
A modified elitist genetic algorithm applied to the

design optimization of complex steel structures.

María Belén Prendes Gero
a
*, Antonio Bello García

a
,

Juan José del Coz Díaz
b

a
Construction and Production Engineering Department, Oviedo University,

Mieres Campus, 33600 Mieres, Spain
b

Construction and Production Engineering Department, Oviedo University,

Viesques Departmental Building nº 6, 33204 Gijón, Spain

* Corresponding author. E-mail address: belen@mieres.uniovi.es

Abstract.

This paper shows the implementation of an elitist genetic algorithm that, when

applied to steel structures, is able to obtain structural elements with minimum weight

and satisfy the safety factors or coefficients (Ultimate Limit States) of the applicable

building code. To this end, a modified objective function has been defined that

considers the constraints established by these coefficients. In addition, the codification

of the design variables has been modified so that all of them have the same probability

of initial selection; a selection operator has been implemented to consider the dispersion

of the individuals within the population as well as a crossover operator that interchanges

the sections assigned to the structural elements without their prior modification. The

final result is a robust genetic algorithm that is simple from a mathematical point of

view and is able to work with complex structures under different load and constraint

conditions.

Key words: Genetic algorithm, elitist, steel structures, minimum weight, ultimate

limit states.

1. Introduction.

The continuous development of genetic algorithms (GA) has led to the obtaining

of so-called elitist GA
1
, the aim of which is to avoid the best individual of a population

failing to obtain offsprings within the following generation. To do so, they copy the best

individual from the present population in the new one, normally achieving a speed

increase in the obtaining of the optimal individual.

The elitist GA implemented in this study does not save a single individual, but a

percentage of the best individuals according to the elite probability, thus achieving a

greater speed of convergence.

This algorithm is applied to steel structures, with the aim of obtaining

individuals of minimum weight in the structural elements, but which fulfill the safety

factors established by the selected building code.

With this aim in mind, a modified objective function has been defined that

considers the constraints of these coefficients. In addition:

 The codification of the design variables has been modified, achieving the

same probability of initial selection in all of these.

 A selection operator denominated aptitude has been implemented,

considering the dispersion of the individuals in the population.

 A crossover operator denominated phenotype crossover has been

developed that only exchanges the section type assigned to the structural

elements, without modifying it previously.

Besides, the design of a two-dimensional articulated structure was implemented

in order to test the performance of the developed elitist algorithm and the suggested

modifications. The structure (Fig. 1) with seven nodes and ten beams collected in five

groups (collection of beams with the same section), is subjected to three loads of 40 tn

on the nodes 2, 3 and 4. The steel properties used are: modulus of elasticity = 20,58

kN/m
2
, specific weight = 76,44 kN/m

3
 and yield stress = 254800 kN/m

2
. In addition,

this study has produced to the modification of the penalty factor (see 2.4.1).

2. Elitist genetic algorithm.

2.1. Encoding the design variables.

In structural optimization, the tendency is to use as design variables the section

of the structural elements codified by means of chains of bits, whose length is evaluated

using Eq. 1.

n2 (1)

where is the number of sections of the commercial catalogue represented and n the

integer of bits needed to represent sections of this one.

Very often, the integer deduced from Eq. 1, n, enables us to represent more

sections than those existing in the catalogue, meaning that integers will exist with empty

positions. In order to avoid this situation, these positions are filled up by the first

sections of the catalogue, yielding a different initial selection probability in these.

The codification of design variables implemented in this work
2
 means that all

the sections have the same probability of initial selection. This codification is

represented in Fig. 2, where the lengths of chain of n bits present npos possible sections

as opposed to the nex existing sections in the commercial catalogue.

The proposed solution consists in checking whether the number assigned

randomly to each design variable has an empty position assigned to it or, on the

contrary, it has a real section assigned to it. In the former case, the design variable with

an empty position is generated again until a real section is assigned to it, while in the

latter case this section will now become part of the population.

In this way, it not only assures that all the sections assigned to the structural

elements belong to the catalogue of commercial sections but also that all of them have

the same probability of initial selection.

The sections randomly assigned to the design variables of the example (Fig. 1)

are selected amongst 2835 sections from the Spanish building code, NBE EA-95
3
. This

number produces chains of 12 bits with 4096 possible sections and 1261 empty

positions.

This elevated number of sections, 2835, can produce unfeasible structures from a

constructuve point of view and a major number of evaluations. But it is compensated

with numerous viable and different designs where the designer will be able to select the

most economic or the easiest to construct. Also it is compensated by the use of sections

that habitually are not considered in some positions and nevertheless have enough

resistance for them.

On the other hand, the designer selects the sections of an individual into the

initial population and the number of groups to collect the beams of the structure. This

will reduce the time of convergence because the individual will be next to the optimum

one and a minor number of goups will reduce the number of evaluations, but always in

function of the designer experience.

2.2. “Aptitude” selection operator.

In the most frequent reproduction found in the bibliography
4
, an individual is

selected to form part of the new generation based on its fitness, independently of

whether this is very far or not from the average. This can give rise to isolated

individuals or “strangers”, though with high aptitudes, also having a high number of

offsprings, thus vastly altering subsequent generations.

For this reason, a reproductive operator denominated aptitude
2
 has been

implemented (Fig. 3) that considers the population dispersion. In this operator:

 A new function is defined on the basis of the modified objective function

(see 2.4), denominated aptitude function.

 The value of the aptitude function or aptitude of all the individuals is

obtained and those whose values are lower than the average are eliminated.

 A probability of rejection is defined for the surviving individuals, of

inverse value to aptitude.

The new population is thus created from the best individuals of the previous

population, avoiding isolated elements and increasing the speed of the GA in the search

for the optimal individual.

To study the efficiency of the aptitude, it has been compared with the

roulettewheel selector
5
. For it, trial runs with both selectors and with different

combinations of parameters (Pmut, Pc, Pe) have been carried out. In Fig. 4 is represented

the variation of the average weight of the optimum individuals and the average number

of function evaluations against the population size for Pmut = 0,5%;

Pc = 70% and Pe = 30%.

This study shows that an increase of the population size, decreases the average

weight in the two selectors until reaching population sizes of 40 individuals. In that

point the value of the average weight barely differs between the two selectors. On the

contrary, an increase in the population size produces an increase in the average of the

number of evaluations. In both cases the values obtained with the roulettewheel selector

are over the ones obtained with the aptitude selector. This signifies worse optimum

individuals and a greater time of convergence, i.e., a greater computational consume for

the roulettewheel selector.

2.3. “Phenotype” crossover operator.

In general, GAs use crossover operators that interchange bits, randomly

assigning the crossover points
2
. This entails not only an exchange of information, but

also an alteration in the design variables.

This modification is avoided by means of the so-called phenotype crossover. In

this operator, the crossover point is located between two phenotypes or design variables

from two individuals termed parents. Two new strings, the children, are created swaping

all the characters between the selected position and the overall length of the parents

strings (Fig. 5).

To test the behaviour of the phenotype crossover, trial runs with one-point
5
, two-

points
5
 and phenotype crossover have been carried out (Fig. 6).

The study let to say that for population sizes over 60 individuals, none of the

crossover operators has a considerable effect in the results. On the contrary, for lower

populations the results depend on the values of the parameters. In every trial the

phenotype crossover was more stable opposite to one-point ant two-points crossover.

Besides, it carries out less number of evaluations, so much for upper as lower

populations of 60 individuals, what is transformed into faster speed of convergence and

smaller computational consume.

2.4. Formulation of the problem.

The function used as a measure of effectiveness of the design is denominated the

objective function, merit function or cost function. This function may be formulated

from a simple objective f1(x) or multiple objectives as shown in Eq. 2.

 xf,...,xf,xfxF p21
 (2)

Optimization with more than one objective is denominated multicriterion

optimization
6
 and is the most general case of structural optimization, where the weight,

displacements, stresses, loads or some combination of these can be used as an objective

function. Different ways exist to reduce the number of functions, but the most widely

used one is:

 To choose an objective function that analyzes the total weight of the

structure and considers the imposed limits (stresses in each member,

displacements in the nodes, critical loads).

The variables used are discrete, i.e. they take precise values from a list or

commercial catalogue, which can be mathematically expressed as (Eq. 3):

 ,j,j,jj

jj,i

T
j

TTT

d,...,d,dD

Dx

J,..,,,jx,...,x,x,xx

21

321
321

 (3)

where the vector of the design variables x is divided into xj sub-vectors, whose

component xi,j take values from a Dj catalogue, and in which i is the number of design

variables in each sub-vector and is the number of sections in each catalogue.

The limits that the design variables take are given by Eq. 4.

s,...,,s

xG
~

xG

s

s 211 (4)

where xGs is the calculated value of the constraint, xGs

~
 is its limited value and s is

the number of inequality functions.

In the optimization problem, not all the constraints are function of a term but

may be functions of several terms (Eq. 5).

1

2

2

1

1

xG
~

xG
...

xG
~

xG

xG
~

xG

m,s

m,s

,s

,s

,s

,s
 (5)

where m is the number of terms in the constraint function.

Considering the expression of the objective function (Eq. 2), of the design

variables (Eq. 3) and of their constraints (Eq. 4), the optimization problem may be

expressed mathematically according to Eq. 6, whose interpretation is:

The aim of structural optimization, and in particular GAs, is to obtain the

sections of the structural elements that minimize an objective, subject to certain limits

or constraints.

Minimize

Constraints

 ,j,j,jj

jj,i

T
j

TT

s

s

d,...,d,dD

Dx

J,...,,jx,...,x,xx

s,...,,s
xG

~
xG

)x(F

21

21 21

211

 (6)

These constraints may be classified in two types: explicit and implicit. Explicit

constraints are analyzed without a simulation system. In contrast, implicit constraints

require analysis and verification of the designs, such as for instance the allocation of

areas to the sections.

Several methods of adjusting the constraints exist
7
:

 Using operators specialized in viability.

 Using only viable solutions.

 Penalizing the solutions that violate one or more constraints.

Specialized operators only work with explicit constraints and are useful for cost

problems. The second and third methods can be used with implicit or explicit

constraints, or a combination of both. In the second method, the members of the

population that violate one or more constraints are eliminated; this can be ineffective in

large problems with few viable solutions with respect to nonviable ones. The most

appropiate method is therefore the penalizing of the members of a population that have

one or more violations, although difficulties exist when applying penalty functions as

they are usually dependent problems.

In general, the problems covered by GA are of the restricted optimization type,

and for this reason the optimization problem must be transformed into nonrestrictive

problems. In this case, the penalty is based on the transformation method represented in

(Eq. 7).

 xH,xG,rPxFr,xFMinimize (7)

where)r,x(F is the modified objective function, F(x) is the objective function and

))x(H),x(G,r(P is the penalty term defined as a function of the penalty coefficient r

and the constraint functions G(x) and H(x).

The method is defined by means of penalty parameters, the rules that update

these parameters and constraint functions.

As mentioned above, the aim of the implemented elitist GA is to obtain steel

structures of minimum weight that fulfill the safety factors established by the applicable

building code. This may be mathematically expressed according to (Eq. 8).

Objective function to minimize

Constraints

barn

s

ss LxxF

1

 111 xT...xHxG sss

(8)

where xF is the objective function (the weight of the structure analyzed), defined on

the basis of the density of the material, xs the area of the section and Ls the length of

nbar bars that compose the structure; and the constraints, the limit values that the safety

factors calculated in each bar Gs(x), Hs(x), ..., Ts(x) may reach.

Applying the mathematical expression of the implemented GA (Eq. 8) to the

transformation of (Eq. 7), the problem will be expressed mathematically according to

(Eq 9).

barn

s

scnss xTr...xHrxGrxFr,xF

1

21 (9)

where nc is the number of safety factors established by the applicable building code.

The addition of another term to the penalty function in order to consider the

displacements of each node as a design criteria is not so simple as it seems. Though our

analysis program give us every node displacements, each structural member can be

submitted to two different verifications. One local to each member and a global one

where a maximum displacement (x,y,z) is considereted for the whole problem. The

latter would led to a new penalty function that it is being studied by the authors.

Of the terms that define the modified objective function, the easiest to obtain is

the weight, since it is directly defined on the basis of the geometric data of the structure,

the characteristics of the material assigned to the bars and the properties of the sections

assigned to these.

In contrast, in order to obtain the second term it is necessary to define the

penalty coefficient and to carry out an analysis of the structure. In this way, the stresses

and moments that define the safety factors and therefore the constraints of the problem

will be obtained. The analysis of the structure and the verification of the safety factors

can be carried out by means of a program of conventional analysis. In this study, the

analysis was carried out using the Escal3D
8
 program, capable of obtaining the safety

factors established by Spanish, French, American and European building codes.

Specifically, the Spanish bulding code
3
 was considered, which defines safety factors

such as the quotient between the calculated value and the maximum allowed value of:

axial stress, shear stress, shear and bending stress, bending, Von Mises stress, buckling

by compression, buckling by compression and bending, buckling by torsion, buckling

by torsion and bending
9
.

Although the displacements in each node is very important in the design of an

steel structure, in the Eq. 9 only the stress terms have been considered like a first

aproximation to the optimum structure.

2.4.1. Penalty factor.

The safe bar concept was considered for the definition of the penalty coefficient.

A safe bar is the one whose safety factors are equal to or lower than one
9
. In addition, if

the coefficient is far below unity the bar is considered oversized. That is to say, there

exists another section with a smaller area that, if assigned to this bar, provides

coefficients closer to unity, thus diminishing the weight of the structure.

In contrast, if the calculated safety factor is greater than unity, the bar is not able

to support the stresses and moments calculated in it. In this case, it will be necessary to

look for another section whose resistant properties are able to support these stresses and

moments.

In accordance with the safe structure concept, the penalty coefficient is defined

as the value which multiplied by the safety factor calculated in a bar, increases this

coefficient if it is different from one and maintains it constant if it is equal to one. The

sum of the penalized coefficients of all structural elements will be the penalty term of

the modified objective function.

Therefore, the penalty term increases both, the weight of structures with bars

that do not fulfill some of the safety factors and the weight of structures with oversized

bars, distancing them, in both cases, from the sought-after minimum weight.

Initially the penalty coefficient was assigned the value of 1000 for safety factors

greater or lower than one and the value of 1 for safety factors equal to one (Eq. 10).

 xGc
candcifc

corcifc
cr s

101000

10
 (10)

As can be observed in Fig. 7a, this first adjustment did not differentiate between

the penalty that was assigned to the structures that contained bars with coefficients close

to unity and the one that was assigned to the structures whose bars presented

coefficients far from this value. Moreover, after successive analyses and trial runs in the

two-dimensional structure (Fig. 1), it was demonstrated that coefficients of less than one

were less penalized than those above unity, resulting oversized structures like optimum

individuals.

Then an exponential distribution was assigned to the penalty coefficient in an

attempt to penalize those coefficients that were far from unity more, favoring the search

for minimum weight in zones close to one (Eq. 11).

 xGc

cife

cif

cife

cif

cr s

c

c

1

11

10

00
2

 (11)

In this case, those individuals with safety factors far from unity were penalized

more strongly, but no distinction was made between oversized structures and nonvalid

structures, since this penalization affected values lower than one in the same way as

values above one (Fig. 7b). This meaned that oversized structures with coefficients far

below unity but with a very great structural weight had similar values of the modified

objective function to less heavy structures with safety factors higher than unity.

On the other hand, the growth of an exponential distribution was so fast that

values of coefficients higher than unity produced excessively large penalty coefficients

from a computational point of view.

Taking all the above considerations into account, it was decided to carry out two

types of adjustment of the penalty coefficient on the basis of whether the calculated

safety factor was lower than unity or not. In the former case, an exponential distribution

was followed, thus favoring the individuals with coefficients close to unity. In the later

case, a linear distribution with penalty values much higher than the above values was

followed in order to avoid the equality of weighting between oversized structures and

nonvalid structures (Eq. 12), (Fig. 7c).

 xGc

cifc

cif

cife

cif

cr s

c

11000

11

1010

00
2

 (12)

2.4.2. Trials.

In order to test the suggested improvements (in addition to the modification of

the penalty factor), and investigate the effect of tunning GA parameters
10

 (Np, Pmut, Pc,

Pe) on the performance of the developed elitist algorithm, the domain of each parameter

has been set as follows:

 The population size Np varies from 20 to 140.

 The elite probability Pe varies from 0,0% to 90%.

 The crossover probability Pc varies from 10% to 90% (subjected to

Pc + Pe 100%).

 The mutation probability Pmut varies from 0,1% to 4%.

The study has been carried out using five runs for each combination of the

domain aforementioned, on the structure shown in the section 1.

The conclusions can be summarised as follows (Fig. 8):

 When the value of Np increases, the average weight of the best individuals

decreases, although the average number of evaluations increases too. It can be

observed that solutions with a good performance of the developed GA are

obtained with a value of Np between 60 and 100 individuals.

 A value of Pmut ranging between 1% and 3% and a value of Pe elite ranging

between 10% and 30% give better solution achieved within a reasonable

average number of function evaluations and coefficients next to one.

 An increase of the Pc until values of 80%, with the same probability of elite,

decreases the average weight.

After carrying out all the trials aforementioned, the best individual was found in

100 runs with the following parameters: Np = 100, Pe = 30%, Pc = 70%, Pmut = 1%.

The steel sections obtained in this individual and its minimum weight are given

in Table 1. This table also includes the solution obtained from a conventional design

approach, using a commercial program of structural analysis. It can be seen that the

minimum weight solution is about 9,3% lighter than the conventional design.

An advantage of the computational model presented in this paper is that one can

quickly find several minimum weight soluctions using different grouping members. A

cost comparison of various solutions will then yield the optimum solution.

2.5. Flow of the elitist GA.

The flow of the implemented elitist GA is represented in Fig. 9. It can be seen

how each new population is formed by three types of individuals obtained from the

surviving population (Fig. 10):

 Elite individuals, selected between the best individuals of the current

population without mutation and whose number Ne is the result of

multiplying the elite probability Pe and the population size Np.

 Crossover individuals, selected between the surviving individuals in function

of their probability of rejection with mutation and whose number Nc is the

result of multiplying the crossover probability Pc and the population size Np.

 Random individuals, whose number is equal to the difference between the

total number of individuals in the population and the sum of elite and

crossover individuals.

4. Conclusions.

A modified elitist GA has been developed composed of a crossover operator

denominated phenotype crossover and a selection operator named aptitude that increase

its speed. In addition, the codification of the design variables has been modified so that

all of these have the same probability of initial selection, and a modified objective

function has been defined that, when applied to steel structures, diminishes the weight

of the structure according to safety factor constraints.

The implemented elitist GA is a robust method of optimization of little

mathematical complexity that is adequate for designers. It does not need prior

information about the objective function or the constraint functions and can work with

complex structures under different load and constraint conditions. In addition, it permits

the use of commercial sections catalogues as design variables and is able to apply the

engineer experience in creacting groups of identical section, selecting these variables

and their relation with the structural members.

References.

1 Davis, L. “Handbook of Genetic Algorithms”. Van Nostrand Reinhold, New York,

1991.

2 Mahfouz, S. Y. “Design Optimization of Structural Steelwork. Design Optimization

of steel frame structures according to the British codes of practice using a genetic

algorithm”. Thesis. Department of Civil and Environmental Engineering. University

of Bradford, UK, 1999.

3 Norma Básica NBE EA-95. “Estructuras de Acero en Edificación. Norma Básica de la

Edificación NBE EA-95”. Madrid Vicente, Ediciones, 1996. ISBN 84-87440-86-X.

4 Bartschi Wall, M. “A Genetic Algorithm for Resource-Constrained Scheduling”.

Thesis. Department of Mechanical Engineering. Massachusetts Institute of

Technology, 1993.

5 Bartschi Wall, M. “Galib: A C++ Library of Genetic Algorithm Components”.

Department of Mechanical Engineering. Massachusetts Institute of Technology, 1996.

6 Álvarez, L. F. “Design Optimization based on Genetic Programming. Aproximation

model building for design optimization using the response surface methodology and

genetic programming”. Thesis. Department of Civil and Environmental Engineering.

University of Bradford, UK, 2000.

7 Topping, B. H. V.; Papadrakakis, M. “Advances in Structural Optimization”. Civil –

Comp Press, paperback 246 pages, 1994. ISBN 0948749-27-X.

8 Bello García, A.; Ordieres Meré, J.; Del Coz Díaz, J. J.; Suárez Domínguez, F. J.;

Felgueroso Fernández, D.; Álvarez Fernández, M. “Aprendizaje Interactivo mediante

el programa de análisis estructural avanzado ESCAL3D”. Journal of Constructional

Steel Research. Editorial Elsevier Science, 1998. Vol 46, Pag. 273-275.

9 Argüelles Álvarez, R.; Argüelles Bustillo, R.; Arriaga Martitegui, F.; Atienza Reales,

J. R. “Estructuras de Acero. Cálculo, Norma Básica y Eurocódigo”. Bellisco.

Ediciones Técnicas y Científicas, Madrid, 1999. ISBN 84-930002-8-0.

10 Mahfouz, S. Y.; Toropov, U. U.; Westbrook, R. K. “Improvementes in the

performance of a genetic algorithm: application to steelwork optimum design”.

Proceedings of 7
th

 AIAA/USAF/NASA/ISSMO. Symposium on Multidisciplinary

Analysis and Optimization, 1998. Pag. 2037-2045.

Tables

Number of

group

Sections

(E.G.A.)

Weight

(kg)

Sections

(conventional

design)

Weight

(kg)

1 HEA300 1519,14 HEA300 1519,14

2 HEA300 773,50 HEA300 773,50

3 LSI150x15 345,08 IPN240 378,60

4 HEB220 488,49 IPE550 715,15

5 IPN400 1935,72 IPE550 2145,45

Weight (kg) 5061,93 5531,84

Table 1. Best individual against conventional design.

Legends to illustrations.

Figure 1. Structure analysed.

Figure 2. Encoding the design variables.

Figure 3. Selection operator: “aptitude”.

Figure 4. Aptitude selector against roulettewheel selector.

Figure 5. Phenotype crossover in binary representation.

Figure 6. Phenotype crossover against one-point and two-points crossover.

Figure 7. Penalty coefficients.

Figure 8. Tunning of parameters.

Figure 9. Elitist GA flow.

Figure 10. New populations with elitist GA.

1 2 3 4

7

5

6

(1) (2) (3)

(4)
(5)

(6)
(7)

(10)

(9)

(8)

600 600 600

3
0
°

(1) = HEA100

(2) = HEA120

(3) = IPN100

(4) = IPE120

(5) = IPE100

Randomly generating binary strings

of the design variables of the initial

population

Decoding binary values to

integer values

All

values
 nex ?

Selecting the individuals

with values nex

End
Yes

No

Individual

value
 nex ?

No

Yes

Randomly generating

binary string of the

individual with valuenex

Decoding

binary value to

integer value

Individual

value
 nex ?

No

All

values
 nex ?

End

Yes

Yes

pN

pN

pN

pN

pN

pN

pN

pN

pN

pN

surN

pN

surN

pN

surN

pN

surN

pN

Nsur

pN

Calculation: probability of rejection

accum
worstFF

accum
iFFrec

iP

Initial population

pN

Calculation: modified objective
function

iF

Killing: individuals below the average

aveFFiFF

Calculation: average aptitude

p

pN

i
i

ave
N

FF

FF

 1

Surviving population

surN

Calculation: the best and the worst
individual

bestF , worstF

Calculation: aptitude function

iFworstFbestFiFF

Calculation: accumulative aptitude
function

new
i

FFnew
iFFacum

iFF
1

Calculation: the worst individual

accum
worstFF

8000

A
v

er
ag

e
n
u

m
b

er
 o

f
fu

n
ct

io
n
 e

v
al

u
at

io
n
s

80000

A
v

er
ag

e
w

ei
g
h

t
(k

g
)

Population size

20
0

40 10060 140

40000

10000

20000

30000

60000

50000

70000

0
20

Aptitude Roulettewheel

4000

2000

1000

3000

6000

5000

7000

100

Population size

40 60 140

100000

90000

10000

9000

Aptitude Roulettewheel

Crossover point Crossover point

1x x2 1y y2

Parent Parent

y1 x2 x1 y2

Child Child

0 0 1 0 0 0 01 1 1 0 0 00 0 01 1 1 1

0 1 0 1 0 111000100 0 0 0 10 1

Population size

4000

0

2000

1000

3000

4020 60

8000

6000

5000

7000

140100

Population size

4000

A
v

er
ag

e
n

u
m

b
er

 o
f

fu
n

ct
io

n
 e

v
al

u
at

io
n

s

0

2000

1000

3000

4020 60

8000

6000

5000

7000

140100

Phenotype One point Two points

140

A
v

er
ag

e
w

ei
g

h
t

(k
g

)

80000

40
0

20

40000

20000

60000

Population size

60 100

120000

100000

Pe = 30% Pc = 70% Pmut = 0,5% Pe = 50% Pc = 50% Pmut = 0,5%

Phenotype One point Two points Phenotype One point Two points

A
v

er
ag

e
n

u
m

b
er

 o
f

fu
n

ct
io

n
 e

v
al

u
at

io
n

s

Phenotype One point Two points

140

A
v

er
ag

e
w

ei
g

h
t

(k
g

)

40000

40
0

20000

20

Population size

60 100

120000

80000

60000

100000

1 20

1000

2000

r(
c)

c

0

c

1 2

r(
c)

4

8

0

c

1 2

1000r(
c)

2000

a. - Lineal penalty coefficient b. - Exponential penalty coefficient

c. - Encoding penalty coefficient

A
v
er

ag
e

w
ei

g
h

t
(k

g
)

80000

70000

60000

50000

40000

30000

20000

10000

0

5000

0

1000

2000

3000

4000

7000

6000

8000

A
v
er

ag
e

n
u
m

b
er

 o
f

fu
n

ct
io

n
 e

v
al

u
at

io
n
s

20 40 60 100 140

Population size

A
v
er

ag
e

n
u
m

b
er

 o
f

fu
n

ct
io

n
 e

v
al

u
at

io
n
s

1000100000

A
v
er

ag
e

w
ei

g
h

t
(k

g
)

Probability of elite (%)

0
0

50000

25000

75000

10 30 50
0

9070

500

250

750

125000

150000

175000

200000

1500

1250

2000

1750

A
v
er

ag
e

o
f

m
ax

im
u

m
 c

o
ef

fi
ci

en
t

220000

A
v
er

ag
e

w
ei

g
h

t
(k

g
)

Probability of crossover (%)

0

10000

5000

15000

6050 70
0

80 90

1

0,5

1,5

25000

30000

35000

40000

2,5

3

3,5

4

A
v
er

ag
e

o
f

m
ax

im
u

m
 c

o
ef

fi
ci

en
t

10100000

A
v
er

ag
e

w
ei

g
h

t
(k

g
)

Probability of mutation (%)

0,1
0

50000

25000

75000

0,2 1 2
0

3 4

5

2,5

7,5

125000

150000

175000

200000

15

12,5

20

17,5

New generationConvergence?

End

Yes

Input initial

individual

Encoding design

variables

Analysis of the structure and

calculation of the safety factors

New population

No

Calculation of the

rejection probability

Imput data files

Generation 0

Obtaining of Ne, Nr, Nc

(Fig. 8)

eN

Nr

Nc

Ne

Nsur

Np Crossover + Mutation

Crossover + Mutation

In
d
iv

id
u
al

 w
it

h
 a

p
ti

tu
d

e

b
el

o
w

 t
h
e

av
er

ag
e

New populationCurrent population

Parent

Parent

Parent

Parent

Child

Child

Child

Child

Selection + Mutation

Selection + Mutation

Elite

