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Abstract. In this paper we confront a variation of the open shop prob-
lem where task durations are allowed to be uncertain and where uncer-
tainty is modelled using fuzzy numbers. We propose a particle swarm
optimization (PSO) approach to minimise the expected makespan using
priorities to represent particle position, as well as a decoding algorithm
to generate schedules in a subset of possibly active ones. Finally, the per-
formance of the PSO is tested on several benchmark problems, modified
so as to have fuzzy durations, compared with a memetic algorithm from
the literature.

1 Introduction

The open shop scheduling problem, with an increasing presence in the literature,
is a problem with clear applications in industry—consider for instance testing
facilities, where units go through a series of diagnostic tests that need not be
performed in a specified order and where different testing equipment is usually
required for each test [19]. Given its NP-hardness for a number of machines
m ≥ 3 [19], practical approaches to solving it usually involve heuristic strategies:
simulated annealing [1], tabu search [16], genetic algorithms with local search [7],
ant colony optimization [2], etc.

To enhance the range of applications of scheduling, part of the research is
devoted to model the uncertainty and vagueness pervading real-world situations.
The approaches are diverse and, among these, fuzzy sets have been used in a
wide variety of ways [4]. Incorporating uncertainty usually requires a significant
reformulation of the problem and solving methods, in order that the problem can
be precisely stated and solved efficiently and effectively. Some heuristic methods
have so far been proposed for fuzzy flow and job shop problems, where uncertain
durations are modelled via fuzzy intervals, e.g. [11], [15], [24], [21]. However, to
the best of our knowledge, the open shop problem has received little attention
in the fuzzy framework: in [14] fuzzy sets are used to represent flexible job start
and due dates, in [18] a genetic algorithm is proposed to solve the open shop



with fuzzy durations, and in [10] this genetic algorithm is combined with a local
search method.

In the following, we consider the fuzzy open shop problem with expected
makespan minimisation, denoted FuzO||E[Cmax] and propose a bio-inspired
technique to solve it. The rest of the paper is organized as follows. In Section
2 we formulate the problem and introduce the notation used across the paper.
Then, in Section 3, we describe the main components of the PSO algorithm.
Section 4 reports results from the experimental study. Finally, in Section 5 we
summarise the main conclusions and propose ideas for future work.

2 Open Shop Scheduling with Uncertain Durations

The open shop scheduling problem, or OSP in short, consists in scheduling a
set of n jobs J1, . . . , Jn to be processed on a set of m physical resources or
machines M1, . . . ,Mm. Each job consists of m tasks or operations, each requiring
the exclusive use of a different machine for its whole processing time without
preemption, i.e. all operations must be processed without interruption. In total,
there are mn operations, {Ok, 1 ≤ k ≤ mn}. A solution to this problem is a
schedule –an allocation of starting times for all operations– which is feasible,
in the sense that all constraints hold, and is also optimal according to some
criterion. Here, the objective will be minimising the makespan Cmax, that is,
the time lag from the start of the first operation until the end of the last one, a
problem often denoted O||Cmax in the literature.

2.1 Uncertain Durations

In real-life applications, it is often the case that it is not known in advance
the exact time it will take to process one operation and only some uncertain
knowledge is available, for instance, an interval of possible durations, or a most
likely duration with a certain error margin. Such knowledge can be modelled
using a triangular fuzzy number or TFN, given by an interval [n1, n3] of possible
values and a modal value n2 in it. For a TFN N , denoted N = (n1, n2, n3), the
membership function takes the following triangular shape:

µN (x) =





x−n1

n2−n1 : n1 ≤ x ≤ n2

x−n3

n2−n3 : n2 < x ≤ n3

0 : x < n1 or n3 < x

(1)

In the open shop, we essentially need two operations on processing times (fuzzy
numbers), the sum and the maximum. These are obtained by extending the cor-
responding operations on real numbers using the Extension Principle. However,
computing the resulting expression is cumbersome, if not intractable. For the
sake of simplicity and tractability of numerical calculations, we follow [5] and
approximate the results of these operations, evaluating the operation only on
the three defining points of each TFN. It turns out that for any pair of TFNs



M and N , the approximated sum M +N ≈ (m1 + n1,m2 + n2,m3 + n3) coin-
cides with the actual sum of TFNs; this is not necessarily so for the maximum
max{M,N} ≈ (max{m1, n1},max{m2, n2},max{m3, n3}), although they have
identical support and modal value.

The membership function of a fuzzy number can be interpreted as a possibil-
ity distribution on the real numbers. This allows to define its expected value [17],
given for a TFN N by E[N ] = 1

4 (n
1 + 2n2 + n3). It coincides with the neutral

scalar substitute of a fuzzy interval and the centre of gravity of its mean value [4].
It induces a total ordering ≤E in the set of fuzzy intervals [5], where for any two
fuzzy intervals M,N M ≤E N if and only if E[M ] ≤ E[N ].

2.2 Fuzzy Open Shop Scheduling

If processing times of operations are allowed to be imprecise and such imprecision
or uncertainty is modelled using TFNs, the resulting schedule is fuzzy in the sense
that starting and completion times for each operation and hence the makespan
are TFNs. Each TFN can be seen as a possibility distributions on the values
that the time may take. Notice however that there is no uncertainty regarding
the task processing ordering given by the schedule.

An important issue with fuzzy times is to decide on the meaning of “optimal
makespan”. It is not trivial to optimise a fuzzy makespan, since neither the
maximum nor its approximation define a total ordering in the set of TFNs.
Using ideas similar to stochastic scheduling, we follow the approach taken for
the fuzzy job shop in [9] and use the total ordering provided by the expected
value and consider that the objective is to minimise the expected makespan
E[Cmax]. The resulting problem may be denoted FuzO||E[Cmax].

3 Particle Swarm Optimization for the FOSP

Given the complexity of the open shop, different metaheuristic techniques have
been proposed to solve the general m-machine problem. Among these, [12] de-
scribes two heuristic methods to obtain a list of operation priorities later used
in a list-scheduling algorithm; [16] proposes a tabu search algorithm; [7] intro-
duces a genetic algorithm hybridised with local search; a genetic algorithm using
heuristic seeding is given in [20], and [23] proposes a solution based on particle
swarm optimisation. As mentioned in Section 1, among these only a genetic al-
gorithm [18] and its combination with local search [10] have been applied to the
case where durations are fuzzy numbers.

PSO is a population-based stochastic optimisation technique inspired by bird
flocking or fish schooling [13]. In PSO, each position in the search space corre-
sponds to a solution of the problem and particles in the swarm cooperate to find
the best position (hence best solution) in the space. Particle movement is mainly
affected by three factors:

– Inertia: Velocity of the particle in the latest iteration.



1. generate and evaluate the initial swarm.
2. compute gbest and pbest for each particle.
while no termination criterion is satisfied do

for each particle k do
for each dimension d do

3. update velocity vkd .
4. update position xk

d.
5. evaluate particle k.
6. update pbest and gbest values.

return the schedule from the best particle evaluated so far;

Alg. 1: A generic PSO algorithm

– pbest: The best position found by the particle.
– gbest: The best position found by the swarm so far (the best pbest).

The potential solutions or particles fly through the problem space changing
their position and velocity by following the current optimum particles pbest and
gbest.

Algorithm 1 describes the structure of a generic PSO algorithm. First, the
initial swarm is generated and evaluated. Then the swarm evolves until a termi-
nation criterion is satisfied and in each iteration, a new swarm is built from the
previous one by changing the position and velocity of each particle towards its
pbest and gbest locations.

In [23], a PSO algorithm was proposed to solve the deterministic OSP which
improved the best published results. Here we shall extend this algorithm to the
fuzzy framework and test it compared to the state-of-the-art methods.

3.1 Position Representation and Evaluation

Following [23], we use a priority-based representation for particle positions. Thus
a schedule is encoded as a priority matrix Xk = (xk

ij)i=1...m,j=1...n, where xk
ij

denotes the priority of operation oij , the task of job j processed on machine i.
An operation with smaller xk

ij has a higher priority to be scheduled.
If we represent an OSP solution as a task processing order S, which is a

permutation of tasks, we can transfer this permutation to a priority matrix and
viceversa. For instance, given the following solution:

S =
(
o11 o13 o23 o12 o31 o33 o21 o23 o22

)

a particle in the space can be obtained by randomly setting xij in the interval
(p− 0.5, p+ 0.5) where p is the location of oij in S. Therefore, the operation
with smaller xij has higher priority to be scheduled. The above permutation list
can be transferred to:

Xk =



1.2 4.0 1.7
6.6 9.4 2.7
5.3 7.9 6.4






while Ω 6= ∅ do
f∗ ← minoij∈Ω{E[fij ]}.
s∗ ← minoij∈Ω{E[sij ]}.
Identify the conflict set O ← {oij : E[sij ] < s∗ + δ × (f∗ − s∗), oij ∈ Ω}.
Choose the operation o∗ij from O with smallest xk

ij .
Schedule the operation o∗.
Ω ← Ω − {o∗}.

Alg. 2: The pFG&T algorithm

Decodification of a particle may be done in different ways. For the crisp
job shop and by extension for the open shop, it is common to use the G&T
algorithm [6], which is an active schedule builder. A schedule is active if one
task must be delayed for any other one to start earlier. Active schedules are
good in average and, most importantly, the space of active schedules contains
at least an optimal one, that is, the set of active schedules is dominant. For
these reasons it is worth to restrict the search to this space. In [7] a narrowing
mechanism was incorporated to the G&T algorithm in order to limit machine idle
times by means of a delay parameter δ ∈ [0, 1], thus searching over the space of
so-called parameterised active schedules. In the deterministic case, for δ < 1 the
search space is reduced so it may no longer contain optimal schedules and, at the
extreme δ = 0 the search is constrained to non-delay schedules, where a resource
is never idle if a requiring operation is available. This variant of G&T has been
applied in [23] to the deterministic OSP, under the name “parameterized active
schedule generation algorithm”.

In Algorithm 2 we propose an extension of parameterised G&T to the case
of fuzzy processing times, denoted pFG&T . It should be noted that, due to
the uncertainty in task durations, even for δ = 1, we cannot guarantee that
the produced schedule will indeed be active when it is actually performed (and
tasks have exact durations). We may only say that the obtained fuzzy schedule
is possibly active. Throughout the algorithm, Ω detones the set of the operations
that have not been scheduled, Xk the priority matrix, sij the starting time of
the operation oij and fij the completion time of the operation oij .

Notice that the pFG&T algorithm may change the task processing order
given by the particle position. Therefore the PSO does not record in gbest and
pbest the best positions found so far, but rather the best operation sequences of
the schedules generated by the decoding operator.

3.2 Particle movement and velocity

Particle velocity is traditionally updated depending on the distance to gbest and
pbest. Instead, this PSO only considers whether the position value xk

ij is larger

or smaller than pbestkij (gbestij). For any particle, its velocity is represented by
an array of the same length as the position array where all the values are in the
set {−1, 0, 1}. Updating is controlled by the inertia weight w at the beginning of



for each dimension d do
generate random value rand ∼ U(0, 1).
if vkd 6= 0 and rand ≥ w then

vkd ← 0.
if vkd = 0 then

generate random value rand ∼ U(0, 1).
if rand ≤ C1 then

if pbestkd ≥ xk
d then

vkd ← 1.
else

vkd ← −1.
generate random value rand2 ∼ U(0, 1).
xk
d ← pbestkd + rand2 − 0.5.

if C1 < rand ≤ C1 + C2 then
if gbestd ≥ xk

d then
vkd ← 1.

else
vkd ← −1.

generate random value rand2 ∼ U(0, 1).
xk
d ← gbestd + rand2 − 0.5.

else
xk
d ← xk

d + vkd .

Alg. 3: Particle movement

each iteration as follows. For each particle k and operation oij (in the following,
to simplify, dimension d), if vkd 6= 0, vkd will be set to 0 with probability 1 − w,
meaning that if xk

d was either increasing or decreasing, xk
d stops at this iteration

with probability 1−w. Otherwise, if vkd = 0, with probability C1, v
k
d and xk

d will
be updated depending on pbestkd and with probability C2 they will be updated
depending on gbestd, always introducing an element of randomness and where
C1 and C2 are constants between 0 and 1 such that C1 +C2 ≤ 1. The details on
how the updating of particle k takes place are given in Algorithm 3.

Position mutation. After a particle moves to a new position, we randomly choose
an operation and then mutate its priority value xk

d disregarding vkd . As in [23],
for a problem of size n × m, if xk

d < (nm/2), xk
d will take a random value in

[mn − n,mn], and vkd = 1. Otherwise, if xk
d > (nm/2), xk

d will take a random
value in [0, n] and vkd = −1.

Diversification strategy. If all particles have the same pbest solutions, they will
be trapped into local optima. To prevent such situation, a diversification strategy
is proposed in [23] that keeps the pbest solutions different. In this strategy, the
pbest solution of each particle is not the best solution found by the particle itself,
but one of the best N solutions found by the swarm so far, where N is the size
of the swarm. Once any particle generates a new solution, the pbest solutions
will be updated in these situations:



– if the makespan of the particle solution is equal to any pbest solution, replace
that pbest solution with the new particle solution;

– if the makespan of the particle solution is less than the worst pbest solution
and different from all pbest solutions, set the worst pbest solution equal to
the particle solution.

4 Experimental Results

For the experimental study we use the test bed given in [10], where the authors
follow [5] and generate a set of fuzzy problem instances from well-known bench-
mark problems from [3]. Given a crisp problem instance, each crisp processing
time t is transformed into a symmetric fuzzy processing time p(t) such that its
modal value is p2 = t and p1, p3 are random values, symmetric w.r.t. p2 and gen-
erated so the TFN’s maximum range of fuzziness is 30% of p2. By doing this, the
optimal solution to the crisp problem provides a lower bound for the expected
makespan of the fuzzified version [5]. The original problem instances consist of
6 families, denoted J3, J4,. . . , J8, of sizes 3×3, 4×4,. . . ,8×8, containing 8 or 9
instances each. From each crisp problem instance 10 fuzzy versions were gener-
ated, so in total there are 520 problem instances. The obtained benchmarks for
the fuzzy open shop are available at http://www.di.uniovi.es/tc.

In [10], the authors propose a neighbourhood structure which combined with
the GA from [18] provides a MA that not only obtains better solutions but is
also more “reliable” in the sense that there is less variability in quality solution
across different executions. In this experimental study we compare our PSO with
this MA.

For the PSO we take the best values for each parameter obtained after a
parameter analysis in [23]: swarm size N = 60, C1 = 0.7, C2 = 0.1, and inertia
weight w linearly decreasing from 0.9 to 0.3. The number of iterations has been
adapted for each problem size so as to obtain similar running times to the MA.
Regarding the filtering mechanism of the search space given in the schedule
generator, the efficiency of this reduction depends of the problem size [8], in
fact our experimentation suggest taking δ = 1 (no reduction) in small instances
(families J3 and J4) and δ = 0.25 in larger ones.

To evaluate its performance, we run the proposed PSO 30 times for each
problem instance, recording the best, average expected makespan values across
these 30 runs. Table 1 shows a summary of the results, with average values
across 30 executions on each the 80–90 instances of the same size (detailed
results for each problem would require 520 rows). It contains three columns for
each method, PSO and MA, showing the Average of the Best values (AoB), the
Average of the Average values (AoA), and the Average CPU Times in seconds
(Time). We can see that both the PSO and the MA perform equally well on
the small (3 × 3, 4 × 4) problems (the AoA value of PSO is slightly worse in
the J4 family). As the problem size increases, also does increase the difference in
solution quality between the PSO and the MA, with the former obtaining better
results.



Table 1. Comparison between PSO and MA

Problem
PSO MA

Family
E[Cmax] Time E[Cmax] Time

AoB AoA AoB AoA

J3 1063.1 1063.1 0.06 1063.1 1063.1 0.13

J4 1048.8 1057.2 0.11 1048.8 1050.4 0.23

J5 1028.7 1029.6 0.70 1030.8 1044.9 1.29

J6 1033.3 1036.0 4.86 1033.9 1052.1 7.57

J7 1036.0 1041.6 14.84 1044.1 1067.5 14.46

J8 1031.6 1039.0 30.69 1045.5 1068.2 26.15

Table 2. Average relative makespan error (in %) for sets of problems of size 8 × 8.

Problem
PSO MA

B A B A

j8-per0-1 6.415 7.586 9.395 12.406

j8-per0-2 7.292 7.858 8.806 11.646

j8-per10-0 4.467 5.189 5.793 8.308

j8-per10-1 2.405 3.293 4.03 6.586

j8-per10-2 2.380 3.602 4.603 7.077

j8-per20-0 1.255 1.844 1.870 3.672

j8-per20-1 0.038 0.204 0.185 1.379

j8-per20-2 1.062 1.621 1.733 3.466

More detailed results are presented in Table 2, where each row corresponds
to one set of ten fuzzy versions of one of the crisp instances of size 8×8. It shows
relative makespan errors w.r.t. a lower bound for the expected makespan, which
is 1000 for all problem instances. As expected, the PSO compares favourably
with MA in all instances. Notice as well that the relative errors for the best (B)
and average (A) solution do not differ greatly, suggesting that the PSO is quite
stable. Figure 1 illustrates the reduction of the makespan error in average for
each set of fuzzy problems; we can observe this is higher for mean values, which
are more significant in stochastic algorithms.

5 Conclusions and Future Work

We have considered an open shop problem with uncertain durations modelled as
triangular fuzzy numbers, FuzO||E[Cmax], and have proposed a particle swarm
optimization technique to solve this problem. The PSO has obtained good results
both in terms of relative makespan error and also in comparison to a memetic al-
gorithm from the literature. These promising results suggest directions for future
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Fig. 1. Percentage of reduction in average relative error of PSO w.r.t. MA.

work. First, the PSO should be tested on more difficult problems, fuzzy versions
of other benchmark problems from the literature. Also, the PSO provides a solid
basis for the development of more powerful hybrid methods, in combination
with local search techniques, an already successful approach in fuzzy job shop
problems [22].
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