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A B S T R A C T

The aggregation of several predictors in time series forecasting has been used intensely in the last decade in
order to construct a better resulting model. Some of the most used alternatives are the ones related to the
Induced Ordered Weighted Averaging (IOWA), in which the prediction values are ordered using a secondary
vector, often related to the accuracy of the prediction model in the last prediction. Although the time series
study has been historically a subject related to statistics and stochastic processes, the random behaviour of the
aggregation process is typically not considered. In addition, extensions of aggregation functions with a weaker
notion of monotonicity, pre-aggregation functions, are appearing as better alternative for some topics such us
classification. In this paper, a pre-aggregation extension of the IOWA operator, the Induced Ordered Linear
Fusion (IOLF), is defined as a way to aggregate time series model predictions and its behaviour is studied
from a probabilistic point of view. The IOLF operator over random vectors is defined, its properties studied
and the relation between some averaging aggregation functions established. The expressions of the optimal
weights according to statistical criteria are derived. The advantages and consequences of the use of the IOLF
operator are studied, and its behaviour is compared to the usual procedures. Numerical results illustrate its
performance on a practical example.
. Introduction

.1. Motivation and main contributions

In time series forecasting, there exists a huge variety of different
rediction methods, each with its benefits and drawbacks. In general, it
s not easy to choose the best prediction model and, therefore, ensem-
le methods are usually used to combine the predictions of different
rediction models to obtain a better single prediction [1,2].

One of the most used alternatives in the last decade is the In-
uced Ordered Weighted Averaging (IOWA) operator, introduced by
ager [3]. The IOWA operator orders the predictions of the models
sing a secondary vector and then computes a weighted mean. This
econdary vector is usually chosen to be the precision of the models
n the last time step [4], the main vector itself, resulting in a Or-
ered Weighted Averaging (OWA) or a increasing vector, resulting in
Weighted Averaging Mean (WAM) [5].

The IOWA operator is an aggregation function, thus it is monotone
nd fulfil some boundary conditions. In the last years, extensions of

∗ Corresponding author.
E-mail address: bazjuan@uniovi.es (J. Baz).

aggregation functions that relax these conditions are outperforming
classical aggregation functions for some tasks. We refer to the gen-
eralization of the Choquet Integral, see [6], and its applicability to
classification [7,8] or image analysis [9], or to the use of t-norm based
pre-aggregation in Knowledge-Based Systems [10].

In our context, we can follow this idea by generalizing the IOWA op-
erator by considering negative weights when computing the weighted
mean of the ordered arguments. This generalization can also be ex-
tended to OWA and WAM operators. We devote this paper to follow
this idea, studying the properties, semantics and applicability in time
series forecasting of the resulting fusion operator. In particular, let us
point-out the main original contributions of this paper:

• The Induced Ordered Linear Fusion Operator (IOLF) is defined
as a generalization of the IOWA operator by allowing negative
weights.

• Its monotonicity, boundary conditions and the semantics of neg-
ative weights are studied.
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• A closed expression of the optimal weights with respect to statis-
tical criteria is derived. Results proving important properties of
the operator and the derivation of optimal weights are provided,
considering a probability approach.

• Several IOLF operators are applied in a illustrative example in
time series prediction. Its behaviour is compared with the one of
IOWA, OWA and WAM operators.

The probability approach of the paper is justified by the fact that
ime series and several prediction models, such as the ARIMA, Kalman
ilter or Exponential Smoothing [11,12], are defined typically in terms
f random variables.

.2. Related work

We devote this Subsection to make a literature survey on the topic
f ensemble methods for time series. The literature review has been
arried out through the search engines Scopus, Web of Science and
oogle Scholar. The most important used keywords have been time
eries, prediction, forecast, ensemble, aggregation, fusion, weighted aver-
ging, ordered weighted averaging, induced weighted averaging, OWA and
OWA. We have also used forward (snowball) and backward reference
earching, considering papers that cite or are cited by relevant works.
e have focused mainly on the use of linear aggregation functions,

ince they are widely used in the literature and also are directly related
ith our proposal.

The use of ensembles in time series has been investigated deeply in
he literature. Some surveys focused on the topic have been published
n the last years, for instance, see [1,2,13].

Technically, models based on decision trees such that random forest
nd boosted decision trees are particular types of ensembles, see [14].
owever, the initial prediction models are weak predictors of the same

ype. This type of ensembles are known as homogeneous ensembles. We
re interested in heterogeneous ensembles, which consider strong pre-
iction models based on different techniques that can target different
ata characteristics.

For instance, the authors in [15] combine machine learning models
y using weighted means in an application regarding financial data.
he different architectures of the models make the ensembled model
o be more flexible and, therefore, to have a better accuracy than
he initial models. The use of aggregation functions is extended as
nsembles in the literature [1]. For instance, the authors in [16] give
method that construct confidence intervals based on aggregation

unctions. A comparative study between different alternatives of linear
ggregation functions is made in [5]. In the considered datasets, the
rdered Weighted Averaging outperforms the Weighted Arithmetic
ean.

Another linear aggregation function that is used in this regard
s the Induced Ordered Weighted Averaging (IOWA), in which the
rguments the predictions are ordered by, typically, the precision in
he previous times. This technique is quite popular, with applications
n safety monitoring [4,17], logistic [18], economy [19–22], energy
esources [23–25] or climatology [26,27]. This approach permits to
earrange the prediction models dynamically as time changes. Another
lternative of time-dependant ensemble is explored in [28], in which a
eighted mean with dynamic weights is proposed.

Other ensemble methods focus in how the initial prediction models
re trained. Bagging ensemble, see [1], uses different bootstrap samples
o train the prediction models and then applies a weighted mean. Note
hat bootstrap sampling in time series is not easy due the dependence
etween observations, thus block bootstrap [29] should be used. In
hese models, the diversity of the models is not only due to differences
n the architecture but also in the training samples.

Not only aggregation functions can be used as ensembles. The
redictions of the initial prediction models can be used as the inputs
2

f a machine learning prediction model that gives the final prediction.
Table 1
Table summarizing the ensemble models used and the conclusions or relevant comments
of some of the reviewed papers.

Ref Ensemble model/s Comments/Conclusions

[4] WAM, IOWA IOWA outperforms WAM
[5] WAM, OWA OWA outperforms WAM
[15] WAM Ensemble outperforms initial models
[16] Based on the Mean Focuses on confidence intervals
[17] IOWA Ensemble outperforms initial models
[18] IOWA Learning the weights improves the results
[19] IOWA Ensemble outperforms initial models
[20] WAM, IOWA Accuracy-based WAM has better results
[22] IOWA Ensemble outperforms initial models
[23] IOWA Ensemble outperforms initial models
[24] IOWA Ensemble outperforms initial models
[25] Based on IOWA Ensembles outperform initial models
[26] IOWA Ensemble outperforms initial models
[27] IOWA Uses bootstrap
[30] SVR SVR ensemble outperforms other models
[31] Combiner, others Combiner outperforms other ensembles
[32] WAM, Median, Mode Mode outperforms other ensembles

The authors in [30] use, for instance, Support Vector Regression.
In [31], a Combiner is proved to have a better behaviour than differ-
ent weighted-based aggregation functions for medical data. However,
these ensemble models lack the explainability of the weighted-based
aggregation functions, as pointed out in [32].

We end this section by providing in Table 1 a brief summary of
some of the latter papers, focusing on the used ensemble methods, the
conclusions of the research and some relevant comments.

1.3. Structure of the paper

The rest of the paper is organized as follows. In Section 2, we will
introduce the basic notions of aggregation functions and estimators
needed for the development of the rest of the paper. The generalized
concept of IOLF is introduced in Section 3 and its main properties,
when it is applied over random vectors, are studied. Section 4 is
devoted to the study of methods that determine the optimal weights
based on classical statistical criteria. A practical example is provided
in Section 5, which illustrate the advantages of the proposed method.
The conclusions are discussed in Section 6.

2. Preliminaries

In this section we will introduce the general concepts required
to develop the rest of the work. In particular, we will show some
definitions and results of estimators, aggregation functions and the
usual procedure when using IOWA operator in time series forecasting.

2.1. Estimators

In the following we recall the basic concepts about estimators and
their properties, using as the main Ref. [33]. We will use indistinctly
the term sequence of random variables 𝑋1,… , 𝑋𝑛 or random vector �⃗� =
(𝑋1,… , 𝑋𝑛) for referring to an ordered finite set of random variables
defined in the same probability space. An estimator is a function that
maps the sample space of a sequence of identically distributed and
independent (iid) random variables to a parameter space. That is, for
any observation of the sequence, it returns a value of the parameter (or
parameters).

Definition 1. Let 𝑋1,… , 𝑋𝑛 be a sequence of iid random variables a
density function 𝑓𝜃(𝑡) that depends on some unknown parameters 𝜃,
assuming values in the parametric space 𝛩. An (point) estimator is a
measurable function 𝑇 ∶ 𝐑𝑛 → 𝛩 such that it is not dependant on the
value of the unknown parameters.
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There are some relevant properties that are desirable for an esti-
mator. We will focus on two of them, the unbiasedness and the effi-
ciency. The unbiasedness says that the expected value of our estimator
coincides with the value of the unknown parameter.

Definition 2. Let 𝑋1,… , 𝑋𝑛 be a sequence of random variables with
ommon density function 𝑓𝜃(𝑡) depending on some unknown parameter
𝜃 ∈ 𝛩. An estimator 𝑇 is called unbiased if 𝐸[𝑇 ] = 𝜃 for any 𝜃 ∈ 𝛩.

The efficiency between two estimators for a parameter is related to
the Mean Squared Error (MSE).

Definition 3. Let 𝑋1,… , 𝑋𝑛 be a sequence of iid random variables with
density function 𝑓𝜃(𝑡) depending on the unknown parameter 𝜃 ∈ 𝛩 and
let 𝑇1, 𝑇2 be two estimators of 𝜃. It is said that 𝑇1 is more efficient than
𝑇2 if 𝐸

[

(

𝑇1 − 𝜃
)2
]

≤ 𝐸
[

(

𝑇2 − 𝜃
)2
]

for any 𝜃 ∈ 𝛩 and it exists 𝜃0 ∈ 𝛩

such that 𝐸
[

(

𝑇1 − 𝜃0
)2
]

< 𝐸
[

(

𝑇2 − 𝜃0
)2
]

.

For any estimator 𝑇 of a parameter 𝜃, 𝐸
[

(𝑇 − 𝜃)2
]

is known as
the mean squared error and denoted by 𝑀𝑆𝐸(𝑇 ). Notice that if the
estimators are unbiased, then the MSE is just the variance. A definition
of global efficiency between unbiased estimators can be stated by using
the Fréchet–Cramér–Rao lower bound, see [34–36].

We end by giving some classical results for three families of distribu-
tions regarding efficient estimation of the mean. For the uniform case,
and for some of our results, we need the definition of order statistics.

Definition 4 ([33]). Let 𝑋1,… , 𝑋𝑛 be a sequence of random variables.
The function 𝑋(𝑘) of (𝑋1,… , 𝑋𝑛) that takes the value 𝑘th smaller value
in each possible observation (𝑥1,… , 𝑥𝑛) of (𝑋1,… , 𝑋𝑛) is known as the
𝑘th order statistic or statistic of order k (of the sequence 𝑋1,… , 𝑋𝑛).

The set {𝑋(1),… , 𝑋(𝑛)} is known as the set of the order statistics of
𝑋1,… , 𝑋𝑛. Of course, the order statistic are random variables [33].

Example 1 ([37,38]).

1. If 𝑋𝑖, for any 𝑖 ∈ {1,… , 𝑛}, has a uniform distribution, the
unbiased efficient estimation for its mean is 𝑋(𝑛)+𝑋(1)

2 .
2. If 𝑋𝑖, for any 𝑖 ∈ {1,… , 𝑛}, has exponential or a Gaussian

distribution, the unbiased efficient estimation for its mean is the
sample mean.

.2. Notions of monotonicity and pre-aggregation functions

An aggregation function is typically referred to as a function that
ummarizes several values by a single number. Formally, given a real
nterval (bounded or not) 𝐼 , an aggregation function is defined as

monotone increasing function 𝐴 ∶ 𝐼𝑛 → 𝐼 which satisfies that
he infimum and the supremum of their image are, respectively, the
nfimum and the supremum of the aforementioned interval.

efinition 5 ([39]). Let 𝐼 be a (possibly unbounded) interval in the real
ine R. An aggregation function is a function 𝐴 ∶ 𝐼𝑛 → 𝐼 satisfying:

• It is increasing (in each variable).
• The following boundary conditions are fulfilled:

inf
𝑥∈𝐼𝑛

𝐴(𝑥) = inf 𝐼, sup
𝑥∈𝐼𝑛

𝐴(𝑥) = sup 𝐼

xample 2. Given a vector of weights �⃗� ∈ [0, 1]𝑛 fulfilling ∑𝑛
𝑖=1 𝑤𝑖 =

1, the Weighted Averaging Mean (WAM) and the Ordered Weighted
Averaging (OWA) are defined as follows:

WAM(�⃗�; �⃗�) =
𝑛
∑

𝑤𝑖𝑥𝑖, OWA(�⃗�; �⃗�) =
𝑛
∑

𝑤𝑖𝑥𝜎(𝑖)
3

𝑖=1 𝑖=1
where 𝜎 is a permutation such that 𝑥𝜎(1) ≥ ⋯ ≥ 𝑥𝜎(𝑛). Both are
aggregation functions for any interval, since they are monotone and the
boundary conditions are fulfilled. Notice that there is a direct relation
between the OWA operator and the order statistics, since both involve
a ordination of a given sample.

The number of properties defined over aggregation functions is
huge, but we are interested in three in particular, the idempotency,
ratio scale invariance and additivity properties.

Definition 6 ([39]). Let 𝐴 ∶ 𝐼𝑛 → 𝐼 be an aggregation function. If for
any 𝑠 ∈ I it holds:

𝐴(𝑠1⃗) = 𝑠

then 𝐴 is called an idempotent aggregation function

Definition 7 ([39]). Let 𝐴 ∶ 𝐼𝑛 → 𝐼 be an aggregation function. If for
any 𝑠, 𝑟 ∈ R with 𝑟 > 0 it holds:

𝐴(𝑟�⃗� + 𝑠1⃗) = 𝑟𝐴(�⃗�) + 𝑠

for any �⃗� ∈ 𝐼𝑛 such that 𝑟�⃗�+ 𝑠1⃗ ∈ 𝐼𝑛, then 𝐴 is called an interval scale
invariant aggregation function.

Definition 8 ([39]). Let 𝐴 ∶ 𝐼𝑛 → 𝐼 be an aggregation function. If for
any 𝑦 ∈ I it holds:

𝐴(�⃗� + 𝑦) = 𝐴(�⃗�) + 𝐴(𝑦)

for any �⃗� ∈ 𝐼𝑛 such that �⃗� + 𝑦 ∈ 𝐼𝑛, then 𝐴 is called an additive
aggregation function.

We want to remark that additive and interval scale invariant (thus
idempotent) aggregation functions are convenient when applied to
random variables, since the expectation operator is linear, i.e. if 𝑋 and
𝑌 are two random variables and 𝑟, 𝑠, 𝑐 ∈ R, 𝐸[𝑟𝑋 + 𝑠𝑌 + 𝑐] = 𝑟𝐸[𝑋] +
𝑠𝐸[𝑌 ]+ 𝑐. Let us now define the Induced Ordered Weighted Averaging,
an aggregation function that takes a second vector as argument, which
is used to order the first one before a applying a convex linear sum.

Definition 9 ([3]). Let �⃗� ∈ R𝑛 be a weight vector such that 𝑤1,… , 𝑤𝑛 ≥
0 and ∑𝑛

𝑖=1 𝑤𝑖 = 1. Consider the ordination 𝜋𝑌 ∶ {1,… , 𝑛} → {1,… , 𝑛}
such that 𝜋𝑦(𝑦)𝑖 = 𝑦(𝑖) and, if there is any draw in 𝑦, replace the
associated values of �⃗� by their average. Then, the Induced Ordered
Weighted Averaging (IOWA) has the following expression:

IOWA(�⃗�, 𝑦; �⃗�) = �⃗�′𝜋𝑦(�⃗�)

This type of aggregation functions contains as particular cases the
WAM and the OWA operators. Trivially, this aggregation is additive,
interval scale invariant and idempotent. The weight 𝑤1 is associated
to the importance of the value �⃗� on the position of the component
with greater value in 𝑦. We end this section by recalling some relax-
ations in the concept of monotonicity of a function and the concept of
pre-aggregation function.

Definition 10 ([40]). Let 𝐴 ∶ 𝐼𝑛 → 𝐼 be a function and 𝑟 ∈ R𝑛. 𝐴 is
said to be directionally monotone with respect to 𝑟 if:

𝐴(�⃗� + 𝑐𝑟) ≥ 𝐴(�⃗�),

for any �⃗� ∈ 𝐼𝑛 and any 𝑐 ∈ R+ such that �⃗� + 𝑐𝑟 ∈ 𝐼𝑛.

A particular case is the weakly monotonicity, which is directional
monotonicity with respect to the vector of ones 1⃗ ∈ R𝑛 [41].

Definition 11 ([39]). Let 𝐼 be a (possibly unbounded) interval in the
real line R. A pre-aggregation function is a function 𝑃 ∶ 𝐼𝑛 → 𝐼
satisfying:

𝑛
• 𝑃 is directionally increasing with respect to a vector 𝑟 ∈ R .
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• The following boundary conditions are fulfilled:

inf
𝑥∈𝐼𝑛

𝑃 (𝑥) = inf 𝐼, sup
𝑥∈𝐼𝑛

𝑃 (𝑥) = sup 𝐼

Any aggregation function is a pre-aggregation function for any
positive vector 𝑟 ∈ R+𝑛. The concepts introduced in Definitions 6–8
lso hold for pre-aggregation functions.

.3. IOWA in time series forecasting: the usual procedure

The IOWA operator, among other applications, is used in the context
f time series forecasting for fusing the predictions of several models
nto a better prediction model. In the literature (see [4,17–27]), the
nducing vector of the IOWA operator at the time 𝑡 is taken as the

precision of the prediction, defined as follows:

𝑦𝑖𝑡 =

⎧

⎪

⎨

⎪

⎩

1 −
|

|

|

|

𝜇𝑡−𝑝𝑖𝑡
𝜇𝑡

|

|

|

|

if
|

|

|

|

𝜇𝑡−𝑝𝑖𝑡
𝜇𝑡

|

|

|

|

< 1

0 if
|

|

|

|

𝜇𝑡−𝑝𝑖𝑡
𝜇𝑡

|

|

|

|

≥ 1
(1)

where 𝜇𝑡 is the real value at time 𝑡 and 𝑝𝑖𝑡 the prediction of the model
𝑖 at time 𝑡.

However, if we want to make a prediction of an unknown value,
we cannot compute the inducing vector, since it depends directly on
𝜇. For those cases, it is assumed that the precision is similar to the last
precision known. If we just want to predict consecutively the next value
of the time series, this approach is similar to the best yesterday’s model
introduced in [3], where the predictions of today are ordered using the
absolute difference between the last prediction and the observed value,
for all the prediction models. Notice that in this case, the inducing
vector does not depend on the value we want to predict.

Linking this problem to the classical estimation of random samples,
this is a more general case, in which for a fixed time, 𝑋1,𝑡,… , 𝑋𝑛,𝑡
form a random vector �⃗�𝑡 with possibly dependant and non-identically
distributed components with the same mean 𝜇𝑡, which is the real value
of the time series. We also have an additional random vector 𝑌𝑡, that
induces the order and it is not dependant on 𝜇𝑡.

The classical way to optimize the choice of the weights of the IOWA
operator is to solve the following optimization problem:

Minimize
𝑇
∑

𝑡=1

(

𝜇𝑡 −
𝑛
∑

𝑖=1
𝑤𝑖𝜋𝑦𝑡 (�⃗�𝑡)𝑖

)2

(2)

Subject to
𝑛
∑

𝑖=1
𝑤𝑖 = 1 and 𝑤1,… , 𝑤𝑛 ≥ 0

This problem is similar to the one that will be presented in Theo-
rem 20 when using the sample covariance matrix and the sample mean
as estimator, but with the difference that in the latter one we eliminate
the 𝑤1,… , 𝑤𝑛 ≥ 0 condition.

We want to remark that another inducing vectors can be used. In
particular, it is also common to consider particular cases of the IOWA
operator such as the OWA and the WAM operators [5].

3. Induced Ordered Linear Fusion for random vectors

Our purpose is to apply an extension of the IOWA operator for
forecasting models of time series, which are modelled as random vari-
ables. In particular, the prediction of several forecasting models are
aggregated to obtain a better final prediction. This extension allows the
weights to be negative, which implies having a greater feasible region
in the optimization problem defined in (2) and a closed expression for
its solution (see Theorem 20). Let us start by defining such extension,
the Induced Ordered Linear Fusion.
4

Definition 12. Let �⃗� ∈ R𝑛 be a vector such that ∑𝑛
𝑖=1 𝑤𝑖 = 1. Consider

the ordination 𝜋𝑌 ∶ {1,… , 𝑛} → {1,… , 𝑛} such that 𝜋𝑦(𝑦)𝑖 = 𝑦(𝑖)
and, if there is any draw in 𝑦, replace the associated values of �⃗� by
their average. Then, the Induced Ordered Linear Fusion (IOLF) has the
following expression:

IOLF(�⃗�, 𝑦; �⃗�) = �⃗�′𝜋𝑦(�⃗�)

Notice that, since we have just relaxed one of the conditions over
the weights, the IOLF operator generalizes the IOWA operator.

Two particular cases of the IOLF operator are of special interest.
If the vectors �⃗� and 𝑦 are the same, then we will called the IOLF
operator an Ordered Linear Fusion (OLF) operator, that will be denoted
as OLF(�⃗�; �⃗�). It can be seen as an OWA operator with possibly negative
weights. Similarly, if 𝑦 is increasing, the resulting IOLF operator will be
called Linear Fusion (LF) operator, denoted as LF(�⃗�; �⃗�). This operator
is an extension of the WAM allowing negative weights.

3.1. Properties and semantic

Negative weights, although are a simple way to extend the IOWA
operator, increase substantially the complexity of properties, interpre-
tation and applicability of the resulting function. Firstly, many of the
properties related to be an aggregation functions, monotonicity and the
boundary conditions, are not longer true, thus it is necessary to work
with weaker alternatives of these properties. Secondly, the semantic
of negative weights is not intuitive and should be studied. Finally,
negative weights allow to capture more complex dependence structures
between the aggregated values. Let us discuss all these points one by
one.

Starting with the properties, ratio scale invariance, additivity and
idempotence remain to hold for the IOLF, since the condition ∑𝑛

𝑖=1 𝑤𝑖 =
1 is not changed. Therefore, the IOLF operator is weakly monotone.
Moreover, following the same procedure as in the case of the OWA
operators with negative weights (see Proposition 4.3 in [42]), the IOLF
operator with weights �⃗� ∈ R𝑛 is directionally increasing with respect
any vector 𝑟 ∈ R𝑛 such that:
𝑛
∑

𝑖=1
𝑟𝜋(𝑖)𝑤𝑖 > 0

for any possible permutation 𝜋. Therefore, if we consider 𝐼 = R, the
IOLF operator is a pre-aggregation function.

However, if we consider an interval 𝐼 ≠ R, the negative weights
do not allow the IOLF operator to be a pre-aggregation function. For
instance, if 𝐼 = [0, 1] and �⃗� = (−0.5, 1.5), then:

IOLF ((1, 2), (0, 1); (−0.5, 1.5)) = −0.5 ∉ [0, 1]

Nevertheless, focusing on our main purpose, when predicting values of
time series the prediction models typically do not give predictions on
a bounded interval but all the real line [11]. For the cases in which we
want to require the result to be in a specific interval, we can always
consider a function from the real line to the interval. In the previous
case, we can transform the predictions into the real line using the
inverse of the sigmoid function [43] and apply there the procedure.

However, even considering R as the interval, having negative
weights does not allow the IOLF to be monotone in every compo-
nent, making it impossible to be an aggregation function. The non-
monotonicity may be unintuitive, since if we increase the prediction
of one of the prediction models we expect the fused prediction to also
increase. However, as we will see later, this proposal could be better
from a statistical point of view, even in the case the monotonicity is
not preserved. Allowing negative weights expands the feasible region
in the problem stated in (2), thus a better optimal solution is expected.
We also want to remark that pre-aggregations, even with the loss of
monotonicity, are starting to be used in applied problems (see again [7–
10]). In Section 5, numerical results will show that the best alternative
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for the considered datasets is a Weighted Averaging Mean with negative
weights, outperforming the rest of classical alternatives.

We want to acknowledge the difficulties of the semantic of negative
weights. For the IOWA operator, we can interpret the value of 𝑤𝑖 as the
mportance of the prediction of the model with the 𝑖th best prediction in

the previous time. For the OWA and WAM operators, the value of 𝑤𝑖 is
elated to the importance of the 𝑖th model or the 𝑖th greatest prediction.
lthough the loss of semantics when using negative weights is evident,
e can still interpret the absolute value of 𝑤𝑖 as the importance of the
rediction of the model with the 𝑖th component of the ordered vector,
onsidering also as important models the ones with a bad expected
rediction.

From the point of view of probability, the matrix 𝛴 + 𝛥′𝛥 that will
appear in Theorem 20 is the equivalent to the covariance matrix with
respect the real prediction of the components of the ordered random
vector 𝜋𝑌

(

�⃗�
)

. The resulting weights of this result will be negative

if the sum of the rows of the
(

𝛴−1 + 𝛥′𝛥
)−1

is negative. Since the
diagonal elements must be positive (since the matrix is positive semi-
definite), negative weights imply negative non-diagonal elements of
the latter matrix. In the case of covariance matrices, this negative
elements of its inverse are related to positive conditional correlation
and its magnitude to the strength of the dependence [44]. A similar
interpretation can be made in this case, negative weights are associated
with large positive conditional correlations between the variables of the
ordered random vector 𝜋𝑌

(

�⃗�
)

.
This strong positive dependence have consequences in terms of

monotonicity. If we just look to the prediction with a negative weight,
it is true that the aggregation decreases if the prediction increases. But,
since a negative optimal weight implies a positive dependence, we can
expect that an increase in the prediction implies an increase in the rest
of the predictions, and therefore, an increase in the final aggregation.
In particular, we can think on negative weights as a way to fine tuning
co-increasing sets of predictions.

3.2. Probability properties of the IOLF operator

In the following, we will assume that the predictions of the different
models can be modelled as random variables. Let us starting proving
that the IOLF operator applied to random vectors is itself a random
variable. We need to prove that IOLF(�⃗�, 𝑌 ; �⃗�) is measurable. We first
introduce a lemma to clarify a step in our proof.

Lemma 13 ([45]). Let (𝑋,𝐹 , 𝜇) be a measure space and 𝑓, 𝑔 ∶ 𝑋 → R̄ be
two measurable functions. Then, {𝑥 ∈ 𝑋|𝑓 (𝑥) ≤ 𝑔(𝑥)} ∈ 𝐹 .

Proposition 14. Let �⃗� and 𝑌 be two random vectors and �⃗� be a vector
of weights. Then IOLF(�⃗�, 𝑌 ; �⃗�) is a random variable.

Proof. Let us start proving that 𝜋𝑌 (�⃗�) is a random vector. Consider
the probability space (𝛺,𝐹 , 𝑃 ) on which �⃗� and 𝑌 are defined. We just
need to prove that any component is a random variable (a measurable
function) from 𝛺 to R. In particular, we just need to verify that
𝜋𝑌 (�⃗�)−1𝑖 ((∞, 𝑎]) ∈ 𝐹 for any 𝑎 ∈ R and 𝑖 ∈ {1,… , 𝑛} [45].

If we consider the case in which 𝜋𝑌 (𝑌 )𝑖 = 𝑌𝑘, then 𝜋𝑌 (�⃗�)−1𝑖 ((∞, 𝑎]) =
𝑋−1

𝑘 ((∞, 𝑎]) and, for being �⃗� a random vector, this set belongs to 𝐹 .
This only happens if 𝑌𝑗1 < ⋯ < 𝑌𝑗𝑖 < ⋯ < 𝑌𝑗𝑛 with {𝑗1,… , 𝑗𝑛} =

{1,… , 𝑛} (a reordination of the indices {1,. . . ,n}) and 𝑗𝑖 = 𝑘. Consider
the following set,

𝐵𝑖
𝑘 = {𝑡 ∈ 𝛺 | 𝑌𝑗1 (𝑡) < ⋯ < 𝑌𝑗𝑖=𝑘(𝑡) < ⋯ < 𝑌𝑗𝑛 (𝑡)},

which belongs to 𝐹 by applying recursively Lemma 13 and the fact that
the (finite) intersection of measurable sets is measurable [45]. Then,
considering all the possible cases:

𝜋 (�⃗�)−1((∞, 𝑎]) = ∪𝑛 (

𝑋−1((∞, 𝑎]) ∪ 𝐵𝑖 )
5

𝑌 𝑖 𝑘=1 𝑘 𝑘
Since it is the (finite) union of measurable sets, then 𝜋𝑌 (�⃗�)−1𝑖 ((∞, 𝑎])
∈ 𝐹 for any 𝑖 ∈ {1,… , 𝑛} and 𝜋𝑌 (�⃗�) is a random vector [45]. Thus, any
linear combination of their components is a random variable, and in
particular it holds for IOLF(�⃗�, 𝑌 ; �⃗�). □

In the following we show two of the extreme cases in which the
expected value with respect to 𝑌 of the IOLF operator has a simple
expression. Let us first introduce the definition of exchangeability:

Definition 15 ([33]). A random vector �⃗� is said to be exchangeable if
any rearrangement of its components has the same distribution as �⃗�.

Proposition 16. Let �⃗� and 𝑌 be two random vectors and �⃗� a weight
vector. The following statements hold:

1. If 𝑌 and �⃗� are independent, then:

𝐸𝑌 [IOLF(�⃗�, 𝑌 ; �⃗�)] = LF(�⃗�; ̂⃗𝑤) =
𝑛
∑

𝑘=1
�̂�𝑘𝑋𝑘,

�̂�𝑘 =
𝑛
∑

𝑖=1
𝑤𝑖𝑃 (𝑌𝑘 = 𝑌(𝑖))

2. If 𝑌 and �⃗� are independent and 𝑌 is exchangeable, then

𝐸𝑌 [IOLF(�⃗�, 𝑌 ; �⃗�)] =
𝑛
∑

𝑘=1

1
𝑛
𝑋𝑘

Proof.

1. Since �⃗� and 𝑌 are independent, the distribution of 𝑋𝑘|𝑌𝑘 = 𝑌(𝑖) is
the same as the distribution of 𝑋𝑖 for any 𝑖, 𝑘 ∈ {1,… , 𝑛}. Thus,
we can compute the density function of 𝜋𝑌 (�⃗�) as follows:

𝑓𝜋𝑌 (�⃗�)𝑖
(𝑡) =

𝑛
∑

𝑘=1
𝑓𝑋𝑘|𝑌𝑘=𝑌(𝑖) (𝑡)

=
𝑛
∑

𝑘=1
𝑃
(

𝑌𝑘 = 𝑌(𝑖)
)

𝑓𝑋𝑘
(𝑡)

Computing the expected value regarding 𝑌 leads us to the fol-
lowing expression:

𝐸𝑌 [IOWA(�⃗�, 𝑌 ; �⃗�)] = 𝐸𝑌 [
𝑛
∑

𝑖=1
𝑤𝑖𝜋𝑌 (�⃗�)𝑖]

=
𝑛
∑

𝑖=1
𝑤𝑖𝐸𝑌 [𝜋𝑌 (�⃗�𝑖)] =

𝑛
∑

𝑖,𝑘=1
𝑤𝑖𝑃

(

𝑌𝑘 = 𝑌(𝑖)
)

𝑋𝑘

=
∑

𝑘
�̂�𝑘𝑋𝑘 = WA(�⃗�; ̂⃗𝑤)

2. Notice that if 𝑌 is exchangeable, then 𝑃
(

𝑌𝑘 = 𝑌(𝑖)
)

= 1
𝑛 for any

𝑘, 𝑖 ∈ {1,… , 𝑛}. □

Remark 17. Notice that, if we consider only positive weights, the
latter result holds for the IOWA operator and the expression ∑𝑛

𝑘=1 �̂�𝑘𝑋𝑘
coincides with a Weighted Averaging Mean.

We want to remark that the most interesting cases are the interme-
diate ones, in which the order induced by 𝑌 is not the same as the order
induced by �⃗� and neither �⃗� and 𝑌 are independent.

The mean vector and the covariance matrix of IOLF(�⃗�, 𝑌 ; �⃗�) in
terms of the random vector 𝜋𝑌 (�⃗�), has a straightforward expression
based on the properties of the mean and variance of a linear transfor-
mation of a random vector.

Proposition 18. Consider two random vectors �⃗�, 𝑌 and a vector of
weights �⃗�. Then IOLF(�⃗�, 𝑌 ; �⃗�) satisfies:

𝐸
[

IOLF(�⃗�, 𝑌 ; �⃗�)
]

= �⃗�′𝐸
[

𝜋𝑌 (�⃗�)
]

𝑉 𝑎𝑟
[

IOLF(�⃗�, 𝑌 ; �⃗�)
]

= �⃗�′𝑉 𝑎𝑟
[

𝜋 (�⃗�)
]

�⃗�
𝑌
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4. Mean estimation using IOLF operator

In this section we study the applicability of the IOLF aggregation
over random variables in the estimation of a common mean. We want to
remark that we will associate the random variables with the prediction
of several time series forecasting models and the common mean will be
identified as the real value of the time series.

In this direction, we consider a random vector �⃗� for which the
ean of every component equals the same value 𝜇. Thus, we can
ecompose �⃗� = 𝜇1⃗ + �⃗�, being �⃗� a noise random vector for which

the mean of every component equals 0 and 𝜇 a parameter that we
want to estimate. We also consider in the following that 𝑌 has not
a dependence with 𝜇, because in these cases we may be tempted to
use 𝑌 in order to estimate it. This is a reasonable assumption, as we
have discussed in Section 2.3. Finally, we suppose that the matrix
𝑉 𝑎𝑟

[

𝜋𝑌 (�⃗�)
]

is invertible. No additional considerations on �⃗� and 𝑌
are made, the involved random variables can be dependant and may
have different distribution. This is a very flexible scheme in which the
prediction models can have a quite different behaviour and can be
related. In the simplest case, they may be a collection of 2𝑛 independent
and identically distributed random variables.

When considering an observation of the random vectors �⃗� and 𝑌 ,
how we can use IOLF(�⃗�, 𝑌 ; �⃗�) to estimate 𝜇? In the following we will
denote 𝐸

[

𝜋𝑌 (�⃗�)
]

−𝜇1⃗ as 𝛥, i.e. the drift with respect to the global mean,

and 𝑉 𝑎𝑟
[

𝜋𝑌 (�⃗�)
]

as 𝛴. With this change of notation and noticing that
the elements of �⃗� sum 1, the expressions of Proposition 18 have the
following form:

𝐸
[

IOLF(�⃗�, 𝑌 ; �⃗�)
]

= 𝜇 + 𝛥′�⃗�

𝑉 𝑎𝑟
[

IOLF(�⃗�, 𝑌 ; �⃗�)
]

= �⃗�′𝛴�⃗�

Notice that, since ∑𝑛
𝑖=1 𝜋𝑌 (�⃗�) =

∑𝑛
𝑖=1 𝑋𝑖, then it holds that ∑𝑛

𝑖=1 𝛥𝑖 =
0. We also want to remark that IOLF(�⃗�, 𝑌 , �⃗�) is an unbiased estimator
for 𝜇 if and only if 𝛥 and �⃗� are orthogonal. In the following result we
explore two elementary situations where this property holds.

Proposition 19. Let �⃗� be a random vector with all the components having
the same mean 𝜇. Let 𝑌 be a random vector and let �⃗� be a vector of weights.

1. If 𝑌 and �⃗� are independent and 𝑌 is exchangeable, then IOLF
(�⃗�, 𝑌 ; �⃗�) is an unbiased estimator for 𝜇.

2. If the components of �⃗� are symmetric iid random variables, �⃗� = 𝑌
and �⃗� satisfy 𝑤𝑘 = 𝑤𝑛−𝑘+1 for any 𝑘 ∈ {1,… , 𝑛 − 1}, then
IOLF(�⃗�, 𝑌 ; �⃗�) is an unbiased estimator for 𝜇

Proof.

1. The first statement is a direct consequence of 2 in Proposition 16,
since in this case 𝛥 = 0⃗

2. Since �⃗� = 𝑌 and the components of �⃗� are iid random variables,
the IOLF

(

�⃗�, 𝑌
)

operator is a linear combination of the order
statistics of �⃗�. Moreover, since the distribution is symmetric,
we have that 𝛥𝑘 = 𝛥𝑛−𝑘+1 if 𝑘 ≠ 𝑛+1

2 . If 𝑛 is odd and 𝑘 = 𝑛+1
2 ,

then 𝛥𝑘 = 0. Thus, since 𝑤𝑘 = 𝑤𝑛−𝑘+1 for any 𝑘 ∈ {1,… , 𝑛 − 1},
�⃗�′𝛥 = 0 □

In general, we want to sacrifice the unbiased property of our esti-
mator to reduce the Mean Squared Error (MSE). Since we are allowing
negative weights, we can achieve a closed expression of the optimal
weights using Lagrange Multipliers.

Theorem 20. Consider a random vector �⃗� with the same mean 𝜇 for
ll its components and a random vector 𝑌 . Then, the vector of weights �⃗�
6

(verifying that ∑𝑛
𝑖=1 𝑤𝑖 = 1) which minimize 𝐸

[

(

𝜇 − IOLF(�⃗�, 𝑌 ; �⃗�)
)2

]

is:

�⃗� =

(

𝛴 + 𝛥𝛥′
)−1

1⃗

1⃗′
(

𝛴 + 𝛥𝛥′
)−1

1⃗
(3)

Proof. We express 𝐸
[

(

𝜇 − IOLF(�⃗�, 𝑌 ; �⃗�)
)2

]

as �⃗�′𝛴�⃗�+
(

�⃗�′𝛥
)2

. Then,

we consider the following optimization problem:

Minimize �⃗�′𝛴�⃗� +
(

�⃗�′𝛥
)2

Subject to 1⃗′�⃗� = 1

Noticing that
(

�⃗�′𝛥
)2

= �⃗�′𝛥𝛥′�⃗� and using Lagrange multipliers, the

expression is the following:

�⃗�′
(

𝛴 + 𝛥𝛥′
)

�⃗� − 𝜆
(

1⃗′�⃗� − 1
)

Deriving by �⃗� and equalling to 0:

2
(

𝛴 + 𝛥𝛥′
)

�⃗� − 𝜆1⃗ = 0, �⃗� = 𝜆
2

(

𝛴 + 𝛥𝛥′
)−1

1⃗

Then, substituting in the restriction:

𝜆
2
1⃗′
(

𝛴 + 𝛥𝛥′
)−1

1⃗ = 1, 𝜆
2
= 1

1⃗′
(

𝛴 + 𝛥𝛥′
)−1

1⃗

�⃗� =

(

𝛴 + 𝛥𝛥′
)−1

1⃗

1⃗′
(

𝛴 + 𝛥𝛥′
)−1

1⃗
□

The latter formula can be used also when fitting OLF and LF
operators. Notice that if we use the sample covariance matrix and the
sample mean in order to estimate 𝛴 and 𝛥, the here-presented problem
is equivalent to Eq. (2), but without the requirement that the weights
must be positive. In addition, this result gives a closed expression of
the optimal weights, which is useful both for proving probabilistic
properties and for facilitating calculations.

Corollary 21. Consider a random vector �⃗� with the mean of all its
components equal to 𝜇 and a random vector 𝑌 . Then, for all possible values
of �⃗�, the minimum value of 𝐸

[

(

𝜇 − IOLF(�⃗�, 𝑌 ; �⃗�)
)2

]

is:

𝐸
[

(

𝜇 − IOLF(�⃗�, 𝑌 ; �⃗�)
)2

]

= 1

1⃗′
(

𝛴 + 𝛥𝛥′
)−1

1⃗

We end this section establishing cases where the weights computed
in Theorem 20 lead to an unbiased estimator.

Proposition 22. Consider a random vector �⃗� with the same mean 𝜇 for
all its components and a random vector 𝑌 . If one of the following conditions
are fulfilled:

1. 𝛥 = 0⃗
2. �⃗� = 𝑌 and the components of �⃗� are independent and symmetric,

then the vector of weights �⃗� (verifying that ∑𝑛
𝑖=1 𝑤𝑖 = 1) that minimizes

𝐸
[

(

𝜇 − IOLF(�⃗�, 𝑌 ; �⃗�)
)2

]

makes IOLF(�⃗�, 𝑌 ; �⃗�) be an unbiased estimator
of 𝜇.

Proof. We recall that �⃗�′𝛥 = 0 is a sufficient condition for the IOLF
operator to be an unbiased estimator of 𝜇. If 𝛥 = 0⃗, then �⃗�′𝛥 = 0
regardless of the expression of �⃗�.

For the other case, without lose of generality, suppose that 𝜇 = 0.
The components of 𝜋

(

�⃗�
)

are the order statistics of �⃗�, sorted from
𝑌
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the greatest to the lowest. Since the distribution is symmetric, then the
distribution of 𝑋(𝑖) is the same as the one of −𝑋(𝑛+1−𝑖).

As a consequence, 𝛴 is persymmetric (𝛴𝑖,𝑗 = 𝛴𝑛+1−𝑖,𝑛+1−𝑗 [46]),
ince 𝐸[𝑋(𝑖), 𝑋(𝑗)] = 𝐸[𝑋(𝑛+1−𝑖), 𝑋(𝑛+1−𝑗)] for any 𝑖, 𝑗 ∈ {1,… , 𝑛}. Thus,
ince the inverse of a persymmetric matrix is persymmetric [46], 𝛴−1

s also persymmetric. Then, the weights that minimize the variance,
hich are �⃗� = 𝛴−1 1⃗

1⃗𝛴−1 1⃗
holds that 𝑤𝑖 = 𝑤𝑛+1−𝑖 for any 𝑖 ∈ {1,… , 𝑛}. Also,

e have that 𝛥𝑖 = −𝛥𝑛+1−𝑖 for any 𝑖 ∈ {1,… , 𝑛}. Then, �⃗�′𝛥 = 0. □

In summary, the IOLF operator can be used for estimation of a
ommon mean 𝜇 of the components of a random vector. If 𝑌 and �⃗� are
ndependent and 𝑌 is exchangeable, or if �⃗� are symmetric iid random
ariables, �⃗� = 𝑌 and �⃗� satisfy 𝑤𝑘 = 𝑤𝑛−𝑘+1 for any 𝑘 ∈ {1,… , 𝑛 − 1},
OLF(�⃗�, 𝑌 ; �⃗�) is an unbiased estimator of 𝜇. The weights that minimize

the Mean Squared Error can be derived as the closed expression of
Eq. (3) using the drift vector 𝛥 and the covariance matrix 𝛴 of the
ordered random vector. This optimal weights makes IOLF to be an
unbiased estimator if the drift is null or �⃗� = 𝑌 and the components
of �⃗� are independent and symmetric.

5. An illustrative example for time series forecasting

We devote this section to describe a practical example that illus-
trates the benefits of the use of the IOLF operator.

Time series forecasting is a task used to obtain estimates of future
values of different measurements in the real world. Models used for
predicting time series values are commonly regressors, i.e. any variable
in a regression model that is used to predict a response variable. If we
consider a set of regression models, they may have several problems:
the first is that the models are weak when taken individually (there are
models that obtain admissible errors only in some cases) and the second
is that the regressors have similar effects. In order to try to avoid these
two problems and obtain the most optimal model, combining them
becomes a fundamental task.

5.1. Description of the experimental procedure

In this example, we fuse the forecasts using different prediction
models based on aggregation and pre-aggregation functions. Three
of the alternatives are the WAM, the OWA and the IOWA operator
considering as the inducing vector the precision in the previous time
step, as explained in Section 2.3. We use these alternatives since
they appear in the recent literature as the prominent examples of
aggregation functions used as ensembles in time series forecasting, see
Section 1.2. They are also closely related with our proposal, thus we
should compare the results with them.

The other three alternatives are the LF, the OLF and the IOLF
operator considering the same inducing vector as in the case of the
IOWA. Notice that we can see the three first cases as IOWA operators
with different inducing vectors and the three second cases as the same
models but allowing negative weights, being all of them particular cases
of the IOLF operator introduced in Definition 12. In this example we
will use 7 different prediction models.

Taking into account the notation of Section 2.3, 𝑝𝑖𝑡 is the prediction
of model 𝑖 at time 𝑡, and thus, we obtain the vector 𝑝 = (𝑝1𝑡,… , 𝑝7𝑡) of
the predictions of the 7 models at time 𝑡. On the other hand, since we
do not know the real value of the predictions at time 𝑡 but we do know
them at time 𝑡 − 1, we use these predictions to obtain the induction
vector of the IOWA and IOLF operator. In this sense, we use Eq. (1)
to obtain the vector 𝑦 = (𝑦1,𝑡−1,… , 𝑦7,𝑡−1). In the case of OWA and OLF
operators, we order the predictions from the greatest to the smallest for
each time.

Therefore, the fused predicted values (for time 𝑡) are the ones
obtained in the following way:

⃗ ⃗′ ⃗
7

̂𝐼𝑂𝑊 𝐴 = IOWA(𝑝, 𝑦;𝑤) = 𝑤 𝜋𝑦(𝑝), �̂�𝐼𝑂𝐿𝐹 = IOLF(𝑝, 𝑦;𝑤),
̂𝑂𝑊𝐴 = OWA(𝑝; �⃗�) =
7
∑

𝑖=1
𝑤𝑖𝑝𝜎(𝑖)𝑡𝑡, �̂�𝑂𝐿𝐹 = OLF(𝑝; �⃗�),

̂𝑊𝐴𝑀 = WAM(𝑝; �⃗�) =
7
∑

𝑖=1
𝑤𝑖𝑝𝑖𝑡, �̂�𝐿𝐹 = LF(𝑝; �⃗�).

where 𝜎𝑡 is a permutation such that 𝑝𝜎(1)𝑡𝑡 ≥ ⋯ ≥ 𝑝𝜎(7)𝑡𝑡.
The optimal weights for IOWA, OWA and WAM operators are

computed numerically by solving the problem stated in (2). In the case
of the IOLF, OLF and LF operators, we can compute the optimal weights
directly by applying Theorem 20. We want to remark that, in some
cases, inverting the matrix 𝛴 + 𝛥𝛥′ can be not easy if the dimension
is too high or is ill-conditioned. In this cases, we can always solve the
optimization problem numerically, as it is done for the IOWA, OWA
and WAW operator.

In this example, we use the latter six alternatives to combine differ-
ent data forecasting model outputs, such as temperature and humidity.
The time series of the data set [47] are composed of almost 20 000
observations, which are measured every 10 min for about 4.5 months.
The house temperature and humidity conditions are monitored with a
ZigBee wireless sensor network. Therefore, the time series measure the
temperature (T) and humidity (RH) in different areas.

These time series have several characteristics in common. Firstly,
there exists a strong seasonal component with a period of one day.
On the other hand, there not exist a weekly or monthly seasonal
component. Secondly, a moderate amount of outliers appear in the
data. Thirdly, the values of the time series seem to have a bell-shaped
distribution. For more information in this regard, we refer the reader
to [47].

For each of these eighteen time series, the data was divided in the
first 70% of the days, the training sample, and the remaining 30%,
the test sample. Over the training samples, seven different forecasting
models were fitted. The used models are the following:

RF Random Forest [48]. This regression method builds a set of
decision trees in the training process. It returns the average
prediction of the individual trees. In this case, the number of
trees (estimators) to be used is set to 1000.

GB Gradient Boosting [49]. This method uses decision trees, which
when weak are boosted by the gradient. A gradient boosting
model is built in stages by optimizing based on a cost function.
The number of stages is set to 1000. The learning rate of the
model is set to 0.1 and the loss function used is the Friedman
Mean Squared Error [50].

ARI ARIMA [51]. Autoregressive integrated moving average
(ARIMA) model is a statistical model that uses variations and
regressions of statistical data in order to find patterns for predic-
tion into the future. It is a model that tries to identify coefficients
and number of regressions to be used and since it is a dynamic
model, predictions are not based on independent variables but
on past data. In this case, the parameters are according to the
Akaike’s Information Criterium.

KNN Regression based on K-Nearest Neighbors [52]. We set 𝑘 = 3.
This classical method is based on the entry of 𝑘 nearest examples
in the data set. The predicted value is assigned to the average
of the values of the 𝑘 nearest neighbours. The function used to
measure the distance between examples has been the Euclidean
distance.

BR Bagging regressor [53]. Bagging is a general variance reduction
method based on the use of bootstrap (a technique for estimating
variances), together with a decision tree. For regression trees,
many trees are grown (without pruning) and the mean of the
predictions is calculated. An additional advantage of bagging is
that it allows estimating the prediction error directly, without
the need to use a test sample or to apply cross-validation. The

number of trees used in this model is fixed to 1000.
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Fig. 1. Diagram showing the followed steps to obtain the fused prediction of each considered ensemble.
Fig. 2. Boxplot of the relative errors of the different models and their aggregations. The median the errors for each model and aggregation is at the top of the graph.
Finally, models 6 and 7 are models based on recurrent neural networks
(RNN). Specifically, we use models based on Long Short-Term Memo-
ries (LSTM) [54] and Gated Recurrent Unit (GRU) [55] neurons. These
models, introduced in 1997 and 2014 respectively, were designed to
avoid the training problems of classical RNNs with input data having
long dependencies. To avoid these problems, these neural networks use
multiplicative units called gates, which control the flow of information
being fed into the network. On the other hand, these models allow
information to be stored in short- and long-term memories for use at
future points in time.

STM LSTM-based model [54]. The first RNN-based model consists of a
single LSTM layer with a hidden size of 64 elements and a dense
layer. The loss function used in this model is the Mean Squared
Error, and the optimization method is the Adam algorithm with
a learning rate of 0.01. 1200 epochs have been run. At the input
of the LSTMs the data are normalized to the range (−1,1) by
min–max, and denormalised at the output.

GRU GRU-based model [55]. The second RNN-based model is com-
posed of a single GRU layer with a hidden size of 128 elements
and a dense layer. Dropout of 0.4 has been used. The loss
function used in this model is the Mean Squared Error, and
the optimization method is the Adam algorithm with a learning
rate of 0.01. 1200 epochs have been run. The input data are
normalized to the range (−1,1) by min–max, and denormalised
at the output.

Notice that the latter models belong to different families and its
behaviour will be, in general, very different. We can summarize our
procedure in 4 steps, as it can be seen in Fig. 1:

1. Train the prediction models,
8

2. Reorder the prediction vectors for each time,
3. Compute the optimal weights,
4. Obtain the fused predictions.

5.2. Results

The performance of the initial models and the fusion operators
are compared using the test sample. Since some of the forecasting
models involve random initialization or dropout, we have repeated this
procedure 10 times for each of the time series. The result for each time
series and prediction model and fusion operator in the test sample can
be found in Table 3. For the Mean Squared Error, in 4 of the time series
the best performance was made by an initial prediction model, in other
4 one of the classical aggregation functions was the best option and in
the remaining 10 time series, one of the here-proposed fusion operators
with negative weights had the lowest MSE.

In order to compare globally the performance of the different al-
ternatives, the boxplot associated with the relative error of all the
executions, 10 for each of the 18 time series, can be found in Fig. 2. The
relative error has been computed by dividing the square of the MSE by
the mean value of the corresponding time series.

Qualitatively, the best initial prediction models seem to be ARIMA,
LSTM and GRU. Between the fusion operators, the WAM and LF seem to
be the better options, followed by the IOWA and IOLF. In order to have
a quantitative comparison, we also performed pairwise Mann–Whitney
U rank tests or Wilcoxon tests (see [33]), considering the 180 paired
samples of Mean Squared Errors. The p-values can be found in Table 2,
in which the alternative hypothesis has been chosen as the row model
having a smaller MSE than the column model.
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Fig. 3. Prediction models and fusion operators ordered from left to right according to having a significantly smaller MSE according to the Wilcoxon test.
Table 2
P-values associated with the Wilcoxon test with null hypothesis: the row model has a bigger Mean Squared Error than the column model.

RF GB ARIMA KNN BR LSTM GRU WAM OWA IOWA LF OLF IOLF

RF – 0.017 1 0 0.536 1 1 1 1 1 1 1 1
GB 0.983 – 1 0 0.983 1 1 1 1 1 1 1 1
ARIMA 0 0 – 0 0 0.752 1 1 0 0.744 1 0 0.388
KNN 1 1 1 – 1 1 1 1 1 1 1 1 1
BR 0.464 0.017 1 0 – 1 1 1 1 1 1 1 1
LSTM 0 0 0.248 0 0 – 0.997 1 0 0.431 1 0 0.086
GRU 0 0 0 0 0 0 – 0.997 0 0 1 0 0

WAM 0 0 0 0 0 0 0.003 – 0 0 1 0 0
OWA 0 0 1 0 0 1 1 1 – 1 1 0.36 1
IOWA 0 0 0.257 0 0 0.569 1 1 0 – 1 0 0.888
LF 0 0 0 0 0 0 0 0 0 0 – 0 0
OLF 0 0 1 0 0 1 1 1 0.64 1 1 – 1
IOLF 0 0 0.612 0 0 0.914 1 1 0 0.112 1 0 –
Table 3
Mean and Standard Deviation (SD) of Mean Squared Error and Mean Absolute Error for the prediction models and their aggregations in the considered time series. The lowest
error of each row is in bold.

DS Mean Squared Error

RF GB ARI KNN BR LSTM GRU WAM OWA IOWA LF OLF IOLF

T1 0.256 ± 0.00105 0.276 ± 0.00264 0.0004 ± 0.0 0.271 ± 3𝑒−05 0.255 ± 0.000708 0.000849 ± 0.0013 0.000323 ± 0.000146 0.00121 ± 0.00058 0.0566 ± 0.00657 0.022 ± 0.0182 𝟎.𝟎𝟎𝟎𝟐𝟑𝟔 ± 𝟎.𝟎𝟎𝟎𝟏𝟏𝟕 0.0936 ± 0.00638 0.0214 ± 0.0178
RH1 0.188 ± 0.000976 0.219 ± 0.00141 0.043 ± 0.0 0.436 ± 4𝑒−06 0.188 ± 0.00144 0.0419 ± 0.00442 0.0417 ± 0.00403 0.0506 ± 0.00517 0.132 ± 0.00371 0.0499 ± 0.00246 0.0499 ± 0.00992 0.0942 ± 0.00227 𝟎.𝟎𝟒𝟑𝟗 ± 𝟎.𝟎𝟎𝟏𝟓𝟔
T2 0.602 ± 0.00105 0.618 ± 4.8𝑒−05 0.0086 ± 0.0 0.619 ± 3𝑒−06 0.602 ± 0.00102 𝟎.𝟎𝟎𝟔𝟑𝟖 ± 𝟎.𝟎𝟎𝟏𝟑𝟏 0.00808 ± 0.00116 0.0305 ± 0.0108 0.0505 ± 0.0106 0.0101 ± 0.00384 0.0111 ± 0.00313 0.599 ± 0.0205 0.00698 ± 0.00179
RH2 0.765 ± 0.00422 0.953 ± 0.00548 0.0425 ± 0.0 1.0 ± 3𝑒−06 0.766 ± 0.00296 0.215 ± 0.478 0.0153 ± 0.00284 0.011 ± 0.00335 0.384 ± 0.0622 0.0248 ± 0.0102 𝟎.𝟎𝟎𝟖𝟎𝟐 ± 𝟎.𝟎𝟎𝟐𝟕𝟏 0.267 ± 0.0256 0.0205 ± 0.00779
T3 0.0794 ± 0.000328 0.0833 ± 0.000625 0.0013 ± 0.0 0.116 ± 4𝑒−06 0.0794 ± 0.00023 0.00183 ± 0.00379 0.00104 ± 0.000435 𝟎.𝟎𝟎𝟎𝟕𝟐𝟓 ± 𝟎.𝟎𝟎𝟎𝟔𝟒𝟏 0.0163 ± 0.00303 0.000918 ± 0.000588 0.000959 ± 0.000821 0.0513 ± 0.0057 0.000976 ± 0.00031
RH3 0.0516 ± 0.000106 0.0452 ± 0.000304 0.0122 ± 0.0 0.0628 ± 8𝑒−06 0.0517 ± 0.000234 0.0043 ± 0.00186 0.00409 ± 0.000824 0.00315 ± 0.00142 0.0291 ± 0.00103 0.00454 ± 0.000801 𝟎.𝟎𝟎𝟐𝟗 ± 𝟎.𝟎𝟎𝟏𝟐𝟕 0.0129 ± 0.00087 0.00473 ± 0.000703
T4 0.49 ± 0.00287 0.471 ± 5.7𝑒−05 𝟎.𝟎𝟎𝟎𝟕𝟑𝟕 ± 𝟎.𝟎 0.478 ± 9𝑒−06 0.489 ± 0.00249 0.00223 ± 0.00516 0.014 ± 0.0389 0.00229 ± 0.00237 0.03 ± 0.0107 0.00111 ± 0.00113 0.0011 ± 0.00145 0.426 ± 0.0461 0.00454 ± 0.00274
RH4 0.0312 ± 0.000112 0.0321 ± 0.000118 0.00777 ± 0.0 0.0392 ± 4𝑒−06 0.0312 ± 0.000136 0.0457 ± 0.115 0.00147 ± 0.000334 0.000661 ± 0.000542 0.0166 ± 0.000877 0.00325 ± 0.000673 𝟎.𝟎𝟎𝟎𝟓𝟖𝟗 ± 𝟎.𝟎𝟎𝟎𝟒𝟗𝟓 0.00761 ± 0.000287 0.00321 ± 0.00065
T5 0.655 ± 0.00335 0.424 ± 0.00541 𝟎.𝟎𝟎𝟎𝟕𝟔𝟗 ± 𝟎.𝟎 0.949 ± 1.2𝑒−05 0.649 ± 0.00455 0.00311 ± 0.00145 0.00437 ± 0.00133 0.00641 ± 0.00386 0.00709 ± 0.00368 0.0115 ± 0.00564 0.00636 ± 0.00792 0.497 ± 0.0394 0.00575 ± 0.00403
RH5 16.0 ± 0.61 45.8 ± 0.116 0.448 ± 0.0 6.72 ± 2𝑒−06 16.6 ± 0.805 0.747 ± 0.208 0.672 ± 0.0923 𝟎.𝟒𝟒𝟒 ± 𝟎.𝟎𝟎𝟕𝟒𝟑 9.83 ± 1.31 0.682 ± 0.0361 0.45 ± 0.0209 4.16 ± 0.405 0.705 ± 0.0494
T6 2.32 ± 0.00771 2.26 ± 0.00909 0.0534 ± 0.0 2.47 ± 4𝑒−06 2.32 ± 0.00536 0.0335 ± 0.00838 0.0377 ± 0.00374 0.0428 ± 0.0161 1.03 ± 0.11 𝟎.𝟎𝟐𝟏𝟕 ± 𝟎.𝟎𝟎𝟒𝟐𝟒 0.0239 ± 0.00486 0.498 ± 0.0628 0.0728 ± 0.0148
RH6 0.661 ± 0.00127 0.914 ± 0.00604 0.997 ± 0.0 1.4 ± 0.0 0.661 ± 0.00241 0.914 ± 0.214 0.773 ± 0.497 0.437 ± 0.119 0.505 ± 0.024 𝟎.𝟒𝟎𝟕 ± 𝟎.𝟎𝟒𝟕𝟑 0.426 ± 0.109 0.476 ± 0.027 0.439 ± 0.0525
T7 0.268 ± 0.000603 0.277 ± 3𝑒−06 0.000196 ± 0.0 0.258 ± 7𝑒−06 0.268 ± 0.000523 0.000479 ± 0.000293 0.000127 ± 0.000121 0.000312 ± 0.000448 0.0547 ± 0.00951 0.00873 ± 0.00755 𝟎.𝟎𝟎𝟎𝟏𝟐 ± 𝟗.𝟒𝐞−𝟎𝟓 0.106 ± 0.00787 0.00815 ± 0.0076
RH7 0.0105 ± 2.7𝑒−05 0.00915 ± 2.6𝑒−05 0.00854 ± 0.0 0.0107 ± 3𝑒−06 0.0105 ± 4.5𝑒−05 0.0529 ± 0.145 0.00299 ± 0.000512 0.00156 ± 0.00103 0.00566 ± 0.000405 0.00312 ± 0.000576 𝟎.𝟎𝟎𝟏𝟒 ± 𝟎.𝟎𝟎𝟎𝟗𝟓𝟒 0.00357 ± 0.00123 0.00318 ± 0.000594
T8 0.105 ± 0.000305 0.101 ± 0.000242 0.000523 ± 0.0 0.114 ± 3.3𝑒−05 0.106 ± 0.000294 0.00152 ± 0.00162 0.000142 ± 3.9𝑒−05 0.000232 ± 0.000183 0.0339 ± 0.00693 0.00717 ± 0.00516 𝟗.𝟕𝐞−𝟎𝟓 ± 𝟗.𝟒𝐞−𝟎𝟓 0.0368 ± 0.00649 0.00696 ± 0.00516
RH8 0.0219 ± 2.6𝑒−05 0.0208 ± 1.8𝑒−05 0.024 ± 0.0 0.0221 ± 1𝑒−06 0.0219 ± 2.3𝑒−05 0.013 ± 0.00191 0.0163 ± 0.00796 0.0108 ± 0.00144 0.0157 ± 0.000496 0.012 ± 0.00107 𝟎.𝟎𝟏𝟎𝟏 ± 𝟎.𝟎𝟎𝟏𝟗𝟖 0.0137 ± 0.000537 0.0126 ± 0.00114
T9 0.321 ± 0.00647 0.233 ± 0.00135 𝟖.𝟓𝐞−𝟎𝟓 ± 𝟎.𝟎 0.905 ± 4𝑒−06 0.32 ± 0.00729 0.0126 ± 0.0125 0.00268 ± 0.00213 0.00125 ± 0.000633 0.0585 ± 0.00866 0.0148 ± 0.0039 0.000238 ± 0.000155 0.185 ± 0.0235 0.0123 ± 0.0038
RH9 0.123 ± 0.000821 0.128 ± 0.00106 0.0142 ± 0.0 0.15 ± 6𝑒−06 0.123 ± 0.000681 0.0144 ± 0.0088 0.0224 ± 0.0438 0.00432 ± 0.00198 0.0714 ± 0.00762 0.00864 ± 0.00476 𝟎.𝟎𝟎𝟑𝟑𝟑 ± 𝟎.𝟎𝟎𝟏𝟗𝟔 0.0327 ± 0.00253 0.00844 ± 0.00417

DS Mean Absolute Error

RF GB ARI KNN BR LSTM GRU WAM OWA IOWA LF OLF IOLF

T1 0.258 ± 0.000673 0.268 ± 0.00158 0.0149 ± 0.0 0.27 ± 0.00043 0.257 ± 0.000436 0.0179 ± 0.0132 0.0134 ± 0.00332 0.021 ± 0.00491 0.125 ± 0.00609 0.0755 ± 0.0251 𝟎.𝟎𝟏𝟎𝟕 ± 𝟎.𝟎𝟎𝟑𝟏𝟖 0.157 ± 0.00535 0.0746 ± 0.0251
RH1 0.183 ± 0.000372 0.183 ± 0.000341 0.0981 ± 0.0 0.261 ± 8.2𝑒−05 0.183 ± 0.000459 0.0998 ± 0.00418 0.103 ± 0.0169 0.107 ± 0.00577 0.135 ± 0.00169 0.102 ± 0.00246 0.113 ± 0.0105 0.137 ± 0.00116 𝟎.𝟎𝟗𝟓𝟑 ± 𝟎.𝟎𝟎𝟐
T2 0.291 ± 0.000362 0.296 ± 4.8𝑒−05 0.0526 ± 0.0 0.308 ± 3.5𝑒−05 0.292 ± 0.000369 𝟎.𝟎𝟒𝟔𝟔 ± 𝟎.𝟎𝟎𝟒𝟐𝟔 0.0561 ± 0.00253 0.0872 ± 0.0158 0.108 ± 0.00949 0.0592 ± 0.00962 0.0644 ± 0.00795 0.293 ± 0.00417 0.0532 ± 0.00459
RH2 0.308 ± 0.00102 0.333 ± 0.00114 0.11 ± 0.0 0.361 ± 1.5𝑒−05 0.309 ± 0.000542 0.219 ± 0.262 0.0741 ± 0.00823 0.0539 ± 0.00698 0.217 ± 0.0154 0.0791 ± 0.0118 𝟎.𝟎𝟓𝟎𝟑 ± 𝟎.𝟎𝟎𝟖𝟖 0.186 ± 0.0149 0.0743 ± 0.011
T3 0.092 ± 0.000447 0.0909 ± 0.000501 0.02 ± 0.0 0.133 ± 0.000106 0.092 ± 0.000261 0.0237 ± 0.0253 0.0205 ± 0.00457 𝟎.𝟎𝟏𝟓𝟒 ± 𝟎.𝟎𝟎𝟖𝟑 0.0454 ± 0.00268 0.0165 ± 0.00344 0.0189 ± 0.00953 0.0806 ± 0.00483 0.0185 ± 0.00252
RH3 0.0802 ± 6.6𝑒−05 0.0715 ± 0.000108 0.059 ± 0.0 0.0909 ± 0.000186 0.0802 ± 0.000127 0.0418 ± 0.0122 0.0358 ± 0.00294 𝟎.𝟎𝟑𝟒 ± 𝟎.𝟎𝟎𝟕𝟗𝟏 0.0563 ± 0.000983 0.0374 ± 0.00265 0.0344 ± 0.00826 0.0513 ± 0.00149 0.0383 ± 0.00239
T4 0.362 ± 0.00139 0.348 ± 5.8𝑒−05 𝟎.𝟎𝟏𝟔𝟏 ± 𝟎.𝟎 0.361 ± 0.000124 0.362 ± 0.00122 0.0271 ± 0.0329 0.057 ± 0.0981 0.0306 ± 0.0151 0.0964 ± 0.0161 0.0215 ± 0.008 0.0219 ± 0.0162 0.339 ± 0.0209 0.0401 ± 0.00878
RH4 0.0743 ± 8.9𝑒−05 0.0682 ± 7.8𝑒−05 0.0496 ± 0.0 0.0836 ± 8.8𝑒−05 0.0743 ± 9.1𝑒−05 0.105 ± 0.17 0.024 ± 0.00257 0.0153 ± 0.00559 0.0486 ± 0.00183 0.0321 ± 0.00359 𝟎.𝟎𝟏𝟓 ± 𝟎.𝟎𝟎𝟓𝟒𝟑 0.0385 ± 0.00554 0.0322 ± 0.00362
T5 0.449 ± 0.0013 0.349 ± 0.00269 𝟎.𝟎𝟏𝟏 ± 𝟎.𝟎 0.565 ± 0.000229 0.447 ± 0.00173 0.0363 ± 0.00812 0.0449 ± 0.00841 0.049 ± 0.0152 0.0505 ± 0.0122 0.0619 ± 0.0154 0.0376 ± 0.0313 0.39 ± 0.0175 0.0388 ± 0.017
RH5 0.903 ± 0.0108 1.3 ± 0.00165 0.145 ± 0.0 0.703 ± 1.9𝑒−05 0.913 ± 0.0144 0.414 ± 0.141 0.377 ± 0.0605 𝟎.𝟏𝟔𝟖 ± 𝟎.𝟎𝟎𝟗𝟓𝟏 0.692 ± 0.0275 0.239 ± 0.00674 0.186 ± 0.0271 0.55 ± 0.0227 0.243 ± 0.0144
T6 0.597 ± 0.00101 0.595 ± 0.00127 0.163 ± 0.0 0.639 ± 2.2𝑒−05 0.597 ± 0.000716 0.127 ± 0.0209 0.135 ± 0.00689 0.138 ± 0.038 0.423 ± 0.0164 𝟎.𝟏𝟎𝟕 ± 𝟎.𝟎𝟏𝟒 0.11 ± 0.019 0.315 ± 0.023 0.165 ± 0.0152
RH6 0.532 ± 0.000844 0.575 ± 0.00125 0.547 ± 0.0 0.681 ± 0.0 0.532 ± 0.000737 0.556 ± 0.0685 0.576 ± 0.283 0.429 ± 0.0602 0.471 ± 0.00971 𝟎.𝟑𝟖 ± 𝟎.𝟎𝟐𝟕𝟕 0.421 ± 0.0699 0.466 ± 0.0177 0.381 ± 0.0296
T7 0.248 ± 0.000338 0.25 ± 3.8𝑒−05 0.00891 ± 0.0 0.252 ± 0.000154 0.248 ± 0.000402 0.015 ± 0.00459 0.00728 ± 0.00331 0.00901 ± 0.00418 0.112 ± 0.00904 0.0441 ± 0.0168 𝟎.𝟎𝟎𝟔𝟓𝟖 ± 𝟎.𝟎𝟎𝟐𝟔𝟑 0.158 ± 0.00626 0.0422 ± 0.0175
RH7 0.0719 ± 6.5𝑒−05 0.0687 ± 4.3𝑒−05 0.0611 ± 0.0 0.0743 ± 8𝑒−06 0.0719 ± 8.6𝑒−05 0.109 ± 0.195 0.0374 ± 0.00326 0.0268 ± 0.0106 0.0534 ± 0.00194 0.0382 ± 0.00405 𝟎.𝟎𝟐𝟓𝟓 ± 𝟎.𝟎𝟏𝟎𝟏 0.0434 ± 0.00915 0.0381 ± 0.00409
T8 0.127 ± 0.000235 0.12 ± 0.000179 0.0175 ± 0.0 0.137 ± 0.000624 0.128 ± 0.000221 0.0265 ± 0.0149 0.00837 ± 0.000861 0.00857 ± 0.00217 0.0738 ± 0.00614 0.0353 ± 0.00947 𝟎.𝟎𝟎𝟔𝟎𝟔 ± 𝟎.𝟎𝟎𝟐𝟓𝟐 0.075 ± 0.0063 0.0348 ± 0.00965
RH8 0.111 ± 7.6𝑒−05 0.108 ± 3.3𝑒−05 0.109 ± 0.0 0.112 ± 1𝑒−05 0.111 ± 4.7𝑒−05 0.0811 ± 0.0063 0.0929 ± 0.0284 0.0762 ± 0.00561 0.0933 ± 0.00153 0.08 ± 0.00401 𝟎.𝟎𝟕𝟑𝟗 ± 𝟎.𝟎𝟎𝟖𝟐𝟐 0.0897 ± 0.00163 0.0808 ± 0.00424
T9 0.363 ± 0.00389 0.284 ± 0.00109 𝟎.𝟎𝟎𝟓𝟐𝟗 ± 𝟎.𝟎 0.635 ± 0.00016 0.362 ± 0.00384 0.0796 ± 0.0426 0.0382 ± 0.0173 0.0236 ± 0.00592 0.151 ± 0.0106 0.0789 ± 0.0116 0.0102 ± 0.0039 0.279 ± 0.0185 0.071 ± 0.0119
RH9 0.135 ± 0.00044 0.134 ± 0.000408 0.08 ± 0.0 0.153 ± 2.9𝑒−05 0.135 ± 0.000319 0.0737 ± 0.0242 0.0919 ± 0.0921 0.0394 ± 0.0123 0.106 ± 0.00427 0.0551 ± 0.0083 𝟎.𝟎𝟑𝟔 ± 𝟎.𝟎𝟏𝟐𝟓 0.0767 ± 0.00957 0.0546 ± 0.00797
As it can be seen, is statistically accepted that the Linear Fusion
perator is better than the rest of alternatives. In addition, the 𝑝-value

between the IOLF and IOWA operator is 0.112, which is small but not
enough to be able to draw a conclusion. Nothing can be said about
the comparison between the OWA and OLF operator. In order to ease
9

the visualization of the hierarchy between the alternatives, the 13
alternatives are ordered from right to left, being the ones of the left
significantly better than the others (see Fig. 3).

Notice that the GRU model is the best between all the initial predic-
tion models and is also better than OWA, IOWA, OLF and IOLF. This can
be explained that, since these fusion operators exchange the predictions
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positions for each time, it is hard for them to give importance to a
particular model.

We want to remark that the benefits of the here-presented methods
are related to the appearance of negative weights in the optimization
process. This is the case of the Linear Fusion in the latter exam-
ple, which outperforms the rest of alternatives. However, there are
databases and elections of forecasting models in which the negative
weights do not appear or are not relevant. In these cases, the behaviour
allowing or not negative weights should be similar. This can be see also
in this example for the cases of OWA and OLF operators.

We end this section by remarking that the IOLF and derived op-
erators can be used in general time series forecasting, they are not
restricted to any field of application or particular type of time series.

6. Conclusions

The use of Induced Ordered Linear Fusion (IOLF) operator, Ordered
Linear Fusion (OLF) and Linear Fusion (LF) operators as a way to
aggregate prediction models for time series forecasting has been pro-
posed. Firstly, the IOLF operator over random vectors has been defined
and some equivalences to another averaging aggregation functions has
been determined, in addition to the expressions of its first and second
moments. The monotonicity and semantics of negative weights have
been studied.

Secondly, the use of the IOLF operator as an estimator for a common
mean parameter of the components of the aggregated random vector
has been explored. Firstly, the measurability of the IOLF operator has
been proved and its mean and variance derived. Some conditions on
which the IOLF is an unbiased estimator for this parameter are given.
The expressions for the optimal weights that make the IOLF having the
lowest MSE or are provided. These results were extended also to the
OLF and LF operators.

The benefits of the proposal with respect to the classical aggrega-
tion functions have been also discussed. In particular, an illustrative
example focused in time series prediction has been presented. Different
prediction models and their aggregation have been compared, con-
cluding that the Linear Fusion is better than the rest of alternatives.
In particular, it has been statistically accepted that LF improves the
performance of WAM thanks to the fact that it relaxes the positivity
condition of the weights in the considered data sets.

This probabilistic point of view also allows for future improvement
of this type of methods. When using the sample mean and sample co-
variance matrix as estimators in order to compute the optimal weights,
the here-proposed method is equivalent to the traditional methods
used in the literature, but allowing for negative weights. However,
other estimators can be considered. For instance, some statistical pro-
cedures such as robust estimation [56] or online estimation [57] can
be considered and easily incorporated into the model. We leave these
possibilities as a future line of research.
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