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1. Introduction

We consider control problems (P),, whose objective functional is in an economic context a utility functional,
Jx,u) = f W(x(t),u(t)) e ®tdt — Max! (1.1)
0

where W is an instantaneous utility function and g is a positive or zero discount rate.
The objective can also be an energy functional in mechanical or quantum mechanical systems, or it can be
chosen in such a way that the asymptotic and exponential controllability of the system is guaranteed,

<1
Jx,u) = J 5 (x(®OTQ®)x(t) + u@®)TR(O)u(t) ) eftdt — Min! (1.2)
0
where § > 0 assures together with the choice of suitable state spaces the exponential stability of the solution.

All the target functionals considered have in common that they are given on an a priori infinite horizon
and a weight function occurs in the integrand of the objective.

We consider non-linear, non-autonomous dynamical systems. Consequently, one has to expect that con-
vexity assumptions, which are usually required for existence results, are not fulfilled. We take this into ac-
count by passing to an optimal control problem with relaxed controls (P),. Dual-based methods for solving
the problems are proposed. It turns out that (P),, and (P), have a common dual problem. A Lotka-Volterra
model is presented as an application.

2. Problem statement

The following problem (P)., is considered:

Jx, ) = fwf r(t, x(t),v) du,(v)e ®t dt — Min!
o Ju
x € W,"((0,0),v), €My, UEcomp(R™),
1O = [ F6xO.0du) ae on 0,%), x(t) = x°
U

All integrals are to be understood in the Lebesgue sense. The control domain U is assumed to be compact.
Wzl’"((O, ), V) is a weighted Sobolev-space and relaxed controls are taken from a family of probability mea-
sures My, introduced in the next section.

3. Spaces of states and controls
3.1. Control spaces

The relaxed controls y are taken from a regular family of probability measures My, [4].

Definition 3.1 A relaxed control {¢;}eg, is a family of probability measures that has the following proper-
ties:

1. suppus €U ae.on Ry,

2. U is a probability measureon U a.e. on R,,
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3. For all continuous functions with compact support, g € C.(R, X U), the function
e — [ 9v) duw)
U

is Lebesgue - measurable.

The motivation for introducing relaxed controls is given by the following arguments:

Remark 3.2 1. In general nonlinear systems cannot be stabilized using a continuous closed loop control
U(x), even if each state separately can be driven asymptotically to the origin.

2. Sometimes it can be stabilized with a continuous closed loop relaxed control.
3. Relaxed control-type stabilization is used both in theory and in practice; the method is known as dither-
ing, see [1].
3.2. State spaces

A weighted Sobolev space Wzl’n((O, ), v) with a suitable weight function v is chosen as the state space.
The introduction of the weighted Sobolev space Wzl'"((O, ), v) is motivated by the following facts. Density
and weight functions appear naturally in the objective functionals. If a classical Sobolev space Wzl'"(O, T)is
usually used as state space for control problems with bounded time interval [0, T], the limit transition T — oo
leads in a natural way to an improper integral

T

Tlim f(x)dx
0

which, in general not coincides with the Lebesgue - integral, see [9].

While in the case of bounded intervals the elements of the Banach space W;!((0, T)) have a continuous repre-
sentative and thus the space W;'((0, T)) can be identified with the space of absolutely continuous functions
AC((0,T)), the continuation of this space to AC;,.((0, )) loses the Banach space structure. This is an impor-
tant theoretical motivation to switch to weighted Sobolev spaces as Banach spaces in the problem definition.

Definition 3.3 (weight function/density function) Let R, := [0, o). A continuous functionv : R, - R,
is called weight function if vand v € Ly ;.(R,). If for a weight function v also holds

fR v(t)dt < o

+

we call this density function. Otherwise we name it proper weight function.

Definition 3.4 Let M"(IR,) be the set of measurable vector functions on R,. By means of a weight function
v, we define the weighted Lebesgue space

JR,Y) = {x € MR [xlyqn, 1= | A Ox(@OV(@e < oo} (3.)
R4
the weighted Sobolev space

Wy (Ry,v) = {x € MM(R}) | x € LE(R,,v), Dx € LE(Ry, 1) }. (3.2)

where Dx denotes the distributional derivative (shortly denoted by x'), see [8], p. 11 ff. With the introduced
norm L% (R,, v) becomes a Hilbert space. With

elly gy = 103,y + 1Dl g, 0y (33)

W,"™ (R4, v) becomes a Hilbert space as well (this can be confirmed analogously to [8].

The following properties of functions in weighted Sobolev spaces should be mentioned here explicitly.

88



ILYA DIKARIEV, VALERIYA LYKINA AND SABINE PICKENHAIN

Remark 3.5 1. Letx € WLL(R,,v), ||lx|| < K, v(t) = eft, B > 0, then x is exponentially stable,
lx(®)] < (|x(0)] + CK\/f)e_gt.
2. Letx € W)'(R,,v) and y € WL (R,,v™1), v(t) = eft, B > 0, then x y is asymptotically stable,
xy € W(R,) and lim x(£) y(t) = 0.
For the proofs see [11].

4. Optimality notions

In comparison to the literature, see [3], [5], where overtaking or weakly overtaking optimality is mainly used
as optimality criterion, the classical comparison of Lebesgue integrals in the objective of (P) is used here.
The admissible domain A of (P),, is given by

x'(8) = f, £t x(0), VI (V) aeRy,
A =1 (x, 1) € W3 (Ry, 1) X My
x(0) =x° uemy

Definition 4.1 Letthe processes (x, 1), (x*, u*) € A be given. Then the pair (x*, u*) is called globally optimal
in the sense of criterion L, if J(x*, u*) < oo and for any pair (x, 1) € A we have

JG&&p) < J(xw).

Under conditions that ensure the existence of the solution, cf. also the contribution by I. Dikariev at the
FGS-Conference On Optimization, Gijon, Spain, (2024), entitled

Existence Theorem for Relaxed Control Problems on Infinite Time Horizon Utilizing Weight Functions

we treat the problem (P) with dual methods. Here, we mainly refer to the ideas of Carathéodory and Klétzler
for the construction of a dual problem. This dual based approach has already been used for special optimal
control problems with infinite horizon in [10, 13].

5. Duality

We use a very general scheme for the construction of a dual problem, which goes back to Kldtzler, [6]:

Definition 5.1 Let real functionals F : X > R := RU +wand G : Y — R with arbitrary sets X and Y be
given. The problem
(D) G@y)—->sup! wrt.yeyY

is called dual program to the primary program
(P) F(x)—=infl wrt.x€X,

if the inequality
GYy)<F(x) VxeX VyeyY

or equivalently
sup G(y) < inf F(x) (5.1)
yey XEX

holds true. Relation (5.1) is called weak duality relation. If even the equality holds in (5.1), we say that the
strong duality relation holds between both problems.

The construction is carried out in the following steps:

Step 1: Partition of the admissible set A = X, N X; i
Step 2: Define a set Y and a real functional ®(;,-) : Xy X Y = R, with

inf Jlx,up) = inf sup®((x,u),S) (equivalence relation)
[CAD (. W)EXo sey
= sup inf ®((x,u),S)
sey (XH)EXy

89



DUALITY FOR INFINITE HORIZON RELAXED CONTROL PROBLEMS

Step 3: For a fixed element S € Y one sets

G($) = inf ®((xr),5).

We realize the scheme and construct a dual Program for (P) ., with v(t) = ef%, 8 > 0

Step 1: Partition of the admissible set A = X, N Xy

Xo :={(, 1) € W,""(Ry,v) X My | x(0) —x° = 0,u € My}
X, = {(x,u) € W, (R4, v) X My | x'(t) — J, £, x(), v)du,(v) = 0a.e. on (0, 00)}

Step 2: One possible choice for @ is a Lagrange - functional

P ((,0),8) = JOow+(x'() = f, F&x(),v)du (), VeSC,x())

€L} ((0,0),ePt) €LR((0,00),eAt)

where(-, -) is the scalar product in L%(R,), which satisfies

(€2 ) < NSz (0,000,809 1PNl 2 (0,00),-B2)-
Then we define the set Y by the following setting:

SeYe Stéd) =yl(t)é and ye€Li(R,,vD), (5.2)
1 (), y) = J(x, ) +{x'(¢) —f fCx(),v)dpe(v), y() (53)
v LB(R4)
Step 3: Formulation of a dual program (integated version):
(ODE G(y):= inf @,((x,p),y) » max! wrt. y € L3(R,,v™1).

(X'#)EXO
We can identify the idea of choosing a suitable functional ® from Carathéodory’s approach as well, see [2, 3].
It consists of adding an invariant integral to the integral in the objective. Invariance means that the added in-

tegral depends on the values of the function S on the boundary of [0, ), i.e. on S(0, x°), only. More precisely,
by choosing the function space Y it must be ensured that

[ rex@vanment - Zswxond =jeum +50,x)
o Ju dt

- f [] r(6,x(0,v) dine(v) P = [VIS(E,x(2)) j £t 2(6), V)i (v) + S,(6, x(O)]de.
0 U U

for all (x, u) € A. Then we conclude

JOo,uw) +500,x9) = —J. [H(t, x(t), V?S(t,x(t))) + S:(t, x(t)] dt
0
with the Hamiltonian function

H(t,$,VeS(t,6)) = supfH(L,$,v,S5¢(t,$)) v e U}, (54)

and

H(t,&,v,S:(t,8)) = —r(t, & v)eft + VgS(t, Of (L&, v).

This leads together with defect function

As(t,$) = H(t,$,VeS(t,$)) + S (t,$)
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in the Hamilton- Jacobi equation and
Ag(t,x*(t)) = 0 on [0, )

to the following variant of the dual problem (pointwise version):

(D2) G2(S) -5(0,x%) — max!
withrespectto S € Y
As(t, &) < 0 Vte][0,:),Vé
Ag(t, x*(t)) 0 Vte|[0, ).

Remark 5.2 The Hamiltonian for (P)., and (P),, coincide, since
H@,E,VeS(,8) = max{H(t,§,v,5:(t,8)) |v € U}

max{ j H(t, 6 v, S¢(6, ) due(v) | e € Po)
U

where Py is the set of probability measure concentrated on U, see [4]. We conclude that both problems, (P),,
and (P), have a same dual problem (D;),

sup((D2)) < inf((P)e) < Inf((P)co).

6. Applications
The uncontrolled bilinear Lotka-Volterra model considered is

x1(t) = x1(8) [a = bxy(8)]
) = x0)[-c+dx@©)].

6.1. Alinearized Lotka-Volterra model

First we transform the non-trivial equilibrium (2, %) = (X4, X,) of the uncontrolled equilibrium to the zero

point. Then we linearize the system around the uncontrolled steady state and look for a bounded control
(u4, uy) which stabilizes the system exponentially. We arrive at a problem of the following type.

Q: Jxw

f %{(xT(t)X(t) +uT(Ou(t))} eftdt — min !
0

with respect to

() € W (R, eft) x I3(Ry,efh), B>0
x'(t) = Ax(t)+u(t) ae.onR;, x(0) =x°,
u(t) € U:=[-11]x[-1,1]a.e.onR,.
For the detailed assumptions and settings see [7,13]. The corresponding dual problem (Dg) (integrated ver-
sion) is

1
Do) : G):=— f {E [y'(@®) + ATy(t)]T [y'@® +ATy@®)] + e(t,y(t))}e—ﬁtdt — xFy(0) — max !
0

W. Tt
y € W2 (Ry, e Pty with x° = y'(0) + ATy(0),

with
2

1
0(6,y() = ) ~502(Y®) + oty O and

i=1
0;(t,y(t)) = min {max{—1,y;(t)e Ft}, 1} et

91



DUALITY FOR INFINITE HORIZON RELAXED CONTROL PROBLEMS

Remark 6.1 1. In the general construction of the dual problem, (5.2),
ie. S(t,&) = yT(t)é and y € W2* (R, v™1) is used.
2. The duality construction is carried out with the Lagrange functional (5.3).
3. It can be shown that the Hamilton function (5.4) is smooth.

4. In the dual problem, the inverse weight function appears in the objective functional as well as in the
weighted Sobolev space.

5. (Dq) has an optimal solution.

6. Spectral methods can be applied to approximate the solution.

6.2. A controlled bi-linear Lotka-Volterra model

We transform the steady state of the uncontrolled equilibrium (2, %) = (X4, X) to the zero point and look for
a bounded control (u4, u,) which stabilizes the non-linear system exponentially. We arrive at the following
problem:

Q: JEu = fw%(fc(t)TQ(t)i(t)+u(t)TR(t)u(t))eﬁtdt — Min!
0

w.r.t.
(z,u) € W (Ry, eFt) x [3(Ry, ePY), B>0
with
) = [azl(t) + 2] [=b%,(t) — uy ()]  ae. on Ry,
) = [fcz(t) + %] [d%,(6) — uy(6)]  ae. on Ry,
50 = -2 BO=x-

For the duality construction we now use a nonlinear ansatz for S,

S =n@W (& +2) +nOm(6+3), ¥ W R, (6.1)
Then
b, (Fu),S) = J(xu) + fo (- |10 + S| (=b2.(0) — w01 53, 2@ e
+ fo : (=500 - [xz(t) + g] [d, (£) — 1, (6)] ) Sg, (£, %(1)) dt
=JGw) + fo " (anG + 2'(©) = [=b%(8) = w (O] ) m () e (62)
+ f " (an@z, + 2 () = [ (©) — w01 ) ya(0) dt

is well defined and all integrals exist. The final construction of the dual problem in integrated form is similar
to that introduced in [7,11] and [13].

Remark 6.2 1. In the general construction of the dual problem, the nonlinear ansatz of S, (6.1), is used.
2. The duality construction is carried out with the Lagrange functional @, in (6.2).

3. In the dual problem, the inverse weight function v~! appears in the objective functional as well as in
the weighted Sobolev space.

4. Similar to [13] spectral methods can be applied to approximate the solution of the dual problem.
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