
INTEGRATION, the VLSI journal 95 (2024) 102127

A
0

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

Quantitative comparison and performance evaluation of deep learning-based
object detection models on edge computing devices
Darío G. Lema ∗, Rubén Usamentiaga, Daniel F. García
Department of Computer Science and Engineering, University of Oviedo, Campus de Viesques 33204 Gijón, Asturias, Spain

A R T I C L E I N F O

Keywords:
Edge computing devices
The VLSI journal
Deep learning
Object detection

A B S T R A C T

Low latency in the detection of objects in images is a fundamental aspect to provide an immediate response in
different application scenarios, and to carry out the relevant actions. Deep learning-based models offer better
results than traditional object detection techniques. As a result of this increased accuracy, the computational
cost of these models is often very high. For this reason, several edge computing devices have emerged that
perform inference quickly and efficiently due to the incorporation of hardware accelerators. In this work,
different devices are evaluated using object detection algorithms based on deep learning. For this purpose,
YOLOv3, YOLOv5 and YOLOX, with all their variants, have been used on an NVIDIA Jetson Nano, an NVIDIA
Jetson AGX Xavier and a Google Coral Dev Board. For the evaluation of the models and devices, one of the
most widespread datasets, MS COCO, is used. In addition, they have been evaluated using twenty different
input sizes and three frameworks (Pytorch, TensorRT and Tensorflow Lite). From the data obtained, data can
be extrapolated to other models such as YOLOv8. Additionally, the FPS/Power Consumption and FPS/Cost
ratios are analyzed, as well as their feasibility in a real use scenario. As a result of this work, valuable
recommendations are provided for projects where this technology is to be applied.
1. Introduction

In the last decade the field of deep learning and CNNs (Convolu-
tional Neuronal Networks) has undergone a revolution [1]. Although
the concept of CNNs dates back to the last century [2], it was not
until the popularization of GPUs (Graphics Processing Unit) that their
full potential has been realized [3]. This is, primarily, because CPUs
(Central Processing Unit) do not provide the computational capacity
necessary to train with large amounts of data in reasonable periods of
time. Thanks to the widespread use of GPUs, major advances have been
made in recent years in sectors as diverse as autonomous driving [4–6],
defect detection in industrial parts [7,8] or healthcare [9,10].

One of the fields where most progress has been made is in object
detection. The increase in the accuracy of deep learning-based object
detection models is due, in part, to the creation of deep networks.
Increasing the number of layers in a CNN to improve the accuracy
of models is not always positive, since at a certain point there is
stagnation. This is because by using so many layers, the loss function
decreases very slowly. One of the significant advancements aimed at
addressing the issue known as the Vanishing Gradient problem [11] is
the utilization of residual blocks [12]. In a traditional neural network,
each layer feeds the next. In one with residual blocks, it feeds the next

∗ Corresponding author.
E-mail address: gonzalezdario@uniovi.es (D.G. Lema).

one and the layers that are a certain number of steps away. This way,
the gradient descent is faster.

These advances have increased the accuracy of object detection
models considerably, but a high computational cost. Due to this high
computational cost, training is lengthy, and the speed of inference can
limit real-time applications.

Currently, there are two alternatives for the deployment of these
models in real environments: cloud computing and edge computing.
Cloud computing is a type of computing carried out by several comput-
ers connected by IP networks, where data is stored and processed [13].
Applied to computer vision, this definition means that the images taken
must be transmitted through an IP network to a computing center,
processed with a certain model, and the result sent back to the device
responsible for performing the appropriate actions.

The alternative to cloud computing is edge computing. Edge com-
puting is the technique of processing data as close as possible to the
source [14]. This type of computing has a number of advantages [15]:

1. Latency reduction. Latency is the delay between sending in-
formation and receiving a response. Low latency is the key to
implementing real-time services. In the case of object recogni-
tion in images, latency is composed of the image transmission
vailable online 27 December 2023
167-9260/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.vlsi.2023.102127
Received 24 May 2023; Received in revised form 14 November 2023; Accepted 18
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

December 2023

https://www.elsevier.com/locate/vlsi
https://www.elsevier.com/locate/vlsi
mailto:gonzalezdario@uniovi.es
https://doi.org/10.1016/j.vlsi.2023.102127
https://doi.org/10.1016/j.vlsi.2023.102127
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2023.102127&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Integration 95 (2024) 102127D.G. Lema et al.

v
c
i
o
d
F
a
a
c

b
w
J
R
f
A
c
J
U
t
i
I
c
R
t
c
N
P

t
e
X
f
a
i
t
t
i
d
o
s
t

time, the inference time, and the time it takes to send the infor-
mation back. With cloud computing, it is necessary to send the
image or video through an IP network, therefore the latency is
high. However, with edge computing, it is not necessary to send
the information outside the local network (LAN), so the latency
is significantly lower. By processing data on edge computing
devices, network transfer requirements are reduced. In addition,
larger network input sizes can be used. In cloud computing, it is
necessary to transmit the image to be processed. If the image is
too large, the latency will increase in excess. Using larger input
sizes results in better accuracy.

2. No need for connectivity. When the devices which perform the
expected actions are in remote locations, lack of connectivity
plays a key role. If these devices do not have connectivity to the
network, a solution based on edge computing is not be affected,
whereas a solution based on cloud computing would not be
functional.

3. Privacy and security. With edge computing it is not necessary to
send data outside the LAN, which means an increase in privacy.
If, for example, face images are collected, sending them over the
network may imply a violation of privacy. In addition, sensitive
data is more exposed to possible cyberattacks.

GPUs can perform object detection using deep learning models
ery efficiently. Unfortunately, they have two drawbacks: high power
onsumption and high cost. For mobility reasons, in many scenarios
t is necessary to have a battery to power the device that will carry
ut the object detection, hence low power consumption is key. Also,
ue to their cost, acquiring many GPUs can be extremely expensive.
or this reason, embedded devices, known as edge computing devices,
re increasingly accepted to provide image processing solutions at
low cost, while maintaining performance features and low power

onsumption.
Several papers have evaluated some of these devices. In [16], Rasp-

erry PI, NVIDIA Jetson Nano and NVIDIA Jetson TX2 are evaluated
ith a custom classification model. The conclusion is that NVIDIA

etson TX2 performs inference faster than NVIDIA Jetson Nano and
aspberry PI. In [17], the objective is to detect vine trunks in a vineyard

ield. Two edge computing devices are evaluated: Google Coral USB
ccelerator and NVIDIA Jetson Nano. After several experiments, it is
oncluded that Google Coral USB Accelerator is faster than NVIDIA
etson Nano. However, the comparison is complex, since Google Coral
SB Accelerator speeds up the inference of a certain CPU. This means

hat the inference time will depend on the CPU used. For this reason,
t cannot be directly compared with other edge computing devices.
n [18], the following edge computing devices were evaluated to detect
onstruction vehicles: NVIDIA Jetson TX2, NVIDIA Jetson Nano and
aspberry PI 3B+ with Intel NCS (Neural Compute Stick). After testing

heir inference performance using a SSD-Mobilenet model [19,20], the
onclusion is that it is feasible to process images in real-time with the
VIDIA Jetson TX2, but not with NVIDIA Jetson Nano and Raspberry
I 3B+ with Intel NCS (Neural Compute Stick).

Although all these papers analyze different edge computing devices,
here are still aspects that have not been compared and evaluated. For
xample, there are few works that evaluate the NVIDIA Jetson AGX
avier or the Google Coral Dev Board thoroughly. The models used

or the evaluation of these devices are sometimes not state-of-the-art,
s they are either old models that do not offer the best performance
n terms of accuracy, or they are customized models. Another issue
hat has not been addressed is the input image size. It is important
o analyze the input size of the network, as this directly affects the
nference speed and the accuracy of predictions. Another factor is the
ataset used to evaluate an object detector. Most of papers use their
wn dataset, therefore analyzing the results can be complex. The re-
ults, both in terms of inference speed and accuracy, vary depending on
2

he framework used to create the network. This issue has not been fully
addressed. Finally, other works are limited to showing the consumption
indicated by the manufacturers. In this paper, the consumption of
the different devices while performing the inference is measured and
evaluated.

This work aims to make a more comprehensive evaluation of deep
learning-based object detection models taking all relevant criteria into
account. This includes the acquisition of devices, and the section on
models and frameworks.

2. Materials and methods

Throughout this work, seven models (YOLOv5, YOLOv3, YOLOv3-
Tiny, YOLOX, SSD-Mobilenet v2 and EfficientDet-Lite 1) will be ana-
lyzed on five edge computing devices (NVIDIA RTX 2080 Ti, NVIDIA
Jetson Nano, NVIDIA Jetson Xavier AGX, i7-9700K and Google Coral
Dev Board), using three frameworks (Pytorch, TensorRT and TFLite).
The models are evaluated by varying the input sizes (from 320 pixels
to 1216). Average Precision (AP) is used as it has been proven to be
the most robust metric for comparing object detection models [21]. All
models have been evaluated on the most widely used dataset in the field
of object detection: MS COCO. Finally, the real power consumption of
each of these devices is analyzed using a wattmeter.

2.1. Edge computing devices

This section discusses the technical specifications of the edge com-
puting devices used. Table 1 summarizes their main characteristics.

2.1.1. NVIDIA Jetson Nano Developer Kit
NVIDIA Jetson Nano Developer Kit is a small and powerful com-

puter designed to develop AI (Artificial Intelligence) solutions [25]. It is
composed of a Quad-Core ARM Cortex-A57 CPU and a NVIDIA Maxwell
128-Cores GPU. More specifications details are shown in Table 1. One
of its advantages is that as a small Linux-based computer, it can run
almost any deep learning model. This device is available in a 2 GB and
a 4 GB version, with prices varying from e52.37 to e93.32.

2.1.2. NVIDIA Jetson AGX Xavier Developer Kit
NVIDIA Jetson AGX Xavier Developer Kit is a robust embedded

device that offers 32 TOPs (Tera Operations per Second). It is equipped
with an Eight-Core ARM v8.2CPU, NVIDIA Volta 512-Cores GPU and
two NVDLA Engines. As the Jetson Nano, it is a Linux-based computer.
More details are shown in Table 1. Thanks to its hardware, it achieves
very high inference speeds, albeit at a high cost.

2.1.3. Google Coral Dev Board
Google Coral Dev Board is a board computer to perform fast Ma-

chine Learning Models. It is equipped with a Quad-Core ARM Cortex-
A53 CPU, but its most outstanding feature is the TPU (Tensor Processor
Unit) [26]. A TPU is an ASIC (AI accelerator application-specific inte-
grated circuit), developed by Google, optimized to perform neuronal
networks with TensorFlow. It is designed to drive AI in embedded
devices. For this reason, it is referred to as an edge TPU.

2.2. Analysis of object detection algorithms

In the last decade, several object detectors have been developed
that outperform the results of traditional object detection methods.
These algorithms can be divided in two types: one-stage and two-
stage detectors. Two-stage detectors first propose a set of ROIs (Regions
of Interest) and then classify each of the ROIs. R-CNN [27], Fast-
RCNN [28] and Faster-RCNN [29] are some examples of this kind of
detectors. One-stage detectors perform the detection by treating the
entire image. YOLO (You Only Look Once) is an example of a one-stage
detector. Typically, one-stage detectors are faster than two-stage, but
less accurate. In this section, the object detection algorithms used on

edge computing devices are analyzed.

Integration 95 (2024) 102127D.G. Lema et al.
Table 1
Technical specifications of NVIDIA Jetson Nano, NVIDIA Jetson AGX Xavier and Google Coral Dev Board.

Nvidia Jetson Nano [22] Nvidia Jetson AGX Xavier [23] Google Coral Dev Board [24]

CPU Quad-Core ARM Cortex-A57 Eight-Core ARM v8.2 Quad-Core ARM Cortex-A53
GPU NVIDIA Maxwell 128-Cores NVIDIA Volta 512-Cores Integrated GC7000 Lite Graphics
TPU – – Google Edge TPU Coprocessor
Memory 2 GB–4 GB LPDDR4 32 GB LPDDR4 1 GB LPDDR4
Storage 16 GB eMMC, MicroSD slot 32 GB eMMC 8 GB eMMC, MicroSD slot
Networking Gigabit Ethernet Gigabit Ethernet Gigabit Ethernet
USB 4× USB 3.0, USB 2.0 Micro-B 2× USB-C 3.1 Type-C, Type-A 3.0, Micro-B serial
Power consumption 5–10 W 10–30 W 2 TOPS per watt
OS Linux (Ubuntu 18.04) Linux (Ubuntu 18.04) Linux (Mendel)
Size (mm) 100 × 80 × 29 105 × 105 × 65 88.10 × 59.90 × 22.38
Price e52.37–e93.32 e664.78 e157.28
2.2.1. You Only Look Once
YOLO is one of the most famous object detection algorithms due to

is good accuracy-inference speed trade off. Several versions have been
developed:

YOLOv1. The first version of the YOLO family was a major break-
through since at the time, it was the fastest detector available and
offering good Average Precision (AP) [30]. YOLO divides the image in
an 𝑆×𝑆 grid. Each of the cells of the grid is responsible for the detection
of the objects that fall in its center. After this, NMS (Non-Maximal
Suppression) is applied to eliminate redundant predictions.

YOLOv2. This is the natural extension of YOLO [31], solving some of
the drawbacks of YOLOv1. It introduces anchor boxes to the YOLO fam-
ily. In YOLOv1, the predictions were made from scratch. Now, thanks
to the anchor boxes, there are some initial guesses. The particularity
of YOLOv2 is how it calculates these anchor boxes. In previous works,
they were selected by hand. In YOLOv2, K-Means is used. Thanks to
this innovation, better initial guesses and therefore, better predictions
are made.

YOLOv3. YOLOv2’s weakness is in the detection of small objects.
YOLOv3 [32] solves this problem by performing predictions on three
scales. The tradeoff for improving small-object detection is a lower
inference speed. For this reason, a smaller version called YOLOv3-Tiny
was created. This version is faster than YOLOv3, but its AP (Average
Precision) is lower.

YOLOv4 and YOLOv5. YOLOv4 [33] and YOLOv5 [34] are the natural
sequels of the YOLO family, created by different authors from the initial
versions. As modern object detectors, both are composed of a backbone,
a neck, and a head. CSPDarknet-53 is the chosen backbone as feature
extractor. PA-Net, as neck, helps to transmit low-level features to the
head. Finally, a YOLOv3-based head makes predictions on three scales.
Both include additional improvements, such as mosaic augmentation.
This technique consists of creating new images from parts of others.
This way, the model can be trained with diverse data and therefore,
better predictions will be made. YOLOv4 and YOLOv5 have several
variants in which the depth and width is modified.

YOLOX. YOLOX [35] is an anchor-free version of YOLOv3. The au-
thors decided not to use anchor boxes for two main reasons: they
require a clustering algorithm to determine the optimal ones, and they
increase the number of predictions per image. Another contribution
is introducing OTA (Optimal Transport Assignment) [36]. With this
advanced label assignment, the AP improves significantly. Like YOLOv4
or YOLOv5, it has several variants in which the depth and width of the
model are modified.

YOLOv8. Following the introduction of YOLOv5, subsequent iterations
have been released to enhance and build upon previous achievements.
Among these versions, YOLOv8 [37] emerges as a noteworthy ad-
vancement, incorporating transformer-based operations. While retain-
ing the fundamental architecture of YOLOv5, YOLOv8 distinguishes
itself through its user-friendly design and specific development tailored
3

for industrial applications.
2.2.2. Single shot multibox detector
SSD [38] is a one-stage detector, close to R-CNN in terms of ac-

curacy, but faster. SSD introduces multi-scale detection, default boxes
and aspect ratios. As there are usually more negative predictions than
positive, it introduces hard negative mining. This technique consists of
maintaining a 3:1 ratio between negatives and positives.

Originally, the feature extractor used was VGG-16, but in sub-
sequent works Mobilenet was introduced [39]. This feature extrac-
tor changes speeds up the inference process, especially in embedded
devices.

2.2.3. EfficientDet
Many detectors sacrifice inference speed to improve accuracy. Effi-

cientDet [40], however, improves the accuracy of other state-of-the-art
detectors without sacrificing their high efficiency. To this end, Effi-
cientDet introduces several improvements. Feature fusion combines
representations of a given image at different resolutions, using a bidi-
rectional feature pyramid network (BiFPN). Model scaling is another
important breakthrough of EfficientDet. Rather than using larger back-
bones or input sizes to improve accuracy, the feature extractor network
and the class and box predictor are scaled up, which also improves
efficiency.

2.3. Evaluation metrics

The most common metric in object detection is Average Precision
(AP) [21]. Before explaining it, it is necessary to mention other basic
metrics.

• TP (True positives): objects correctly predicted.
• FP (False positives): objects incorrectly predicted.
• FN (False negatives): objects incorrectly unpredicted.
• TN (True negatives): objects correctly unpredicted. In object de-

tection, this metric is not used because in each image these would
be infinite TNs.

In object detection, it is not easy to decide if a prediction is correct
since it rarely matches its corresponding ground truth completely. Thus,
the IOU (Intersection Over the Union) is used. The IOU, shown in
Eq. (1), measures the degree of overlap between two regions. If it is
over a threshold, typically 0.5, the prediction is considered as correct.

After collecting the TPs, FPs and FNs for all the test images with a
certain IOU threshold, precision and recall can be calculated. Precision,
shown in Eq. (2), measures how accurate the predictions made are.
Recall, shown in Eq. (3), measures the percentage of correct predictions
from the total of objects to be predicted.

𝐼𝑂𝑈 =
|𝐷 ∩ 𝐺|

|𝐷 ∪ 𝐺|

(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑠
𝑇𝑃𝑠 + 𝐹𝑃𝑠

(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑠 (3)

𝑇𝑃𝑠 + 𝐹𝑁𝑠

Integration 95 (2024) 102127D.G. Lema et al.

c
u

3

o
w
r
b
o

m

Fig. 1. Metrics varying input size on a NVIDIA RTX 2080Ti. Each mark represents an input size from 320 to 800 (in steps of 32), 1024, 1088, 1120 and 1216. (a) Using TensorRT.
(b) Using Pytorch.
The predictions made are given a confidence score, which requires
a minimum threshold. If the confidence score of a prediction surpasses
this threshold, it is included in the metrics calculation. Otherwise, it is
discarded. If a high confidence threshold is set, precision will be high
and recall low. If a low confidence threshold is set, recall will be high,
and precision will be low. Since it is complicated to compare models
with all this casuistry, AP is used.

To calculate AP, simply requires computing precision and recall for
several confidence thresholds. The AP is the area under the precision–
recall curve. As mentioned above, these metrics depend on the chosen
IOU threshold, so it is possible to calculate the AP in several ways:

• AP: computing the AP individually with the IOUs in the interval
[0.5, 0.95] with a step of 0.05, and then averaging all the APs.

• 𝐴𝑃 50: computing the AP only with an IOU of 0.5.

In this work, both APs are used to evaluate the models on edge
omputing devices. A modified version of this toolkit [41] has been
sed.

. Results

Many works where edge computing devices are evaluated use their
wn datasets. It is impossible to compare devices in terms of precision
ith custom datasets, so this work uses MS COCO [42] to compare the

esults. The idea of using a general-purpose dataset is that the data can
e reproduced in other studies. In addition, when using a large amount
f data, the results are very reliable.

Inference times and APs are calculated using floating point arith-
etic of 16 bits (FP16) and a batch size of one. This is because the
4

objective is to process images in real-time, which is the maximum
image acquisition rate offered by the camera.

To measure the times, all models were run 10 times on the valida-
tion set.

After making a hyperparametric adjustment and using an input size
of 640 × 640 pixels, the models were optimized for the MS COCO
dataset following the official guidelines [34,35,43].

3.1. NVIDIA RTX 2080Ti

When analyzing the performance of an object detection model, there
are three aspects to consider: the accuracy of the model, its speed on
the running device and power consumption. The accuracy of the model
is independent of the device but may change when transformed for use
with another framework. The frameworks influence the inference time
since some of them are optimized for specific hardware. In the experi-
ments analyzed, the models were evaluated using different input sizes.
It was observed that Pytorch gives slightly better results than TensorRT
in terms of AP, however, in terms of inference speed TensorRT seems
to be a better choice. Table 2 shows the results of evaluating YOLOv3,
YOLOv5 and YOLOX, with all their variants, on a NVIDIA RTX 2080Ti.
In Fig. 1 the AP is plotted against the inference time. The optimal point
is in the upper left corner since the AP is maximum and the inference
time minimum.

Of the models evaluated, YOLOv5-X offers the best results in terms
of AP and AP50. The best result is achieved using an input size of
704 × 704 pixels. With higher or lower input sizes the AP and AP50
decrease. YOLOX-X gives similar (although slightly lower) results. In
this case, the best result is obtained with an input size of 800 × 800

pixels.

Integration 95 (2024) 102127D.G. Lema et al.
There are significant differences in inference times between using
TensorRT and Pytorch with a batch size of 1. With TensorRT, almost
all models meet the requirement of processing images in real-time. To
do this, models must run at 30 FPS (Frames Per Second), which is
an arbitrary value used as a reference in this study because it is the
most common in the low-cost cameras frequently used in embedded
systems with edge devices. With TensorRT it does not exceed 21 ms (see
Fig. 1(a) and Table 2). This means that the inference time is less than
33 ms, and therefore real-time. The same is not true for Pytorch. With
Pytorch the inference times exceed 100 ms for YOLOX-X (see Fig. 1(b)
and Table 2), YOLOv3-Tiny, as well as with YOLOv5-N, offer the best
inference times. However, because the inference times of YOLOv5-X or
YOLOX-X with TensorRT do not exceed the 33 ms limit for real-time
processing and offer the best results in terms of AP, the choice of this
model, as well as YOLOv3, YOLOv5-N, S, M, L and YOLOX-N, Tiny, S,
M, L, is pointless in this device.

3.2. NVIDIA Jetson AGX Xavier Developer Kit

The conclusions obtained with the NVIDIA 2080 Ti cannot be
extrapolated to the NVIDIA Jetson AGX Xavier, as this is an edge
computing device with a GPU with limited performance.

Fig. 2 and Table 3 show the results obtained. In terms of AP there
are no differences with the NVIDIA RTX 2080 Ti results. However, the
same is not true in terms of inference speed. YOLOv5-N, YOLOX-N and
YOLOv3-Tiny are the only models that do not exceed 33 ms for all input
sizes (with TensorRT).

Other models such as YOLOv5-S, YOLOv5-M, YOLOX-Tiny, YOLOX-
S, YOLOX-M or YOLOv3-Tiny exceed 33 ms for certain input sizes.
Even if the input size is reduced, they still offer better results than
simpler models. Intermediate models such as YOLOv5-L, YOLOX-L or
YOLOv3 with reduced input sizes offer results below 33 ms. However,
other simpler models offer similar results in terms of speed, but better
results in terms of AP using larger input sizes. More complex models
such as YOLOv5-X or YOLOX-X exceed the 33 ms barrier for practically
all input sizes.

In this device, the difference between using Pytorch and TensorRT
is more noticeable than for the NVIDIA RTX 2080 Ti. This difference is
more significant as the input size increases and with complex models.
For example, with YOLOX-X and an input size of 1216 × 1216 pixels,
the difference between TensorRT and Pytorch is about 960 ms.

3.3. NVIDIA Jetson Nano Developer Kit

The NVIDIA Jetson Nano is a lower category device than the NVIDIA
Jetson AGX Xavier, which is noted in Fig. 3 and Table 4.

The goal of having an inference speed of less than 33 ms is only met
by the simplest models, with reduced input sizes and using TensorRT.
This means that to use this device while processing images in real-
time (30 FPS), the accuracy is reduced. If real-time processing is not
necessary, this device can be used with models of medium complexity.
It was not possible to evaluate the more complex models, such as
YOLOv5-X and YOLOX-X, due to lack of memory.

3.4. Google Coral Dev Board

The Google Coral Dev Board, unlike the devices described above,
includes a TPU. For this reason, the Tensorflow Lite (TFLite) framework
is used. TensorRT cannot be used since this device does not have a
NVIDIA GPU. The results can be seen in Table 5.

After analyzing the results obtained with YOLOv5-N, it was decided
not to continue with more complex models since the inference times
are too high. In addition, YOLOv5-N has a lower AP than TensorRT or
Pytorch. This is because in the process of transforming the model from
Pytorch to TFLite, the model is quantized to 8 bits for the representation
of floating point (FP) numbers.
5

Models specifically designed for TFLite have also been tested. These
models are SSD-Mobilenet v1 with TF1 and TF2, SSD-Mobilenet v1
with TF2 and EfficientDet-Lite 1 with TF2. These models, except for
EfficientDet-Lite 1, offer reduced inference times but with a signifi-
cantly lower AP than YOLOv5-N. EfficientDet-Lite 1 performs better
than YOLOv5-N in this device, as it is faster and outperforms it in AP.

4. Discussion

Throughout this section, the devices analyzed are compared taking
into account power consumption, real-time image processing, the use
of devices without hardware accelerators and the execution of these
models in the cloud.

4.1. Influence of model size on results

Model size has a big influence on results. The bigger the size, the
more coefficients the model will have to work with, which will allow
it to solve more complex problems. However, if the model is too big
it can be overfit to the training data, which can lead to worse results.
Therefore, it is important to find a balance between model size and
performance. In addition, the bigger the model, the longer it will take
to process an image. Fig. 4 shows a linear growth in inference times
on all devices. However, it is important to note that in the case of the
NVIDIA Jetson Nano, the obtained slope is much higher than that of the
NVIDIA Jetson AGX Xavier and the NVIDIA RTX 2080 Ti. This means
that using larger models will affect it more. Currently, there is a trend to
create models with more layers to solve complex problems. Although
inference times also depend on future architectural improvements of
networks, this analysis serves to understand the possible scalability
of these devices. For example, if using a model with 200 million
parameters, the inference time on a NVIDIA Jetson Nano would be
approximately 1266 ms, while on the NVIDIA Jetson AGX Xavier it
would be 161 ms and on the NVIDIA RTX 2080 Ti it would be 14 ms.

4.2. Inference with new models

In recent years, there has been a notable surge in the development
of models for object detection in images. This trend suggests that new
versions of detectors will continue to emerge in the coming years.
Given the proliferation of models, it is impractical to evaluate all
existing ones. Currently, there is a leaning towards incorporating object
detection models based on transformers due to their exceptional results.
YOLOv8 stands out as a prominent example of such detectors.

The results obtained with YOLOv8 on the NVIDIA RTX 2080Ti are
presented in Table 6. It is observed that, in terms of inference time, the
results are very similar to those of YOLOv5. The key to understanding
these results lies primarily in the number of parameters in the model, as
this significantly affects the inference time. Considering this aspect and
the information provided in Fig. 4, inference times can be extrapolated
for future models.

4.3. Power consumption

The power consumption of these devices is mainly caused by the
performance of the CPU and GPU. In the measurements carried out,
a real scenario has been considered in which inference is performed
constantly. Therefore, CPU and GPU usage is almost continuous, except
for input/output (I/O) operations. The GPU usage percentage varies
depending on the device and the model employed. Overall, the NVIDIA
2080Ti has a utilization of 27%, the NVIDIA Jetson AGX Xavier is at
44%, and the NVIDIA Jetson Nano is at 55%. The percentage does not
reach 100% because there is a preprocessing and postprocessing com-
ponent carried out on the CPU. Considering this context, Table 7 shows
the power consumption of each device measured with the Brennenstuhl

EM 230 W m. The NVIDIA RTX 2080Ti has the highest consumption

Integration 95 (2024) 102127D.G. Lema et al.
Table 2
Metrics of all models by varying the input size over the NVIDIA RTX 2080Ti.

Model Size AP50 AP Inference time (ms) Model Size AP50 AP Inference time (ms) Model Size AP50 AP Inference time (ms)

TensorRT Pytorch TensorRT Pytorch TensorRT Pytorch

YOLOv5-N

1216 0.368 0.297 3.89 4.86

YOLOX-N

1216 0.271 0.208 3.68 20.33

YOLOX-Tiny

1216 0.388 0.316 4.80 22.36
1120 0.394 0.318 3.41 4.73 1120 0.292 0.219 3.32 20.49 1120 0.425 0.344 4.20 22.54
1088 0.401 0.325 3.28 4.68 1088 0.299 0.223 3.17 19.47 1088 0.430 0.349 4.08 21.42
1024 0.415 0.338 2.89 4.70 1024 0.309 0.231 2.84 14.14 1024 0.450 0.368 3.51 15.55
800 0.445 0.368 2.07 4.57 800 0.348 0.265 2.13 8.96 800 0.504 0.424 2.60 9.86
768 0.456 0.378 1.97 4.67 768 0.352 0.269 2.05 8.88 768 0.508 0.428 2.51 9.77
736 0.457 0.379 1.82 4.65 736 0.358 0.270 1.94 8.89 736 0.507 0.431 2.28 9.78
704 0.457 0.380 1.73 4.64 704 0.360 0.272 1.84 9.13 704 0.511 0.434 2.19 10.04
672 0.459 0.380 1.64 4.61 672 0.364 0.278 1.78 8.82 672 0.509 0.432 2.10 9.70
640 0.458 0.381 1.55 4.60 640 0.360 0.276 1.69 8.85 640 0.512 0.437 2.01 9.74
608 0.455 0.379 1.46 4.63 608 0.366 0.279 1.64 8.84 608 0.511 0.433 1.93 9.72
576 0.452 0.376 1.39 4.57 576 0.365 0.282 1.56 8.83 576 0.509 0.436 1.77 9.71
544 0.448 0.374 1.31 4.56 544 0.362 0.282 1.50 8.79 544 0.508 0.432 1.70 9.67
512 0.439 0.365 1.21 4.51 512 0.363 0.280 1.41 8.72 512 0.504 0.429 1.57 9.59
480 0.433 0.360 1.14 4.59 480 0.355 0.278 1.37 8.63 480 0.495 0.424 1.53 9.49
448 0.423 0.351 1.09 4.57 448 0.350 0.273 1.31 8.69 448 0.487 0.416 1.46 9.56
416 0.413 0.343 1.05 4.72 416 0.339 0.266 1.26 8.62 416 0.477 0.408 1.37 9.48
384 0.397 0.329 0.99 4.66 384 0.329 0.256 1.23 8.56 384 0.460 0.392 1.32 9.42
352 0.379 0.313 0.93 4.70 352 0.315 0.244 1.17 8.71 352 0.446 0.380 1.26 9.58
320 0.363 0.298 0.88 4.71 320 0.299 0.232 1.12 8.62 320 0.419 0.368 1.22 9.48

YOLOv5-S

1216 0.491 0.411 5.02 8.12

YOLOX-S

1216 0.520 0.436 5.26 26.84

YOLOv3-Tiny

1216 0.273 0.205 3.38 5.73
1120 0.515 0.431 4.48 7.68 1120 0.543 0.461 4.81 27.05 1120 0.289 0.217 3.00 5.24
1088 0.528 0.441 4.32 7.28 1088 0.550 0.467 4.63 25.70 1088 0.298 0.223 2.89 5.06
1024 0.541 0.456 3.69 6.84 1024 0.558 0.479 3.91 18.66 1024 0.309 0.234 2.41 4.20
800 0.566 0.484 2.69 5.20 800 0.578 0.502 2.97 11.83 800 0.350 0.264 1.73 3.37
768 0.568 0.486 2.60 4.87 768 0.576 0.499 2.86 11.72 768 0.355 0.271 1.66 3.01
736 0.565 0.486 2.33 4.72 736 0.576 0.501 2.53 11.73 736 0.355 0.271 1.53 2.86
704 0.566 0.488 2.17 4.78 704 0.577 0.500 2.37 12.05 704 0.359 0.275 1.41 2.75
672 0.565 0.486 2.06 4.68 672 0.572 0.497 2.27 11.64 672 0.365 0.276 1.33 2.63
640 0.560 0.482 1.96 4.50 640 0.567 0.495 2.15 11.68 640 0.359 0.275 1.25 2.52
608 0.559 0.480 1.84 4.43 608 0.564 0.491 2.07 11.67 608 0.365 0.282 1.16 2.45
576 0.556 0.476 1.76 4.39 576 0.559 0.483 1.98 11.66 576 0.366 0.282 1.10 2.37
544 0.550 0.474 1.68 4.35 544 0.549 0.478 1.91 11.60 544 0.363 0.281 1.02 2.31
512 0.546 0.470 1.50 4.39 512 0.541 0.470 1.70 11.51 512 0.362 0.280 0.88 1.92
480 0.542 0.466 1.43 4.30 480 0.534 0.463 1.63 11.39 480 0.357 0.277 0.83 1.88
448 0.526 0.453 1.35 4.36 448 0.523 0.454 1.55 11.47 448 0.350 0.271 0.77 1.82
416 0.519 0.442 1.28 4.29 416 0.510 0.441 1.49 11.38 416 0.341 0.267 0.72 1.80
384 0.501 0.427 1.22 4.28 384 0.496 0.426 1.44 11.30 384 0.327 0.258 0.67 1.76
352 0.485 0.411 1.13 4.35 352 0.473 0.407 1.33 11.50 352 0.318 0.244 0.61 1.75
320 0.466 0.395 1.07 4.31 320 0.449 0.387 1.28 11.38 320 0.296 0.233 0.57 1.74

YOLOv5-M

1216 0.582 0.498 7.51 17.32

YOLOX-M

1216 0.604 0.520 8.22 36.77

YOLOv3

1216 0.590 0.505 14.65 38.14
1120 0.603 0.517 6.56 15.08 1120 0.617 0.537 7.00 29.41 1120 0.610 0.527 13.06 33.88
1088 0.609 0.527 6.37 14.49 1088 0.620 0.540 6.81 30.31 1088 0.616 0.535 12.61 32.17
1024 0.620 0.537 6.08 12.81 1024 0.631 0.552 6.38 23.17 1024 0.628 0.547 10.15 26.98
800 0.637 0.565 4.52 9.29 800 0.638 0.565 5.08 15.68 800 0.652 0.575 7.46 20.57
768 0.638 0.564 4.42 8.69 768 0.640 0.566 4.94 13.99 768 0.653 0.578 7.17 18.92
736 0.638 0.562 3.93 8.28 736 0.636 0.562 4.40 13.20 736 0.655 0.577 6.48 18.75
704 0.634 0.564 3.75 7.86 704 0.636 0.564 4.20 14.78 704 0.654 0.579 6.14 18.17
672 0.635 0.558 3.59 7.54 672 0.632 0.560 4.10 12.15 672 0.647 0.575 5.98 17.03
640 0.633 0.558 3.47 7.47 640 0.631 0.560 3.96 13.44 640 0.648 0.575 5.87 16.44
608 0.628 0.557 3.27 7.16 608 0.622 0.551 3.78 10.98 608 0.647 0.575 5.59 15.88
576 0.625 0.551 2.94 6.90 576 0.618 0.545 3.32 9.66 576 0.644 0.569 5.42 15.25
544 0.620 0.549 2.74 6.79 544 0.613 0.544 3.13 11.21 544 0.643 0.568 5.24 14.55
512 0.613 0.541 2.51 6.35 512 0.607 0.537 2.89 9.43 512 0.639 0.567 4.26 12.01
480 0.608 0.536 2.40 6.15 480 0.598 0.527 2.80 9.20 480 0.635 0.562 4.03 11.44
448 0.601 0.527 2.31 5.93 448 0.585 0.517 2.69 9.49 448 0.629 0.554 3.82 10.84
416 0.588 0.515 2.08 5.75 416 0.572 0.506 2.40 9.69 416 0.620 0.547 3.51 10.38
384 0.581 0.507 1.99 5.61 384 0.557 0.489 2.32 8.75 384 0.608 0.536 3.36 9.26
352 0.562 0.491 1.85 5.57 352 0.542 0.474 2.18 8.75 352 0.597 0.523 2.79 8.92
320 0.544 0.474 1.76 5.56 320 0.521 0.456 2.11 8.58 320 0.584 0.507 2.60 8.44

YOLOv5-L

1216 0.610 0.531 10.31 30.03

YOLOX-L

1216 0.604 0.520 11.80 56.38
1120 0.632 0.550 9.42 27.03 1120 0.616 0.536 10.75 50.58
1088 0.641 0.559 9.15 25.68 1088 0.619 0.541 10.44 48.59
1024 0.648 0.569 7.31 22.06 1024 0.630 0.550 8.12 36.74
800 0.664 0.592 6.24 15.96 800 0.639 0.565 6.50 28.18
768 0.668 0.596 6.16 14.25 768 0.640 0.567 6.62 25.13
736 0.666 0.594 5.69 13.65 736 0.636 0.562 6.04 23.16
704 0.667 0.597 5.27 13.00 704 0.635 0.562 5.83 21.87
672 0.666 0.593 5.13 12.23 672 0.632 0.561 5.78 21.43
640 0.661 0.593 4.81 11.67 640 0.631 0.558 5.54 18.63
608 0.661 0.593 4.61 10.76 608 0.624 0.554 5.35 19.31
576 0.660 0.589 4.48 10.29 576 0.620 0.548 5.22 17.08
544 0.657 0.587 4.29 10.11 544 0.614 0.543 5.10 16.53
512 0.646 0.577 3.53 8.67 512 0.608 0.535 4.12 11.84
480 0.643 0.572 3.40 8.36 480 0.599 0.526 4.00 12.92
448 0.633 0.563 3.24 8.19 448 0.585 0.517 3.82 12.52
416 0.626 0.554 3.09 7.70 416 0.574 0.506 3.66 12.98
384 0.614 0.544 2.99 7.57 384 0.558 0.490 3.56 10.83
352 0.596 0.524 2.61 7.54 352 0.539 0.472 3.07 12.10
320 0.581 0.510 2.48 7.46 320 0.522 0.458 2.93 11.67

YOLOv5-X

1216 0.623 0.549 17.41 56.86

YOLOX-X

1216 0.651 0.571 20.75 101.31
1120 0.642 0.568 15.05 49.29 1120 0.661 0.586 17.85 87.43
1088 0.650 0.574 14.60 46.88 1088 0.665 0.588 17.36 84.48
1024 0.658 0.581 13.18 39.43 1024 0.674 0.598 15.55 69.09
800 0.681 0.609 8.36 29.08 800 0.676 0.605 9.75 49.69
768 0.679 0.609 8.13 25.26 768 0.677 0.606 9.47 41.96
736 0.682 0.609 7.57 24.06 736 0.676 0.603 8.77 40.03
704 0.683 0.613 7.44 22.53 704 0.675 0.603 8.51 38.55
672 0.681 0.609 7.12 22.73 672 0.671 0.600 8.34 37.52
640 0.678 0.606 6.61 21.30 640 0.666 0.597 7.54 34.06
608 0.677 0.607 6.26 20.10 608 0.665 0.594 7.25 32.06
576 0.675 0.606 6.21 18.94 576 0.660 0.591 6.59 29.76
544 0.670 0.602 5.82 18.05 544 0.655 0.584 6.38 28.36
512 0.664 0.592 5.85 17.32 512 0.647 0.577 6.23 21.98
480 0.662 0.592 5.70 13.71 480 0.642 0.574 6.17 22.04
448 0.652 0.580 5.26 13.10 448 0.627 0.558 5.72 20.14
416 0.645 0.570 4.66 12.71 416 0.618 0.549 5.39 19.75
384 0.633 0.558 4.47 12.19 384 0.608 0.541 5.20 15.19
352 0.619 0.549 4.17 10.84 352 0.589 0.520 4.97 15.89
320 0.603 0.529 3.89 10.49 320 0.570 0.504 4.58 14.74
6

Integration 95 (2024) 102127D.G. Lema et al.
Fig. 2. Metrics varying input size on a NVIDIA Jetson AGX Xavier. Each mark represents an input size from 320 to 800 (in steps of 32), 1024, 1088, 1120 and 1216. (a) Using
TensorRT. (b) Using Pytorch.
but is the fastest device. For edge computing devices the Google Coral
Dev Board has the lowest consumption, with 4.5 W. This low power
consumption could compensate for the low AP obtained with models
capable of real-time image processing on this device in scenarios where
there are power supply restrictions. The NVIDIA Jetson AGX Xavier and
NVIDIA Jetson Nano have intermediate power consumptions, so when,
there are no extreme power constraints, they offer better results (both
inference speed and AP) than the Google Coral Dev Board.

4.4. Real-time image processing

As mentioned above, to process images in real-time (30 FPS) the
inference time cannot exceed 33 ms. Table 8 lists the models with
the highest APs that do not exceed this time for each device. It seems
clear that, except for the Google Coral Dev Board, which has special
characteristics, YOLOv5 offers the best results. The difference is given
by the AP difference between the different versions of YOLOv5 and the
input size. YOLOv5-X with an input size of 704 × 704 pixels offers a 4%
higher AP than YOLOv5-L with an input size of 512 × 512, and 21%
higher than YOLOv5-S at 320 × 320.

4.5. Real-time people detection

Within the wide range of possibilities offered by this technology,
one of the most common is the detection of people. This involves the
creation of systems oriented to the autonomous detection or security
control of a given space. Since the person class is one of the classes in
the MS COCO dataset, this section evaluates the use of these devices
to detect people using the models with the highest AP for each device.
Table 9 shows the APs of each model for the person class. The results,
7

in terms of AP, are better than when averaging the results of the 80
classes (see Table 8). Between YOLOv5-X and YOLOv5-L there are no
significant differences, but with YOLOv5-S and SSD-Mobilenet v2 the
differences are immense. Visually, this difference can be seen in Fig. 5,
where three examples of person detection are shown for each model.
YOLOv5-X and YOLOv5-L correctly detect most people, including those
in the background. YOLOv5-S detects well the people in the foreground
but not those in the background (see Fig. 5j). SSD-Mobilenet v2 also
fails to detect people in the background as well as generating a false
positive (see Fig. 5n).

4.6. FPS/Watt and FPS/e comparison

The selection of a device may be determined by inference speed,
power consumption or cost. For this reason, it is interesting to know
the FPS/Watt and FPS/e ratio of each of the selected devices. Table 10
shows these ratios, having selected the fastest models with a minimum
AP50 of 0.4. Under these conditions, the device that processes images
the fastest in terms of power consumption is the NVIDIA Jetson AGX
Xavier followed by the NVIDIA Jetson Nano. In terms of cost, the
NVIDIA RTX 2080Ti (e1169.01) is the most recommended device (note
that, in this case, the GPU would have to be integrated into a PC, with
the additional costs that this entails), followed by the NVIDIA Jetson
Nano. These results have a minimum AP50 of 0.4. For more demanding
requirements, setting a minimum AP50 of 0.65, the results vary. These
differences can be seen in Table 11. The Google Coral Dev Board is
not an option, since none of the models evaluated in Section 3.4 reach
the minimum AP50. Since the stated AP50 is higher, it is necessary to
use more complex models and larger input sizes to obtain the desired

results. This results in lower FPS. In this scenario, the NVIDIA Jetson

Integration 95 (2024) 102127D.G. Lema et al.
Table 3
Metrics of all models by varying the input size over the NVIDIA Jetson AGX Xavier.

Model Size AP50 AP Inference time (ms) Model Size AP50 AP Inference time (ms) Model Size AP50 AP Inference time (ms)

TensorRT Pytorch TensorRT Pytorch TensorRT Pytorch

YOLOv5-N

1216 0.368 0.297 30.40 43.21

YOLOX-N

1216 0.271 0.208 27.80 68.17

YOLOX-Tiny

1216 0.388 0.316 42.65 122.24
1120 0.394 0.318 26.78 38.33 1120 0.292 0.219 24.41 60.39 1120 0.425 0.344 36.76 106.79
1088 0.401 0.325 25.56 36.49 1088 0.299 0.223 23.17 56.65 1088 0.430 0.349 35.04 102.14
1024 0.415 0.338 22.27 31.88 1024 0.309 0.231 21.09 50.23 1024 0.450 0.368 30.80 87.09
800 0.445 0.368 15.39 24.25 800 0.348 0.265 14.88 36.09 800 0.504 0.424 20.92 62.51
768 0.456 0.378 14.24 23.61 768 0.352 0.269 14.14 33.32 768 0.508 0.428 19.61 55.90
736 0.457 0.379 13.80 24.52 736 0.358 0.270 13.30 32.92 736 0.507 0.431 19.05 54.63
704 0.457 0.380 12.11 23.98 704 0.360 0.272 13.00 32.46 704 0.511 0.434 16.92 49.36
672 0.459 0.380 12.86 24.29 672 0.364 0.278 12.44 32.40 672 0.509 0.432 16.62 47.79
640 0.458 0.381 11.33 24.64 640 0.360 0.276 12.09 32.44 640 0.512 0.437 15.47 43.16
608 0.455 0.379 13.72 23.81 608 0.366 0.279 11.94 32.12 608 0.511 0.433 14.53 40.52
576 0.452 0.376 11.97 23.14 576 0.365 0.282 11.57 32.19 576 0.509 0.436 13.71 39.56
544 0.448 0.374 11.12 22.81 544 0.362 0.282 10.98 32.10 544 0.508 0.432 12.46 36.82
512 0.439 0.365 10.87 21.91 512 0.363 0.280 11.89 32.17 512 0.504 0.429 11.79 30.15
480 0.433 0.360 10.71 21.43 480 0.355 0.278 11.19 31.88 480 0.495 0.424 10.81 29.46
448 0.423 0.351 11.41 20.92 448 0.350 0.273 10.27 32.38 448 0.487 0.416 11.42 27.91
416 0.413 0.343 10.15 20.19 416 0.339 0.266 11.89 32.03 416 0.477 0.408 11.15 32.58
384 0.397 0.329 10.05 20.02 384 0.329 0.256 10.57 32.16 384 0.460 0.392 10.70 32.77
352 0.379 0.313 9.14 19.66 352 0.315 0.244 10.10 32.16 352 0.446 0.380 10.05 30.18
320 0.363 0.298 8.44 19.58 320 0.299 0.232 9.33 32.07 320 0.419 0.368 9.27 29.22

YOLOv5-S

1216 0.491 0.411 44.72 93.23

YOLOX-S

1216 0.520 0.436 50.87 172.46

YOLOv3-Tiny

1216 0.273 0.205 31.07 59.81
1120 0.515 0.431 39.25 81.70 1120 0.543 0.461 44.75 153.87 1120 0.289 0.217 26.70 52.55
1088 0.528 0.441 37.87 78.92 1088 0.550 0.467 42.66 145.86 1088 0.298 0.223 25.62 51.50
1024 0.541 0.456 31.56 68.47 1024 0.558 0.479 36.50 122.15 1024 0.309 0.234 22.23 42.32
800 0.566 0.484 21.98 47.97 800 0.578 0.502 25.23 86.88 800 0.350 0.264 15.93 34.40
768 0.568 0.486 20.87 42.72 768 0.576 0.499 23.67 76.01 768 0.355 0.271 15.01 29.14
736 0.565 0.486 19.56 41.36 736 0.576 0.501 22.72 74.58 736 0.355 0.271 13.83 27.86
704 0.566 0.488 17.10 38.67 704 0.577 0.500 19.72 68.24 704 0.359 0.275 12.03 27.24
672 0.565 0.486 16.40 35.95 672 0.572 0.497 19.11 66.11 672 0.365 0.276 12.07 26.73
640 0.560 0.482 15.88 33.73 640 0.567 0.495 18.13 61.25 640 0.359 0.275 12.28 26.13
608 0.559 0.480 14.32 30.55 608 0.564 0.491 16.39 56.07 608 0.365 0.282 12.68 26.11
576 0.556 0.476 13.45 28.43 576 0.559 0.483 15.77 53.41 576 0.366 0.282 13.31 27.32
544 0.550 0.474 13.70 27.35 544 0.549 0.478 15.02 50.06 544 0.363 0.281 12.64 26.19
512 0.546 0.470 11.74 24.07 512 0.541 0.470 12.94 38.82 512 0.362 0.280 11.25 23.16
480 0.542 0.466 11.20 22.92 480 0.534 0.463 12.53 37.80 480 0.357 0.277 9.81 22.80
448 0.526 0.453 11.31 22.63 448 0.523 0.454 12.14 35.69 448 0.350 0.271 10.93 21.53
416 0.519 0.442 11.30 22.42 416 0.510 0.441 11.65 40.33 416 0.341 0.267 10.07 21.50
384 0.501 0.427 10.82 22.68 384 0.496 0.426 11.29 30.69 384 0.327 0.258 9.43 20.41
352 0.485 0.411 9.80 22.97 352 0.473 0.407 10.85 29.71 352 0.318 0.244 7.69 19.90
320 0.466 0.395 10.36 22.55 320 0.449 0.387 10.56 29.29 320 0.296 0.233 7.06 19.49

YOLOv5-M

1216 0.582 0.498 95.13 221.95

YOLOX-M

1216 0.604 0.520 114.12 409.10

YOLOv3

1216 0.590 0.505 190.35 520.83
1120 0.603 0.517 80.77 195.55 1120 0.617 0.537 96.51 355.76 1120 0.610 0.527 162.39 452.74
1088 0.609 0.527 77.64 186.50 1088 0.620 0.540 92.52 346.24 1088 0.616 0.535 156.79 439.70
1024 0.620 0.537 65.85 159.13 1024 0.631 0.552 80.05 279.78 1024 0.628 0.547 132.77 361.47
800 0.637 0.565 43.23 111.77 800 0.638 0.565 52.24 200.09 800 0.652 0.575 85.94 268.28
768 0.638 0.564 40.56 98.19 768 0.640 0.566 49.24 172.17 768 0.653 0.578 79.94 222.95
736 0.638 0.562 38.92 93.51 736 0.636 0.562 47.38 167.06 736 0.655 0.577 73.94 213.79
704 0.634 0.564 35.84 89.38 704 0.636 0.564 42.12 153.56 704 0.654 0.579 67.04 202.36
672 0.635 0.558 33.36 81.95 672 0.632 0.560 39.96 151.43 672 0.647 0.575 62.76 189.52
640 0.633 0.558 30.89 77.12 640 0.631 0.560 37.39 132.98 640 0.648 0.575 60.09 175.90
608 0.628 0.557 28.55 70.45 608 0.622 0.551 34.81 126.33 608 0.647 0.575 51.97 166.00
576 0.625 0.551 26.92 65.46 576 0.618 0.545 32.46 118.61 576 0.644 0.569 50.04 152.34
544 0.620 0.549 23.29 62.67 544 0.613 0.544 28.10 113.13 544 0.643 0.568 46.29 148.81
512 0.613 0.541 20.27 52.01 512 0.607 0.537 24.70 83.77 512 0.639 0.567 36.39 115.59
480 0.608 0.536 19.33 48.69 480 0.598 0.527 23.29 82.23 480 0.635 0.562 34.73 109.14
448 0.601 0.527 17.95 44.87 448 0.585 0.517 21.70 75.99 448 0.629 0.554 33.00 102.46
416 0.588 0.515 16.52 40.70 416 0.572 0.506 20.18 71.56 416 0.620 0.547 28.46 95.96
384 0.581 0.507 14.63 34.99 384 0.557 0.489 17.72 61.44 384 0.608 0.536 26.62 80.21
352 0.562 0.491 12.48 32.96 352 0.542 0.474 14.75 53.96 352 0.597 0.523 20.24 75.39
320 0.544 0.474 11.72 30.13 320 0.521 0.456 14.04 49.77 320 0.584 0.507 19.19 77.35

YOLOv5-L

1216 0.610 0.531 145.92 408.39

YOLOX-L

1216 0.604 0.520 182.55 743.80
1120 0.632 0.550 126.65 358.01 1120 0.616 0.536 157.05 654.94
1088 0.641 0.559 123.17 346.03 1088 0.619 0.541 151.77 643.51
1024 0.648 0.569 101.72 289.33 1024 0.630 0.550 127.52 502.88
800 0.664 0.592 68.94 208.11 800 0.639 0.565 86.40 367.82
768 0.668 0.596 65.12 177.36 768 0.640 0.567 81.26 307.29
736 0.666 0.594 63.61 170.49 736 0.636 0.562 78.29 301.54
704 0.667 0.597 52.40 160.85 704 0.635 0.562 65.52 271.20
672 0.666 0.593 50.03 150.13 672 0.632 0.561 62.21 276.35
640 0.661 0.593 48.15 140.78 640 0.631 0.558 59.94 240.66
608 0.661 0.593 43.05 128.93 608 0.624 0.554 52.66 227.40
576 0.660 0.589 40.77 117.63 576 0.620 0.548 50.44 213.53
544 0.657 0.587 38.51 113.12 544 0.614 0.543 47.41 206.73
512 0.646 0.577 29.28 93.16 512 0.608 0.535 36.62 147.37
480 0.643 0.572 28.35 88.00 480 0.599 0.526 35.06 145.33
448 0.633 0.563 26.75 81.79 448 0.585 0.517 33.08 133.20
416 0.626 0.554 24.28 74.16 416 0.574 0.506 29.56 126.93
384 0.614 0.544 22.36 61.87 384 0.558 0.490 27.44 107.09
352 0.596 0.524 17.84 57.89 352 0.539 0.472 21.63 93.68
320 0.581 0.510 16.73 56.23 320 0.522 0.458 20.39 88.54

YOLOv5-X

1216 0.623 0.549 282.31 738.13

YOLOX-X

1216 0.651 0.571 347.82 1307.59
1120 0.642 0.568 245.27 643.86 1120 0.661 0.586 302.34 1142.29
1088 0.650 0.574 230.51 619.64 1088 0.665 0.588 282.46 1129.55
1024 0.658 0.581 195.95 520.48 1024 0.674 0.598 242.22 886.70
800 0.681 0.609 130.05 373.17 800 0.676 0.605 160.70 640.32
768 0.679 0.609 119.19 315.62 768 0.677 0.606 146.58 537.05
736 0.682 0.609 115.06 303.22 736 0.676 0.603 142.08 521.85
704 0.683 0.613 103.62 285.91 704 0.675 0.603 127.68 477.86
672 0.681 0.609 101.89 269.03 672 0.671 0.600 121.04 486.61
640 0.678 0.606 95.33 252.76 640 0.666 0.597 112.93 421.01
608 0.677 0.607 77.92 230.60 608 0.665 0.594 96.73 393.33
576 0.675 0.606 73.16 213.55 576 0.660 0.591 89.91 370.59
544 0.670 0.602 67.05 204.56 544 0.655 0.584 82.52 357.46
512 0.664 0.592 61.19 164.08 512 0.647 0.577 71.75 252.12
480 0.662 0.592 58.37 155.17 480 0.642 0.574 69.04 245.71

(continued on next page)
8

Integration 95 (2024) 102127D.G. Lema et al.
Table 3 (continued).
448 0.652 0.580 52.63 145.22 448 0.627 0.558 63.87 227.60
416 0.645 0.570 42.17 131.66 416 0.618 0.549 51.58 216.16
384 0.633 0.558 38.24 110.61 384 0.608 0.541 46.40 184.39
352 0.619 0.549 33.18 103.04 352 0.589 0.520 40.30 162.49
320 0.603 0.529 31.10 100.81 320 0.570 0.504 37.29 151.78
Fig. 3. Metrics varying input size on a NVIDIA Jetson Nano. Each mark represents an input size from 320 to 800 (in steps of 32), 1024, 1088, 1120 and 1216. (a) Using TensorRT.
(b) Using Pytorch.
Fig. 4. Evolution of inference times as a function of the size of the models.
9

Integration 95 (2024) 102127D.G. Lema et al.
Table 4
Metrics of all models by varying the input size over the NVIDIA Jetson Nano.

Model Size AP50 AP Inference time (ms) Model Size AP50 AP Inference time (ms) Model Size AP50 AP Inference time (ms)

TensorRT Pytorch TensorRT Pytorch TensorRT Pytorch

YOLOv5-N

1216 0.368 0.297 170.12 183.10

YOLOX-N

1216 0.271 0.208 184.90 277.56

YOLOX-Tiny

1216 0.388 0.316 260.24 478.75
1120 0.394 0.318 145.35 158.90 1120 0.292 0.219 160.15 234.52 1120 0.425 0.344 224.40 415.49
1088 0.401 0.325 138.98 153.61 1088 0.299 0.223 150.37 231.03 1088 0.430 0.349 212.78 401.23
1024 0.415 0.338 120.77 138.53 1024 0.309 0.231 133.81 200.90 1024 0.450 0.368 180.97 335.34
800 0.445 0.368 85.77 98.59 800 0.348 0.265 85.86 127.22 800 0.504 0.424 122.10 232.30
768 0.456 0.378 83.32 87.46 768 0.352 0.269 82.02 119.13 768 0.508 0.428 106.07 206.63
736 0.457 0.379 80.26 87.49 736 0.358 0.270 74.73 111.10 736 0.507 0.431 102.18 197.06
704 0.457 0.380 65.29 74.40 704 0.360 0.272 70.59 103.41 704 0.511 0.434 94.08 182.38
672 0.459 0.380 75.15 74.47 672 0.364 0.278 63.34 95.26 672 0.509 0.432 91.26 170.93
640 0.458 0.381 61.81 72.32 640 0.360 0.276 58.35 86.84 640 0.512 0.437 78.59 155.06
608 0.455 0.379 57.13 66.83 608 0.366 0.279 52.79 82.41 608 0.511 0.433 73.98 142.67
576 0.452 0.376 50.13 62.48 576 0.365 0.282 48.02 77.82 576 0.509 0.436 67.89 130.39
544 0.448 0.374 45.16 61.95 544 0.362 0.282 44.26 75.69 544 0.508 0.432 68.03 125.68
512 0.439 0.365 38.12 56.16 512 0.363 0.280 38.72 74.97 512 0.504 0.429 50.62 100.76
480 0.433 0.360 34.18 54.88 480 0.355 0.278 36.27 74.01 480 0.495 0.424 48.94 97.91
448 0.423 0.351 33.80 53.71 448 0.350 0.273 33.29 74.61 448 0.487 0.416 44.73 87.21
416 0.413 0.343 28.74 51.42 416 0.339 0.266 30.51 74.28 416 0.477 0.408 43.70 79.79
384 0.397 0.329 26.77 49.15 384 0.329 0.256 28.55 74.19 384 0.460 0.392 37.11 66.70
352 0.379 0.313 26.46 47.19 352 0.315 0.244 26.26 73.99 352 0.446 0.380 34.24 64.32
320 0.363 0.298 25.39 45.94 320 0.299 0.232 25.41 71.97 320 0.419 0.368 30.76 63.78

YOLOv5-S

1216 0.491 0.411 293.79 373.64

YOLOX-S

1216 0.520 0.436 349.80 679.01

YOLOv3-Tiny

1216 0.273 0.205 193.42 262.34
1120 0.515 0.431 258.34 328.49 1120 0.543 0.461 300.67 586.71 1120 0.289 0.217 172.42 232.29
1088 0.528 0.441 243.24 313.30 1088 0.550 0.467 289.67 558.20 1088 0.298 0.223 168.31 222.54
1024 0.541 0.456 207.94 274.44 1024 0.558 0.479 242.08 456.63 1024 0.309 0.234 130.00 187.15
800 0.566 0.484 136.28 194.07 800 0.578 0.502 165.44 330.88 800 0.350 0.264 93.66 142.29
768 0.568 0.486 121.69 176.79 768 0.576 0.499 145.20 299.75 768 0.355 0.271 79.42 122.44
736 0.565 0.486 115.71 166.19 736 0.576 0.501 138.73 289.04 736 0.355 0.271 76.76 119.29
704 0.566 0.488 108.19 154.27 704 0.577 0.500 126.49 269.61 704 0.359 0.275 70.76 115.56
672 0.565 0.486 101.20 140.95 672 0.572 0.497 122.07 251.10 672 0.365 0.276 69.95 108.68
640 0.560 0.482 89.22 130.78 640 0.567 0.495 106.39 226.60 640 0.359 0.275 62.27 106.10
608 0.559 0.480 81.15 119.65 608 0.564 0.491 97.60 213.40 608 0.365 0.282 56.48 100.13
576 0.556 0.476 79.73 109.58 576 0.559 0.483 91.51 196.16 576 0.366 0.282 56.85 95.83
544 0.550 0.474 72.64 101.82 544 0.549 0.478 84.88 185.73 544 0.363 0.281 51.30 91.13
512 0.546 0.470 60.94 88.01 512 0.541 0.470 67.26 143.07 512 0.362 0.280 39.74 74.04
480 0.542 0.466 55.58 81.56 480 0.534 0.463 62.78 137.89 480 0.357 0.277 37.10 71.34
448 0.526 0.453 50.21 75.25 448 0.523 0.454 57.40 121.30 448 0.350 0.271 31.48 66.74
416 0.519 0.442 45.77 68.81 416 0.510 0.441 53.95 110.52 416 0.341 0.267 29.70 64.50
384 0.501 0.427 40.32 59.76 384 0.496 0.426 44.78 91.82 384 0.327 0.258 27.40 53.61
352 0.485 0.411 35.00 56.77 352 0.473 0.407 39.41 85.04 352 0.318 0.244 27.21 53.20
320 0.466 0.395 31.43 50.59 320 0.449 0.387 36.82 77.26 320 0.296 0.233 25.37 50.20

YOLOv5-M

1216 0.582 0.498 625.36 891.16

YOLOX-M

1216 0.604 0.520 783.30 1610.57

YOLOv3

1216 0.590 0.505 1443.86 2074.70
1120 0.603 0.517 536.53 770.11 1120 0.617 0.537 677.11 1408.73 1120 0.610 0.527 1271.37 1768.54
1088 0.609 0.527 519.83 737.88 1088 0.620 0.540 647.27 1336.64 1088 0.616 0.535 1223.61 1706.92
1024 0.620 0.537 434.52 638.76 1024 0.631 0.552 529.96 1102.64 1024 0.628 0.547 961.28 1418.06
800 0.637 0.565 296.93 454.14 800 0.638 0.565 367.77 769.53 800 0.652 0.575 692.87 1050.94
768 0.638 0.564 254.89 399.01 768 0.640 0.566 311.45 685.07 768 0.653 0.578 564.81 897.09
736 0.638 0.562 241.04 380.75 736 0.636 0.562 300.42 660.21 736 0.655 0.577 547.37 855.90
704 0.634 0.564 226.07 350.43 704 0.636 0.564 277.56 612.36 704 0.654 0.579 510.27 809.51
672 0.635 0.558 208.09 322.33 672 0.632 0.560 262.36 572.06 672 0.647 0.575 491.70 748.74
640 0.633 0.558 187.36 299.98 640 0.631 0.560 231.61 515.86 640 0.648 0.575 433.27 691.91
608 0.628 0.557 170.71 273.37 608 0.622 0.551 213.75 482.77 608 0.647 0.575 401.40 652.22
576 0.625 0.551 163.97 251.48 576 0.618 0.545 199.27 438.36 576 0.644 0.569 379.21 609.58
544 0.620 0.549 148.55 234.36 544 0.613 0.544 189.61 425.92 544 0.643 0.568 337.21 577.54
512 0.613 0.541 116.56 194.47 512 0.607 0.537 138.69 319.07 512 0.639 0.567 245.62 452.50
480 0.608 0.536 107.72 182.14 480 0.598 0.527 132.91 313.11 480 0.635 0.562 234.27 432.00
448 0.601 0.527 101.30 166.05 448 0.585 0.517 125.29 280.31 448 0.629 0.554 216.46 397.36
416 0.588 0.515 92.31 151.65 416 0.572 0.506 113.29 254.34 416 0.620 0.547 203.61 377.29
384 0.581 0.507 80.01 128.25 384 0.557 0.489 95.59 210.45 384 0.608 0.536 166.89 311.50
352 0.562 0.491 71.97 118.65 352 0.542 0.474 79.08 191.62 352 0.597 0.523 146.36 293.26
320 0.544 0.474 63.56 104.77 320 0.521 0.456 71.98 175.17 320 0.584 0.507 132.46 260.28

YOLOv5-L

1216 0.610 0.531 1111.46 1633.32

YOLOX-L

1216 0.604 0.520 1422.16 2803.41
1120 0.632 0.550 965.79 1396.58 1120 0.616 0.536 1236.56 2613.85
1088 0.641 0.559 928.83 1347.54 1088 0.619 0.541 1189.40 2450.35
1024 0.648 0.569 750.04 1138.25 1024 0.630 0.550 957.30 1962.33
800 0.664 0.592 523.69 822.86 800 0.639 0.565 669.48 1375.42
768 0.668 0.596 442.63 713.26 768 0.640 0.567 556.73 1181.25
736 0.666 0.594 438.78 683.32 736 0.636 0.562 538.00 1159.05
704 0.667 0.597 407.85 631.36 704 0.635 0.562 499.17 1109.07
672 0.666 0.593 383.16 579.93 672 0.632 0.561 481.34 1036.40
640 0.661 0.593 344.15 536.17 640 0.631 0.558 418.18 924.12
608 0.661 0.593 317.15 501.15 608 0.624 0.554 386.83 879.69
576 0.660 0.589 285.75 460.62 576 0.620 0.548 360.60 812.27
544 0.657 0.587 270.14 432.25 544 0.614 0.543 346.94 775.81
512 0.646 0.577 193.81 355.21 512 0.608 0.535 243.87 566.45
480 0.643 0.572 184.23 338.36 480 0.599 0.526 237.37 556.09
448 0.633 0.563 169.39 311.20 448 0.585 0.517 219.17 497.40
416 0.626 0.554 162.03 288.41 416 0.574 0.506 203.10 469.88
384 0.614 0.544 140.32 235.94 384 0.558 0.490 168.02 398.59
352 0.596 0.524 113.53 217.30 352 0.539 0.472 145.11 368.69
320 0.581 0.510 103.47 191.71 320 0.522 0.458 129.75 328.61
AGX Xavier offers the best FPS/Watt ratio, with the NVIDIA Jetson
Nano being disadvantaged by the change in criteria. Based on cost, a
device with an NVIDIA RTX 2080Ti is the most cost-effective.

4.7. Use of edge computing devices without hardware accelerator

One of the most widely used devices in the field of IoT (Internet of
Things) is the Raspberry Pi v4. This device is priced at approximately
64 euros for the 4 GB memory version, and 85 euros for the 8 GB
version. In terms of cost, it competes directly with the NVIDIA Jetson
Nano. However, this device does not include GPU, nor any other hard-
ware accelerator. Table 12 shows the inference times of the YOLOv5-N
model on the 8 GB Raspberry Pi v4 using Pytorch (since it does not
10

have an NVIDIA GPU, TensorRT cannot be used). As can be seen, for
all input image sizes the inference time is over 1000 ms. The NVIDIA
Jetson Nano, which is similarly priced, does not exceed 175 ms for
any input size. This analysis demonstrates the importance of having
a hardware accelerator, such as a GPU, for the application of object
detection models based on deep learning. These inference times over
1000 ms may be feasible in scenarios where there are no major time
constraints, but for cases where real-time (30 FPS) is needed, it may be
excessive.

4.8. Use of cloud alternative

The use of cloud computing is a possible alternative to the use of
edge computing devices. However, the main problem of this solution is
the transfer time of the images to the computing center, and the transfer

Integration 95 (2024) 102127D.G. Lema et al.
Table 5
Metrics of all models by varying the input size over the Google Coral Dev Board.

Model Size AP50 AP Inference time (ms)

YOLOv5-N

1216 0.345 0.270 3402.55
1120 0.367 0.288 2888.34
1088 0.379 0.298 2726.18
1024 0.394 0.311 2421.79
800 0.427 0.344 1469.61
768 0.434 0.350 1358.18
736 0.433 0.350 1246.06
704 0.435 0.352 1134.66
672 0.444 0.359 1034.63
640 0.438 0.355 940.79
608 0.438 0.354 847.69
576 0.432 0.351 761.07
544 0.430 0.350 679.96
512 0.416 0.338 602.46
480 0.415 0.337 526.83
448 0.407 0.329 457.76
416 0.392 0.319 395.29
384 0.381 0.309 336.79
352 0.367 0.297 281.95
320 0.347 0.280 232.36

SSD-Mobilenet v1_TF1 300 0.274 0.218 10.14
SSD-Mobilenet v2_TF1 300 0.309 0.257 13.99
SSD-Mobilenet v2_TF2 300 0.283 0.229 19.66
EfficientDet-Lite 1_TF2 384 0.467 0.399 202.63

Table 6
Comparison in YOLOv5-M and YOLOv8-M with Pytorch.

Model Millions of
parameters

Size AP50 AP Inference
time (ms)

YOLOv5-M 21.2

768 0.638 0.564 8.69
608 0.628 0.557 7.16
448 0.601 0.527 5.93
320 0.544 0.474 5.56

YOLOv8-M 25.9

768 0.790 0.611 7.55
608 0.780 0.607 6.20
448 0.752 0.582 5.19
320 0.695 0.542 5.36

Table 7
Actual consumption of tested devices.

Device Watts

NVIDIA RTX 2080Ti 258.0
NVIDIA Jetson AGX Xavier 19.0
NVIDIA Jetson Nano 7.0
Google Coral Dev Board 4.5

time of the results to the system in charge of performing the appropriate
actions. In [44], it is shown how network times considerably influence
the final processing time. In addition, another key factor is cost. If the
NC6 instance of Azure is selected (cheapest option with GPU), whose
cost per hour is e0.98, and assuming constant processing services are
needed, the monthly cost of the cloud service will be e705.60. Given
that the cost of an NVIDIA Jetson Nano is between e50 and e100, and
that of an NVIDIA Jetson AGX Xavier is approximately e650, the use of
cloud alternatives may be too expensive. Another cheaper alternative is
the use of a CaaS (Container as a Service) with a CPU. This option costs
e0.11 per hour, so the monthly cost would be e79.20. Even though it
is a cheaper choice, its monthly cost may not compensate its use.

The choice of a cloud alternative may be interesting if constant
processing is not required, in which case it would be convenient to turn
off the services when they are not needed, or when the processing needs
are not stable over time.
11
Fig. 5. Detections of persons carried out with various models. (a–c) Ground truth. (d–f)
YOLOv5-X at 704. (g–i) YOLOv5-L at 512. (j–l) YOLOv5-S at 320. (m–o) SSD-Mobilenet
v2_TF1 at 300.

5. Conclusion

In this paper the performance of object detection models based on
deep learning on edge computing devices are quantitatively compared.

Throughout the paper, the results of evaluating YOLOv3, YOLOv5
and YOLOX, with all their variants, on a server with a NVIDIA RTX
2080 Ti, an NVIDIA Jetson AGX Xavier, an NVIDIA Jetson Nano and a
Google Coral Dev Board are shown. The results are measured both in
terms of inference speed and Average Precision (AP) using the Pytorch,
TensorRT and Tensorflow Lite frameworks.

After analyzing the results, the following conclusions are reached:

• Inference is faster with TensorRT than with Pytorch (batch size
of 1). The more complex the model and/or the more limited the

Integration 95 (2024) 102127D.G. Lema et al.
Table 8
Higher AP models processing images in real-time (30 FPS).

Device Model Size Inference time (ms) AP50 AP

NVIDIA RTX 2080 Ti YOLOv5-X 704 7.44 0.683 0.613
NVIDIA Jetson AGX Xavier YOLOv5-L 512 29.28 0.646 0.577
NVIDIA Jetson Nano YOLOv5-S 320 31.43 0.466 0.395
Google Coral Dev Board SSD-Mobilenet v2_TF1 300 13.99 0.309 0.257
Table 9
Higher AP (Person class) models processing images in real-time (30 FPS).

Device Model Size Inference time (ms) AP50 AP

NVIDIA RTX 2080 Ti YOLOv5-X 704 7.44 0.844 0.610
NVIDIA Jetson AGX Xavier YOLOv5-L 512 29.28 0.814 0.571
NVIDIA Jetson Nano YOLOv5-S 320 31.43 0.661 0.399
Google Coral Dev Board SSD-Mobilenet v2_TF1 300 13.99 0.464 0.247
Table 10
Analysis of the FPS/Watt and FPS/e ratios of the fastest models with a minimum AP50 of 0.4.

Device Model Size FPS AP50 FPS/Watio FPS/e

NVIDIA RTX 2080 Ti YOLOv5-N 416 952.4 0.413 3.69 0.81
NVIDIA Jetson AGX Xavier YOLOX-Tiny 320 107.9 0.419 5.68 0.16
NVIDIA Jetson Nano YOLOv5-N 416 34.8 0.413 4.97 0.37
Google Coral Dev Board EfficientDet-Lite 1_TF2 384 4.9 0.467 1.10 0.03
Table 11
Analysis of the FPS/Watt and FPS/e ratios of the fastest models with a minimum AP50 of 0.65.

Device Model Size FPS AP50 FPS/Watio FPS/e

NVIDIA RTX 2080 Ti YOLOv5-L 544 233.1 0.657 0.90 0.20
NVIDIA Jetson AGX Xavier YOLOv5-L 544 26.0 0.657 1.37 0.04
NVIDIA Jetson Nano YOLOv5-L 544 3.7 0.657 0.53 0.04
Table 12
YOLOv5-N metrics varying the input size over the Raspberry Pi v4 8 GB.

Model Size AP50 AP Inference time (ms)

YOLOv5-N

1216 0.368 0.297 19 995.60
1120 0.394 0.318 16 142.07
1088 0.401 0.325 14 973.07
1024 0.415 0.338 13 335.00
800 0.445 0.368 7 344.73
768 0.456 0.378 6 674.43
736 0.457 0.379 6 174.60
704 0.457 0.380 5 584.57
672 0.459 0.380 5 004.10
640 0.458 0.381 4 566.80
608 0.455 0.379 4 051.70
576 0.452 0.376 3 520.87
544 0.448 0.374 3 149.07
512 0.439 0.365 2 772.37
480 0.433 0.360 2 418.90
448 0.423 0.351 2 112.93
416 0.413 0.343 1 841.77
384 0.397 0.329 1 526.20
352 0.379 0.313 1 381.90
320 0.363 0.298 1 150.20

device where the model is evaluated, the more this difference is
accentuated.

• There are no differences in terms of AP between TensorRT and
Pytorch. The same is not true for Tensorflow Lite. This is because
when converting the model to TFLite, it is necessary to use 8FP
instead of 16FP.

• The NVIDIA RTX 2080 Ti can run all models for all input sizes in
12

real-time using TensorRT.
• The NVIDIA Jetson AGX Xavier is a high-end edge computing de-
vice that can run a variety of models in real-time under different
input sizes.

• The NVIDIA Jetson Nano is a lower-end edge computing device
that can run a limited number of models in real-time.

• The Google Coral Dev Board is a device with more software
limitations than NVIDIA’s devices. Since it has TPU, the best
option is to use TFLite as a framework. Model conversion be-
tween frameworks is not quite optimal, as many of the operations
performed by the models cannot be performed on the TPU and
therefore must be performed on the CPU, slowing down the
inference process.

• The computational power of the devices is closely related to their
power consumption. The NVIDIA RTX 2080 Ti has the highest
power consumption, while the Google Coral Dev Board has the
lowest.

A server with a GPU such as the NVIDIA RTX 2080 Ti is not feasible
in scenarios where mobility is required or where many devices are
needed, since its cost is very high. The use of edge computing devices
may be the solution to many of these requirements. The NVIDIA Jetson
AGX Xavier performs well, making it possible to process images with
high precision in real time (30 FPS). In the case of power consumption
restrictions, the NVIDIA Jetson Nano or the Google Coral Dev Board
are good options as they have very low power consumption.

This paper compares different edge computing devices for real-time
image processing using deep learning-based object detection models.
The choice of the appropriate device depends on the usage scenario,
since for certain applications temporal or accuracy constraints can be
decisive. In a scenario where there are no major restrictions, low-cost
devices can be chosen. However, in scenarios where there are strong
restrictions it may be necessary to use higher performance devices, and

therefore more expensive.

Integration 95 (2024) 102127D.G. Lema et al.
CRediT authorship contribution statement

Darío G. Lema: Conceptualization, Data curation, Formal analy-
sis, Methodology, Investigation, Visualization, Writing – original draft,
Writing – review & editing. Rubén Usamentiaga: Funding acquisition,
Investigation, Project administration, Resources, Software, Supervision,
Validation. Daniel F. García: Project administration, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Dario G. Lema reports was provided by University of Oviedo.

Data availability

Data is in the manuscript.

Acknowledgments

This work has been partially funded by the project
RTI2018-094849-B-I00 of the Spanish National Plan for Research,
Development and Innovation.

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, in: F. Pereira, C. Burges, L. Bottou, K. Wein-
berger (Eds.), Advances in Neural Information Processing Systems, Vol. 25,
Curran Associates, Inc., 2012, URL https://proceedings.neurips.cc/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[2] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L.
Jackel, Handwritten digit recognition with a back-propagation network, in: D.
Touretzky (Ed.), Advances in Neural Information Processing Systems, Vol. 2,
Morgan-Kaufmann, 1989, URL https://proceedings.neurips.cc/paper/1989/file/
53c3bce66e43be4f209556518c2fcb54-Paper.pdf.

[3] G. Gilman, R.J. Walls, Characterizing concurrency mechanisms for NVIDIA GPUs
under deep learning workloads, Perform. Eval. 151 (2021) 102234, http://dx.doi.
org/10.1016/j.peva.2021.102234, URL https://www.sciencedirect.com/science/
article/pii/S0166531621000511.

[4] D.-S. Hong, H.-H. Chen, P.-Y. Hsiao, L.-C. Fu, S.-M. Siao, CrossFusion net: Deep
3D object detection based on RGB images and point clouds in autonomous
driving, Image Vis. Comput. 100 (2020) 103955, http://dx.doi.org/10.1016/
j.imavis.2020.103955, URL https://www.sciencedirect.com/science/article/pii/
S0262885620300871.

[5] X. Chen, H. Ma, J. Wan, B. Li, T. Xia, Multi-view 3D object detection network
for autonomous driving, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 1907–1915.

[6] A. Baba, T. Bonny, FPGA-based parallel implementation to classify hyper-
spectral images by using a convolutional neural network, Integration 92
(2023) 15–23, http://dx.doi.org/10.1016/j.vlsi.2023.04.003, URL https://www.
sciencedirect.com/science/article/pii/S0167926023000597.

[7] D.G. Lema, O.D. Pedrayes, R. Usamentiaga, P. Venegas, D.F. García, Automated
detection of subsurface defects using active thermography and deep learning
object detectors, IEEE Trans. Instrum. Meas. 71 (2022) 1–13, http://dx.doi.org/
10.1109/TIM.2022.3169484.

[8] R. Usamentiaga, D.G. Lema, O.D. Pedrayes, G. Daniel, Automated surface defect
detection in metals: a comparative review of object detection and semantic
segmentation using deep learning, IEEE Trans. Ind. Appl. (2022) 1, http://dx.
doi.org/10.1109/TIA.2022.3151560.

[9] R. Elakkiya, V. Subramaniyaswamy, V. Vijayakumar, A. Mahanti, Cervical cancer
diagnostics healthcare system using hybrid object detection adversarial networks,
IEEE J. Biomed. Health Inf. 26 (4) (2022) 1464–1471, http://dx.doi.org/10.
1109/JBHI.2021.3094311.

[10] L. Lecrosnier, R. Khemmar, N. Ragot, B. Decoux, R. Rossi, N. Kefi, J.-Y.
Ertaud, Deep learning-based object detection, localisation and tracking for smart
wheelchair healthcare mobility, Int. J. Environ. Res. Public Health 18 (1) (2021)
URL https://www.mdpi.com/1660-4601/18/1/91.

[11] S. Hochreiter, The vanishing gradient problem during learning recurrent neural
nets and problem solutions, Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 6
(02) (1998) 107–116.

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.
13
[13] L. Qian, Z. Luo, Y. Du, L. Guo, Cloud computing: An overview, in: M.G. Jaatun,
G. Zhao, C. Rong (Eds.), Cloud Computing, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 626–631.

[14] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research,
IEEE Access 8 (2020) 85714–85728, http://dx.doi.org/10.1109/ACCESS.2020.
2991734.

[15] J. Chen, X. Ran, Deep learning with edge computing: A review, Proc. IEEE 107
(8) (2019) 1655–1674, http://dx.doi.org/10.1109/JPROC.2019.2921977.

[16] A.A. Süzen, B. Duman, B. Şen, Benchmark analysis of jetson TX2, jetson nano
and raspberry PI using deep-CNN, in: 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications (HORA), 2020, pp.
1–5, http://dx.doi.org/10.1109/HORA49412.2020.9152915.

[17] A.S. Pinto de Aguiar, F.B. Neves dos Santos, L.C. Feliz dos Santos, V.M. de
Jesus Filipe, A.J. Miranda de Sousa, Vineyard trunk detection using deep
learning – an experimental device benchmark, Comput. Electron. Agric. 175
(2020) 105535, http://dx.doi.org/10.1016/j.compag.2020.105535, URL https:
//www.sciencedirect.com/science/article/pii/S0168169920304555.

[18] S. Arabi, A. Haghighat, A. Sharma, A deep-learning-based computer vi-
sion solution for construction vehicle detection, Comput.-Aided Civ. Infras-
truct. Eng. 35 (7) (2020) 753–767, http://dx.doi.org/10.1111/mice.12530,
URL https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12530. arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12530.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD:
Single shot MultiBox detector, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.),
Computer Vision – ECCV 2016, Springer International Publishing, Cham, 2016,
pp. 21–37.

[20] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for
mobile vision applications, 2017, arXiv preprint arXiv:1704.04861.

[21] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The pascal
visual object classes (VOC) challenge, Int. J. Comput. Vis. 88 (2) (2010) 303–338,
http://dx.doi.org/10.1007/s11263-009-0275-4.

[22] NVIDIA, Jetson nano, 2020, URL https://developer.nvidia.com/embedded/
jetson-nano-developer-kit. [Online] Accessed on 18 May 2022.

[23] NVIDIA, Jetson AGX xavier, 2020, URL https://developer.nvidia.com/embedded/
jetson-agx-xavier-developer-kit. [Online] Accessed on 18 May 2022.

[24] Google, Coral dev board, 2018, URL https://coral.ai/products/dev-board/#tech-
specs. [Online] Accessed on 18 May 2022.

[25] A. Gagliardi, F. de Gioia, S. Saponara, A real-time video smoke detection
algorithm based on Kalman filter and CNN, J. Real-Time Image Process. 18 (6)
(2021) 2085–2095, http://dx.doi.org/10.1007/s11554-021-01094-y.

[26] S. Cass, Taking AI to the edge: Google’s TPU now comes in a maker-friendly
package, IEEE Spectr. 56 (5) (2019) 16–17, http://dx.doi.org/10.1109/MSPEC.
2019.8701189.

[27] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[28] R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2015.

[29] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object
detection with region proposal networks, in: C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information Processing
Systems, Vol. 28, Curran Associates, Inc., 2015, URL https://proceedings.neurips.
cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf.

[30] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[31] J. Redmon, A. Farhadi, YOLO9000: Better, faster, stronger, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[32] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, 2018, arXiv
preprint arXiv:1804.02767.

[33] A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy
of object detection, 2020, arXiv preprint arXiv:2004.10934.

[34] G. Jocher, Ultralytics/yolov5: v6.1 - TensorRT, TensorFlow edge TPU
and openvino export and inference, 2022, http://dx.doi.org/10.5281/zenodo.
6222936.

[35] Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, YOLOX: Exceeding YOLO series in 2021,
2021, arXiv preprint arXiv:2107.08430.

[36] Z. Ge, S. Liu, Z. Li, O. Yoshie, J. Sun, OTA: Optimal transport assignment for
object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021, pp. 303–312.

[37] G. Jocher, A. Chaurasia, J. Qiu, YOLO by Ultralytics, 2023, URL https://github.
com/ultralytics/ultralytics.

[38] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD:
Single shot MultiBox detector, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.),
Computer Vision – ECCV 2016, Springer International Publishing, Cham, 2016,
pp. 21–37.

[39] Y.-C. Chiu, C.-Y. Tsai, M.-D. Ruan, G.-Y. Shen, T.-T. Lee, Mobilenet-SSDv2: An
improved object detection model for embedded systems, in: 2020 International
Conference on System Science and Engineering (ICSSE), 2020, pp. 1–5, http:
//dx.doi.org/10.1109/ICSSE50014.2020.9219319.

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
http://dx.doi.org/10.1016/j.peva.2021.102234
http://dx.doi.org/10.1016/j.peva.2021.102234
http://dx.doi.org/10.1016/j.peva.2021.102234
https://www.sciencedirect.com/science/article/pii/S0166531621000511
https://www.sciencedirect.com/science/article/pii/S0166531621000511
https://www.sciencedirect.com/science/article/pii/S0166531621000511
http://dx.doi.org/10.1016/j.imavis.2020.103955
http://dx.doi.org/10.1016/j.imavis.2020.103955
http://dx.doi.org/10.1016/j.imavis.2020.103955
https://www.sciencedirect.com/science/article/pii/S0262885620300871
https://www.sciencedirect.com/science/article/pii/S0262885620300871
https://www.sciencedirect.com/science/article/pii/S0262885620300871
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb5
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb5
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb5
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb5
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb5
http://dx.doi.org/10.1016/j.vlsi.2023.04.003
https://www.sciencedirect.com/science/article/pii/S0167926023000597
https://www.sciencedirect.com/science/article/pii/S0167926023000597
https://www.sciencedirect.com/science/article/pii/S0167926023000597
http://dx.doi.org/10.1109/TIM.2022.3169484
http://dx.doi.org/10.1109/TIM.2022.3169484
http://dx.doi.org/10.1109/TIM.2022.3169484
http://dx.doi.org/10.1109/TIA.2022.3151560
http://dx.doi.org/10.1109/TIA.2022.3151560
http://dx.doi.org/10.1109/TIA.2022.3151560
http://dx.doi.org/10.1109/JBHI.2021.3094311
http://dx.doi.org/10.1109/JBHI.2021.3094311
http://dx.doi.org/10.1109/JBHI.2021.3094311
https://www.mdpi.com/1660-4601/18/1/91
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb11
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb11
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb11
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb11
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb11
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb12
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb12
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb12
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb12
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb12
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb13
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb13
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb13
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb13
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb13
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/JPROC.2019.2921977
http://dx.doi.org/10.1109/HORA49412.2020.9152915
http://dx.doi.org/10.1016/j.compag.2020.105535
https://www.sciencedirect.com/science/article/pii/S0168169920304555
https://www.sciencedirect.com/science/article/pii/S0168169920304555
https://www.sciencedirect.com/science/article/pii/S0168169920304555
http://dx.doi.org/10.1111/mice.12530
https://onlinelibrary.wiley.com/doi/abs/10.1111/mice.12530
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12530
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12530
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12530
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb19
http://arxiv.org/abs/1704.04861
http://dx.doi.org/10.1007/s11263-009-0275-4
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://coral.ai/products/dev-board/#tech-specs
https://coral.ai/products/dev-board/#tech-specs
https://coral.ai/products/dev-board/#tech-specs
http://dx.doi.org/10.1007/s11554-021-01094-y
http://dx.doi.org/10.1109/MSPEC.2019.8701189
http://dx.doi.org/10.1109/MSPEC.2019.8701189
http://dx.doi.org/10.1109/MSPEC.2019.8701189
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb27
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb27
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb27
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb27
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb27
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb28
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb28
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb28
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb30
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb30
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb30
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb30
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb30
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb31
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb31
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb31
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
http://dx.doi.org/10.5281/zenodo.6222936
http://dx.doi.org/10.5281/zenodo.6222936
http://dx.doi.org/10.5281/zenodo.6222936
http://arxiv.org/abs/2107.08430
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb36
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb36
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb36
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb36
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb36
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb38
http://dx.doi.org/10.1109/ICSSE50014.2020.9219319
http://dx.doi.org/10.1109/ICSSE50014.2020.9219319
http://dx.doi.org/10.1109/ICSSE50014.2020.9219319

Integration 95 (2024) 102127D.G. Lema et al.
[40] M. Tan, R. Pang, Q.V. Le, EfficientDet: Scalable and efficient object detection,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[41] R. Padilla, W.L. Passos, T.L.B. Dias, S.L. Netto, E.A.B. da Silva, A comparative
analysis of object detection metrics with a companion open-source toolkit,
Electronics 10 (3) (2021) http://dx.doi.org/10.3390/electronics10030279, URL
https://www.mdpi.com/2079-9292/10/3/279.
14
[42] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L.
Zitnick, Microsoft coco: Common objects in context, in: European Conference on
Computer Vision, Springer, 2014, pp. 740–755.

[43] G. Jocher, Ultralytics/yolov3, 2022, URL https://github.com/ultralytics/yolov3.
[44] D.G. Lema, O.D. Pedrayes, R. Usamentiaga, D.F. García, Á. Alonso, Cost-

performance evaluation of a recognition service of livestock activity using aerial
images, Remote Sens. 13 (12) (2021) http://dx.doi.org/10.3390/rs13122318,
URL https://www.mdpi.com/2072-4292/13/12/2318.

http://refhub.elsevier.com/S0167-9260(23)00169-4/sb40
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb40
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb40
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb40
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb40
http://dx.doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb42
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb42
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb42
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb42
http://refhub.elsevier.com/S0167-9260(23)00169-4/sb42
https://github.com/ultralytics/yolov3
http://dx.doi.org/10.3390/rs13122318
https://www.mdpi.com/2072-4292/13/12/2318

	Quantitative comparison and performance evaluation of deep learning-based object detection models on edge computing devices
	Introduction
	Materials and methods
	Edge computing Devices
	NVIDIA Jetson Nano Developer Kit
	NVIDIA Jetson AGX Xavier Developer Kit
	Google Coral Dev Board

	Analysis of object detection algorithms
	You Only Look Once
	Single Shot Multibox Detector
	EfficientDet

	Evaluation Metrics

	Results
	NVIDIA RTX 2080Ti
	NVIDIA Jetson AGX Xavier Developer Kit
	NVIDIA Jetson Nano Developer Kit
	Google Coral Dev Board

	Discussion
	Influence of model size on results
	Inference with new models
	Power consumption
	Real-time image processing
	Real-time people detection
	FPS/Watt and FPS/e comparison
	Use of edge computing devices without hardware accelerator
	Use of cloud alternative

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

