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A B S T R A C T   

Using a random forest regression (RFR) machine learning technique, the critical temperature (Tc) of a super-
conductor was predicted in the context of Industry 4.0 in this study using features derived from the material’s 
physico-chemical properties, containing atomic mass, electron affinity, atomic radius, valence, and thermal 
conductivity. The same experimental data were also fitted with multilayer perceptron (MLP) artificial neural 
networks (ANN), M5 model tree and multivariate linear regression (MLR) model for comparison. The current 
investigation’s findings show that the proposed RFR–relied model can successfully forecast the critical tem-
perature of a superconductor. Additionally, the Tc estimate was reached with a correlation coefficient of 0.9565 
and a coefficient of determination 0.9146, when the observed dataset was used to test this unique technique. 
Additionally, the outcomes from the MLP, M5, and MLR models are obviously worse than those from the 
RFR–relied model. When it comes to fully comprehending the superconductivity, this investigation is note-
worthy. Regarding forecasting effectiveness and feature reduction rate, the RFR approach has obvious advan-
tages and generalizability, and it also demonstrates suitability for high-temperature superconductor Tc 
forecasting. In fact, it offers a practical and affordable approach to data-driven superconductor investigation.   

1. Introduction 

Superconducting materials (these materials have zero resistance, so 
electricity can easily flow through them) can be used in many practical 
ways [1–4]. The most well-known use is in Magnetic Resonance Imaging 
(MRI) systems because MRI equipment allows medical professionals to 
view into patients’ bodies in great detail. Some common uses for 
superconducting magnets include keeping the Large Hadron Collider’s 
strong magnetic fields at CERN as well as the use of the sensitive mag-
netic sensors to measure things like the Earth’s magnetic field 
(employing devices termed SQUIDS). Therefore, superconductors can 
help revolutionize the energy industry by making it possible to transport 
electricity without any loss of energy. 

A superconductor can only conduct electricity without resistance, i. 
e., with zero resistance, at or below the critical superconducting tem-
perature (Tc), as reported in [5–9]. Although the exact mechanism is still 

unknown, it is believed that the structures and some characteristics of 
the material like valency properties, bond lengths, and the Coulomb 
coupling between electronic bands determines the conductive proper-
ties. Data-driven methods allow learning from known superconductors 
and linking the characteristics of the material with its conductive 
properties and the critical temperature. Here, we adopt a wholly 
data-driven strategy to develop a statistical model that foretells Tc for a 
specific chemical formula of a material in the absence of any 
theory-based prediction models. Indeed, Machine learning (ML) 
approximation can be an alternative way to forecast the super-
conducting critical temperature, which builds data-driven predictive 
models to figure out how materials’ composition and critical tempera-
tures work together. 

Machine learning (MLT) employ a lot of training data tow work well 
and has emerged as an important tool for predicting the critical tem-
peratures (Tc) of superconductors, offering the possibility of design and 
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discovery of materials. Several existing works have explored this 
application, leveraging various machine learning techniques and data-
sets. Common machine learning methods include Linear Regression, 
LASSO Regression [10], Ridge Regression [11], Support Vector 
Regression (SVR) [12–14], Random Forest [15], Decision Tree [16], 
Elastic-net [17], XGBoost [18] and so on. These machine learning 
methods can be combined with intelligent optimization methods like 
Particle Swarm Optimization (PSO) [19,20]. In this subsection, we will 
review existing works focusing on building more effective feature 
extraction methods and using different machine learning methods to 
regress critical temperature. Zhang et al. [21] proposed an RS–PSO–SVR 
prediction model, combining Rough Set (RS) theory [22], PSO, and SVR 
methods. PSO is used to determine the critical parameters in SVR, 
including regularized constant C, and the kernel function parameter γ. 
RS preprocessing algorithm is used to calculate the weight of each 
feature. The vector of the distance between interacting layers ζ and the 
calculated spacing between interacting charges within layers l is the 
input of the RS-PSO-SVR prediction model. Back propagation neural 
network (BPNN) [23] is used as a baseline. Similarly, Liu et al. [24] 
proposed a PCA–PSO–SVR method, combining principal component 
analysis (PCA), PSO, and SVR methods. The feature vectors are estab-
lished by the PCA method, which calculates the eigenvalues of the 
covariance matrix of the dataset, and selects the determined number of 
top eigenvalues of all the eigenvalues. Stanev et al. [25] built a classi-
fication firstly to separate materials into two distinct groups depending 
on whether Tc is above or below a threshold temperature Tsep. Random 
Forest and its variant methods are used to predict Tc. The Materials 
Agnostic Platform for Informatics and Exploration (Magpie) [26] was 
employed to calculate a set of attributes for each material like electronic 
structure attributes and elemental property statistics. Matsumoto et al. 
[27] calculated the mean value and deviation, and standard deviation 
for each composition in element groups to build 53 descriptors as input 
features. The machine learning method used is also Random Forest 
regression. Roter et al. [28] used Fine Tree, Exponential Gaussian Pro-
cess Elimination, a Gaussian Support Vector Machine (SVM) and Boos-
ted Tree for critical temperature regression. The Bagged Tree method 
best predicted the values of Tc. The element-vectors input is the chemical 
composition matrix to represent chemical content. The authors argued 
that predictors such as electronegativity, the number of valence elec-
trons, covalent radius or electron affinity are not directly relevant to 
superconductivity. Gaikwad et al. [29] used chemical formula from the 
atomic table directly as input and applied Random Forest, Decision Tree, 
Bayes Model, Linear Regression, Decision Tree PCA, SVR, XGBoost, and 
SVMRBF methods for regression. Garciá–Nieto et al. [30] used a hybrid 
regressive model combining the multivariate adaptive regression splines 
(MARS) approximation [31] with the whale optimization algorithm 
(WOA) [32] for prediction. The Lasso, Ridge, and Elastic-net regression 
models were used as baselines. Zhang et al. [33] developed the Gaussian 
process regression method, a nonparametric kernel-based probabilistic 
model, for doped Fe-based superconductor critical temperature predic-
tion from structural and topological parameters, and they also applied 
the Gaussian process regression model to a wider variety of supercon-
ductor families [34]. Revathy et al. [35] utilized fie, radius, atomic mass, 
density, fusion heat, electron affinity, the valence electron, thermal 
conductivity and critical temperature. Random Forest Regressor, 
XGBoost Regressor, Artificial Neural Networks, Support Vector Regres-
sor, Decision Tree Regressor, AdaBoost Regressor, Gradient Boosting 
Regressor, and Simple Linear Regressor are used for training and testing. 

Estimating the critical temperature (Tc) of superconductors is a 
complex and important area of research, with several notable research 
gaps and challenges: 

Complexity of High-Temperature Superconductors (HTS): Most su-
perconductors of technological interest are HTS, and predicting their Tc 
accurately remains a challenge. These materials often have complex 
crystal structures, multiple elements, and unconventional pairing 
mechanisms, making it difficult to develop predictive models. 

Doping and Defects: Doping and the presence of defects can signifi-
cantly affect the Tc of superconductors. Understanding how different 
types and concentrations of dopants or defects impact Tc is an ongoing 
research area. 

Influence of Multiband Effects: Some superconductors have multiple 
electron bands contributing to superconductivity. Understanding how 
these multiband effects impact Tc is a research gap. 

Tailored Material Design: Researchers are interested in designing 
superconducting materials with specific Tc values for different applica-
tions. Developing methods to tailor Tc in a controlled manner is a 
research challenge. 

Emerging Superconductors: Discovering and predicting Tc in new, 
unconventional superconducting materials is an ongoing area of 
research, with the potential for transformative applications. 

While machine learning methods have been applied to predict Tc, 
there’s a need for more robust and accurate models. 

Advancements in understanding and estimating the critical temper-
ature of superconductors will not only deepen our understanding of 
these materials but also enable breakthroughs in various technological 
applications. 

The objective of this study is to obtain a predictive model for esti-
mating the critical temperature (Tc) of a semiconductor material based 
on its intrinsic properties and external factors. The modeling goal is the 
minimization of the estimation error between the predicted Tc and the 
actual critical temperature. The modeling study involves preprocessing 
relevant data, selecting an appropriate model, training and validating 
the model, and iteratively refining it to improve predictive accuracy. 
Model performance can be assessed through cross-validation and testing 
against unseen data. Ultimately, the developed model should serve as a 
valuable tool for predicting critical temperatures in semiconductor 
materials, aiding in materials research and engineering applications. 

In this study, the superconducting critical temperature Tc has been 
accurately predicted for various types of superconductors using a unique 
regressive model relied on the Random Forest Regression (RFR) 
approach. This method, the RFR approximation [36–40] in conjunction 
with the optimizer known as Grid Search (GS) [41–45], could be an 
attractive methodology to tackle this kind of high-nonlinear problems. 
Fundamentally, GS is an optimization technique that enables choosing 
the best parameters from a list of optional parameters for a problem 
optimization. Machine learning models typically have various parame-
ters that impact their ability to learn and generalize from data, so 
optimizing these parameters lead to a more accurate and effective 
model. For comparative purposes, the MLP, M5 model tree and multi-
variate linear regression (MLR) models were also adjusted to the same 
experimental dataset both to calculate the Tc and contrast the outcomes 
found [46–54]. To cope with nonlinearities, including interactions be-
tween variables, the RFR approach is a statistical learning procedure 
that was developed conforming to statistics and mathematical analysis. 
It is a prolongation of linear models that mechanically models complex 
relationships between variables and nonlinearities. Comparing RFR 
approach to traditional and metaheuristic regression approaches, 
several advantages are apparent: (1) it is one of the most precise learning 
algorithms obtainable. Indeed, for a large enough dataset, it produces a 
very accurate regressor; (2) it can operate effectively on huge databases; 
(3) it is capable of handling hundreds of input variables without 
excluding any; (4) it provides estimates of the key variables in regres-
sion; (5) it permits to elude physical models of the superconductor; and 
(6) it makes possible to model nonlinear interactions between the 
physico-chemical input variables of the superconductor. Also, prior 
research has shown that RFR is a highly useful tool for a variety of 
practical applications, such as determining the temperature of the 
near-surface air in glacier zones [55], the mechanical properties of 
γ − TiAl alloys [56], erodibility of treated unsaturated lateritic soil [57], 
neighborhood environment’s impact on peer-to-peer accommodation 
[58], etc. For the majority of superconductors, including 
high-temperature superconductors, it has only sometimes been utilized 
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to calculate the superconducting critical temperature Tc from the input 
physicochemical characteristics. 

The organization of this article is as follows: the experimental design, 
all the variables used in this study, and the RFR, MLP, M5 model tree, 
and MLR techniques are all presented in Section 2; by compiling the RFR 
outcomes with the experimental values and the relevance order of the 
input parameters, Section 3 offers the insights gained with this 
intriguing technique, and Section 4 finishes this study by presenting a 
summary of the investigation’s key findings. 

2. Materials and methods 

2.1. Experimental dataset 

The world’s largest and most complete database of superconductors 
is the SuperCon database [59]. Hamidieh [7] performed the processing 
on the SuperCon dataset so that this could be used for further research. 
Nowadays, the database is stored at the University of California-Irvine 
library’s data storage place [60]. The dataset’s pre-treatment elimi-
nated materials with missing features. Preliminary processing also 
involved building new features on top of old ones. The first eight fea-
tures were assumed to be the atomic mass, density, first ionization en-
ergy, atomic radius, density, electron affinity, fusion heat, thermal 
conductivity, and valence (see Table 1). In fact, the statistical parame-
ters from the following characteristics— mean, geometric mean, 
weighted mean, standard deviation and weighted standard deviation, 
range, weighted range, as well as entropy and weighted entropy, —were 
used to derive the chemical formula for each substance (see Table 2). In 
this manner, 80 characteristics (8 × 10) are obtained. The supercon-
ductor’s composition in terms of elements is another additional feature 
that is extracted (numeric variable). As a result, we have a dataset with 
83 columns and 81 features: 1 column has information about the ma-
terial, including its name and identification number, the last column 
contains the critical temperature (Tc) values for each material, and the 
first 81 columns correspond to the various attributes that have been 
extracted. The dataset includes details on each of the 21,263 super-
conductors. Each material has 82 numerically based properties. The 
model that predicts the critical temperature (Tc) (dependent variable) 
uses the 81 features that were retrieved from the data as input variables 
(independent predictors). This approach to figuring out how features 
form in materials is very general and can be used to study super-
conducting materials. This happens as a result of the critical tempera-
ture’s ambiguous dependence. 

2.2. Random forest (RF) approach 

A method for lowering an estimated prediction function’s variance is 

bootstrap aggregation or bagging [38–40]. In particular, trees and other 
high-variance, low-bias techniques seem to benefit from bagging. The 
bootstrap-sampled versions of the training data are used to fit the same 
regression tree repeatedly, and the outcomes are averaged. Bagging has 
been significantly modified by random forests [15,36–40], which ag-
gregates a sizable group of de-correlated trees, and then averages them. 
A multitude of decision trees are constructed during the training step of 
the random forests (RF) ensemble learning method, which can be used 
for classification, regression, and other tasks. The average prediction of 
each individual tree is provided when focusing on the regression issue. 
Random forests perform better overall than decision trees because they 
compensate for decision trees’ propensity to overfit their training 
dataset. 

Trees are excellent candidates for bagging because, when developed 
deeply enough, they have relatively little bias and can catch complicated 
interaction structures in the data. Trees gain a lot from the averaging 
because they are known to be noisy. Moreover, since each tree formed in 
bagging is identically distributed (i.d.), the expectation of an average of 
B such trees is the same as the expectation of any one of them. Hence, the 
bias of bagged trees is identical to that of the individual trees, and the 
only way to improve is by reducing the variation. An average of B i.i.d. 
random variables, each with variance σ2, has variance1

Bσ2. If the vari-
ables are simply i.d. (identically distributed, but not necessarily inde-
pendent) with positive pairwise correlationρ, the variance of the average 
is [15,36–40]: 

ρ σ2 +
1 − ρ

B
σ2 (1) 

The advantages of averaging are constrained by the size of the cor-
relation between bagged trees pairs since when B rises, the second term 
vanishes but the first one stays. By lowering the correlation between the 
trees, random forests (see algorithm below) aim to improve variance 
reduction of bagging without substantially raising variance. This is 
accomplished during the tree-growing process by selecting the input 
variables at random. In particular, choose m ≤ p input variables at 
random as candidates for splitting while constructing a tree on a boot-
strapped dataset. In most cases, m values are p/3 or even 1. The random 
forest regression predictor is the following after B such trees {T(x;Θb)}

B
1 

have grown [36–40]: 

Table 1 
The physico-chemical characteristics of an element used to construct its features 
with the purpose of foretelling Tc.  

Variable Units Description 

Atomic Mass Atomic mass units 
(AMU) 

Total proton and neutron rest masses 

First Ionization 
Energy 

Kilo-Joules per mole 
(kJ/mol) 

Energy required to remove a valence 
electron 

Atomic Radius Picometer (pm) Calculated atomic radius 
Density Kilograms per meters 

cubed (kg/m3) 
Density at standard temperature and 
pressure 

Electron Affinity Kilo-Joules per mole 
(kJ/mol) 

Energy required to add an electron to 
a neutral atom 

Fusion Heat Kilo-Joules per mole 
(kJ/mol) 

Energy to change from solid to liquid 
without temperature change 

Thermal 
Conductivity 

Watts per meter- 
Kelvin (W/(m K)) 

Thermal conductivity coefficient κ 

Valence No units Typical number of chemical bonds 
formed by the element  

Table 2 
Description of the steps involved in extracting features from a material’s 
chemical composition. (In the last column, attributes for Re6Zr1 that rely on 
thermal conductivities are calculated and given to two decimal places as an 
illustration; the thermal conductivity coefficients for rhenium and zirconium are 

given by t1 = 48 and t2 = 23 W/(m K), each in order. Thus: p1 =
6
7
; p2 =

1
7
;w1 =

48
71

; w2 =
23
71

; A =
p1w1

p1w1 + p2w2
≈ 0.926; B =

p2w2

p1w1 + p2w2
≈ 0.074).  

Feature and description Formula Sample value 
(Re6Zr1) 

Mean μ = (t1 + t2)/2 35.5 
Weighted mean ν = (p1t1) + (p2t2) 44.43 
Geometric mean =

̅̅̅̅̅̅̅̅
t1t2

√ 33.23 
Weighted geometric 

mean 
= (t1)p1 (t2)p2 43.21 

Entropy = − w1 ln(w1) − w2 ln(w2) 0.63 
Weighted entropy = − A ln(A) − B ln(B) 0.26 
Range = t1 − t2 (t1 > t2) 25 
Weighted range = p1t1 − p2t2 37.86 
Standard deviation =

[(1/2)((t1 − μ)2
+ (t2 − μ)2

)]

1
2 

12.5 

Weighted standard 
deviation = [p1(t1 − ν)2

+ p2(t2 − ν)2
]

1
2  

8.75  
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f̂
B
rf (x) =

1
B
∑B

b=1
T(x;Θb) (2)  

where Θb describes the split variables, cut points at each node, and 
terminal-node values of the bth random forest tree. It seems sense that 
lowering m would lower the correlation between any two trees in the 
ensemble and, consequently, lower the variance of the average using Eq. 
(1). In the case of regression, we will utilize Eq. (2) to obtain a foretelling 

at a new point x: f̂
B
rf (x) = 1

B
∑B

b=1Tb(x). 
An illustration of this algorithm is shown in Fig. 1. 

2.3. Neural network: Multilayer perceptron 

The inability of the simple perceptron and ADALINE (adaptative 
linear element) to resolve nonlinear issues (such as XOR) was demon-
strated by Minsky and Papert in 1969 [61]. The Generalized Delta Rule 
(GDL), which Rumelhart and other investigators first introduced in 1996 
[62], allows weights to be adjusted by propagating errors backwards, or 
toward the lower hidden layers. Working with numerous layers and 
nonlinear activation functions is conceivable in this fashion. It is 
possible to demonstrate the universal approximator nature of this 
multilayer perceptron (MLP) [46–49,62]. An approximate nonlinear 
relationship between input and output data can be found using a 
multilayer perceptron. 

The MLP is a type of multiple-layer artificial neural network (ANN) 
that can find solutions to problems that cannot be solved linearly 
[46–49]. The primary restriction on the simple perceptron is this issue. 
MLP, however, can be locally or fully networked. In order for a layer to 
be fully linked, every neuron in that layer must be connected to every 
neuron in the next layer. A locally connected MPL does not meet this 
requirement. 

An MLP’s layers can be divided into three categories (see Fig. 2) 
[46–49]:  

• Input layer: there is no process here; only the independent variables’ 
information arrives through this layer.  

• Output layer: here, the link to the dependent variables is established.  

• Hidden layers: these are strata that transfer and process information 
from the input to the output layers and are positioned in between 
those layers. 

The mathematical principle used to train these kinds of neural net-
works is backpropagation, commonly referred to as error back-
propagation or the generalized delta rule [46–49]. In this context, a MLP 
is also referred to as a BP-ANN (Backpropagation Artificial Neural 
Network). The primary quality of these ANN is also the requirement of 
derivable transfer functions for the processing units (neurons). 

The multilayer perceptron (MLP) uses this type of learning by 
adjusting the connection weights in light of the discrepancy between the 
expected and actual output values. For data point n the error at node j is 
ej(n) = dj(n) − yj(n), being d the observed value and y the value pre-
dicted by the multilayer perceptron. The total error to correct is 
[46–49]: 

ε(n) = 1
2
∑

j
e2

j (n) (3) 

Using the gradient descent approach, we discover that the following 
factors determine how the weights change [46–49]: 

Δwji(n) = − η ∂ε(n)
∂vj(n)

yi(n) (4)  

where:  

• η is the learning rate. It has to be carefully selected because a little 
value may cause very slow convergence and a large value may pre-
vent the optimization from convergent. A range of acceptable values 
is from 0.1 to 0.8.  

• yi is the result of the neuron’s work in the previous layer.  
• vj is the induced field that is localized. It is demonstrable that for a 

specific output node: 

−
∂ε(n)
∂vj(n)

= ej(n)⋅ϕ′
(
vj(n)

)
(5)  

being ϕ′ the derivative of the activation function. 

2.4. M5 model tree 

The following inspired idea was used to create this approximation, 
which also relies on machine learning [50–52]. The parameter space can 
be divided into several subspaces and, in each of them, a linear Fig. 1. An illustration of a Random Forest Regression process.  

Fig. 2. An illustration of an MLP-inspired artificial neural network (in this case, 
picture shows n neurons forming part of the hidden layer, m neurons in the 
input layer and a single neuron in the output layer). 
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regression technique is built. Since the linear fits specialize in particular 
subsets of the input space, the resultant approximation would be 
regarded as a modular technique. 

To force a model tree, the mathematical method known as algorithm 
M5 is used [50–52]. In fact, a set of T training data is taken into account 
here. Each instance is represented by the values of a set of related target 
output values and a set of not-variable input attribute values. The main 
purpose is to develop a method that links the input attribute values of 
the training data with an objective value of those data. If the model 
properly predicts the objective values of the unknown cases, its excel-
lence can be assessed. 

Divide-and-conquer is the approach used to construct tree-based 
machine learning models [63–66]. Many tests are chosen to partition 
the set T into smaller sets, or the set T is connected to a leaf. Recursive 
application of this splitting algorithm is used. The M5 model tree tech-
nique’s division criterion uses the standard deviation of the class values 
that reach a node to measure the error at that node and then computes 
the projected decrease of this error to verify each attribute in that node. 
Definitely, the reduction of the standard deviation (SDR) can be ascer-
tained by employing the following mathematical representation [50–52, 
63–66]: 

SDR = sd(T) −
∑ |Ti|

|T|
sd(Ti) (6)  

where T is the quantity of examples reaching the node, Ti denotes the 
subset of cases that have an impact on the ith possible collection 
outcome, and sd denotes the standard deviation [50–52,63–66]. 

The M5 model tree chooses the element that completely optimizes 
the anticipated error lowering after carefully examining all potential 
divisions [63–66]. When the class values of all examples reaching a node 
differ by just a very little tolerance (the stopping requirement), or else 
when only a small number of instances are left, the M5 model tree 
splitting mechanism comes to an end. An illustration of a simple M5 
model tree can be seen in Fig. 3. 

2.5. Multivariate linear regression (MLR) 

A mathematical model known as multivariate linear regression (MLR) 
is used to roughly represent the relationship of dependence between a 
dependent variable Y, m independent variables Xiwith m ∈ Z+and a 
random termε (stochastic error) [53,54]. The hyperplane of the subse-
quent parameters βi (termed the coefficients of the multiple regression 
model) can be used to define this MLR model [53,54,67–69]: 

Y = β0 + β1X1 + β2X2 + .+ βmXm + ε = β0 +
∑m

j=1
βjXj + ε (7)  

where:  

• Y is the dependent variable or response variable;  
• X1,X2, .,Xm are the m explanatory, independent, or regressor 

variables;  
• β0,β1,β2, .,βmare the parameters of the MLR model and measure the 

influence that the explanatory variables have on the regressor. The 
termβ0is the intercept (constant term), the βi (i ≥ 1) are the corre-
sponding parameters for each independent variable, and m is the 
number of independent parameters to take into account in the 
regression. 

The regression problem consists of choosing certain values for the 
unknown parameters βj, so that the equation is completely specified. 
This requires a set of observations or a sample from this model. In any i- 
th observation (with i = 1, 2, ., m), the simultaneous behavior of the 
dependent variable and the explicit variables is recorded (random dis-
turbances are assumed to be unobservable). Suppose that we have a 
sample of size n given by {(xij, yi)} with j = 1, 2, .,m where xij denotes 
the i-th observed value in the regressor Xj and yi denotes the i-th 
observation of Y, then the model takes the form [32,33,50–52]: 

ŷi = β0 +
∑m

j=1
βjxij + εi (8)  

Fig. 3. An illustration of a M5 model tree model.  
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whereŷi is the value of Y predicted by the MLR model, εi = yi − ŷí is the 
error associated with the i-th measurement of the value Xj and follows 
the usual assumptions so that εi ∼ N(0, σ2) (zero mean, constant vari-
ance and equal to σ2, and Cov(εi,εj) = 0 if i ∕= j). To assess the model 
parameters, the method of least squares can be used, in this case, the 
squared error function is given by [53,54,67–69]: 

S(β0, β1, ., βm) =
∑n

i=1
ε2

i =
∑n

i=1

(

yi − β0 −
∑m

j=1
βjxij

)2

(9)  

which we want to minimize. The least squares estimators denoted by β0,

β1,β2, .,βmmust satisfy [53,54,67–69]: 

∂S
∂βj

⃒
⃒
⃒
⃒ = 0 , ∀j = 0, 1, 2, .,m (10) 

This system with m+1 equations can be written in matrix form as 
[53,54,67–69]: 

Y = Xβ+ ε (11)  

whereY ∈ ℜn×1,X ∈ ℜn×(m+1),β ∈ ℜ(m+1)×1 and ε ∈ ℜn×1. In matrix form, 
the squared error function S can be written as [67–69]: 

S(β) =
∑n

i=1
ε2

i = εT ε = (Y − Xβ)T
(Y − Xβ) (12)  

and Eq. (9) is reduced to the normal equations [67–69]: 

XT Xβ̂ = XT Y (13) 

Then, the least squares estimator is given by [53,54,67–69]: 

β̂ =
(
XT X

)− 1XT Y (14) 

So the final fitted multivariate linear regression model is given by 
[53,54,67–69]: 

ŷ = XT β̂ = β̂0 +
∑m

j=1
β̂jxj (15) 

An illustration of the multivariate linear regression model is shown 
in Fig. 4. 

2.6. Approach accuracy 

Eighty of the input variables from Subsection 2.1 were used in this 
investigation to construct the unique GS/RFR–relied technique. The 
superconducting critical temperature Tc is the response variable that 
needs to be foretold, as is common knowledge. It is crucial to pick the 
model that best matches the experimental data in order to accurately 
forecast Tc from 80 factors. The coefficient of determinationR2[70–73] 

was the rule used in this study (even though there are many possible 
statistics that can be employed to determine the goodness-of-fit) because 
it is a statistic used in the context of a statistical model whose primary 
goal is to foretell future outcomes or to verify a supposition. The 
following sums of squares are defined by referring to the observed values 
as ti and the values foretold by the model yi as [70–73]: 

SStot =
∑n

i=1(ti − t)2: is the overall sum of squares, scaled to the 
variance of the sample. 

SSreg =
∑n

i=1(yi − t)2: is also known as the explained sum of squares 
and is the regression sum of squares. 

SSerr =
∑n

i=1(ti − yi)
2: is the squared residual sum. 

tbeing the average of the n observed data: 

t =
1
n
∑n

i=1
ti (16) 

The following equation specifies the coefficient of determination 
relied on the earlier sums [70–73]: 

R2 ≡ 1 −
SSerr

SStot
(17) 

The mean absolute error (MAE) and root mean square error (RMSE) 
were suplementary criteria taken into account in this investigation 
[70–73]. The predictive power of a mathematical model is typically 
assessed using the RMSE statistic. The following equations provide the 
expression of the RMSE [70–73]: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ti − yi)

2

n

√
√
√
√
√

(18) 

In the event that the root mean square error (RMSE) is zero, the 
expected and observed data are the same. The MAE, on the other hand, 
does not take into account the direction of the errors when calculating 
their average size in a collection of forecasts. The MAE is the average of 
the absolute values of the discrepancies between a forecast and the 
related observation over the verification sample. Its mathematical 
formulation is as follows [70–73]: 

MAE =

∑n

i=1
|ti − yi|

n
(19) 

Moreover, the RFR approach largely depends on the following two 
hyperparameters: [36–40]: 

Number of regression trees (ntree): amount of trees to be grown. 
Model construction will cost more to compute the larger the tree. The 
500 trees setting is the default value. 

Number of input variables per node (mtry): it deals with the number 
of variables we should choose during a node split. One-third of the full 
set of input variables, p, is taken as the default value. To prevent over-
fitting, we must always make an effort to avoid using small values of 
mtry. 

It is crucial to keep in mind that the RFR method heavily depends on 
finding the two aforementioned optimal hyperparameters. Based on its 
effectiveness in resolving similar optimization issues, the optimizer 
known as Grid Search (GS) [41–45] has been used in this work to find 
these parameters. 

Hence, the superconducting critical temperature Tc (output variable) 
has therefore been successfully predicted using a novel hybrid GS/ 
RFR–based method by evaluating the influence of 80 variables (input 
variables) and successfully optimizing the computation through the 
examination of the coefficient of determination R2. The flowchart for the 
RFR–relied model created in this study is shown in Fig. 5. 

The most common method for calculating the actual coefficient of 
determination (R2) is cross-validation [70–75]. In fact, a detailed 
10–fold cross-validation method was employed to guarantee the 

Fig. 4. An illustration of a Linear Regression model.  
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RFR–relied model’s predictive ability [74–77], which required dividing 
the sample into ten portions, utilizing nine for training and the final 
portion for testing. For testing and computing the average error, this 
process was carried out ten times utilizing each of the parties from the 
ten divisions. So, every possible variable within the RFR–relied model 
parameters has been assessed with the purpose of identifying the 
optimal point by first looking for those parameters that reduce the 
average error. 

WEKA, an open-source machine learning program used in this study, 
was used to create the DE/RFR–relied model [78,79]. Additionally, the 

MLP, M5 model tree, and MLR models were implemented by also using 
the data-driven software WEKA [78,79]. 

In order to get the best ntree and mtry values for the RFR parameters, 
the cross-validation error for each iteration is compared using the GS 
optimizer. Using grid search (GS), the most precise values for ntree and 
mtry were 500 and 23, respectively (see Fig. 6). 

3. Analysis of results and discussion 

Tables 1 and 2 above list each of the 80 independent input variables 

Fig. 5. Flowchart corresponding to GS/RFR model’s parameter optimization.  

Fig. 6. Tuning of Random Forest parameters using the GS optimizer.  
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(80 physico-chemical variables). The present study used 21,263 samples 
in total, which means that data from 21,263 experimental samplings 
were constructed and processed. The whole dataset was roughly divided 
into two equal halves, the training set being one, and the testing set 
being the other. Given that the training set still had a substantial amount 
of samples, 1000 samples were taken out at random, and ten-fold cross- 
validation was used to tune the hyperparameters. The entire training 
dataset was used to build a model after the optimal parameters had been 
identified, and the testing dataset was used to validate the model. 

3.1. Metrics evaluation 

Using the test dataset and the subsequent computations, the 
RFR–relied approximation permitted the creation of a model with high 
perks to evaluate the critical temperature Tc. To anticipate the super-
conducting critical temperature of the superconductor state for various 
materials, the MLP, M5 model tree, and MLR approaches were also 
constructed for the Tc output factor. We employ a variety of metrics such 
as the R2 score, Root Mean Squared Error (RMSE), and Mean Absolute 
Error (MAE) to assess the performance of machine learning models. 

Table 3 shows the coefficient of determination and the coefficient of 
correlation (R2 and r), as well as root mean square error (RMSE) and 
mean absolute error (MAE) over the test set for the RFR, MLP, M5 model 
tree, and MLR approaches for the response Tc variable. 

3.2. Significance of variables 

Assessing the importance of variables is a valuable step in reducing 
the number of variables in a regression model. This process also helps to 
improve model interpretability. Reducing the number of input variables, 
a process also known as feature selection or dimensionality reduction, 
can improve the performance of a regression model in several ways: 

• Improved Model Interpretability: A simpler model with fewer vari-
ables is easier to understand and explain, making it more accessible 
for stakeholders, including non-technical audiences.  

• Mitigating Overfitting: A model with too many variables is prone to 
overfitting, where it fits noise in the data rather than the underlying 
patterns. Reducing variables helps prevent overfitting and improves 
generalization to new data.  

• Enhanced Model Robustness: Fewer variables can make your model 
more robust to outliers, noise, or small variations in the data, leading 
to more reliable predictions.  

• Faster Model Training and Inference: With fewer variables, both 
model training and prediction become faster, which is crucial for 
real-time or resource-constrained applications.  

• Avoiding Multicollinearity: Removing highly correlated variables 
reduces multicollinearity issues, where two or more variables in the 
model are highly correlated, making it challenging to attribute the 
effect of each variable separately. 

Feature selection helps identify and emphasize the most important 
variables, providing insights into which factors have the most significant 
impact on the target variable. Different techniques, such as feature 

importance analysis, correlation analysis, and regularization, can aid in 
the process of selecting the most relevant variables. Methods like LIME 
(Local Interpretable Model-agnostic Explanations), permutation, and 
SHAP (SHapley Additive exPlanations) allow gain insights into variable 
significance and model interpretability [80]. 

In this study, we use the permutation method to evaluate how sen-
sitive the model performance is to changes in the values of individual 
features. The permutation method for determining variable importance 
is model-agnostic, making it a valuable tool for understanding the 
relative importance of features in various types of machine learning 
models. It provides a clear quantitative measure of feature importance 
based on how much the model relies on each feature for its predictions, 
since if permuting a predictor variable leads to a significant drop in 
prediction accuracy, it indicates that this variable is a significant vari-
able in your model. That is, the permutation accuracy measure helps you 
determine whether a predictor variable is genuinely associated with the 
response variable or if any apparent association is merely due to random 
chance. The importance ranking of the independent input factors in 
predicting the superconducting critical temperature Tc for this complex 
nonlinear complex issue, using the permutation method, is another 
significant finding of the current work (see Table 4 and Fig. 7). 

Ultimately, Weighted Standard Deviation Thermal Conductivity is 
the most important input variable in the Tc forecasting process, ac-
cording to the GS/RFR approach. Range Thermal Conductivity, the 
second-most important input factor, is followed by: Range Atomic 
Radius, Standard Thermal Conductivity, Weighted Entropy Atomic 
Mass, Weighted Mean Valence, Weighted Geometric Mean Valence, 
Weighted Entropy Atomic Radius, Range First Ionization Energy and 
Entropy Valence. 

The first-order and second-order terms that make up the RFR–relied 
technique for the superconducting critical temperature Tc are indicated 
in a pictorial graph in Fig. 8. 

The most important attributes, according to our investigation, had to 
do with thermal conductivity. This is expected given that transitions 
involving lattice phonons and electrons drive both superconductivity 
and thermal conductivity [8]. Ionic characteristics may also have an 
impact on superconductors’ ability to generate ions, which is associated 
with movement across the crystalline lattice (pertaining to electron af-
finity and the first ionization energy). With regard to superconductivity, 
the BCS theory fits in well with this interpretation [2]. By compre-
hending the physico-chemical characteristics that are more closely 
connected to the critical temperature, the analysis of superconducting 
materials can be made simpler. 

Overall, the RFR–relied technique has shown to be a very accurate 
and highly effective way for calculating the superconducting critical 
temperature Tc (dependent variable) as a function of various important 
measured physico-chemical factors, commensurate with the actual data 
reported in this study. Specifically, Figs. 9 to 13 indicate the comparison 
between the experimental and predicted Tc values employing the GS/ 
RFR, MLP, M5 model tree, and MLR models for the test dataset. 

Table 3 
Coefficients of determination (R2), correlation coefficients (r), root mean square 
deviation (RMSE) and mean absolute error (MAE) over the testing dataset, for 
the four different methods adjusted (RFR, M5 model tree, MLP and MLR) in this 
investigation to the training dataset.  

Method R2 r RMSE MAE 

Random Forest  0.9146  0.9565 9.905 5.739 
M5  0.8661  0.9309 12.407 7.263 
MLP  0.8277  0.9114 14.073 9.319 
MLR  0.5211  0.7220 23.463 18.191  

Table 4 
Relative significance of the physico-chemical input variables in 
the best-fit RFR–relied model for the prediction of the super-
conducting critical temperature Tc prediction.  

Variable Weight 

wtd_std_ThermalConductivity 0.7207 
range_ThermalConductivity 0.6889 
range_atomic_radius 0.6557 
std_ThermalConductivity 0.6541 
wtd_entropy_atomic_mass 0.6299 
wtd_mean_Valence -0.6288 
wtd_gmean_Valence -0.6125 
wtd_entropy_atomic_radius 0.6070 
range_fie 0.6050 
entropy_Valence 0.6006  
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Consequently, to solve this nonlinear regression problem, it is funda-
mental to bring together the RFR procedure with the GS optimizer to 
produce an original hybrid strategy that is significantly more reliable 
and efficient than the other three regression methods. Particularly, a 
strong correlation between the modeled and measured Tc values was 
discovered. The Tc watched and foretold for the first materials in Fig. 6 
are shown in Table 5. 

3.3. Discussion 

Relied on the aforementioned discoveries, the following key findings 
of this inquiry can be made: 

Present analytical models that attempt to foretell the super-
conducting critical temperature Tc from reported data fall short of being 
precise enough because they oversimplify a difficult, highly nonlinear 
problem. Consequently, the best method for producing precise estimates 
of the Tc from experimental samplings is to use ML techniques, such as 
the hybrid GS/RFR–relied approximation used in this investigation. 

Fig. 7. Physico-chemical input variables’ relative significance in foretelling the critical temperature Tc for the adjusted RFR–relied model.  

Fig. 8. Representation of the dependent superconducting critical temperature Tc variable’s first-order and second-order terms for the three most significant inde-
pendent input variables: (a) Tc vs. Weighted Standard Thermal Conductivity; (b) Tc vs. Range Thermal Conductivity; (c) Tc vs. Range atomic radius; (d) Tc vs. Range 
Thermal Conductivity and Weighted Standard Thermal Conductivity; (e) Tc vs. Range atomic radius and Weighted Standard Thermal Conductivity; and (f) Tc vs. 
Range atomic radius and Range Thermal Conductivity. 
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Here, the hypothesis that a hybrid GS/RFR–relied approach can 
successfully validate the identification of Tc in a wide range of super-
conductors has been proven correct. 

This RFR–relied methodology produced satisfactory coefficients of 
determination and correlation coefficients with valuations of 0.9146 

and 0.9565, each in order, when applied to the entire experimental 
dataset from the Tc. 

Finally, the ranking of the input variables’ importance for estimating 
the Tc from experimental samples in various superconductors has also 
been determined. Particularly, it has been determined that Weighted 

Fig. 9. Observed vs. foretold superconducting critical temperature Tc values using 100 samples from the testing dataset for four distinct models: (a) MLR model (R2 =

0.5211andr = 0.7220); (b) MLP regression model (R2 = 0.8277andr = 0.9114); (c) M5 model tree (R2 = 0.8661andr = 0.9309); and (d) RFR–relied model (R2 =

0.9146andr = 0.9565). 

Fig. 10. Observed vs. foretold superconducting critical temperature Tc scatterplots from the testing dataset for four distinct models: (a) MLR model (b) MLP 
regression model (c) M5 model tree and (d) RFR–relied model. 
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Standard Thermal Conductivity is the single most crucial variable in 
forecasting critical temperature Tc. Noting the following sequential 
order of importance is also crucial: the Range Thermal Conductivity, 
Range Atomic Radius, Standard Thermal Conductivity, Weighted En-
tropy Atomic Mass, Weighted Geometric Mean Valence, Weighted Mean 
Valence, Range First Ionization Energy, Weighted Entropy Atomic 
Radius and Entropy Valence in the obtained Tc outcome. 

4. Conclusions 

The superconducting critical temperature Tc of a diversity of super-
conductors can be accurately foretold using hybrid GS/RFR–relied 
approximation, using features derived from the unique physico- 
chemical of each superconductor and/or experiment. As a result, the 

GS/RFR–relied approach proved to be a very reliable and workable so-
lution to the nonlinear issue of Tc estimate from experimental samplings 
in various superconductors. 

The model may help researchers focus their hunt for high tempera-
ture superconductors. For instance, it is possible to use the described 
method on a bigger database as a future development of this study [59]. 
In the future, researchers might use this dataset in conjunction with 
brand-new data (like pressure or crystal structure) to build models that 
are more precise. 
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