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Abstract

In this work, we explore the capacity of neural ordinary differential equations (ODEs) for supervised

learning from a control perspective. Specifically, we rely on the property of simultaneous controllability

and explicitly construct the controls that achieve this as piecewise constant functions in time.

First, we analyze the expressivity of themodel for cluster-based classification by estimating the number

of neurons required for the classification of a set constituted by𝑁points. We consider aworst-case scenario

where these points are independently sampled from 𝑈([0, 1]𝑑). Assuming only that the initial points are

in general position, we propose an algorithm that classifies clusters of 𝑑 points simultaneously, employing

𝑂(𝑁/𝑑) neurons.

Secondly, we examine the impact of the architecture, determined by the depth 𝑝 and width 𝐿, for inter-

polating a set of 𝑁 pairs of points. Our findings reveal a balance where 𝐿 scales as 𝑂(1 + 𝑁/𝑝). For the

autonomous model, with constant controls (𝐿 = 0), we relax the problem to approximate controllability of

𝑁 pairs of points, establishing an explicit error decay with respect to 𝑝. Finally, we extend the problem to

the approximate control of measures in the Wasserstein space, finding another balance between 𝑝 and 𝐿.

1. Introduction

Supervised learning is one of the main paradigms in machine learning. Given some spaces𝒳 ⊂ ℝ𝑑 and 𝒴 ⊂

ℝ𝑚 with 𝑑,𝑚 ≥ 1, the problem can be formulated as the approximation of an unknown function 𝑓 ∶ 𝒳 → 𝒴

using a parametric model built from the information contained in a training dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ 𝒳 × 𝒴,

where y𝑛 = 𝑓(x𝑛) for all 𝑛.

Neural networks constitute a widely used class of models, and among them, residual networks have been

shown to be particularly effective. A residual neural network, defined for a fixed depth 𝐿 ∈ ℕ, operates as a

discrete system given by:

x𝑙+1 = x𝑙 +

𝑝

�

𝑖=1

w𝑙,𝑖𝜎(a𝑙,𝑖 ⋅ x𝑙 + 𝑏𝑙,𝑖), 𝑙 = 0,… , 𝐿, (1.1)

where x𝑙 ∈ ℝ𝑑 is the sequence of states, ⋅ denotes the scalar product, and:

• w𝑙,𝑖, a𝑙,𝑖 ∈ ℝ𝑑 and 𝑏𝑙,𝑖 ∈ ℝ are the parameters;

• 𝑝 is the width of the model;

• 𝜎 is a predefined nonlinearity, frequently the Rectified Linear Unit (ReLU) function, defined by:

𝜎(𝑧) = max{𝑧, 0}, for 𝑧 ∈ ℝ. (1.2)

Neural ODEs are essentially the continuous-time limit of residual networks [5]. They are obtained by multi-

plying the nonlinear term in (1.1) by a constant ℎ > 0 and taking the limit when ℎ → 0, resulting in:

̇x =

𝑝

�

𝑖=1

w𝑖(𝑡) 𝜎(a𝑖(𝑡) ⋅ x+ 𝑏𝑖(𝑡)), 𝑡 ∈ (0, 𝑇), (1.3)

where the parameters can now be seen as 𝑝 control functions (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1�, for some

𝑇 > 0. Note that the time horizon 𝑇 does not play a major role, since equation (1.3) admits a time-rescaling

property: one can equivalently fix 𝑇 = 1 and absorb a factor 𝑇 intow𝑖.

One of the main advantages of neural ODEs is that they enable the reinterpretation and study of various

machine learning paradigms using the tools from differential equations and dynamical systems [10]. For

instance, data classification can be formulated as a problem of simultaneous control of the system (1.3). The

French-German-Spanish Conference on Optimization
Gijón, June 18-21, 2024
(pp. 11-16)

FGS2024 11 ISBN 978-84-10135-30-7



objective is to design 𝑝 controls that drive every initial data point {x𝑛}
𝑁
𝑛=1 ⊂ ℝ𝑑 to its corresponding target

point via the flow map at time 𝑇 of the system (1.3).

To facilitate the geometric interpretation of the dynamics, achieve a layered structure similar to (1.1),

and reduce the problem to finite dimensions, it is often assumed that the controls are piecewise constant in

time [7,9]. The discrete network’s depth can then be interpreted as the number of distinct values that these

controls take, and each of the finite-jump discontinuities, whose total number we denote by 𝐿, corresponds

to a layer transition.

Within each layer 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘) ⊂ (0, 𝑇), the controls a𝑖(𝑡) ≡ a𝑖 ∈ ℝ𝑑 and 𝑏𝑖(𝑡) ≡ 𝑏𝑖 ∈ ℝ define

𝑝 hyperplanes 𝐻1, … , 𝐻𝑝. The ReLU function in (1.2) then activates or deactivates the corresponding half-

spaces:

𝐻+
𝑖 ≔ {x ∈ ℝ𝑑 ∶ a𝑖 ⋅ x+ 𝑏𝑖 > 0} and 𝐻−

𝑖 ≔ ℝ𝑑 ∖ 𝐻+
𝑖 , for all 𝑖 = 1,… , 𝑝, (1.4)

Meanwhile, each control w𝑖(𝑡) ≡ w𝑖 ∈ ℝ𝑑 determines a vector field acting solely on the points inside the

half-space 𝐻+
𝑖 . The total field in (1.3) acts on each point x ∈ ℝ𝑑 as a weighted superposition of the form

∑
𝑝
𝑖=1 dist(x, 𝐻

−
𝑖 )w𝑖, where the 𝑖-th term is null when x ∈ 𝐻−

𝑖 . By appropriately defining the controls, we can

thus fix any hyperplane 𝐻𝑖 inℝ
𝑑 and generate three basic dynamics, as represented in Figure 1.

Fig. 1 Basic movements that we can generate: Compression, laminar motion, expansion (from left to right).

2. Controlled cluster-based classification

First, we address binary classification, where𝒴 = {1, 0}. In this context, the values𝑦𝑛 are commonly referred

to as labels. We associate the two labels with a pair of target regions that are linearly separable and form a

partition of ℝ𝑑. For example, the two half-spaces defined by 𝑥(𝑘) ≠ 1. Our goal is to design controls for the

neural ODE that generate a flow mapping each initial point x𝑛 to the corresponding target region 𝑥(𝑘) > 1

or 𝑥(𝑘) < 1.

Furthermore, for optimal classification, the complexity of the model, represented by the number of neu-

rons defining the network, should not grow excessively large. By fixing 𝑝 = 1 in (1.3), the complexity is thus

determined solely by the number of discontinuities in the controls over time:

ẋ = w(𝑡) 𝜎(a(𝑡) ⋅ x+ 𝑏(𝑡)), 𝑡 ∈ (0, 𝑇). (2.1)

In [7], classification of any finite dataset was achieved through a constructive algorithm that leverages the

nonlinear dynamics of (2.1) to simultaneously control the𝑁 points inductively. The main result in this work

is the following:

Theorem 2.1 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, 𝑦𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 × {1, 0} with x𝑛 ≠ x𝑚

if 𝑛 ≠ 𝑚. Then, there exists a piecewise constant control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the flow map

Φ𝑇 generated by (2.1) satisfies, for all 𝑛 = 1,… ,𝑁:

Φ𝑇(x𝑛)
(1) > 1 if 𝑦𝑛 = 1, and Φ𝑇(x𝑛)

(1) < 1 if 𝑦𝑛 = 0,

Furthermore, the number of discontinuities in the controls is 𝐿 = 3𝑁.

Theorem 2.1 opens new pathways for methodologies in data classification. However, it requires high

complexity since the number of neurons scales with 𝑁 due to the inductive nature of the algorithm. In [1],

we propose new algorithms that consider the spatial structure of the data distribution to reduce the number

of parameters needed. Specifically, by assuming that the points are randomly sampled from 𝑈([0, 1]𝑑)—a

worst-case scenario of pure noise—we construct controls that provide the following probabilistic bound on

the model’s depth:

Theorem 2.2 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, 𝑦𝑛)}
2𝑁
𝑛=1 with x𝑛 ∼ 𝑈([0, 1]𝑑) and

𝑦𝑛 ∈ {1, 0} for all 𝑛, satisfying #{𝑛 ∶ 𝑦𝑛 = 1} = #{𝑛 ∶ 𝑦𝑛 = 0} = 𝑁. Then, there exist a direction 𝑗 ∈ {1, … , 𝑑}, a
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piecewise constant control (w, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ𝑑+1� and a ∈ {e1, … , e𝑑}, such that the flowmapΦ𝑇 generated

by (2.1) satisfies, for all 𝑛 = 1,… , 2𝑁:

Φ𝑇(x𝑛)
(𝑗) < 1 if 𝑦𝑛 = 1, and Φ𝑇(x𝑛)

(𝑗) > 1 if 𝑦𝑛 = 0.

Furthermore, the number of discontinuities 𝐿 follows the probability distribution, for 0 ≤ 𝑘 ≤ 2𝑁 − 2,

ℙ(𝐿 ≥ 𝑘) = �

𝑁

�

𝑝=⌈
𝑘+1

2
⌉

�
𝑁 − 1

𝑝 − 1
�

2

+

𝑁−1

�

𝑝=⌈
𝑘

2
⌉

�
𝑁 − 1

𝑝
��

𝑁 − 1

𝑝 − 1
��

𝑑

2𝑑�
2𝑁

𝑁
�

−𝑑

. (2.2)
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(a) Visualization of (2.2) for

𝑁 = 10 and different values of

𝑑.

(b) Repre-

sentation of

the algorithm

for classifi-

cation from

Theorem 2.2.

Fig. 2

Themaximum number of 𝐿 = 2𝑁−2 discontinuities corresponds to the configuration where the 2𝑁−1

points lie ona single line andare interspersedaccording to their labels. Although these scenarios are typically

unrealistic, they hold a positive probability in Theorem 2.2 due to the strong constraint on a. However, if we

assume that the points are in general position, meaning no 𝑑 + 1 points lie on the same hyperplane (see

figure 3a), we can build new controls that refine the maximum value of 𝐿:

Theorem 2.3 Let 𝑑 ≥ 2,𝑁 ≥ 1, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 × {1, 0} in general posi-

tionandanydirection 𝑗 ∈ {1, … , 𝑑}. Then, there exists a piecewise constant control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1�

with 𝐿 = 4⌈𝑚/𝑑⌉ − 1 discontinuities, where 𝑚 = min (#{𝑛 ∶ 𝑦𝑛 = 1}, #{𝑖 ∶ 𝑦𝑛 = 0}), such that the flow map

generated by (2.1) satisfies, for all 𝑛 = 1,… ,𝑁:

Φ𝑇(x𝑛)
(𝑗) < 1 if 𝑦𝑛 = 1 and Φ𝑇(x𝑛)

(𝑗) > 1 if 𝑦𝑛 = 0.

(a) General position setting. (b) Represen-

tation of the

algorithm for

classification

from Theo-

rem 2.3.

Fig. 3
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3. Interplay between depth and width

3.1. In simultaneous control

As an extension of Theorem 2.1, the property of simultaneous control was also proven in [7] by constructing

the necessary controls in (2.1):

Theorem 3.1 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 with x𝑛 ≠ x𝑚 and

y𝑛 ≠ y𝑚 for 𝑛 ≠ 𝑚. Then, there exists a piecewise constant control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑−1� such that the

flow mapΦ𝑇 generated by (2.1) satisfies:

Φ𝑇(x𝑛) = y𝑛, for all 𝑛 = 1,… ,𝑁.

Furthermore, the number of discontinuities in the controls is 𝐿 = 4𝑁.

In our second work [2], we focus on the role that the architecture can play in this task by allowing the

width to be 𝑝 ≥ 1 and studying its interplay with the depth 𝐿. Our findings reveal a balancing trade-off

between these two parameters, as shown in the following result:

Proposition 3.2 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 with x𝑛 ≠ x𝑚

and y𝑛 ≠ y𝑚 for 𝑛 ≠ 𝑚. Then, for any 𝑝 ≥ 1, there exist piecewise constant controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂

𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the flow mapΦ𝑇 generated by (1.3) satisfies:

Φ𝑇(x𝑛) = y𝑛, for all 𝑛 = 1,… ,𝑁.

Furthermore, the number of discontinuities in the controls is 𝐿 = 2 �
𝑁

𝑝
� − 1.

We can see that as the width 𝑝 increases, the parameter 𝐿 decreases at the same rate, indicating that both

play a similar role in the steering process. However, whenever 𝑝 ≥ 𝑁, the constructed control will exhibit

only one switch (𝐿 = 1), which precludes a complete transition to the autonomous model

ẋ =

𝑝

�

𝑖=1

w𝑖𝜎(a𝑖 ⋅ x+ 𝑏𝑖) (3.1)

This is because the proof is algorithmically divided into twophases, represented in Figure 4. First, we control

𝑑−1 coordinates of each batch of 𝑝 points, and thenwe control the remaining coordinate. Therefore, at least

one discontinuity is inevitable to transition between these two phases.

Fig. 4 Left: Step 1. Control of 𝑑 − 1 coordinates. Right: Step 2. Control of the remaining coordinate.

Motivated by this observation, we now pose the following question:

Is it possible to achieve exact control using 𝐿 = 0 discontinuities?

There are some remarks that can be made as a first approach:

1. Semi-autonomous neural ODE: If we consider the semi-autonomous neural ODEwhere only the con-

trols 𝑏𝑖 depend on time,

ẋ =

𝑝

�

𝑖=1

w𝑖𝜎(a𝑖 ⋅ x+ 𝑏𝑖(𝑡)), (3.2)

we can adapt the proof of Theorem 3.2, obtaining the same result and the same number of discontinu-

ities for some controls (𝑏𝑖)
𝑝
𝑖=1 ⊂ 𝐿∞ ((0, 𝑇), ℝ), but with constant (w𝑖, a𝑖)

𝑝
𝑖=1 ⊂ ℝ2𝑑.
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2. High dimensions: When 𝑑 > 𝑁, the second step in the proof of Theorem 3.2 can be omitted because

we can find a newbasis ofℝ𝑑 inwhich each point x𝑛 shares the first coordinatewith its target y𝑛. Thus,

we reduce 𝐿 to 2 �
𝑁

𝑝
� − 2.

3. Probabilistic: Additionally, we can estimate the probability that the points will appear in certain spa-

tial configurations that facilitate their autonomous control. For instance, if x𝑛 and y𝑛 are randomly

sampled from 𝑈([0, 1]𝑑) for all 𝑛 = 1,… ,𝑁, then with probability 𝑃 bounded as

1 ≥ 𝑃 ≥ 1 − �1 −
1

√2
�
𝑒

2𝑁
�
𝑁

�

𝑑

→ 1,

there exist 𝑝 controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ ℝ2𝑑+1 such thatΦ𝑇(x𝑛) = y𝑛.

In general, another option is to relax the problem statement to approximate controllability, which means

allowing a uniform error 𝜀 > 0 that can be made arbitrarily small. Thus, we can obtain the following result:

Theorem 3.3 Let 𝑁 ≥ 1, 𝑑 ≥ 2, and 𝑇 > 0. Consider any dataset {(x𝑛, y𝑛)}
𝑁
𝑛=1 ⊂ ℝ𝑑 with x𝑛 ≠ x𝑚 for

𝑛 ≠ 𝑚. For each 𝑝 ≥ 1, there exist controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ ℝ2𝑑+1 such that the flow map Φ𝑇 generated by

(1.3) satisfies

sup
𝑛=1,…,𝑁

�y𝑛 −Φ𝑇(x𝑛)� ≤ 𝐶
log

2
(𝜅)

𝜅1/𝑑
,

where 𝜅 = (𝑑 + 2)𝑑𝑝 is the number of parameters in the model, and 𝐶 > 0 is a constant independent of 𝑝.

The strategy consists of applying an approximation theorem for shallow neural networks in the space

of Lipschitz functions with respect to the uniform norm, providing explicit convergence rates, as derived

from[3]. Thevector field tobe approximatedwill be a time-independent Lipschitz fieldwhose integral curves

guide each input point x𝑛 in 𝒟 to its corresponding target y𝑛 within a fixed time 𝑇. The construction of this

field is described in Figure 5.

Fig. 5 Construction of a Lipschitz field which interpolates 𝒟 in a compact domain Ω that contains all the points and

curves.

3.2. In neural transport

As an extension of the results we present in this section, we also consider the reformulation of the model

(1.3) as a semilinear hyperbolic equation, known as the neural transport equation:

𝜕𝑡𝜇 + div𝑥(V(x)𝜇) = 0, with V(x) =

𝑝

�

𝑖=1

w𝑖𝜎(a𝑖 ⋅ x+ 𝑏𝑖). (3.3)

This equation defines the evolution of a measure 𝜇 in ℝ𝑑 following an advection vector field V given by the

neural ODE. The case of𝑁 initial data points is recovered by taking𝑁Dirac deltas as the basemeasure, which

evolve according to the characteristic equation given by (1.3).

We will work in the space 𝒫𝑐
𝑎𝑐(ℝ

𝑑) of compactly supported, absolutely continuous probability measures

inℝ𝑑, with the metric given by the Wasserstein distance, which is rooted in the theory of optimal transport.

For any pair of measures 𝜇, 𝜈 ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑) and 𝑞 ≥ 1, the Wasserstein-𝑞 distance between 𝜇 and 𝜈 is defined

by

𝒲𝑞(𝜇, 𝜈) ≔ � min
𝛾∈Π(𝜇,𝜈)

�
ℝ𝑑×ℝ𝑑

|x− y|𝑞 𝑑𝛾(x, y)�

1/𝑞

, (3.4)

where Π(𝜇, 𝜈) is the space of all couplings of 𝜇 and 𝜈:

Π(𝜇, 𝜈) ≔ �𝛾 ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑 × ℝ𝑑) | 𝛾(⋅ × ℝ𝑑) = 𝜇(⋅) and 𝛾(ℝ𝑑 × ⋅) = 𝜈(⋅)� .
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Since the vector field V(x) in (3.3) is Lipschitz in x, the classic Cauchy-Lipschitz theorem guarantees that the

curve 𝜇(𝑡)(⋅) ≔ Φ𝑡(⋅; 𝜃)#𝜇0 in 𝒫𝑐
𝑎𝑐(ℝ

𝑑) is well-defined, where Φ𝑇#𝜇0 denotes the pushforward measure

underΦ𝑇.

The objective now is to study the controllability problem of the equation (3.3), aimed at transforming

one given probability measure into another, up to an arbitrarily small error 𝜀. As in simultaneous control,

the case with 𝑝 = 1was resolved for both the total variationmetric in [8] and theWasserstein-1 space in [7].

In the latter work, the following result was obtained:

Theorem 3.4 Let 𝑑 ≥ 2 and 𝑇 > 0. For any 𝜇0, 𝜇∗ ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑) and 𝜀 > 0, there exists a piecewise constant

control (w, a, 𝑏) ∈ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the solution 𝜇(𝑡) of (3.3), taking 𝜇0 as initial condition, satisfies

𝒲1(𝜇(𝑇), 𝜇∗) < 𝜀.

In our work [2], we study the case with 𝑝 ≥ 1 for the uniform measure in the hypercube [0, 1]𝑑 as the

target. The control algorithm we develop is explicit and allows us to obtain an explicit expression for the

number of discontinuities 𝐿 in terms of 𝑝, 𝑑, and the order of Wasserstein 𝑞:

Theorem 3.5 Let 𝑑 ≥ 2 and 𝑇 > 0. For any 𝜇0 ∈ 𝒫𝑐
𝑎𝑐(ℝ

𝑑), 𝜀 > 0, 𝑞 ∈ �1,
𝑑

𝑑−1
�, and 𝑝 ≥ 1, there exist

piecewise constant controls (w𝑖, a𝑖, 𝑏𝑖)
𝑝
𝑖=1 ⊂ 𝐿∞ �(0, 𝑇), ℝ2𝑑+1� such that the solution 𝜇(𝑡) of (3.3), taking 𝜇0

as the initial condition, satisfies

𝒲𝑞(𝜇(𝑇), 𝜇∗) < 𝜀,

and the number of discontinuities in the controls is

𝐿 = �
2𝑑

𝑝
� + �

1

𝑝 − 𝑑 + 1
�
31+𝑑/𝑞√𝑑

𝜀
�

𝑑

1+𝑑/𝑞−𝑑

� − 1.

As a final remark, when 𝑞 = 1 then the number of discontinuities simplifies to:

𝐿 = �
2𝑑

𝑝
� + �

1

𝑝 − 𝑑 + 1
�
31+𝑑√𝑑

𝜀
�

𝑑

� − 1.
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