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Vital stains were used in combination with fluorimetry for the elaboration of a new method to quantify
Streptomyces programmed cell death, one of the key events in Strepfomyces differentiation. The experimental
approach described opens the possibility of designing online protocols for automatic monitoring of industrial

fermentations.

Streptomyces is an extremely important bacterium for industry,
since approximately two-thirds of all antibiotics are synthesized by
members of this genus (4). Furthermore, streptomycetes produce
large numbers of eukaryotic cell differentiation inducers and
apoptosis inhibitors and inducers (19, 24, 25). Moreover, some
authors consider that bacteria with complex life cycles (strep-
tomycetes, cyanobacteria, etc.) are the evolutionary origin of
some of the protein domains involved in programmed cell
death (PCD) processes, including eukaryotic apoptosis: AP-
ATPases (apoptotic ATPases), kinases, caspases, nucleases,
etc. As such, these bacteria would constitute a simple and
convenient model by which to study this important phenome-
non (1, 3, 9, 12, 21, 26).

The classical Streptomyces developmental model in confluent
solid cultures assumed that differentiation processes took place
along the transverse axis of the cultures (bottom up): com-
pletely viable vegetative mycelia (substrate) grew on the sur-
face and inside agar until they underwent a PCD process, after
which they differentiated into a reproductive (aerial) mycelium
that grew into the air (reviewed in reference 8). Although most
industrial processes for secondary metabolite production are
performed in liquid cultures, Streptomyces strains generally do
not sporulate under these conditions (6, 18, 22), and most
authors assumed that differentiation did not take place. Re-
cently, a detailed analysis of Streptomyces differentiation in
surface and submerged cultures has been performed, describ-
ing novel aspects of the differentiation processes of this bacte-
rium (10-17). A previously unidentified compartmentalized
mycelium (MI) initiates the developmental cycle and then dies
following a highly ordered sequence (PCD) (10, 11, 14). Sub-
sequently, the remaining viable segments enlarge, yielding a
multinucleated mycelium (MII) that grows in successive waves
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that determine the characteristic complex growth curves of this
microorganism. In surface cultures, two types of second myce-
lium were defined, based on the absence (in early develop-
ment) or presence (in late development) of the hydrophobic
layers characteristic of aerial hyphae (5). The traditionally de-
nominated substrate (vegetative) mycelium corresponds, in
fact, to the early second multinucleated mycelium that still
lacks the hydrophobic layers coating the aerial mycelium (15).
We proposed that the first compartmentalized mycelium ful-
fills the true vegetative role in Streptomyces development in soil
(17). According to this scheme, the second early and late
multinucleated mycelia should be considered jointly as part of
the reproductive phase, since they are destined to sporulate
(17). The second multinucleated mycelium corresponds to the
antibiotic-producing structure under surface and submerged
conditions (16). The knowledge of the existence of a multinu-
cleated mycelium (MII) which differentiates from a compart-
mentalized mycelium (MI) after PCD opens a whole new sce-
nario in which to study differentiation and is crucial for the
analysis of differentiation in industrial fermentations (10-17).

The aim of this work was to establish a simple and reliable
method to monitor and quantify cell death processes in Strep-
tomyces fermentations. We used the vital stains SYTO 9 and
propidium iodide (PI) (LIVE/DEAD BacLight bacterial via-
bility kit; Invitrogen L-13152) previously adapted for confocal
microscopic analysis of Streptomyces differentiation as de-
scribed by Manteca et al. (11). SYTO 9 is a cell-permeating
nucleic acid stain which labels all of the cells, i.e., both those
with intact membranes and those with damaged membranes;
PI penetrates only bacteria with altered membrane permeabil-
ity. Thus, in the presence of both stains, bacteria with intact
membranes appear fluorescent green whereas bacteria with
compromised membranes appear red, given that PI causes a
reduction in SYTO 9 stain fluorescence when both dyes are
present (7). In this work, we go one step further in the appli-
cation of these methodologies to industrial fermentations by
means of the elaboration of a protocol for the quantification of
Streptomyces PCD processes. To do so, we combined these
stains with fluorimetric measurements (see Fig. 1 and 2). Sub-
merged cultures of Streptomyces coelicolor M145 were per-
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FIG. 1. S. coelicolor growth curve and antibiotic (actinorhodin and undecylprodigiosin) production in submerged cultures. Confocal microscope
images of key developmental stages stained with SYTO 9 and PI are shown at the top: individual hyphae of the first compartmentalized mycelium
(MI; arrows indicate septation), second multinucleated mycelium hyphae (MII), and the mycelial pellet (240 wm in diameter) undergoing PCD
processes in the center (red). The transitory growth arrest phase coinciding with PCD is indicated. See text for details.

formed under the conditions described by Manteca et al. in coelicolor chromosomal DNA (5.5 mg/ml) stained with SYTO
2008 (16) (100-ml flasks with 20 ml of R5A and 107 spores per 9 and PI. The optimal excitation wavelengths were 480 nm for
ml). The excitation and emission wavelengths were estimated PI and 545 nm for SYTO 9 and the optimal emission wave-
using commercial calf thymus DNA (Sigma D4522) and S. lengths were 500 and 610 nm, respectively, coinciding with data
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FIG. 2. Fluorimetric measurements. (a) Intensities of SYTO 9 (live cells) and PI (dead cells) emission along the S. coelicolor developmental
cycle. The cellular concentration (mg of protein per ml) is also shown. (b) Variation of the SYTO 9/PI ratio along the developmental cycle.
Antibiotic (actinorhodin and undecylprodigiosin) production is indicated. MI, first compartmentalized mycelium. MII, second multinucleated
mycelium. Arrows indicate maximum SYTO 9 intensities (live cells) corresponding to MI (15 h) and MII (100 h) mycelia. Data are presented as
averages and standard deviations from two biological replicates measured three times each (three methodological replicates). R.U., relative units.
See also Fig. S2 in the supplemental material.
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reported in the literature (see Fig. Sla in the supplemental
material). One milliliter of Streptomyces cultures was lysed by
boiling in 0.5 M NaOH, and protein concentration was mea-
sured with Bradford reagent (2). Cell concentrations (ex-
pressed as mg protein/ml) for which the fluorimetric measure-
ments were proportional to the fluorescence emissions were
determined (see Fig. S1b in the supplemental material). Fluo-
rimetric measurements in small volumes (50 wl; microtiter
plates with a thin light beam) (Cary Eclipse Fluorescence spec-
trophotometer) were highly variable, owing to the heterogene-
ity of the cultures formed by relatively large pellets (around
500 pm in diameter; not shown) (16). This problem was over-
come by increasing the measurement volumes (2 ml), making
it possible for the light beam to include several pellets in the
same measurement (Perkin-Elmer LS 50B). Two independent
cultures were processed (biological replicates), and three mea-
surements of each (methodological replicates) were per-
formed.

A growth curve of S. coelicolor cultivated under the condi-
tions described above is shown in Fig. 1. The growth arrest
phase and the two waves of cell growth (MI and MII) are
readily visible. The SYTO 9 and PI emissions correlate well
with this growth curve and the differentiation processes (Fig.
2a): at early time points, there is an initial exponential growth
phase of the MI reflected in a rapid increase in SYTO 9
fluorescence; PI intensity increases slowly as a result of the
hyphae that begin to die in the center of the mycelial pellets at
early time points (16). Subsequently, SYTO 9 fluorescence
decreases quickly in the phases preceding transitory growth
arrest, indicating that the fluorescence derived from the MI
growing cells cannot offset the loss of the MI cells which are
dying in the center of the mycelial pellets. Finally, MI differ-
entiates to MII and undergoes a new exponential growth
phase, which is also visible as a stabilization and posterior
increase in SYTO 9 fluorescence. Despite the strong correla-
tion between Streptomyces development and SYTO 9 and PI
emissions, these values were not terribly informative; for in-
stance, a SYTO 9 intensity of 4,000 relative units could be
observed during the MI or MII stage. A value of 3,500 PI
relative units (Fig. 2a) was likewise visible during both stages.
However, when the data were normalized as a SYTO 9/PI ratio
(Fig. 2b), we were able to obtain a reliable marker of differ-
entiation: antibiotic production occurred when these ratios
reached values between 0.5 and 1. This overlaps with the tran-
sitory growth arrest and MII phases (Fig. 2b). The reproduc-
ibility of these measurements was excellent, with average co-
efficients of variation between biological replicates of about
0.09 and 50% for methodological replicates (see Fig. S2 in the
supplemental material), demonstrating that the SYTO 9/PI
index is a powerful indicator of Streptomyces differentiation. In
the case reported here, antibiotic production began only at
values of less than 1 (Fig. 2b).

Streptomyces differentiation in submerged cultures has been
largely ignored (16, 20, 22, 23), since the optimization of in-
dustrial fermentations is an essentially empirical process. A
keen understanding of antibiotic production and differentia-
tion that relies on an autophagic process (PCD) is crucial to
manipulating fermentation parameters and inducing the for-
mation of the antibiotic-producing mycelium (MII). The meth-
odology developed here constitutes a straightforward experi-

MONITORING OF STREPTOMYCES DIFFERENTIATION 3403

mental means by which to do so, opening the possibility of
automatic online protocols for their implementation on an
industrial scale.
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