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ABSTRACT: The fast and precise selective sensing of DNA nucleobases is a long-
pursued method that can lead to huge advances in the field of genomics and have an
impact on aspects such as the prevention of diseases, health enhancement, and, in general,
all types of medical treatments. We present here a new type of nanoscale sensor based on
carbon nanotubes with a specific geometry that can discriminate the type of nucleobase
and also its angle of orientation. The proper differentiation of nucleobases is essential to
clearly sequence DNA chains, while angular discrimination is key to improving the sensing
selectivity. We perform first-principle and quantum transport simulations to calculate the
transmission, conductance, and current of the nanotube-based nanoscale sensor in the
presence of the four nucleotides (A, C, G, and T), each of them rotated 0, 90, 180, or
270°. Our results show that this system is able to effectively discriminate between the four
nucleotides and their angle of orientation. We explain these findings in terms of the
interaction between the phosphate group of the nucleotide and the nanotube wall. The
phosphate specifically distorts the electronic structure of the nanotube depending on the distance and the orientation and leads to
nontrivial changes in the transmission. This work provides a method for finer and more precise sequential DNA chains.

■ INTRODUCTION
Deoxyribonucleic acid (DNA) sequencing, which is a widely
known process to provide essential information for functioning
of living systems,1,2 human genomic imprint,1−3,3 disease
diagnosis,2,4,5 and biomedical treatments,6,7 plays a significant
role in human health improvement.8 DNA is a one-
dimensional polymer9−12 composed of four nucleic acid
bases, namely, adenine (A), cytosine (C), guanine (G), and
thymine (T). Each of the nucleobases is attached to a
backbone made of sugar (deoxyribose) and phosphate, making
a nucleotide. The sequence of DNA nucleobases can then be
considered as a memory that stores genetic information
ingrained in individual organisms.12 Since the original idea of
using DNA to construct structures,13−15 which was first
proposed by Ned Seeman 40 years ago (early 1980s), the field
of DNA sequencing9,16−29 has received enormous interest
among scientists and researchers. In order to successfully
sequence DNA, the development of nanoscale sensors plays a
fundamental role. Previous publications have reported that
low-dimensional nanomaterials, including heteronanomaterials,
can be promising candidates for selective sensing applications,
including the detection of explosives,30−35 the selective sensing
of gases,36−39 the detection of environmental pollutants,40−42

and the development of biosensors.43−48 Regarding DNA
sequencing, a number of techniques have been established in
the past few years, such as optical selective sensing methods
using fluorescent labeling of biomolecules and Sanger
sequencing detection approaches (chain termination) for

regions of DNA of approximately 900 nucleobase pairs in
length. However, such methods are rather expensive and time-
consuming.9,49−52 On the other hand, a variety of alternative
and promising strategies based on nanoscale elements have
been developed, such as the use of single molecules, which
show the possibility of accurately interrogating the nucleobase
sequence,12,53−56 or the use of solid-state nanogaps/nano-
pores.9,25,57−59 However, faster, less expensive, and label-free
approaches for discriminating small molecules such as the
DNA nucleotides are still needed and can be considered highly
desired targets of current technology.12,30,60

In order to overcome current challenges in designing
selective sensing nanodevices for DNA sequencing and to be
able to fabricate effective, portable, efficient, and cheap
selective sensing nanodevices, it is necessary to develop
novel nanostructured materials and concepts and devise new
scenarios for managing and developing nanosensor chips. Since
it is not necessary to separate transduction from the
application of an electrical signal using well-fitted electrical
strategies for DNA sequencing, it should be possible to
accomplish selective sensing at low cost (compared to
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conventional methods9,22,61) electrochemical analyzers. On the
other hand, previous studies9,62,63 have also reported that
DNA, which shows outstanding electrical characteristics,
including conducting, semiconducting, and insulating proper-
ties, can interact with single-walled carbon nanotubes
(SWCNTs) under various configurations64−66 and can also
significantly affect their electrical conductance.30,52,67,68 The
nanotubes are, in general, highly sensitive to their surrounding
environment, and their electronic properties can be signifi-
cantly altered by the adsorption of various chemicals and
biomolecules on their surface. This fact makes SWCNTs very
promising nanomaterials for label-free and selective sensing
applications. In fact, these systems have already been used as
nanogaps for sensing DNA.69,70 Herein, we propose a proof of
work system where we have designed and studied a specific
geometry of carbon nanotubes (CNT), a handle-like system
that we refer to as ha-Sy, shown in Figure 1 with a strand of

DNA passing through it, which is especially suited for selective
sensing of DNA. Besides, the proposed system tries to solve
problems that might arise in other DNA sequencers, such as
nanopores, where, if the size of the pore is not adequate, the
DNA might get stuck (pore too small) or pass leaving a small
signal (pore too big). The open side of this design should give
the DNA strand more freedom to pass through it and allow for
smoother sequencing. Note as well that the π−π interaction of
the DNA strand with the nanotube walls should favor its
insertion into the handle system and keep it inside since in that
place the interaction with the walls is larger (this is also
confirmed by the binding energy, as we shall see).

■ RESULTS AND DISCUSSION
To obtain the ha-Sy, we used the sculpturene method,71 a
methodology that allows to build unique forms of sp2-bonded
molecular structures, such as deterministic CNT from a
spontaneous reconstruction of bilayer graphene nanoribbons
or heterobilayer nanoribbons. The principle of this method-
ology consists of sculpting (cutting) selected/desired shapes of
nanoribbons out of bilayer graphene in vacuo, something that
can be accomplished experimentally with, for example,
scanning tunneling microscope lithography,72 and allowing
the shapes to reconstruct globally to finally make unique
molecular structures. This procedure opens new avenues for
the creation of novel nanomaterials with unique geometries.
For instance, the formation of T-shaped and cross-shaped
compositions of nanotubes with the same or different
chiralities.71,73 We initially prepared the ha-Sy by starting
with AA-stacked bilayer graphene (biG) and then sculpted the
biG into zigzag graphene nanoribbons with a handle-like shape,
as shown in Figure 2a,b. The resulting reconstruction leads to
the formation of the ha-Sy shown in Figure 2c,d, which
consists of (6,6) CNT as left/right leads connected in a 90°
turno to (5,5) CNT in the scattering region. Experimentally,
the folded edges can be formed by cutting bilayer/multilayer
graphene, as has been shown in various experiments.74−76 The
stability of the closed structure relative to that with open edges
can also be proven by calculating the total energy of both cases.
In the closed edges case, the energy (−1,72,181.88 eV) is
much smaller than in the open edges case (−1,71,626.73 eV),
which is also expected by the presence of unsaturated dangling
bonds in the later. Such stability can also be further compared
with that of CNT by calculating the average binding energy per
atom (total energy of the system divided by the number of
atoms minus the energy of an isolated carbon atom), and
surprisingly, the handle turns out to be more stable than the
(5,5) and (6,6) CNTs since it has a smaller average binding
energy (−10.75 eV vs 8.87 and −8.92 eV for the (5,5) and
(6,6) CNTs, respectively). Notice as well that topologically,
sculpturene molecular structures made of nanotubes are stable
against atomic-scale defects.71

In this work, we aim to examine the capability of ha-Sy for
DNA sequencing. Before that, and, to understand the
conductance of the bare ha-Sy (Figure 2c) as a reference
system to compare with that in contact with the nucleotides,
we investigate its transmission T(E). As can be seen, the
resulting T(E) shows no energy gap (Eg) and has sizable values
around the Fermi level, as shown in Figure 3. This indicates
that the system retains metallic-like properties, even though it
has a nontrivial geometry constructed with different nanotubes.
After obtaining the ha-Sy, we place the four DNA

nucleobases (A, C, G, and T) inside the ha-Sy with various
orientation angles (0, 90, 180, and 270°) as shown in Figures 3
and S1−S3. As commented before, each nucleobase is also
attached to a phosphate and a deoxyribose, forming a
nucleotide, which is the part of the DNA that enters the
sensor. Notice that, due to computational limitations, the use
of individual nucleotides is obviously a simplification with
respect to the inclusion of a real DNA chain, where the
phosphates of different nucleotides are joined together, making
the DNA backbone. However, these configurations still retain
the main interactions between the nucleotides and the sensor
(which essentially depend on the distance between the
phosphate group and the nanotube, as we shall see) and

Figure 1. Side (a), top (b), and front (c) view of a DNA strand
passing through the handle system (ha-Sy).
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should give a response very similar to that of a nucleotide in a
full DNA chain. Later on, we relax the ha-Sy with the
nucleotides, each of them with the four possible angles. Figure
4 shows, for instance, the ha-Sy with an A nucleotide (ha-Sy +
A) in the four orientation angles.
To find the relaxed geometry and ground-state Hamiltonian

of all systems (bare ha-Sy and ha-Sy with nucleotides) shown
in Figures 1, 3, and S1−S3, we used the SIESTA77

implementation of density functional theory, with the local
density approximation78 parameterized with the Ceperley−
Alder exchange correlation functional and a double-ζ polarized
basis sets of pseudoatomic orbitals. The initial supercell was
optimized until all the forces were smaller than 0.005 eV/Å.
The system was made periodic along the Z direction, while, to
ensure that there was no interaction between neighboring cells
along the perpendicular directions, vacuum spaces of 60 and
100 Å were added along the X and Y directions, respectively.
For the left/right leads calculations, a k-point grid of 1 × 1 ×
25 in the Brillouin zone was employed. Once the final handle-
like system (ha-Sy) was built, the mean-field Hamiltonian and
overlap matrices produced by SIESTA were exported to the
quantum transport code GOLLUM79 and used to calculate the
low bias transmission probability T(E) for electrons of energy
(E) passing from the left lead (source) to the right lead (drain)
through the scatterer and the IV (current−voltage) character-
istics.
We investigate first the electronic properties of the bare ha-

Sy system (scattering region) by calculating the density of
states (DOS), shown in Figure S4, which has a finite value at
the Fermi level and shows that the system is metallic. When

Figure 2. (a) AA-stacked zigzag bilayer graphene (side view) which contains 1110 carbon atoms, (b) top view of the initial supercell in (a), and (c)
side view and (d) top view of the obtained ha-Sy. The initial supercell is periodic in the Z direction and finite in the X and Y directions.

Figure 3. (a) Handle system (ha-Sy); the red-shaded region
represents the (6,6) CNTs as left/right leads, while the gray-shaded
region represents the scattering region, which includes the (5,5)
CNT. (b) Transmission T(E) of the bare ha-Sy (red line) and the
room-temperature electrical conductance G (blue line).
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the nucleotides are included, we also performed additional
calculations to get further details about the electronic structure,
such as the charge transfer, which is in general rather small (see
Table 1). The sign is positive in general (transferred from the
ha-Sy to the molecule) for A and C and negative (transferred
from the molecule to ha-Sy) for G and T. Such small values are
expected since both systems are stable and weakly coupled. We
also checked the stability of the system by calculating the
binding energy, defined as EB = EhaSy+Nuc − (EG,NuchaSy + EG,haSyNuc ),

where EhaSy+Nuc represents the total energy of the whole system,
i.e., the ha-Sy and the nucleotide, EG,NuchaSy is the energy of the ha-
Sy in the presence of the ghost states of the nucleotide, and
EG,haSyNuc is the energy of the nucleotide in the presence of the
ghost states of the ha-Sy. The binding energies are negative
and in an absolute value smaller than 0.6 eV, which means that
the nucleotides will not be repelled by the ha-Sy and will tend
to pass through it.

Figure 4. Top subfigure shows the molecular structure of the four nucleobases of DNA: adenine (A), cytosine (C), guanine (G), and thymine (T).
Each nucleobase is attached to a phosphate and a deoxyribose. (a−d) Relaxed ha-Sy with an A nucleotide in four different orientations: 0, 90, 180,
and 270°, respectively.

Table 1. Charge Transfer between Each Molecule and the ha-Sya

ha-Sy CT ha-Sy CT ha-Sy CT ha-Sy CT

+A with 0° 0.008e +C with 0° 0.005e +G with 0° −0.010e +T with 0° −0.001e
+A with 90° 0.010e +C with 90° 0.005e +G with 90° −0.013e +T with 90° −0.005e
+A with 180° 0.009e +C with 180° 0.004e +G with 180° −0.008e +T with 180° −0.006e
+A with 270° 0.007e +C with 270° 0.006e +G with 270° −0.009e +T with 270° −0.003e

aA positive sign means that the charge is transferred from ha-Sy to the molecule, while a negative sign means that the charge is transferred from the
molecule to the ha-Sy.

Figure 5. (a) T(E) of the ha-Sy + A with four different angles of orientation (0, 90, 180, and 270°), and (b) T(E) in a narrow energy window
(−0.02 to 0.02 eV) around EF.
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In what follows, we use computed T(E) and IV to
investigate the ability of the ha-Sy to discriminate the four
DNA nucleobases. Figure 5 shows the transmission of ha-Sy +
A. From this figure, it is clear that T(E) depends on the
orientation of the A nucleotide inside the ha-Sy. This means
that rotating the A nucleotide inside ha-Sy leads to noticeable
changes in T(E). We can also see that ha-Sy + A with 0°
increases T(E), whereas the cases with 90, 180, and 270°
decrease it. The asymmetric geometry along the Y direction of
the ha-Sy sensor provides an effective shape for discriminating
between the orientation of the nucleotides, as compared to
previous nanoscale sensors based on nanogaps/nano-
pores,9,25,57−59 which due to their somewhat symmetric
geometry could not provide such discrimination.
We repeated the same strategy for ha-Sy in the presence of

each of the three other nucleotides (ha-Sy + C, ha-Sy + G, and
ha-Sy + T), shown in Figures S1−S3. The resulting T(E)
values are displayed in Figure 6. Once again, panels Figure 6d−
f show that the value of T(E) depends on the orientation of the
nucleotides (C, G, and T). For more clarity, Figure 7 shows
the T(E) of the ha-Sy in the presence of the four nucleotides
for each angle of orientation in a wider window around the

Fermi level. These results confirm that in a dynamic process
like this, where the DNA passes through the ha-Sy with
different nucleotides and angles of orientation, this device can
discriminate between all possible cases and determine the
correct sequence of such nucleotides. Note, however, that the
differences in the Fermi level may be small for some cases but
become larger for slightly different Fermi level positions. This
also shows that it is possible to adjust the response and
therefore the discrimination by changing the value of EF.
Figure 7a shows that compared to the bare ha-Sy, all

nucleotides with an angle of 0° increase T(E). However, for
other angles, the trend is not so obvious. In particular, for 90
and 180° (Figure 7b,c), both the ha-Sy + C and ha-Sy + T lead
to increases of T(E), while ha-Sy + A and ha-Sy + G lead to
decreases. For 270° (Figure 7d) ha-Sy + C, ha-Sy + G, and ha-
Sy + T lead to increases of T(E), while ha-Sy + A leads to
decreases. We explain these findings in terms of the interaction
between the phosphate group of the nucleotide, which is a
rather electronegative group, and the nanotube wall. The
phosphate distorts the nanotube electronic structure when it is
close to the nanotube wall and leads to nontrivial changes in
the transmission. This distortion is further confirmed by

Figure 6. (a−c) T(E) of ha-Sy with C, G, and T nucleotides (ha-Sy + C, ha-Sy + G, and ha-Sy + T) shown in Figures S1−S3, respectively. All
nucleotides are oriented with four possible angles (0, 90, 180, and 270°). (d−f) T(E) in a narrow energy window (−0.02 to 0.02 eV) around EF.
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studying the DOS and comparing it to the case of the isolated
ha-Sy system, as can be seen in Figure S4, and the local DOS
(LDOS) around the Fermi level, as can be seen in Figure S5.
Since the distance between the phosphate and the wall
depends on the associated nucleobase and the angle of
rotation, the interaction of the whole nucleotide leads to
nucleobase and angle selectivity. These results confirm that ha-
Sy can selectively sense DNA nucleotides and therefore
discriminate between different nucleobases and different
orientations.
For more clarity and additional verifications, we calculated

the current (I) for ha-Sy in the presence of the nucleotides,
shown in Figures 3, S1−S3 at room temperature using the
following equation80

I
Q

h
ET E f E f Ed ( )( ( ) ( ))e

L R=
(1)

where Qe = |Qe| is the electron charge, h is Planck’s constant,
T(E) is the electronic transmission probability calculated using
GOLLUM, f is Fermi−Dirac distribution function,
f E( ) 1

(1 e )E K T( )/ B
=

+
, μL and μR are the electrochemical

potentials of the left lead/right leads, respectively, and T is the
temperature. The calculated currents for the four nucleotides

and four orientation angles are shown in Figure 8, and the
calculated values at 0.15 V are included in Table 2. Notice that
for the ha-Sy with the nucleotides rotated by 0 and 90°, the ha-
Sy + C shows the highest current, while with 180 and 270°
such highest current corresponds to the ha-Sy + T. Note also
that the measurement of very small values of current
(nanoampere and picoampere) has been achieved and
reported in previous works,81−86 which implies that the
obtained values of current and their differences shown in
Table 2 can be used to selectively discriminate between
nucleobases and angles, especially at relatively large voltages.
In addition, we also note that the fluctuations that appear

around EF in T(E) should impact the Seebeck coefficient (S)
amplitude of these systems. To demonstrate this, we compute
S for the bare ha-Sy and the ha-Sy with the nucleotides, shown
in Figure 9. From this figure, it is clear that there are
differences between the obtained S values of the bare ha-Sy
and the ha-Sy with the four nucleotides and angles. These
differences can also be used for selective sensing of molecules
using the Seebeck effect (Seebeck discriminated sensing). For
more clarity, see Table S1, which shows the values of S shown
in Figure 9. This provides again extra evidence of the capability
of the ha-Sy as a DNA sequencer. Since both the conductance
and the amplitude of S change upon rotation of the nucleotides

Figure 7. T(E) of the ha-Sy + A, ha-Sy + C, ha-Sy + G, and ha-Sy + T, with the nucleotides rotate by (a) 0, (b) 90, (c) 180, and (d) 270° in a
wider energy window (−0.08 to 0.08 eV) around EF.

Table 2. Current of ha-Sy Calculated at 0.15 V with the Four Nucleotides (A, C, G, and T) and the Four Orientation Angles (0,
90, 180, and 270°)a

ha-Sy current (A) ha-Sy current (A) ha-Sy current (A) ha-Sy current (A)

bare 0.314 bare 0.314 bare 0.314 bare 0.314
+A with 0° 0.249 +A with 90° 0.223 +A with 180° 0.205 +A with 270° 0.222
+C with 0° 0.286 +C with 90° 0.256 +C with 180° 0.236 +C with 270° 0.264
+G with 0° 0.255 +G with 90° 0.215 +G with 180° 0.211 +G with 270° 0.234
+T with 0° 0.282 +T with 90° 0.248 +T with 180° 0.243 +T with 270° 0.270

aThe bold black numbers represent the highest current for each nucleotide.
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inside the ha-Sy, these factors can be used together to
minimize the error in the selective sensing process, leading
thus to a robust tool for selective sensing of DNA nucleotides
with similar electronic imprinting.

■ CONCLUSIONS
In summary, we have calculated from first principles the
transport properties of the ha-Sy nanoscale sensor in the
presence of the four nucleotides (A, C, G, and T) and with

four angles of rotation (0, 90, 180, and 270°). The results show
that this system, due to its asymmetric shape, is able to
discriminate not only the type of nucleobase in the center of
the nucleotide but also the angle of rotation. In particular, we
have found that the transmission, conductance, current, and
Seebeck coefficient have a substantial dependence on such
factors. We explain these findings in terms of the interaction
between the electronegative phosphate group and the
nanotube wall, whose distance depends on the nucleobase

Figure 8. (a−d) Current of ha-Sy with the four nucleotides (A, C, G, and T) and the four orientation angles (0, 90, 180, and 270°) and (e−h) the
same current shown within a narrow voltage window, ranging from 0.14 to 0.15 V.
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and the angle of rotation. These results show that the carbon-
nanotube-based sensor ha-Sy is able to effectively discriminate
between different nucleobases and angles of rotation and open
the door to the development of future fast and precise
nanoscale sensors with tailored shapes.
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