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Nowadays, computers are ubiquitous. They can be found in uncountable 

situations and applications, from the traditional personal computers to smartphones 

and embedded devices for industrial automation. The latter are the basis of a new 

digital revolution that is allowing, among other advances, smart cities, self-driving cars 

and the Internet of Things (IoT).

The aim of this book is presenting the techniques involved in developing current 

computers from three points of view: performance improvement, operating system 

support and virtualization support. For this, the contents are organized in four 

chapters: introduction to computer architecture, CPU, memory hierarchy and input/ou-

tput system.

This book is oriented to serving as bibliography in university courses about 

Computer Architecture, within the studies of Computer and Software Engineering, 

where a basic understanding of the internals of computers is assumed.
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Prologue

Current computers are very different to the initial idea proposed for the ENIAC by
John von Neumann in 1945 based on the work of Presper Eckert and John William
Mauchly. However, the general basic principles are the same.

Computers have evolved into machines with tremendous performance that have
become essential in many fields. In fact, we have seen in recent times how the tra-
ditional look of computers has changed as they become more ubiquitous. Now it
is possible to find computers in countless shapes, such as laptops, mobile devices,
embedded systems, etc.

In this book, the authors try to illustrate how the basic principles of the von Neu-
mann architecture are still applied to current computers, and what are the improve-
ments that have been carried out to increase performance. In addition, the book also
describes the influence of modern operating systems and the required virtualization
support from the underlying hardware.

Gijón, July 19, 2022.

The authors.





Chapter 1

Introduction

In this chapter, an introduction to computer architecture is presented assuming the
reader has a basic knowledge about computer fundamentals. The performance of a
computer is a key factor in the design of computer architectures. Sometimes, perfor-
mance is directly related to cost; however, not always a more expensive computer
provides higher performance than a less expensive computer. Therefore, it is nec-
essary to objectively assess the performance achieved by a computer to make an
unbiased comparison.

This chapter addresses how to assess the performance of a computer. At the same
time, it lays the foundations to better comprehend the performance improvements
that will be proposed in this book for several components of the computer.

1.1 The computer

Before studying advanced topics of the computer, such as its architecture and perfor-
mance measurement, it is necessary to review some basic concepts. The first section
addresses the basic structure of a computer, specifying the main building blocks.
Then, the abstraction levels used to facilitate both the construction and the program-
ming of this complex machine are described. Finally, the basic principles guiding the
development of computers are presented.

1.1.1 Basic structure

A computer is a machine that receives input information, processes this information
using a program and generates new information through output media, with no
human intervention.

A typical computer may be seen as a machine with several peripheral devices at-
tached, such as a keyboard, a mouse and a screen. However, modern computers are
presented in many different formats, from desktop computers or laptops to smart-
phones or embedded devices, such as those found in vehicles or electrical appliances.

Building a computer that can execute programs imposes the following needs:
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Figure 1.1: von Neumann architecture

• Storing the program to be executed. The program is composed of instructions
that must be stored in a container inside the computer.

• Storing the program data. The input and output data of the program must also
be stored in a container inside the computer.

• Reading and executing the program. The program instructions must be read
from the container where they are stored and executed on the input data to
generate the output data.

• Input/output (I/O). Both the program and the input data must be entered in
the computer, either by a user or by an external system. In addition, it must be
possible to show the output data to the user or send it to another system.

As in other fields of engineering, the design of a computer must follow certain
requirements and meet restrictions on performance, cost and power consumption.
Thus, the design of a computer is usually a compromise to meet such restrictions.
Although several computer designs are possible, all of them have three components
in common: memory, CPU and peripherals, as it is proposed in the von Neumann
architecture (see figure 1.1). The memory constitutes the container where programs
and data are stored using bit sequences; the CPU reads and executes programs; and
the peripherals allow entering and extracting information to and from the computer.
In the CPU, two are the most important elements:

• Control unit. It is used to decode the instructions of the program and generate
the control signals required to execute these instructions.

• Arithmetic-logic unit (ALU). It is used to perform operations on binary data.

There also exist several buses to interconnect these elements. Buses are shared
communication channels:

4
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• System address bus (SAB). This bus is used by the CPU to indicate the location
of the information that needs to be read from or written to the memory or I/O
units.

• System data bus (SDB). This bus contains the information that has been read
from or is going to be written to a specific location.

• System control bus (SCB). This bus is used to control the information flow be-
tween the computer components.

There exists a variation of the von Neumann architecture, called the Harvard
architecture, which provides separate memories for data and code instead of using a
single memory.

1.1.2 Multi-level machine

A great challenge in modern computers is the conceptual distance between the lan-
guage understood by the computer —the language of the machine, encoded as a bit
sequence— and the language used by programmers to implement algorithms. This
distance is increasing due to two factors:

• The programmer is more comfortable using a language closer to the natural
language to describe the solutions to problems, so that program development
is simplified.

• The language of the computer should be as simple as possible, in order to use
the fewer amount of hardware resources, and be highly efficient at the same
time.

To deal with this problem, a new set of instructions closer to the natural language,
L1, is commonly defined from the language of the machine, L0. Thus, language L1 is
defined from the instructions available in language L0. This new language gives rise
to a virtual machine, M1, built upon the physical machine, M0. Then, programmers
can use M1 to develop programs in language L1.

To execute programs written in language L1 in machine M0 (that uses language
L0), two non-exclusive techniques can be used:

• Translation. Before executing the program in language L1, it must be fully
translated into L0 instructions.

• Interpretation. The program in language L1 is used as an input to a program
written in language L0 (interpreter) that is in charge of executing the instruc-
tions written in L1 in machine M0 with no previous translation.

Although the definition of a new language simplifies program development by
programmers, the distance between L1 and L0 must not be excessive for the trans-
lation and/or the interpretation to be possible. Thus, language L1 is still far from
the natural language. Nevertheless, more levels can be defined to get closer to the
natural language. Nowadays, computers usually define a set of common levels:

5
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• Digital-logic level (level 0). It is based upon logic gates and constitutes the
hardware of the computer.

• Microarchitecture level (level 1). This level is composed of the datapath and
the control unit. In some CPUs, the operations on the datapath are controlled
by means of a microprogrammed control unit, whereas others use wired con-
trol units. In the former, the microprogram is the interpreter of level 2 instruc-
tions. Current CPUs tend to avoid the use of microprograms, or at least use a
hybrid approach where the wired part of the control unit is in charge of the
simple level 2 instructions (usually, the most commonly used) and the micro-
programmed part is in charge of the more complex level 2 instructions (the
least commonly used).

• Instruction set architecture level (level 2). It is the specification defined by the
processor manufacturer about the language of the CPU, the available registers,
the addressing modes, etc.

• Operating system level (level 3). It is a hybrid level where many instructions
belong to level 2 and others are interpreted (system service calls). This means
that some instructions will reach level 2 unmodified and others will be substi-
tuted by operating system routines providing services to user programs. The
operating system provides an abstraction layer of the lower levels so that pro-
grams written for a given operating system can be executed regardless on the
underlying hardware.

• Assembly language level (level 4). It is the lowest level in which user programs
can be written. It is the first symbolic language and is usually translated (com-
piled) into level 3. New abstractions and data types not available in level 3 can
be defined in this level.

• Level 5 and upper levels. These levels define high level languages, such as
C/C++. These languages enable the portability of programs from one operat-
ing system to another. It is possible to write programs in a high level language
to be executed in several operating systems. However, if the language is not
interpreted, programs may need to be recompiled for each target operating
system.

Figure 1.2 shows the levels usually defined in a modern computer as well as the
usual method to execute programs defined in a virtual machine in the immediately
underlying machine.

1.1.3 Basic design principles

Next, several ideas applied to all areas of computer architecture are presented. These
have lasted long after the first computer.

The basic principles that guide the design process of the architecture of comput-
ers are:

6
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Translation (compiler)
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Level 1

Level 2

Level 3

Level 4

Level 5

Figure 1.2: Abstraction levels in a modern computer

• Design for rapid change. Computer manufacturing technologies have greatly
evolved and continue evolving every day. The number of logic gates per chip
increases rapidly. The design of a new architecture must take into account fu-
ture technology improvements to take advantage of all possible capabilities.

• Use abstraction. Designing a computer is an extremely complex task. Thus, ab-
straction is used to facilitate the process. Low level details are hidden to sim-
plify the problem to higher levels. The current design of multi-level machines
shown above is an example of the use of abstraction.

• Optimize for the common case. As the Amdahl’s law (that will be studied in
section 1.4.2) states, the improvement of the performance of a computer due
to the improvement of the performance of a particular component is limited
to the fraction of time when this component is used. Therefore, designs must
optimize the most common cases (for example, the execution of common in-
structions).

• Improve performance via parallelism. When possible, parallelism must be
used to improve performance. Manufacturing technologies are limited by
physical constraints, limiting the speed of operation of a device. If the com-
puter is designed allowing several components to work in parallel, its perfor-
mance will be improved.

• Pipelining. It is a particular pattern of parallelism used in modern CPUs. Due
to its importance, it will be covered in detail in chapter 2.

• Improve performance via prediction. Sometimes performance can be improved
assuming that a task will be executed before actually knowing that it will be
necessary to execute this task. If the prediction is correct, the time saved will

7
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improve the performance of the system. Otherwise, the work done must be
undone. The key relies on getting the prediction right most of the times.

• Hierarchy of memories. It is a key concept in the design of the memory system,
which allows combining different technologies to get the best features of each
technology. This will be covered in chapter 3.

• Dependability via redundancy. Although this book will not cover topics related
to computer dependability, a common technique to achieve this feature is via
redundancy of computer components.

1.2 Instruction set architecture

The design of a computer requires defining its architecture, which mostly refers to
the architecture of its CPU. This architecture includes aspects such as the computer
building elements, their behaviour and interactions, how these elements are inter-
connected or what input/output mechanisms are used.

Today, the architecture of a CPU, and by extension the architecture of the com-
puter, usually refers to the instruction set architecture (ISA). The definition of the
instruction set architecture of a CPU is the most critical design decision, since it de-
termines all aspects that are visible to the programmer.1 Among other things, the ISA
defines the data types handled by the CPU (integers, real numbers, strings, etc.), the
registers available to the programmer, the instruction set, or the address format and
addressing modes.

The instruction set architectures have been classified into two groups: RISC (Re-
duced Instruction Set Computer) and CISC (Complex Instruction Set Computer).
On one hand, RISC architectures define very simple instructions that can be ex-
ecuted quickly with minimum hardware. Examples of RISC architectures include
ARM (vastly used in mobile devices), MIPS, IA-64 and PowerPC. On the other hand,
CISC architectures define complex instructions capable of executing high level oper-
ations, facilitating the work of programmers. Examples of CISC architectures include
x86 and Motorola 68 000.

The instruction set architecture of a CPU can implement one of the next four
machine models, shown in figure 1.3.

• Stack. In a stack machine, the CPU has a set of registers arranged as a stack,
as well as a special register called TOS (Top Of Stack). Operands of instructions
are implicit and fetched from the register stack, starting from the one pointed
by the TOS register. The result of the operation is also stored on the top of the
register stack. For example, the assignment of the addition of two operands
may be as follows:

push A
push B
add
pop C

1Low level programmer, compiler developer or system developer.

8
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Figure 1.3: Machine models

At the beginning, the values of variables A and B are pushed on the register
stack. Then, the add instruction is executed. This instruction pops the two top
operands from the stack, adds them and stores the result back in the stack.
The pop instruction pops the value pointed by the TOS register and stores it into
variable C. The advantage of a CPU based on a stack machine model is that
it requires a fewer amount of bits to encode instructions, since the instruction
code does not require bits to identify operands.

• Accumulator. Accumulator machines provide a special register, called accu-
mulator, that is implicitly used as an operand. The result of an operation is
stored in the accumulator register. Hence, an assignment operation of an addi-
tion may be as follows:

load A
add B
store C

The first instruction loads the value of variable A into the accumulator regis-
ter. Then, the addition is carried out, specifying the variable whose value will
be added to the value of the accumulator register. The result is stored in the
accumulator register and saved in variable C in the last instruction.

• Register-memory. In a register-memory machine one operand may be stored
in a register of the CPU and the other in memory. The result of the operation
is stored in another register of the CPU. Under these circumstances, an assign-
ment operation of an addition may be as follows:

load r1, A
add r3, r1, B
store r3, C

9
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The first instruction loads the value of variable A into register r1. Then, the
addition between the value stored in this register and variable B, in memory, is
carried out. The result is stored in register r3. Finally, the result of the addition
can be stored in memory in variable C from register r3.

• Register-register, more commonly known as load/store. In a load/store ma-
chine all operands of instructions must be stored in registers inside the CPU.
The assignment of an addition operation may be as follows:

load r1, A
load r2, B
add r3, r1, r2
store r3, C

The first instructions load the operands in registers r1 and r2. The add instruc-
tion must explicitly specify the registers containing the operands, as well as the
register that will store the result. After the operation, the result can be stored in
variable C from register r3. In this machine model, only load and store instruc-
tions can access memory.

Nowadays, ARM is the most commonly used architecture, since it is the preferred
choice in mobile devices. This architecture was inspired by MIPS64, which will be
used along this book. This architecture implements a load/store machine model.

1.3 Microarchitecture

The microarchitecture refers to the internal organization of a CPU that is hidden to
programmers. Any instruction set architecture can be implemented defining differ-
ent microarchitectures. For example, Intel Nehalem (Core i5) and AMD K10 (Athlon
II) microarchitectures implement x86 instruction set architecture.

The microarchitecture defines features such as the number of functional units in
the CPU (for instance, the number of arithmetic-logic units), the number and type
of cache memories and the memory bus width. It also determines the organization,
where different CPU types are possible: pipelined, superscalar or multicore, among
others.

The main goal of a microarchitecture is taking advantage of existing manufactur-
ing technologies to provide maximum performance in the implementation of a given
instruction set architecture.

Chapter 2 describes several microarchitectures to implement a reduced version
of the MIPS64 instruction set architecture.

1.4 Performance

In the previous paragraphs, the instruction set architecture of a computer was cov-
ered from the point of view of its functionality, that is, the instructions that can be

10
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executed. However, performance is related to the number of instructions that a com-
puter can execute in a given amount of time, which greatly depends on its microar-
chitecture.

This section introduces the concept of performance, as well as how performance
is measured in a computer.

1.4.1 Concept of performance

A computer is a very complex system where many elements collaborate. It is dif-
ficult to define the concept of performance in a computer, since it depends on the
perception of the user and the target operation of the computer. Thus, from the point
of view of the user, the interest lies on the execution time of a task. In contrast, a
system administrator is more interested in the number of tasks completed per time
unit. Therefore, various metrics can be used to measure performance.

A metric is a magnitude that quantifies a measurable property of a system, so
that computers can be compared using a metric. There exist different types of metrics
depending on the property to be measured in the system.

The performance of a computer is usually related to its ability to do work. It is
quantified mainly using two metrics: response time and throughput. Response time
refers to the time taken by the computer to run a task, while throughput refers to the
number of tasks completed per time unit.

Throughput =
Tasks completed
Reference time

For both throughput and response time to make sense, it is necessary to clearly
define the task on which they are measured. For example, the task can refer to the
execution of a complete program, the execution of a single instruction, fetching a
web page, responding a query to a database, etc. Thus, response time refers to the
time between the start and the end of the task (program, instruction, web page or
query), while throughput refers to the number of tasks (programs, instructions, web
pages or queries) completed per time unit.

Throughput is the metric commonly used to measure the performance of a com-
puter. In the case of a system capable of running only one task at a time, throughput
and response time are inversely related. For example, if the average response time of
a task is 1 ms, the system can execute (1/0.001 s) = 1000 tasks per second. However,
this relation is not true when the system is capable of running more than one task
simultaneously.

This difference in the behaviour of the two metrics can be observed when a sys-
tem is improved to increase performance. For example, in a system with a CPU ex-
ecuting instructions sequentially with a clock frequency of 1 GHz, the time taken to
execute one instruction is t seconds. Two improvements of the system are devised:

• Replace the processor by another with exactly the same microarchitecture but
with doubled clock frequency, that is, 2 GHz.

11
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• Replace the processor by another with two cores at the same clock frequency
and with the same microarchitecture as the original.

The result obtained applying these improvements would be the following:

• In the first scenario, since the processor operates using a doubled clock fre-
quency, it will be able to execute instructions in half the time. Thus, the time
taken to execute one instruction would be t

2 seconds. The response time is re-
duced by half, and hence twice the original number of instructions will be ex-
ecuted in the same amount of time; that is, the throughput is doubled.

• In the second scenario, the processor executes two instructions at the same
time; thus, the throughput of the system is also doubled. However, as the CPU
cores implement the same microarchitecture as the original, the time taken to
execute one instruction is the same, that is, t seconds.

This example shows how the system performance is affected when introducing
improvements. On one hand, it is possible to reduce response time, which implies
also increasing throughput. To achieve this, organizational or technological improve-
ments are required. On the other hand, throughput can be increased by increasing
the parallelism of the components of the system, although response time is not usu-
ally decreased (it is even increased in occasions).

If the computer can run several tasks simultaneously, which is really common,
the performance metric typically used is the throughput.

The final goal of metrics is to provide an instrument to compare the performance
of computers. As an example, let A be a computer executing 30 tasks per second and
let B be a computer executing 20 tasks per second. How many times is computer A
faster than computer B? That is, what is the speedup in the performance of computer
A compared to computer B?

Speedup =
PerformanceA

PerformanceB
=

ThroughputA

ThroughputB
=

30

20
= 1.5

The speedup in performance is the ratio between the performance of the two
computers. It is said that computer A has a speedup of 1.5. A speedup value of 1
shows that the performance of both computers is the same. If the speedup is greater
than 1, computer A has better performance than computer B and vice versa if the
speedup is less than 1.

The term response time is often used when assessing the performance of the CPU
executing programs. However, when the performance of memory or interconnec-
tion systems is assessed, the terms latency (referring to the time taken by the system
to provide the required data) and bandwidth (referring to the amount of informa-
tion that can be provided per time unit) are preferred instead of response time and
throughput, respectively.

Although response time and throughput have been considered constant mea-
surements, in most scenarios they must be approximated using random variables,
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since they vary from measurement to measurement depending on the time of mea-
sure and the load of the computer at that time. Thus, for example, instead of tak-
ing a fixed response time, it is approximated using a random variable normally dis-
tributed ∼ N (µ, σ2), characterized by the mean and the standard deviation.

Therefore, statistics is very important when measuring the performance of com-
puters. As an example, if the response time of a program in a computer is measured
10 times (n) obtaining the following results:

Measurement x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Response time (s) 3.2 2.9 3.1 3.0 2.8 3.1 3.2 3.0 3.3 2.7

the mean (x) and the standard deviation (s) of the measurements, i.e., the sample
mean and the sample standard deviation, can be computed:

x =
1

n

n∑
i=1

xi =
3.2 + 2.9 + 3.1 + 3.0 + 2.8 + 3.1 + 3.2 + 3.0 + 3.3 + 2.7

10
= 3.03 s

s =

√∑n
i=1 (xi − x)2
n− 1

= 0.189 s

The population mean (µ) is estimated using the sample mean (x), while the pop-
ulation standard deviation (σ) is estimated using the sample standard deviation (s).
Assuming that the response time follows a normal distribution, the area in the inter-
val [µ−2σ, µ+2σ] covers approximately 95% of all the response times of the program;
that is, the probability that the response time of the program lies within this interval2

is 95%, in this example [2.62, 3.38]. This is shown in the probability density function
of the response time in figure 1.4.

1.4.2 Amdahl's law

As described in section 1.1, a computer is composed of several components that
work collaboratively to execute programs: CPU, memory, interconnection systems
and input/output system. Improvements in computer performance can be achieved
by improving components of the computer. However, improving the performance
of a component p times does not increase the performance of the whole computer p
times.

In a computer executing only one task at a time, the Amdahl’s law states:

The speedup or gain (A) that can be obtained in the performance of a system due
to the improvement of one of its components is limited by the fraction of the time
that this component is used.

2Actually, given the fact that the number of measurements is really short (<30) and the population
standard deviation is unknown, the Student’s t-distribution should have been used to compute the confi-
dence interval. For simplicity, the normal distribution is used, and the interval [µ− 2σ, µ+ 2σ] is a valid
approximation for the 95% confidence level.
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Figure 1.4: Probability density function of the response time

The response time obtained in the computer using the enhanced component is
computed adding two factors: the response time introduced by the non-enhanced
components and the response time introduced by the enhanced component, which
is shortened according to the applied improvement:

Response timeenh = Response timeoriginal ×
(
(1− Fractionenh) +

Fractionenh

Speedupenh

)
Amdahl’s expression can be deduced from the performance speedup obtained

using the enhanced component compared to the performance using the original
component:

A =
Performanceenh

Performanceoriginal
=

Response timeoriginal

Response timeenh

And, thus:

A =
1

(1− Fractionenh) +
Fractionenh
Speedupenh

For example, a computer can execute a program in 100 seconds. In this execution
time, 20 seconds are due to the execution of the CPU, 35 seconds are due to memory
accesses, 40 seconds are due to input/output operations with the disk, and the rest of
seconds are due to interconnection operations. What is the speedup in the execution
of the program if the CPU is replaced by another three times faster? What is the
speedup if the disk is replaced by another twice as fast? What is the new execution
time in each of these scenarios?

14
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Firstly, the fraction of time of the components that will be enhanced is computed:

FractionCPU =
20

100
= 0.2

Fractiondisk =
40

100
= 0.4

In the scenario where the CPU is replaced:

A =
1

(1− 0.2) + 0.2/3
≈ 1.15

Response timeenh =
Response timeoriginal

A
≈ 100

1.15
= 86.96 seconds

In the scenario where the disk is replaced:

A =
1

(1− 0.4) + 0.4/2
= 1.25

Response timeenh =
Response timeoriginal

A
=

100

1.25
= 80 seconds

As can be seen, the performance improvement achieved by replacing the disk by
another twice as fast is higher than that obtained by replacing the CPU by another
three times faster. This is because in this example the disk is used a larger fraction of
time.

1.4.3 CPU performance

The performance of a computer depends on all of its components. However, the most
complex component, which is also the most eligible to be optimized, is the CPU.
Therefore, the analysis of the performance of a computer pays special attention to
the performance of the CPU.

Comparing the performance of two CPUs requires defining the metrics to mea-
sure their performance. As seen above, response time and throughput are two com-
monly used metrics. However, these metrics make the comparison of the perfor-
mance of two CPUs difficult in the real world.

The response time of a program shows the time between the start and the com-
pletion of the program and is variable. Not only does it include the time that the
program is running, which is called CPU time,3 but also other factors as shown in
figure 1.5:

3Some sources use execution time to refer to response time and others to refer to CPU time. To avoid
misunderstandings, this book uses response time as the time required to execute a program and CPU time
as the effective running time in the CPU.

15



Computer Architecture

Response time

CPU time
TCPU user TCPU system

I/O time Multitasking time

Figure 1.5: Factors affecting the response time of a program

• CPU time. This time greatly depends on the CPU, though other elements such
as memory are also involved, since the execution of a program requires access-
ing the memory of the computer. The CPU time is usually divided in two: CPU
user time and CPU system time. For example, in the execution of a program,
services provided by the operating system are invoked, which are executed in
a running mode of the CPU called privileged mode, and contribute to the CPU
system time.

• Input/output waiting time. For example, a program must wait for a reading
operation from the disk to be completed before continuing execution.

• Multitasking time. From time to time, the operating system must run tasks that
are not associated with the current program, such as those related to managing
computer resources. In addition, a multitasking operating system can run sev-
eral tasks or programs simultaneously, not only the task whose response time
is being measured.

From the above factors, the CPU time is the one providing a closer idea to the
performance of the CPU. Thus, if response time is used to estimate the performance
of a CPU, care must be taken to minimize the other factors affecting the response
time.

An alternative to response time in order to measure the performance of the CPU
involves measuring throughput in instructions per second in the execution of the
program (usually in millions of instructions per second or MIPS). The main disad-
vantage is that MIPS measurements cannot be compared among CPUs implementing
different instruction sets.

Measuring the performance of a CPU is very complex. Thus, the next section
analyses the most important factors from a theoretical point of view.

Theoretical analysis of CPU time

In a single-threaded program, the CPU time depends on several factors. The first
important factor is the clock period (T ), which is the inverse of the frequency (f ).
Thus, clock period and clock frequency are commonly used interchangeably.

f = T−1 =
1

T

Then, the CPU time in a program can be defined in relation to the clock frequency
or clock period as follows:
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TCPU =
CPU cycles of the program

f
= CPU cycles of the program× T

Clock cycles per instruction (CPI) shows the number of clock cycles required to
complete each instruction of the program and can be computed as follows:

CPI =
CPU cycles of the program

Program instructions

Using the CPI, the CPU time can be computed as follows:

TCPU =
Program instructions× CPI

f
= Program instructions× CPI× T

The above expression is referred to as the iron law of performance of a CPU. As
can be seen, the CPU time depends on three related factors:

• Number of instructions of the program. This number depends on the instruc-
tion set and compilers. For example, programs in RISC architectures usually
contain many more instructions than their counterparts in CISC architectures.
In addition, the compiler is responsible for translating programs written in a
high-level language into instructions of the CPU; thus, it plays a crucial role in
the number of instructions of the program.

• The number of clock cycles per instruction (CPI). This factor depends on the
internal organization of the CPU and the complexity of the instructions. CISC
CPUs implement instructions that can perform complex operations; thus, pro-
grams tend to have fewer instructions. The main disadvantage is that these
instructions require many clock cycles to be completed, that is, a high CPI. On
the contrary, RISC CPUs implement very simple instructions requiring very
few clock cycles, that is, a low CPI, but programs require a large number of
instructions.

The basic principle stated by Amdahl’s law that the gain in performance is
proportional to the fraction of time that the enhanced component is used can
be utilized to reduce the CPI. In the above expression to compute the CPU
time, the CPI is expressed as the average CPI of all the machine instructions of
the program. Therefore, instruction set designers seek to reduce the CPI in the
most commonly used instructions, since their influence in performance will be
greater.

• Clock period. This factor expresses the speed of the CPU. In order to reduce the
clock period, and increase the clock frequency, the manufacturing technology
of the CPU should usually be improved. The clock period can also be reduced
with organizational improvements such as the pipeline, as will be studied in the
chapter related to the CPU.
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From the iron law, the next expression can be deduced to compute the MIPS
based on the CPI:

MIPS =
1

CPI× T × 106

And, thus, the CPU time of a program can be expressed as follows:

TCPU =
Program instructions

106 ×MIPS

1.4.4 Benchmarks

A benchmark is a program designed to evaluate the performance of a computer or
one of its components. Benchmarks are common for evaluating the performance of
the CPU and the memory system.

As shown above, most of the time the performance of a computer cannot be
computed directly, but it must be estimated based on measurements. The results of
these measurements vary according to the workload of the computer. A benchmark
imposes some workload on the computer or one of its components to assess perfor-
mance. Therefore, results provided by two benchmarks on the same computer may
be different.

A benchmark should impose a workload on the computer similar to the usual
workload the computer is used for. For example, to evaluate the performance of a
computer oriented to office tasks, the workload of the benchmark should mimic the
workload of office programs in the computer. Another example: the performance
evaluation of a workstation oriented to develop programs in C should use a bench-
mark with a representative workload of compilers, linkers, IDEs, etc. Therefore, a
benchmark is designed to evaluate the performance of a computer under certain cir-
cumstances. A computer can get a low performance level when measured using a
benchmark with a given workload, and a high performance level if evaluated with a
different workload.

There exist two types of benchmarks depending on the workload:

• Application benchmarks. They are based on real programs used in the usual
workload of the computer. The main advantage of this type is that these bench-
marks assess the performance under real use conditions of the computer. How-
ever, the main disadvantage is their complex reproducibility, so measurements
may contain great variability.

• Synthetic benchmarks. They are programs specifically created to reproduce the
most common operations used in real programs; though they are not real pro-
grams. The main advantage of this type of benchmarks is their reproducibility.
However, the main disadvantage is that the obtained results do not always
match the performance in the execution of real programs.
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Throughput C1 Throughput C2

Benchmark B1 5 10
Benchmark B2 5 2

Table 1.1: Sample performance assessment using two benchmarks

AC1/C2 AC2/C1

Benchmark B1 0.5 2
Benchmark B2 2.5 0.4
Arithmetic mean (B1, B2) 1.5 1.2
Geometric mean (B1, B2) 1.12 0.89

Table 1.2: Speedups computed using individual becnhmarks or statistical aggrega-
tions

There exist benchmarks to assess the performance of several parts of the com-
puter, such as the CPU, the memory system, the graphics interface, the disk, etc.

The performance of two computers can be compared based on the results pro-
vided by a benchmark, expressing the speedup of one computer compared to the
other for the workload of the benchmark. Nevertheless, running different bench-
marks is sometimes required to assess the performance of the computer using differ-
ent workloads, obtaining several speedups. In this scenario, a computer may show
higher performance for a given workload, and lower for another. Table 1.1 shows the
result of the execution of two benchmarks, B1 and B2, on two computers, C1 and C2.

The performance shown by computer C1 using benchmark B1 is lower than that
shown by computer C2, as can be seen in throughput values. However, using bench-
mark B2, the result is different: computer C1 shows higher performance than com-
puter C2. These values can be seen in the speedups AC1/C2 (computer C1 compared
to computer C2) and AC2/C1 (computer C2 compared to computer C1), shown in
table 1.2.

When it is necessary to summarize the performance of a computer compared to
another using only one value, the average of all speedups may be used. The arith-
metic mean is an option. In this case, the aggregated speedup of computer C1 com-
pared to computer C2 results AC1/C2 = (0.5 + 2.5)/2 = 1.5, and thus, computer C1 is
1.5 times faster than computer C2. Nevertheless, if the aggregated speedup of com-
puter C2 compared to computer C1 is computed, the result is AC2/C1 = (2+0.4)/2 =
1.2, so computer C2 is 1.2 times faster than computer C1. As can be seen, the obtained
results are contradictory, and they depend on the computer selected as the reference.
Therefore, the arithmetic mean cannot be used to aggregate speedups.

To compute an aggregate speedup from the speedups obtained in n benchmarks,
the geometric mean is usually used according to the next expression:

A = n
√

A1 ·A2 · ... ·An
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As can be seen in table 1.2, the results obtained using the geometric mean are
coherent. The speedup of computer C1 compared to computer C2 is 1.12, and thus,
computer C1 performs 1.12 times faster than computer C2. If computer C2 is used as
the reference, it is 0.89 times faster than computer C1, or the other way round, com-
puter C1 is (1/0.89) = 1.12 times faster than computer C2. Therefore, the aggregated
speedup obtained using the geometric mean is coherent regardless of the computer
used as the reference.
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Chapter 2

The CPU

This chapter is focused on studying the main features in which the design of modern
CPUs is based on. To illustrate this, the MIPS64 architecture is used. The chapter
begins with a brief description of the MIPS64 instruction set architecture; then, some
possible implementations are depicted. After that, the design principles of modern
CPUs are addressed:

• Performance improvements, based on the concept of pipeline (segmentation of
instructions), described in sections 2.3 to 2.6.

• Support to multitasking operating systems, described in section 2.7.

• Support to virtualization, introduced in section 2.8.

This chapter will mention energy management in a CPU briefly, since it is also a
critical feature in modern computers.

2.1 MIPS64 architecture

To illustrate the concepts covered in this chapter, the MIPS64 architecture is used. The
main reason for this choice is its simplicity. It is a RISC architecture implementing a
load/store machine model. This means that the CPU operates on internal registers,
and every operand must be fetched from memory and stored in one of these registers
before making operations with it. Furthermore, only load and store instructions can
access the memory of the computer, leading to a very simple implementation as it
will be shown.

MIPS64 is an extension of the MIPS32 architecture. MIPS64 is fully compati-
ble with MIPS32, so programs written for the latter can be run in both architec-
tures. MIPS64 processors can be found in video game consoles and network devices.
MIPS64 has great similarities to the ARMv8 architecture, another RISC architecture,
that is commonly found in smartphones and a large number of embedded systems.

Nowadays, RISC has become the design paradigm of most CPUs. All of them,
including the MIPS64 CPU, are based on the same design principles:
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Figure 2.1: Harvard architecture

• Very simple and fixed-size instructions, so they can be decoded really fast.

• Few and simple addressing modes, simplifying the hardware design.

• Large number of general purpose registers, so many variables of the program
may be stored in registers, reducing the number of memory accesses and, thus,
improving performance.

MIPS64 is a 64-bit architecture with a very simple instruction set. Introduced in
1991, it was considered the first 64-bit architecture. It features a set of 32 integer
registers, 64-bit wide each, called R0, . . . , R31; R0 always stores 0 and R31 is reserved
to store the return address in some jump instructions. There are also 32 floating-
point registers, 64-bit wide each, called FP0, . . . , FP31. MIPS64 also defines two status
registers, one for integer operations and antoher for floating-point operations.

Memory is byte-addressable using 64-bit addresses. This means that a MIPS64
CPU can address 264 bytes, that is, 16 EiB (16 exbibytes). As MIPS64 follows a load-
/store machine model, read (load) and write (store) operations from/to memory are
always carried out on general purpose registers (Rx or FPx).

MIPS64 implements a Harvard model in its internal memory configuration. This
means that MIPS64 CPUs feature independent memories for data and instructions
that can be simultaneously accessed. This model is shown in figure 2.1, where the
two memories can be seen. Thus, the CPU has the memory lines replicated.

2.1.1 Data types

The MIPS64 architecture provides native support for integer and real numbers. It
is important to emphasize native, since even though the CPU does only understand
these data types, different abstraction layers in the computer (assembly, operating
system, programming language, etc.) may define other data types implemented on
top of these. For instance, a string data type could be defined from an integer data
type, as a sequence of integers.

MIPS64 supports integers in two’s complement of the next sizes, shown in fig-
ure 2.2:
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Figure 2.2: Data types supported by MIPS64 architecture

• byte: 8-bit integer.

• half-word: 16-bit integer.

• word: 32-bit integer.

• doble-word: 64-bit integer.

When load and store operations are performed using integer registers (Rx), one
byte, one half-word (2 bytes), one word (4 bytes), or one double-word (8 bytes) can be
accessed in memory. When loading a data item smaller than 64 bits (byte, half-word
or word) it is possible to do it with or without sign. If the load operation is performed
without sign, the register is initially reset to 0 and then the data item is copied into
the low part of the register. If the load operation is performed with sign, the data
item is copied to the low part of the register and then the sign is extended, that is,
the most significant bit of the data item is replicated in the most significant bits of
the register that have not been modified by the data item. This is shown in figure 2.3,
where half-word 90BDh is loaded into a register. When the operation is carried out
without sign, the 64-bit register is loaded with 0000 0000 0000 90BDh. However, if
the load operation is carried out with sign, the value will be FFFF FFFF FFFF 90BDh.
In any case, memory accesses to more than one byte must be aligned, that is, the
address must be multiple of 2 to access half-words, multiple of 4 to access words,
and multiple of 8 to access double-words. Figure 2.4 shows two memory accesses to
two words, one aligned and one misaligned. As can be seen, the latter is trying to
access a memory address which is not multiple of 4 (the size in bytes of a word).

Another important issue to take into account when a data item larger than one
byte is stored in memory is the order of bytes, or byte endianness. In a MIPS64 CPU
the order can be set by hardware (so it is called a bi-endian architecture). There are
two alternatives: big-endian or little-endian. In the aligned example in figure 2.4, the
word is interpreted as BF9A 10A3h in little-endian and as A310 9ABFh in big-endian.

Regarding floating-point numbers, the MIPS64 CPU provides support for two
sizes: single precision (32-bit word) and double precision (64-bit double-word), both
encoded using IEEE-754. As with integers, loading floating-point registers must be
done using aligned addresses.
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Figure 2.3: Loading the half-word 90BDh in a register without sign (zero-extended)
and with sign (sign-extended)

...
00 . . . 1100 A3

00 . . . 1101 10

00 . . . 1110 9A

00 . . . 1111 BF

00 . . . 0000 A4

00 . . . 0001 5A

00 . . . 0010 79

00 . . . 0011 F3

00 . . . 0100 FF

00 . . . 0101 B3

00 . . . 0110 19

00 . . . 0111 CD
...

Memory

Aligned access

Misaligned access

not allowed

Figure 2.4: Aligned and misaligned memory accesses to memory words
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2.1.2 Instruction set

As any other architecture, MIPS64 defines an instruction set composed of arithmetic,
logical, move and jump instructions, among others. Being a RISC architecture, the
MIPS64 instruction set is very simple compared to other instruction sets, such as for
example that implemented by x86 CPUs. This simplicity allows using a fixed-size
instruction code, requiring simpler hardware and facilitating the instruction code
loading and decoding. In addition, as described in chapter 1, simple instructions
achieve a low CPI factor, that is, they can be executed in very few clock cycles.

The MIPS64 architecture defines, among others, the following instruction types:

• Load and store instructions. They are used to read and write from and to mem-
ory. A general purpose register is always involved (integer or floating-point).
Only this type of instructions can access memory.

• Arithmetic-logic instructions. These instructions carry out arithmetic or logical
operations on integers or floating-point numbers.

• Flow-control instructions. These instructions modify the sequential flow of ex-
ecution of a program. There are two types: (unconditional) jumps, which are
always taken, and (conditional) branches, which are taken depending on a par-
ticular condition.

• Other instructions. They include bit shifts, integer-to-real conversion, etc.

Although this chapter uses the MIPS64 architecture to illustrate several concepts,
just a small portion of the instruction set, which is described in appendix A, is con-
sidered.

Addressing modes

CPU instructions require operands, and thus, several bits of the instruction code
are reserved to identify them. The addressing modes of a CPU determine how the
operands are obtained from these bits. The operands can be in three different loca-
tions; all of them have advantages and disadvantages.

Operands can be stored in memory. The main advantage of this location is the
great amount of memory positions available in the computer. However, the disad-
vantages include high access time and a large number of bits in the instruction code
in order to identify the memory address of the operand.

Operands can also be located in registers inside the CPU. This alternative is faster,
since the access time to a CPU register is negligible compared to the access time to
memory. In addition, very few bits are required in the instruction code to identify
the register (addressing 32 integer registers requires 5 bits). The main disadvantage
of this option is the very limited number of registers available in a CPU compared to
the number of memory positions.

Finally, instead of using several bits of the instruction code to reference the
operand (in memory or in a register), these bits may encode the value of the operand
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in the instruction code directly. In this case, the access to the operand is immedi-
ate. This is only valid for constants, since they are encoded at the same time as the
instruction. Another disadvantage is the large number of bits required in the instruc-
tion code, and that they are only valid for source operands, that is, the destination
operand of an instruction cannot be stored in the instruction code as an immediate
value.

MIPS64 provides five addressing modes:

• Immediate. In this case, the value of the operand is stored in the instruction
code. For example, the next instruction performs the addition of the 64-bit in-
teger stored in register r8 with number−3 and stores the result in register r4. In
this case, constant −3 is encoded in two’s complement in the instruction code
directly.

daddi r4, r8, -3

• Register. In this mode, the number of the register is included in the instruction
code. Hence, in the above example, in addition to constant −3, the instruction
code will include 5 bits identifying the source register (r8) and other 5 bits iden-
tifying the destination register (r4). Using this addressing mode, the value of
the operand is located in the referenced register.

• Base and offset (indexed). In this mode, the operand is located in a memory
position referenced by the result of the addition of a value in a register and a
constant encoded in the instruction code. Next, several examples of loading a
double-word are shown:

ld r12, 200(r0) ; direct addressing to address 200 (r0 is always 0)
ld r12, 0(r3) ; indirect addressing to the address contained in r3
ld r12, 350(r3) ; indexed addressing to the address contained in r3 + 350

When r0 is used as the base register this is called direct addressing. Since r0 is al-
ways 0, the address where the operand is stored is provided only by the value
of the constant. However, if the value of the constant is 0 this is called indi-
rect addressing, as the base register determines the position of the operand in
memory. In any case, it must be taken into account that the addition of the base
register and the offset must provide an aligned memory access. In the above
example, adding 350 and r3 should provide a value multiple of 8.

• PC-relative. This addressing mode is used in branches to calculate the destina-
tion address as the addition of the program counter (PC) and a value computed
from a constant encoded in the instruction code. The next example shows a
branch that branches when the contents of both registers are the same.

beq r2, r9, -5

The constant shows the number of instructions to jump, since this number is
shifted two positions to the left (which is the same as multiplying by 4, the size
in bytes of the instruction code) before being added to the program counter.
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Figure 2.5: Instruction encoding in MIPS64

In this case, −5 × 4 = −20. Thus, the number of positions to add to the PC is
multiple of 4, which guarantees an aligned access to the instruction memory.

Using this addressing mode, branches can jump up to ±128 KiB.

• Pseudo-direct. This addressing mode is used in jumps to compute the desti-
nation address. This address results from the concatenation of 26 bits of the
instruction code shifted two positions to the left (28 bits), and the 36 (64 − 28)
most significant bits of the program counter. Next, an example of a jump is
shown:

j 1000

In this example, assuming that PC contains D000 0000 0000 0000h when the
jump instruction is executed, the destination address is computed taking the
36 most significant bits of this value (D 0000 0000h) and concatenating them
with the result of shifting the constant two positions to the left (1000×4 = 4000
= FA0h), which results in a value for PC of D000 0000 0000 0FA0h (always mul-
tiple of 4).

Using this addressing mode, the instruction memory is organized in areas of
256 MiB. Modifying adequately the value of the constant, it is possible to jump
to any instruction stored in the same area as the one currently pointed by PC. In
the above example, address FA0h in the 256 MiB area pointed by PC is accessed.

Instruction encoding

As mentioned above, all instructions in the MIPS64 architecture are encoded using
the same number of bits. Specifically, the length of the instruction code of all instruc-
tions is 32 bits. They are encoded following one of the three types shown in figure 2.5.
Arithmetic and logical instructions are R-type instructions. Load and store, as well
as branches, are I-type instructions. Finally, jumps are J-type instructions.

The 32 bits of the instruction code are divided into several fields:

• op. It is present in all types of instruction and represents the operation code
(opcode), which identifies the operation carried out by the instruction.

• function. It specifies the variant of the operation identified in op. For example,
the operation code is the same for the dadd and dsub instructions (0), and they
only differ in the function code: 2Ch and 2Eh, respectively.
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Instruction Type Description

ld Rd,imm_16(Ri) I Load double-word
sd Rs,imm_16(Ri) I Store double-word
beq Rs1,Rs2,imm_16 I Branch on equal registers
daddi Rd,Rs,imm_16 I Add a double-word and an immediate value
j imm_26 J Jump
dadd Rd,Rs1,Rs2 R Add double-words
dsub Rd,Rs1,Rs2 R Subtract double-words
and Rd,Rs1,Rs2 R Logical AND operation
or Rd,Rs1,Rs2 R Logical OR operation
slt Rd,Rs1,Rs2 R Set on less than (if Rs1<Rs2 Rd=1; else Rd=0)

Table 2.1: Instructions that will be implemented by the microarchitecture

• rs/rs1. It is the number of the register containing the first source operand.

• rs2. It is the number of the register containing the second source operand.

• rd. It is the number of the register acting as the destination operand.

• immediate. It represents immediate values encoded with the rest of the instruc-
tion code. This immediate value is used, for instance, for bit shifting in R-type
instructions, for branches in I-type instructions and for jumps in J-type instruc-
tions.

2.2 Single-cycle microarchitecture

Once the instruction set architecture of a CPU has been defined, the MIPS64 archi-
tecture in this case, it is now the moment to implement it. As described in chap-
ter 1, various implementations are possible. The simplest implementation involves a
single-cycle microarchitecture, where each instruction only requires one clock cycle
to be executed.

To illustrate the key ideas of this microarchitecture, a subset of the MIPS64 in-
struction set architecture will be implemented: load and store instructions (only us-
ing double-words), basic arithmetic instructions with integers (excluding bit shift-
ing instructions, multiplication and division), a branch instruction (beq), and a jump
(j imm_26) instruction. Instructions operating with floating-point numbers are ex-
cluded. Table 2.1 shows the instructions that will be implemented.

Every microarchitecture is composed of two key elements: the datapath and the
control unit. The former is the executive part of the CPU and carries out the opera-
tions indicated by instructions: integer addition, logical operations, jumps, etc. The
latter is in charge of generating the required control signals, in the correct order, for
each instruction to be executed in the datapath.

The control unit receives some information from the datapath: the operation code
of the instruction to be executed and some status flags; and generates several control
signals that reach the functional units composing the datapath.
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Figure 2.6: Possible register file implementation

The next sections will cover the construction of the datapath following an incre-
mental design; the control unit for this datapath is described in appendix B.

2.2.1 Functional units

Firstly, the functional units required to implement the datapath must be identified
by taking into account the instructions that will be implemented.

Thanks to the simplicity of the MIPS64 instruction set, most of instructions be-
have pretty similarly, which facilitates the identification of the functional units. Com-
mon steps in the execution of instructions are:

• Fetching the instruction code. Initially, the instruction code pointed by the pro-
gram counter (PC) must be read from the instruction memory. Thus, a regis-
ter with this purpose must exist in the datapath. MIPS64 addresses are 64-bit
wide; thus, the PC register is also 64-bit wide and is implemented using 64 D-
type flip-flops. This register is read to fetch the next instruction to be executed
from memory and it is written to point to the next instruction, either the next
in sequential order or any other if the sequential execution flow is modified as
a result of a branch or a jump. This register can be implemented in the register
file together with the general purpose registers.

• Register access. Most of instructions require reading one or more registers. Reg-
isters are usually implemented as positions in a multiport register file. This is
an ultra-fast memory in which several locations can be accessed at the same
time. The register file constitutes another functional unit. Figure 2.6 depicts a
possible implementation of this unit.
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Control bits Operation

0000 AND
0001 OR
0010 addition
0110 subtraction
0111 set on less than

Table 2.2: ALU operation selection through the control bits

ALU Result

Z

Input #1

Input #2

ALU ctrl
4

Figure 2.7: Arithmetic-logic unit

As can be seen in figure 2.6, a register file contains several registers. The re-
duced MIPS64 architecture contains 32 64-bit integer registers; each register is
implemented using 64 D-type flip-flops. The inputs and outputs of each regis-
ter in the figure reach all its 64 flip-flops. The content of the registers is always
available on lines labelled with Q. In MIPS64 some instructions require reading
two registers at the same time, such as in instruction dadd r2, r1, r6, where r1

and r6 must be read. Thus, two multiplexers are located at the output of the
registers. Using lines Read #1 and Read #2, the two registers to be read are se-
lected. Values read from the two registers are dumped in lines Read data 1
and Read data 2, respectively. Each of the two multiplexers receives 5 inputs
to select one of the 32 registers. In writing operations, registers can modify their
content when line C is set and lines Write data contain the 64 bits to be written.
Line C of the register to be written is set through the line RegWrite at the same
time that the number of the register is indicated in lines Write register.

• ALU. Another key component of the datapath is the arithmetic-logic unit,
where arithmetic operations with integers and logical operations are carried
out. The ALU in a MIPS64 CPU manages 64-bit operands. This unit receives
two input operands and provides a 64-bit result. In addition, it will set the Z
(Zero) flag if the result of the operation is 0. Four control input lines indicate
the operation to be carried out (addition, subtraction, AND, OR, or set on less
than).1 The possible values and the meaning of these control inputs are shown
in table 2.2. Figure 2.7 shows a schematic representation of this functional unit.

1The design of the ALU is not covered in this text.
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Furthermore, some instructions will use other elements such as sign extenders
(used to replicate the integer sign bit to generate 64-bit values) and bit shifters, for
example jumps and branches.

2.2.2 Single-cycle datapath

This section covers the implementation of the datapath to support the subset of the
MIPS64 instruction set shown in table 2.1. This implementation will be done incre-
mentally.

As mentioned above, the first operation that all instructions must carry out is
fetching the instruction code. Figure 2.8 shows the portion of the datapath which
performs this operation. The value of the program counter (PC) is used to access the
instruction memory and get the instruction code. This value represents the memory
address where the instruction code is located. Once the instruction code is read, it
is available in the lines labelled as Instruction. Finally, the program counter must
be incremented in 4 units, since all instructions codes are 4-byte wide (4 memory
locations). To do so, a specific adder is used, where one of its input operands is hard-
coded to 4. This process of fetching the instruction code and incrementing the pro-
gram counter is repeated every clock cycle.

Then, many instructions require reading one or two registers. For example, R-
type instructions (see figure 2.5) require reading two registers, whereas I-type in-
structions require reading only one register. In any case, accessing the register file is
required.

Taking into account the subset of instructions to be implemented, R-type in-
structions are arithmetic operations, such as dadd r1, r2, r3, and logical, such as
or r5, r9, r6. These instructions read two registers, operate with them using the
ALU, and finally move the result to another register. Figure 2.9 shows a possible
implementation of this part of the datapath. In R-type instructions, the identifiers of
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Figure 2.10: Datapath supporting R-type instructions (arithmetic instructions with
integers and logical instructions)

registers to be read are encoded in the instruction code using 5 bits. The first operand
is encoded in bits 25 to 21, whereas the second is encoded in bits 20 to 16. The values
read from these registers must be sent to the ALU to operate with them. The result
of the operation will be stored in a register identified by bits 15 to 11. The control
signals that determine the behaviour of the register file and the ALU are also shown.
These are set by the control unit to execute instructions in the datapath. In this case,
RegWrite signal is set to store the result of the ALU in the specified register. A possi-
ble implementation of the control is covered in appendix B.

The first version of the datapath supporting R-type instructions can be obtained
by combining the logic required to fetch the instruction and increment PC (figure 2.8)
and the logic required to execute R-type instructions (figure 2.9). This version of the
datapath is shown in figure 2.10.

The next type of instructions are loads and stores, which are I-type instructions,
such as ld r3, 200(r4) and sd r6, 12(r5). They always involve the use of a register
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(destination in the case of load, and source in the case of store), a base register and
a 16-bit immediate value. The final address is computed as the addition of the base
register and the immediate value with its sign extended to 64 bits. Figure 2.11 shows
the required logic to support this type of instructions.

In a load instruction, the base register is obtained from bits 25 to 21 of the instruc-
tion code. This register must be added, using the ALU, to the immediate value stored
in bits 15 to 0 extended to 64 bits. Hence, a sign extension unit is required. After the
addition, the result is the memory address to be read. Then, MemRead signal must be
set. Once read, the data item is copied into lines labelled as Write data of the regis-
ter file. The register to be written is specified in bits 20 to 16 of the instruction code.
Finally, RegWrite signal is set to store the value in the specified register.

The initial step of a store instruction is the same as in a load instruction. The
memory address is obtained in the same way, that is, adding the base register and the
immediate value. Differences start here. Store operations require reading a second
register, encoded in bits 20 to 16 of the instruction code. The content of this register
is copied into Write data memory lines. After setting MemWrite signal, the data item
is stored in memory.

The logic required to execute the load and store instructions, shown in figure 2.11,
cannot be directly combined with the basic datapath shown in figure 2.10. For in-
stance, in arithmetic and logical instructions, the destination register is specified in
bits 15 to 11 of the instruction code, and the value to be written in Write data lines
of the register file is the result provided by the ALU, whereas in the load instruc-
tions the destination register is encoded in bits 20 to 16 and the value of Write data
lines is read from memory. Therefore, multiplexers must be added with appropriate
control lines to identify these situations and determine the values to use. Figure 2.12
shows the datapath using three multiplexers to manage these situations.

The multiplexer attached to Write register lines of the register file is used to
select with RegDst control line the field identifying the destination register in the in-
struction code (bits 20 to 16 in loads and bits 15 to 11 in arithmetic-logic operations).
This control line will be set in the execution of arithmetic and logical operations and
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Figure 2.12: Datapath supporting R-type and load/store instructions

will be reset in loads. Another multiplexer attached to the second input of the ALU is
required, since a second register or an immediate value may be used as an operand.
This multiplexer is operated through ALUSrc line, which will be set in loads and
stores, and reset in arithmetic and logical operations. Finally, another multiplexer is
attached to the input of Write data lines of the register file, just to the right of the
data memory. This multiplexer selects, through MemToReg line, the data item to copy
to Write data lines: either the result provided by the ALU in arithmetic and logical
instructions, or the value read from memory in load instructions.

The next instructions to add to the datapath are branches. For simplicity, only
instruction beq Rs1,Rs2,imm_16 is considered. This instruction branches if the contents
of the two registers are equal. The target address is computed as the addition of the
program counter and the immediate value shifted two positions to the left2 and sign
extended. An important detail is that the PC register has already been incremented
in 4 units to point to the next instruction before the addition. Therefore, branch in-
structions perform two operations: check whether the branch condition is true (the
ALU is used for this) and compute the target address of the branch (a specific adder
is required since the ALU is in use at this moment). Figure 2.13 shows the required
logic to include the branch instruction in the datapath.

The two registers read are input operands to the ALU. To check whether both
operands are equal, a subtraction operation is performed. In this case, the Z flag
will be set to 1 if the result is 0, that is, if both operands are equal. In addition, the
immediate value used to compute the branch target address is extended to 64 bits
and shifted two bits to the left (equivalent to multiplying by 4). Finally, the shifted
value is added to the value contained in the program counter, which currently points
to the next instruction to be executed (the instruction after beq). The branch is taken
and the PC will be written with the target address if the condition is met (Z flag) and
the Branch control signal is set. A generic control signal called PCSrc can be defined
(to deal with several branch conditions), which will select the value to write in the

2This is done for the value to add to PC to be multiple of 4, that is, the width of the instruction code.
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PC register using a multiplexer attached to the output of the adder. The selection will
be the address of the next instruction if the branch is not taken, or the branch target
address if the branch is taken.

The logic required by the branch instruction can be easily combined in the data-
path. Figure 2.14 shows the result of the combination. As can be seen, no additional
elements are required.

Finally, jump instructions will be added to the datapath. Again, only one instruc-
tion is considered for simplicity: j imm_26. This instruction modifies the value of PC;
it is an always-taken jump. The jump target address is computed with the 26-bit im-
mediate value, shifted two bits to the left (total 28 bits), concatenated with the 36
most significant bits of the PC register to create a 64-bit value. It must also be taken
into account that the value of PC has already been incremented before jumping. The
logic required to implement the jump instruction is shown in figure 2.15. The con-
trol signal labelled as Jump governs this logic. It is set when a jump instruction is
executed. Otherwise, the value written in the program counter is the original value
incremented in 4 units.
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Figure 2.16: Datapath supporting R-type, load/store, beq branch and j jump instruc-
tions

No additional elements are required to include the logic to execute the jump in-
struction within the datapath. Nevertheless, it must be taken into account that the
new value for the program counter can be determined by the logic implementing the
jump or by the multiplexer attached to the output of the branch adder. Figure 2.16
shows the complete implementation of the datapath supporting the execution of the
instructions listed in table 2.1.

Appendix B describes the design of the control unit required by the proposed
datapath.

2.2.3 De�ciencies

Although a single-cycle implementation is feasible, modern CPUs do not follow this
approach. Although the single-cycle CPU achieves a CPI of 1, the clock cycle must be
large enough to allow the execution of any instruction, either a simple or a complex
instruction. An example of a simple instruction is an addition, which accesses the
instruction memory, the register file, the ALU and again the register file to store the
result. In contrast, an example of a complex instruction is a load, which accesses the
same functional units as the add but also the data memory.

All instructions will require one clock cycle; thus, it would not be possible to
optimize the execution of the most common instructions. Optimizing the execution
of all instructions will be the only solution to reduce the clock cycle, and thus, the
execution time of programs, as dictated by the iron law of performance.
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Microarchitecture CPI Clock cycle length (T )

Single-cycle 1 Long
Multi-cycle >1 Short
Pipelined 1 Short

Table 2.3: Microarchitectures and clock cycles

2.3 Pipelined microarchitecture

A single-cycle microarchitecture executes every instruction in one clock cycle, but
the cycle needs to be long in order to accommodate all the operations performed by
the datapath. Alternatively, a multi-cycle microarchitecture, where instructions are
divided into steps, is possible. Each of these steps requires one cycle, but shorter
than the cycle in the single-cycle microarchitecture.

One of the foremost objectives in the CPU design is to reduce the instruction
execution time, making CPU time as short as possible. CPU time comes from the
iron law of performance, described in chapter 1 with the following expression:

TCPU = Program instructions× CPI× T

The microarchitecture does not affect the first factor (program instructions) be-
cause this factor is determined by the instruction set. Thus, the objective becomes to
execute instructions with a low CPI without increasing the clock cycle. In this sec-
tion, a technique called pipelining is presented. It allows executing instructions with
an ideal CPI of 1, while maintaining a short clock cycle. For this, the execution of
instructions is divided into stages working in parallel, so that the CPU executes sev-
eral instructions simultaneously, albeit in different stages. Table 2.3 summarizes the
characteristics of several types of microarchitectures.

A great advantage of pipelining is that it is completely transparent to software.
Instructions run faster without modifying applications or the operating system.
Hence, almost all modern CPUs implement this technique.

Conceptually, pipelining is simple and applied in countless areas. An example of
pipelining is the process of doing laundry, which may be divided into the following
stages:

• Place one dirty load of clothes in the washing machine.

• Take the clothes from the washing machine and put them into the dryer.

• Take the clothes from the dryer and iron.

• Put the clothes in the wardrobe.
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Figure 2.17: Non-pipelined versus pipelined laundry

In the non-pipelined (sequential) version of the process, the second dirty load
would start only when the clothes of the first load were placed in the wardrobe.
Intuitively, this is inefficient, as resources such as the washing machine, the dryer
and the iron would be idle most of the time. An example of the non-pipelined version
of the process is shown in figure 2.17a.

In contrast, in the pipelined version of the process, the second load of clothes
would be put into the washing machine just after moving the first load from the
washing machine to the dryer. Only when the washing machine and the dryer were
finished would the first load be ironed, while the second load would go in the dryer
and the third load would get into the washing machine, and so on. This process is
depicted in figure 2.17b.

In the pipeline implementation it is important to bear in mind the need for all the
stages to progress in parallel, regardless of the time required by each stage. For ex-
ample, the washing machine could have a cycle of 40 minutes, the dryer 50 minutes,
the ironing could take 45 minutes and placing the clothes in the wardrobe could take
20 minutes (40, 50, 45, 20). This means that the washing machine will wait 10 min-
utes for the dryer, which is the slowest stage, to finish in order to proceed with the
next load. It is clear that the most favourable situation is when all the stages are busy
all the time, i.e., when the stages are balanced, requiring the same time to complete.
In any other case, the advance of the pipeline is given by the slowest stage.

The pipeline technique improves throughput (number of loads per time unit), but
not response time (time to perform a single load). For example, assuming the ideal
case where all the stages are balanced and need 30 minutes to complete, each load
still needs to go through the four stages, which requires 2 hours in total. However,
if the number of loads to be done is high, there will be a time when all the stages of
the laundry will be working in parallel, thus, every 30 minutes a new load will be
placed in the wardrobe. This implies an ideal speedup of 4, the number of stages,
which means that ideally it will be possible to perform 4 times more loads per time
unit with the pipelined version of the process. In this ideal case, times with idle

39



Computer Architecture

stages are not taken into account (at the beginning, until the first load of clothes is
put in the wardrobe, and at the end, since the last load of clothes gets into the dryer).

However, it is extremely difficult to achieve the ideal situation where all the
stages require the same time, i.e., they are balanced. In practice, the improvement in
throughput is lower and response time increases due to the waiting times between
stages. Returning to the initial example where each stage requires a different time
(40, 50, 45, 20), some direct calculations can be made. The time necessary to perform
a load in non-pipelined mode is calculated as the addition of the times of each stage:
155 minutes. Considering now the pipelined version, all the stages move forward in
parallel, so the minimum time of the stages will be 50 minutes. From this time, the
real gain in terms of throughput can be calculated (ignoring transient periods with
idle stages), which is less than or equal to the ideal in any case.

AThroughput =
155

50
= 3.1

Response time is calculated by adding the times of all the stages, i.e., 200 minutes,
so this performance metric worsens compared to the non-pipelined version. It is
important to note that pipelining improves throughput but not response time in the
execution of instructions: the latter could get even worse.

The same principles apply to the execution of instructions in order to build
pipelined CPUs. In the case of MIPS, instruction execution is commonly divided
into five stages:

1. IF (Instruction Fetch): fetching instruction from memory. The instruction code
pointed to by the program counter is read from the instruction memory and the
program counter is incremented by 4, making it point to the next instruction.

2. ID (Instruction Decode): decoding instruction and reading registers acting as
instruction operands. In this stage, the instruction is decoded, the register file is
accessed to read the two source registers (they are always read, although they
may be discarded later because the instruction does not use them), the sign of
the 16-bit immediate value is extended (even if the instruction is not I-type)
and the 26-bit immediate value shifted (even if the instruction is not J-type). In
this stage the program counter is also updated with the destination address of
jump instructions.

3. EX (EXecute): execution in the ALU and computation of the target address of
branches. The ALU is used during arithmetic-logical instructions, the evalua-
tion of the condition of a branch and the computation of the memory address
in the case of load/store instructions.

4. MEM (MEMory): access to memory in load/store instructions. In this stage the
data memory is accessed. In addition, the program counter is updated with the
previously computed target address in branches.

5. WB (Write Back): write the result back to the register file. The register file is
written after an ALU operation or after a load from memory.
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Clock cycle 1 2

dadd r4, r3, r2

dsub r12, r13, r14

xor r5, r5, r5

and r13, r14, r15

(a) Non-pipelined execution

Clock cycle 1 2 3 4 5 6 7 8 9 10

dadd r4, r3, r2 IF ID EX MEM WB

dsub r12, r13, r14 IF ID EX MEM WB

xor r5, r5, r5 IF ID EX MEM WB

and r13, r14, r15 IF ID EX MEM WB

(b) Pipelined execution

Figure 2.18: Non-pipelined and pipelined execution

The time required for all stages to finish defines the clock cycle in a pipelined
CPU. The pipelined datapath moves forward with each clock cycle. Thus, the shorter
the duration of the stages, the lower the clock cycle of the CPU and, as a result, the
higher the working frequency. A direct consequence is that the CPU frequency can
be increased simply by increasing the pipeline depth, that is, increasing the num-
ber of stages. However, as previously stated, it is extremely difficult to design deep
balanced pipelines, even ignoring the complexity of controlling a deep pipeline, as
branches give rise to new problems, as will be seen later.

As a summary, although the pipeline does not improve the execution time of
instructions individually (in fact, it usually worsens it), it does increase the through-
put of the CPU when executing instructions. It is important to note that throughput
is the most important performance metric from a practical point of view, because
programs are composed of a large number of instructions that must be executed as
quickly as possible, so the execution time of a single instruction is less important.

Figure 2.18a shows an example of representation for the non-pipelined execu-
tion of instructions in a single-cycle CPU. All instructions are executed sequentially
and require a long clock cycle. In contrast, figure 2.18b depicts the execution in the
pipelined CPU. In this case, the CPI observed under ideal conditions is also 1, but
with a much shorter clock cycle. The pipelined version is assumed to be derived from
the single-cycle version by dividing the execution into 5 perfectly balanced stages.
Hence, the clock cycle of the pipelined CPU is exactly one fifth the clock cycle of
the single-cycle CPU. It can be noted that in the time required by the pipelined CPU
to execute the four instructions, the single-cycle CPU is still executing the second
instruction.

In theory, if the execution of instructions is divided into 10 stages instead of 5,
throughput will be multiplied by 10, i.e., the number of instructions per second that
the pipelined CPU can execute in comparison to the non-pipelined version. How-
ever, the balance of stages and the pipeline management by the control unit become
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more complex as the number of stages increases. In practice, CPUs used in today
computers usually implement between 10 and 20 pipeline stages. For example, the
Intel Core i7 processor based on Nehalem microarchitecture has a 14-stage pipeline.

In addition to the huge challenge of balancing the pipeline stages, which makes it
difficult to reach the theoretical maximum speedup in a pipelined CPU (equivalent
to the number of stages), there are other issues, called pipeline hazards. Pipeline
hazards decrease even more the speedup obtained by pipelined CPUs and will be
studied later using a pipelined implementation of the MIPS64 architecture as a ref-
erence.

2.3.1 Pipelined datapath

Figure 2.19 shows the single-cycle datapath developed in section 2.2.2, identifying
the components of the 5 stages described in the previous section that implement the
pipeline. The balance of the stages in this proposal is high. On one hand, the three
slowest stages are IF, EX and MEM, since they access memory or use the ALU. On the
other hand, stages ID and WB, which access the register file, are the fastest. ID also
decodes the instruction and computes jump addresses. However, it is important to
remember that all stages must move forward at the same time, so the CPU clock
cycle duration is imposed by the slowest stage.

As can be seen in figure 2.19, the instruction code and the data it operates with
move from the left side of the datapath to the right side with two exceptions. Firstly,
the result of an operation in the ALU or the data read from memory must be written
to the register file during the WB stage. Secondly, when PC is updated as a result of a
jump or a taken branch. As will be seen later, data moving from left to right in the
datapath does not have undesirable effects on the instructions currently executing,
in contrast to the movements in the opposite direction.

Another point to consider is that not all instructions make use of the resources of
all the stages, but they must go through each of these 5 stages anyway. For example,
instruction dadd r3, r2, r1 must go through each of the 5 stages, even if it does not
access memory in its MEM stage. It simply goes through this stage without taking any
action.

In order for all the stages in the pipeline to work on a different instruction and
progress at the same time, it is necessary to introduce new elements in the datapath.
These are the so-called pipeline registers, which work as buffers between stages.
Figure 2.20 shows the datapath with the pipeline registers. At the beginning of the
cycle, pipeline registers and PC are read to obtain the information that each stage
requires to work. At the end of each clock cycle, pipeline registers and PC store the
information placed at their inputs. In this way, data generated by the stages progress
from one pipeline register to the next and to the PC in each clock cycle. In addition, a
slight modification is introduced compared to the datapath shown in the figure 2.19
for simplicity. The two multiplexers that determine the value to be written to PC are
combined into one with three entries: PC+4, the target address of the branch and the
target address of the jump.

Back to the analogy of doing laundry, a pipeline register would be the basket
where clothes would be placed once washed by the washing machine until they are
put into the dryer.
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Figure 2.19: Single-cycle datapath identifying the stages of the pipelined datapath
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Pipeline registers must be large enough to store all the data that flows from one
stage to another. In the implementation of figure 2.20, register IF/ID must have a
size of 96 bits (64 bits for the incremented PC value and 32 for the instruction code),
register ID/EX has a size of 256 bits, register EX/MEM has a size of 193 bits and register
MEM/WB has a size of 128 bits.

Starting from this initial implementation, some modifications are necessary to
introduce the control of the pipeline. This is described in appendix B.

2.3.2 Pipeline hazards

There are situations, called pipeline hazards, that may require the parallel execu-
tion of instructions to stop temporarily. An instruction is stalled in a pipeline stage
whenever some condition for completing the stage is not met. In this case, the input
pipeline register is not modified at the end of the clock cycle, so the stage is repeated
with the same instruction in the next clock cycle. This means that the previous stages
must also be stalled so their output pipeline registers are not modified. However, the
instructions that are in the stages after the stage that caused the stall may continue.3

A stalled stage should not be confused with an idle stage. In the idle state, the
stage does not have valid information in its input pipeline register. In this situation,
the stage does not appear in the execution timelines in the considered clock cycle.

Pipeline hazards can be classified into three types: structural hazards, data haz-
ards and control hazards. The following sections detail each of these types of haz-
ards.

Structural hazards

Structural hazards appear when hardware cannot execute in parallel instructions
that require the use of the same resource.

Structural hazards are not possible in the pipelined datapath proposed in fig-
ure 2.20, since each stage uses resources independent of the rest of the stages. To
illustrate the consequences of a structural hazard, a datapath with a single memory
for data and instructions, instead of two, is considered while executing the following
code snippet.

ld r11, 120(r0)
dadd r2, r3, r6
xor r15, r15, r15
dsub r4, r1, r9
and r12, r13, r10

Figure 2.21 shows the execution timeline of the previous code snippet consider-
ing a single memory.4 As can be seen, the pipelined execution is ideal until it is time
to proceed with the MEM stage of instruction ld r11, 120 (r0), at cycle #4, which re-
quires reading data from memory (the rest of the instructions do not have operands

3The stage causing the stall resets its output pipeline register so the next stage is idle in the next clock
cycle.

4This would imply modifying the datapath by adding a new multiplexer to select the address to use
in memory accesses: the one that comes from PC, or that computed in EX.
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Clock cycle 1 2 3 4 5 6 7 8 9 10

ld r11, 120(r0) IF ID EX MEM WB

dadd r2, r3, r6 IF ID EX MEM WB

xor r15, r15, r15 IF ID EX MEM WB

dsub r4, r1, r9 IF ID EX MEM WB

and r12, r13, r10 IF ID EX MEM WB

Figure 2.21: Pipelined execution assuming a single memory

in memory). As the memory is unique, the IF stage of instruction dsub r4, r1, r9 can-
not fetch the instruction code at the same time, so a stall occurs and the stage is
postponed to the next clock cycle. Pipeline stalls (a single clock cycle in the example)
are propagated to the following instructions, which have been delayed. For conve-
nience, structural stalls are represented by a cross mark to distinguish them from
other types of stalls instead of repeating the stage. It can also be seen in the figure
how the ID stage is idle in cycle 5 (the one after the stall), hence it does not appear in
the timeline.

Detecting structural hazards and stalling the pipeline require the use of addi-
tional hardware in the MIPS64 microarchitecture studied, which depends on the im-
plementation. This is beyond the scope of this text.

Data hazards

A data dependency is a situation where an instruction refers to the data (register or
memory location) of a preceding instruction. A data dependency may lead to stalling
the pipeline when an instruction depends on the result of another instruction that is
still in the pipeline. This is clearly seen in the following code snippet.

dadd r2, r3, r4
dsub r1, r10, r2
or r12, r11, r14
xor r18, r18, r18

The first instruction adds the values contained in registers r3 and r4 and stores the
result in register r2. The following instruction uses this calculated value to perform
the subtraction. The issue appears when the second instruction reads r2 (ID stage),
since the result of the addition has not been written to the register yet. This result
is written during the WB stage of the first instruction, so it is necessary to stall the
pipeline until the correct value can be read from r2.

Figure 2.22 shows the timeline of instructions taking into account the stall pro-
duced by the data hazard. The ID stage of dsub must be repeated until the correct
value of r2 is read at clock cycle #5. Register r2 is written in the WB stage of dadd at
the same time as it is read in the ID stage of dsub. This behaviour is possible since
the writing to the register file is performed in WB during the first half of the clock
cycle and the reading in ID is carried out during the second half of the clock cycle.
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Clock cycle 1 2 3 4 5 6 7 8 9 10

dadd r2, r3, r4 IF ID EX MEM WB

dsub r1, r10, r2 IF ID ID ID EX MEM WB

or r12, r11, r14 IF IF IF ID EX MEM WB

xor r18, r18, r18 IF ID EX MEM WB

Figure 2.22: Pipelined execution with a data stall

However, this overlap of writing and reading operations in the same clock cycle is
not possible in the case of memory.

It can also be observed how the following instruction (or) is still in IF until in-
struction dsub can continue.

An important detail to keep in mind is that it is not necessary for two instructions
exhibiting data dependence to be consecutive so that there is a stall. In the previous
example, the stall would occur even if an instruction existed between them. Pipeline
stalls produced by data dependencies between instructions reduce the performance
speedup of the pipeline. In the previous example, it takes 10 cycles to run the code
instead of the 8 cycles it would require without the stall.

The above data dependency is only one example of the different types that can
appear. Next, other types of data dependencies that can occur between instructions
are formally described.

• Read After Write (RAW). It is the dependency that appeared in the previous
code snippet. It occurs when an instruction reads a register that has been previ-
ously written by a previous instruction. This type of dependency is also known
as true dependency.

The control unit must detect this dependency and check if there is a hazard. In
that case, it must stall the pipeline during the necessary cycles until the hazard
disappears. In the case of the MIPS64 microarchitecture presented, data haz-
ards due to register operands are possible, but not due to memory operands.
Memory is accessed in the MEM stage of load and store instructions (two MEM
stages cannot be carried out at the same time). The following code fragment
shows this situation.

sd r3, 120(r0)
ld r5, 120(r0)

The ld instruction reads memory location 120(r0) after it has been written by sd.
It is not necessary to check if this dependency leads to a stall, since the read-
ing and writing of data memory occurs in the same stage, MEM, and sd arrives
at this stage before ld. This beneficial feature is not the result of chance, but it
is a consequence of a RISC instruction set where only load and store instruc-
tions access the data memory. This is an example on how ISAs are designed to
simplify the pipeline, reducing costs and improving performance.
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• Write After Read (WAR). WAR dependencies are also called antidependencies.
This code snippet is an example of WAR data dependency.

dsub r1, r10, r2
dadd r2, r3, r4
or r12, r11, r14

According to the code semantics, the writing in registry r2 by dadd must come
after reading this register by dsub.

Writing of registers in the MIPS64 microarchitecture is performed in stage WB,
while reading occurs in stage ID. Since instruction dsub r1, r10, r2 will get to
stage ID before instruction dadd r2, r3, r4 reaches stage WB, this pipeline hazard
is not possible.

In the case of memory operands, WAR dependencies can never cause pipeline
stalls, since both reading and writing are carried out in the same stage: MEM.

However, as seen later in this chapter, one of the pipeline improvement tech-
niques is out-of-order execution. Using this technique, the execution of the
write instruction could start before the reading, so it would be necessary to
check for hazards due to WAR dependencies.

• Write after write (WAW). It defines the order of two writes on the same
operand. It is also called output dependency. An example of WAW dependency
is shown below.

dsub r1, r10, r2
and r1, r3, r4
xor r7, r1, r6

According to the code semantics, the writing in register r1 by and must hap-
pen after the writing in this register by dsub. Otherwise, instruction xor, or any
other coming later that uses r1, would receive an incorrect value. Again, in the
case of the proposed MIPS64 microarchitecture, this type of dependency can
be ignored, as there is only one stage writing to the register file: WB. The same
applies to memory operands; only MEM writes to memory. However, this de-
pendency may lead to pipeline hazards in the event of out-of-order execution
as with WAR dependencies.

Dealing with data hazards requires hardware support within the MIPS64 mi-
croarchitecture. The precise way to do it depends on the implementation and is be-
yond the scope of this text.

Control hazards

Control hazards occur when the execution flow changes, such as in function calls,
jumps, branches, interrupts or exceptions. Under these conditions, the sequential
execution flow is interrupted, and this prevents the CPU from executing the initial
stages of the following instructions until the target address is resolved. The following
code snippet illustrates this situation.
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Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12

beq r0, r3, loop IF ID EX MEM WB

daddi r1, r0, 1 IF IF IF IF ID EX MEM WB

and r3, r2, r4 IF ID EX MEM WB

xor r8, r8, r8 IF ID EX MEM WB

dsub r3, r1, r2 IF ID EX MEM WBloop:

(a) Not-taken branch

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12

beq r0, r3, loop IF ID EX MEM WB

daddi r1, r0, 1 IF IF IF

and r3, r2, r4

xor r8, r8, r8

dsub r3, r1, r2 IF ID EX MEM WBloop:

(b) Taken branch

Figure 2.23: Control hazard in the pipelined execution of a branch

beq r0, r3, loop
daddi r1, r0, 1
and r3, r2, r4
xor r8, r8, r8

loop: dsub r3, r1, r2

The first instruction is a branch. Depending on whether the branch is taken or
not, the next instruction to execute will be dsub or the instruction after the branch
(daddi), respectively. The problem is that PC is updated with the address of the next
instruction in the MEM stage of beq. Thus, it is necessary to stall the pipeline until
determining the next instruction to execute. Figure 2.23 shows the execution timeline
of the previous code under the assumptions of branch taken or not taken.

It is interesting to note that when the branch condition is false, the ID stage of
daddi could be moved from cycle #6 to cycle #5, reducing the stall from 3 to 2 clock
cycles. At the end of cycle #4, IF has already fetched instruction daddi, so it would be
unnecessary to repeat the fetching for this instruction. However, this optimization
would complicate the MIPS64 microarchitecture, since it would be necessary to take
into account whether the branch condition is true or not to advance the ID stage. This
optimization will not be considered for simplicity.

In the case of jumps, PC is updated in the ID stage, so the duration of the stall
would be shorter: one cycle. If instruction beq in the previous code snippet were
replaced by j loop, the execution timeline would be that shown in figure 2.24.

Control hazards are a particular case of RAW dependency related to the PC regis-
ter. The target address and the condition of branches are evaluated in EX. However,
it is not until the next stage, MEM, when PC is updated, so for practical purposes the
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Clock cycle 1 2 3 4 5 6 7

j loop IF ID EX MEM WB

daddi r1, r0, 1 IF

and r3, r2, r4

xor r8, r8, r8

dsub r3, r1, r2 IF ID EX MEM WBloop:

Figure 2.24: Control hazard in the pipelined execution of a jump

EX

IF ID MEM WBEX (5 cycles)

integer mult./div.

EX (7 cycles)

floating point

Figure 2.25: Integer and floating-point multi-cycle operations

evaluation of a conditional branch occurs in the MEM stage. Thus, the stage writing
PC, MEM, comes after the stage reading PC, IF, hence the data hazard (on the PC reg-
ister). The same applies in the case of jumps, but now the stall is shorter, since the
modification of PC occurs in ID.

As with RAW hazards, control stalls require repeating the affected stage (IF) and
the previous ones (which do not exist) until the value of the PC register is available.

2.3.3 Multi-cycle operations

Up to now, it has been considered that the MIPS64 microarchitecture implements
instructions that require a single cycle in the EX stage. For example, the ALU in the
EX stage can perform addition and subtraction of integers in one clock cycle. The
problem arises when trying to implement more complex operations such as multi-
plication and division of integers, or floating-point operations. All these operations
require more time (theoretically several clock cycles) to complete.

A simple solution would be to increase the duration of the clock cycle to accom-
modate the longest operation to be carried out. However, this would drastically re-
duce performance, since it would slow down the entire pipeline. A more suitable
solution is to add multi-cycle EX stages to perform complex operations. For exam-
ple, a multi-cycle EX stage could be added to implement integer multiplications and
divisions and another for floating-point operations, as depicted in figure 2.25.

If the instruction performs a multiplication or division of integers, the multi-cycle
EX stage for integer multiplication/division will be used, as shown in the figure.
On the other hand, if it is a floating-point operation, the EX stage for floating-point
operations will be used instead. In any other case, the usual EX stage would be used.
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Clock cycle 1 2 3 4 5 6 7 8 9 10

xor r1, r4, r5 IF ID EX MEM WB

dmul r1, r2, r3 IF ID MEM WB

dadd r9, r11, r12 IF ID EX MEM WB

EX

Figure 2.26: Performance improvement when using several execution units

Clock cycle 1 2 3 4 5 6 7 8 9 10 11

xor r1, r4, r5 IF ID EX MEM WB

dmul r1, r2, r3 IF ID MEM WB

dadd r1, r11, r12 IF ID EX EX EX EX EX MEM WB

EX

Figure 2.27: Example of a WAW stall produced by multi-cycle execution units

The use of several execution units enables some performance improvements. For
example, an integer addition instruction can be issued to its execution unit while
an integer multiplication instruction is being executed in the corresponding unit. To
support this improvement, every execution unit must have its own input pipeline
register. This situation is shown in figure 2.26 for the following code, assuming that
the EX stage for integer multiplication/division requires five clock cycles.

xor r1, r4, r5
dmul r1, r2, r3
dadd r9, r11, r12

Instruction dadd enters the EX stage (it is issued) before the preceding instruction
dmul leaves the same stage, because it uses a different execution unit, which is avail-
able. It is said that both instructions are issued and executed in-order (they go into
the EX stage and start this stage in the order of the program).5 In addition, instruction
dadd terminates before the preceding instruction dmul, so both instructions terminate
or are retired out-of-order. In any case, instructions are always fetched (IF) and de-
coded (ID) in order, but issue, execution (EX) and retirement (MEM and WB) can be
out-of-order (OoO).

Out-of-order issuing, execution and retirement improve performance at the ex-
pense of complicating the microarchitecture, since handling data dependencies be-
comes more complex. For example, if instruction dadd r9, r11, r12 were replaced by
instruction dadd r1, r11, r12, the latter could not terminate before the preceding in-
struction, since there is a WAW dependency between both instructions on register r1.
Otherwise, the value of register r1 at the end of the code snippet would be wrong.
The result is a 4-cycle stall due to the writing of r1, shown as blanks in figure 2.27.
This stall increases the execution time by one clock cycle.

5Technically, issuing refers to sending an instruction to the corresponding execution unit, while exe-
cution is the moment when the instruction is being executed in this unit. Buffers may exist to make these
two processes independent.
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Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xor r1, r4, r5 IF ID EX MEM WB

dmul r1, r2, r3 IF ID MEM WB

dmul r8, r9, r10 IF ID MEM WB

dadd r9, r11, r12 IF ID EX MEM WB

EX

EX

Figure 2.28: Execution on non-pipelined multi-cycle units

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xor r1, r4, r5 IF ID EX MEM WB

dmul r1, r2, r3 IF ID EX1 EX2 EX3 EX4 EX5 MEM WB

dmul r8, r9, r10 IF ID EX1 EX2 EX3 EX4 EX5 MEM WB

dadd r9, r11, r12 IF ID EX MEM WB

Figure 2.29: Execution on pipelined multi-cycle units

The execution of multi-cycle operations brings another effect that did not exist in
the MIPS64 microarchitecture: structural stalls are now possible in the EX stage. To
illustrate this point, the following code snippet is shown as an example.

xor r1, r4, r5
dmul r1, r2, r3
dmul r8, r9, 10
dadd r9, r11, r12

The second dmul instruction cannot enter the execution stage until the first dmul

leaves it, giving rise to a structural stall of 4 cycles. The execution timeline is shown
in figure 2.28. This stall involves a performance penalty, because it increases the
CPI. Observe how the structural stall propagates to the following instructions in the
pipeline; dadd r9, r11, r12 in this case. This restriction will be removed in the section
devoted to the superscalar microarchitecture.

In order to reduce or remove the structural stall, it is possible to pipeline the
multi-cycle multiplication/division stage in as many stages as cycles needed, in such
a way that they work in parallel. Note that the pipelining technique can be applied to
any digital system, not just the CPU. Figure 2.29 shows the execution once the integer
multiplication/division unit has been pipelined. A significant improvement can be
observed, since the stall due to the structural hazard between the two multiplication
instructions disappears.

2.3.4 Exception handling

Exceptions introduce changes in the normal flow of program execution. Depending
on the architecture, the names faults or interrupts are also used. Once an excep-
tion occurs, the execution of the program is stopped, an operating system routine is
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Clock cycle 1 2 3 4 5 6

ld r7, 120(r0) IF ID EX MEM WB

dsub r1, r10, r2 IF ID EX MEM WB

Exception!

Exception!

Figure 2.30: Multiple exceptions in the pipelined execution

executed and, in general, the execution of the program resumes where it was left.
Exceptions can occur during the execution of instructions or after they finish.

For example, an instruction that divides by zero or an instruction with an invalid
instruction code cannot be executed. In both cases an exception is triggered. In the
context of the pipeline, interrupts requested by peripheral interfaces are also consid-
ered exceptions.

It is desirable that pipelined microarchitectures behave similarly to non-pipelined
ones when an exception occurs. Instructions in the pipeline following the one that
generated the exception should stop. If the exception occurs in the middle of an in-
struction, it should also stop. In contrast, the preceding instructions should be com-
pleted. When this goal is achieved, it is said that the pipelined microarchitecture
supports precise exceptions.

Current CPUs support precise exceptions, but not some old pipelined CPUs,
which required some support by exception handlers. In those cases, the operating
system was responsible for the correct execution of instructions in the presence of
exceptions.

The problem of exceptions in pipelined microarchitectures is that they can appear
in different stages of various instructions. For example, the following program might
result in an exception at the MEM stage of ld and also an exception at the IF stage of
dsub, as shown in figure 2.30.

ld r7, 120(r0)
dsub r1, r10, r2

The exception in ld occurs after the exception in dsub, but it should be processed
before, because ld appears earlier in the program. If exceptions were processed just
at the moment they appear, they would not be precise.

The solution consists in processing exceptions not at the moment they occur, but
later when the execution of the instruction reaches the last stage: WB. Thus, the ex-
ception of ld arrives to WB before the exception of dsub. For the instruction to advance
until WB, the pipeline should not stall, disabling the writings in registers and mem-
ory for the instruction raising the exception and all that follow in the pipeline, so that
these instructions cannot modify the state of the machine.

Another problem associated with exceptions is the out-of-order retirement of in-
structions: an instruction that raises an exception may arrive to the stage WB later
than another instruction that is after it in the code. Figure 2.31 shows this situation.

In order to implement precise exceptions, instructions must be retired in-order.
Retirement of instructions is carried out when they write (that is, in stages MEM and
WB) and therefore they modify the state of the machine. Figure 2.32 illustrates the
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Clock cycle 1 2 3 4 5 6 7 8 9 10 11

xor r1, r4, r5 IF ID EX MEM WB

dmul r1, r2, r3 IF ID EX1 EX2 EX3 EX4 EX5 MEM WB

ddiv r8, r9, r7 IF ID EX1 EX2 EX3 EX4 EX5 MEM WB

ld r6, 120(r10) IF ID EX MEM WB

Exception!

Exception!
ld finishes before ddiv

Figure 2.31: Out-of-order retirement may result in non-precise exceptions

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12

xor r1, r4, r5 IF ID EX MEM WB

dmul r1, r2, r3 IF ID EX1 EX2 EX3 EX4 EX5 MEM WB

ddiv r8, r9, r7 IF ID EX1 EX2 EX3 EX4 EX5 MEM WB

ld r6, 120(r10) IF ID EX EX EX EX EX MEM WB

Figure 2.32: Precise exceptions require in-order retirement

same previous example with in-order retirement and how this restriction reduces
the performance.

Although the support of precise exceptions requires the retirement of instructions
in-order, instructions can be issued and executed out-of-order, offering opportunities
for performance improvement, especially in the case of superscalar CPUs, which will
be studied in section 2.4.2.

2.3.5 Reducing data hazard stalls

Pipelined CPUs may retire a maximum of one instruction per clock cycle under ideal
conditions. However, as seen before, there are hazards that prevent the pipeline from
achieving this value in practice, so that the CPI of these CPUs will always be greater
than 1. For the case of the presented MIPS64 pipelined microarchitecture, only stalls
due to data dependencies and control hazards are possible. These stalls result in
penalties of three clock cycles at most, which causes an increase in the average CPI
of programs.

This section shows the basic techniques used to reduce the impact of data de-
pendencies between instructions to bring the performance of the pipeline close to its
theoretical maximum. These are illustrated on the studied MIPS64 microarchitecture.
The techniques to minimize stalls for control hazards will be seen in the following
section. In this section, three techniques will be proposed to reduce or eliminate stalls
due to data hazards:

• Instruction scheduling. The scheduling can be performed by the compiler, so it
does not require changes in the microarchitecture, or by the hardware directly.

• Forwarding paths. They are implemented in hardware and are transparent to
software.
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• Register renaming. It is also implemented in hardware and is transparent to
software.

All these techniques eliminate or reduce stalls without altering the semantics of
the program, that is, without changing the results of the program. Register renaming
focuses on eliminating dependencies, while the other two techniques maintain the
dependencies but focus on reducing the stalls they produce.

At this point, it is worth remembering the different types of data dependencies:

• Read After Write (RAW). A memory location or a register cannot be read until a
preceding instruction that writes to the memory location or register has written
the new value.

• Write After Read (WAR). An instruction reading from a memory location or
register must be executed before a subsequent write instruction. This restric-
tion must be imposed when out-of-order execution is allowed.

• Write After Write (WAW). If one instruction that writes into a memory location
or register precedes another write instruction, out-of-order execution cannot
cause that the execution of the first write is after the second one.

RAW dependencies are also called true dependencies, because they involve a
data transfer from one instruction to another within the program semantics, unlike
WAR and WAW dependencies. These last two are artificial dependencies produced
by the register reuse carried out by compilers.

Instruction scheduling

Instruction scheduling is a technique that involves reordering the instructions to ex-
ecute so that data dependencies do not produce stalls and, at the same time, the
program semantics are preserved. This involves placing independent instructions
between two instructions that maintain a dependency, “moving the dependent in-
structions away” and thus avoiding pipeline stalls, or at least reducing their dura-
tion. In any case, data dependencies of the original program must be preserved.

The following code snippet is used to illustrate RAW dependencies in the MIPS64
microarchitecture. In this case, this code results in a stall of two clock cycles:

dadd r2, r3, r4
dsub r1, r10, r2
or r12, r11, r14

The first two instructions depend on register r2. However, instruction
or r12, r11, r14 is independent, because it uses different registers. For this reason,
this instruction could be placed between the dependent instructions without chang-
ing the semantics of the program, as can be seen below.

dadd r2, r3, r4
or r12, r11, r14
dsub r1, r10, r2
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Clock cycle 1 2 3 4 5 6 7 8

dadd r2, r3, r4 IF ID EX MEM WB

or r12, r11, r14 IF ID EX MEM WB

dsub r1, r10, r2 IF ID ID EX MEM WB

RAW on r2

Figure 2.33: Timeline after reordering instructions

The stall produced by the data dependency is reduced from two cycles to one
cycle, as can be seen in figure 2.33, where the ID stage of dsub is repeated. In fact, if
two independent instructions were placed between instructions dadd and dsub there
would be no stall at all.

This technique can be implemented at the software level by the compiler or at the
hardware level. In the first case, it is known as static instruction scheduling, since it
is done at compile time. The disadvantage of being implemented in the compiler is
not only the increase of its complexity, but also that it may be necessary to recompile
programs to adapt them to each microarchitecture, even though the CPU ISA does
not change.

When instruction scheduling is implemented at the hardware level, the microar-
chitecture is responsible for the reordering of instructions. Decisions are taken on-
the-fly, as instructions are executed and dependencies appear. This technique is
called dynamic instruction scheduling.

Forwarding paths

Forwarding paths are connections in the datapath used to reduce the stalls due to
RAW dependencies, which are only possible between registers (never memory loca-
tions) in the studied MIPS64 microarchitecture. Register writing takes place in the
first half of the WB stage, while reading takes place in the second half of the ID stage.
The longest stall is two cycles and appears when the write instruction and the read
instruction are consecutive, as in the following program, depicted in figure 2.22 of
page 47.

dadd r2, r3, r4
dsub r1, r10, r2
or r12, r11, r14
xor r18, r18, r18

The value of register r2, required by dsub, is calculated when dadd goes through the
EX stage, but it is written to r2 in the first half cycle of the WB stage. If it were possible
to bring the result of stage EX to the input of this same stage on the next clock cycle,
instead of that provided by the ID stage, dsub could enter the EX stage on the next
clock cycle, removing the stall.

Figure 2.34 shows the execution of the previous code when a forwarding path is
available from the output of the EX stage to the input of the same stage.

The implementation of this forwarding path in the datapath is simple. It suffices
to include a multiplexer at the input of the EX stage to select the value of the register
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Clock cycle 1 2 3 4 5 6 7

dadd r2, r3, r4 IF ID EX MEM WB

dsub r1, r10, r2 IF ID EX MEM WB

or r12, r11, r14 IF ID EX MEM WB

Output EX→ Input EX

Figure 2.34: Execution with forwarding path Output EX→ Input EX

ID
M
u
x

EX

Forwarding path

Figure 2.35: Implementation of forwarding path Output EX→ Input EX

at the output of the ID stage (output of pipeline register ID/EX) or at the output of
the EX stage (output of pipeline register EX/MEM). Figure 2.35 conceptually shows the
modifications of the datapath to support this forwarding path.

When the dependent instructions are not consecutive, it is necessary to define
another forwarding path. For example, in the following code snippet there is an in-
dependent instruction between the two dependent instructions.

dadd r2, r3, r4
xor r6, r11, r10
dsub r1, r10, r2
or r12, r11, r14

When dsub is about to enter the EX stage, the forwarding path from the output of
the EX stage to the input of the same stage must be disabled, because the value of
register r2 is not at the output of EX, but at the output of the next stage, the MEM stage.
It should be noted that with each clock cycle the results of the EX stage move through
the pipeline registers EX/MEM and MEM/WB until finally reaching the WB stage.

Figure 2.36 shows the execution of the previous program when a forwarding path
is available from the output of the MEM stage (output of pipeline register MEM/WB) to
the input of the EX stage. In this case, the one-cycle stall disappears, since the value
of r2 is available at the beginning of the EX stage.

If two instructions were located between the dependent instructions, the situa-
tion would be analogous to the following:

dadd r2, r3, r4
xor r6, r11, r10
ld r7, 120(r15)
dsub r1, r10, r2
or r12, r11, r14

In this case, a new forwarding path from the output of the WB stage to the input
of the EX stage is not necessary, since dsub reads the correct value of register r2 during
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Clock cycle 1 2 3 4 5 6 7 8

dadd r2, r3, r4 IF ID EX MEM WB

xor r6, r11, r10 IF ID EX MEM WB

dsub r1, r10, r2 IF ID EX MEM WB

or r12, r11, r14 IF ID EX MEM WB

Output MEM→ Input EX

Figure 2.36: Execution with forwarding path Output MEM→ Input EX

Clock cycle 1 2 3 4 5 6 7 8 9

dadd r2, r3, r4 IF ID EX MEM WB

xor r6, r11, r10 IF ID EX MEM WB

ld r7, 120(r15) IF ID EX MEM WB

dsub r1, r10, r2 IF ID EX MEM WB

or r12, r11, r14 IF ID EX MEM WB

Writes r2

Reads r2

Figure 2.37: Forwarding path Output WB→ Input EX is not necessary

the second half of the cycle in the ID stage. This value has been previously written
during the first half of the cycle by the WB stage of dadd. Figure 2.37 illustrates this
situation.

The forwarding paths considered so far assume that instructions writing into reg-
isters are arithmetic-logical, such as dadd r2, r3, r4. The aforementioned forwarding
paths are also valid with other types of instructions that write into registers, with
the exception of load instructions. In the case of a load instruction, the value of the
destination register is available just at the end of the MEM stage, so the only possible
forwarding path is Output MEM→ Input EX. For example, this forwarding path is en-
abled in figure 2.38, which allows a reduction of the stall from two clock cycles to
only one for the next code:

ld r2, 120(r3)
dsub r1, r10, r2
or r12, r11, r14

A detail that may go unnoticed at first glance in figure 2.38 is the fact that the
pipeline is stalled in the EX stage instead of the ID stage because of the data de-
pendency. The reason is the high complexity of the control unit to decide when the
pipeline should be stalled in the ID stage in microarchitectures that go beyond the
basic pipelined microarchitecture.

When forwarding paths are available, data dependency stalls occur at the EX
stage instead of at the ID stage. This results in a much simpler implementation. The
EX stage stalls when it hasn’t received any of the values it needs, either from its input
pipeline register or from any forwarding path.

An additional consequence of delaying the data stall to the EX stage is the perfor-
mance improvement when there are multiple execution units. Stalling the pipeline
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Clock cycle 1 2 3 4 5 6 7 8 9

ld r2, 120(r3) IF ID EX MEM WB

dsub r1, r10, r2 IF ID ID ID EX MEM WB

or r12, r11, r14 IF IF IF ID EX MEM WB

(a) RAW dependency with initial load instruction

Clock cycle 1 2 3 4 5 6 7 8 9

ld r2, 120(r3) IF ID EX MEM WB

dsub r1, r10, r2 IF ID EX EX MEM WB

or r12, r11, r14 IF ID ID EX MEM WB

Output MEM→ Input EX

(b) Forwarding path Output MEM→ Input EX with initial load instruction

Figure 2.38: Stall reduction for a RAW dependency with initial load instruction

Clock cycle 1 2 3 4 5 6 7 8 9

ld r1, 120(r0) IF ID EX MEM WB

dadd r2, r1, r5 IF ID ID EX MEM WB

dmul r5, r4, r7 IF IF ID EX1 EX2 MEM WB

Output MEM→ Input EX

(a) Stall in the ID stage

Clock cycle 1 2 3 4 5 6 7 8 9

ld r1, 120(r0) IF ID EX MEM WB

dadd r2, r1, r5 IF ID EX EX MEM WB

dmul r5, r4, r7 IF ID EX1 EX2 MEM WB

Output MEM→ Input EX

(b) Stall in the EX stage

Figure 2.39: Performance improvement by stalling in the EX stage

in the EX stage allows the execution of subsequent instructions that use other execu-
tion units, as shown in figure 2.39, where instruction dmul r5, r1, r7 uses a two-cycle
pipelined execution unit.

Since the stall does not occur in the ID stage of dmul r5, r1, r7, but in the EX1
stage, the next instruction (dadd r2, r4, r5), which uses a different execution unit, can
enter the ID stage and then execute, without having to wait for the add r2, r1, r5

instruction to finish the stall.
So far, the case where a single forwarding path is activated during the execution

of an instruction has been considered, but in general, an instruction with two source
registers may require two forwarding paths to be activated at the same time, or even
at different moments. This situation is exemplified in figure 2.40. The EX stage in
clock cycle 5 is stalled, since it requires the value of register r2, which is not avail-
able until the end of the clock cycle. However, despite being stalled, it should fetch
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Clock cycle 1 2 3 4 5 6 7 8

dadd r1, r3, r5 IF ID EX MEM WB

ld r2, 120(r0) IF ID EX MEM WB

dsub r4, r1, r2 IF ID EX EX MEM WB

Output MEM→ Input EX

Output MEM→ Input EX

Figure 2.40: Activation of two forwarding paths in the same instruction

IF

ID

EX

MEM

WB

(a)(b)

(a) Non-load write instruction, followed by a read
instruction
(b) Three options:

• Non-load write instruction and a read instruction,
both separated by one instruction

• Consecutive load and read instructions**

• Load and read instructions separated by one
instruction

** In this case, a one-cycle stall remains

Figure 2.41: Summary of forwarding paths

the value of register r1 using the forwarding path Output MEM → Input EX which is
activated at the beginning of the cycle.

To summarize, forwarding paths Output EX → Input EX and Output MEM → In-
put EX can reduce or even eliminate the stalls produced by RAW dependencies. Fig-
ure 2.41 schematically shows the forwarding paths for both a non-load write instruc-
tion and a load instruction.

Register renaming

Unlike instruction scheduling and forwarding paths, register renaming does not try
to minimize the effect of data dependencies, but to eliminate them. Specifically, it
seeks to eliminate dependencies of type WAR and WAW, which could produce stalls
when the CPU executes instructions out of order.

WAR and WAW dependencies are not part of the program semantics. They are
created by the compiler when associating storage to program variables because of a
very limited number of registers in the architecture.6 Whenever possible, compilers
use registers instead of memory locations, since access is much faster, which results
in a shorter execution time. For this reason, when the compiler uses a register for a
variable and detects that the variable is no longer used from a certain point in the
program, it recycles the associated register, i.e., the register is used to store another

6For example, when applying optimizations such as loop unrolling that replicates the body of loops to
avoid jumps/branches and therefore control hazards.
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a = 1;
b = 3 * a;
c = 7;
d = 6;

(1) ori r5, r0, 1 ; r5 <- a
(2) ori r6, r0, 3 ; r6 <- 3
(3) dmul r4, r6, r5 ; r4 <- b
(4) ori r4, r0, 7 ; r4 <- c
(5) ori r6, r0, 6 ; r6 <- d

1

3

4

WAW

RAW 2

5

WAW

RAW

WAR

Figure 2.42: Example of dependencies due to register recycling by compilers

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1) ori r5, r0, 1 IF ID EX MEM WB

(2) ori r6, r0, 3 IF ID EX MEM WB

(3) dmul r4, r6, r5 IF ID ID ID MEM WB

(4) ori r4, r0, 7 IF IF IF ID EX EX EX EX EX MEM WB

(5) ori r6, r0, 6 IF ID ID ID ID ID EX MEM WB

EX

Figure 2.43: Execution with register recycling

program variable, which may lead to the appearance of WAR and WAW dependen-
cies.

For example, figure 2.42 shows a source program fragment and its assembly
translation, as well as the resulting dependency graph. In the graph, a dependency
is indicated with an arrow, where the pointed instruction depends on the instruction
on the arrow start. In addition to true dependencies (RAW), WAR and WAW depen-
dencies can be observed, caused by the recycling of registers r4 and r6. Register r4 is
initially used to store variable b and is later recycled to store variable c. Register r6 is
initially used to store constant 3 and is later recycled to store variable d.

The execution of the previous program in a MIPS64 CPU without precise excep-
tions is as shown in figure 2.43. It has been assumed that the integer multiplication
unit requires 5 clock cycles. A WAW stall can be observed; ori r4, r0, 7 cannot finish
until previous instruction dmul r4, r6, r5 does.

Suppose that the compiler has not recycled the registers, by storing variable c

in register r7 and variable d in registry r8. The program and the dependency graph
would become those shown in figure 2.44, which would result in a lower number
of dependencies between instructions. By removing the recycling of registers, the
WAW dependency between instructions dmul r4, r6, r5 and ori r4, r0, 7 disappears,
and also the associated stall, so the execution time is reduced from 14 to 13 clock
cycles, as shown in figure 2.45.

Anyway, register recycling cannot be avoided, since CPUs usually have a reduced
number of registers. A priori, a solution to the problem would be to increase the
number of CPU registers to avoid recycling. However, this solution is not viable,
because increasing the number of registers means a major change in the architecture
that finally leads to software compatibility issues. In addition, even in the case of
new architectures that are not conditioned by backward compatibilities, having a
large number of registers is inadvisable, since identifying them requires more bits
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a = 1;
b = 3 * a;
c = 7;
d = 6;

(1) ori r5, r0, 1 ; r5 <- a
(2) ori r6, r0, 3 ; r6 <- 3
(3) dmul r4, r6, r5 ; r4 <- b
(4) ori r7, r0, 7 ; r7 <- c
(5) ori r8, r0, 6 ; r8 <- d

1

3

4

RAW 2

5

RAW

Figure 2.44: WAR and WAW dependencies are removed by removing register recy-
cling

Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

(1) ori r5, r0, 1 IF ID EX MEM WB

(2) ori r6, r0, 3 IF ID EX MEM WB

(3) dmul r4, r6, r5 IF ID ID ID MEM WB

(4) ori r7, r0, 7 IF IF IF ID EX MEM WB

(5) ori r8, r0, 6 IF ID EX MEM WB

EX

Figure 2.45: Execution without register recycling

and longer instruction codes. For example, in the MIPS64 architecture, moving from
32 registers to 256 registers involves going from 5 to 8 bits to identify registers. If it
were necessary to identify 3 registers, as is the case of many MIPS64 instructions, it
would finally force to increase the instruction code length from 32 to 64 bits.

The usual solution to the problem of register recycling is register renaming at
hardware level. The idea is that architectural registers, from r0 to r31 in the case
of MIPS64, are symbolic registers that are associated to physical registers. In this
way the architecture does not change, because the registers seen by the programmer
are the architectural registers, but the hardware can take advantage of a larger set
of physical registers. As an example, it will be assumed that the MIPS64 CPU has
64 physical registers for integers ranging from rr0 to rr63 and also 64 floating-point
physical registers ranging from rf0 to rf63.

The CPU has a data structure associated to register renaming, called renaming
table, which evolves during the execution of instructions. The initial state of the re-
naming table for a MIPS64 microarchitecture can be seen in table 2.4.

The table relates each architectural register to a physical register. In addition, for
each physical register there is a Counter field that indicates the number of pend-
ing instructions to be terminated that use the physical register as a source operand.
Physical registers can be found in three states:

• Allocated and used. In this case, the physical register is used as a source
operand in at least one instruction that has not finished. This state is identi-
fied by a greater than zero Counter field. In addition, the physical register is
associated to an architectural register, so it is not available for a future renam-
ing.
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Architectural register Physical register Counter
r0 rr0 0

......

r31 rr31 0

- rr32 0

......

- rr63 0

f0 rf0 0

......

f31 rf31 0

- rf32 0

......

- rf63 0

Table 2.4: Initial state of the renaming table before executing any instruction

• Allocated and unused. In this case, the physical register is associated to an ar-
chitectural register, but it is not being used as a source operand in any pending
instruction. This state implies a value of zero in the Counter field of the phys-
ical register. Since it is associated to an architectural register, it is not available
for a future renaming. This is the initial state of physical registers rr0 to rr31

and rf0 to rf31.

• Available. The physical register is available for future register renaming. It can
by identified by a zero Counter field and no architectural register associated to
it. This is the initial state of physical registers rr32 to rr63 and rf32 to rf63.

From the table above, the operation of register renaming is as follows:

1. At the CPU reset, architectural registers r0 to r31 and f0 to f31 are associated
to physical registers with the same index, which are allocated and unused, so
their Counter field is set to 0. For example, r6 is initially associated to rr6 and
there is no pending instruction reading rr6. The rest of the physical registers
are available (rr32 to rr63 and rf32 to rf63), so their Counter field is set to zero
and they are not associated to any architectural register. This initial situation is
shown in table 2.4.

2. Available physical registers are organized in two FIFO queues. The first
queue initially contains registers rr32 to rr63, while the second queue contains
registersrf32 to rf63.

3. In the second half of the ID stage, source and destination architectural registers
are identified during instruction decoding.
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Source architectural registers are replaced by the associated physical registers,
obtained from the renaming table. In addition, Counter fields are incremented
to reflect that a new instruction references them. If the same physical register
appears several times in the instruction as a source operand, its Counter will
be incremented only by one unit, since it refers to the number of pending in-
structions that read the register.

The destination architectural register is renamed by associating it to an avail-
able physical register that is extracted from the corresponding FIFO queue.
At the same time, its association with the previous physical register must be
deleted, since an architectural register must be associated to a single physical
register. It is important to keep in mind that register r0 is never renamed, since
it cannot act as a destination operand in instructions. Register r0 always con-
tains a zero value.

4. When an instruction is retired, specifically in the first half of its WB stage, the
Counter field of its source physical registers is decremented. If the physical
register appears more than once, it is only decremented by one unit. If the
Counter field of any source physical register gets a zero value and does not
have an associated architectural register, it will be available to be used in a
future renaming and it is added to the corresponding FIFO queue.

Figure 2.46 provides an example of register renaming using the same program
as in figure 2.42. Although in such a simple example it would be easy to avoid reg-
ister recycling at compile time (as shown in figure 2.44), in general it is not always
possible, since the number of available registers is very limited and some data de-
pendencies are caused by branches that cannot be resolved in compilation time.

Expressions as ri→rrj:k are used to indicate changes in the renaming table.
This indicates that architectural register ri is associated to physical register rrj and
its counter is set to k. When a physical register is available for future renamings, the
architectural register does not appear in the expression and its counter is zero, i.e.,
rrj:0.

To analyse the renaming of registers in the example, it is necessary to focus on
the operations performed by stages ID and WB for every clock cycle, starting from the
initial state of table 2.4.

• Clock cycle #2. ID stage of ori r5, r0, 1. The architectural destination register,
r5, must be renamed, so it will no longer be associated to physical register rr5,
but to the first physical register available in the FIFO queue. Thus, the renam-
ing table is updated with r5→rr32:0. From now on, any reference to source
register r5 becomes a reference to the associated physical register rr32.

• Clock cycle #3. Something similar happens to register r6 at the ID stage of
ori r6, r0, 3, so the renaming table is updated with r6→rr33:0.

• Clock cycle #4. The destination register should be renamed and the counters
of the physical registers associated to the source architectural registers incre-
mented at the ID stage of dmul r4, r6, r5,. However, since a RAW dependency
is identified on registry r6 that leads to a pipeline stall, the modifications in
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Clock cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

ori r5, r0, 1 IF ID EX MEM WB

ori r6, r0, 3 IF ID EX MEM WB

dmul r4, r6, r5 IF ID ID ID MEM WB

ori r4, r0, 7 IF IF IF ID EX MEM WB

ori r6, r0, 6 IF ID EX MEM WB

EX

r5→rr32:0

r6→rr33:0

r4→rr34:0
r6→rr33:1
r5→rr32:1

rr34:0
rr33:0

r5→rr32:0

r4→rr35:0

r6→rr36:0

Figure 2.46: Program execution with register renaming by hardware

the renaming table are delayed to clock cycle #6, once rr33 physical register is
written by ori r6, r0, 3.

• Clock cycle #5. Instruction ori r5, r0, 1 is retired, so the counters of its physical
source registers should be decremented by one unit. Since there are no physical
registers in use in this case (register r0 is not considered), the renaming table is
unmodified.

• Clock cycle #6. Instruction ori r6, r0, 3 is retired without affecting the renam-
ing table.

The stall due to the RAW dependency also finishes in this cycle, so the renam-
ing table is modified at the ID stage of dmul r4, r6, r5. Firstly, destination regis-
ter is renamed, so r4 becomes associated to physical register rr34 (r4→rr34:0).
Secondly, the counters of the physical registers associated to architectural reg-
isters r6 and r5 are incremented, i.e., rr33 and rr32, respectively (r6→rr33:1 and
r5→rr32:1).

• Clock cycle #7. Register r4 is renamed with r4→rr35:0 at the ID stage of
ori r4, r0, 7.

• Clock cycle #8. Register r6 is renamed with r6→rr36:0 at the ID stage of
ori r6, r0, 6.

• Clock cycle #13. Instruction dmul r4, r6, r5 is retired, so the counter field of its
source physical registers is decremented by one unit, i.e., registers rr33 and rr32.
Physical registers rr34 and rr33 are no longer associated to any architectural reg-
ister and now have a zero counter (there are no pending instructions reading
them), so they become available and are added to the FIFO queue. The counter
of physical register rr32 also becomes zero, but unlike the previous physical
registers, it is associated to an architectural register, register r5, so it is unavail-
able.
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In short, the code actually executed on the microarchitecture is shown below:

ori rr32, rr0, 1
ori rr33, rr0, 3
dmul rr34, rr33, rr32
ori rr35, rr0, 7
ori rr36, rr0, 6

It can be verified that there are only true data dependencies (RAW) in this code,
since WAR and WAW dependencies have been eliminated thanks to the renaming
of registers. Thus, it was possible to reduce the execution time from 14 clock cycles
(figure 2.43) to 13 clock cycles (figure 2.46). One single cycle may seem a poor im-
provement, but it is not so small taking into account the low number of instructions
in the example.

Although the number of physical registers is usually high, all WAR and WAW de-
pendencies may not be removed in some complex programs due to the high number
of physical registers that would be required.

2.3.6 Reducing control hazard stalls

The execution of branches requires to calculate the target address and evaluate the
condition. The new value of the program counter is set in the MEM stage. In contrast,
in the case of jumps, the new value of PC is set in the ID stage.

When a branch instruction is decoded in the ID stage, it prevents the subsequent
instructions from entering the pipeline until it leaves the MEM stage. However, the
instruction following the branch cannot be prevented from entering stage IF, because
at that moment the branch instruction has not been identified yet, so that the result
of this stage is discarded. In total, there is a stall of three clock cycles. This stall is
shown in the example of figure 2.23.

Next, some techniques for reducing the stalls due to control hazards are pre-
sented.

Early evaluation of branches

The early evaluation of branches or early branches is a technique to reduce the penalty
of branches, advancing branch evaluation (computing the target address and evalu-
ating the condition) in the pipeline, for example to stage ID, which results in a stall
of one cycle, the same as for jumps.

Advancing the evaluation of branches requires some changes in the datapath.
The logic to calculate the target address of the branch is moved from the EX stage to
the ID stage. In addition, a comparator must be added to verify whether the branch
condition is met. With these changes, the affected part of the datapath required to
support the beq branch instruction would be that shown in figure 2.47. Figure 2.48
shows an example of execution with early evaluation of branches.

The implementation of figure 2.47 poses some challenges. Registers are read dur-
ing the second half of the clock cycle in the ID stage (and written during the first half
in WB). This means that the ID stage must carry out additional operations during the
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Figure 2.47: IF and ID stages for early evaluation of beq branches

Clock cycle 1 2 3 4 5 6 7 8 9

beq r5, r3, loop IF ID EX MEM WB

daddi r1, r0, 1 IF

and r3, r2, r4

xor r8, r8, r8

loop: dsub r3, r1, r2 IF ID EX MEM WB

Figure 2.48: A control hazard stall with early branches assuming the branch is taken
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Clock cycle 1 2 3 4 5 6 7 8 9 10 11

daddi r1, r1, 4 IF ID EX MEM WB

beq r1, r6, target IF ID ID EX MEM WB

or r3, r4, r9 IF IF IF ID EX MEM WB

and r12, r2, r5 IF ID EX MEM WB

Output EX→ Input ID

target:

Figure 2.49: Early branches require a new forwarding path: Output EX → Input ID.
In this example, branch is not taken.

second half of the clock cycle. It must compare the value of the registers, so this may
enlarge the clock cycle to accommodate this new logic. Thus, early branches are dif-
ficult to implement efficiently, as they may imply a longer clock cycle. The key is to
move the logic to compute branches to early stages in the pipeline without affecting
the clock cycle. It must be noted that the pipeline clock cycle depends on the longest
stage.

Another problem derived from the early evaluation of branches is that a new
forwarding path is necessary. The branch instruction needs the values of source reg-
isters in the ID stage, and these can be generated in stages EX and MEM as a result of
arithmetic-logic operations or memory loads, respectively. For the second case, the
register would be written in the WB stage during the first part of the next cycle and
could be read in the second part of that cycle. However, a new forwarding path is
required for the first case: Output EX→ Input ID. Figure 2.49 shows an example that
uses this new forwarding path. Note that it is still necessary to stall the pipeline for
one clock cycle.

Early branches are applicable to simple microarchitectures with few stages, as is
the case of the MIPS64 microarchitecture presented. However, they are not effective
in the case of microarchitectures with a greater number of stages.

Branch prediction

Branch prediction is the most commonly used technique to reduce stalls due to con-
trol hazards. It consists in predicting whether the branch is taken or not in such a way
that at the end of the IF stage the program counter contains the memory address of
the instruction that should be executed next.

It is a speculative execution technique that tries to predict the result of a branch.
Based on this prediction, the CPU executes instructions that should be executed after
the branch is evaluated otherwise. Performance improves in the case of a correct
prediction, as it has not been necessary to stall the pipeline waiting for the evaluation
of the condition and the computation of the target address. On the contrary, in the
case of an incorrect prediction, instructions have been executed improperly, so their
effects must be reverted.

To illustrate branch prediction, the following code snippet will be used.
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beq r4, r5, target
dadd r9, r0, r7
dsub r11, r10, r5
or r12, r5, r14

target:
dadd r7, r1, r3

The simplest prediction technique is called always not taken and it assumes that
branch conditions are never met. When a branch instruction is decoded, the con-
trol hardware of the CPU always assumes that the branch condition is not fulfilled
and continues executing the instructions that follow the branch without stalling the
pipeline, which also simplifies branch handling. Once the branch reaches the MEM
stage (or ID if early branches is used) and the branch condition is evaluated, there
are two possibilities:7

• Branch is not taken. In this case the prediction was correct (hit), so is the ex-
ecution of instructions following the branch. Pipeline has not stalled, so the
improvement is evident (three clock cycles). This situation is shown in fig-
ure 2.50a.

• Branch is taken. In this case the prediction was incorrect (miss). Instructions
dadd r9, r0, r7, dsub r11, r10, r5 and or r12, r5, r14 must stop progressing in the
pipeline, so they are discarded by flushing the pipeline. The stall is three cycles
as when there was no branch prediction. This situation is shown in figure 2.50b.

For example, if the branch conditions are met in half the branches of a program,
the average stall reduces from three clock cycles to just half, with the consequent
improvement of CPI.

An interesting feature of the studied MIPS64 microarchitecture is that stages IF,
ID and EX do not modify the status of registers or memory, so in the case of a pre-
diction miss, writings do not need to be reverted. Memory and register writings are
carried out in stages MEM and WB, respectively. This favourable feature is not acci-
dental, but it comes from of a very careful design of the microarchitecture. In deep
pipelines, instructions that are executed speculatively are labelled so that they cannot
make definitive writings in registers or memory. Only when the branch is resolved
the writings become definitive if the prediction was correct, or discarded if it was
incorrect.

The always-not-taken branch prediction technique is very basic and is currently
of little use. Some experimental studies have shown that, on average, two out of
three branches are taken and one is not, so the efficiency of the algorithm would be
about 33%. Of course, these figures are only indicative.

Modern pipelined CPUs implement many more stages than the MIPS64
pipelined microarchitecture presented with the aim of improving performance. As
the number of stages increases, the penalties of prediction misses are greater. They
involve longer stalls due to the instructions that must be discarded and higher en-
ergy consumption due to the execution of these unnecessary instructions. Thereby,

7It is necessary to remember that the evaluation of the condition is carried out in the EX stage, but the
PC register is modified in the MEM stage, so branch outcome is obtained in the MEM stage in practice.
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beq r4, r5, target IF ID EX MEM WB

dadd r9, r0, r7 IF ID EX MEM WB

dsub r11, r10, r5 IF ID EX MEM WB

or r12, r5, r14 IF ID EX MEM WB

dadd r7, r1, r3 IF ID EX MEM WB

Prediction: not taken Evaluation: not taken (hit)

target:

(a) Prediction hit

beq r4, r5, target IF ID EX MEM WB

dadd r9, r0, r7 IF ID EX

dsub r11, r10, r5 IF ID

or r12, r5, r14 IF

dadd r7, r1, r3 IF ID EX MEM WB

Prediction: not taken Evaluation: taken (miss)

target:

(b) Prediction miss

Figure 2.50: Behaviour with always-not-taken prediction

sophisticated branch prediction techniques are used going far beyond than assuming
that branches are never taken.

Branch prediction is an essential topic in the design of CPUs because of its in-
fluence on performance. Enormous research effort has been made on this subject.
Branch prediction algorithms of modern CPUs are very complex and outside the
scope of this text. However, it is interesting to describe a branch prediction algorithm
much more effective than the simple always not taken.

Firstly, it is convenient to meditate about the nature of the always-not-taken pre-
diction algorithm. It belongs to the family of algorithms called static, because once
they arrive at a branch instruction their behaviour is always the same for that instruc-
tion, regardless the outcome of the branch. The biggest drawback of static prediction
algorithms is that they do not take into account the history of the branch instruction,
that is, whether the branch was taken or not in previous executions. For example,
consider this loop of 100 repetitions:

.....
ori r1, r0, 100 ; r1 = 100

startf:
daddi r1, r1, -1 ; r1 = r1 - 1
bnez r1, startf ; jump to startf if r1 is not zero

endf:
.....

In the first 99 executions of bnez the condition is met, but not in execution 100
when the loop terminates. If the history of the branch were taken into account, the
CPU could miss predicting the first branch or even the second, but later, once the
history of the branch is analyzed, it is clear that the best prediction is to assume that
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the branch is taken. The opposite situation could occur and the analysis of the branch
could lead to assume that the branch is not taken in loops with different structure.
This is the key idea that dynamic predictors incorporate: they take into account the
history of the branch to predict whether the branch will be taken or not in the current
execution.

One of these dynamic predictors is the two-bit predictor, which uses a table,
called BHT (Branch History Table) or BPB (Branch Prediction Buffer), to store the
history of branches. It is also necessary to have a second table, called BTB (Branch
Target Buffer), where target addresses are stored for both branches and jumps.

For the sake of simplicity, from now on it is assumed that the information con-
tained in the BTB is included in the BHT, so that only a single table, the BHT, is
necessary for the operation of the predictor. Each time a branch/jump instruction is
executed for the first time, an entry in the BHT is created that contains these fields:

• Memory address of the branch/jump instruction (or its least significant bits). It
matches the value of PC at the beginning of the IF stage for the branch/jump in-
struction. This field is used in the IF stage to obtain the entry in the BHT while
fecthing the instruction code from the instruction memory at the same time.
Therefore, the reading of the BHT does not imply any performance penalty,
since it is done in parallel with the reading of the instruction memory.

• Target address of the branch/jump. In the studied MIPS64 microarchitecture,
the target address of a branch is calculated in the EX stage (when not using
early branches), but it does not become effective until the MEM stage, when the
PC register is updated. It is also in the MEM stage where the target address is
written to the BHT the first time the branch instruction is executed. In the case
of jumps, or branches with early evaluation, the writing is done in the ID stage.

• Prediction bits. They are used to predict whether a branch is taken or not based
on its past behaviour.

The two-bit branch predictor uses two bits in each BHT entry. These two bits
can be considered a counter that increments with each branch taken and decrements
with each branch not taken, saturating to 00 or 11. Based on the value of this counter,
these four states are possible:

• 00 (strong not taken).

• 01 (weak not taken).

• 10 (weak taken).

• 11 (strong taken).

The most significant bit determines the prediction. If it is 0 (states strong not
taken and weak not taken) the prediction is that the branch is not taken. If the bit is
1 (states strong taken and weak taken) the prediction is that the branch is taken.

The leftmost part of figure 2.51 shows the state diagram of the predictor, where
the initial state is 01 (weak not taken). The right part of the figure shows the BHT.
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Figure 2.51: State diagram and branch history table for a two-bit predictor

Several changes in the microarchitecture are necessary to implement the two-bit
branch predictor. Every clock cycle, the IF stage checks if there is an entry in the BHT
with the current PC address. If there is an entry, it is said that a BHT hit occurs, and a
BHT miss otherwise.

If a BHT miss occurs in a jump instruction the pipeline stalls for one cycle, since
the target address of the jump is unknown until the end of stage ID. At that time, the
BHT is updated to store the target address of the jump.

If the BHT miss occurs with a branch instruction, it is assumed that the branch is
not taken, so the pipeline will be flushed if finally the branch must be taken. If the
prediction is correct there is no stall, but if it is incorrect there will be a stall of three
clock cycles, or only one if early branch evaluation is used. In any of the above cases,
the BHT is updated, either in the MEM stage or the ID stage.

If a BHT hit occurs with a jump instruction, the PC is written with the target
address in the BHT entry. Since both the BHT check and the PC writing are performed
in the IF stage, no stall is required.

If a BHT hit occurs with a branch instruction, the most significant bit in the pre-
diction bits determines whether the branch should be taken. If it is predicted that the
branch is taken, the PC is written with the target address stored in the BHT entry. If it
is predicted that the branch is not taken, the value PC+4 is written in the PC. All this
process is done in the IF stage. Subsequently, it is checked the prediction correctness
in the MEM stage or the ID stage when using early branches. If the prediction was cor-
rect, execution continues without stalling. On the contrary, if it was incorrect, it is
necessary to flush all the instructions that erroneously entered the pipeline, leading
to a stall of three clock cycles, or only one when using early branches. In any of the
above cases the BHT is updated, either in the MEM stage or the ID stage.

The operation of the two-bit predictor is illustrated with the following example
(see figure 2.52). Early branch evaluation in the ID stage and all the forwarding paths
are assumed.
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Clock cycle 1 2 3 4 5 6 7 8 9 10 11

ori r1, r0, 1 IF ID EX MEM WB

beq r1, r0, 2 IF ID ID EX MEM WB

daddi r1, r1, -1 IF IF ID EX MEM WB

j -3 IF ID EX MEM WB

ld r3, 80(r8) IF

beq r1, r0, 2 IF ID EX MEM WB

daddi r1, r1, -1 IF

ld r3, 80(r8) IF ID EX MEM WB

0 :

4 :

8 :

12 :

16 :

4 :

8 :

16 :

BHT

Address Target History

4 16 00

4 16 00

4 16 00

12 4 11

4 16 00

12 4 11

4 16 01

12 4 11

BHT miss: prediction not taken (01)

Correct prediction | dec. hist.

BHT miss

Writing

BHT hit: prediction not taken (00)

Wrong prediction | inc. history

Figure 2.52: Operation of the two-bit branch predictor

ori r1, r0, 1 ; r1 = 1
startf:
beq r1, r0, endf
daddi r1, r1, -1
j startf

endf:
ld r3, 80(r8)

For the sake of simplicity, figure 2.52 depicts only the BHT queries of
jump/branch instructions, although BHT queries would be performed in all instruc-
tions,8 since instructions have not been decoded yet in the IF stage.

• The BHT table is empty the first time beq is executed, so a BHT miss occurs.
Therefore, the branch is predicted as not taken and PC is loaded with the ad-
dress of the following instruction (from address 8), which enters the pipeline in
cycle #3. In cycle #4, once the RAW dependency on r1 is resolved, the prediction
is verified to be correct, i.e., the branch is not taken. The entry corresponding
to the branch is written into the BHT table. The history for this branch will be
set to 00 (strong not taken) as the branch is not taken.

• A BHT miss also occurs in the first execution of j, so the jump must be pro-
cessed as usual in the ID stage. Once the jump target address has been calcu-
lated, PC and the target address of the jump instruction in the BHT are updated.
In addition, the history for this jump is set to 11 (strong taken) in the BHT entry
(the prediction is always to jump).9

• The branch instruction is reached again in the second iteration, but this time a
BHT hit occurs. Since the stored history is strong not taken, it is predicted that

8Instructions that are not branches or jumps will always generate a BHT miss.
9It does not make any sense predicting jumps, as they are always taken. This is a consequence of

combining BHT and BTB in a single table. Jumps only use BTB.
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the branch is not taken. In the next clock cycle the prediction is checked to be in-
correct, so the instruction that entered incorrectly the IF stage (daddi r1, r1, -1)
is flushed and the value of the branch target in the BHT is copied to PC. This re-
sults in one-cycle stall. Finally, the history counter in the BHT table is increased.

Experimental studies using typical programs have shown that a two-bit predictor
like this correctly predicts about 90% of branches. However, current pipelined CPUs
require even higher percentages than those achieved with this predictor in order to
reduce the CPI penalty. The behaviour of many branches also depends on previously
executed branches, so the most modern predictors take into account not only the
branch instruction to be predicted but also other branch instructions.

2.3.7 Pipeline depth

The instruction pipeline is a technique that exploits the parallelism that exists be-
tween instructions, which allows to execute several instructions at the same time, as
many as stages in the pipeline. For this reason, the independence of the instructions
in a program is key to achieve a high degree of parallelism and good performance in
pipelined CPUs.

A possible way to improve performance is increasing the pipeline depth, i.e.,
increasing the number of stages in the pipeline. Thus, the clock period is reduced
and therefore the CPU time. For example, if the number of stages is multiplied by
two, the duration of the stages will be half the original time ideally, doubling the
frequency and halving the cycle time, assuming as usual that all stages have the same
duration. According to the iron law of performance, CPU time would be reduced by
half. In theory, the higher the number of stages, the lower the CPU time and the
higher the CPU performance. However, as the number of stages increases, negative
effects appear that diminish the improvement in performance:

• There is an increase in the execution time of an instruction caused by a more
complex CPU hardware. Pipeline registers are arranged between the pipeline
stages. These pipeline registers introduce a delay due to the time required to be
written. In addition, by increasing the number of stages there are more stages
that require simultaneous access to the register file and memory, which implies
the use of multiport register files and memories. The access delays and the
hardware cost of multiport registers and memories increase rapidly with the
number of ports.

• The penalty coming from control stalls caused by branches and jumps increases
rapidly as the number of stages increases. In the pipelined MIPS64 microar-
chitecture, branches are evaluated in the MEM stage (without early branches),
so the cost of a control stall is three clock cycles in this case: the distance be-
tween stages IF and MEM in the pipeline. The larger the number of stages of the
pipeline, the further this distance and the penalty in clock cycles.

• As the number of stages increases, the clock frequency also increases, since all
the stages require a shorter clock cycle. A small increase in the clock frequency
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brings a large increase in the power dissipated and, at present, there are lim-
its on the power that a CPU can dissipate, which is known as the power wall.
Section 2.5 provides more details about these limits.

Considering all these limitations, modern general purpose CPUs implement
pipelines between 10 and 20 stages.

2.4 Multiple instruction issue

As shown in the previous section, a pipelined CPU achieves a CPI equal to 1 under
ideal conditions, or in other words, achieves a throughput of one instruction per
clock cycle. To improve the performance of the CPU it is necessary to reduce the
product of the three factors that provide the CPU time in the iron law of performance:

TCPU = Program instructions× CPI× T

For a given ISA, the number of program instructions depends on the compiler
and can be assumed constant for the same program. Therefore, the options for im-
provement are to reduce the clock period or to devise microarchitectures able to
achieve CPI values lower than one, that is, execute more than one instruction per
clock cycle. In the previous section it was indicated that there are practical limits on
the clock period derived from the power wall. Taking these constraints into account,
the remaining option to improve performance consists in executing more than one
instruction per clock cycle.

The number of instructions per clock cycle is called Instructions Per Cycle, or IPC,
and is directly related to CPI, since IPC = 1/CPI. Therefore, the interest will focus
on designing microarchitectures to achieve IPC values greater than one. For this, it
is necessary to exploit instruction parallelism even more.

One way to exploit instruction parallelism is the pipeline, where each stage of
the datapath is specialized in a part of the instruction and allows executing several
instructions simultaneously. The pipeline uses a type of parallelism called temporal
parallelism, schematized in figure 2.53a.

Another form of parallelism, called spatial parallelism, is possible. It consists in
replicating the CPU datapath to allow the execution of several complete instructions
at the same time. Figure 2.53b shows this other type of parallelism.

Finally, the temporal and spatial parallelism can be combined by replicating
the pipelined datapath, giving rise to several execution pipelines, as shown in fig-
ure 2.53c. This technique is known as multiple instruction issue and allows the CPU
to execute more than one instruction per clock cycle. The number of instructions that
can be processed in the same stage at the same time is called the issue width. For
example, for the datapath of figure 2.53c, the issue width is 2, which would allow
reaching an IPC of 2 (or a CPI of 0.5) in ideal conditions, without needing to double
the clock frequency.

Although figure 2.53c conceptually represents a multiple instruction issue CPU, it
does not correspond to the actual organization of this type of CPUs. Before showing a
more realistic organization, it is convenient to establish the objectives and restrictions
of multiple instruction issue CPUs:
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(a) Temporal

(b) Spatial

(c) Temporal and spatial

Figure 2.53: Types of parallelism in the execution of instructions

1. Instruction scheduling. Having several pipelines, even with different execution
units, it is necessary to correctly schedule the execution of instructions. Not
only is it necessary to decide which pipeline processes each instruction, but
also to solve cross-data dependencies that may appear between the instructions
of different pipelines. Instruction scheduling may rely upon the compiler, the
CPU or both.

2. Each pipeline stage must be able to process at least as many instructions as the
width of the multiple-issue CPU.

There are basically two alternatives to implement multiple instruction issue,
which differ in how the responsibility of dealing with the above problems is shared
between the compiler and the CPU: multiple issue with static scheduling and multi-
ple issue with dynamic scheduling.

In the multiple issue with static scheduling, the compiler packages several oper-
ations in a very long instruction code, each one associated to one of the CPU execu-
tion units. For example, if the CPU has 4 integer units, the instruction could include
four independent register addition operations. The compiler is responsible for carry-
ing out the packaging of operations to take advantage of program parallelism while
preserving instruction dependencies. Microarchitectures following this approach are
known as VLIW (Very Long Instruction Word). In this type of microarchitectures the
compiler must fit to the microarchitecture, so any change, even keeping the same
instruction set architecture, requires an important effort adapting the compiler.

In multiple-issue CPUs with dynamic scheduling, the hardware is responsible
for decision making in terms of instruction scheduling and hazard resolutions. How-
ever, to a lesser extent, the compiler collaboration can help to improve performance.
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This microarchitecture is called superscalar,10 as opposed to a scalar microarchitec-
ture, which can execute at most one instruction per clock cycle. The main difference
with VLIW microarchitectures is that superscalar CPUs guarantee the correct execu-
tion of instructions without compiler assistance. In a VLIW CPU, the correct execu-
tion of instructions is not guaranteed without the help of the compiler.

Currently, most modern CPUs are superscalar, so the rest of this section focuses
on them.

Instruction level parallelism is a key program parameter to take advantage of
multiple-issue microarchitectures and, in particular, of superscalar microarchitec-
tures. For this reason it is discussed in more detail below.

2.4.1 Instruction level parallelism

The independence of instructions in a program is of great importance to obtain a
good performance with pipelined CPUs, but even more in the case of multiple-issue
CPUs. Control hazards can be reduced using branch prediction, structural hazards
by replicating units or implementing multiport devices, but data hazards are part of
the program semantics. The pipeline continously stalls when there are many nearby
instructions with data dependencies. This penalizes performance.

Instruction level parallelism or ILP is a term used to refer to the level of inde-
pendence between instructions in a program. Figure 2.54 shows two code snippets
with two opposite situations in terms of instruction level parallelism. In the leftmost
snippet, all instructions except the first one could theoretically suffer data stalls (al-
though some are avoidable using register renaming). The bottom graph represents
the instruction dependencies. In this situation, the performance of a multiple-issue
CPU would be very poor, that is, the IPC value would be much lower than the CPU
issue width.

The rightmost code snipped in figure 2.54 has no data dependencies, so it takes
full advantage of multiple-issue CPUs, making their performance close to the ideal.
The corresponding graph appears just below. It can be observed that all the nodes
are disconnected, as there are no dependencies.

Dependency graphs provide visual information not only about instruction de-
pendencies, but also about the minimum execution time of a program. The longest
path within the graph approximates the minimum execution time. Although the
hardware available were unlimited, that is, a CPU with unlimited issue width, the
execution time could not be reduced below that associated with the longest path,
which is called the critical path.

In summary, the program ILP, or analogously, the dependencies between instruc-
tions, imposes theoretical limits regarding the minimum execution time of a pro-
gram, even with unlimited hardware. After all, if some instructions have to wait for
others, it is not possible to execute all of them in parallel.

10There are also superscalar CPUs with static scheduling, but they will not be considered, since their
operation is similar to VLIW CPUs. In this text the term superscalar CPU will be used to refer to a super-
scalar CPU with dynamic instruction scheduling.
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(1) dadd r1, r3, r4
(2) xor r2, r5, r1
(3) dsub r2, r4, r7
(4) movz r7, r4, r6
(5) slt r9, r7, r6

(1) dadd r3, r2, r1
(2) xor r6, r4, r1
(3) dsub r8, r4, r7
(4) movz r9, r4, r5
(5) slt r10, r7, r5

1

2

3

4

5

RAW en r7

WAR en r7

WAW en r2

RAW en r1

3

1 2

4 5

Figure 2.54: Examples of instruction level parallelism

2.4.2 Superscalar microarchitecture

Figure 2.55 shows a two-issue superscalar microarchitecture for a MIPS64 CPU at
block level. The organization of a CPU with a greater width would be similar. In-
struction execution is divided into five stages:

• Instruction fetch (IF).

• Instruction decoding (ID).

• Dispatch (DT).

• Execution (EX).

• Retirement (RT).

The stages do not exactly match those of the studied pipelined microarchitecture,
but most are conceptually similar. Stages IF, ID and EX are analogous to those of the
pipelined microarchitecture. The retirement stage, RT, performs a function analogous
to that of stages MEM and WB as a whole. The dispatch stage, DT, does not match any
of the stages in the pipelined CPU. All the stages can process two instructions at the
same time, except the EX stage that has six execution units: two for integers and log-
ical operations, one for load/store memory operations, one for branch evaluation,
one for floating-point operations and another one for integer multiplication/divi-
sion. These execution units require different number of cycles. In the case of requir-
ing more than one cycle, the units are pipelined to improve performance. Depending
on the combination of instructions, up to six instructions can be simultaneously in
the EX stage.
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Figure 2.55: Organization of a superscalar CPU
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Multiport buffers are placed between all the stages that allow to carry out several
reads and writes in parallel. These are registers with more capacity and complexity
than pipeline registers.

It is important to note that superscalar CPUs are divided into three sections, each
comprising one or several stages:

• In-order initial section. Instructions are read from memory, decoded and dis-
patched following the program order.

• Out-of-order issue and execution. Instructions are issued and executed out-of-
order in the corresponding execution unit to take full advantage of instruction
level parallelism.

• In-order final section. Instructions are retired following the order indicated by
the program, so memory and register writes occur in the proper order, also
providing support to precise exceptions.

Next, the stages of the superscalar CPU will be described in detail.

• IF fetches from the program memory a number of instructions equal to the
issue width of the superscalar CPU, in this case 2. Two consecutive instructions
are fetched at the same time, so a double-word is read (64 bits), starting from
the address given by PC.

Instruction fetches are aligned to 8 bytes (64 bits). This has some consequences
when changing the sequential flow of the program, since jump and branch
target addresses are aligned to 4 bytes.

Branch prediction is also performed in this stage as explained in section 2.3.6.

• ID is one of the most complex stages. It decodes two instructions (as many as
the width of the CPU) at the same time, reads the available source registers of
both instructions (up to 4 simultaneously), tags the missing registers (because
they are affected by RAW dependencies) and renames the destination registers
(to remove WAR and WAW data dependencies).

• DT extracts up to two instructions from the dispatch buffer and distributes them
to buffers called reservation stations, associated to execution units. Typically,
there is a reservation station associated with each type of execution unit. Each
of the reservation stations can store several instructions that await processing
by an associated execution unit. If the required reservation station is full when
the instruction needs to be distributed, a structural stall occurs.

Reservation stations are multiport buffers that deserve special attention. Each
reservation station receives instructions of a certain type. Entries in reservation
stations store the instruction together with the value of the available source
registers and tags for the registers not yet available. For example, in figure 2.55
there are reservation stations for load/store instructions, branches, integer
arithmetic-logical operations, floating-point instructions and integer multipli-
cation/division. The reservation stations define the boundary between the first
pipeline part, in order, and the out-of-order issue.
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An instruction in a reservation station waits until all its source operands are
ready. While an instruction is waiting for its operands, the forwarding bus is
continuously checked, where the instructions publish the value of destination
registers when they leave the execution stage. Once an entry in a reservation
station detects a match between a published register and one tagged in the
waiting instruction, the value of this register is stored in the entry of the reser-
vation station. When all the instruction operands are available, the instruction
is issued to be executed as soon as an execution unit is available.

• EX. Superscalar CPUs have several specialized execution units. Instructions are
executed out of order in these units. The order is determined by the instruction
issue and the availability of an execution unit. Once instructions are executed,
they are stored in the reordering buffer and the value of the register it modifies
is published on the forwarding bus. In addition, if an exception has occurred in
the execution of the instruction, the instruction is tagged within the reordering
buffer.

Once a instruction leaves the EX stage it has not still finished, but the publica-
tion of the modified register allows instructions with a RAW dependency on
the register to be issued. As can be seen, it is a generalization of the forwarding
path concept.

In the case of load or store instructions, the memory address is calculated and
the memory access operation is stored in the reordering buffer along with other
instruction information, such as source or destination registers.

• RT extracts instructions from the reordering buffer in the program order. In this
way, in addition to support precise exceptions, the compliance of RAW, WAW
and WAR dependencies between memory operands is guaranteed.11

An instruction must be tagged as non-speculative to be retired. When a branch
prediction is made, the instructions following the branch are tagged as specu-
lative. Later, when the branch condition is evaluated, the executed instructions
change from speculative to non-speculative and may be retired if the predic-
tion was correct. Otherwise, speculative instructions are discarded.

In the particular case of store instructions, writes are not carried directly to
data memory, but are carried to a storage buffer within the CPU in the pro-
gram order. Although the operation of this buffer is outside the objectives of
this chapter, it is worth mentioning that its objective is to accelerate memory
readings and writings.

In order to understand the implications in the execution of instructions in a su-
perscalar microarchitecture, figure 2.56 shows the execution of 8 instructions of a
program in the proposed superscalar MIPS64 CPU:

• The first two instructions are fetched from memory at the same time in the IF
stage. The CPU reads 64 bits that correspond to the codes of these two instruc-
tions.

11Compliance of memory dependencies is no longer trivial with out-of-order execution as occurred
with the studied MIPS64 pipelined microarchitecture.
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Clock cycle 1 2 3 4 5 6 7 8 9 10

dadd r1, r3, r4 IF ID DT EX RT

xor r2, r5, r2 IF ID DT EX RT

dsub r6, r5, r4 IF ID DT EX RT

slt r9, r3, r6 IF ID DT EX RT

dadd r3, r4, r8 IF ID DT EX RT

ld r10, 240(r2) IF ID DT EX EX RT

ori r11, r12, 5 IF ID DT EX RT

xor r1, r15, r14 IF ID DT EX RT

Forwarding

Figure 2.56: Superscalar execution

The two instructions are decoded at the same time in cycle #2, it is verified that
there are no dependencies between them, destination registers are renamed
and the 4 source registers are read from the register file. If some instruction
depended on the result of a previous instruction, it would be tagged to indicate
this situation (this is not the case).

The two instructions are distributed to the reservation stations in cycle #3. In
this case, since one is an arithmetic operation on integers and the other a logical
operation, both instructions are distributed to the reservation station of the
integer execution units.

In cycle #4 both instructions are issued and executed in the integer units (each
of them in one of the two available units). At the end of this cycle the instruc-
tions, already executed, are stored in the reordering buffer at the output of
the EX stage to keep the program order. The calculated values of r1 and r2 are
published on the forwarding bus in case they are required by any instruction
waiting at a reservation station.

During cycle #5 the results of both instructions are written in the register file
following the program order.

• The next two instructions are fetched in cycle #2. These are two integer arith-
metic instructions, so they could be executed at the same time. However,
there is a RAW dependency between the two on register r6. For this reason,
slt r9, r3, r6 must wait at the reservation station until dsub r6, r5, r4 computes
the value of r6 in cycle #5.

In cycle #6, the value of register r6 is available to slt r9, r3, r6 through the
forwarding bus, so this instruction is issued, executed in an integer execution
unit and retired one cycle later (in the RT stage).

• The following instructions are fetched in cycle #3. One is an integer arithmetic
instruction and the other a load instruction, so they can be executed at the
same time in an integer unit and the load/store unit, respectively. This last
unit requires 2 cycles, while the integer unit needs only one cycle. Hence, one
instruction is retired in cycle #7 and the other in cycle #8.
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It is important to note that there are three instructions in the EX stage during
cycle #6; a number greater than the CPU width. Two instructions are using
the integer execution units and the third is in the load/store unit. The same
happens in cycle #7.

• The following two instructions are fetched in cycle #4. They are two logical
instructions, so they could be executed at the same time in the two available
integer execution units. However, the load instruction ld r10, 240 (r2) is retired
in cycle #8, so only the first of these two new instructions can be retired at the
same cycle. Instruction xor r1, r15, r14 must wait until cycle #9 to be retired. A
structural stall occurs, since two instructions are retired in cycle #8.

Ignoring the four-cycle initial transient period, the execution of the 8 previous
instructions requires 5 cycles (from cycles #5 to #9), which results in IPC = 8/5 = 1.6,
which is equivalent to CPI = 0.625, lower than the theoretical minimum limit of 1
for a pipelined scalar CPU.

In�uence of speculative execution on security

As mentioned, it is usual to use speculative execution techniques such as branch
prediction and out-of-order execution to obtain a high performance in current archi-
tectures. This means that the effects of instructions executed speculatively must be
reverted in occasions. For example, when a branch is mispredicted or an exception
occurs during an instruction executed out of order. This can be very complicated
and, in fact, has been the cause of a series of vulnerabilities in mainstream proces-
sors (especially by Intel and AMD, but also by ARM). The first to be found, in 2017,
were called Meltdown and Spectre, and combine speculative execution with other
architectural concepts such as caches, privilege levels and exception management.

Although the details on how they are exploited are different in each case, the
general idea is always the same: trying to guess values (such as passwords or credit
card numbers) that should not be accessible to a program by speculatively executing
instructions that access memory addresses forbidden for that program. When it is
discovered that these instructions should not be executed, their effects are reverted,
but they leave a trace of their speculative execution. This trace may be a change
in the execution time of the program. By measuring the changes in the execution
time, theoretically inaccessible values can be obtained through what is called a side-
channel, a name used because information is not accessed directly through the main
channel, but indirectly.

These vulnerabilities are forcing CPU designers to modify their designs, trying
to avoid these attacks. For example, one of the attacks is based on improperly train-
ing the branch prediction tables from a program thread. Measuring the changes in
execution times, this thread can guess data from another program. One solution to
this problem is to empty the branch prediction tables each time the running thread
is changed. Another alternative is to have independent branch prediction tables for
each thread. In any case, the two alternatives raise performance penalties or increase
costs, which means new and very complex problems for CPU designers.
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Figure 2.57: Number of transistors in processors for the past few decades

2.5 Moore's law

The CPU microarchitectural and manufacturing improvements discussed in the pre-
vious sections pursue a common objective: to increase CPU performance. Unfortu-
nately, current technology is reaching some limits. This section describes these limits.

The term Moore’s law refers to the idea that the computational power will in-
crease dramatically, while its cost will be reduced, at an exponential rate. It is based
on a prediction made by Gordon Moore (co-founder of Intel) in 1965.

The prediction is based on the improvements in the manufacturing process used
for processors.12 Processors are manufactured using integrated circuits, also referred
to as chips or microchips, which are made from silicon glass wafers. Circuit compo-
nents, such as transistors or cables, are etched onto the surface of the wafer using
chemical techniques. A single wafer is used to build as many chips as possible in
order to make the most of its surface and save costs.

Over the years the manufacturing process has been improving. The manufactur-
ing process is designated by the feature size, i.e., the size of the smallest feature (a
wire, a transistor, or some other such circuit component) that can be etched onto the
surface of a wafer. Improvements in the manufacturing process allow the manufac-
turer to build smaller and faster transistors, and thus, including more transistors per
unit area. Figure 2.57 shows the evolution in the number of transistors of processors
over the years using logarithmic scale.

12In this text, the term CPU is used to refer to a processing unit, while the term processor refers to the
device that has its own die and includes one or more CPUs. When the die includes a single CPU, processor
and CPU are used interchangeably.
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These improvements in the manufacturing process are reflected in the factors of
the iron law of performance that provides the CPU time. They are analyzed in detail
next.

TCPU = Instructions per program× CPI× T

Having more transistors provides the opportunity for introducing improvements
in the microarchitecture, such as those shown in previous sections. During the early
years of development of superscalar CPUs, the extra available transistors were used
to design superscalar CPUs with an increasing issue width until the degree of par-
allelism of the programs was exhausted. Programs have a limited ILP level, thus
at some point increasing the issue width does not reduce the CPI and, therefore,
does not improve performance. The consequence from the point of view of the CPU
manufacturer is that further complicating the microarchitecture does not provide
any benefit, as it does not result in performance improvements. Current superscalar
CPUs usually have an issue width less than or equal to four.

Having faster transistors provides the opportunity for increasing the working
frequency, and thus, the performance of a microarchitecture, as it reduces the clock
period. The drawback is that the energy consumption of the processor increases
exponentially with the working frequency. Higher working frequency means more
power consumed and, therefore, more power dissipated. The dissipation of power
above 100 W in devices of approximately one square centimeter provokes thermal
issues that require very expensive technological solutions.

Figure 2.58 shows the increase in processors frequency for the last decades using
logarithmic scale. Due to power consumption and heat dissipation, the increase in
frequency stopped approximately in 2005. The technological limit that prevents fre-
quency from continuously increasing is referred to as the power or energy wall. This
power wall limits the frequencies from increasing well beyond 4 GHz.

Considering the maximum ILP of programs and the impossibility of increasing
the working frequency, the exponential growth of computational power that was
correctly predicted until then by Moore’s law slowed down years ago. Moreover,
the introduction of new manufacturing processes requires increasingly large invest-
ments by manufacturing companies, thus, these new technologies tend to appear
more distant to each other. This does not mean that CPU performance has not in-
creased since then, there has been improvements, but much more slowly, using other
forms of parallelism, described in section 2.6.

Taking into account the limitations of ILP and power, there are fundamentally
three ways to take advantage of manufacturing improvements of integrated circuits,
as can be seen in figure 2.59.

1. Manufacture the same functionality in smaller area and maintain frequency.
The reduction of the surface is an advantage in terms of cost, since more pro-
cessors can be produced per wafer. In addition, it has another important advan-
tage: energy consumption is reduced because it is proportional to the surface.
Energy consumption is a key parameter in the processors of mobile and IoT
(Internet of Things) devices, so this is an interesting option.
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Figure 2.58: Frequency in Intel processors for the past few decades
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Figure 2.59: Options for improvement when shrinking the manufacturing process
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2. Manufacture the same functionality in smaller area and increase frequency. The
idea behind this option is to take advantage of the reduction in consumption,
obtained when reducing the area, to increase frequency, which again increases
consumption, until the reduction on one side is compensated with the increase
on the other. The problem with this option is that reductions in consumption
due to the reduction of the surface are quickly absorbed by small increments
of frequency. The reduction of power is proportional to the reduction of sur-
face, but it grows exponentially with frequency. For this reason, the possible
frequency increases with manufacturing improvements are very small.

3. Add more functionality for the same surface and maintain frequency. The in-
crease in the number of transistors makes possible the integration of other com-
ponents of the computer into the processor, such as I/O devices, memories,
etc. This achieves performance improvements, since communications between
these components and the processor are faster. For example, the integration of
part of the memory inside the processor chip reduces memory access time. An-
other possibility when adding more functionality is to integrate several CPUs
within the same chip, resulting in multicore configurations. This type of con-
figuration is described in section 2.6.

In summary, manufacturing improvements were traditionally used to implement
increasingly sophisticated microarchitectures and increase clock frequency. Once this
path was exhausted, new techniques began to appear where increases in perfor-
mance are also obtained, although more modest. Next section describes some of
these techniques.

2.6 Multi-threaded CPU

The usual way to increase performance beyond the limits imposed by manufacturing
technology is to increase the level of parallelism of the system. So far, instruction
level parallelism has been used to achieve performance improvements, but there are
other forms of parallelism, described in Flynn’s taxonomy.

2.6.1 Flynn's taxonomy

Flynn’s taxonomy is a classification of computer architectures proposed in the 1970s
and still used today. It is based on the number of concurrent instructions and data
streams available, and considers four large groups: SISD, SIMD, MISD and MIMD.
Below are the main characteristics of each group.

SISD (Single Instruction, Single Data). SISD describes the organization of a com-
puter that executes a single stream of instructions on a single data stream. This is the
case of von Neumann and Harvard architectures.
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SIMD (Single Instruction, Multiple Data). SIMD describes the organization of a
system that executes a single stream of instructions on multiple data streams, that is,
it executes the same instruction on several data items at the same time, which results
in a significant performance improvement. For example, if it is necessary to add
two vectors of four elements, considering the corresponding components, to obtain
a third vector, rather than using a loop to iterate four times across the sequence of
values adding each corresponding component, a single SIMD instruction could be
used to perform all four additions at the same time. This implies a great advantage
in terms of the time required for instruction fetch and execution.

An example of a SIMD system is the graphic processing unit (GPU) of a personal
computer, since it is common for graphics procedures to apply the same operation
on several pixels of an image. The CPUs used in current personal computers also
have SIMD instructions. Multimedia and signal processing applications usually take
greater advantage of SIMD instructions for exhibiting this type of parallelism.

MISD (Multiple Instruction, Single Data). MISD describes the organization of a
system that executes multiple instruction streams on a single data stream.

MISD systems do not use parallelism to achieve performance improvements, but
for fault tolerance, since they execute the same instruction in parallel on the same
data item to detect errors at run-time. They are used in critical systems, such as avi-
ation systems.

MIMD (Multiple Instruction, Multiple Data). MIMD describes the organization
of a system that executes multiple instruction streams over multiple data streams.
This is the generalization of von Neumman or Harvard architectures.

There are two alternatives to implement a MIMD system with several CPUs and
several memory devices:

• MIMD using distributed memory. It consists in replicating the CPU/memory
pairs and connecting them through a communication network. Each memory
device can only be accessed by the CPU assigned to it.

• MIMD using shared memory. It consists in building a set of CPUs and memory
devices so that any CPU can access any memory device through an intercon-
nection mechanism.

Current processors mostly follow a shared memory MIMD approach. All CPUs
share the system memory. This is the case of multicore systems, which are pre-
sented in section 2.6.3. This approach, based on the execution of several programs
(or threads) concurrently, increases performance beyond the limits established by
ILP and the power wall.
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2.6.2 Thread level parallelism

A thread is the minimum unit an operating system can schedule for execution. Each
program has at least one thread, but some programs may have multiple threads.
In this case, the CPU performance can be improved by running multiple threads
sharing the CPU in what is called multi-threading. This technique takes advantage
of task parallelism or thread level parallelism (TLP). The CPU only executes one
thread at any time, so threads must share CPU time. The switches between threads
in the CPU must be done very fast in order to make this technique efficient.

Thread level parallelism is different from instruction level parallelism, exploited
by the CPU pipeline or superscalar architectures. Two fundamental differences be-
tween both types of parallelism are:

• ILP improves the performance of each individual thread, regardless of the
number of threads. Thus, the performance of a single-thread program is au-
tomatically improved, without changes in the programming paradigm.

• TLP, on the other hand, only improves performance when several threads are
executed at the same time. Unlike ILP, TLP is not transparent to programs;
it requires transforming single-thread programs into multi-thread programs
in order to take advantage of the performance improvements. Multi-thread
programming is significantly more complex than single-thread, as it requires
taking the synchronization between multiple threads into account.

An evolution of multi-threading used in many current CPUs is simultaneous
multi-threading (SMT). The underlying idea is that CPUs offer a high number of
parallel functional units that are not always used at the same time, either because
of the type of instructions being executed, or the program has a low ILP. Thus, it is
possible to simultaneously run several threads instead of sharing CPU time. How-
ever, not all the functional units required to execute any combination of instructions
in multiple threads are replicated. The best-known implementation of SMT is the In-
tel HyperThreading technology, where two threads may be executed simultaneously
in a single CPU. This is only possible under certain conditions, so the performance
increase is limited.

2.6.3 Multicore processors

As indicated above, at the beginning of the first decade of the 21st century large
increases in frequency ceased to be significant due to energy issues and heat dis-
sipation. Thus, the most commonly used method to increase performance was to
transform architectures with a single CPU into shared memory MIMD architectures
following the scheme shown in figure 2.60. CPUs based on this type of architecture
share the main memory, in such a way that the memory access time is similar for all
CPUs. For this reason, this type of architecture is often referred to as Shared Memory
Processors (SMP) or Uniform Memory Access (UMA).

A multicore or multicore processor refers to a processor that contains two or more
CPUs, or cores. In this way, the extra transistors provided by the improvements in
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Figure 2.60: Basic architecture of a multicore processor

manufacturing technology are used to integrate several CPUs within the same chip,
obtaining new performance improvements despite the maximum ILP of programs
and limitations in power dissipation.

Nowadays, almost all multicore processors are SMPs, since they usually share
a single physical address space. Multicore technology is common for all types of
processors in desktops and laptops, and it is also present even in mobile phones and
tablets.

Multicore processors can also implement SMT techniques, so each processor core
can execute more than one thread simultaneously. For example, a processor with
four cores that implements SMT in such a way that it can schedule two threads on
each core offers the operating system the possibility to execute up to eight simulta-
neous threads. However, these eight threads are not equivalent, as it is not the same
to schedule two threads within the same core as in different cores. When two threads
are scheduled within the same core, sometimes they will be able to run simultane-
ously and sometimes not (when they require a non-replicated functional unit). When
two threads are scheduled in different cores, they will not compete for the same func-
tional units, thus, they will be able to run simultaneously.

Multicore processors provide better performance in terms of throughput. How-
ever, this technique has limitations. Using many cores gives rise to a new wall: the
memory wall. Many cores accessing memory simultaneously cause memory to be-
come a bottleneck. This effect is mitigated with the use of caches. As shown in fig-
ure 2.60, each core has usually one or more levels of memory, called cache memory.
These caches are essential to reduce the dependency on memory. However, consid-
ering the current growth rate in the number of cores, it is estimated that the number
of cores will be limited by the memory wall in the future. The cache memory is thor-
oughly studied in chapter 3.

In general, there are three walls that limit performance: the power wall, the mem-
ory wall, and the ILP wall. The combination of these three walls is known as the brick
wall, and it is a way to describe the technological limitations that prevent computa-
tional power from maintaining the growth at the same pace as in the past.
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2.7 Multitasking OS support

So far, this chapter has presented an example of instruction set architecture: the
MIPS64 architecture. Based on this architecture, different microarchitectures have
been developed with the aim of improving performance within technological limita-
tions. While performance is a very important part of a CPU, there are other important
aspects related to the CPU functionality. One of the requirements of any modern CPU
is the support for multitasking operating systems. Broadly speaking, functionality is
linked to the instruction set architecture, that is, it indicates what the CPU can do,
while performance refers to the speed this functionality is performed. The latter de-
pends on the microarchitecture. Nevertheless, some of the CPU features supporting
multitasking operating systems have consequences in terms of performance.

Basic concepts of multitasking operating systems are introduced in this section
before presenting the support of the architecture for them.

2.7.1 Introduction to multitasking OS

A user does not usually use a bare computer, that is, a computer without any soft-
ware installed. In general, an operating system is installed in the computer. The com-
bination of a computer and the operating system constitutes a machine that provides
a series of services to user applications, which interact with the hardware through
a perfectly defined API (Application Programming Interface). This makes applica-
tion programming much easier, since the operating system provides a hardware-
independent interface. The operating system also becomes a manager of computer
hardware resources in order to provide services to applications. The relation between
hardware, operating system and applications is represented in figure 2.61.

Virtually all current operating systems are multitasking OSs. This means that the
set formed by the computer and the OS supports multiprogramming, that is, it can
run several programs concurrently.

A multitasking operating system is a program with access to all the resources of
the machine. It provides services for the rest of the programs, which are generally
referred to as tasks.13 At any given time, assuming a single CPU or single-core pro-
cessor, either a task or the operating system will be running. Figure 2.62 shows an
example of execution of three tasks and the operating system. As can be seen, the
execution time of the operating system is very low compared to that of the tasks.14

Over a period of 50 milliseconds, each task is executed from two to three times. This
is perceived by the user as the simultaneous execution of the three tasks, although in
reality one task or the operating system is in execution at any time. Pausing and sav-
ing the state of a task and restoring the state of a different task to resume execution
is called a context switch.

Figure 2.62 shows how to change the running task, that is, perform a context
switch. This requires a transfer of control to the operating system, i.e., transferring

13The term task is used as an abstraction for the concepts of process and thread, commonly used in
operating systems.

14This is not true when the operating system is executing the code of a complex service requested by a
task.
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the execution to the operating system. A multitasking operating system takes control
of the machine when one of these three situations occur:

1. A task requests a service from the operating system by making a system call.

2. An interrupt occurs.

3. An exception occurs.

A handler or routine of the operating system is executed in any of these situa-
tions. Some issues need to be considered:

• Every time a program makes a system call, or an interrupt or an exception oc-
curs, the handler may modify the state of the tasks. For example, it can revoke
the control of the CPU from one task to grant it to another, as can be seen in
figure 2.62.

• System calls, interrupts and exceptions can be nested. For example, an excep-
tion may be generated during the execution of an interrupt handler, or an inter-
rupt handler may be also interrupted to execute the handler of a higher priority
interrupt that has just occurred.

• It is necessary to be careful with the nomenclature used in real CPUs, since
there is no common agreement in the technical literature. In some CPUs, sys-
tem calls, interrupts and exceptions are included under the generic term excep-
tions, as has been done in this text in previous sections. Others use the generic
term traps. There are other CPUs where system calls are known as software
interrupts, such as x86 CPUs. In the rest of this text the terms used are system
calls, interrupts and exceptions.

• A timer is required to generate a periodic interrupt every T time units. This
ensures that the operating system regains control of the machine in the worst
case every T time units. This prevents a task from monopolizing the CPU when
no exceptions or interrupts are triggered.

The following sections describe the three mechanisms for transferring control to
the operating system.

Calling operating system services

It consists in an application calling a routine of the operating system that provides a
service. For example, when a program needs to open a disk file, it makes a system
call. It is important to understand that a program cannot access the disk directly; it
must always do it using services provided by the operating system.

There are two types of instructions related to system calls. Generically, they are
called Sysret and Syscall, although their real name depends on the architecture.

• Syscall. Instruction to request an operating system service through its API.
The control of the CPU is transferred to the operating system when a task exe-
cutes this instruction.
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Figure 2.63: Call and return of an operating system service

• Sysret. Instruction to return from a system call. The operating system exe-
cutes this instruction just before returning control of the CPU to the task that
requested the service (or another task if a context switch occurs). The operat-
ing system accesses the memory space of the task between the execution of
Syscall and Sysret. For example, in the case of opening a file, it writes in-
formation about whether the file opening operation was successful in a data
structure of the task. After executing Sysret, the next instruction after Syscall
is executed.

Figura 2.63 shows how the call and return of an operating system service occurs.

Interrupts

Interrupts are a hardware mechanism used by a peripheral interface to ask the CPU
to temporarily interrupt the execution in progress in order to execute an interrupt
service routine. This routine, or interrupt handler, is part of the operating system.
As with systems calls, the last instruction of the routine is Sysret. Then, the CPU
continues execution from where interrupted.

For example, interrupts occur every time a packet of data is received through a
network interface, the user presses a key on the keyboard or the system timer expires.

Figure 2.64 shows the execution flow of the CPU during an interrupt. The steps
are the following:

• An interrupt can occur at any time and the CPU does not know a priori when it
will happen.

• The execution of the current instruction is completed and the CPU jumps to
the interrupt service routine, which is part of the operating system.

• The interrupt service routine is executed until instruction Sysret is reached.
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Figure 2.65: Execution flow during an exception

• After Sysret, the execution of the task is restored. The CPU executes the next
instruction after the one it was executing when it was interrupted.

Exceptions

The purpose of exceptions is to transfer control to the operating system when an
abnormal situation occurs during the execution of an instruction. Contrary to what
happened with interrupts, it is not a peripheral that originates an exception, but the
CPU. There are many situations that can trigger an exception. For example, when an
instruction that attempts to perform a division by zero is executed, or when the CPU
tries to execute an invalid instruction code.

Figure 2.65 shows the execution flow of the CPU during an exception. The steps
are the following:
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• During the execution of an instruction an exception is triggered.

• Control is transferred to the exception handling routine, which is part of the
operating system.

• The exception handling routine is executed until instruction Sysret is reached.

• Sysret generally returns to:

a) the same instruction causing the exception, or

b) the instruction just after the instruction that caused the exception, or

c) it cannot return.

2.7.2 Support for multitasking OSs

CPU support for multitasking operating systems establishes a series of minimum
functional requirements that must be implemented in the architecture. These require-
ments are the following:

1. There are privileged instructions in the instruction set that only the operat-
ing system should be able to execute. These instructions modify the operating
mode of the CPU or change its configuration. A clear example is an instruction
that disables interrupts. If a task could execute this privileged instruction, the
system as a whole would stop responding to external events, such as the inter-
rupts requested by the keyboard interface when a key is pressed. On the other
hand, the operating system must be able to execute any instruction required to
manage the resources of the machine.

2. The memory of the OS must be protected from reads and writes by user tasks.
The operating system is another program stored in the memory of the com-
puter. If a user task could write in the memory area associated with the oper-
ating system, it could modify its operation, taking control of the machine or
even causing a malfunction. If a task could read the memory of the operating
system, it could access private information from another user, or even perform
reads on the peripheral interfaces, which are mapped in the memory area of
the operating system.

3. The memory of a task must be protected from reads and writes performed by
another task. A task should not have access to the memory area of another task,
as it could access private data. Writing in the memory of another task should
not be allowed either, since it can modify its operation.

4. Whenever a system call, interrupt or exception occurs, the CPU must provide
mechanisms to save the execution state. Thus, execution can be restored where
it was once the service routine is completed.
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Figure 2.66: Some bits of the status register of the MIPS64 architecture

2.7.3 Support for multitasking OSs in MIPS64

The functional requirements that must be implemented in the architecture in order
to support multitasking OSs have been introduced. Next, an example with a real
architecture is presented: the MIPS64 architecture. As will be seen, new instructions
and registers will appear that were not necessary before.

Levels of privilege

The execution privilege level (or mode), or protection ring, is the state of the CPU
that indicates which instructions can and cannot execute. The most privileged level is
usually associated with the operating system, while the least privileged corresponds
to user tasks. In the former, all the instructions in the instruction set can be executed,
while in the latter only a subset of the instruction set can be executed.

The privilege level of a CPU is defined by one or more control bits. In the case of
the MIPS64 architecture there are basically two levels of privilege:

• User. Level in which user tasks are executed.

• Kernel. Level in which the operating system is executed.

The privilege level is defined by bits UM, EXL y ERL of the status register. Figure 2.66
shows these bits in the status register.15 In user mode, the value of the bits is as
follows: UM=1, EXL=0 and ERL=0. In kernel mode, the value of the bits is as follows:
UM=0, EXL=1 and ERL=1.

One of the privileged instructions in the MIPS64 architecture is di, which disables
interrupts. This instruction can only be executed in kernel mode. An exception is
triggered if it is executed in user mode.

The microarchitecture changes the state of bits UM, EXL and ERL to switch from user
mode to kernel mode when an interrupt, system call, or exception occurs during the
execution of a task. The instruction syscall is used to make a system call.

The instruction used to finish the execution of a service routine is eret. This in-
struction modifies the value of bits UM, EXL and ERL to switch the CPU to user mode.

15This figure also shows the interrupt flag, IE, and bit RE, which determines if the CPU is working in
little endian or big endian mode.
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Memory protection

In order to protect the memory of the operating system from user tasks, the
MIPS64 architecture reserves a specific range of addresses. Any address in the range
4000 0000 0000 0000h to FFFF FFFF FFFF FFFFh can only be accessed in kernel mode,
that is, only by the operating system. OS data and code located in this range are
protected from user tasks. User tasks are asigned the range 0000 0000 0000 0000h to
3FFF FFFF FFFF FFFFh. When a task tries to access a memory address outside this
range, either with a load or a store instruction, an exception is triggered.

In order to protect the memory of one task from other tasks, the MIPS64 CPUs
incorporate a memory management unit that implements a paged virtual memory
system. The paged virtual memory is used to assign a unique address range to each
task, which does not overlap with those of other tasks. When a task tries to access
an address from a range of addresses of a different task, an exception is triggered.
Paging will be studied in chapter 3.

Saving the execution state

When an interrupt, system call or exception occurs, it is necessary to save the ex-
ecution state in order to be restored later and resume execution. In the case of the
MIPS64 architecture there are two related registers, EPC (also called Exception PC)
and cause register.

EPC stores the address of the instruction to execute when the routine finishes. It
can be the address of the instruction after the one that caused the interrupt, system
call or exception, or the address of the same instruction that caused an exception.

The cause register stores a value that identifies the interrupt, system call or
cause of the exception.

When an interrupt, system call or exception occurs, interrupts are disabled to
prevent another interrupt from overwriting EPC and cause register. The time while
interrupts remain disabled should be as short as possible. Thus, the service routine
immediately creates a copy of EPC and cause register in a secure location and re-
enables interrupts.

Returning from a service routine is carried out by writing to EPC the previously
saved return address and then executing eret. Then, the CPU switches to user mode
and resumes execution in the instruction whose address was saved in EPC.

2.8 Virtualization support

Virtualization is a technique that allows to run several operating systems with their
applications on the same machine. It has innumerable advantages and is used both in
servers and desktop computers. In this section, a brief introduction to virtualization
is provided first. Next, an example of virtualization is presented, in this case with
the x86 architecture.
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2.8.1 Introduction to virtualization

Virtualization is a general concept where a virtual (fictitious) entity is presented as if
it were real. In computer science, it is used in many areas; the closest to computer ar-
chitecture is what is usually called hardware virtualization, where virtual machines
are created as duplicates of the real, or physical, machine. Operating systems can be
installed in these virtual machines as if they were physical machines. This has many
advantages, such as running different operating systems on the same hardware at
the same time, isolating applications from each other, or easily migrating entire sys-
tems (operating system and applications) between different physical machines.

At the beginning, computer architectures were designed assuming that only a
single OS had to be supported. The OS would manage hardware resources between
different applications. Operating systems, in turn, were designed assuming they
were managing hardware that was not shared with other operating systems. There-
fore, it was not possible to run two different operating systems at the same time on a
single physical machine. The solution was to add an abstraction layer that supported
virtualization.

An hypervisor or Virtual Machine Monitor (VMM) refers to the component that
interacts directly with the real hardware and presents a virtual hardware to the oper-
ating systems of virtual machines, multiplexing the hardware (real) between several
virtual machines. There are two types of hypervisor (see figure 2.67):

• Type 1: the hypervisor is a small software layer that runs directly on the real
hardware and has the sole purpose of managing resources between virtual ma-
chines; it is not dedicated to execute other applications.

• Type 2: the hypervisor is an application that runs on an operating system called
host, which manages the real hardware and can run other applications. The
hypervisor is responsible for providing virtual machines where the other op-
erating systems will be executed, which are called guests.

Type 2 hypervisors provide less performance than those of type 1, since the host
operating system represents an additional software layer. However, unlike type 1 hy-
pervisors, which run on very specific hardware, type 2 hypervisors have the advan-
tage of running on almost any hardware, since the host operating system provides
the necessary support.

Initially, most architectures did not support virtualization. However, even in that
case a less efficient VMM could be built, running the guest operating systems with
the privilege level of the tasks and using the technique called trap-and-emulate. In
this way, each time a guest operating system executed a privileged instruction, an ex-
ception was triggered that was captured by the hypervisor, emulating the behaviour
of the instruction on real hardware and then returning the control to the guest op-
erating system. Even using the trap-and-emulate technique there were instructions
that caused no exceptions when executed in non-privileged mode, but they changed
their behaviour when executed in privileged mode. This type of instructions is called
sensitive. To solve this issue, it was necessary to use a technique called binary trans-
lation, which translated sensitive instructions into other non-sensitive instructions
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Figure 2.67: Types of hypervisor

before they were executed by the CPU. The main problem with the trap-and-emulate
technique and binary translation is the considerable reduction of performance in the
execution of the virtual machine.

Another more efficient alternative than using trap-and-emulate and binary trans-
lation techniques is paravirtualization. Basically, it consists in modifying the host
operating system by replacing its privileged code fragments with calls to hypervi-
sor services. Therefore, a relationship is established between the hypervisor and the
guest operating system analogous to that between an operating system and a user
task. The biggest drawback of paravirtualization is that it requires modifying the
guest operating system, which is difficult. Moreover, this is not feasible if the source
code is not available.

Nowadays, general-purpose CPUs provide hardware support for virtualization
in such a way that trap-and-emulate and binary translation techniques are no longer
necessary, which reduces the gap between the performance of the virtual machine
when compared to the real machine. Although in this case paravirtualization is not
necessary, some operating systems implement a reduced version, so that during its
execution they can determine if they are running directly on the hardware or on a
paravirtualized hypervisor, thus they can optimize its operation. For example, the
VirtualBox hypervisor provides the KVM paravirtualization option that allows to
optimize the performance of virtual machines running modern versions of Linux.

2.8.2 Virtualization support in the x86 architecture

Modern versions of the x86 architecture have introduced hardware support to virtu-
alization in the form of new instructions and modes of operation. The first improve-
ments are included under a set of extensions called VT-x, in the case of Intel, and
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Figure 2.68: Control transfer with the VT-x extension

AMD-V, in the case of AMD. Both extensions are incompatible, so the implementa-
tion of a hypervisor in the x86 architecture usually requires identifying the supported
extension. Basically, these extensions introduce an additional level of privilege, more
privileged than the level of privilege associated with operating systems, as well as a
set of new instructions and data structures related to virtualization.

The operation of virtualization is illustrated using Intel VT-x as an example.
When the architecture includes this extension, the CPU implements a new opera-
tion mode associated with virtualization, called VMX. The CPU enters this mode by
executing a new instruction, VMXON, and leaves this mode using another new instruc-
tion, VMXOFF. Once the CPU is in VMX mode, it can be in two operating sub-modes:

• VMX root. Mode in which the hypervisor is executed with access to the com-
plete instruction set. In systems that use type 2 hypervisors, the host operating
system is also executed with this privilege level.

• VMX non-root. Mode in which the operating systems of all the virtual ma-
chines are executed with access to a subset of the instruction set (larger than
the subset of user tasks).

Figure 2.68 shows the changes between operation modes using the new instruc-
tions included in the VT-x extension.

In VMX root mode, the CPU has instruction VMLAUNCH to start a virtual ma-
chine, transferring the control to the corresponding operating system. The transfer
of control from the hypervisor to the operating system is called VM entry. Once the
VMLAUNCH instruction is executed, the CPU enters VMX non-root mode.

Once the operating system takes control of the system, it runs normally until it
executes certain instructions. At that moment, the control of the system is transferred
from the operating system to the hypervisor, which is called VM exit. Once the hy-
pervisor takes over, it can properly handle the instruction that caused the VM exit
using the trap-and-emulate technique. The operating system then regains control of
the machine when the hypervisor executes VMRESUME, which results in a new type of
VM entry.

VT-x and AMD-V extensions significantly improve the performance of virtual
machines, improving the management of the CPU. However, there are other compo-
nents of the computer that suffer performance issues derived from virtualization that
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are not alleviated with these extensions. This is the case of virtual memory and the
input/output system. In the case of virtual memory, architectures implement new
extensions, which are described in section 3.5, while in the case of the input/output
system they are described in section 4.4.
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The memory hierarchy

This chapter shows how the computer memory system is built using different stor-
age technologies, trying to obtain a fast, cheap and high-capacity memory system.
Nowadays, this is achieved by combining three different memory technologies:

• SRAM memory. Used in the cache memory.

• DRAM memory. Used in the main memory.

• Secondary storage. Managed with the virtual memory.

3.1 Introduction

The memory system is the second most important component in the computer after
the CPU. The memory system is used to store the instructions and data that con-
stitute programs. Therefore, it needs to be large in order to store many programs
with many instructions and much data. In addition, it needs to be fast, since the
CPU accesses memory at least once per instruction: in the instruction fetch stage. If
the instruction is a load or store instruction, a second access is required, this time to
read or write data, respectively. In general, the CPU is faster than the memory, so
instructions accessing memory may stall, waiting for the memory system.

Speed differences between CPU and memory have widened with time, as they
have experienced different technological advances. The speed of the CPU has greatly
increased, so has the number of processor cores. On the contrary, memory has
evolved mainly in density, that is, in storage capacity, but to a lesser extent in speed.
Figure 3.1 shows the evolution in terms of speed followed by both the CPU and the
memory.1

When the CPU waits for the memory, performance decreases rapidly. This de-
crease is even greater when considering recent trend to include more and more cores

1These figures are a mere approximation, since measuring the speed in MHz is misleading. The per-
formance of CPUs working at the same clock frequency can be very different.
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Figure 3.1: Evolution in terms of speed followed by both CPU and memory

in the processor. This causes the effective performance of the CPU to decrease be-
cause it needs to wait for memory.

For example, a pipelined CPU working at a frequency of 1 GHz could be capable,
ideally, of executing instructions with a CPI of 1, that is, it could execute 1000 MIPS.
However, if assuming the real CPI of this CPU is 1.3 because it needs to wait for
memory in load and store instructions (without considering instruction fetches), the
actual CPU would be able to execute only 769.23 MIPS.

To solve the problem of size and speed, the available options to build a memory
system are listed below:

• Static RAM technology (SRAM). The basic cell is a flip-flop.

• Dynamic RAM technology (DRAM). The basic cell is a capacitor and requires
refresh.

• Secondary storage (magnetic disks and solid state drives).

Among these three alternatives, SRAM is the fastest, with an access time close to
the CPU clock cycle. DRAM memory is 5 times slower than SRAM. Magnetic storage
is extremely slow, up to 10 million times slower. Finally, flash memory (SSD drives)
is around 100 times faster than magnetic storage, but its access time is still far from
those of SRAM and DRAM.

Considering access time, there is no doubt: the memory of the computer should
be built with SRAM. However, there is an additional constraint that has not yet been
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Figure 3.2: Comparison between cost and speed for different memory technologies

mentioned: the cost should be low. This is determined both by the physical size of
the basic cell (amount of material needed to store a bit), and the energy consumed.
Considering physical size the characteristics of the three technologies are the follow-
ing:

• SRAM has the largest cell size, requiring at least 6 transistors and is the one
that consumes the most energy.

• DRAM only needs one transistor to build the basic cell and requires less energy
consumption.

• In magnetic storage the basic cell is made of a few elements of magnetic mate-
rial, allowing very large storage densities. Cells are passive, that is, they do not
consume energy to maintain information. Solid state drives are based on flash
technology, which is also passive.

Figure 3.2 compares the two previous criteria in logarithmic scale: speed of the
memory, expressed as latency, and cost, expressed in e per MiB.

As an example, representative technologies available in 2017 can be considered.

• SRAM.- SRAM, as currently used, is built into the processor and its cost could
only calculated as the cost difference of two identical processors except for
SRAM size. Intel Core i3 4170T and 4370T processors are considered with
3 MiB and 4 MiB of cache (SRAM), respectively. The access speed is approxi-
mately 1 nanosecond. Costs are approximately 135,e and 163e, respectively.
This makes it possible to estimate the additional MiB of SRAM as 28e.

• DRAM.- The Kingston memory module HX421C14FB/8 has a capacity of
8 GiB, access time of 6.6 nanoseconds and an approximated cost of 75e. This
results in a cost of 0.0092e/MiB.
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• Magnetic storage.- The Western Digital hard disk WD10EZEX (Serial
ATA/600) of 1 TB has an average read access time of 8 milliseconds and a cost
of approximately 50e, resulting in a cost of 0.00005e/MB.

The following alternatives would exist for building a memory system of 16 GiB
for a computer considering the above costs:

• If built using SRAM, an extremely fast memory is obtained with an access time
of 1 nanosecond and an approximate cost of 459 000e.

• In contrast, a disk of 1 TB or more could be used for only 50e. However, the
access time would be approximately of 8 milliseconds, 8 million times slower
than SRAM.

• If the memory system is built using DRAM, the approximate cost would be
150e and it would be approximately 6 times slower than SRAM.

It can be concluded that there is no memory technology that solely satisfies all
the desirable requirements for memory. SRAM is the fastest, but very expensive;
magnetic storage is very economical and has a huge capacity, but it is extremely slow
(the same happens with memory based on flash storage); DRAM is in the middle,
not fast enough, not big enough, but not too expensive. How to build computer
memory? The solution is to combine the previous technologies, taking the best of
each one. This is what is known as a memory hierarchy.

3.2 Memory hierarchy

Three objectives are mainly considered when building the memory system of a com-
puter:

• High speed.

• High capacity.

• Low cost.

The problem is that these objectives cannot be achieved at the same time with a
single memory technology. The solution to the problem lies in combining fast and
small memories with slow and large memories, in such a way that:

• Fast and small memories contain the data with the highest access probability.

• Slow and large memories contain data with less access probability.
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This approach achieves high capacity, since it contains large memories. In addi-
tion, the memory system will be fast, because the fast memories are accessed in most
cases.

The resulting size of combining memories in this way is not cumulative. The fast
and small memories contain a copy of some data stored in the large memories so,
from the point of view of the CPU, the size of the memory system is defined by the
size of the largest memory.

Two conditions must be met in order to implement the previous solution:

• It is necessary to know data with higher probability of future access a priori, so
that it can be stored in the small and fast memories.

• It is necessary for data with higher probability of future access not to be much,
so it fits in the small and fast memories. Thus, future memory accesses will be
served by fast memories in most cases.

Meeting these conditions is possible thanks to the principle of locality (or locality
of reference) observed in the execution of programs by any CPU. This principle is
divided in two:

• Principle of spatial locality. If a memory address is accessed at a given moment,
it is likely that a nearby memory address will be accessed shortly thereafter. An
example of spatial locality is when instructions are fetched during the sequen-
tial execution of a program. An example of spatial locality in the access to data
appears when accessing a vector sequentially.

• Principle of temporal locality. If a memory address is accessed at a given mo-
ment, it is likely that the same memory address will be accessed shortly there-
after. An example of temporal locality in accesses to instructions appears in the
execution of loops, where the same instruction is fetched repeatedly to execute
it several times. An example of temporal locality in data accesses appears when
accessing an iteration counter during the execution of a loop.

An analogy to the memory hierarchy is that of a sale business (the memory sys-
tem). This business consists of a small store (small and fast memory) in the city cen-
ter, where the customer (the CPU) is personally attended and a large warehouse in
the city outskirts (large and slow memory). If the tastes of the customer (locality
principle) are known, the small store can contain the products (memory positions)
that the customer will probably request in order to serve them quickly. In addition,
the business has a large number of products, since it has a large store.2

The combination of different memory technologies is carried out at different lev-
els of capacity and speed, creating what is known as the memory hierarchy. Fig-
ure 3.3 shows a memory hierarchy using three levels. This example will be used
throughout this chapter. The numerical values are just an example, as they depend
on technology. For example, a MIPS64 CPU can access bytes, half-words, words or

2The ideal solution from the point of view of performance would be to have a large store in the city
center, but that would be very expensive; the same occurs with the memory system.
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Figure 3.3: Memory hierarchy of three levels

double-words. In the case of using multiple issue, the width of the communication
channel between the CPU and the cache must allow simultaneous reads of as many
instructions as the issue width. In addition, pre-fetching techniques can also be im-
plemented when using wide communication channels with caches, where several
instructions are read at the same time to take advantage of the aforementioned spa-
tial locality principle.

The cache is built using SRAM, which is very fast but with low capacity. In prac-
tice, the cache level can be in turn divided into sub-levels.

The main memory is built using DRAM, which is of medium speed with average
capacity.

The furthest level of the hierarchy is usually built using magnetic disks or solid
state drives, which are slow but have a large storage capacity. Only a part of the
device is used.

The working principle of the memory hierarchy is very simple. When the CPU
needs to read the content of a memory address, it accesses the cache level. If the
content of the address is in the cache (cache hit), the CPU accesses it very quickly.
This is the most usual situation, since most of the accesses of the CPU to the memory
system are served immediately by the cache.

On the contrary, if the content of the required memory address is not in the cache
(cache miss), a set of consecutive memory positions that includes the required ad-
dress (or addresses if accessing more than one byte) is transferred from the main
memory to the cache memory. The set of consecutive memory positions is called a
block. Once the transfer is completed, the CPU accesses the cache. In general, any
time a miss occurs in level N of the memory system, the block containing the re-
quired position is copied from level N+1 to level N and then the access is performed.
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It should be noted that the unit of information transferred between two consec-
utive levels of the hierarchy is the block. The size of the block does not have to be
the same between different levels of the hierarchy. For example, the size of the block
used between the disk and the main memory is much larger than the size of the block
used between the main memory and the cache.

Misses can be chained at different levels. For example, if the CPU needs to fetch
data that is not in the cache, it tries to copy the block containing this data from the
main memory to the cache. However, if the block is not in the main memory, another
miss occurs in the main memory, and a larger block is copied from disk to the main
memory. Then, the block from the main memory is copied to the cache.

Next, an example describes how the memory hierarchy is able to simultaneously
provide low cost, high capacity and high speed. A memory system of 6 GiB is con-
sidered using three technologies with the following features:

• 4 MiB of SRAM used as a cache with access time tc = 1 nanosecond.

• 3 GiB of DRAM used as the main memory with access time tp = 5 nanoseconds
per byte.

• 6 GiB of disk with access time tc = 11 milliseconds, regardless of the size of the
disk block.3

The size of the block between the cache and the main memory, Bcp, is 64 bytes.
The hit rate when the CPU accesses the cache, Ac, is 0.999, that is, 99.9%. The hit

rate when accessing the main memory, Ap, is 0.9999999, that is, 99.99999%.
The cost of SRAM is 28e per MiB, the cost of DRAM is 0.0092e per MiB and the

cost of the disk is 0.00005e per MB.

1. What is the cost of the memory system?

2. What is the average read time of the memory system trcpd?

The cost is easily calculated considering the amount of memory of each type:

cost = 4× 28 + 0.0092× 3072 + 0.00005× 6144× 220

106
= 140.58e

As for the average read time of the memory system, it is calculated considering
three possibilities: the data is in the cache, it is in main memory but not in the cache,
or it is solely in the disk. The cases where the data does not exist or is inaccessible
are not considered.

In the first case, a cache hit occurs when the data is in the cache and the read time
is equal to the average access time of the cache.

3In practice, the block size is around 4 KiB. The penalty to access the first byte is higher than the others.
In fact, this time is the one that mostly provides the access time of the block.
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In the second case, the data is in the main memory but not in the cache, so a
cache miss occurs. As a result, a complete block is fetched from the main memory
to the cache. Although the transfer time of the block from the main memory to the
cache depends on the width of the communication channel between both memories
among other factors, it will be estimated proportionally to the number of bytes to be
transferred for simplicity.

In the third case, the data is solely in the disk, which implies a cache miss and
another miss in the main memory occur. A block would be copied from the disk to
the main memory, and then a block would be copied from the main memory to the
cache. For simplicity, it is assumed that the transfer of data from the disk to the main
memory can be performed simultaneously with the transfer from the main memory
to the cache. Similarly, only the time needed to copy the block from the main memory
to the cache is considered, without including the subsequent read of the cache for the
required data, that causes a cache hit this time.

The mathematical expressions related to each of the above cases is shown next:

trcpd =

 cache hit ⇒ Ac · tc
cache miss and hit in M.M. ⇒ (1−Ac)×Ap × (tp ·Bcp)
cache miss and miss in M.M. ⇒ (1−Ac)× (1−Ap)× td

This can also be expressed as:

trcpd = Ac · tc + (1−Ac)× [Ap · tp ·Bcp + (1−Ap) · td]

where:

trcpd is the average read time of the memory system.

Ac is the cache hit rate.

tc is the access time of the cache.

Ap is the hit rate of the main memory in case of a cache miss.

tp is the access time to a single byte in the main memory.

Bcp is the number of bytes to be transferred from the main mem-
ory to the cache for a cache miss.

tp ×Bcp is the time required to transfer a block from the main memory
to the cache.

td is the time required to transfer a block from the disk to the
main memory.

Substituting the value for each variable in the previous expression results in
trcpd = 1.32ns.

As can be seen, the result is a memory system with an average read time similar
to that of the cache, with a capacity of 6 GiB and a reasonable cost.
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The key to obtain an average read time close to that of the cache memory lies
in the principle of locality, since it ensures high hit rates when accessing the cache
and the main memory. If the cache hit rate were 0.9 and the main memory hit rate
0.999, the average read time would be 1.13 microseconds, even much higher than the
access time of the main memory.

It must be noted that these expressions only apply to read accesses. In the case
of write accesses, write policies used in each hierarchy level must considered. Con-
cretely, cache write policies are described in section 3.3.4.

3.3 Cache memory

This section introduces the operation of the cache memory and its communication
with main memory. In addition, an example of organization of the cache in the x86
architecture is presented.

3.3.1 Preliminary concepts

The cache memory is the fastest memory in the system. Currently, it is implemented
inside the processor chip using SRAM, which results in a high cost.

The cache is organized into lines that contain blocks, all of them containing the
same number of bytes. These bytes are located in consecutive memory addresses.
Every time the CPU tries to access a memory address that is not in any line of the
cache, a cache miss occurs. The consequence is that the access is suspended momen-
tarily, the block containing the address (or addresses if the access is to several bytes)
is copied from main memory to the cache memory, and then the access is resumed.
This means that the instruction that is accessing is temporarily stalled waiting for the
cache. Therefore, a cache miss increases the CPI, so performance is reduced.

From the point of view of the interaction with the cache memory, main memory
(more specifically, the memory address space) can be seen as a large store of blocks
of the same size as those that can be stored in cache lines. However, this does not
mean that the memory address space is organized in blocks.

For example, a cache of 32 bytes organized in lines of 4 bytes will store 8 blocks.
If the size of the memory address space is 256 bytes, the cache will perceive this
address space as 64 blocks of 4 bytes each, as shown in figure 3.4.

A memory address issued by the CPU is divided into two fields:

• The block number.

• The offset in the block.

The memory block where the issued address is included can be obtained taking
into account that the least significant bits of the address are used to define the offset
of the byte within the block and, therefore, the rest of the bits provide the memory
block number. This is also shown in figure 3.4.
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CPU
Cache

32 bytes
8 blocks

Memory
A.S.

256 bytes
64 blocks

0
1
2
3
4
5
6
7

Cache# line

000000 00

000000 01

000000 10

000000 11

000001 00

000001 01

000001 10

000001 11

...

...
111110 00

111110 01

111110 10

111110 11

111111 00

111111 01

111111 10

111111 11

Memory A.S.# block
offset

0

1

62

63

Figure 3.4: Memory address space and organization of the cache memory in lines

The cache memory includes a controller that manages reads and writes in the
cache and checks whether a memory access operation is a hit or a miss.

In general, the operation of the cache memory is defined by the following char-
acteristics:

• Placement policy. It establishes to which cache line or lines each block of mem-
ory can be copied (placed).

• Replacement policy. It establishes which line of the cache memory should be
replaced to hold a memory block when a cache miss occurs. This only applies
to cases where the memory block can be placed in more than one cache line.

• Write policy. It establishes the relationship between the writes in the cache and
the next level of the memory hierarchy. The fundamental objective of this pol-
icy is to ensure consistency between data of both memory levels, affecting the
performance of the system as low as possible.

3.3.2 Placement policies

Basically, there are three placement policies:

• Direct mapped cache

• Fully associative cache

• Set associative cache
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7 5

Cache line

4 2

Offset

1 0

# memory block

FEh = 1111 1110 −→ 111
︷︸︸︷
111︸ ︷︷ ︸ 10

33h = 0011 0011 −→ 001
︷︸︸︷
100︸ ︷︷ ︸ 11

Figure 3.5: Examples of obtaining the memory block number and the cache line in a
direct mapped cache

Tag

7 5

Cache line

4 2

Offset

1 0

Figure 3.6: Fields in a memory address when using a direct mapped cache

Direct mapped cache

The direct mapped cache structure is the simplest. Each memory block is always
mapped to the same cache line according to the following expression:

Cache line = (Memory block) MOD (Number of lines in the cache)

In practice, the number of lines in the cache is a power of two (2x), so the cache
line is obtained by taking the least significant x bits of the binary number that rep-
resents the memory block. Figure 3.5 shows examples about the calculation of the
memory block number and the cache line given the organization shown in figure 3.4.

When a memory block is copied to a line in the cache memory, a set of bits that
uniquely identifies the memory block is written together with the block. This set of
bits is called a tag. The memory address is then divided into fields, as indicated in
figure 3.6 for a direct mapped cache.

Each line of the cache also includes a valid bit (v) that indicates whether the block
stored in the line is valid. For example, all the lines of the cache memory are marked
as not valid (v=0) during the initialization process of the computer.

Figure 3.7 shows the internal structure of a direct mapped cache. The memory
address is divided into fields to initially get the line number. Then, the tag field of
the address is compared to the tag stored in the cache line. If they match, the address
offset field indicates the byte of the line to be accessed. Figures 3.8 to 3.16 show the
operation of this type of cache when the CPU performs several reads of one byte.

Fully associative cache

A direct mapped cache is very simple to implement. Its biggest drawback comes
from the strict mapping of memory blocks to cache lines, because there is a single

113



Computer Architecture

Address

0 x xxx XX XX XX XX
1 x xxx XX XX XX XX
2 x xxx XX XX XX XX
3 x xxx XX XX XX XX
4 x xxx XX XX XX XX
5 x xxx XX XX XX XX
6 x xxx XX XX XX XX
7 x xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

hit/miss
data

Figure 3.7: Structure of a direct mapped cache

...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 0 xxx XX XX XX XX
4 0 xxx XX XX XX XX
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

Figure 3.8: Direct mapped cache: initial state with an empty cache
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...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
0 1 0 0 1 1 1 0

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 0 xxx XX XX XX XX
4 0 xxx XX XX XX XX
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

miss

Figure 3.9: Direct mapped cache: read request for a byte at address 4Eh, which leads
to a cache miss

...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
0 1 0 0 1 1 1 0

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 010 BF 9A 10 A3
4 0 xxx XX XX XX XX
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

hit
9A

Figure 3.10: Direct mapped cache: cache line 3 is loaded and the cache provides the
requested byte
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...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
0 1 0 0 1 1 1 1

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 010 BF 9A 10 A3
4 0 xxx XX XX XX XX
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

hit
BF

Figure 3.11: Direct mapped cache: read request for a byte at address 4Fh, which leads
to a cache hit

...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
0 1 0 1 0 0 0 0

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 010 BF 9A 10 A3
4 0 xxx XX XX XX XX
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

miss

Figure 3.12: Direct mapped cache: read request for a byte at address 50h, which leads
to a cache miss
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...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
0 1 0 1 0 0 0 0

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 010 BF 9A 10 A3
4 1 010 F3 79 5A A4
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

hit
A4

Figure 3.13: Direct mapped cache: cache line 4 is loaded and the cache provides the
requested byte

...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
0 1 0 1 0 0 0 1

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 010 BF 9A 10 A3
4 1 010 F3 79 5A A4
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

hit
5A

Figure 3.14: Direct mapped cache: read request for a byte at address 51h, which leads
to a cache hit
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...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
1 1 0 0 1 1 1 1

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 010 BF 9A 10 A3
4 1 010 F3 79 5A A4
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

miss

Figure 3.15: Direct mapped cache: read request for a byte at address CFh, which leads
to a cache miss

...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S.
1 1 0 0 1 1 1 1

Address

0 0 xxx XX XX XX XX
1 0 xxx XX XX XX XX
2 0 xxx XX XX XX XX
3 1 110 CD 19 B3 FF
4 1 010 F3 79 5A A4
5 0 xxx XX XX XX XX
6 0 xxx XX XX XX XX
7 0 xxx XX XX XX XX

v tag 3 2 1 0

=

MUX

hit
CD

Figure 3.16: Direct mapped cache: replacement of block in line 3 and the cache pro-
vides the requested byte
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Tag

7 2

Offset

1 0

Figure 3.17: Fields in a memory address when using a fully associative cache

Address

x xxxxxx XX XX XX XX

v tag 3 2 1 0

Line 0

=

MUX

. . .

. . .

. . .

x xxxxxx XX XX XX XX

v tag 3 2 1 0

Line 7

=

MUX

MUX

.

.

.
.
.
.

hit/miss

. . .

data

Figure 3.18: Structure of a fully associative cache

possibility. Each block of memory can only be placed in one cache line. If the CPU
accesses two memory blocks mapped to the same cache line very frequently, there
will be frequent cache misses, which reduces CPI and, consequently, performance.

To alleviate this issue, a fully associative cache is totally flexible: a block of mem-
ory can be mapped to any cache line. In this case, the tag included in the cache line
matches the memory block number. Figure 3.17 illustrates the division into fields of
a memory address under this placement policy.

Figure 3.18 shows the internal structure of a fully associative cache.

Set associative cache

A fully associative cache provides optimal performance, as it imposes no restric-
tions when mapping memory blocks to cache lines. However, it presents a serious
drawback: the implementation cost is unaffordable for large caches, basically due to
the high number of comparators that it uses. In this case one comparator per line is
needed, when a direct mapped cache only needs one for the entire cache. A set as-
sociative cache is a trade-off between a direct mapped cache and a fully associative
cache, as shown in figure 3.19.

A set associative cache is divided into sets, each of which contains a fixed number
of lines. Each block of memory can be mapped to any of the lines of a single set. The
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PE
R

FO
R

M
A

N
C

E

C
O

ST

Fully associative cache

Set associative cache

Direct mapped cache

Figure 3.19: Comparison between placement policies

Tag

7 4

Set (index)

(s bits)

3 2

Offset

1 0

Figure 3.20: Fields in a memory address when using a set associative cache

number of lines that make up a set is called the number of ways. The number of sets
in the cache is chosen as a power of two, 2s, where s is the number of bits used to
represent the set number. Using this type of cache, the s least significant bits of the
memory block number provide the set, and the remaining bits the tag, as illustrated
in figure 3.20.

Therefore, direct mapped caches and fully associative caches are set associative
caches with different levels of set associativity. A direct mapped cache is a one-way
set associative cache, while a fully associative cache is a set associative cache with
one single set containing all the lines in the cache. In this case, the number of ways
matches the number of lines in the cache, so the associativity is maximum.

Figure 3.21 shows how block mapping is performed in a set associative cache.
Figure 3.22 shows the organization of a set associative cache. The figure shows

how the memory address is divided into fields to initially obtain the set number.
Next, the tag field of the address is compared to the tags stored in all the ways of
the set. If a match occurs, the address offset field indicates the byte of the line to be
accessed.

Figures 3.23 to 3.25 show the operation of this type of cache when the CPU per-
forms several reads of one byte.

3.3.3 Replacement policies

Every time there is a cache miss, a block is copied from the memory address space
to a cache line, possibly replacing a previously cached block.

In a direct mapped cache, there is no doubt about which block to be replaced.
However, in the case of a set associative cache, there are several candidate blocks to
be replaced. The replacement policy determines which particular block is replaced.
Two heuristics are considered:
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Cache

0
A

B

1
A

B

2
A

B

3
A

B

0000 00 00

0000 00 01

0000 00 10

0000 00 11

0000 01 00

0000 01 01

0000 01 10

0000 01 11

...

...
0011 00 00

0011 00 01

0011 00 10

0011 00 11

...

...
1111 11 00

1111 11 01

1111 11 10

1111 11 11

Memory A.S.set

Figure 3.21: Block mapping in a set associative cache

Address

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

0 xxxx XX XX XX XX 0 xxxx XX XX XX XX

0 xxxx XX XX XX XX 0 xxxx XX XX XX XX

0 xxxx XX XX XX XX 0 xxxx XX XX XX XX

0 xxxx XX XX XX XX 0 xxxx XX XX XX XX

0

1

2

3

v tag 3 2 1 0

Way A

v tag 3 2 1 0

Way B

= =

MUX MUX

MUX

hit/miss data

Figure 3.22: Structure of a set associative cache
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...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S. 0 1 0 0 1 1 0 0

Address

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

0 xxxx XX XX XX XX 1 1100 1A BB 33 21

1 0010 32 56 BC 10 1 0011 90 81 12 A3

1 0011 23 11 65 94 1 1101 31 EE FB C2

1 1111 21 89 B1 A7 1 0100 BF 9A 10 A3

0

1

2

3

v tag 3 2 1 0

Way A

v tag 3 2 1 0

Way B

= =

miss hit
MUX MUX

MUX

hit A3

Figure 3.23: Set associative cache: read request for a byte at address 4Ch, which leads
to a cache hit

...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S. 1 1 0 0 1 1 1 0

Address

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

0 xxxx XX XX XX XX 1 1100 1A BB 33 21

1 0010 32 56 BC 10 1 0011 90 81 12 A3

1 0011 23 11 65 94 1 1101 31 EE FB C2

1 1111 21 89 B1 A7 1 0100 BF 9A 10 A3

0

1

2

3

v tag 3 2 1 0

Way A

v tag 3 2 1 0

Way B

= =

miss miss
MUX MUX

MUX

miss

Figure 3.24: Set associative cache: read request for a byte at address CEh, which leads
to a cache miss
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...
01001100 A3

01001101 10

01001110 9A

01001111 BF

01010000 A4

01010001 5A

01010010 79

01010011 F3
...

...
11001100 FF

11001101 B3

11001110 19

11001111 CD
...

Memory A.S. 1 1 0 0 1 1 1 0

Address

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

x xxxxxx XX XX XX XX x xxxxxx XX XX XX XX

0 xxxx XX XX XX XX 1 1100 1A BB 33 21

1 0010 32 56 BC 10 1 0011 90 81 12 A3

1 0011 23 11 65 94 1 1101 31 EE FB C2

1 1100 CD 19 B3 FF 1 0100 BF 9A 10 A3

0

1

2

3

v tag 3 2 1 0

Way A

v tag 3 2 1 0

Way B

= =

hit miss
MUX MUX

MUX

hit 19

Figure 3.25: Set associative cache: replacement of the block in way A, set 3, and the
cache provides the requested byte

• Least Recently Used (LRU). Each cache line stores additional bits that indicate
the least recently accessed block, which is then selected for replacement.

• Random replacement. The block to be replaced is randomly chosen among the
candidate blocks.

3.3.4 Write policies

There are two main write policies:

• Write-through.

• Write-back.

In a write-through cache, every write operation is performed in the cache and in
the memory address space at the same time.

On the other hand, in a write-back cache data is initially only written to the cache.
The data is written to the memory address space only when the block containing it
is replaced in the cache. In a write-back cache there are coherence issues that will be
addressed later in this chapter.

Write accesses, as read accesses, can result in cache hits or misses. Cache hits are
handled as the write policy dictates: data is only written to the cache in the case
of write-back caches, and it is written to the cache and the memory address space
simultaneously in write-through caches.
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...
01001100 17

01001101 34

01001110 89

01001111 A1

01010000 99

01010001 BB

01010010 27

01010011 63
...

...
11101100 11

11101101 29

11101110 A3

11101111 77
...

Memory A.S. Address

0 0 x xxx XX XX XX XX
1 0 x xxx XX XX XX XX
2 0 x xxx XX XX XX XX
3 1 0 010 A1 89 34 17
4 1 0 010 63 27 BB 99
5 0 x xxx XX XX XX XX
6 0 x xxx XX XX XX XX
7 0 x xxx XX XX XX XX

v d tag 3 2 1 0

=

MUX

hit/miss
data

Figure 3.26: Operation of a write-back cache: initial state of the cache and the memory
address space

However, the difference appears with write cache misses. In this case, there are
two options: write allocate or no write allocate. When using write allocate, the be-
haviour for writings is identical to that for readings: the block is copied into cache
memory before writing. With no write allocate, the block is not copied to the cache,
data is only written in the memory address space, avoiding the cost of copying the
entire block to the cache previously.

There are different variations, but the most common are write-back with write
allocate and write-through with no write allocate.

The performance of a write-back cache is usually higher than the performance
of a write-through cache, at the expense of greater hardware complexity for keeping
data coherence.

Figures 3.26 to 3.30 show the operation of a write-back cache. When using this
write policy, one more bit is associated with each cache line, the dirty bit (d), which
is set every time the CPU writes to the line.

Write operations can generate coherence issues between different copies of the
information stored in several levels of the memory hierarchy, as will be analyzed in
section 3.3.6.

3.3.5 Cache memory organization

There are two determining factors in the organization of a cache memory:

• Number of cache levels.

• Separation into data and instruction caches.
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...
01001100 17

01001101 34

01001110 89

01001111 A1

01010000 99

01010001 BB

01010010 27

01010011 63
...

...
11101100 11

11101101 29

11101110 A3

11101111 77
...

Memory A.S.

0 1 0 0 1 1 0 1

Address

0 0 x xxx XX XX XX XX
1 0 x xxx XX XX XX XX
2 0 x xxx XX XX XX XX
3 1 1 010 A1 89 FF 17
4 1 0 010 63 27 BB 99
5 0 x xxx XX XX XX XX
6 0 x xxx XX XX XX XX
7 0 x xxx XX XX XX XX

v d tag 3 2 1 0

=

MUX

hit
FF

Figure 3.27: Operation of a write-back cache: Request to write one byte at address
4Dh; cache hit, the block is marked as dirty

...
01001100 17

01001101 34

01001110 89

01001111 A1

01010000 99

01010001 BB

01010010 27

01010011 63
...

...
11101100 11

11101101 29

11101110 A3

11101111 77
...

Memory A.S.

1 1 1 0 1 1 1 0

Address

0 0 x xxx XX XX XX XX
1 0 x xxx XX XX XX XX
2 0 x xxx XX XX XX XX
3 1 1 010 A1 89 FF 17
4 1 0 010 63 27 BB 99
5 0 x xxx XX XX XX XX
6 0 x xxx XX XX XX XX
7 0 x xxx XX XX XX XX

v d tag 3 2 1 0

=

MUX

miss

Figure 3.28: Operation of a write-back cache: Request to read one byte at address
EEh, which results in a cache miss
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...
01001100 17

01001101 FF

01001110 89

01001111 A1

01010000 99

01010001 BB

01010010 27

01010011 63
...

...
11101100 11

11101101 29

11101110 A3

11101111 77
...

Memory A.S.

1 1 1 0 1 1 1 0

Address

0 0 x xxx XX XX XX XX
1 0 x xxx XX XX XX XX
2 0 x xxx XX XX XX XX
3 1 1 010 A1 89 FF 17
4 1 0 010 63 27 BB 99
5 0 x xxx XX XX XX XX
6 0 x xxx XX XX XX XX
7 0 x xxx XX XX XX XX

v d tag 3 2 1 0

=

MUX

Figure 3.29: Operation of a write-back cache: updating a dirty block in the memory
address space

...
01001100 17

01001101 FF

01001110 89

01001111 A1

01010000 99

01010001 BB

01010010 27

01010011 63
...

...
11101100 11

11101101 29

11101110 A3

11101111 77
...

Memory A.S.

1 1 1 0 1 1 1 0

Address

0 0 x xxx XX XX XX XX
1 0 x xxx XX XX XX XX
2 0 x xxx XX XX XX XX
3 1 0 111 77 A3 29 11
4 1 0 010 63 27 BB 99
5 0 x xxx XX XX XX XX
6 0 x xxx XX XX XX XX
7 0 x xxx XX XX XX XX

v d tag 3 2 1 0

=

MUX

hit
A3

Figure 3.30: Operation of a write-back cache: replacement of block at line 3 and the
cache provides the requested byte
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CPU

L1
CACHE

L2
CACHE

MAIN
MEMORY

DISK

+

C
A

PA
C

IT
Y

SP
EE

D

+

Figure 3.31: Memory hierarchy with two cache levels

Initially when caches were introduced, the most common approach was to use
a single cache memory. However, the most common approach nowadays is to have
two or three cache levels in order to increase hit rate and reduce latency. These levels
are called L1, L2, etc., where the L1 level is the closest to the CPU and the smallest,
and the last level cache (LLC) refers to the furthest-level cache, usually shared by all
the cores. Figure 3.31 shows a memory hierarchy with several levels of cache. In this
example, L2 cache is LLC.

L2 and higher caches cut down the performance penalty from a cache miss in
L1. The latency difference between the L1 cache and the main memory is too high.
The L2 cache is of greater capacity than the L1 cache, so it is also slower, but still
much faster than main memory. In theory, the more cache levels between the CPU
and main memory, the better performance of the memory system, but at a higher
cost.

As previously mentioned, the MIPS64 microarchitecture incorporates indepen-
dent memories for instructions and data. This means that a MIPS64 CPU includes
two L1 caches: one for instructions and another for data, as opposed to a single cache
for data and instructions. It could occur that the data cache had free lines, while the
instructions cache was generating cache misses because it is full. On the contrary,
with a unified cache, the cached blocks are automatically divided between data and
instructions, so that if fewer blocks of data and more of instructions are needed, they
are distributed efficiently and transparently between the lines of the cache.

Originally, cache memories used to be unified, since they obtain a better perfor-
mance in terms of hit rate. However, current L1 caches are usually divided due to
the high degree of parallelism of CPUs. The split cache makes a greater degree of
parallelism possible, since a stage of the pipelined CPU can write data to memory
while another stage can simultaneously fetch an instruction code.
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3.3.6 Cache coherence

The CPU always works with a copy of information stored in the memory address
space. This copy resides in the cache. If other components of the computer can access
the memory address space, then coherence problems appear.

The principle of cache coherence states that reads by a CPU at a memory address
must match the last value written at that memory address by any other component
of the computer.

Single-level cache coherence with a single CPU

Cache coherence issues in single-CPU systems appear when peripheral interfaces are
mapped in the memory address space. For example, if the interface of a keyboard is
mapped in the memory address space and the user presses a key, the key code is
stored in one of the positions of the memory address space. The problem is that if
the memory block containing the interface address is cached, the cache memory is
not aware of this writing and, therefore, does not contain updated data. If the CPU
accesses the keyboard interface to obtain the code of the key pressed, the key code is
received from the cache and is incorrect.

The solution in this case is simple: memory addresses mapped to peripheral in-
terfaces are marked as non-cacheable. The cache memory directly forwards accesses
to any of these positions to the memory address space.

Another more complex coherence issue appears when there are peripheral inter-
faces with DMA (Direct Memory Access) capability.4 For example, the disk interface
writes a requested data sector into main memory. This could require writing 1 KiB
in contiguous memory positions. Marking that area as non-cacheable solves coher-
ence issues but causes another problem: performance is considerably reduced, as it
requires accessing the memory address space instead of the cache memory. Access-
ing a few bytes, such as in the case of the keyboard interface is not problematic, but
accessing large portions of memory incurs in a serious performance penalty.

In the case of peripheral interfaces with DMA capability, the following coherence
issues appear:

• A memory block that had been previously cached has been modified by a pe-
ripheral. Reading the block will provide non-updated data, as the CPU reads
from the cache memory.

• The CPU modifies a cache line using the write-back policy. If a peripheral reads
this block from main memory using DMA before replacing it in the cache, the
data will not be valid, as it is not updated. This issue does not appear when the
write-through policy is used.

The described cache coherence issues are usually solved using the snooping tech-
nique. Using this technique, the cache controller continuously observes the read and
write control lines of the memory address space, as well as the address lines. In the

4The DMA technique is studied in the input/output chapter.
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...
11000000 FF

11000001 B3

11000010 19

11000011 CD
...

Memory A.S.

0 1 1 110 77 19 11 FF

v d tag 3 2 1 0

(a) Initial state: the dirty block in the cache line differs from the memory address space

...
11000000 FF

11000001 B3

11000010 19

11000011 CD
...

Memory A.S.

0 1 1 110 77 19 11 FF

v d tag 3 2 1 0

(b) Peripheral performs read on address C3h. The controller detects this address belongs to a
modified line and stops the read operation

...
11000000 FF

11000001 11

11000010 19

11000011 77
...

Memory A.S.

0 1 0 110 77 19 11 FF

v d tag 3 2 1 0

(c) The controller updates the block in the memory address space (bit d=0), then resumes the
read operation

Figure 3.32: Cache coherence when a peripheral interface performs a read operation
and using a write-back cache

first case, when it detects that a peripheral is writing a memory block that is cached,
it invalidates the cache line where the block is located by resetting the valid bit.
In the second case, the cache controller temporarily stops the memory read by the
peripheral, updates the memory block that was cached and then resumes the read
operation by the peripheral.

Figures 3.32 to 3.34 show the three cases where coherence issues between cache
memory and the memory address space appear.

The example issue shown in figure 3.32 for a write-back cache also appears for
a write-through cache (figure 3.33). However, in the former there is a coherence is-
sue that does not appear for the write-through cache when the interface of a DMA-
capable peripheral writes to a cached memory block marked as dirty. The solution is
shown in figure 3.34.
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...
11000000 FF

11000001 B3

11000010 19

11000011 CD
...

Memory A.S.

0 1 110 CD 19 B3 FF

v tag 3 2 1 0

(a) Initial state

...
11000000 FF

11000001 B3

11000010 19

11000011 AA
...

Memory A.S.

0 1 110 CD 19 B3 FF

v tag 3 2 1 0

(b) Peripheral writes data AAh at address C3h

...
11000000 FF

11000001 B3

11000010 19

11000011 AA
...

Memory A.S.

0 0 110 CD 19 B3 FF

v tag 3 2 1 0

(c) The controller detects that this address is cached and invalidates the line

Figure 3.33: Cache coherence when a peripheral interface performs a write operation
and using a write-through cache
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11000000 FF

11000001 B3

11000010 19

11000011 CD

Memory A.S.

0 1 1 110 77 19 11 FF

v d tag 3 2 1 0

(a) Initial state: the dirty block in the cache line differs from the memory address space

11000000 FF

11000001 B3

11000010 19

11000011 CD

Memory A.S.

0 1 1 110 77 19 11 FF

v d tag 3 2 1 0

(b) Peripheral initiates write operation of AAh at address C3h. The controller detects this
address belongs to a modified line and stops the write operation

11000000 FF

11000001 11

11000010 19

11000011 AA

Memory A.S.

0 0 0 110 77 19 11 FF

v d tag 3 2 1 0

(c) The controller updates the block in the memory address space (bit d=0), invalidates the line
(bit v=0) and then resumes the write operation

Figure 3.34: Cache coherence when a peripheral interface performs a write operation
and using a write-back cache
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Main memory

L3 cache

L2 cache L2 cache

L1 cache L1 cache

Core Core

L3 cache

L2 cache L2 cache

L1 cache L1 cache

Core Core

Processor Processor

Device
interface

with DMA

Device
interface

with DMA

Figure 3.35: Example of multi-processor with several cores and levels of cache per
processor

Multi-level cache coherence with multiple CPUs

Previous sections described how coherence issues come from peripheral interfaces
with DMA capability in single-level, single-CPU systems. In many cases, computers
have several processors each of which incorporates several cores with various cache
levels. Figure 3.35 shows an example of this type of system.

For the sake of simplicity, interfaces with DMA capacity will not be considered,
as they can be assimilated to CPUs without cache in terms of cache coherence.

In this scenario, the memory system as a whole is accessed by multiple CPUs to
perform reads and writes. In practice, due to performance issues, a write-back policy
is used, so that the writing performed by a CPU in a memory address appears in its
L1 cache and does not migrate to further levels of cache or other system memories.
The written data is not directly visible to other CPUs even they are co-located in the
same processor. The situation can be even worse if the written memory address has
already been previously written by another CPU.

These problems appear when programs share memory, which is the most com-
mon approach in systems with several CPUs. Given all this complexity, more sophis-
ticated coherence methods are needed than those described for a single CPU.

Maintaining cache coherence influences the performance of the system, since
memory access is critical for the execution of the programs. The general strategy
is to prevent these methods from interfering the system when accessing non-shared
memory addresses, and reducing their impact when accessing memory addresses
shared with other CPUs.
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The fundamental problem comes from memory writes, as memory reads do not
generate cache coherence issues. When a CPU writes to an address that is in the L1
cache, the address could also be in L2 and L3 caches of the same CPU, or at any of
the cache levels of other CPUs. There are two alternatives:

• Write-update. The data written to the L1 cache of a CPU is updated in all caches
of the system where the address is cached, including other caches of the same
CPU and those of the rest of the CPUs.

• Write-invalidate. The data is written to the L1 cache of the CPU and all the lines
with the cached address are marked as not valid in the rest of the caches of the
system. Thus, a cache miss will occur and an updated block will be received
when accessing the address in other caches.

In practice, the write-invalidate protocol is used, as it is much faster to invalidate
cache lines than to update them. In addition, several consecutive writes are often
made before a read, so the penalty of maintaining coherence is even lower.

Whatever the chosen alternative, write-update or write-invalidate, any read or
write operation can provoke changes in multiple caches of the system and main
memory. For this reason, information must be transmitted to the rest of the caches of
the CPU and the rest of CPUs for updating their states in order to maintain coher-
ence. There are two basic ways to transmit coherence information:

• Snooping. Any read or write operation in a cache is visible to all system caches
and main memory. Thus, if a CPU writes in its L1 cache, all the system caches
observe the writing address and if it is included in any of its lines they mark
the line as invalid. A priori this approach may be seen as inefficient, consider-
ing the high number of caches that coexist in a multi-processor and multicore
system. However, multiple optimizations make this approach feasible. For ex-
ample, when a cache line is cached only in the L1 cache of a CPU, it can be read
or written without transmitting coherence information to other caches. This is
also the most common case, since the vast majority of memory accesses are
made to non-shared addresses.

• Directory. There is a hardware device that manages the coherence of the mem-
ory system and stores coherence information for all the caches. All read or write
operations on caches or main memory that may affect coherence require a prior
query or modification of the directory.

In systems with few CPUs, snooping is the most common method, but the direc-
tory method is used in large-scale multi-processor systems.

MESI protocol

The MESI coherence protocol is the basis of many current coherence protocols.5 This
section illustrates the main operation in systems with several CPUs without provid-
ing all the implementation details.

The MESI coherence protocol is a write-invalidate protocol commonly used with
snooping. In this protocol, a cache line can be in one of these four coherence states:

5For example, Intel uses a variation called MESIF, while AMD uses another variation called MOESI.

133



Computer Architecture

Main memory
a = 3

Cache
I

P1

Cache
I

P2

(a) Initial state

Main memory
a = 3

Cache
a = 3 E

P1

Cache
I

P2

(b) After P1 reads a

Main memory
a = 3

Cache
a = 3 S

P1

Cache
a = 3 S

P2

(c) After P2 reads a

Main memory
a = 3

Cache
a = 5 M

P1

Cache
a = 3 I

P2

(d) After P1 writes a

Main memory
a = 5

Cache
a = 5 S

P1

Cache
a = 5 S

P2

(e) After P2 reads a

Figure 3.36: Example of operation of the MESI protocol

• Modified (M). The cache line is valid, it has been modified and, therefore, is
not coherent with main memory. The block contained in the line is not stored
in other cache memories.

• Exclusive (E). The line is valid, it has not been modified and, therefore, is co-
herent with main memory. The block contained in the line is not stored in other
cache memories.

• Shared (S). The line is valid, it has not been modified and, therefore, is coherent
with main memory. The block contained in the line can also be found in other
cache memories.

• Invalid (I). The cache line is invalid. It does not contain any block.

Every time a CPU performs a memory operation (read or write) in the cache, it
can change the MESI status of a line in its L1 cache and any other system cache.

Figure 3.36 illustrates the state changes of the cache lines where a shared variable
a is located. The system contains two CPUs, P1 and P2, each with a single-level cache.
Initially, the block containing the variable is not cached (figure 3.36a).

When P1 first reads the variable, a cache miss occurs and the memory block that
contains the variable is copied to a cache line (figure 3.36b). Because the memory
block is not in the cache of the other CPU, the line is marked as exclusive (E). The
next time P1 reads the variable, a cache hit occurs and it is not necessary to update
the coherence state of any system cache.

A subsequent read of the variable by P2 will provoke a cache miss, but in this
case in the cache of this CPU. However, unlike the previous case, the block is in
the P1 cache in addition to main memory. The block is copied to the P2 cache from
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main memory and the lines of both caches are marked as shared (S), as shown in
figure 3.36c.

A later write to the variable by P1 modifies the cache line but it does not update
main memory (given the write-back policy). In addition, the corresponding cache
line in the P2 cache is marked as invalid (I), and the cache line in P1 is marked as
modified (M). The state of the system is shown in figure 3.36d.

Finally, a cache miss will occur again if P2 reads again the variable. Since the
block is modified in the P1 cache, the block is updated in main memory and then
copied to the P2 cache. Finally, both lines are marked as shared (figure 3.36e).

Most memory accesses by a CPU are to non-shared memory addresses that are
cached in lines of its L1 cache, in the modified (M) or exclusive (E) state. Therefore,
any read or write on these addresses does not require transmitting coherence infor-
mation to other caches of the system, thus preventing the coherence protocol from
introducing any penalty when accessing non-shared memory addresses. This mini-
mizes the effects on performance caused by the maintenance of cache coherence.

3.3.7 Cache memory in the PC

The characteristics of the cache greatly vary from one processor to another. Currently,
processors have two or three levels of cache: L1, L2 and L3. L1 is a split cache for data
and instructions, and L2 is a unified cache that can be shared among several cores or
specific to each of them as L1. L3 is unified and shared by the entire processor.

All cache levels follow a set associative placement policy.
As for the physical location, all cache levels are inside the processor.
For example, in the Intel Core i5-6600K, with four cores, the cache memory fea-

tures the following characteristics:

• L1 data cache per core (4x).

– Size: 32 KiB.

– Line size: 64 bytes.

– Ways: 8.

– Number of sets: 32 KiB / (8 × 64) bytes = 64.

• L1 instruction cache per core (4x).

– Size: 32 KiB.

– Line size: 64 bytes.

– Ways: 8.

– Number of sets: 32 KiB / (8 × 64) bytes = 64.

• Unified L2 cache per core (4x)

– Size: 256 KiB.

– Line size: 64 bytes.
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– Ways: 4.

– Number of sets: 256 KiB / (4 × 64) bytes = 1024.

• Unified L3 cache

– Size: 6 MiB.

– Line size: 64 bytes.

– Ways: 12.

– Number of sets: 6 MiB / (12 × 64) bytes = 8192.

3.4 Virtual memory

Not only is virtual memory a memory management technique that enables the use
of disk (or any secondary storage in general) as a level of the memory hierarchy, but
it also provides many other characteristics that will be detailed in this section.

Once the general concepts about virtual memory have been introduced, the pag-
ing technique is described. This technique enables a straightforward implementation
of virtual memory. In fact, this is the technique used in most cases nowadays.

3.4.1 Introduction

Virtual memory makes it possible to use main memory as a cache of secondary stor-
age devices (hard disk drives or solid state drives). They are the furthest level from
the CPU in the memory hierarchy, as shown in figure 3.37.

As can be seen, secondary storage devices constitute the biggest and slowest level
of the memory hierarchy. The capacity of the memory system is significantly in-
creased without sacrificing speed in most of the memory accesses by using this new
level. This is achieved thanks to the principle of locality, introduced in section 3.2.
However, virtual memory is much more than a technique for increasing the capacity
of the memory system. It also provides a rich functionality based on the concept of
virtual addresses.

Programs executed on CPUs supporting multitasking operating systems work
with virtual addresses. These addresses are translated into physical addresses by the
Memory Management Unit (MMU) to be sent to memory devices.

These two types of addresses, virtual and physical, generate virtual and physical
address spaces respectively. Figure 3.38 represents the translation process from a
virtual to a physical address.

The virtual address space represents the whole set of virtual addresses that can
be formed. Each task in the system has its own virtual address space, which is inde-
pendent from the virtual address spaces of other tasks. This means that a task can
read or write in any of its virtual addresses without affecting any other task. Fig-
ure 3.39 schematically shows the address spaces of two tasks, T1 and T2, which are
two instances of the same program executed at the same time.

The virtual addresses of variables var of tasks T1 and T2 are exactly the same.
However, the execution of the statement var = var + 1; in task T1 affects the value
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Figure 3.37: Memory hierarchy of three levels
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Figure 3.38: Translation of a virtual address into a physical address
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var

T1 virtual A.S.
00. . .0

FF. . .F

var

T2 virtual A.S.
00. . .0

FF. . .F

var

var

Physical A.S.
00. . .0

FF. . .F

main ()
{
int var = 0;

var = var + 1;
}

Task T1 Task T2

Figure 3.39: Example showing the independence of different virtual address spaces

...

...

...

...

Physical addr.
Addr. not used
Physical addr.

Addr. in disk

Physical addr.

Virtual addr.

Figure 3.40: Translation table of a task

of its variable var, but not the variable of task T2. The reason is that, even when both
variables have the same virtual address, they have different physical addresses, that
is, different storage addresses in the memory devices. The addresses associated to
programs by development tools (compilers, linkers, etc.) are virtual addresses. As
an example, the MIPS64 instruction ld r3, 80(r7) stores the double-word located at
the virtual address 80 + r7 in the register r3.

The physical address space represents the whole set of physical addresses that
can be issued, and is unique for the whole system. This space is partially occupied
by memory devices. The MMU translates virtual addresses into physical addresses.
To do so, the MMU has a translation table from virtual addresses to physical ad-
dresses for each task. Figure 3.40 shows a simplified translation table of a task. This
table makes it possible to associate a virtual address to a physical address (in main
memory), but also to a location in disk. This increases the capacity of the memory
system as it will be shown in section 3.4.2.
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Virtual A.S.
00. . .0

FF. . .F

.

.

.

Translation
table

Physical A.S.
00. . .0

FF. . .F

Figure 3.41: Translation from virtual addresses into physical addresses using blocks

3.4.2 Paged virtual memory

The association of virtual addresses to physical addresses is not performed for each
address individually, because it would be too cumbersome and inefficient (the trans-
lation table would be huge). Instead, the virtual address space is divided into blocks
of consecutive addresses that are translated into blocks of consecutive physical ad-
dresses, as shown in figure 3.41.

The most used virtual memory technique is paged virtual memory or paging.
The blocks, called pages, have a fixed size defined by hardware.

Using paging, a virtual address is composed of two fields:

• Virtual page number.

• Offset.

Figure 3.42 shows as an example a virtual address of 32 bits, with 12 bits used as
offset (3 hexadecimal digits) and 20 bits used to identify the virtual page (5 hexadec-
imal digits).

The size of the page is defined by the number of bits used as offset. In the exam-
ple, the size of a page is 212 = 4KiB, assuming memory is byte-addressable.

The page number field identifies a virtual memory page within all the pages that
form the virtual address space. This can be seen in the left side of figure 3.42. There
are 220 pages in total from 00000h to FFFFFh.

The offset identifies a virtual address within a page. In fact, the offset added to
the base virtual address of the page provides the virtual address.

As an example, the right side of figure 3.42 shows the placement of virtual ad-
dress 0000 2A10h in the virtual address space based on its virtual page number and
offset fields.

In the same way, physical addresses are composed of two fields:

• Page frame number (or physical page number).

• Offset.
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virtual page

number

31 12

offset

11 0

00000h

00001h

00002h

.

.

.

FFFFFh

Virtual A.S. Virtual A.S.

Virtual addr.

00000 000h

00000 FFFh
00001 000h

00001 FFFh
00002 000h

00002 FFFh

FFFFF 000h

FFFFF FFFh

00002 000h

00002 FFFh

4 KiB
A10h

Figure 3.42: Virtual address space organization and placement of a virtual address
based on virtual page number and offset fields

frame

number

19 12

offset

11 0

00h

01h

.

.

.

05h

.

.

.

FFh

Physical A.S. Physical A.S.

Physical addr.

00 000h

00 FFFh
01 000h

01 FFFh

05 000h

05 FFFh

FF 000h

FF FFFh

05 000h

05 FFFh

4 KiB
A10h

Figure 3.43: Physical address space organization and placement of a physical address
based on page frame number and offset fields
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Figure 3.43 shows a physical address of 20 bits, composed of 12 bits for the offset
(3 hexadecimal digits) and 8 bits to identify the page frame number (2 hexadecimal
digits).

The number of bits used for the offset in the physical address is the same as in the
virtual address. This is not by chance, because the page frame is the block of physical
memory, which must have the same size as the block of virtual memory (the page).

The page frame number field identifies a page frame within all the frames of the
physical address space. This can be seen in the left side of figure 3.43. There are 28

page frames in total, from 00h to FFh.
The offset identifies a physical address within a page frame. In fact, the offset

added to the base physical address of the page frame provides the physical address.
The location of a physical address within the physical address space based on the

page frame number and offset fields is analogous to the case of virtual addresses. The
right side of figure 3.43 shows an example: address 05A10h.

Various aspects related to paging are described in the next subsections. First, the
typical structure of a translation table is shown: the page table. Once the details of the
page table are known, the configuration of page tables for mapping the tasks and the
operating system into physical and virtual address spaces is analyzed. Finally, the
main functionalities provided by paging are reviewed: memory protection, memory
sharing and increasing the capacity of the memory system.

The page table

The page table provides a way to translate virtual addresses into physical addresses,
associating virtual pages to page frames or disk locations. Each task has its own page
table managed by the operating system. The page table of a running task is located
in physical memory starting from a position pointed by a control register in the CPU,
commonly called the page table register.

The page table has as many entries as virtual pages compose the virtual address
space. For example, in the case of the virtual addresses shown previously, 20 bits
used for the page number field and 12 for the offset field, each page table has 220

entries (more than 1 million entries). Each entry of the page table typically contains
these fields:

• Presence bit. It indicates if the page is in memory. When this bit is not active
it means that the page is on disk, inside the paging file, or it has no associated
storage. In this last case the page cannot be accessed.

• Page frame / disk location. This field indicates the page frame associated to the
virtual page when the presence bit is active. Otherwise, the operating system
may give any use to this field. In this case, it usually provides the disk location
associated to the virtual page. Operating systems have areas in disk, or in any
secondary storage device, reserved for implementing paging. For the sake of
simplicity, these areas will be called paging file.6 An invalid disk location can
be used to indicate a virtual page without any associated storage.

6Windows has one or more paging files, while Unix operating systems have one or more paging parti-
tions, known as swapping partitions.
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Page Pres. Frame/Location

00000h No Not valid

00001h No Not valid

. . . . . .

00100h Yes 04h

00101h No Location Y

00102h Yes 05h

00103h No Not valid

. . . . . .

80000h Yes 01h

80001h Yes 02h

80002h No Location X

80003h No Not valid

. . . . . .

FFFFEh No Not valid

FFFFFh No Not valid

Page table

00100XXXh

00101XXXh

00102XXXh

80000XXXh

80001XXXh

80002XXXh

Virtual A.S.
00000000h

FFFFFFFFh

01XXXh

02XXXh

04XXXh

05XXXh

Physical A.S.
00000h

FFFFFh

Locat. X

Locat. Y

Figure 3.44: Page table of a task

• Protection bits. They set page permissions such as write permission and access
privileges.

• Status bits. There is a written page bit or dirty bit, analogous to the dirty bit
in the cache, which is used during the replacement of a virtual page in phys-
ical memory. If the page has not been written, it can be deleted from memory
without updating its content in the paging file. Another typical status bit is the
accessed page bit. Its purpose is tracking the accesses to the virtual pages. This
information is useful for the operating system when implementing replace-
ment policies like LRU.

Figure 3.44 shows an example of a task page table using the virtual and physical
address spaces previously presented, this is, pages of 4 KiB in size, 20 bits to identify
the page and 8 bits to identify the page frame. In addition to the page table, the
figure shows the virtual address space of the task, the physical address space of the
system and the paging file. As can be seen, several fill patterns have been used to
differentiate the types of virtual pages. There are pages like 00000h represented using
a grated pattern descending to the right that have no associated physical storage and,
therefore, cannot be read or written. Their presence bit is not active and they have an
invalid disk location associated. Other pages, like 00100h, represented with a solid
fill pattern, have a presence bit active, so they have a page frame associated. In this
case the associated page frame is 04h. Finally, there are pages represented using a
grated pattern ascending to the right that have the presence bit set to 0, but they have
a page frame / disk location field that points to a location in the paging file. This is
the case of page 00101h, which is stored in location Y in the paging file. To complete
the description of the page table, figure 3.45 shows an example of translating a virtual
address to the associated physical address using the described page table.
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80001 5ABh
translate→ 02 5ABh

Virtual addr. Physical addr.

Figure 3.45: Translation example from a virtual address to a physical address

Memory placement of tasks and OS

Regardless of the programming language, the source code of a program is made of
code and data. This program is the input for development tools like compilers and
linkers, which generate the machine code. This machine code contains the encoding
of data and instructions and some additional information that must be handled by
the operating system, such as the initialization of some CPU registers. The main idea
is that development tools map instructions and data in the virtual address space,
associating virtual pages to instructions and data.

When the operating system loads a task in memory to execute it, it assigns phys-
ical storage to the virtual pages associated to data and code of the task. Some of
these pages could be placed in physical memory and others in the paging file. To do
so, the operating system must keep an exhaustive accounting of the free locations
in memory and the paging file. Then, the operating system modifies the page table
accordingly to reflect the placement of the virtual pages. This technique makes it
possible to correctly execute tasks regardless of where they are located in memory
and simplifies task loading by the operating system.

Some operating systems include security mechanisms that prevent virtual ad-
dresses from being set during compiling and linking time. In this case, relocatable
addresses are generated and the operating system assigns both virtual and phys-
ical addresses to them during the loading process. This way, virtual and physical
addresses change from one execution to another.

The use of paging simplifies the work of development tools. The reason is simple:
as each task has its own translation table, the whole virtual address space si available
to map code and data. Because of this, compilers and linkers can generate the code
of a program ignoring any other program executed at the same time.

Figure 3.46 shows an example of a simple program written in C and the assign-
ment of virtual pages carried out by development tools in a real system.

The program has a global variable called var. This variable is composed of 1500
single precision real numbers, which means that each one needs 32 bits, so 6000 bytes
are needed to store the variable. The program was compiled and linked in a machine
that uses 32-bit virtual addresses and pages of 4 KiB. Therefore, 2 pages are needed to
store the global variable. These pages are 00426h and 00427h. Additionally, there is a
local variable called i in the main() function that is placed in the stack. The stack has
page 0012Fh associated, as shown in the figure. The code of the main() function has
page 00400h associated. Finally, it must be noted that the virtual page assignment
carried out by development tools is a bit more complex than shown. For example,
call and return code to and from the main() function has not been taken into account.

On the other hand, the operating system is typically mapped in the virtual ad-
dress space of every task. The reason is that when an exception, interrupt, or system
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stack

code

data

data

Virtual A.S.
00000000h

FFFFFFFFh

0012Fh

00400h

00426h

00427h

float var[1500];

main ()
{
int i;

for (i = 1; i < 1500; i++)
var[i] = 0;

}

Compiler
+

Linker

Figure 3.46: Example of code and data location of a program in the virtual address
space of a task

T1_C1

T1_C2

T1_D1

SO_1

SO_2

T1 virtual A.S.

T1 page table

T1_D1

T1_C1

SO_1

T2_C1

SO_2

Physical A.S.

Loc. X

Loc. Y

T2 page table

T2_C1

T2_D1

SO_1

SO_2

T2 virtual A.S.

Figure 3.47: Mapping of the operating system in the virtual address spaces of tasks

call occurs, it is necessary to execute the operating system code using the current
page table, which can be the table of any task. Figure 3.47 shows a situation where
there are two tasks T1 and T2, each one with its own page table, where there are some
pages occupied by the operating system.

Task T1 has two virtual pages for code (T1_C1 and T1_C2) and one virtual page
for data (T1_D1), while task T2 has one code page (T2_C1) and one data page (T2_D1).
The figure also shows the assignment of page frames and paging file locations to the
virtual pages of the tasks. In particular, all the pages have a page frame associated
except for pages T1_C2 and T2_D1, which are stored in the paging file in locations X
and Y respectively.
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Figure 3.47 shows the mapping of the operating system in the virtual address
space of every task. As the control transfer between a task and the operating system
does not imply a change in the page table register, the page table used by the operat-
ing system is the same as the one used by the task that gave it the control. This means
that the placement of the operating system in the virtual address space is the same
for all tasks. As can also be seen, the page frames associated to the operating system
are shared by the tasks, because it makes no sense to copy the operating system as
many times as tasks are running in the system.

Memory protection

Paging makes it possible to easily achieve memory protection. To do so, three mech-
anisms are implemented:

• Independence among task virtual address spaces.

• Access type.

• Privilege level.

The fisrt of these mechanisms is the independence among task virtual address
spaces. Figure 3.47 shows the organization of the virtual address spaces of two tasks
T1 and T2 and the operating system. It also shows how the virtual pages of the tasks
and the operating system are mapped in the physical address space and the paging
file. The operating system sets up the page tables of T1 and T2 so that there is not
overlapping between the page frames associated to their virtual pages. In the same
way, the disk location of the virtual pages of T1 and T2 is different, avoiding any kind
of overlapping. Therefore, any read or write by T1 in its virtual pages T1_C1, T1_C2
and T1_D1 will not affect T2. Conversely, any read or write by T2 in its virtual pages
T2_C1 and T2_D1 will not affect T1. The independence among task virtual address
spaces protects each task from the others and also simplifies development tools as
previously mentioned.

Another protection mechanism provided by paging is the addition of access types
to virtual pages. For example, an entry in the page table associated to a virtual page
of a task contains a field that specifies if the virtual page can be read, read and writ-
ten, only executed, etc. This allows the protection of certain virtual pages against
unappropriated accesses.

The last protection mechanism provided by paging consists in the association of
a minimum privilege level to each virtual page. This privilege level represents the
minimum privilege level at which an instruction should be executed to be able to ac-
cess a virtual page. Most of CPUs associate two possible levels to the virtual pages: a
low privilege level to the pages that can be accessed by tasks and the operating sys-
tem and a high privilege level to the pages that can only be accessed by the operating
system.

Figure 3.48 shows the protection bits associated to the virtual pages of T1 and the
operating system.

As can be seen, all code pages are set as read only, while data pages are set as
read and write. The pages associated to the operating system can only be accessed
when the CPU is executing instructions with kernel privilege level, that is, while the
operating system is executed.
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T1_C1

T1_C2

T1_D1

SO_C1

SO_D1

Virtual A.S.

R/W U/S Frame

1 1
1 1

0 1

1 0
0 0

Page table T1_D1

T1_C1

SO_C1

SO_D1

Physical A.S.

Loc. X

• Bit L/E = 1: read only

• Bit L/E = 0: read and write

• Bit U/S = 1: user level

• Bit U/S = 0: kernel level

Figure 3.48: Protection bits associated to the pages of a task and the operating system

Memory sharing

Another important feature of paging is its support to memory sharing.
The operating system enables memory sharing between tasks by programming

the page table of each task appropriately. Memory sharing makes it possible to have
a high speed communication mechanism between tasks and to avoid duplicities in
physical memory. For example, as shown in figure 3.47, all the tasks share the physi-
cal memory associated to the operating system, avoiding the need of having as many
copies of those pages as tasks in the system. Another example of duplicity preven-
tion is the use of dynamic-link libraries. If two or more tasks use the same library,
they do not need to have its own copy of the library in physical memory, just a single
instance shared between all the tasks is needed.

Figure 3.49 shows how shared memory areas can be created during the execution
of programs. At a given time, task T1 requests a shared page frame associated to its
virtual page T1_D2 to the operating system.7 Assuming that the operating system
grants the request, it programs the entry of the page table of T1 associated to that
virtual page properly, so that it points to the granted page frame. From that moment
on, T1 can read and write its virtual page T1_D2 because it has physical storage asso-
ciated. Later, task T2 asks the operating system to share the previous page frame and
to have it associated to its virtual page T2_D2. Once the operating system grants the
request, the page frame becomes shared between T1 and T2. This means that any-
thing that T1 writes on its virtual page could be read by T2 using its virtual page
T2_D2 and vice versa.

7This is done through a call to special services of the operating system
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T1_C1

T1_D1

T1_D2

SO_1

SO_2

T1 virtual A.S.

T1 page table

T1_D1

T1_C1

SO_1

T2_C1

Shared

Physical A.S.

Loc. X

Loc. Y

T2 page table
T2_D2

T2_C1

T2_D1

SO_1

SO_2

T2 virtual A.S.

Figure 3.49: Memory page shared between two tasks

Increasing the capacity of the memory system

The objetive is having a large capacity memory system for:

• Being able to execute programs larger than the size of the installed main mem-
ory.

• Being able to execute, at the same time, many programas that would need more
memory than the installed main memory.

This increase in the capacity of the memory system is achieved using main mem-
ory as a cache of the disk. When the CPU issues a virtual address, the page number
field is used as an index in the page table of the task. If the virtual page is asso-
ciated with a page frame, the MMU generates the physical address corresponding
to the virtual address and the data is accessed directly in physical memory. On the
contrary, if the page table shows that the virtual page has a disk location associated,
an exception is triggered. This exception is called a page fault. As consequence, the
exception handler, which is part of the operating system, is executed and the page
is moved from the disk to main memory. Finally, the operating system modifies the
entry in the page table so that it shows the new situation. Now, the page is stored in
main memory and if the access is repeated it will not trigger an exception.

Although paging makes it possible to increase the capacity of the memory system
beyond the capacity of main memory, the extra capacity is gained at the expense of
reducing the performance of the system. During the page faults it is necessary to
move disk blocks from disk to main memory, which requires much time compared
to the time needed to access main memory. Next, the operations that happen when
a page fault occurs are described in detail.
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Page Pres. Dirty Frame/Location

00000h No - Not valid

00001h No - Not valid

. . . . . . . . .

000FFh No - Not valid

00100h No - Location Y

00101h Yes No 01h

00102h Yes Yes 02h

00103h Yes Yes 03h

00104h Yes No 04h

00105h No - Location X

00106h No - Not valid

. . . . . . . . .

FFFFEh No - Not valid

FFFFFh No - Not valid

Page table

00100XXXh

00101XXXh

00102XXXh

00103XXXh

00104XXXh

00105XXXh

Virtual A.S.
00000000h

FFFFFFFFh

01XXXh

02XXXh

04XXXh

05XXXh

Physical A.S.
00000h

FFFFFh

Locat. X

Locat. Y

Figure 3.50: Initial situation before the page fault

A page fault occurs when the CPU issues a virtual address of a page that is not
located in physical memory. This situation is easily detected by the CPU hardware,
as the presence bit is not active. When this happens, the CPU triggers a page fault
exception that is managed by the page fault handler, which is part of the operating
system.

In order to illustrate the steps followed by the page fault handler the initial situ-
ation shown in figure 3.50 is assumed. Next, these steps are enumerated.

A) The cause of the page fault is analyzed. There are two possible causes: address
of a page without any associated storage or address of a page located in disk.

B) An address in a page that does not have associated storage means that it is
not in physical memory nor in the paging file. In this case, a memory access
violation exception is triggered. For example, when a program tries to access
address 000F F05Eh (page 000FFh) using the page table from figure 3.50.

C) If the address is stored in disk, like for example address 0010 51B3h (page
00105h), the next operations are carried out:

C1) The operating system determines in which page frame is going to be
loaded the page that is stored in disk. To do so, a replacement policy is
used (LRU for example), in the same way as for the cache memory. The
algorithm may choose between one of the four page frames assigned to
the task or another page frame that has not belonged to the task. The set
of page frames assigned to a task is called the working set. Page frame 02h
is chosen in the example.

C2) If the page to be replaced has been modified (bit dirty is active), as it hap-
pens in the example (page 00102h), the page is saved to disk before it is
replaced and the associated entry in the page table is updated. The new
situation is shown in figure 3.51.
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Page Pres. Dirty Frame/Location

00000h No - Not valid

00001h No - Not valid

. . . . . . . . .

000FFh No - Not valid

00100h No - Location Y

00101h Yes No 01h

00102h No - Location Z

00103h Yes Yes 03h

00104h Yes No 04h

00105h No - Location X

00106h No - Not valid

. . . . . . . . .

FFFFEh No - Not valid

FFFFFh No - Not valid

Page table

00100XXXh

00101XXXh

00102XXXh

00103XXXh

00104XXXh

00105XXXh

Virtual A.S.
00000000h

FFFFFFFFh

01XXXh

02XXXh

04XXXh

05XXXh

Physical A.S.
00000h

FFFFFh

Locat. X

Locat. Y

Locat. Z

Figure 3.51: Movement of modified page 00102h to disk before it is replaced

Page Pres. Dirty Frame/Location

00000h No - Not valid

00001h No - Not valid

. . . . . . . . .

000FFh No - Not valid

00100h No - Location Y

00101h Yes No 01h

00102h No - Location Z

00103h Yes Yes 03h

00104h Yes No 04h

00105h Yes No 02h

00106h No - Not valid

. . . . . . . . .

FFFFEh No - Not valid

FFFFFh No - Not valid

Page table

00100XXXh

00101XXXh

00102XXXh

00103XXXh

00104XXXh

00105XXXh

Virtual A.S.
00000000h

FFFFFFFFh

01XXXh

02XXXh

04XXXh

05XXXh

Physical A.S.
00000h

FFFFFh

Locat. Y

Locat. Z

Figure 3.52: Loading page 00105h from disk

C3) The requested page is loaded from disk and the corresponding page table
entry is updated. The new situation is shown in figure 3.52.

C4) The page fault handler returns to the instruction that triggered the excep-
tion once the requested address is located in the physical memory. The
same instruction is executed again, but it will not trigger a page fault ex-
ception this time.
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Page table
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T1_C1

T1_C2

T1_D1

SO_1

SO_2

Virtual A.S.

T1_D1

T1_C1

SO_1

SO_2

Physical A.S.

2

Locat. X

Figure 3.53: Memory access using paging without TLB

3.4.3 The TLB

So far, aspects related to the functionality of the virtual memory, paging in particular,
have been studied. However, the use of this technique has important consequences
in the machine performance that must be taken into account.

Every access to a virtual address by the CPU implies, in fact, two accesses to
memory using paging: one to the page table and another one to the associated phys-
ical address. Figure 3.53 illustrates this issue.

Task T1 accesses a byte of memory in the virtual page T1_C1, which requires:

1. Accessing physical memory to read the entry in the page table associated to
virtual page T1_C1.

2. Accessing the physical address resulted from the translation of the virtual ad-
dress using the entry in the page table.

Obviously, this significantly reduces the performance of the system. Supposing
that there is not cache memory, each access to a virtual address will result in two
accesses to main memory.

Thanks to the principle of locality, a task often accesses a few virtual pages, whose
entries can be stored in a small specific cache memory in the CPU. This is usually a
fully associative cache and is called Translation Lookaside Buffer (TLB). This way,
the access to a virtual address is reduced to one access to the TLB and one access to
main memory. Taking into account that the access time to the TLB is far less than the
access time to main memory, the former can be considered negligible. Therefore, the
use of paging, theoretically, should not affect the performance of the system if the
TLB is used.
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Figure 3.54: Pipelining in the access to TLB and cache

The management of a TLB miss is usually carried out by the hardware, in the
same way it is done in general purpose caches. However, architectures usually pro-
vide privileged instructions related to the TLB, for example, to invalidate all the en-
tries in the TLB or just some specific entry.

The content of the page table register changes, so does the page table on every
context switch, when the execution changes from a task to another. Therefore, the
operating system must invalidate all the entries in the TLB. Then, several TLB misses
occur (at least one for the data area, one for the code area and another one for the
stack) that slow down the resuming of programs after context switches. The usual
solution consists in adding a set of bits to each TLB entry that identifies the owner
task. A special sequence of these bits can be reserved for identifying some entries as
global, that is, valid for all tasks. These global entries could be used to translate the
addresses associated to the operating system, because its addresses do not change
when switching between tasks. Of course, the TLB must have a bigger capacity if
only one is used for all tasks.

The existence of the general purpose cache memory between the CPU and main
memory was ignored intentionally when the concept of TLB was introduced for sim-
plifying the explanation. Nevertheless, the coexistence of the TLB and the cache has
great implications from the performance point of view. The access time to the TLB
can not be considered negligible anymore, because the memory access time is often
now equal to the access time of the cache, which is similar to the access time of the
TLB. Therefore, one access to virtual memory becomes one access to the cache and
another one to the TLB, which is equivalent to two accesses to cache and is an impor-
tant performance loss. This loss is unacceptable so different solutions are proposed
next.

Figure 3.54 illustrates one possible solution to the performance issue using a
pipelined CPU like the one described in the chapter dedicated to the CPU. The orig-
inal MEM stage is pipelined in two stages, MEM_TLB and MEM_CACHE, each one requiring
one clock cycle. The former obtains the page frame number based on the virtual page
number and the latter accesses the cache using the obtained physical address.

In ideal conditions, stages MEM_TLB and MEM_CACHE can work in parallel thanks to
the pipelining of the memory access, so the access time to memory will be one clock
cycle. However, the efficiency of this solution is limited, because it requires many
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Figure 3.55: Virtually indexed and virtually tagged cache (V/V)

consecutive memory accesses. This is why the solution used in practice is virtual
caches, which are introduced below.

Virtual caches

Virtual caches are caches that totally or partially use virtual addresses to work. The
idea is that caches working with virtual addresses do not need to wait for the TLB to
obtain the page frame associated to the virtual page.

Before studying virtual caches deeper, it should be reminded that every single
memory block that is cached is identified by two elements:

• Set (or index). Cache lines are organized in sets, so a memory block can be
placed in any line of the set. The number of lines or ways of the set is called de-
gree of associativity. Direct mapped placement and fully associative placement
are particular cases of the set associative placement.

• Tag. It allows the identification of a memory block between all that can be
placed in the same cache set.

Caches described so far are indexed and tagged with bits from the physical ad-
dress. They are called P/P caches (physically indexed / physically tagged). Both the
cache set and the tag come from the physical address, so it is necessary to access the
TLB before accessing the cache. This kind of caches lead to a performance loss, even
when the access to the TLB and the cache are pipelined. However, there are some
alternatives that are always applied to the L1 cache. The reason is that the perfor-
mance issue derived from the address translation only arises in the level of cache
closest to the CPU. Cache levels L2, L3 and successive do not show this issue as
they always work with physical addresses, so they are ignored when dealing with
address translation.

V/V caches are virtually indexed and virtually tagged caches. These caches ex-
clusively work with virtual addresses, so its is not necessary to wait for the TLB.
Figure 3.55 shows the structure of a virtually indexed and virtually tagged cache.

The L1 cache serves the data when accessing a cached virtual address. Therefore,
the access time to memory is one clock cycle, not two, in case of a cache hit, so the
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Figure 3.56: Synonyms issue in virtual caches

performance issue is solved. If a cache miss occurs, an access to the TLB is needed to
translate the virtual address into the physical address in order to access the L2 cache,
which works with physical addresses, and deal with the L1 cache miss.

Although the use of L1 V/V caches solves the performance issue they introduce
some additional issues.

• Each cache line should include a task identifier in order for the cache to store
data from different tasks, similarly to the TLB with physical caches. If not, the
cache should be invalidated with every context switch, as a virtual address
may be mapped to different physical addresses in different tasks.

• The cache must manage memory protection. The TLB is not used in the case of
a cache hit, so the cache must do this management. To do so, each cache line
must have some bits to indicate the access type (R/W) and the privilege level
(U/S) that must be consistent with the bits associated to the virtual page in the
page table.

• The synonyms issue shows up. This issue requires special attention and is il-
lustrated in figure 3.56.

Tasks T1 and T2 share a page frame using different virtual pages. Since the vir-
tual addresses of the shared memory area are different for each task, the same
memory block in that area can be placed in two different sets of the cache at the
same time, one with the identifier of task T1 and the other with the identifier
of T2. This is possible because the virtual addresses are different. Besides the
wasted cache space, a coherence issue may appear because the same memory
block is placed twice in cache. If T1 writes in the shared memory block, it will
write in the cache line with the identifier of T1. Then, if T2 reads the content of
the shared memory block, it will read the cache line with the identifier of T2,
so it will not read the updated value.
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Figure 3.57: Virtually indexed and physically tagged cache (V/P)

A solution to this issue is invalidating the L1 cache (after updating the modified
blocks in L2) with every context switch. Another solution is to look for synonyms in
the L1 cache at the time of writing and invalidate the lines with synonyms. In both
cases the cost in terms of performance in unacceptable.

As seen so far, using physical caches (P/P) or virtual caches (V/V) causes perfor-
mance issues. In practice, the solution used consists in mixing both strategies using
a virtually indexed and physically tagged L1 cache (V/P). Figure 3.57 shows the
structure of this cache.

The cache is virtually indexed, which means that the virtual address is used to
select the cache set where the virtual address can be placed. The novelty compared
to V/V caches is that the tag field of a cache line does not comes from the virtual
address in this case, but from the physical address. Therefore, the tag stored in all the
lines in the set must be compared with the one obtained from the physical address to
check if a virtual address is cached. In order to get the tag from the physical address,
the TLB is accessed in parallel using the virtual page as usual, providing the page
frame from which the physical tag is obtained. As the TLB and the cache are accessed
in parallel there are no performance penalties; the access time to memory is one clock
cycle.

V/P caches have the benefit compared to V/V caches that every memory access
requires the use of the TLB, so no privilege management or any other cache access
restriction is needed. However, they share the synonyms issue with V/V caches. The
same memory block in a page frame shared by two tasks T1 and T2 may be placed in
different sets for each task because the cache is virtually indexed. Nevertheless, the
solutions in this case are much more simple and efficient than for the case of V/V
caches.

Even though there are several possible solutions, the most common is to limit
the size of the L1 cache and/or increment its associativity (number of ways). If the
size of the page multiplied by the number of ways is greater or equal to the size
of the cache, the set where the virtual address is cached can be obtained from the
offset of the virtual address, which is the same as the offset of the physical address,
so it does not depend on the virtual page number. In other words, if several tasks
share a memory block, this block will be placed in the same cache set no matter the
task, so the synonyms (duplicities) cannot exist. This solution is the chosen in many
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Figure 3.58: Obtaining the cache set from the offset of the physical address

PC processors by Intel and AMD. For example, each core of the Intel Core i5-6600K
processor has a L1 data cache of 32 KiB, with 8 ways per set and the minimum page
size is 4 KiB. Using this example, figure 3.58 shows how the cache set can be obtained
directly from the offset in the address, so it does not depend on the virtual page. The
situation is analogous to removing the arrow from the virtual page to the MEM_CACHE
stage in figure 3.57.

The result of multiplying the size of the page by the number of ways of the cache
is 4 KiB × 8 = 32 KiB, which is equal to the size of the cache. The problem with this
strategy is the increase in the cost of the L1 cache, which grows rapidly with its
degree of associativity. However, this cost is affordable with current manufacturing
techniques.

3.5 Virtualization support

Virtual memory is an example of virtualization where a unique physical resource,
the physical address space, is shown as multiple spaces of virtual addresses, one for
each task. Each task sees the “illusion” that it has a complete address space for itself,
but in fact, it is sharing a physical address space with other tasks. The MMU with
correct management by the operating system makes that “illusion” possible.

A new virtualization level is needed when virtual machines are used, because
several operating systems must share a single physical address space at the same
time. This sharing is managed by the hypervisor by introducing a new virtualiza-
tion level between the virtual memory (managed by the operating system) and the
physical memory (managed by the hypervisor). Therefore, three address spaces are
defined:

• Guest Virtual Addresses (GVAs). The addresses seen by a task.

• Guest Physical Addresses (GPAs). They are not real physical addresses. They
are managed by the operating system as the memory assigned to the virtual
machine.
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• Host Physical Addresses (HPAs). These are the real physical addresses of the
system, managed by the hypervisor.

Therefore, in order to translate a virtual address of a task into a physical address
of the system two consecutive translations are needed, as seen in figure 3.59:

• Guest virtual address (GVA)→ Guest physical address (GPA). This translation
is carried out by the MMU using the page table managed by the operating
system as shown in section 3.4.2. This page table is called guest physical table
(gPT) in this context.

• Guest physical address (GPA)→Host physical address (HPA). This translation
creates a problem because the CPU does not have any device that can perform
it.

The solutions used in the x86 architecture are presented below.
The first solution to the translation problem between guest physical addresses

and host physical addresses is based on shadow page tables. Each task has its own
table called shadow page table, or sPT, managed by the hypervisor, that contains
the direct translation between a guest virtual address (GVA) and the corresponding
host physical address (HPA). Therefore, the MMU works with the shadow page table
(sPT) instead of the guest page table (gPT) as shown in figure 3.60.

The hypervisor must intercept any writing the operating system performs to a
guest page table (gPT) for the operating system to have the illusion that it is man-
aging the host physical address space. This can be done by setting all pages as read-
only, so a page fault exception will be triggered when the operating system tries to
modify an entry. The handler of the page fault exception, executed by the hypervisor,
will modify the proper entry in the shadow page table. Additionally, it is necessary
that the hypervisor intercepts any management instruction over the TLB the operat-
ing systems execute such as the invalidation of entries in the TLB.

One of the issues of using shadow page tables is the great amount of context
switches that occur between operating systems and the hypervisor in order to man-
age paging, which degrades performance. Manufacturers of x86 CPUs, as part of the
hardware virtualization support, have developed a technique called Second Level
Address Translation (SLAT), also known as nested paging, in order to alleviate this
performance issue.

In a first stage, when a task accesses a virtual address (GVA) using nested paging,
the MMU translates it to a guest physical address (GPA) using its gPT, which is
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managed by the host operating system or the hypervisor. The host operating system
can write in that table and perform the usual TLB management operations without
meddling of the hypervisor.

In a second stage, the MMU translates the resulting address to a host physical
address (HPA) using a second translation table called nested page table (nPT). This
second table is under control of the hypervisor. Figure 3.61 gives a general outline of
the translation of the addresses of a task using nested paging.

Using the nested paging technique, the TLB stores the direct translation between
guest virtual addresses (GVAs) and host physical addresses (HPAs) during the exe-
cution of the operating system and its tasks.

Nested paging does not always provide a performance increase comparing to
shadow page tables. The cost of a TLB fault is greater using nested paging than using
shadow page tables because the number of page table entries read from memory is
doubled: there is a page read from the gPT and another one from the nPT.

157





Chapter 4

The input/output system

The definition of the computer architecture is completed with the third block, known
as the I/O system. This block of the architecture is essential in every computer, since
it is in charge of the communication between the computer and its environment.
Unlike the other blocks of the architecture described before (CPU and memory), the
I/O system is pretty heterogeneous because the communication with the environ-
ment can involve different types of interlocutor (people or other systems) and each
interlocutor can carry out communications with different characteristics (sound, im-
ages, printed text, etc).

The communication of the computer with its environment usually involves three
elements:

• Peripheral devices. They are the devices that perform the communication with
the environment: screen, mouse, keyboard, network devices, etc.

• Interfaces. They are the computer components in charge of performing the
adaptation between the binary information handled by the computer and the
type of signal the peripheral uses.

• The interconnection system. This is the set of technologies and devices used
for moving information. Not only is it used for communication with the envi-
ronment (communication between CPU and memory is done also throught it),
but it is also responsible for the variety of the existing technologies to adapt to
the requirements of the communications with the peripheral devices.

The three previous elements participate in the communication between the com-
puter and the environment. In practice they are usually studied separately. Firstly,
the I/O interfaces will be studied. Secondly, the interconnection system will be pre-
sented. Finally, peripheral devices will be briefly reviewed.
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Figure 4.1: Input and output operations in the von Neumann computer

4.1 I/O interfaces

The interfaces of all the peripheral devices of the system are part of the I/O system.
Usually, each peripheral has one interface, but one single interface can handle several
peripherals.1

In general, any I/O operation consists in transferring information between the
memory system and the peripheral device. The direction of the communication is
set always from the computer point of view. Thus, an input operation consists in
transferring information from the peripheral through its interface to the memory
system. An output operation consists in transferring information from the memory
system to a peripheral through its interface.

Figure 4.1 illustrate the I/O operations in a von Neumann computer. The com-
ponents of the computer are placed inside the dotted line. It can be seen that some
peripheral devices are included in the computer.2

4.1.1 Mapping in address spaces

In order to perform I/O operations the CPU needs to access the interfaces to read or
write information. This is possible by assigning addresses to the different elements
of the interfaces (registers or ports). These addresses are implemented as locations in
the address spaces of the CPU. As a reminder, the address space is the set of all the
addresses that the CPU can form. I/O operations consist in the reading or writing in
the addresses where the interfaces are mapped. The effect of the read/write opera-
tions in these addresses depends on the interface. For example, the value written in
a certain position of the video interface is converted into data that flows to the screen
making some information to show up.

1This is the case of the PS/2 interface for the keyboard and mouse, the USB interface or the Firewire
interface.

2There are some peripheral devices like hard-disk drives that are used to support some inner functions
of the computer and not to communicate it with the environment. These devices are usually placed inside
the computer
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In practice, every CPU has at least one address space, called the memory ad-
dress space. In this space, among other things, the main memory of the system is
mapped. Computers whose CPU has a single address space map the interfaces of all
peripheral devices in the memory address space. This technique, known as memory
mapped I/O, consists in reserving some addresses to be assigned to the interfaces
of the peripheral devices. This way, I/O accesses are simplified converting them in
simple memory accesses that are carried out with the same instructions. However,
the disadvantage is that the amount of available memory addresses for the main
memory is reduced.

There are some CPU, such as those implementing the x86 architecture, that have
an additional memory address space called the I/O address space. In this case, in-
terfaces can also be mapped in the I/O address space. This mechanism is called
separated address space. It has the advantage that no memory addresses are sacri-
ficed for mapping interfaces, but specific instructions are needed to access to the I/O
address space. Figure 4.2 shows a possible location of the memory system and the
I/O system in address spaces.

4.1.2 Protection

From the I/O point of view, what differentiates a CPU that supports multitasking
operating systems from another that does not is the possibility of limiting the access
to the interfaces of peripheral devices. These limitations prevent tasks from accessing
interfaces directly. Only the operating system can access interfaces.

Protecting interfaces mapped in the memory address space is usually carried out
by assigning a kernel privilege access level to the pages where the interfaces are
mapped. This way, only the operating system can access those interfaces.

Read and write operations in the I/O address space are carried out using spe-
cific instructions. For example, instructions in and out in the x86 architecture. The
protection of the I/O address space is achieved by allowing the execution of these
instructions only at kernel level.

Figure 4.3 shows how an application that wants to access interfaces in a mul-
titasking operating system will not be able to do it directly, but only through the
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services provided by the operating system. Even in systems that do not support mul-
titasking, the access to the interfaces is usually done through services provided by
the operating system.

4.1.3 I/O techniques

As commented, I/O operations consist mainly in transferring information between
the interfaces of the peripheral devices and the memory.

An issue to be solved is how the CPU is synchronized with the I/O operation.
Both the CPU and peripheral devices can start I/O operations. In the first case, the
program gets to an instruction that involves an I/O operation. For example, calling
the C function fprintf that writes to a file. In this case, the CPU starts the I/O op-
eration. In the second case, at any time the interface of a peripheral device has some
data provided by the peripheral device, but the CPU can not know, a priori, when
this will happen. For example, the CPU can not know when the user will push a key
or move the mouse. Then, it is said that the peripheral device or its interface starts
the I/O operation.

Once the I/O operation is started, data must be moved between the peripheral
interface and the memory. This transfer can be done by the CPU (executing load and
store operations), or some other devices can be used to free the CPU from doing
these tasks and, therefore, leaving it available to execute other tasks.

The existing techniques to carry out I/O operations are enumerated next from
the least to the most efficient:

• Pooling-based I/O.

• Interrupt-based I/O.

• Direct Memory Access or DMA-based I/O.

• I/O processors.
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Pooling-based I/O

This is the simplest I/O technique, but it is also the worst from the performance
point of view.

In general, interfaces have at least one status register and one data register. This
technique is based on the CPU pooling continuously the status register of an inter-
face. This allows the CPU to know when the interface is ready, that is, when it has
available data in the data register or it is ready for getting new data through the data
register. Once the interface is ready, the data transfer between the interface and the
memory is performed by the CPU. This is depicted in figure 4.4. As can be seen, while
the interface is not ready, the CPU is in a loop pooling the status register constantly.
Once the interface is ready, the CPU gets out of the loop.

This technique can be applied simultaneously to more than one interface. To do
so, the CPU must pool sequentially the status registers of all the interfaces.

This technique is very inefficient because it keeps the CPU busy pooling the sta-
tus register until an interface is ready. It can be applied to small single-task oper-
ating systems where the performance is not essential. However, it is not applied in
personal computers or servers in which multitasking and performance are very im-
portant features. It is not used either in battery-powered devices due to the great
power consumption it produces.

Interrupt-based I/O

It is a frequently used technique that avoids pooling interfaces to know when they
are ready. The idea is simple: instead of having the CPU pooling the status register
of the interface, the interface informs the CPU when it is ready. Thus, the CPU does
not waste time on pooling the status register.

When the interface of the peripheral is ready, for example when a data is avail-
able, it generates an interrupt request to the CPU. At the end of each instruction, the
CPU checks if an interrupt has been raised. If there is no interrupt, it keeps execut-
ing the program with the next instruction. If there is an interrupt, it executes a small
piece of code associated to the interface, where it typically transfers data between
the memory and the interface. Once the execution of that piece of code finishes, the
CPU returns to the program where it left it. The small piece of code associated with
an interface is called interrupt service routine or interrupt handler.

Figure 4.5 shows the execution of the program composed of instructions A, B, C, D
and E and the interrupt service routine composed of the instructions 1, 2 and 3 when
a interrupt is produced during the execution of the instruction C.
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The management of interrupts in a pipelined CPU is similar to the management
of exceptions, as seen in section 2.3.4.

The implementation of interrupts in a given architecture poses several issues:

• Priorization. When two or more interfaces raise an interrupt during the execu-
tion of the same instruction it must be chosen which one is served first. To do
so, priorities must be set between the interfaces of the peripherals.

• Interrupt disabling. There are situations when the CPU must not be interrupted
during the execution of a certain piece of code. For example, during the mod-
ification of the table page. If an interrupt service routine starts its execution
before the modification of the page table is completed, it can take down the
whole system. Of course, there must be some mechanisms to enable the inter-
rupts and return to the previous situation.

• Interface identification. It is common that a processor has a limited number of
interrupt request lines. For example, x86 compatible processors have a single
request line for interrupts that is shared with all interfaces. Therefore, once a
interrupt is raised there must be some mechanism to identify which interface
(the one with higher priority) has raised the interrupt and so which interrupt
service routine must be executed.

Direct Memory Access (DMA)

Interrupt-based I/O has a disadvantage, which has more impact in multitasking
systems when the data flow between interfaces and memory is high. The CPU is
in charge of the data transfer between interfaces and memory, so it cannot execute
other programs while the data transfer is being done.

The main idea of the DMA is freeing the CPU from the data transfer. Thus, this
data transfer is done by a device called DMA controller. The classic DMA controller
is an element that simply moves information between interfaces and memory.

Figure 4.6 shows the data flows in an input operation with and without DMA
in a multitasking operating system with 3 user tasks. Task T2 needs data from a
peripheral device and asks the operating system for it. T2 stays suspended until the
operating system provides that data.

If using the interrupt-based I/O technique, the operating system would generate
a context switch, making the CPU execute another task, task T1 for instance. Once the
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interface is ready, it would raise an interrupt. The CPU would stop executing task T1
and would execute the interrupt service routine associated to the peripheral device.
In this routine, the CPU would transfer the data from the interface to memory and
wake up task T2. This would result in a new context switch. The CPU is in charge of
the data transfer in this case.

If using the DMA technique, a context switch is also done in order to resume the
execution of task T1. The difference is that when the data is ready, it is copied from the
interface to the memory by the DMA controller while the CPU is still executing task
T1. When the data transfer finishes, an interrupt is raised, but in this case the handler
must not move the data, but simply wake up task T2. The system performance has
been improved.

It must be taken into account that DMA only has advantages if the system sup-
ports multitasking or if it is single-task and the DMA controller can transfer data
faster than the CPU.

The usual steps carried out using DMA I/O are enumerated below.

1. The CPU executing the operating system programs the DMA controller indi-
cating the operation that must be done (reading or writing to the interface), the
amount of data to transfer and the addresses involved in the transfer.

2. The CPU executing the operating system programs the interface of the periph-
eral device indicating that DMA must be used.

3. When the interface is ready to transfer, it notifies the DMA controller with a
DMA request. The DMA controller takes the control of the buses and transfers
the data between the interface and the memory.

4. At the end of the transfer, the CPU is notified using an interrupt.

The classic DMA controller is a device with the following characteristics:
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• No intelligence. It simply copies the specified amount of data from some ad-
dresses to others.

• It is a shared device. All the interfaces with DMA capabilities share the DMA
controller/s.

Nowadays, the classic DMA has evolved into what is known as bus mastering.
With this technique, each interface has its own controller capable of acting as bus
master, i.e., it is capable of controlling the buses and using them in the same way
the CPU does. This controller associated with an interface is in charge of doing the
data transfer between the interface and the memory, but it is more adaptable than
the classic DMA controller because it is an intelligent device. It can even take the
initiative to do transfers. At the end of the transfer the controller notifies the CPU
using interrupts.

I/O processors

I/O processors are one step further in the evolution of I/O. The main idea is to
extend the DMA controller giving it its own CPU. In this case, the main CPU will
only indicate the commands to carry out. The I/O processor is in charge of all the
I/O process, which often involves the execution of a program in the I/O processor.
At the end of the transfer the I/O processor will notify that the operation is finished.
These are interfaces with bus mastering capabilities that include one or more CPUs
with high processing capacity. In some cases, they are more complex than the main
CPU.

This is the case of graphics accelerators. They receive high level commands from
the CPU such as moving an application window from one point on the screen to an-
other. This way, the CPU does not have to update the state of the pixels of the screen
occupied by the window before and after the movement. This effect is specially im-
portant in games and 3D animation programs.

Another example is image encondig/decoding cards and sound cards that free
the CPU from the work of doing this processing, allowing it to do other tasks.

The current trend in I/O is using I/O processors, so the computer is converted
into a multi-processor system composed of specialized processors.

4.2 The interconnection system

The components of the von Neumann machine exchange information through com-
munication channels known as data, address and control buses. In general, the actual
composition of the communication channels of the computer is known as the inter-
connection system of the computer. Nowadays, the interconnection system is hetero-
geneous, including different technologies, motivated in many cases by the diversity
of interfaces and communication characteristics.
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4.2.1 Topologies

The computer is composed of devices that need to connect to each other. This is the
case of the CPU, the memory system and the interfaces of peripheral devices. The
computer also includes some control devices that are mapped in the address spaces
like timers, interrupt controllers, etc. The interfaces of the peripherals need to be
connected to peripherals as well.

The easiest way to connect two devices is through a point-to-point channel. Using
this kind of connection, if two devices A and B need to communicate, there is a dedi-
cated channel that connects exclusively A and B. Figure 4.7 shows the point-to-point
channels that are needed to communicate devices A, B, C, D and E.

This interconnection technique presents some advantages:

• Easy implementation.

• High bandwidth.

• Parallel transfers are possible.

However, it also presents some disadvantages:

• As seen in figure 4.7, 10 channels are required in order to connect 5 devices
between them. If there were 20 devices, the number of channels needed would
be 190. When there is a need to communicate many devices, the number of
channels required increases rapidly, so does the cost.
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• When a device wants to send the same information to more than one device, it
needs to do the transfer as many times as destination devices.

Clearly, the most important disadvantage of point-to-point channels is the great
number of channels required. A solution to this problem consists in using and de-
ploying a star topology. Figure 4.8 shows the connection between devices A, B, C, D
and E using a hub.

This topology requires a single channel for each device. Each time a device wants
to send information to another, it sends it to the hub with the information that inden-
tifies the destination device. The hub uses this information to forward information
to the destination device.

The star topology has the following advantages compared to point-to-point chan-
nels:

• It requires a smaller amount of channels. There are as many point-to-point
channels between the hub and the devices as devices.

• If the hub allows it, it is possible to transmit the information coming from a
device to several destination devices at once.

The main disadvantage of this topology is the need of the hub. This hub must
be fast enough and must allow simultaneous transfers between devices in order not
to become a bottleneck. For instance, it would be advisable that the hub would al-
low simultaneous communication between devices A and B and devices E and C in
figure 4.8.
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Another connection topology is the bus topology. A bus is just a communication
channel shared by several devices. Figure 4.9 shows the connection of devices A, B,
C, D and E using a bus.

It can be seen that the number of connections to the bus is the same as the number
of devices, which makes the bus connection technique inexpensive. Any two devices
connected to the bus communicate with each other through it. When a device wants
to send the same information to more than one destination device, it can send it only
once in broadcast mode.

However, this technique has some disadvantages. Sharing the physical connec-
tion medium prevents parallel transfers, so the bus may become a bottleneck. Be-
sides, the construction of the bus using parallel lines limits its frequency due to in-
terference issues between lines and, therefore, limits its bandwidth.

The connection among all the devices of a computer through a single intercon-
nection mechanism presents many disadvantages.

• The computer is composed of many devices with different capacities and char-
acteristics. For instance, an mechanism appropriated for receiving data from a
network interface with 1 Gbps of bandwidth is not appropriated for a keyboard
interface, that has a bandwidth of several bytes per second.

• When a great number of devices are connected to a bus, its effective transfer
capacity is reduced by the overhead produced by communication protocols.
This problem also appears in hub topologies to a lesser extent.

In order to solve these issues, the three topologies are combined in practice. Fig-
ure 4.10 shows an example of this. It can be seen that there are hubs that manage not
only point-to-point channels but also buses.

4.2.2 Characteristics

A set of cualitative characteristics of interconnection technologies are listed below.

• Synchronization. Technologies can be divided into synchronous and asyn-
chronous. Synchronous technologies are characterized by the presence of a
clock signal in their control lines. This clock signal is used to serialize the steps
of communication. For example, using a point-to-point channel, the transmit-
ter puts the information in the data lines and generates a clock signal so that
the receiver can know where each data unit transmitted starts and finishes.

Asynchronous technologies include additional control lines, such as a line that
is activated when there are some data available to be read. In general, these
control lines are activated by the transmitter and the receiver following a pro-
tocol that allows the communication between devices.

In general, synchronous connections are simpler, which makes their imple-
mentation easier and provides a higher bandwidth. However, the length of
the communication channel must be short or the clock frequency low, because
the clock signal is deformed while it goes through the channel, which can make
it unrecognizable. This degradation increases with the distance and the clock
frequency in an effect known as clock skew.
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• Data size. The main function is transferring data. Each read or write operation
involves the transfer of a data item of a certain size in bits.

• Serial or parallel. A parallel connection has as many data lines as bits in a trans-
ferred data item. On the contrary, a serial connection has less number of lines,
usually one, and all the bits that compose the data item are transmitted sequen-
tially. For instance, if the size of the data is 32 bits and the connection has only
one data line, the 32 bits have to be transferred sequentially over the same data
line.

• Multiplexed or not multiplexed. With the objective of reducing the number
of lines, it is common to use certain lines for several functions depending on
the moment. For instance, it is common to multiplex data and address lines.
This way, during a write operation an address is put on the lines and, after-
wards, the data to be written is put on the same lines. Multiplexing reduces the
number of lines, also reducing the cost and improving reliability. However, it
usually implies less bandwidth compared to a not multiplexed version.

• Theoretical bandwidth. It represents the maximum transfer rate in ideal con-
ditions. It is usually expressed in Megabits per second (Mbps) or Gigabits per
second (Gbps).

• Maximum length. The maximum physical length of the connection cannot be
arbitrary. The speed propagation of the electric signals through the wire is lim-
ited: they move a little slower than the speed of light.3 This effect is specially

3Almost 3 ns are required to travel a meter.
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critical in synchronous connections because of the clock skew effect. It must be
taken into account that wires and printed circuit tracks work as antennas that
emit and receive electromagnetic noise, which can produce incorrect signals in
the wires. The mentioned effects are bigger the longer the wire is.

• Plug and Play (PnP). PnP technologies define mechanisms to know the identity
of the connected devices and the hardware resources they need (positions in
the address spaces, interrupt request lines, etc.). The idea is that the system
automatically configures these devices when they are connected, so that the
process is transparent to the user in order to avoid conflicts.

• Hot plug. There are interconnection technologies that allows the connection of
devices while the system is running.

4.2.3 PCI Express (PCIe)

All technologies used in the computer, including the most successful must be re-
placed by new technologies at some point. The main cause relies on the continuous
improvement on the speed of computer elements.

This is the case of the PCI specification, precursor of PCI Express. The initial spec-
ification of PCI had improved its capabilities for many years. However, its limitations
have made it almost disappear from the market. The gap left by PCI was filled by
another connection technology called PCI Express launched in 2002.

PCI and PCI Express have many differences at a physical level. However, at the
beginning they were compatible at a software level. The main idea was that all the
software developed for PCI devices could be used by PCI Express devices. This gen-
eral idea of backward compatibility is very important in the computer industry each
time a new technology is launched or an existing technology is improved.

Next, some of the PCI Express 1.0 characteristics at a physical level are enumer-
ated as an example of an interconnection system:

• PCI Express is a point-to-point connection. Each PCI Express connection is a
single bidirectional connection between two devices.

• PCI Express is a serial connection. Each byte is sent bit by bit sequentially using
two lines in a differential way.4 However, each PCI Express connection can
have several serial lanes working in parallel.

• Each PCI Express lane can transmit 2 Gbps in one direction and 2 Gbps in the
opposite direction at the same time, so it has a theoretical bandwidth of 4 Gbps.

• Each PCI Express connection can have 1, 2, 4, 8, 12, 16 or 32 lanes, according
to 1x, 2x, 4x, 8x, 12x, 16x or 32x suffixes. Therefore, the maximum theoretical
bandwidth of PCI Express is 128 Gbps. Devices with different number of lanes
can be connected, since a handshake takes place in order to decide the number

4One bit is transmited as a difference of voltage between two lines. This way the transmission is im-
mune to interferences, because they affect both lines similarly, keeping the voltage difference between
them and therefore information.
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Figure 4.11: Processing of a packet to be sent by a PCI Express device

of lanes used before starting the communication. For instance, if a 4-lane de-
vice is connected to other with 12 lanes, the communication will be carried out
using 4 lanes.

• The number of pins used by PCI Express is low. PCI Express uses only 2 lines
per lane. This means a great reduction in terms of cost as well as an improve-
ment in its reliability.

Figure 4.11 shows how the transmitter of a PCI Express device processes a data
packet that is sent to another PCI Express device. The processing carried out by the
receiver is the inverse.

The packet is a set of bytes stored in a transmission buffer of the transmitter. It
must be taken into account that, together with the data, some control information
is also sent. There is a dispatcher in charge of selecting a byte of data or a byte of
control, progressively emptying the transmission buffer in the first case.

Each byte of the byte sequence generated by the dispatcher (data and control
bytes) is dealt among the communication lanes.

Each lane has a pseudo-random mixer, an 8b/10b converter and a parallel to
serial converter.

The pseudo-random mixer changes the order of the bytes it receives in order to
avoid patterns of repeated bytes, which distributes the electromagnetic radiation of
Tx+ and Tx- lines of the lane in a wide range of frequencies.5

5This way, the electromagnetic radiation that near conductors receive is similar to white noise, which
is less harmful than noise focused in some few frequencies.
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Version Year Theoretical bandwidth Effective bandwidth Encoding

PCIe 1.0 2003 2.5 Gbps 2 Gbps 8b/10b
PCIe 1.1 2005 2.5 Gbps 2 Gbps 8b/10b
PCIe 2.0 2007 5 Gbps 4 Gbps 8b/10b
PCIe 2.1 2009 5 Gbps 4 Gbps 8b/10b
PCIe 3.0 2010 8 Gbps 7.88 Gbps 128b/130b
PCIe 3.1 2014 8 Gbps 7.88 Gbps 128b/130b
PCIe 4.0 2017 16 Gbps 15.75 Gbps 128b/130b
PCIe 5.0 2019 32 Gbps 31.5 Gbps 128b/130b

Table 4.1: PCIe versions and bandwidths

The 8b/10b converter transforms each byte in a sequence of 10 bits. The main
objective of this transformation is to make the distance between the transitions from
0 to 1 and from 1 to 0 not more than a certain number of bits. The reason is that
these transitions are used to synchronize the receiver clock with the 2.5 GHz clock
of the transmitter. Without this encoding, the distance between consecutive transi-
tions can be randomly long such as when there are many consecutive 00h bytes or
FFh bytes. Taking into account the transmitter clock frequency and the fact that in
each clock cycle a bit is transferred, the theoretical bandwidth (one way) is 2.5 Gbps.
However, the effective bandwidth is 2 Gbps due to the two bits added during the
8b/10b conversion.

The parallel to serial converter receives words of 10 bits and transmit their bits
serially using lines Tx+ and Tx-. A logical one is a positive voltage difference between
Tx+ and Tx-, while a logical zero is a negative voltage difference.

Over the years, the PCIe technology has evolved and improved its capabilities in
successive versions that provide great improvements. In table 4.1 the main versions
of PCIe launched until the writing of this text are listed together with their one-way
bandwidth for one lane.

4.3 Peripheral devices

This section studies the devices that enable the computer to communicate with its
environment. These devices are called peripherals and communicate with the com-
puter through interfaces whose work is to adapt the operational characteristics of
each peripheral to the digital operation of the computer.

4.3.1 Introduction

Although it is hard to establish a classification of peripherals due to the amount of
different criteria that could be used, the most general classification is based on the
direction of the information flow. Periherals can be classified as follows:
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• Input peripherals. Their main task is to enter information in the computer.
The most used are the keyboard and the mouse. However, some other devices
belong to this group: magnetic stripe readers, optical detectors (marks, stripes,
dots or characters), voice recognition devices, light pens, joysticks, scannners,
digital cameras, etc.

• Output peripherals. Their main task is to present information to the user. The
most common output peripheral is the screen, but there are other devices in
this group: printers, plotters, any kind of specific display, augmented reality
devices, etc.

• Input/Output peripherals. These peripherals are used both to enter informa-
tion in the computer and to extract information from the computer. In this
group the most representative elements are communication peripherals like
network cards. Devices such as sound cards and touchscreens also belong to
this group.

• Auxiliary memory or storage peripherals. This group of peripherals is a par-
ticular case of input/output peripherals because they are used both to enter
and to extract information to/from the computer. They are used as storage de-
vices. Magnetic disks, optical disks (CD, DVD and Blu-ray), magnetic tapes,
magnetic-optic disks, USB drives and SSD devices belong to this group.

Storage peripherals (hard disk drives and solid state drives) will be studied in
more depth due to their importance in current computers.

4.3.2 Hard disk drive

Hard disk drives, or HDDs, are devices that enable the storage of information in
a non-volatile way, which means that information persists even without a power
supply. These devices are composed of several platters linked by a shaft spinning to-
gether at speeds that can reach 15 000 rpm. The surfaces of these platters are coated
with ferromagnetic material that can store information. There is a magnetic head in
each side of a platter that can read and write information. The heads are attached to
an arm connected to a mechanic structure that is used to move them over the platter
radially outward and inward. This radial movement, together with the rotation of
the disk, allows the heads to reach any point of the platters. A scheme of the compo-
nents of a disk is shown in figure 4.12.

Information organization

The organization of the information determines how the information must be placed
so it can be accessed. This organization is shown in figure 4.13. The following ele-
ments can be identified in the figure:

• Tracks. They are concentric circles on the surface of a platter. They are num-
bered from 0 to (Track count − 1). Number 0 is reserved for the most external
track.
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Figure 4.12: Parts of a hard disk drive

(a) Constant number of sectors (b) Constant information density

Figure 4.13: Distribution of information in a platter
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Figure 4.14: Cylinder definition in a hard disk drive

• Each of these tracks is divided into small segments called sectors. Each sector
contains a certain amount of bytes, usually 512 or 1024.

The sector is the minimum unit that can be read or written in a hard disk (even
when only one byte is needed, the whole sector is read or written).

• Information can be stored in one or in both faces of a platter. Technically, they
are called surfaces.

• A cylinder is defined as the set of tracks with the same number in all surfaces.
That is, all the tracks that are in the same vertical axis. Figure 4.14 shows a
representation of a cylinder.

Some operating systems define another unit called cluster. A cluster puts together
two or more sectors and represents the minimum size of disk that can be used to
perform a read or write operation in the file system.

During the low level formatting operation, the heads write information necessary
to identify tracks and sectors on each platter. This information will be used to locate
information in the disk when reading and writing.

After the low level formatting, the high level formatting is performed. This oper-
ation basically consists in copying in a specific location of the disk the information
needed to boot the computer (master boot record and partition table) and a data
structure (file system) that can be used as an index to find files in the disk. In this
table, the number of the cluster where each file starts is stored.6 Clusters are num-
bered consecutively and each cluster has its own surface, track and sector coordi-
nates. These values are sent to the disk controller to access the contents of the cluster.

Finally, a consideration about the number of sectors that exist in a platter must
be made. Figure 4.13a shows how the previous definition means that there are the

6If the file takes up more than one cluster, the following cluster number is stored at the end of each
cluster. The last cluster ends with a special sequence that indicates the end of the file.
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same number of sectors in each track. The same amount of information is stored (512
bytes) in each sector, so information density is lower in the most external sectors,
which are bigger, whereas information density increases in the inner sectors. This
is a waste of ferromagnetic material. An alternative consists in keeping information
density constant. This way, the most external tracks would have more sectors than
inner tracks as can be seen in figure 4.13b. This way of storing information makes
the most of the magnetic surface.

Basic parameters

The most important parameters to consider in a disk are the following:

1. Capacity. It is the number of bytes that can be stored in the drive:

Total capacity =
Bytes
Sector

× Sectors
Track

× Tracks
Surface

× Surfaces
Unit

The actual capacity is slightly lower because a small part of the capacity is
dedicated to store the information used for locating the stored data.7

2. Access time. It is the amount of time needed to access a piece of information
in a read or write operation. This requires a sequence of actions that have their
own cost in terms of time:

• Placing the read/write head over the right track without oscillations in a
stable way. The time needed to do this is called track seek time.

• Waiting until the starting point of the required sector passes under the
read/write head. This time is called rotational delay or latency. The la-
tency depends on the rotational speed of the drive; statistically, this is
estimated as one half of the rotational period.

• Transferring (reading or writing) the bytes while they are passing under
the head. The time needed to do this is called transfer time.

Considering these three steps, the access time can be quantified using this ex-
pression:

Access time = Seek time + Latency + Transfer time

3. Information density. Once the physical dimensions of the disk and its storage
capacity are known, some metrics can be obtained that represent the amount
of information that can be stored related to the physical space it uses. These
metrics can be seen in figure 4.15 and are defined as follows:

TPI: Tracks per inch. It indicates the number of tracks stored per unit of radial
length of the platter.

BPI: Bits per inch. It indicates the number of bits stored per length unit of
the track. If the number of sectors is constant, this density increases for inner
tracks.

7Data structures of the file system.
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Figure 4.15: Definition of storage density metrics

4. Buffer. Hard disk drives have a component called disk buffer. When the drive
receives a read request, the drive accesses the track where the information is
stored and instead of reading just the requested sectors, it copies all the infor-
mation of the track to the disk buffer and the request is served from there. The
objective of the buffer is to act as a cache of the disk drive. Again, the locality
principle comes into play.

4.3.3 Solid state drive

A solid state drive or SSD is a device that is used to store information in a persis-
tent way like hard disk drives. Unlike HDDs, the storage in a SSD device is based
on semiconductors. This is the same principle used in the main memory of the com-
puter: it has memory cells based on transistors that can store one bit.

Current SSD devices use flash memory, that are based on NAND gates as ba-
sic cells. NAND cells are slower than DRAM memory, used in the main memory of
the computer, but as they do not have any mechanic part they are still much faster
than hard drives. Depending on the technology applied, one cell can store one, two,
or three bits (the voltage range would be divided into 2, 4 or 8 levels). The capac-
ity increase achieved with each technology comes with a speed cost: the higher the
amount of bits per cell, the slower the access to information due to the need to dis-
tinguish from one voltage level to another.

The technology used for storing information in SSD devices is the same used as
in USB pen drives. The differences are their capacities and the interfaces they use to
be connected to the computer.

Information organization

NAND cells are organized in a matrix in a SSD device. Each row of the matrix is
known as a page and the whole matrix is called block. Usual page sizes are 2 KiB,
4 KiB, 8 KiB or 16 KiB and each block is composed of 128 or 256 pages. This means
that the size of a block goes from 256 KiB to 4 MiB.

The SSD operation is related to the organization of information, but there are
differences between reading, writing and overwriting.
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• The smallest piece of information that can be read from a SSD drive is a page.
The reading process is very fast.

• Writing operations are also carried out at page level when the page is empty.
Even being slower than reading, writing is a very fast process.

• A different case is when a writing operation must be done in a page that is not
empty (it was previously written), for instance, when updating the content of
a file. In this case the process is not the same, as the previous information must
be erased at block level. An option is to copy the content of the block to main
memory, erase the block in the SSD, perform the update and write the whole
block back to the SSD. Another option is to transfer the content of the modified
block to an empty block and set the old one as available.

Overwritings and lack of space when the drive is getting full are the causes that
make these devices slower as time goes by. The controller of the SSD drive must
balance writings to avoid this performance degradation as much as possible.

4.3.4 Comparison between hard disk drives and solid state drives

The main difference between both types of devices is that HDDs are based on the
spinning movement of the disk and the movement of their reading heads. On the
other hand, SSDs do not have any mobile part. This aspect influences in the following
ways:

• SSDs are faster than HDDs, specially for reading operations, as they do not
have mobile parts. This is the reason why SSDs are used to store the operating
system, since mainly reads are carried out during the booting process.

• SDDs are much quieter than HDDs, as they do not have any mobile part.

• SSDs are also more reliable in hostile environments. Since they have no mobile
parts, they are not affected by vibrations, humidity, etc. In fact, the first usage
of SSDs was in industrial environments where HDDs were not reliable.

• SSDs are much smaller than HDDs with the same capacity because they do not
need mechanical support.

HDDs also have some advantages compared to SSDs:

• HDDs have higher storage density, which allows them to have higher capacity
than SSDs (at the same cost). The persistence of information is compromised
when the size of the NAND gates is reduced in the SSD drives.

• The cost per GiB in HDDs is much less than in SDDs, so storage in HDDs is
cheaper.

• Finally, the writings and overwritings in SSDs affect the life cycle of their
blocks. However, the number of operations needed to cause a fault is increas-
ing with the improvements in SSD controllers.
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Figure 4.16: Software-based I/O virtualization

4.4 I/O virtualization

Virtual machines must share the access to physical I/O devices in a virtualized sys-
tem, ideally without causing security or performance issues. The operating system
executed in each virtual machine must have the “illusion” of having total control
over devices through their interfaces, as it happens in non-virtualized systems.

For instance, in a server with a physical network interface card (NIC) and several
virtual machines, each virtual machine should has its own virtual NIC used to send
messages without interfering with the virtual NICs of the other virtual machines.
Operations requested to the virtual NICs must be served by the physical NIC, so
this device is being virtualized.

As with CPU virtualization, I/O virtualization can be done using software, ap-
plying the following techniques, which are illustrated in figure 4.16.

• Device emulation. In this option, the I/O virtualized devices are emulated by
software. The device controller or driver used by the operating system is the
driver of a physical interface. For example, if a network interface is virtualized
in a way that it is compatible with the Intel 82540EM interface, the operating
system installed in the virtual machine will use the same driver that would be
used on a physical machine using the Intel 82540EM interface.

In order to emulate devices, the hypervisor uses the trap-and-emulate tech-
nique. Any read or write operation over interface Y carried out by driver Y
in the figure (executed by the operating system) is trapped by the hypervi-
sor and translated into operations over physical interface X. Similarly, any op-
eration that physical interface X should notify must be transfered to driver Y
through the hypervisor. Apart from the overhead produced by the translation
between two different interfaces, X and Y, these operations imply several con-
text switches between the operating system and the hypervisor, making this
virtualization technique poor in terms of performance.
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Figure 4.17: Hardware-assisted I/O virtualization

• Device paravirtualization. This is a variant of device emulation, but in this case
the virtual machine exposes a paravirtualized interface to the operating sys-
tem. This is an interface that does not match any physical interface and that
is adapted for coordinating with the hypervisor more efficiently. This alterna-
tive improves performance compared to device emulation and does not require
any change in the operating system, in contrast to what was studied about
CPU paravirtualization. However, the main disadvantage is that it requires a
specific driver that must be installed in the operating system. Besides, the per-
formance is still low, although slightly better than the performance obtained
with device emulation.

In order to reduce performance issues, some hardware-assisted I/O virtualiza-
tion techniques have been developed. Their main objective is to communicate vir-
tual machines and I/O devices with the minimum hypervisor intervention. These
techniques are described bellow and are illustrated in figure 4.17.

• Device assignment or passthrough. The hypervisor assigns the physical device
to the virtual machine so that it can access directly to the physical device with-
out any intervention from the hypervisor, which implies a great improvement
in performance. A type 1 hypervisor using this technique does not need to sup-
port the device driver, which expands the scope of compatible hardware. In the
same way, the host operating system does not need to support the device driver
with type 2 virtualization, only the guest operating system does. The only is-
sue of this technique is that a physical device can be assigned to a single virtual
machine. For instance, this cannot be applied if two virtual machines should
share the access to a single physical NIC.

• Device sharing. This is a variant of the device assignment that uses the di-
rect access to the device and also shares it between virtual machines. The re-
quirement is that devices must expose multiple interfaces, so that each one can
be directly assigned to a different virtual machine. This is the case of PCI Ex-
press devices that have the Single Root I/O Virtualization (SR-IOV) extension,
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which means that they have multiple PCI Express independent interfaces. For
instance, a PCI Express NIC with four interfaces could be assigned to four vir-
tual machines that will perceive it as their own independent NIC.

The implementation of device assignment, or sharing, presents several problems
that must be solved by hardware. As an example, a network interface using DMA
will be used (figure 4.18a). At a given time, the operating system executed in a virtual
machine programs the network interface in order to send a packet stored in memory
at a physical address. In the context of a virtualized system, this physical address is
the guest physical address or GPA. The hypervisor will not intercept this configu-
ration operation, so the network interface will be configured with this address and
will read the packet starting from it. The network interface works using real physical
addresses so it will access to a host physical address or HPA equal to the GPA given
by the operating system, hence producing a system malfunction.

In order to solve the previous issue among others, modern computers based on
x86 architecture include a I/O Memory Management Unit (IOMMU), analogous to
the MMU for the virtual memory. It is located between the I/O interfaces and the
memory. The IOMMU translates addresses generated by a DMA device into host
physical addresses (HPA) before they reach the memory. This technique is called
DMA remapping. Figure 4.18b shows this new situation. Each device has its own
associated table, analogous to the page table, that the IOMMU uses to translate GPA
addresses into HPA addresses. In order to speed up the translation of GPA into HPA,
devices also have translation caches called IOTLBs, analogous to the TLB used for
paging.

The IOMMU provides a huge improvement of performance in virtualized envi-
ronments, but despite what happens with other hardware-assisted I/O virtualiza-
tion techniques, it requires support from the operating system. However, this is not
a problem because the IOMMU is also used in non-virtualized environments to add
some security to devices. It is possible to set memory access restrictions for I/O de-
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vices as it was done in page tables used by the MMU, improving the security of the
system against a bad programmed or malicious device.
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PyMIPS64 instruction set

Naming conventions

RsX 64-bit integer register used as source operand.
Rd 64-bit integer register used as destination operand.
Ri 64-bit integer register used for computing a memory address.
FsX 64-bit floating-point register used as source operand.
Fd 64-bit floating-point register used as destination operand.
imm_X Immediate value of X bits.
sign_ext Sign extension up to 64 bits.
zero_ext Sign extension up to 64 bits, adding zeros on the left.
[] Memory position.

The instruction set shown here is the one supported by the simulator WinMIPS64,
which is a simplification of the one supported by MIPS64. In addition, some instruc-
tion codes are different. These differences will be highlighted in the following tables.
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Arithmetic instructions

Instruction Operation Description

nop No operation

daddi Rd,Rs,imm_16 Rd←Rs+sign_ext(imm_16) Adds the doble word and the
immediate value, trapping on overflow

dadd Rd,Rs1,Rs2 Rd←Rs1+Rs2 Adds double words, trapping on
overflow

dsub Rd,Rs1,Rs2 Rd←Rs1−Rs2 Subtracts double words, trapping on
overflow

dmul1 Rd,Rs1,Rs2 Rd←Rs1×Rs2 Multiplies double words
ddiv1 Rd,Rs1,Rs2 Rd←Rs1÷Rs2 Divides double words

add.d Fd,Fs1,Fs2 Fd←Fs1+Fs2 Adds double-precision floating-point
values

sub.d Fd,Fs1,Fs2 Fd←Fs1−Fs2 Subtracts double-precision
floating-point values

mul.d Fd,Fs1,Fs2 Fd←Fs1×Fs2 Multiplies double-precision
floating-point values

div.d Fd,Fs1,Fs2 Fd←Fs1÷Fs2 Divides double-precision
floating-point values

Logical instructions

Instruction Operation Description

andi Rd,Rs,imm_16 Rd←Rs AND zero_ext(imm_16) Logical AND with immediate value
ori Rd,Rs,imm_16 Rd←Rs OR zero_ext(imm_16) Logical OR with immediate value
xori Rd,Rs,imm_16 Rd←Rs XOR zero_ext(imm_16) Logical XOR with immediate value

and Rd,Rs1,Rs2 Rd←Rs1 AND Rs2 Logical AND
or Rd,Rs1,Rs2 Rd←Rs1 OR Rs2 Logical OR
xor Rd,Rs1,Rs2 Rd←Rs1 XOR Rs2 Logical XOR

slt Rd,Rs1,Rs2 If Rs1<Rs2 : Rd←1
else : Rd←0

Signed integer comparison

1In MIPS64, the instructions dmult, dmultu, ddiv and ddivu only have two source operands and store
the result in two 64-bit registers of the CPU: HI and LO. The multiplication results in a 128-bit value that
is stored in both registers, while the quotient of the division is stored in LO and the reminder in HI. These
registers can be accessed with the instructions mfhi Rd and mflo Rd. In the pyMIPS64 simultator, the
result of the multiplication is 64 bit long and only the quotient of the division is stored.
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Load instructions

Instruction Operation Description

ld Rd,imm_16(Ri) Rd←[Ri+sign_ext(imm_16)] Loads double word

lb Rd,imm_16(Ri) Rd←
sign_ext([Ri+sign_ext(imm_16)][7..0])

Load byte with sign extension

lh Rd,imm_16(Ri) Rd←
sign_ext([Ri+sign_ext(imm_16)][15..0])

Loads half word with sign
extension

lw Rd,imm_16(Ri) Rd←
sign_ext([Ri+sign_ext(imm_16)][31..0])

Loads word with sign extension

lbu Rd,imm_16(Ri) Rd←
zero_ext([Ri+sign_ext(imm_16)][7..0])

Loads byte without sign
extension

lhu Rd,imm_16(Ri) Rd←
zero_ext([Ri+sign_ext(imm_16)][15..0])

Loads half word without sign
extension

lwu Rd,imm_16(Ri) Rd←
zero_ext([Ri+sign_ext(imm_16)][31..0])

Loads word without sign
extension

l.d Fd,imm_16(Ri) Fd←[Ri+sign_ext(imm_16)] Loads double-precision
floating-point value

Store instructions

Instruction Operation Description

sd Rs,imm_16(Ri) [Ri+sign_ext(imm_16)]←Rs Stores double word

sb Rs,imm_16(Ri) [Ri+sign_ext(imm_16)]←Rs[7..0] Stores byte
sh Rs,imm_16(Ri) [Ri+sign_ext(imm_16)]←Rs[15..0] Stores half word
sw Rs,imm_16(Ri) [Ri+sign_ext(imm_16)]←Rs[31..0] Stores word

s.d Fs,imm_16(Ri) [Ri+sign_ext(imm_16)]←Fs Stores double-precision
floating-point value

Jump instructions

Instruction Operation Description

j imm_26 PC←PC63..28|imm_26<<2 Jumps to an address within a 256
(228) MiB region

Branch instructions

Instruction Operation Description

beq Rs1,Rs2,imm_16 If Rs1=Rs2 :
PC←PC+sign_ext(imm_16<<2)

If equal, branches to an address
within a ±128kiB region

bne Rs1,Rs2,imm_16 If Rs16=Rs2 :
PC←PC+sign_ext(imm_16<<2)

If not equal, branches to an address
within a ±128kiB region

beqz Rs,imm_16 If Rs=0 :
PC←PC+sign_ext(imm_16<<2)

If register is 0, branches to an address
within a ±128kiB region

bnez Rs,imm_16 If Rs 6=0 :
PC←PC+sign_ext(imm_16<<2)

If register is not 0, branches to an ad-
dress within a ±128kiB region
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Appendix B

The control unit

This appendix describes the design of the control unit required by the datapath pre-
sented in this book.

B.1 Single-cycle control unit

The control unit governs all the operations in the datapath. There are mainly two
types of implementation of control units: wired and microprogrammed. In a wired
control unit each control signal is obtained as a result of a logical function; the in-
puts of this function are the instruction code and the flags generated by the ALU. Its
design and implementation are similar to those of any combinational digital system.
In contrast, the status of all signals is represented through a control word in a micro-
programmed control unit. The control unit has an internal memory storing control
words; each instruction code references one of these words (in the single-cycle sce-
nario).

Regardless of the type of implementation, the purpose of the control unit is the
same: set and reset the control signals that govern the execution of instructions in
the datapath. For simplicity, only the design using the truth table of the control unit
is covered. Its implementation is out of the scope of this book.

A technique commonly used to improve the performance of the control unit, and
the performance of the CPU as a consequence, consists on dividing the control in
several units. Thus, a reduced control unit can be proposed to manage the ALU. This
control unit will manage the control signals (4 lines) reaching the ALU depending on
the instruction to be executed.

Load and store instructions require the ALU to compute the memory address to
read or write and add the base register and the immediate value. Arithmetic and
logical operations are R-type instructions with the same value in the op field; they
only differ in the value of the field function, as can be seen in figure 2.5. They use
the ALU depending on the specific operation (add, subtract, AND, OR, etc.). Finally,
the branch instruction uses the ALU to compare the values of two registers and check
whether the condition is met.
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Figure B.1: ALU control unit

Instruction Op Function ALU operation ALUOp ALU ctrl

ld load – add 00 0010
sd store – add 00 0010
beq branch on equal – subtract 01 0110
daddi add imm. (I) – add 00 0010
dadd R-type 100000 add 10 0010
dsub R-type 100010 subtract 10 0110
and R-type 100100 AND 10 0000
or R-type 100101 OR 10 0001
slt R-type 101010 set on less than 10 0111

Table B.1: ALU operation and control signals

Under these circumstances a two-line control signal can be defined, called ALUOp,
allowing the main control unit to ask the control unit of the ALU to perform an
operation: 00 for addition; 01 for subtraction; 10 for the operation referred in the
function field of an arithmetic-logic instruction code. The reduced control unit for
the ALU is shown in figure B.1. Furthermore, table B.1 lists the instructions of the
MIPS64 implemented subset that use the ALU, as well as the values of the control
signals required depending on the op and function fields of the instruction code.

The design of the main control unit must take into account all the control signals
added to the datapath. Many of them govern multiplexers to select from different
data sources. Being two-input multiplexers, only one-line control signal is required.
Table B.2 lists the control signals in the datapath shown in figure 2.16, as well as the
effect produced when set to 1 or 0.

The values of the control signals can be inferred based on the behaviour of the
datapath in the execution of instructions described in section 2.2.2. Table B.3 shows
the values of the control signals in the implemented instructions (X means that the
value of the control signal can either be 1 or 0). It must be taken into account that
Branch signal is considered instead of the generic PCSrc signal in the table.
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THE CONTROL UNIT

Signal Effect when reset (0) Effect when set (1)

RegDst The number of the destination register is in bits
20 to 16

The number of the destination register is in bits
15 to 11

RegWrite None The register specified in Write register
is written with data from Write data

ALUSrc The second operand of the ALU is in the second
register

The second operand of the ALU is the immedi-
ate value extented to 64 bits

PCSrc The value of PC is computed as PC + 4 The value of PC is computed as the target ad-
dress of the branch

Jump The PC register is loaded with the value already
computed

The PC register is loaded with the target address
of the jump

MemRead None The memory address in Address is read

MemWrite None Write data is written to the memory address
specified in Address

MemToReg The value to be written to the register file comes
from the ALU

The value to be written to the register file comes
from the data memory (Read data)

Table B.2: Control signals generated by the control unit

Inst. RegDst RegWrite ALUSrc Branch Jump MemRead MemWrite MemToReg ALUOp

R-type 1 1 0 0 0 0 0 0 10
ld 0 1 1 0 0 1 0 1 00
sd X 0 1 0 0 0 1 X 00
beq X 0 0 1 0 0 0 X 01
daddi 0 1 1 0 0 0 0 0 00
j X 0 X X 1 0 0 X XX

Table B.3: Values of the control signals for each instruction

Therefore, the datapath, together with the required control, is shown in figure B.2.
Next, the control signals generated in the execution of the following instruction are
shown as an example:

dadd r2, r3, r6

The execution of this instruction requires only one clock cycle, when the next
operations are carried out:

• When the rising edge in the clock cycle is produced, the next instruction to be
executed is fetched from the instruction memory using the address contained
in PC.

• The instruction code is copied into lines Instruction.

• Registers are read (r3 and r6) from the register file (Read #1 and Read #2).

• The values of the registers are available in Read data 1 and Read data 2.

• ALUSrc line is set to 0 to indicate that the instruction operates with the contents
of the two registers.

• The value 10 is sent to lines ALUOp to notify the ALU control unit that it is an
R-type instruction. According to the function field in the instruction code, the
ALU control unit sends the value 0010 to the ALU to add the operands.
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Figure B.2: Datapath supporting R-type, load/store, beq branch and j jump instruc-
tions, together with the control logic

• MemToReg line is set to 0 to indicate that the value to be written to the register
file is the result of the ALU.

• RegDst line is set to 1 to indicate that the number of the destination register is
encoded in bits 15 to 11 of the instruction code.

• RegWrite line is set to 1 to write to the register file.

• At the same time, Branch and Jump lines are set to 0 for the program counter to
be incremented in 4 units, as well as the lines associated with the data memory,
MemRead and MemWrite, since the memory is not used.

B.2 Pipelined control unit

The implementation of the control unit takes the single-cycle control unit and the
datapath shown in figure 2.20 as a starting point. Figure B.3 shows the datapath with
the control signals identified, as well as a small modification to correctly execute
instructions that store their result in the register file (load, arithmetic and logical
instructions). These instructions require the field of the instruction code that encodes
the destination register during stage WB. For this reason, it is necessary to propagate
along the datapath, using the pipeline registers, the fields of the instruction code
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Figure B.3: Pipelined datapath with control signals

needed by stages after ID. This modification increases the width of segmentation
register ID/EX from 256 to 266 bits.

According to this representation of the datapath, almost all instructions behave
in the same way during the first two stages (IF and ID). Instructions are fetched in
IF and decoded in ID. For this reason, the instruction to be executed is unknown
in the first stage and partially during the second stage. Only during ID the type of
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instruction to be executed is identified. An exceptional case is the jump instruction.
The jump address target is computed during ID and, as soon as the instruction is
decoded and the jump is identified, the program counter register is modified. How-
ever, taking into account that the instruction is not identified until it is decoded, jump
target address is calculated for all instructions, regardless they are jumps or not.

Control signals generated to execute an instruction must be propagated through
the datapath in the same way as data. Thus, it is necessary to increase the sizes of
pipeline registers to include control signals, which are generated during the decod-
ing stage (ID). Since stages IF and ID are the same for all the instructions, except for
jumps, most control signals are propagated through pipeline registers ID/EX, EX/MEM
and MEM/WB as depicted in figure B.4.

The resulting pipelined datapath, including the control unit, is shown in fig-
ure B.5. This implementation ignores pipeline hazards, so instructions can be ideally
executed with CPI equals to 1.
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