 𝛿tol then ▷ Termination criterion

return 𝑢𝑘
end if

𝑡 ∶= 1.

loop ▷ Armijo line-search

Compute 𝐵𝑘,𝑡 satisfying (4.3).

Compute 𝐽(𝑦𝑡, 𝑢𝑡).

if (4.4) is satisfied then

break

end if

𝑡 ∶= 𝛽 ⋅ 𝑡.

end loop

𝑡𝑘 ∶= 𝑡. ▷ Update

𝑢𝑘+1 ∶= 𝑢𝑘 + 𝜒𝐵𝑘,𝑡𝑘
(�̃�𝑘 − 𝑢𝑘).

𝑘 ∶= 𝑘 + 1.

end loop

Proof Using conditions (4.4) and (4.3) shows

𝐽(𝑦𝑘+1, 𝑢𝑘+1)−𝐽(𝑦𝑘, 𝑢𝑘) ≤ 𝜎�
𝐵𝑡𝑘

(�̃�−𝑢𝑘)𝑝𝑘+𝑔(�̃�)−𝑔(𝑢𝑘) d𝑥 ≤ 𝑡𝑘�
Ω

(�̃�−𝑢𝑘)𝑝𝑘+𝑔(�̃�)−𝑔(𝑢𝑘) d𝑥 = −𝑡𝑘‖𝜌𝑘‖𝐿1(Ω).

Due to (1.2), 𝑔 has a global minimum and is bounded from below, so that 𝐽 is bounded from below by some

𝑀 ∈ ℝ. Summing this inequality over 𝑘 ∈ ℕ and using 𝐽 ≥ 𝑀 proves ∑
∞
𝑘=1 𝑡𝑘‖𝜌𝑘‖𝐿1(Ω) ≤ 𝐽(𝑦0, 𝑢0) − 𝑀 < ∞.

�

For simplicity, we assume for the subsequent convergence analysis that

dom𝑔 ∶= {𝑣 ∶ 𝑔(𝑣) < ∞} (4.5)

is compact. Then the set of iterates (𝑢𝑘) and (�̃�𝑘) is uniformly bounded in 𝐿∞(Ω).

Corollary 4.3 Assume (4.5). Let𝑀 > 0 such that dom𝑔 ⊂ [−𝑀,+𝑀]. Then ‖𝑢𝑘‖𝐿∞(Ω) ≤ 𝑀 and ‖�̃�𝑘‖𝐿∞(Ω) ≤

𝑀 for all 𝑘.

Theorem 4.4 Assume (4.5). Either the Algorithm 1 stops after finitely many steps with

��
Ω

(�̃�𝑘 − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥� ≤ 𝛿tol

(so that 𝑢𝑘 satisfies the maximum principle if 𝛿tol = 0), or

�
Ω

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 → 0,

i.e., the residual in the maximum principle tends to zero, and (𝑢𝑘) is a minimizing sequence.

Proof We follow the proof of the related result [19, Theorem 6.7]. Let us assume the algorithm generates

an infinite sequence of iterates. Let 𝑘 be such that 𝑡𝑘 < 1. Due to the line-search procedure of Algorithm 1,

it follows that 𝑡 ∶= 𝛽−1𝑡𝑘 ≤ 1 violates the descent condition (4.4), that is

0 < 𝐽(𝑦𝑡, 𝑢𝑡) − 𝐽(𝑦𝑘, 𝑢𝑘) − 𝜎�
𝐵𝑡

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥.
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As in the proof of Lemma 4.1, we get from Theorem 2.3

0 < 𝑡(1 − 𝜎)�
Ω

(�̃� − 𝑢𝑘)𝑝𝑘 + 𝑔(�̃�) − 𝑔(𝑢𝑘) d𝑥 + 𝑐 |𝑡|1+𝛾‖�̃� − 𝑢‖𝐿∞(Ω).

Together with Corollary 4.3, we get

0 < −𝑡(1 − 𝜎)‖𝜌𝑘‖𝐿1(Ω) + 𝑐|𝑡|1+𝛾,

where 𝑐 is independent of 𝑘. This implies

‖𝜌𝑘‖𝐿1(Ω) ≤ 𝑐𝑡
𝛾
𝑘

for all 𝑘 such that 𝑡𝑘 < 1. With Lemma 4.2, we get

+∞ >

∞

�

𝑘=0

𝑡𝑘‖𝜌𝑘‖𝐿1(Ω) = � �

𝑘∶ 𝑡𝑘=1

‖𝜌𝑘‖𝐿1(Ω)�+� �

𝑘∶ 𝑡𝑘<1

𝑡𝑘‖𝜌𝑘‖𝐿1(Ω)� ≥ � �

𝑘∶ 𝑡𝑘=1

‖𝜌𝑘‖𝐿1(Ω)�+𝑐� �

𝑘∶ 𝑡𝑘<1

‖𝜌𝑘‖
1+

1

𝛾

𝐿1(Ω)
� ,

which results in lim𝑘→∞ ‖𝜌𝑘‖𝐿1(Ω) = 0. Hence, the algorithm stops after finitely many iterations if 𝛿tol > 0.

�

5. Numerical results

Let us now report about numerical experiments with Algorithm 1. Here, we consider the optimal control

problem

𝐽(𝑦, 𝑢) ∶=
1

2
‖𝑦 − 𝑦𝑑‖

2
𝐿2(Ω)

+
𝛼

2
‖𝑢‖2

𝐿2(Ω)
+ 𝐼ℤ∩[−𝑏,𝑏](𝑢)

over all 𝑢 ∈ 𝐿2(Ω) and 𝑦 ∈ 𝐻1
0 (Ω) satisfying

−Δ𝑦 = 𝑢 in Ω,

𝑦 = 0 on 𝜕Ω.

This fits into the setting of the paper with the choice

𝑔(𝑣) ∶=
𝛼

2
𝑣2 + 𝐼ℤ∩[−𝑏,𝑏]

Here, we chose Ω = (0, 1)2,

𝑦𝑑(𝑥1, 𝑥2) = 10𝑥1 sin(5𝑥1) cos(7𝑥2), 𝛼 = 0.01, 𝛽 = 0.01, 𝑏 = 10.

We discretized the problem with piecewise linear finite elements on a regular mesh for state and adjoint

variables, while the control was discretized with piecewise constant finite elements. We report the results

for a sequence of differentmeshes, where the finestmesh hasmesh-size ℎ = 1.41⋅10−3 resulting in≈ 2⋅106

degrees of freedom for the control variables, which results in a mixed-integer optimization problem with

≈ 2 ⋅ 106 integer variables. In the implementation of Algorithm 1 a greedy strategy was used to determine

𝐵𝑡. The loop in Algorithm 1 was terminated if in the inner loop 𝑡|Ω|was smaller than any of the elements in

the grid.

Now let us report about some of the results. The optimal control can be seen in the left plot of Figure 1.

In the right plot, we report about the iteration history of the residual ‖𝜌𝑘‖𝐿1(Ω). Surprisingly, the iterations

seem to bemesh independent. In addition, for this particular problem a very small number of iterations was

needed to optimize over 2 ⋅ 106 discrete control variables.

This is underlined by the results in Table 1. It shows for different discretizations the final value of the

objective 𝐽 and the final value of the residual ‖𝜌‖𝐿1(Ω). As can be seen from the last column of this table,

very few outer iterations are needed. In conclusion, this new algorithm seems to be capable of solving quite

challenging mixed-inter programs.
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Fig. 1 Optimal control (left), iteration history (right)

ℎ 𝐽 ‖𝜌‖𝐿1(Ω) It

4.42 ⋅ 10−2 4.706 3.20 ⋅ 10−6 4

2.21 ⋅ 10−2 5.048 2.02 ⋅ 10−8 6

1.13 ⋅ 10−2 5.210 6.00 ⋅ 10−11 8

5.66 ⋅ 10−3 5.293 8.91 ⋅ 10−11 8

2.83 ⋅ 10−3 5.334 6.46 ⋅ 10−12 9

1.41 ⋅ 10−3 5.354 4.11 ⋅ 10−13 10

Tab. 1 Iteration history
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