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Abstract. 

This paper shows the implementation of an elitist genetic algorithm that, when 

applied to steel structures, is able to obtain structural elements with minimum weight 

and satisfy the safety factors or coefficients (Ultimate Limit States) of the applicable 

building code. To this end, a modified objective function has been defined that 

considers the constraints established by these coefficients. In addition, the codification 

of the design variables has been modified so that all of them have the same probability 

of initial selection; a selection operator has been implemented to consider the dispersion 

of the individuals within the population as well as a crossover operator that interchanges 

the sections assigned to the structural elements without their prior modification. The 

final result is a robust genetic algorithm that is simple from a mathematical point of 

view and is able to work with complex structures under different load and constraint 

conditions. 
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1. Introduction. 

The continuous development of genetic algorithms (GA) has led to the obtaining 

of so-called elitist GA
1
, the aim of which is to avoid the best individual of a population 

failing to obtain offsprings within the following generation. To do so, they copy the best 

individual from the present population in the new one, normally achieving a speed 

increase in the obtaining of the optimal individual.  

The elitist GA implemented in this study does not save a single individual, but a 

percentage of the best individuals according to the elite probability, thus achieving a 

greater speed of convergence.  

This algorithm is applied to steel structures, with the aim of obtaining 

individuals of minimum weight in the structural elements, but which fulfill the safety 

factors established by the selected building code.  

With this aim in mind, a modified objective function has been defined that 

considers the constraints of these coefficients. In addition: 

 The codification of the design variables has been modified, achieving the 

same probability of initial selection in all of these.  

 A selection operator denominated aptitude has been implemented, 

considering the dispersion of the individuals in the population. 

 A crossover operator denominated phenotype crossover has been 

developed that only exchanges the section type assigned to the structural 

elements, without modifying it previously.  

Besides, the design of a two-dimensional articulated structure was implemented 

in order to test the performance of the developed elitist algorithm and the suggested 

modifications. The structure (Fig. 1) with seven nodes and ten beams collected in five 



groups (collection of beams with the same section), is subjected to three loads of 40 tn 

on the nodes 2, 3 and 4. The steel properties used are: modulus of elasticity = 20,58 

kN/m
2
, specific weight = 76,44 kN/m

3
 and yield stress = 254800 kN/m

2
. In addition, 

this study has produced to the modification of the penalty factor (see 2.4.1). 

2. Elitist genetic algorithm. 

2.1. Encoding the design variables. 

In structural optimization, the tendency is to use as design variables the section 

of the structural elements codified by means of chains of bits, whose length is evaluated 

using Eq. 1. 

n2       (1) 

where  is the number of sections of the commercial catalogue represented and n the 

integer of bits needed to represent  sections of this one. 

Very often, the integer deduced from Eq. 1, n, enables us to represent more 

sections than those existing in the catalogue, meaning that integers will exist with empty 

positions. In order to avoid this situation, these positions are filled up by the first 

sections of the catalogue, yielding a different initial selection probability in these.  

The codification of design variables implemented in this work
2
 means that all 

the sections have the same probability of initial selection. This codification is 

represented in Fig. 2, where the lengths of chain of n bits present npos possible sections 

as opposed to the nex existing sections in the commercial catalogue. 

The proposed solution consists in checking whether the number assigned 

randomly to each design variable has an empty position assigned to it or, on the 

contrary, it has a real section assigned to it. In the former case, the design variable with 

an empty position is generated again until a real section is assigned to it, while in the 

latter case this section will now become part of the population.  



In this way, it not only assures that all the sections assigned to the structural 

elements belong to the catalogue of commercial sections but also that all of them have 

the same probability of initial selection. 

The sections randomly assigned to the design variables of the example (Fig. 1) 

are selected amongst 2835 sections from the Spanish building code, NBE EA-95
3
. This 

number produces chains of 12 bits with 4096 possible sections and 1261 empty 

positions. 

This elevated number of sections, 2835, can produce unfeasible structures from a 

constructuve point of view and a major number of evaluations. But it is compensated 

with numerous viable and different designs where the designer will be able to select the 

most economic or the easiest to construct. Also it is compensated by the use of sections 

that habitually are not considered in some positions and nevertheless have enough 

resistance for them. 

On the other hand, the designer selects the sections of an individual into the 

initial population and the number of groups to collect the beams of the structure. This 

will reduce the time of convergence because the individual will be next to the optimum 

one and a minor number of goups will reduce the number of evaluations, but always in 

function of the designer experience. 

2.2. “Aptitude” selection operator. 

In the most frequent reproduction found in the bibliography
4
, an individual is 

selected to form part of the new generation based on its fitness, independently of 

whether this is very far or not from the average. This can give rise to isolated 

individuals or “strangers”, though with high aptitudes, also having a high number of 

offsprings, thus vastly altering subsequent generations. 



For this reason, a reproductive operator denominated aptitude
2
 has been 

implemented (Fig. 3) that considers the population dispersion. In this operator: 

 A new function is defined on the basis of the modified objective function 

(see 2.4), denominated aptitude function. 

 The value of the aptitude function or aptitude of all the individuals is 

obtained and those whose values are lower than the average are eliminated.  

 A probability of rejection is defined for the surviving individuals, of 

inverse value to aptitude.  

The new population is thus created from the best individuals of the previous 

population, avoiding isolated elements and increasing the speed of the GA in the search 

for the optimal individual. 

To study the efficiency of the aptitude, it has been compared with the 

roulettewheel selector
5
. For it, trial runs with both selectors and with different 

combinations of parameters (Pmut, Pc, Pe) have been carried out. In Fig. 4 is represented 

the variation of the average weight of the optimum individuals and the average number 

of function evaluations against the population size for Pmut = 0,5%;  

Pc = 70% and Pe = 30%.  

This study shows that an increase of the population size, decreases the average 

weight in the two selectors until reaching population sizes of 40 individuals. In that 

point the value of the average weight barely differs between the two selectors. On the 

contrary, an increase in the population size produces an increase in the average of the 

number of evaluations. In both cases the values obtained with the roulettewheel selector 

are over the ones obtained with the aptitude selector. This signifies worse optimum 

individuals and a greater time of convergence, i.e., a greater computational consume for 

the roulettewheel selector.  



2.3. “Phenotype” crossover operator.  

In general, GAs use crossover operators that interchange bits, randomly 

assigning the crossover points
2
. This entails not only an exchange of information, but 

also an alteration in the design variables.  

This modification is avoided by means of the so-called phenotype crossover. In 

this operator, the crossover point is located between two phenotypes or design variables 

from two individuals termed parents. Two new strings, the children, are created swaping 

all the characters between the selected position and the overall length of the parents 

strings (Fig. 5). 

To test the behaviour of the phenotype crossover, trial runs with one-point
5
, two-

points
5
 and phenotype crossover have been carried out (Fig. 6). 

The study let to say that for population sizes over 60 individuals, none of the 

crossover operators has a considerable effect in the results. On the contrary, for lower 

populations the results depend on the values of the parameters. In every trial the 

phenotype crossover was more stable opposite to one-point ant two-points crossover. 

Besides, it carries out less number of evaluations, so much for upper as lower 

populations of 60 individuals, what is transformed into faster speed of convergence and 

smaller computational consume. 

2.4. Formulation of the problem. 

The function used as a measure of effectiveness of the design is denominated the 

objective function, merit function or cost function. This function may be formulated 

from a simple objective f1(x) or multiple objectives as shown in Eq. 2. 

        xf,...,xf,xfxF p21
    (2)

 

Optimization with more than one objective is denominated multicriterion 

optimization
6
 and is the most general case of structural optimization, where the weight, 



displacements, stresses, loads or some combination of these can be used as an objective 

function. Different ways exist to reduce the number of functions, but the most widely 

used one is: 

 To choose an objective function that analyzes the total weight of the 

structure and considers the imposed limits (stresses in each member, 

displacements in the nodes, critical loads). 

The variables used are discrete, i.e. they take precise values from a list or 

commercial catalogue, which can be mathematically expressed as (Eq. 3): 
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where the vector of the design variables x is divided into xj sub-vectors, whose 

component xi,j take values from a Dj catalogue, and in which i is the number of design 

variables in each sub-vector and  is the number of sections in each catalogue. 

The limits that the design variables take are given by Eq. 4. 
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where  xGs  is the calculated value of the constraint,  xGs

~
 is its limited value and s is 

the number of inequality functions. 

In the optimization problem, not all the constraints are function of a term but 

may be functions of several terms (Eq. 5). 
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where m is the number of terms in the constraint function. 



Considering the expression of the objective function (Eq. 2), of the design 

variables (Eq. 3) and of their constraints (Eq. 4), the optimization problem may be 

expressed mathematically according to Eq. 6, whose interpretation is:  

The aim of structural optimization, and in particular GAs, is to obtain the 

sections of the structural elements that minimize an objective, subject to certain limits 

or constraints. 

Minimize 

Constraints 
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These constraints may be classified in two types: explicit and implicit. Explicit 

constraints are analyzed without a simulation system. In contrast, implicit constraints 

require analysis and verification of the designs, such as for instance the allocation of 

areas to the sections.  

Several methods of adjusting the constraints exist
7
:  

 Using operators specialized in viability. 

 Using only viable solutions. 

 Penalizing the solutions that violate one or more constraints. 

Specialized operators only work with explicit constraints and are useful for cost 

problems. The second and third methods can be used with implicit or explicit 

constraints, or a combination of both. In the second method, the members of the 

population that violate one or more constraints are eliminated; this can be ineffective in 

large problems with few viable solutions with respect to nonviable ones. The most 



appropiate method is therefore the penalizing of the members of a population that have 

one or more violations, although difficulties exist when applying penalty functions as 

they are usually dependent problems. 

In general, the problems covered by GA are of the restricted optimization type, 

and for this reason the optimization problem must be transformed into nonrestrictive 

problems. In this case, the penalty is based on the transformation method represented in 

(Eq. 7). 

        xH,xG,rPxFr,xFMinimize     (7) 

where )r,x(F  is the modified objective function, F(x) is the objective function and  

))x(H),x(G,r(P  is the penalty term defined as a function of the penalty coefficient r 

and the constraint functions G(x) and H(x).  

The method is defined by means of penalty parameters, the rules that update 

these parameters and constraint functions. 

As mentioned above, the aim of the implemented elitist GA is to obtain steel 

structures of minimum weight that fulfill the safety factors established by the applicable 

building code. This may be mathematically expressed according to (Eq. 8). 
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where  xF  is the objective function (the weight of the structure analyzed), defined on 

the basis of  the density of the material, xs the area of the section and Ls the length of 

nbar bars that compose the structure; and the constraints, the limit values that the safety 

factors calculated in each bar Gs(x), Hs(x), ..., Ts(x) may reach.  



Applying the mathematical expression of the implemented GA (Eq. 8) to the 

transformation of (Eq. 7), the problem will be expressed mathematically according to 

(Eq 9). 

          



barn

s

scnss xTr...xHrxGrxFr,xF

1

21   (9) 

where nc is the number of safety factors established by the applicable building code. 

The addition of another term to the penalty function in order to consider the 

displacements of each node as a design criteria is not so simple as it seems. Though our 

analysis program give us every node displacements, each structural member can be 

submitted to two different verifications. One local to each member and a global one 

where a maximum displacement (x,y,z) is considereted for the whole problem. The 

latter would led to a new penalty function that it is being studied by the authors. 

Of the terms that define the modified objective function, the easiest to obtain is 

the weight, since it is directly defined on the basis of the geometric data of the structure, 

the characteristics of the material assigned to the bars and the properties of the sections 

assigned to these. 

In contrast, in order to obtain the second term it is necessary to define the 

penalty coefficient and to carry out an analysis of the structure. In this way, the stresses 

and moments that define the safety factors and therefore the constraints of the problem 

will be obtained. The analysis of the structure and the verification of the safety factors 

can be carried out by means of a program of conventional analysis. In this study, the 

analysis was carried out using the Escal3D
8
 program, capable of obtaining the safety 

factors established by Spanish, French, American and European building codes. 

Specifically, the Spanish bulding code
3
 was considered, which defines safety factors 

such as the quotient between the calculated value and the maximum allowed value of: 



axial stress, shear stress, shear and bending stress, bending, Von Mises stress, buckling 

by compression, buckling by compression and bending, buckling by torsion, buckling 

by torsion and bending
9
. 

Although the displacements in each node is very important in the design of an 

steel structure, in the Eq. 9 only the stress terms have been considered like a first 

aproximation to the optimum structure. 

2.4.1. Penalty factor. 

The safe bar concept was considered for the definition of the penalty coefficient. 

A safe bar is the one whose safety factors are equal to or lower than one
9
. In addition, if 

the coefficient is far below unity the bar is considered oversized. That is to say, there 

exists another section with a smaller area that, if assigned to this bar, provides 

coefficients closer to unity, thus diminishing the weight of the structure.  

In contrast, if the calculated safety factor is greater than unity, the bar is not able 

to support the stresses and moments calculated in it. In this case, it will be necessary to 

look for another section whose resistant properties are able to support these stresses and 

moments. 

In accordance with the safe structure concept, the penalty coefficient is defined 

as the value which multiplied by the safety factor calculated in a bar, increases this 

coefficient if it is different from one and maintains it constant if it is equal to one. The 

sum of the penalized coefficients of all structural elements will be the penalty term of 

the modified objective function.  

Therefore, the penalty term increases both, the weight of structures with bars 

that do not fulfill some of the safety factors and the weight of structures with oversized 

bars, distancing them, in both cases, from the sought-after minimum weight. 



Initially the penalty coefficient was assigned the value of 1000 for safety factors 

greater or lower than one and the value of 1 for safety factors equal to one (Eq. 10).  
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As can be observed in Fig. 7a, this first adjustment did not differentiate between 

the penalty that was assigned to the structures that contained bars with coefficients close 

to unity and the one that was assigned to the structures whose bars presented 

coefficients far from this value. Moreover, after successive analyses and trial runs in the 

two-dimensional structure (Fig. 1), it was demonstrated that coefficients of less than one 

were less penalized than those above unity, resulting oversized structures like optimum 

individuals. 

Then an exponential distribution was assigned to the penalty coefficient in an 

attempt to penalize those coefficients that were far from unity more, favoring the search 

for minimum weight in zones close to one (Eq. 11).  
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In this case, those individuals with safety factors far from unity were penalized 

more strongly, but no distinction was made between oversized structures and nonvalid 

structures, since this penalization affected values lower than one in the same way as 

values above one (Fig. 7b). This meaned that oversized structures with coefficients far 

below unity but with a very great structural weight had similar values of the modified 

objective function to less heavy structures with safety factors higher than unity.  



On the other hand, the growth of an exponential distribution was so fast that 

values of coefficients higher than unity produced excessively large penalty coefficients 

from a computational point of view.  

Taking all the above considerations into account, it was decided to carry out two 

types of adjustment of the penalty coefficient on the basis of whether the calculated 

safety factor was lower than unity or not. In the former case, an exponential distribution 

was followed, thus favoring the individuals with coefficients close to unity. In the later 

case, a linear distribution with penalty values much higher than the above values was 

followed in order to avoid the equality of weighting between oversized structures and 

nonvalid structures (Eq. 12), (Fig. 7c).  
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2.4.2. Trials. 

In order to test the suggested improvements (in addition to the modification of 

the penalty factor), and investigate the effect of tunning GA parameters
10

 (Np, Pmut, Pc, 

Pe) on the performance of the developed elitist algorithm, the domain of each parameter 

has been set as follows: 

 The population size Np varies from 20 to 140. 

 The elite probability Pe varies from 0,0% to 90%.  

 The crossover probability Pc varies from 10% to 90% (subjected to  

Pc + Pe  100%). 

 The mutation probability Pmut varies from 0,1% to 4%. 



The study has been carried out using five runs for each combination of the 

domain aforementioned, on the structure shown in the section 1.  

The conclusions can be summarised as follows (Fig. 8): 

 When the value of Np increases, the average weight of the best individuals 

decreases, although the average number of evaluations increases too. It can be 

observed that solutions with a good performance of the developed GA are 

obtained with a value of Np between 60 and 100 individuals. 

 A value of Pmut ranging between 1% and 3% and a value of Pe elite ranging 

between 10% and 30% give better solution achieved within a reasonable 

average number of function evaluations and coefficients next to one.  

 An increase of the Pc until values of 80%, with the same probability of elite, 

decreases the average weight. 

After carrying out all the trials aforementioned, the best individual was found in 

100 runs with the following parameters: Np = 100, Pe = 30%, Pc = 70%, Pmut = 1%.  

The steel sections obtained in this individual and its minimum weight are given 

in Table 1. This table also includes the solution obtained from a conventional design 

approach, using a commercial program of structural analysis. It can be seen that the 

minimum weight solution is about 9,3% lighter than the conventional design.  

An advantage of the computational model presented in this paper is that one can 

quickly find several minimum weight soluctions using different grouping members. A 

cost comparison of various solutions will then yield the optimum solution. 

2.5. Flow of the elitist GA. 

The flow of the implemented elitist GA is represented in Fig. 9. It can be seen 

how each new population is formed by three types of individuals obtained from the 

surviving population (Fig. 10):  



 Elite individuals, selected between the best individuals of the current 

population without mutation and whose number Ne is the result of 

multiplying the elite probability Pe and the population size Np. 

 Crossover individuals, selected between the surviving individuals in function 

of their probability of rejection with mutation and whose number Nc is the 

result of multiplying the crossover probability Pc and the population size Np. 

 Random individuals, whose number is equal to the difference between the 

total number of individuals in the population and the sum of elite and 

crossover individuals. 

4. Conclusions. 

A modified elitist GA has been developed composed of a crossover operator 

denominated phenotype crossover and a selection operator named aptitude that increase 

its speed. In addition, the codification of the design variables has been modified so that 

all of these have the same probability of initial selection, and a modified objective 

function has been defined that, when applied to steel structures, diminishes the weight 

of the structure according to safety factor constraints.  

The implemented elitist GA is a robust method of optimization of little 

mathematical complexity that is adequate for designers. It does not need prior 

information about the objective function or the constraint functions and can work with 

complex structures under different load and constraint conditions. In addition, it permits 

the use of commercial sections catalogues as design variables and is able to apply the 

engineer experience in creacting groups of identical section, selecting these variables 

and their relation with the structural members. 
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Tables 

 

Number of 

group 

Sections 

(E.G.A.) 

Weight 

(kg) 

Sections 

(conventional 

design) 

Weight 

(kg) 

1 HEA300 1519,14 HEA300 1519,14 

2 HEA300 773,50 HEA300 773,50 

3 LSI150x15 345,08 IPN240 378,60 

4 HEB220 488,49 IPE550 715,15 

5 IPN400 1935,72 IPE550 2145,45 

Weight (kg)  5061,93  5531,84 

 

Table 1. Best individual against conventional design. 

 



Legends to illustrations. 

Figure 1. Structure analysed. 

Figure 2. Encoding the design variables. 

Figure 3. Selection operator: “aptitude”. 

Figure 4. Aptitude selector against roulettewheel selector. 

Figure 5. Phenotype crossover in binary representation. 

Figure 6. Phenotype crossover against one-point and two-points crossover. 

Figure 7. Penalty coefficients. 

Figure 8. Tunning of parameters. 

Figure 9. Elitist GA flow. 

Figure 10. New populations with elitist GA. 
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