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1. Introduction

We consider control problems (𝑃)∞whose objective functional is in an economic context a utility functional,

𝐽(𝑥, 𝑢) = �
∞

0

𝑊(𝑥(𝑡), 𝑢(𝑡)) 𝑒−𝜚𝑡 𝑑𝑡 ⟶ 𝑀𝑎𝑥 ! (1.1)

where W is an instantaneous utility function and 𝜚 is a positive or zero discount rate.

The objective can also be an energy functional in mechanical or quantum mechanical systems, or it can be

chosen in such a way that the asymptotic and exponential controllability of the system is guaranteed,

𝐽(𝑥, 𝑢) = �
∞

0

1

2
�𝑥(𝑡)𝑇𝑄(𝑡)𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑡)𝑢(𝑡) � 𝑒𝛽𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛 ! (1.2)

where𝛽 > 0 assures togetherwith the choice of suitable state spaces the exponential stability of the solution.

All the target functionals considered have in common that they are given on an a priori infinite horizon

and a weight function occurs in the integrand of the objective.

We consider non-linear, non-autonomous dynamical systems. Consequently, one has to expect that con-

vexity assumptions, which are usually required for existence results, are not fulfilled. We take this into ac-

count by passing to an optimal control problemwith relaxed controls (�̄�)∞. Dual-based methods for solving

the problems are proposed. It turns out that (𝑃)∞ and (�̄�)∞ have a common dual problem. A Lotka-Volterra

model is presented as an application.

2. Problem statement

The following problem (�̄�)∞ is considered:

𝐽(𝑥, 𝜇) = �
∞

0

�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v)𝑒
−𝜚𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛 !

𝑥 ∈ 𝑊
1,𝑛
2 ((0,∞), 𝜈), 𝜇 ∈ ℳ𝑈, 𝑈 ∈ 𝑐𝑜𝑚𝑝(ℝ𝑚),

�̇�(𝑡) = �
𝑈

𝑓(𝑡, 𝑥(𝑡), v)𝑑𝜇𝑡(v) a.e. on (0,∞), 𝑥(𝑡0) = 𝑥0.

All integrals are to be understood in the Lebesgue sense. The control domain 𝑈 is assumed to be compact.

𝑊
1,𝑛
2 ((0,∞), 𝜈) is a weighted Sobolev-space and relaxed controls are taken from a family of probability mea-

suresℳ𝑈, introduced in the next section.

3. Spaces of states and controls

3.1. Control spaces

The relaxed controls 𝜇 are taken from a regular family of probability measuresℳ𝑈, [4].

Definition 3.1 A relaxed control {𝜇𝑡}𝑡∈ℝ+ is a family of probability measures that has the following proper-

ties:

1. supp 𝜇𝑡 ⊆ 𝑈 a.e. on ℝ+,

2. 𝜇𝑡 is a probability measure on 𝑈 a.e. on ℝ+,
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3. For all continuous functions with compact support, 𝑔 ∈ 𝐶𝑐(ℝ+ × 𝑈), the function

𝑡 ⟶ �

𝑈

𝑔(𝑡, 𝑣) 𝑑𝜇𝑡(𝑣)

is Lebesgue - measurable.

The motivation for introducing relaxed controls is given by the following arguments:

Remark 3.2 1. In general nonlinear systems cannot be stabilized using a continuous closed loop control

𝑈(𝑥), even if each state separately can be driven asymptotically to the origin.

2. Sometimes it can be stabilized with a continuous closed loop relaxed control.

3. Relaxed control-type stabilization is usedboth in theory and in practice; themethod is knownas dither-

ing, see [1].

3.2. State spaces

A weighted Sobolev space𝑊
1,𝑛
2 ((0,∞), 𝜈)with a suitable weight function 𝜈 is chosen as the state space.

The introduction of the weighted Sobolev space𝑊
1,𝑛
2 ((0,∞), 𝜈) is motivated by the following facts. Density

and weight functions appear naturally in the objective functionals. If a classical Sobolev space𝑊
1,𝑛
2 (0, 𝑇) is

usually used as state space for control problemswith bounded time interval [0, 𝑇], the limit transition𝑇 → ∞

leads in a natural way to an improper integral

lim
𝑇→∞

𝑇

�

0

𝑓(𝑥) 𝑑𝑥

which, in general not coincides with the Lebesgue - integral, see [9].

While in the case of bounded intervals the elements of the Banach space𝑊1
1 ((0, 𝑇)) have a continuous repre-

sentative and thus the space𝑊1
1 ((0, 𝑇)) can be identified with the space of absolutely continuous functions

𝐴𝐶((0, 𝑇)), the continuation of this space to𝐴𝐶𝑙𝑜𝑐((0,∞)) loses the Banach space structure. This is an impor-

tant theoretical motivation to switch toweighted Sobolev spaces as Banach spaces in the problem definition.

Definition 3.3 (weight function/density function) Letℝ+ ∶= [0,∞). A continuous function 𝜈 ∶ ℝ+ → ℝ+

is called weight function if 𝜈 and 𝜈−1 ∈ 𝐿1,𝑙𝑜𝑐(ℝ+). If for a weight function 𝜈 also holds

�
ℝ+

𝜈(𝑡)𝑑𝑡 < ∞

we call this density function. Otherwise we name it proper weight function.

Definition 3.4 Let𝑀𝑛(ℝ+) be the set of measurable vector functions onℝ+. By means of a weight function

𝜈, we define the weighted Lebesgue space

𝐿𝑛2(ℝ+, 𝜈) = � 𝑥 ∈ 𝑀𝑛(ℝ+) | ‖𝑥‖
2
𝐿𝑛2(ℝ+,𝜈)

∶= �
ℝ+

𝑥𝑇(𝑡)𝑥(𝑡)𝜈(𝑡)𝑑𝑡 < ∞� (3.1)

the weighted Sobolev space

𝑊
1,𝑛
2 (ℝ+, 𝜈) = � 𝑥 ∈ 𝑀𝑛(ℝ+ ) � 𝑥 ∈ 𝐿𝑛2(ℝ+, 𝜈) , 𝒟𝑥 ∈ 𝐿𝑛2(ℝ+, 𝜇) �. (3.2)

where𝒟𝑥 denotes the distributional derivative (shortly denoted by 𝑥′), see [8], p. 11 ff. With the introduced

norm 𝐿𝑛2(ℝ+, 𝜈) becomes a Hilbert space. With

‖𝑥‖
𝑊

1,𝑛
2 (ℝ+,𝜈)

= ‖𝑥‖
𝐿𝑛2(ℝ+,𝜈)

+ ‖𝒟𝑥‖
𝐿𝑛2(ℝ+,𝜈)

, (3.3)

𝑊
1,𝑛
2 (ℝ+, 𝜈) becomes a Hilbert space as well (this can be confirmed analogously to [8].

The following properties of functions in weighted Sobolev spaces should be mentioned here explicitly.
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Remark 3.5 1. Let 𝑥 ∈ 𝑊1
2 (ℝ+, 𝜈), ‖𝑥‖ ≤ 𝐾, 𝜈(𝑡) = 𝑒𝛽𝑡, 𝛽 > 0, then 𝑥 is exponentially stable,

|𝑥(𝑡)| ≤ �|𝑥(0)| + 𝐶𝐾√𝑡�𝑒
−
𝛽

2
𝑡
.

2. Let 𝑥 ∈ 𝑊1
2 (ℝ+, 𝜈) and 𝑦 ∈ 𝑊1

2 (ℝ+, 𝜈
−1), 𝜈(𝑡) = 𝑒𝛽𝑡, 𝛽 > 0, then 𝑥 𝑦 is asymptotically stable,

𝑥 𝑦 ∈ 𝑊1
1 (ℝ+) and lim

𝑡→∞
𝑥(𝑡) 𝑦(𝑡) = 0.

For the proofs see [11].

4. Optimality notions

In comparison to the literature, see [3], [5], where overtaking orweakly overtaking optimality ismainly used

as optimality criterion, the classical comparison of Lebesgue integrals in the objective of ̄(𝑃) is used here.

The admissible domain𝒜 of (�̄�)∞ is given by

𝒜 ∶= �(𝑥, 𝜇) ∈ 𝑊
1,𝑛
2 (ℝ+, 𝜇) ×ℳ𝑈 �

𝑥′(𝑡) = ∫
𝑈
𝑓(𝑡, 𝑥(𝑡), v)𝜇𝑡(v) 𝑎.𝑒.ℝ+,

𝑥(0) = 𝑥0, 𝜇 ∈ ℳ𝑈

�.

Definition 4.1 Let the processes (𝑥, 𝜇), (𝑥∗, 𝜇∗) ∈𝒜be given. Then the pair (𝑥∗, 𝜇∗) is called globally optimal

in the sense of criterion L, if 𝐽(𝑥∗, 𝜇∗) < ∞ and for any pair (𝑥, 𝜇) ∈ 𝒜we have

𝐽(𝑥∗, 𝜇∗) ≤ 𝐽(𝑥, 𝜇).

Under conditions that ensure the existence of the solution, cf. also the contribution by I. Dikariev at the

FGS-Conference On Optimization, Gijon, Spain, (2024) , entitled

Existence Theorem for Relaxed Control Problems on Infinite Time Horizon Utilizing Weight Functions

we treat the problem ̄(𝑃)with dualmethods. Here, wemainly refer to the ideas of Carathéodory and Klötzler

for the construction of a dual problem. This dual based approach has already been used for special optimal

control problems with infinite horizon in [10,13].

5. Duality

We use a very general scheme for the construction of a dual problem, which goes back to Klötzler, [6]:

Definition 5.1 Let real functionals 𝐹 ∶ 𝑋 → ℝ̄ ∶= ℝ ∪ +∞ and 𝐺 ∶ 𝑌 → ℝ̄ with arbitrary sets 𝑋 and 𝑌 be

given. The problem

(D) 𝐺(𝑦) → sup! 𝑤.𝑟.𝑡. 𝑦 ∈ 𝑌

is called dual program to the primary program

(P) 𝐹(𝑥) → inf! 𝑤.𝑟.𝑡. 𝑥 ∈ 𝑋,

if the inequality

𝐺(𝑦) ≤ 𝐹(𝑥) ∀ 𝑥 ∈ 𝑋, ∀ 𝑦 ∈ 𝑌

or equivalently

sup
𝑦∈𝑌

𝐺(𝑦) ≤ inf
𝑥∈𝑋

𝐹(𝑥) (5.1)

holds true. Relation (5.1) is called weak duality relation. If even the equality holds in (5.1), we say that the

strong duality relation holds between both problems.

The construction is carried out in the following steps:

Step 1: Partition of the admissible set 𝒜 = 𝑋0 ∩ 𝑋1
Step 2: Define a set 𝑌 and a real functionalΦ(⋅, ⋅) ∶ 𝑋0 × 𝑌 → ℝ̄+ with

inf
(𝑥,𝜇)∈𝒜

𝐽(𝑥, 𝜇) = inf
(𝑥,𝜇)∈𝑋0

sup
𝑆∈𝑌

Φ((𝑥, 𝜇), 𝑆) (equivalence relation)

≥ sup
𝑆∈𝑌

inf
(𝑥,𝜇)∈𝑋0

Φ((𝑥, 𝜇), 𝑆)
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Step 3: For a fixed element 𝑆 ∈ 𝑌 one sets

𝐺(𝑆) ∶= inf
(𝑥,𝜇)∈𝑋0

Φ((𝑥, 𝜇), 𝑆).

We realize the scheme and construct a dual Program for (P̄)∞, with 𝜈(𝑡) = 𝑒𝛽𝑡, 𝛽 > 0

Step 1: Partition of the admissible set 𝒜 = 𝑋0 ∩ 𝑋1

𝑋0 ∶= �(𝑥, 𝜇) ∈ 𝑊
1,𝑛
2 (ℝ+, 𝜈) ×ℳ𝑈 | 𝑥(0) − 𝑥0 = 0, 𝜇 ∈ ℳ𝑈 �

𝑋1 ∶= �(𝑥, 𝜇) ∈ 𝑊
1,𝑛
2 (ℝ+, 𝜈) ×ℳ𝑈 | 𝑥

′(𝑡) − ∫
𝑈
𝑓(𝑡), 𝑥(𝑡), v)𝑑𝜇𝑡(v) = 0 a.e. on (0,∞)�

Step 2: One possible choice forΦ is a Lagrange - functional

Φ1((𝑥, 𝜇), 𝑆) = 𝐽(𝑥, 𝜇) + �𝑥′(⋅) − ∫
𝑈
𝑓(𝑡, 𝑥(⋅), 𝑣)𝑑𝜇𝑡(𝑣)�������������������

∈𝐿𝑛2((0,∞),𝑒𝛽𝑡)

, ∇𝜉𝑆(⋅, 𝑥(⋅))�������

∈𝐿𝑛2((0,∞),𝑒−𝛽𝑡)

�

where⟨⋅ , ⋅⟩ is the scalar product in 𝐿𝑛2(ℝ+), which satisfies

⟨𝜁 , 𝑝 ⟩ ≤ ‖𝜁‖𝐿𝑛2((0,∞),𝑒𝛽𝑡)‖𝑝‖𝐿𝑛2((0,∞),𝑒−𝛽𝑡).

Then we define the set 𝑌 by the following setting:

𝑆 ∈ 𝑌 ⇔ 𝑆(𝑡, 𝜉) = 𝑦𝑇(𝑡)𝜉 and 𝑦 ∈ 𝐿𝑛2(ℝ+, 𝜈
−1), (5.2)

Φ1((𝑥, 𝜇), 𝑦) = 𝐽(𝑥, 𝜇) + �𝑥′(⋅) − �
𝑈

𝑓(⋅, 𝑥(⋅), v)𝑑𝜇𝑡(v), 𝑦(⋅)�

𝐿𝑛2(ℝ+)

(5.3)

Step 3: Formulation of a dual program (integated version):

(D1) ∶ 𝐺(𝑦) ∶= inf
(𝑥,𝜇)∈𝑋0

Φ1((𝑥, 𝜇), 𝑦) → max! w.r.t. 𝑦 ∈ 𝐿𝑛2(ℝ+, 𝜈
−1).

We can identify the idea of choosing a suitable functionalΦ from Carathéodory’s approach as well, see [2,3].

It consists of adding an invariant integral to the integral in the objective. Invariancemeans that the added in-

tegral depends on the values of the function 𝑆 on the boundary of [0,∞), i.e. on 𝑆(0, 𝑥0), only. More precisely,

by choosing the function space 𝑌 it must be ensured that

�
∞

0

[�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v) 𝑒
𝛽𝑡 −

𝑑

𝑑𝑡
𝑆(𝑡, 𝑥(𝑡))] 𝑑𝑡 = 𝐽(𝑥, 𝜇) + 𝑆(0, 𝑥0)

= �
∞

0

[�
𝑈

𝑟(𝑡, 𝑥(𝑡), v) 𝑑𝜇𝑡(v) 𝑒
𝛽𝑡 − [∇𝑇𝜉𝑆(𝑡, 𝑥(𝑡))�

𝑈

𝑓(𝑡, 𝑥(𝑡), v)𝑑𝜇𝑡(v) + 𝑆𝑡(𝑡, 𝑥(𝑡))]𝑑𝑡.

for all (𝑥, 𝜇) ∈ 𝒜. Then we conclude

𝐽(𝑥, 𝜇) + 𝑆(0, 𝑥0) ≥ −�
∞

0

[ℋ(𝑡, 𝑥(𝑡), ∇𝑇𝜉𝑆(𝑡, 𝑥(𝑡))) + 𝑆𝑡(𝑡, 𝑥(𝑡))] 𝑑𝑡

with the Hamiltonian function

ℋ(𝑡, 𝜉, ∇𝜉𝑆(𝑡, 𝜉)) = sup{𝐻(𝑡, 𝜉, v, 𝑆𝜉(𝑡, 𝜉)) | v ∈ 𝑈}, (5.4)

and

𝐻(𝑡, 𝜉, v, 𝑆𝜉(𝑡, 𝜉)) = −𝑟(𝑡, 𝜉, v)𝑒𝛽𝑡 + ∇𝑇𝜉𝑆(𝑡, 𝜉)𝑓(𝑡, 𝜉, v).

This leads together with defect function

Λ𝑆(𝑡, 𝜉) ∶= ℋ(𝑡, 𝜉, ∇𝜉𝑆(𝑡, 𝜉)) + 𝑆𝑡(𝑡, 𝜉)
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in the Hamilton- Jacobi equation and

Λ𝑆(𝑡, 𝑥
∗(𝑡)) = 0 on [0,∞)

to the following variant of the dual problem (pointwise version):

(D2) G2(S) = −𝑆(0, 𝑥0) ⟶ max !

with respect to 𝑆 ∈ 𝑌

Λ𝑆(𝑡, 𝜉) ≤ 0 ∀𝑡 ∈ [0,∞), ∀𝜉

Λ𝑆(𝑡, 𝑥
∗(𝑡)) = 0 ∀𝑡 ∈ [0,∞).

Remark 5.2 The Hamiltonian for (𝑃)∞ and (�̄�)∞ coincide, since

ℋ(𝑡, 𝜉, ∇𝜉𝑆(𝑡, 𝜉)) = max{𝐻(𝑡, 𝜉, 𝑣, 𝑆𝜉(𝑡, 𝜉)) | 𝑣 ∈ 𝑈}

= max{�
𝑈

𝐻(𝑡, 𝜉, v, 𝑆𝜉(𝑡, 𝜉))𝑑𝜇𝑡(v) | 𝜇𝑡 ∈ 𝑃𝑈}

where 𝑃𝑈 is the set of probabilitymeasure concentrated on𝑈, see [4]. We conclude that both problems, (�̄�)∞
and (𝑃)∞, have a same dual problem (D2),

sup((D2)) ≤ inf((P̄)∞) ≤ inf((P)∞).

6. Applications

The uncontrolled bilinear Lotka-Volterra model considered is

𝑥′1(𝑡) = 𝑥1(𝑡) [𝑎 − 𝑏𝑥2(𝑡)]

𝑥′2(𝑡) = 𝑥2(𝑡) [−𝑐 + 𝑑𝑥1(𝑡)] .

6.1. A linearized Lotka-Volterra model

First we transform the non-trivial equilibrium (
𝑐

𝑑
,
𝑎

𝑏
) = (�̄�1, �̄�2) of the uncontrolled equilibrium to the zero

point. Then we linearize the system around the uncontrolled steady state and look for a bounded control

(𝑢1, 𝑢2)which stabilizes the system exponentially. We arrive at a problem of the following type.

(Q) ∶ 𝐽(𝑥, 𝑢) =

∞

�

0

1

2
�(𝑥𝑇(𝑡)𝑥(𝑡) + 𝑢𝑇(𝑡)𝑢(𝑡))� 𝑒𝛽𝑡𝑑𝑡 ⟶ min !

with respect to

(𝑥, 𝑢) ∈ 𝑊
1,2
2 (ℝ+, 𝑒

𝛽𝑡) × 𝐿22(ℝ+, 𝑒
𝛽𝑡), 𝛽 > 0

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝑢(𝑡) a. e. onℝ+ , 𝑥(0) = 𝑥0 ,

𝑢(𝑡) ∈ 𝑈 ∶= [−1, 1] × [−1, 1] a. e. onℝ+ .

For the detailed assumptions and settings see [7,13]. The corresponding dual problem (DQ) (integrated ver-

sion) is

(DQ) ∶ 𝐺(𝑦) ∶= −

∞

�

0

�
1

2
�𝑦′(𝑡) + 𝐴𝑇𝑦(𝑡)�

𝑇
�𝑦′(𝑡) + 𝐴𝑇𝑦(𝑡)� + 𝜃(𝑡, 𝑦(𝑡))� 𝑒−𝛽𝑡𝑑𝑡 − 𝑥𝑇0𝑦(0) ⟶ max !

w. r. t.

𝑦 ∈ 𝑊
2,2
2 (ℝ+, 𝑒

−𝛽𝑡) with 𝑥0 = 𝑦′(0) + 𝐴𝑇𝑦(0),

with

𝜃(𝑡, 𝑦(𝑡)) =

2

�

𝑖=1

−
1

2
𝜎2𝑖 (𝑡, 𝑦(𝑡)) + 𝜎𝑖(𝑡, 𝑦(𝑡))𝑦𝑖(𝑡) and

𝜎𝑖(𝑡, 𝑦(𝑡)) = min �max �−1, 𝑦𝑖(𝑡)𝑒
−𝛽𝑡� , 1� 𝑒𝛽𝑡
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Remark 6.1 1. In the general construction of the dual problem, (5.2),

i.e. 𝑆(𝑡, 𝜉) = 𝑦𝑇(𝑡)𝜉 and 𝑦 ∈ 𝑊
2,2
2 (ℝ+, 𝜈

−1) is used.

2. The duality construction is carried out with the Lagrange functional (5.3).

3. It can be shown that the Hamilton function (5.4) is smooth.

4. In the dual problem, the inverse weight function appears in the objective functional as well as in the

weighted Sobolev space.

5. (DQ) has an optimal solution.

6. Spectral methods can be applied to approximate the solution.

6.2. A controlled bi-linear Lotka-Volterra model

We transform the steady state of the uncontrolled equilibrium (
𝑐

𝑑
,
𝑎

𝑏
) = (�̄�1, �̄�2) to the zero point and look for

a bounded control (𝑢1, 𝑢2) which stabilizes the non-linear system exponentially. We arrive at the following

problem:

(Q̃) ∶ 𝐽(�̃�, 𝑢) = �
∞

0

1

2
��̃�(𝑡)𝑇𝑄(𝑡)�̃�(𝑡) + 𝑢(𝑡)𝑇𝑅(𝑡)𝑢(𝑡) � 𝑒𝛽𝑡 𝑑𝑡 ⟶ 𝑀𝑖𝑛 !

w.r.t.

��̃�, 𝑢� ∈ 𝑊
1,2
2 (ℝ+, 𝑒

𝛽𝑡) × 𝐿22(ℝ+, 𝑒
𝛽𝑡), 𝛽 > 0

with

�̃�′1(𝑡) = ��̃�1(𝑡) +
𝑐

𝑑
� [−𝑏�̃�2(𝑡) − 𝑢1(𝑡)] a.e. on ℝ+,

�̃�′2(𝑡) = ��̃�2(𝑡) +
𝑎

𝑏
� [𝑑�̃�1(𝑡) − 𝑢2(𝑡)] a.e. on ℝ+,

�̃�1(0) = 𝑥01 −
𝑐

𝑑
, �̃�2(0) = 𝑥02 −

𝑎

𝑏

For the duality construction we now use a nonlinear ansatz for 𝑆,

𝑆(𝑡, 𝜉) ∶= 𝑦1(𝑡) ln �𝜉1 +
𝑐

𝑑
� + 𝑦2(𝑡) ln �𝜉2 +

𝑎

𝑏
�, 𝑦 ∈ 𝑊

1,2
2 (ℝ+, 𝑒

−𝛽𝑡) (6.1)

Then

Φ2((�̃�, 𝑢), 𝑆) = 𝐽(𝑥, 𝑢) + �
∞

0

��̃�′1(𝑡) − ��̃�1(𝑡) +
𝑐

𝑑
� [−𝑏�̃�2(𝑡) − 𝑢1(𝑡)] � 𝑆𝜉1(𝑡, �̃�(𝑡)) 𝑑𝑡

+ �
∞

0

��̃�′2(𝑡) − ��̃�2(𝑡) +
𝑎

𝑏
� [𝑑�̃�1(𝑡) − 𝑢2(𝑡)] � 𝑆𝜉2(𝑡, �̃�(𝑡)) 𝑑𝑡

= 𝐽(�̃�, 𝑢) + �
∞

0

�(ln(�̃�1 +
𝑐

𝑑
))′(𝑡) − [−𝑏�̃�2(𝑡) − 𝑢1(𝑡)] � 𝑦1(𝑡) 𝑑𝑡 (6.2)

+ �
∞

0

�(ln(�̃�2 +
𝑎

𝑏
))′(𝑡) − [𝑑�̃�1(𝑡) − 𝑢2(𝑡)] � 𝑦2(𝑡) 𝑑𝑡

is well defined and all integrals exist. The final construction of the dual problem in integrated form is similar

to that introduced in [7,11] and [13].

Remark 6.2 1. In the general construction of the dual problem, the nonlinear ansatz of 𝑆, (6.1), is used.

2. The duality construction is carried out with the Lagrange functionalΦ2 in (6.2).

3. In the dual problem, the inverse weight function 𝜈−1 appears in the objective functional as well as in

the weighted Sobolev space.

4. Similar to [13] spectral methods can be applied to approximate the solution of the dual problem.
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