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A B S T R A C T   

According to the structural dynamic modification theory, the perturbed mode shapes can be 
expressed as a linear combination of the unperturbed mode shapes through a transformation 
matrix T. This matrix is proposed in this paper as a powerful technique to determine whether the 
discrepancies between two models can be attributed to differences in stiffness, in mass, or both. It 
is demonstrated that matrix T becomes a rotation matrix when there are no mass discrepancies. In 
the case of mass discrepancies, or a combination of mass and stiffness differences, matrix T can be 
decomposed into a product of a rotation matrix and a matrix containing information about the 
changes in scaling and in shear. The angle of rotation depends on the closeness of the modes, and 
large rotations can be obtained when the system presents closely spaced or repeated modes. The 
polar and the QR decompositions are used in this paper to factorize matrix T as a product of two 
matrices, one of them being a rotation matrix. A new version of the modal assurance criterion 
(MAC), denoted in this paper as rotated MAC or ROTMAC, is proposed to detect mass discrep
ancies between two models. The equations and the conclusions derived in this paper have been 
validated through numerical simulations on a 2-degrees-of-freedom system and by correlating a 
numerical model and an experimental model of a square laminated glass plate.   

1. Introduction 

In several applications within the field of structural dynamics, it is a common practice to consider an experimental model as a 
perturbation of another model, referred to as the unperturbed model. For instance, in model correlation and model updating methods 
[1,2], the experimental model is typically regarded as a perturbation of a numerical model. Similarly, in the context of damage 
detection [3], the experimental damaged model is considered a perturbation of the corresponding experimental undamaged model. 

In the field of algebra, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system A 
(perturbed model), which is obtained as a perturbation of a system B (unperturbed model) with known eigenvectors and eigenvalues 
[4,5]. The study of the sensitivity of eigenvalue problems is denoted as perturbation theory of matrix pencils [4] and allows to know 
the sensitivity of the eigenvectors and eigenvalues of the unperturbed system (System B) to changes of mass and/or stiffness. 

Structural dynamic modification (SDM) is a technique to study the effects of structural modifications (material, geometry, etc.) on 
the dynamic behavior of a structural system [6–8]. Two different problems are usually considered for SDM: the direct problem and the 
inverse problem. The direct problem consists in determining the effect of a known perturbation [6]. On the other hand, the inverse 
problem tries to identify the most appropriate changes required to obtain the desired dynamic behavior [6]. Most of the research to 
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date has been focused on the inverse structural modification problem [9–12], whereas only a few papers can be tracked for the direct 
structural modification problem [7,13–16]. Moreover, very few studies have been devoted to distributed modifications [17–20]. P. 
Avitable [21] reviewed structural dynamic modification techniques and discussed key factors influencing the success of the modifi
cation process such as: truncation of modes, rotational DOF’s, mode shape scaling, drive point measurements, rigid body modes, 
complex vs. proportional modes, etc. The eigenvalue problem derived from the SDM provides the natural frequencies of the perturbed 
system, and a transformation matrix (denoted in this paper as matrix T) which relates the modal matrices of both systems so that the 
eigenvectors of model A can be expressed as a linear combination of the eigenvectors of the model B through this matrix T [6–8]. 

In experimental modal analysis, the mode shapes are only known at the measured or active DOF’s, which can be expanded to the 
unmeasured DOF’s using a numerical model and a transformation matrix relating the modal matrices of both systems [1,22]. In [23], 
the experimental mode shapes were expanded using a finite element model, allowing for a more accurate estimation of the length and 
the cross-length of the mode shapes. This transformation matrix can also be used to smooth the experimental mode shapes [1]. The 
optimal number of mode shapes to be considered in the estimation of matrix T was studied in [22]. Bernal [24] derived an analytical 
expression to estimate the modal masses of a dynamic system using the mass change method, where the diagonal terms of a trans
formation matrix T, relating the modal matrices of both the perturbed and unperturbed systems, are needed. 

Brincker and Aenlle [25]. demonstrated that when a system B with closely spaced eigenvalues is perturbed, the associated mode 
shapes mainly rotate in their initial subspace, i.e., matrix T is mainly a rotation matrix, and the maximum angle corresponds to the case 
of repeated modes. Moreover, from the sensitivity equations based upon a Taylor expansion [26,27], it is inferred that a perturbation 
induce changes in the scaling and in the relative angle between the mode shapes. Thus, the matrix T contains the effects of rotation, 
shear (relative angle between mode shapes) and changes in scaling, and for model correlation and model updating purposes, it would 
be very interesting to separate these effects. In linear algebra, a matrix factorization is a decomposition into a product of matrices 
[28,29]. There are various techniques available for the matrix factorization and in this paper the polar and QR decompositions will be 
used to separate the effects of the rotation (rotation matrix), and the effects of shear and scaling in another matrix. The polar 
decomposition separates a matrix into a unitary matrix and a Hermitian positive semi-definite matrix [30–32]. On the other hand, the 
QR decomposition factorizes a matrix into a unitary matrix and an upper triangular matrix [33–35]. 

Model correlation techniques are methods used to compare two different models, and they can be classified into various categories. 
The criteria based on eigenvalues compare a set of natural frequencies of two models, and the most commonly used method is the 
normalized relative frequency difference (NRFD) [36]. On the other hand, the criteria based on eigenvectors compare a set of mode 
shapes, and the Modal Assurance Criterion (MAC) [36,37] is also the most widely used technique. However, if the mode shapes rotate 
in a subspace, a good correlation can exist in terms of mass and stiffness between two models with closely spaced modes, but low values 
of modal assurance criterion (MAC) can result due to the rotation of the mode shapes. 

Although matrix T relates the mode shapes of two models, it has not been considered in the literature as a correlation technique. In 
this paper, the transformation matrix T is factorized into a product of two matrices, one of them being a rotation matrix. It is 
demonstrated that if there are no discrepancies in terms of mass between the models A and B, matrix T becomes a pure rotation matrix. 
In the case of a mass change perturbation, matrix T can be decomposed into a rotation matrix and a matrix containing the effect of 
shear and scaling. Thus, the transformation matrix T can be used to determine whether the discrepancies between two models B and A 
can be attributed to differences in stiffness, mass or both. This information holds significant utility in the fields of model correlation, 
model updating and damage detection. Moreover, a new version of the modal assurance criterion, denoted in this paper as rotated MAC 
or ROTMAC, is also proposed. It is worth noting that the analysis conducted in this paper is limited to the classical eigenvalue problem 
related to the undamped case of a linear dynamic system. 

The paper is organized as follows. Section 2 presents the basic theory of structural dynamic modification and the corresponding 
eigenvalue problem expressed in terms of eigenvalues and eigenvectors of the unperturbed structure. In section 3, the polar and the QR 
decompositions of matrix T are briefly outlined and particularized to stiffness changes, mass changes, and simultaneous stiffness and 
mass changes. The applications of matrix T factorization is detailed in section 4. Section 5 applies the equations proposed in this paper 
to determine the rotation of a two degrees of freedom (DOF) system, which is perturbed with stiffness change (ΔK), mass change (ΔM), 
and simultaneous mass and stiffness changes. In section 6, the correlation between a numerical model and an experimental model of a 
square laminated glass plate is examined using matrix T. The conclusions of the paper are presented in section 7. Supplemental 
mathematical details can be found in the appendices. 

2. Structural dynamic modification 

In the case of no damping, the equation of motion of a structure subjected to a force p is given by Eq. (1) [38–40]: 

MB ü + KB u = p (1)  

where KB and MB are the stiffness and the mass matrices, respectively. Hereafter, bold capital letters will be used for matrices and bold 
lowercase letters for vectors. 

The homogeneous differential equation derived from Eq. (1) provides the eigenvalue equation shown in Eq. (2) [38–40]: 
(
KB − ω2

biMB
)
bi = 0 (2)  

where ω2
bi and bi are the i-th eigenvalue and eigenvector, respectively. This eigenvalue problem is known in numerical mathematics as 
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generalized eigenvalue problem. 
If a dynamic modification given by the mass change ΔM and stiffness change ΔK matrices is applied to system B, according to the 

structural dynamic modification theory, the mass matrix of the modified (or perturbed) system MA can be expressed as: 

MA = MB +ΔM (3)  

and the stiffness matrix as: 

KA = KB +ΔK (4)  

The new equation of motion of the perturbed system, denoted as system A, becomes [6,7]: 

(MB + ΔM)ü + (KB + ΔK)u = p (5)  

The homogeneous differential equation derived from Eq. (5) provides the following eigenvalue equation for the i-th mode [6,7]: 

(MB + ΔM)ai ω2
ai = (KB + ΔK)ai (6)  

where ωai and ai are the natural frequency and the eigenvector, respectively, of the i-th mode. 
According to SDM [6,7], the modal shape matrix A of the perturbed structure can be expressed as a linear combination of the modal 

shape matrix of system B as: 

A = B T (7)  

where T is a transformation matrix and B is the modal shape matrix of system B. 
If Eq. (3) is pre-multiplied by AT and post-multiplied by A, it becomes: 

ATMAA = ATMBA+ATΔMA (8)  

The inner product ATMAA is a diagonal matrix containing the modal masses of the system A, i.e., mA = ATMAA, which becomes an 
identity matrix in the case of mass-normalized mode shapes (mA = I). On the other hand, the inner product ATMBA can also be 
expressed as: 

ATMBA = TTBTMBBT = TTT (9)  

Substitution of Eq. (9) in Eq. (8) gives: 

I = TTT +ATΔMA (10)  

Furthermore, if Eq. (4) is pre-multiplied by AT and post-multiplied by A, it becomes: 

ATKAA = ATKBA+ATΔKA (11)  

which, in the case of mass-normalized mode shapes, can also be expressed as: 

ω2
A = TTω2

BT + ATΔKA (12)  

where ω2
A and ω2

B are diagonal matrices containing the natural frequencies of systems A and B, respectively. 

2.1. Stiffness change (ΔK)

If there are no discrepancies in terms of mass between models A and B, ΔM = 0 and Eq. (10) results in: 

I = TT
KTK (13)  

where TK is the matrix T when the system is only perturbed with a stiffness change. As TK is a real square matrix, it is inferred from Eq. 
(13) that TK must be a rotation matrix. 

If a rotation is involved in Eq. (7), it must be expressed as: 

AT = RKBT (14)  

where RK indicates rotation matrix. From Eq. (7) and Eq. (14) it is derived that: 

TT
K = RK (15)  

The same conclusion is formulated from the mass matrices MA and MB. Given that no discrepancies exist in terms of mass between both 
systems, the mass matrices of systems A and B must be equal, i.e: 
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MA = MB (16)  

If both matrices are expressed in terms of mode shapes, Eq. (16) becomes: 
(
AAT)− 1

=
(
BBT)− 1 (17)  

Substitution of Eq. (14) in Eq. (17) leads to: 
(
BTKTT

KBT)− 1
=

(
BBT)− 1 (18)  

From which is inferred that the inner product TKTT
K must be an identity matrix and, consequently, TT

K must be a rotation matrix. 
After these considerations it can be stated that: 

If there are not mass discrepancies between the systems B and A, the transformation matrix TK is a rotation matrix. These 
means that the scaling and the relative angle between mode shapes are not modified. 

The angle of rotation is small in systems with well-separated modes, and it affects to the full set of mode shapes. On the other hand, 
large rotations can occur in the case of closely or repeated modes, but the rotations occur mainly in the subspace defined by the closely 
or repeated modes [25]. 

2.2. Mass change (ΔM)

From Eq. (12), it is inferred that if there are no discrepancies in terms of stiffness between systems A and B, ATΔKA = 0 and Eq. (12) 
results in: 

ω2
A = TT

Mω2
BTM (19)  

where ω2
A is a diagonal matrix containing the natural frequencies (squared) of system A and TM is the matrix T when the system is only 

perturbed with a mass change. From Eq. (19) it is inferred that: 

If there are not stiffness discrepancies between the systems B and A, the inner product TT
Mω2

BTM must be a diagonal matrix and 
the natural frequencies of both systems are related by:  

ω2
ai = tT

Miω2
BtMi (20)  

where tMi is the i-th column vector of matrix TM. 
Furthermore, from Eq. (10) it is inferred that the inner product TT

MTM is given by: 

TT
MTM = I − ATΔMA (21)  

which demonstrates that TM cannot be a pure rotation, but it approximates a rotation matrix for small mass changes. 
Additionally, from the sensitivity equations based upon a Taylor expansion [26,27] it is inferred that a mass change also induces 

changes in the scaling of the mode shapes and in the relative angle between the mode shapes (shear). 
From these considerations, the transformation matrix TT

M can be expressed as a combination of rotation RM, shear Tsh and scaling 
Tsc, i.e.: 

TT
M = TscTshRM (22)  

And the inner product TT
MTM is given by: 

TT
MTM = TscTshTT

shTT
sc (23)  

Which removes the effect of the rotation. 
Using the notation Tch = TscTsh, Eq. (23) results in: 

TT
MTM = TchTT

ch (24)  

This is also demonstrated in Appendix A, particularizing Eq. (19) for a system with two modes. 
Moreover, using Eq. (7), the mass matrix MA can be expressed as: 

MA =
(
AAT)− 1

=
(
BTMTT

MBT)− 1 (25)  
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2.3. Mass and stinffness change (ΔK + ΔM)

In the case of simultaneous stiffness and mass changes, it can be considered that the perturbation is carried out in the following two 
steps (see Fig. 1):  

1. Perturbation of system B with a stiffness change ΔK, defined with matrix TK(which is a rotation matrix). It results in the perturbed 
system denoted as A1.  

2. Perturbation of system A1 with a mass change ΔM and defined with matrix T1M. 

Matrix TT
1M can, in turns, be decomposed into a rotation, shear and scaling as: 

T1M = RT
1MTT

1shTT
1sc = RT

1MTT
1ch (26)  

On the other hand, the matrix T relating systems B and A can be expressed as: 

T = TkT1M (27)  

Substitution of Eq. (26) in Eq. (27) leads to: 

T = RT
k RT

1MTT
1shTT

1sc = RT
k RT

1MTT
1ch (28)  

Finally, the inner product TTT results in: 

TTT = T1chTT
1ch (29)  

Which nullifies the effect of the rotations corresponding to both stiffness and mass changes. Equations (13), (24) and (29) demonstrate 
that the inner product TTT cancel the effects of the rotations of the mode shapes. 

3. Polar and QR decompositions of matrix T 

In undamped systems the components of the mode shapes are real and, consequently, matrix T is real. If matrix TT is a real square 
non-singular matrix size n× n, the left polar decomposition [30–32,41] factorizes matrix TT as: 

TT = WR (30)  

where matrix W is a positive semi-definite Hermitian and matrix R is an orthonormal matrix, i.e. RT = R− 1. Matrix R is a rotation 
matrix when det

(
TT) > 0 and a reflection when det

(
TT) < 0 [42]. R is unique if TT is invertible, and W is always unique and equal to: 

W =
̅̅̅̅̅̅̅̅̅
TTT

√
(31)  

Matrix TT can also be factorized with the right polar decomposition [30–32,41] as: 

TT = RZ (32)  

where Z is a positive semi-definite Hermitian matrix. 
The QR decomposition [33–35] can also be used to factorize Matrix TT as: 

TT = RQ (33)  

If matrix TT is a real square non-singular matrix size n× n, matrix R is an orthonormal matrix (it is unique) and Q is an upper triangular 
matrix (unique if TT is full rank). 

The mathematical explanation of these factorizations is presented in Appendix B. 

Fig. 1. Mass and stiffness perturbation of system B. System A1 is obtained perturbating system B with ΔK. System A is obtained perturbating system 
B with ΔK + ΔM. System A can also be obtained perturbating system A1 with.ΔM.
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3.1. Decomposition of matrix T due to a stiffness change (ΔK)

If there are only discrepancies in stiffness, matrix TT
k is a pure rotation, and the matrices W and Z obtained with the polar 

decomposition will be identity matrices in the case of mass-normalized mode shapes, or diagonal matrices in the case of unscaled mode 
shapes. 

If matrix TK is factorized with the QR decomposition (the decomposition of the matrix TT into an orthogonal matrix and a 
triangular matrix), matrix Q is also an identity matrix in the case of mass-normalized mode shapes. 

Therefore, the same rotation matrix is obtained with the polar and the QR decompositions, and moreover, W = Q. Thus, the polar 
decomposition or the QR decomposition are useful tools to determine if there are mass discrepancies between systems A and B. Identity 
matrices W, Z and Q (in the case of mass-normalized mode shapes) are indicators of no discrepancies in terms of mass. 

3.2. Decomposition of matrix T due to a mass change (ΔM)

If there are only mass discrepancies, the polar decomposition of matrix TM gives: 

R = RM (34)  

and 

W = TscTsh (35)  

The rotation matrix R obtained with the polar decomposition has the important property that it is the closest matrix with orthonormal 
columns to TM in any unitarily invariant norm [43]. In a system with two modes and two DOF’s this means that the angle γ between the 
vectors of matrix T and the vectors of matrix R (which are orthogonal) is minimum (Fig. 2). It the length of the mode shapes is similar, 

Fig. 2. Above) Rotation of mode shapes with polar and QR decomposition for a mass change. Below) Angles between the vectors of matrices T and 
R with the polar and QR decompositions. θpolar : angle of rotation of mode shapes of system B when using polar decomposition. θQR: angle of rotation 
of mode shapes of system B when using QR decomposition. θ1: angle between bR1 and a1. θ2: angle between bR2 and a2. α1: angle between bR1 and a1 

(polar). α2: angle between bR2 and a2 (polar). β: angle between bR2 and a2 (QR). 
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this also means that the angles α1 and α2 between the vectors of matrix A and the vectors of matrix BR, is similar. 
If the QR decomposition is used, a slightly different rotation matrix is obtained, because matrix Q is triangular. In a system with two 

modes and two DOF’s this means that one of the vectors of matrix T coincides with one of the vectors of matrix R (Fig. 2). This also 
means that one the mode shapes of system A coincides with the corresponding rotated mode shape (modes bR1 and bR2 in Fig. 2), 
whereas the angle between the other set of mode shapes is approximately β ≅ α1 + α2. 

The differences between the polar and the QR decompositions are shown in Appendix C with a 2 DOF example. 
It must be noticed that using the polar decomposition, matrix TT

M can be decomposed as: 

TT
M = RMZ (36)  

And the mass matrix MA can be expressed as: 

MA =
(
BTMTT

MBT)− 1
=

(
BZTRT

MRMZBT)− 1
=

(
BZTZBT)− 1 (37)  

Which confirms that a rotation of the mode shapes does not modify the mass matrix of a system. 

3.3. Decomposition of matrix T due to a mass and stiffness change 

If there are discrepancies in mass and stiffness, the polar decomposition of TT gives: 

R = R1MRK (38)  

i.e., the matrix R contains the effect of the rotation due to both mass and stiffness changes. Additionally, matrix W is given by: 

W = T1scT1sh (39)  

Again, the rotation matrices obtained with the polar decomposition and the QR decomposition are slightly different. 

4. The concept of ROTMAC 

Model correlation techniques are methods used to compare two different models, typically a numerical model with an experimental 
model. The Modal Assurance Criterion (MAC) [37] is by far the most widely used technique to compare mode shapes. If two vectors, bi 
(model B) and aj (model A), are compared, the MAC is given by Eq (40): 

MAC
(
bi, aj

)
=

⃒
⃒bT

i aj
⃒
⃒2

(
bT

i bi
)(

aT
j aj

) (40)  

where the superindex ‘T’ indicates transpose. MAC is always a real value and when dealing with complex vectors, the MAC is 
calculated with Eq (41). 

MAC
(
bi, aj

)
=

⃒
⃒bH

i aj
⃒
⃒2

(
bH

i bi
)(

aH
j aj

) (41)  

where the subindex ‘H’ indicates complex conjugate. 
Closely spaced modes are highly sensitive to small mass and stiffness perturbations of the system, and they mainly rotate within 

their subspace [25]. Therefore, even if the compared models present good correlation in terms of mass and stiffness, this rotation can 
lead to low MAC values. 

In this paper, it is proposed to calculate the MAC rotating the mode shapes of system B. This new definition, denoted in this paper as 
the rotated MAC or ROTMAC, is expressed as: 

ROTMAC
(
bRi, aj

)
=

⃒
⃒bT

Riaj
⃒
⃒2

(
bT

RibRi
)(

aT
j aj

) (42)  

where the rotated mode shapes (BR) are obtained with the expression: 

BR = BRT (43)  

where R is the rotation matrix obtained from the polar or QR decompositions. 
The modal assurance criterion is calculated with vectors normalized to the unit length and, consequently, the ROTMAC only 

provides information of the effect of shear. Thus, the ROTMAC must be an identity matrix in the following cases:  

• The system B is perturbed with a stiffness change. This occurs because the rotated mode shapes BR coincide with mode shapes A, 
indicating no shear effect. 
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• The system B is perturbed with a mass change, but the system has repeated or closely spaced modes. This is because the effect of 
shear is negligible for repeated or closely spaced modes (see Appendix A). 

Symmetric structures usually present several sets of repeated (or closely spaced) modes and other sets of separated modes [44]. In 
these structures, the diagonal terms of the ROTMAC must be unity in the sets of repeated or closely spaced modes and less than unity in 
the components corresponding to the separated modes. 

In order to discriminate if the discrepancies between two modes are due to stiffness or mass changes, the concept of ROTMAC can 
be used in combination with the inner product TTT, where the diagonal terms provide information about changes in scaling. Alter
natively, the effect of changes in scaling can also be obtained from the diagonal terms of matrices W,Z and Q. 

The main findings of the paper derived in the previous sections for only mass discrepancies or only stiffness discrepancies are 
graphically summarized in Fig. 3. 

5. Simulation cases 

In this section, the modal parameters of a 2 DOF system are obtained solving the corresponding eigenvalue problem using the 

Fig. 3. Main findings presented in this paper in the case of only a stiffness change (ΔK) and only a mass change (ΔM).  
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software MATLAB [45]. Then the matrix T is factorized with the polar and the QR decompositions, which allow to know the angles of 
rotation of the mode shapes. The rotated mode shapes of system B are used to calculate the rotated MAC. 

Two different models are considered: the first one with separated eigenvalues (section 5.1), and the second one with closely spaced 
modes (section 5.2). 

5.1. 2 DOF system with separated modes 

A system B, defined by the following mass and stiffness matrices: 

MB =

[
2 0
0 2

]

;KB =

[
28 − 12
− 12 28

]

has been perturbed with the following mass change and stiffness change matrices: 

ΔM =

[
0.3 0.05
0.05 0.1

]

;ΔK =

[
3 − 3
− 3 8

]

Three different perturbation scenarios have been considered: only mass change defined by the matrix ΔM, only stiffness change 
defined by the matrix ΔK, and a simultaneous mass and stiffness change (ΔK + ΔM). The natural frequencies and the mode shapes 
(normalized to the mass matrix) of both systems are shown in Table 1. It can be observed that this is a system with well-separated 
eigenvalues. 

The MAC between system B and system A is presented in Table 2, where it can be observed that a good correlation, in terms of mode 
shapes, exists between systems B and A. The best correlation corresponds to system A perturbed with ΔM, whereas the poorest cor
responds to system A modified with ΔK + ΔM. The inner product TTT, which is an identity matrix when there are no discrepancies in 
terms of mass, is also presented in Table 2. As observed, the diagonal terms of the inner product TTT indicate a significant change in the 
scaling of the mode shapes when the structure is perturbed with ΔM and ΔK + ΔM, as presented in Table 2. 

The matrices T were estimated with Eq. (7), and the matrices TT were factorized using the left polar decomposition and the QR 
decomposition. The matrices R and W obtained from the left polar decomposition are presented in Table 3. In this case, the rotation 
matrix has the format: 

R =

[
cosθ − sinθ
sinθ cosθ

]

(44)  

where θ is the angle of rotation. The matrices R and Q, along with the angle θ, obtained with the QR decomposition are also presented 
in Table 3. 

From Table 3 it is inferred that a pure rotation is obtained when system B is perturbed with a stiffness change (ΔK), and the same 
rotation matrix is obtained with the polar and the QR decompositions. The matrices W and Q are identity matrices. 

When system B is perturbed with a mass change matrix (ΔM), the rotation matrices obtained with the polar and the QR de
compositions are slightly different, leading to different angles of rotation. Moreover, changes in the scaling of the mode shapes and in 
the relative angle between the mode shapes (shear), can be inferred from matrices W and Q. The change in scaling is obtained from the 
diagonal terms of these matrices, while the shear is derived from the off-diagonal terms. 

When system B is perturbed with mass and stiffness (ΔM + ΔK), the transformation matrix is also decomposed into rotation, 
scaling and shear, and the results obtained with the polar and the QR decompositions are again slightly different. 

The mode shapes of both systems B and A, corresponding to the aforementioned perturbations, are graphically shown in Fig. 4. 
Moreover, the rotated mode shapes BR estimated with the polar and QR decompositions are also shown. It can be seen that the mode 
shapes of system A coincide with the rotated mode shapes when system B is perturbed only with a stiffness change (ΔK). On the other 
hand, a relative angle exists between mode shapes A and BR when system B is perturbed with a mass change (ΔM), or a combination of 
mass and stiffness (ΔM + ΔK), which depend on the factorization technique. Approximately the same angle α is obtained for the two 
sets of modes with the polar decomposition, whereas a pair of mode shapes coincide with the QR decomposition and the angle between 
the other pair of mode shapes is approximately 2α. The relative angles between the mode shapes A and BR are shown in Table 4. 

The ROTMAC between the rotated mode shapes (BR) and the mode shapes of system A is shown in Table 5. As expected, ROTMAC is 

Table 1 
Natural frequencies and mode shapes of systems A and B.  

Mode parameter System B System A 

Perturbation with 

ΔK ΔM ΔK + ΔM 

Mode shapes 
[
− 0.5 − 0.5
− 0.5 0.5

] [
− 0.5395 − 0.4571
− 0.4571 0.5395

] [
− 0.4841 − 0.4479
− 0.4571 0.5172

] [
− 0.5162 − 0.4105
− 0.4172 0.5499

]

Natural frequencies ω2 [
8 0
0 20

] [
9.1465 0

0 24.3535

] [
7.1020 0

0 18.6670

] [
8.0663 0

0 22.8814

]
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an identity matrix when there are no differences in terms of mass between systems A and B. 
In the case of mass discrepancies, the ROTMAC obtained with the polar and the QR decompositions is slightly different. The di

agonal terms of ROTMAC are equal and less than unity when the rotation matrix is obtained with the polar decomposition (the angle α 

Table 2 
MAC and TTT between the mode shapes of systems B and A.  

System B perturbed with MAC TTT 

ΔK 
[

0.9932 0.0068
0.0068 0.9932

] [
1.0000 0.0000
0.0000 1.0000

]

ΔM [
0.9992 0.0008
0.0051 0.9949

] [
0.8867 − 0.0391
− 0.0391 0.9362

]

ΔK + ΔM [
0.9889 0.0111
0.0206 0.9794

] [
0.8811 − 0.0350
− 0.0350 0.9418

]

Table 3 
Left polar and QR decomposition results.  

System B perturbed with Decomposition Matrix R θ (degrees) Matrix Q or W 

ΔK Polar 
[

0.9966 0.0825
− 0.0825 0.9966

]
− 4.7312 

[
1 0
0 1

]

QR 
[

0.9966 0.0825
− 0.0825 0.9966

]
− 4.7312 

[
1 0
0 1

]

ΔM Polar 
[

0.9987 0.0505
− 0.0508 0.9987

]
− 2.8924 

[
0.9414 − 0.0205
− 0.0205 0.9674

]

QR 
[

0.9974 0.0716
− 0.0716 0.9974

]
− 4.1065 

[
0.9408 − 0.0404

0 0.9676

]

ΔK + ΔM Polar 
[

0.9922 0.1249
− 0.1249 0.9922

]
− 7.1772 

[
0.9385 − 0.0183
− 0.0183 0.9703

]

QR 
[

0.9896 0.1437
− 0.1437 0.9896

]
− 8.2599 

[
− 0.9380 0.0361

0 0.9705

]

Fig. 4. Modes shapes of system A, B and rotated B in the different perturbation scenarios.  
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between the two pairs of mode shapes is approximately the same). When using the QR decomposition, a diagonal term of ROTMAC is 
unity (because a pair of mode shapes coincide), whereas the other component is less than the values resulting from the polar 
decomposition (because the angle between the other pair of mode shapes is approximately 2α (see Fig. 2). 

In order to study the effect of the errors in the components of experimental mode shapes, errors ∊A of 1 %, 2 % and 5 % are 
introduced in the components of the modal matrix A. The new components of the mode shapes were generated with a uniform dis
tribution in the range [(1 − ∊A)ϕ, (1 + ∊A)ϕ ], where ϕ is a component of a mode shape obtained by solving the eigenvalue problem. A 
total of one thousand modal matrices of system A were generated, and the factorization of the corresponding transformation matrices T 
using the polar and QR decompositions provides 1000 angles of rotation (θ). The same process is repeated for each perturbation 
scenario: ΔK, ΔM and ΔK + ΔM. The mean value (θ) and standard deviation (σθ) of these angles are illustrated in Fig 5. It is inferred 
that the mean value of the angles is not affected by the random errors in the mode shapes and that the standard deviation increases as 
the error in the mode shapes increases. When using the polar decomposition, the standard deviation of the angle is σθ = ±0.330 for 
errors in the mode shapes of ∊A = 2%, and σθ = ±0.850 for ∊A = 5%. A higher standard deviation is obtained with the QR decom
position, σθ = ±0.460 for errors in the mode shapes ∊A = 2%, and σθ = ±1.180 for ∊A = 5%. 

5.2. 2 DOF system with closely spaced modes 

A system B defined by the following mass and stiffness matrices: 

MB =

[
2 0
0 2

]

;KB =

[
16.01 − 0.01
− 0.01 16.01

]

Table 4 
Angle α (degrees) between the mode shapes A and BR  

System B perturbed with Angle between bR1 and a1 

(degrees) 
Angle between bR2 and a2 

(degrees) 

Polar decomp. QR decomp. Polar decomp. QR decomp. 

ΔK 0 0 0 0 
ΔM 1.2475 2.4615 1.2140 0.0000 

ΔK + ΔM 1.1193 2.2020 1.0827 0.0000  

Table 5 
Rotated MAC between mode shapes of system A and rotated system B (using the rotation matrices estimated with 
the polar and QR decompositions).  

System B perturbed with ROTMAC 

Polar decomp. QR decomp. 

ΔK 
[

1 0
0 1

] [
1 0
0 1

]

ΔM [
0.9995 0.0005
0.0004 0.9996

] [
0.9982 0.0018

0 1

]

ΔK + ΔM [
0.9996 0.0004
0.0004 0.9996

] [
0.9985 0.0015

0 1

]

Fig. 5. Mean values of angle θ (degrees) and standard deviation for 1000 simulations with different levels of error in the experimental separated 
modes shapes: ▴1% error; ■ 2% error; ● 5% error, with both decompositions (full: polar decomposition; empty: QR decomposition). 
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has been perturbed with the same mass change and stiffness change matrices, i.e: 

ΔM =

[
0.3 0.05
0.05 0.1

]

;ΔK =

[
3 − 3
− 3 8

]

The same perturbation scenarios have been considered: only mass change defined by the matrix ΔM, only stiffness change defined by 
the matrix ΔK, and a simultaneous mass and stiffness change (ΔK + ΔM). 

The natural frequencies and the mode shapes (normalized to the mass matrix) of both systems are shown in Table 6. It can be 
observed that this is a system with closely space modes, with a relative frequency shift Δωb

ωb1
= 6.248× 10− 4. 

The MAC between system B and systems A are presented in Table 7, and MAC values lower than 0.9 have been obtained for all the 
cases. Concerning the inner product TTT, an identity matrix is obtained when the system is perturbed with a stiffness change ΔK. The 
diagonal terms of the inner product TTT indicate a significant change in the scaling of the mode shapes when the structure is perturbed 
with ΔM or ΔM + ΔK. 

The matrix TT was factorized with the left polar decomposition and the QR decomposition, and the corresponding matrices are 
shown in Table 8. The ROTMAC obtained with both decompositions is presented in Table 9. 

Again, the same rotation matrix is obtained with the polar and the QR decompositions when the system is perturbed with a stiffness 
change ΔK, and the matrices W and Q are identity matrices. Regarding perturbations with a mass matrix (ΔM) and with mass and 
stiffness (ΔM + ΔK), the angles of rotation obtained with the polar and the QR decompositions are very close. This results in matrices 
W and Q being very similar, hence, the same scaling is observed with the polar and QR decompositions, and the effect of shear is 
minimal. However, the angles of rotation are larger than those obtained for the case of well-separated modes (see Table 3). 

The mode shapes of both systems B and A are graphically shown in Figure 6. Once more, the mode shapes of system A coincide with 
the rotated mode shapes when system B is perturbed only with a stiffness change. When system B is perturbed with a mass change (or a 
mass and stiffness change ΔM + ΔK), approximately the same angle α between the two sets of mode shapes is obtained with the polar 
decomposition. On the other hand, a set of mode shapes coincide with the QR decomposition, whereas an angle of approximately 2α is 
obtained for the other set of mode shapes. 

The ROTMAC between the rotated mode shapes BR and the mode shapes of system A is shown in Table 9. Once again, ROTMAC is 
an identity matrix when there are no differences in terms of mass between systems A and B. Regarding cases with mass discrepancies, 
both the polar and the QR decompositions lead to identity matrices because the modes are closely spaced. However, the diagonal terms 
of the inner product TTT (see Table 7), or the matrices W or Q, indicate change in the scaling of the mode shapes, i.e., mass dis
crepancies between both models. 

The effect of errors of 1 %, 2 % and 5 % in the components of the experimental mode shapes is shown in Fig 7. The mean value of the 
angles is not affected by the random errors in the mode shapes, and the standard deviation increases as the error in the mode shapes 
increases. When using the polar decomposition, the standard deviation of the angle is σθ = ±0.250 when the error in the mode shapes is 
∊A = 2%, and σθ = ±0.640 for ∊A = 5%. A higher standard deviation is obtained with the QR decomposition, σθ = ±0.360 when ∊A =

2%, and σθ = ±0.920 when ∊A = 5%. From Figs. 5 and 7, it is inferred that a lower scatter has been obtained for the case with closely 
spaced modes. 

6. An experimental case 

In this section, the methodology proposed in this paper is applied to correlate a numerical and an experimental model of a square 
laminated glass plate (Fig. 8). The plate, measuring 1400x1400 mm, consists of two 4 mm thick glass layers and a 1.14 mm polymeric 
interlayer, and it is pinned supported at the four corners. 

The modal parameters were estimated using operational modal analysis (OMA). The structure was excited by applying hits on the 
plate, randomly in time and space, using an impact hammer. The response of the structure was measured in 25 DOF’s using 16 ac
celerometers with a sensitivity of 100 mV/g and recorded with a TEAC LX-120 data recorder. Two data sets were used to cover the 25 
DOF’s, and 7 accelerometers were employed as reference sensors (see Fig. 9). A sampling rate of 2000 Hz and an acquisition time of 6 
min were utilized. 

The modal parameters of the first five modes were estimated with the EFDD (enhanced frequency domain decomposition) tech
nique, and the natural frequencies are shown in Table 10. As it can be seen in Table 10, experimental modes 2 and 3 are closely spaced 
with relative frequency shift Δωa

ωa
= 0.0107. The mode shapes normalized to the unit length are presented in Fig. 10. 

Table 6 
Natural frequencies and mode shapes of systems A and B.  

Mode parameter System B System A 
Perturbation with 

ΔK ΔM ΔK + ΔM 

Mode shapes 
[
− 0.5 − 0.5
− 0.5 0.5

] [
− 0.6401 − 0.3004
− 0.3004 0.6401

] [
− 0.6392 − 0.1625
− 0.1548 0.6727

] [
− 0.6060 − 0.2603
− 0.2579 0.6403

]

Natural frequencies ω2 [
8 0
0 8.01

] [
8.7986 0

0 12.7114

] [
6.9234 0

0 7.6691

] [
7.6377 0

0 12.1334

]

M. Aenlle et al.                                                                                                                                                                                                         



Mechanical Systems and Signal Processing 212 (2024) 111269

13

Additionally, a 3D finite element model of the structure was assembled in ANSYS and meshed with 19,200 elements SOLID186 (20- 
node structural solid elements) and 97,767 nodes. The numerical natural frequencies corresponding to the first 5 modes are shown in 
Table 10. In this case, modes 2 and 3 are repeated modes. 

In operational modal analysis, the mode shapes cannot be mass-normalized; hence, an experimental modal matrix AU size 25 x 25, 
containing mode shapes normalized to the unit length, was used. Moreover, to calculate the MAC and to apply Eq. (7), a mass- 
normalized numerical modal matrix B size 25 x 5 was extracted from the finite element model. 

The discrepancies in natural frequencies between both models are less than 9.22 % (see Table 10). The MAC between the mode 
shapes of the numerical and the experimental models is shown in Table 11, where it can be observed that a good correlation exists for 
modes 1, 4 and 5, whereas low values of MAC have been obtained for modes 2 and 3. 

An estimation of matrix TU was obtained with the expression: 

T̂U = B+AU (45)  

where the superscript ‘+’ indicates pseudoinverse. The left polar and QR decompositions were applied to factorize matrix T̂
T
U. As 

demonstrated in Appendix D, the QR decomposition provides the same rotation matrix with matrices T (estimated with both numerical 
and experimental mode shapes mass-normalized) and TU (estimated with mass-normalized numerical mode shapes and unscaled 
experimental mode shapes), but this is not the case with the polar decomposition. However, in this section, both factorizations have 
been used to decompose matrix TU for comparison purposes. The rotation matrices R obtained with both decompositions are shown in 
Tables 12 and 13, respectively, whereas matrices W and Q are shown in Tables 14 and 15. 

From the matrices R presented in Tables 12 and 13, a rotation angle (θ) of − 42.3473◦ was obtained with polar decomposition and 
− 45.5890◦ with QR decomposition. The second and third rotated numerical mode shapes are shown in Fig 11, where a good cor
relation can be observed between both models. 

The rotated MAC obtained with the rotation matrices provided by the polar and QR factorizations are presented in Tables 16 and 
17, respectively. The matrices are closer to identity which is an indicator of a good correlation (in terms of mass) between both models. 

When a truncated modal model is used to estimate the matrix TU, the lasts columns are estimated with less accuracy because of 
truncation. This explains why the last diagonal term in Tables 16 and 17 is below 0.99. Moreover, the errors in the components of the 
mode shapes also affects the terms of matrix TU, which means that a pure identity ROTMAC matrix is difficult to achieve in real 
practice. 

7. Conclusions 

In several applications of structural dynamics, a system A can be considered a perturbation of a system B. According to structural 
dynamic modification theory, the mode shapes of a system A (perturbed) can be expressed as a linear combination of the mode shapes 
of system B (unperturbed) through a transformation matrix T. It has been demonstrated that this matrix T can be factorized into a 

Table 7 
MAC and inner product TTT between systems A and B.  

System B perturbed with MAC TTT 

ΔK 
[

0.8846 0.1154
0.1154 0.8846

] [
1.0000 0.0000
0.0000 1.0000

]

ΔM [
0.7287 0.2713
0.2718 0.7282

] [
0.8651 − 0.0005
− 0.0005 0.9578

]

ΔK + ΔM [
0.8603 0.1397
0.1511 0.8489

] [
0.8675 − 0.0148
− 0.0148 0.9553

]

Table 8 
Left polar decomposition and QR decomposition results.  

System B perturbed with Decomposition Matrix R θ (degrees) Matrix QorZ 

ΔK Polar 
[

0.9405 0.3397
− 0.3397 0.9405

]
− 19.8559 

[
1 0
0 1

]

QR 
[

0.9405 0.3397
− 0.3397 0.9405

]
− 19.8559 

[
1 0
0 1

]

ΔM Polar 
[

0.8535 0.5211
− 0.5211 0.8535

]
− 31.4047 

[
0.9301 − 0.0002
− 0.0002 0.9787

]

QR 
[

0.8534 0.5213
− 0.5213 0.8534

]
− 31.4202 

[
0.9301 − 0.0005
0.0000 0.9787

]

ΔK + ΔM Polar 
[

0.9244 0.3815
− 0.3815 0.9244

]
–22.4244 

[
0.9314 − 0.0077
− 0.0077 0.9774

]

QR 
[

0.9213 0.3888
− 0.3888 0.9213

]
–22.8778 

[
0.9313 − 0.0151
0.0000 0.9774

]
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product of two matrices, one of them being a rotation matrix, using the polar and QR decompositions. This factorization becomes a 
powerful tool for determining whether discrepancies between two models can be attributed to differences in stiffness, mass, or both. 

In the case of no mass discrepancies between systems B and A, it has been demonstrated that the inner product TTT is an identity 
matrix, meaning that matrix T is a rotation matrix. In this case, the factorization using both polar and QR decompositions yields the 

Fig. 6. Modes shapes of system A, B and rotated B in the different perturbation scenarios.  

Table 9 
ROTMAC between systems A and B.  

System B perturbed with ROTMAC 

Polar decomp. QR decomp. 

ΔK 
[

1 0
0 1

] [
1 0
0 1

]

ΔM [
1 0
0 1

] [
1 0
0 1

]

ΔK + ΔM [
0.9999 0.0001
0.0001 0.9999

] [
0.9997 0.0003

0 1

]
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same rotation matrix, and the matrices W are Q are identity matrices. This indicates that the scaling and the relative angle between 
mode shapes are not modified. The angle of rotation is small when the modes of the system are well-separated, affecting the full set of 
modes. Conversely, larger angles can be obtained when the system presents closely spaced or repeated modes, but the effect is mainly 
limited to a local rotation in the subspace defined by the closely or repeated modes. 

In the case of mass discrepancies between systems B and A, the inner product TT
Mω2

BTM must result in a diagonal matrix, and the 
natural frequencies of systems B and A are related as ω2

ai = tTMiω2
BtMi. The factorization of matrix T provides matrices W and Q, where 

the diagonal terms contain information about the changes in scaling and the off-diagonal terms contain information about the shear. 
However, the polar and QR factorizations yield different shear effects, resulting in two different solutions, i.e. the rotation matrices 
obtained with the polar and the QR decompositions are slightly different. 

Fig. 7. Mean values of angle θ (degrees) and standard deviation for 1000 simulations with different levels of error in the experimental closely 
spaced modes shapes: ▴1% error; ■ 2% error; ● 5% error, with both decompositions (full: polar decomposition; empty: QR decomposition). 

Fig. 8. Square laminated glass plate.  

Fig. 9. Test setup for the two data sets.  
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In the case of both mass and stiffness discrepancies, the factorization of matrix T provides a rotation matrix which can be 
decomposed into a product of two rotation matrices due to mass and stiffness, respectively. 

If the mode shapes of system A are not mass-normalized, a different transformation matrix TU is obtained. It has been demonstrated 

Table 10 
Experimental and numerical natural frequencies.  

Mode Shapes Natural frequencies [Hz] Error [%] 

Experimental 
(Model A) 

Numerical 
(Model B) 

Mode 1 9.35 9.72 3.80 
Mode 2 19.62 21.11 7.01 
Mode 3 19.83 21.11 6.10 
Mode 4 22.53 24.82 9.22 
Mode 5 55.76 56.11 0.62  

Fig. 10. Numerical and experimental mode shapes normalized to the unit length.  

Table 11 
Modal assurance criterion for numerical and experimental mode shapes.    

MAC   

0.9971 0.0000 0.0001 0.0000 0.0976 
0.0000 0.5990 0.3965 0.0000 0.0001 
0.0000 0.5088 0.4896 0.0002 0.0000 
0.0000 0.0001 0.0000 0.9996 0.0000 
0.0661 0.0002 0.0007 0.0000 0.9862  

Table 12 
Rotation matrix R obtained with left polar decomposition.   

0.9996  − 0.0025  − 0.0039  − 0.0007  − 0.0291  
0.0042  0.7390  0.6736  0.0052  − 0.0110  
0.0010  − 0.6736  0.7390  − 0.0111  − 0.0072  
− 0.0007  0.0113  − 0.0047  − 0.9999  0.0008  
0.0292  0.0032  0.0126  0.0008  0.9995  
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that the QR decomposition of matrices T and TU provides the same rotation matrix. However, different rotation matrices are obtained 
by factorizing matrices T and TU with the polar decomposition. 

Since the rotation of the mode shapes does not modify the mass matrix of a system, this paper introduces a novel and physically 

Table 13 
Rotation matrix R obtained with QR decomposition.   

− 0.9992  0.0068  − 0.0006  0.0008  0.0390  
− 0.0031  − 0.6997  − 0.7137  − 0.0050  0.0330  
0.0056  0.7141  − 0.6998  0.0109  0.0084  
0.0007  − 0.0113  0.0040  0.9999  − 0.0004  
− 0.0391  − 0.0168  − 0.0295  − 0.0005  − 0.9987  

Table 14 
Wmatrix obtained with left polar decomposition.   

1.4821  0.0007  − 0.0075  0.0001  0.0104  
0.0007  1.1904  − 0.0675  0.0005  0.0228  
− 0.0075  − 0.0675  1.1973  0.0004  0.0035  
0.0001  0.0005  0.0004  0.9801  0.0004  
0.0104  0.0228  0.0035  0.0004  1.0593  

Table 15 
Q matrix obtained with QR decomposition.   

− 1.4819  0.0007  0.0168  − 0.0001  − 0.0249  
0.0000  − 1.1840  0.1345  − 0.0011  − 0.0482  
0.0000  0.0000  − 1.1992  − 0.0009  − 0.0060  
0.0000  0.0000  0.0000  − 0.9801  − 0.0007  
0.0000  0.0000  0.0000  0.0000  − 1.0596  

Fig. 11. Experimental and numerical (before and after rotation) modes 2 and 3.  

Table 16 
Rotated MAC with left polar decomposition.   

0.9980  0.0000  0.0000  0.0000  0.0860  
0.0000  0.9921  0.0031  0.0000  0.0003  
0.0000  0.0031  0.9954  0.0000  0.0000  
0.0000  0.0000  0.0000  0.9997  0.0000  
0.0865  0.0002  0.0000  0.0000  0.9874  
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meaningful version of the modal assurance criterion, denoted as Rotated MAC or ROTMAC. With this definition, the mode shapes of 
system B must be rotated using the rotation matrices identified with the factorization techniques used in this paper, and then correlated 
with the mode shapes of system A. The ROTMAC, combined with the diagonal terms of the inner product TTT, can be used to detect 
differences in terms of mass between two models. 

The equations and the conclusions derived in this paper have been validated through numerical simulations and an experimental 
test. Firstly, the methodology was validated by numerical simulations of a 2 DOF system considering two different scenarios: a case 
with well-separated modes and another with closely spaced modes. As expected, larger angles of rotation were obtained for the case 
with closely spaced modes. The mode shapes of system B have the same length, and consequently, approximately the same angle α 
between the two sets of mode shapes is obtained with the polar decomposition. With respect to the QR decomposition, a set of mode 
shapes coincide, whereas approximately an angle 2α is obtained for the other set of mode shapes. Moreover, it has been proven that the 
ROTMAC is an identity matrix when there are no differences in terms of mass between systems A and B. 

Then, a numerical and an experimental model of a square laminated glass plate were correlated. The first five experimental mode 
shapes were estimated with operational modal analysis, and two data sets were used to cover 25 DOF’s. The same number of modes 
and DOF’s were considered in the numerical model. The numerical mode shapes were normalized to the mass of the system, whereas 
the experimental mode shapes were normalized to the unit length. Both QR and polar decompositions were used to factorize matrix TU. 
The classical MAC revealed a poor correlation between the second and the third modes, which were repeated in the numerical model 
and closely spaced in the experimental model. However, through the factorization of the T matrix and the calculation of the rotated 
MAC, it was confirmed that a good correlation in terms of mass exists between both models. In this case, the rotation is limited to the 
subspace spanned by the closely spaced modes. 
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APPENDIX A. DECOMPOSTION OF MATRIX T FOR A MASS PERTURBATION 

The effects of a mass change perturbation can also be demonstrated particularizing Eq. (19) for a system with two modes, which 
leads to: 

[
ω2

a1 0
0 ω2

a2

]

=

⎡

⎣
t2
11ω2

b1 + t2
21ω2

b2 t11ω2
b1t12 + t21ω2

b2t22

t11ω2
b1t12 + t21ω2

b2t22 t2
12ω2

b1 + t2
22ω2

b2

⎤

⎦ (A1) 

From Eq. (A1) it is derived that: 

t11

t21
= −

t22

t12

ω2
b2

ω2
b1

(A2) 

Table 17 
Rotated MAC with QR decomposition.   

0.9974  0.0001  0.0001  0.0000  0.0822  
0.0000  0.9810  0.0125  0.0000  0.0013  
0.0000  0.0000  0.9986  0.0000  0.0000  
0.0000  0.0000  0.0000  0.9997  0.0000  
0.0938  0.0001  0.0000  0.0000  0.9879  
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And: 

t12

t21
= −

ωa2

ωa1

ωb2

ωb1

t11

t22
=

ωa1

ωa2

ωb2

ωb1
(A3) 

Using the results of Eq. (A2) and Eq. (A3), the matrix TM can be expressed as: 

TM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

t11 −
ωa2

ωa1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ω2

a1

ω2
b1
− t2

11

)√

ωb1

ωb2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ω2

a1

ω2
b1
− t2

11

)√

t11
ωa2

ωa1

ωb1

ωb2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(A4) 

From Eq. (A4), it is inferred that the inner product TT
MTM must be a diagonal matrix if ωb1 = ωb2 (repeated modes), i.e., there is no 

effect of shear. Moreover, matrix TM becomes a pure rotation if ωb1 = ωb2 (repeated modes), and ωa1 = ωa2= ωb1 = ωb2, i.e., when 
ΔM→0. 

Thus, in the case of repeated or closely spaced modes, the effect of a mass change is mainly a rotation of the mode shapes (in the 
local subspace defined by the closely or repeated modes) and a change in scaling. The angle of rotation of the mode shapes is maximum 
for repeated modes, and it decreases as the frequency shift Δωb = ωb2 − ωb1 increases. Additionally, the effect of shear is negligible for 
repeated modes, and it increases as the frequency shift Δωb increases. 

APPENDIX B. POLAR and QR DECOMPOSITIONS OF MATRIX T 

The right polar decomposition [30–32,41] of a real matrix P size m × n (m ≥ n) is a factorization of the form: 

P = RZ (B1) 

where matrix R is also size m × n and with orthogonal columns, i.e. RTR = In where In denotes the identity matrix of order n. Z is a 
positive semi-definite Hermitian matrix. If PTP has no negative real eigenvalues, the decomposition is unique. 

If P is a real square non-singular matrix (m = n), matrix R is orthogonal (RTR = RRT = In), i.e. it is a rotation matrix when 
det

(
TT) > 0 or a reflection when det

(
TT) < 0 [42]. The polar decomposition of a square matrix P always exists. If P is invertible, the 

decomposition is unique, and W will be positive-definite. 
On the other hand, the left polar decomposition [30–32,41] of a real matrix P (size m× n) is a factorization of the form: 

P = WR (B2) 

where matrix R is also size m × n and has orthogonal columns, and W is a positive semi-definite hermitian matrix. If P is a real 
square non-singular matrix (m = n), matrix R is a rotation matrix or a reflection matrix. 

The matrices Z and W can be obtained by means of the following equations [30–32,41]: 

Z =
(
PTP

)1/2 (B3)  

W =
(
PPT)1/2 (B4) 

The matrices W and R (or R and Z) can also be obtained decomposing the inner product TTT in singular values, i.e.: 

PTP = USVT (B5) 

where matrix S contains the singular values, and matrices U and V contain the singular vectors. Matrix W is obtained from Eq. (B5) 
[30,31] as: 

W = V
̅̅̅
S

√
VT (B6) 

And matrix R as: 

R = PZ− 1 (B7) 

The right polar decomposition can be used to factorize matrix TTas: 

TT = R1Z1 (B8) 

or matrix T as: 

T = R2Z2 (B9) 

On the other hand, the left polar decomposition [41] factorizes matrix TT as: 

TT = W1R1 (B10) 
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or matrix T as: 

T = W2R2 (B11) 

From Eqs. (B8-B11), it is derived that: 

R2 = RT
1 (B12)  

Z2 = WT
1 (B13)  

W2 = ZT
1 (B14) 

It is worth emphasizing that the transpose of a rotation matrix is also a rotation matrix. 
The QR decomposition [33–35] of a matrix P size m × n (m ≥ n) is a factorization of the form: 

P = RQ (B15) 

Where matrix R is size m× m, it has orthogonal columns and RTR = Im. If P is full rank, the QR decomposition always exists but, in 
general, is not unique. 

If matrix P is square size n× n, matrix R is orthogonal (RTR = RRT = In), i.e. it is rotation matrix. If matrix P is invertible, then the 
factorization is unique. 

Using the QR decomposition, matrix TT can be factorized as: 

TT = R1Q1a (B16) 

And matrix T as: 

T = R2Q2a (B17) 

On the other hand, the RQ decomposition gives: 

TT = Q1bR1 (B18) 

And 

T = Q2bR2 (B19) 

From Eqs. (B9) and (B17), it is inferred that the rotation matrices obtained with the polar (R2(Polar)) and the QR decompositions 
(R2(QR)) are related by the equation: 

R2(QR) = R2(Polar) Z2 Q− 1
2a (B20)  

APPENDIX C. DIFFERENCES BEWTEEN POLAR AND QR DECOMPOSTIONS 

Using Eq. (B9), matrix T is expressed as: 

T = R2Z2 (C1) 

In a system with two DOF’s and two modes, Eq. (C1) is given by: 

[t1 t2] = [r1 r2]

[
z11 z12
z21 z22

]

(C2) 

Where t1 and t2 are two column vectors of matrix T, r1 and r2 are two column vectors of matrix R2, and z12 = z21. 
The vectors r1 and r2 are orthogonal, and they are the vectors closer to t1 and t2, which means that the angle γ between the vectors of 

matrix T and the vectors of matrix R2 is minimum (see Fig. 2). 
The mode shapes of system A can be expressed as linear combination of the rotated unperturbed mode shapes as: 

A = B T = B R2 Z2 (C3) 

Substitution of Eq. (B12) in Eq. (C3) gives: 

A = B RT
1 Z2 = BR Z2 (C4) 

or 

[a1 a2] = [bR1 bR2]

[
z11 z12
z21 z22

]

(C5) 

If the length of the mode shapes bR1 and bR2 is similar, the angles α1 and α2 between the vectors of matrix A and the corresponding 
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vectors of matrix BR are similar (see Fig. 2), i.e. α1 ≈ α2 ≈ α. 
Using Eq (B17) (QR decomposition), matrix T is expressed as: 

T = R2Q2a (C6) 

i.e.: 

[t1 t2] = [r1 r2]

[
q11 q12
0 q22

]

(C7) 

From which it is inferred that the vector t1 coincide with vector r1 and, consequently, a slightly different rotation matrix is obtained 
(see Fig 2). 

The mode shapes of system A can be expressed as: 

[a1 a2] = [bR1 bR]

[
q11 q12
0 q22

]

(C8) 

From which it is inferred that: 

a1 = bR1q11 ; a2 = bR1q12 + bR2q22 (C9) 

i.e. a1 coincide with bR1 whereas the angle between the other set of mode shapes is approximately 2α (or α1 +α2 if the angles are 
different). 

APPENDIX D. EFFECT OF MODE SHAPE NORMALIZATION 

In the equations derived in section 2, it was assumed that the mode shapes are mass-normalized. 
If we denote the modal matrix with unscaled (not mass-normalized) mode shapes by AU, the modal matrices A and AU are related 

by: 

A = AUαA (D1) 

Where αA is a diagonal matrix containing the scaling factors. 
The corresponding transformation matrices: 

T = B− 1A (D2) 

And 

TU = B− 1AU (D3) 

are related by: 

T = TU αA (D4) 

The matrix T is factorized with the QR factorization as: 

T = R2Q2a (D5) 

Matrices TU and αA can also be factorized using the QR decomposition as: 

TU = RTUQTU (D6) 

and: 

αA = RαA QαA
(D7) 

where RαA = I and QαA
= αA. From Eqs. (D5-D7), it is derived that the matrices R2 and Q2a can be expressed as: 

R2 = RTU (D8) 

and 

Q2a = QTUQαA
= QTUαA (D9) 

which demonstrates that the QR decomposition of matrices T and TU provides the same rotation matrix. However, this is not the 
case for the polar decomposition. 
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