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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the fundamental theory of strong interactions. It
has been subject of examination with great success in high-energy hadronic phenomenology
based on perturbation theory [1]. However, it can’t explain every physical system governed
by the strong interaction. One of these physical systems, which is the main subject of this
dissertation, is the long-studied strongly interacting matter present in the core of compact
neutron stars. Some other approaches have been made to examine such systems in different
temperature and density regimes, such as lattice QCD, where theory can describe nonzero
temperature behavior and small baryonic chemical potential compared to temperature, or
Chiral Effective Theory at small temperature and small baryonic density with respect to
the saturation density. When the conditions in the core of heavy neutron stars result in a
baryonic density higher than the saturation density, lattice QCD and Chiral Effective Theory
aren’t able to explain those regimes. Therefore, this work focuses on using holography to
explore beta equilibrium conditions at high baryonic density, where matter must undergo
weak decays to maintain its chemical composition against the density oscillations that
neutron stars can experience. The regime of temperature in which these processes must be
considered using a non-perturbative approach can be studied through gauge/gravity duality
in a theoretical framework known as Holographic QCD [2].

The beta equilibrium condition that a neutron star must satisfy includes equalities in the
chemical potentials for the quark content, which can be perturbed by density fluctuations in
the star composition or in binary mergers [3]. The primary mechanism by which such a star
maintains equilibrium is through weak decays of the quark flavors. The rates at which these
changes occur are studied using thermal field theory techniques to study contributions to
flavor current two point functions as a result of including flavor symmetry breaking terms
due to weak interactions to the QCD Lagrangian and then obtaining non-conserved quark
currents by the Ward Identities involving non-leptonic decays. The rates for these processes
are interesting by themselves since they directly feed into the cooling behaviour of the
neutron star [4].

This work is organized into basic concepts and the main part. The basic concepts are
related to elements of Quantum Field Theory (QFT), specifically the quantum mechanics
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partition functions and the field theory formalism used to define the path integral formulation.
These are necessary to express the two-point correlators at non-zero temperature and non-zero
chemical potential in the modern approach with quantum field theory, where the Schwinger-
Keldysh formalism is required in the imaginary time approach.Then, Ward identities and
QCD comments are discussed, which play an important role in the rate calculations, starting
from one side of the holographic model. Chapter 3 is about gauge/gravity duality, first
conjectured by Maldacena [5], in which a bottom-up model is used as a tool for non-
perturbative calculations through a five-dimensional holographic QCD model based on the
AdS5/CFT4 correspondence. There are also comments on Lie algebra to provide the correct
background for the discussions in the Conformal Field Theory section. It then discusses the
existence of a relationship based on the Holographic dictionary, which establishes connections
between the field content of both approaches.This relationship is necessary for calculating
the correlators defined in Chapter 4, which is part of the main section dealing with the beta
equilibrium condition that the quark chemical potentials must satisfy, and the formulas for
the quark density changes as functions of the quark decay rates. It then addresses flavor
symmetry breaking through the addition of an electroweak term to the QCD action for
massless quarks. Finally, using the theory developed in Chapter 2, the two-point functions
for the electroweak currents derived from the Ward identities will be presented. There is
also a mention of the bulk viscosity calculation that can be made through the quark density
changes and the chemical potentials.

Chapter 5 concerns the holographic calculation for the electroweak rates. First, the
holographic model is presented along with the corresponding duals for the quantities involved.
It then deals with the calculation for the fluctuation equation of the left-handed gauge
field, considering a Schwarzschild-AdS metric. The solutions to these fluctuations contain
the form of the retarded correlators needed to calculate the reaction rates, as explained in
Chapter 4. As a final note, it is important to mention the significance of new approaches in
non-perturbative QCD as a means to perform calculations that provide insights into new
aspects of field theory and its relation to the gravitational theory perspective. It is also
concluded that this work can be extended by considering semi-leptonic weak decays and the
finite temperature regime.
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Chapter 2

Elements of Quantum Field Theory

The main goal of this chapter is to provide context on elements of Thermal Quantum
Field Theory. It begins with a quantum mechanical definition of the partition function
and then establishes how thermal correlator functions can be computed from this definition
within an imaginary-time theoretical framework. Subsequently, the chapter transitions to
Quantum Field Theory through the introduction of the Schwinger-Keldysh formalism. It
then defines correlators by the spectral function, which aligns with the final expression
for the electroweak rates. The topics discussed here were taken from THERMAL FIELD
THEORY by Michel Le Bellac [6]. After this development, the theory of Ward identities, as
well as general aspects of QCD, are discussed due to their importance in defining current
correlator functions, with specific references mentioned within the text.

2.1 Generating Functional

When a given process can take place in more than a single way in a time interval, its
probability amplitude for transitions between an initial position Xa(ti) and a final one
Xb(tf ), points that belong to an space-time configuration with one spatial dimension, is
defined as the total contribution of individual amplitudes for all possible paths between the
extreme points. But first it is better to show how the formalism arises from the Quantum
Statistical Mechanics theory and then look how temperature and chemical potential can be
introduced in a quantum field theory, being important to derive the time-ordered propagator
later.

2.1.1 Path Integral and Imaginary time approach

There are two ways of understanding quantum field theory with temperature and chemical
potentials introduced as operator formalism and the path integral, where the last is better to
quantize gauge theories. Both mathematical frames are useful for a zero temperature theory
but when there is a finite theory is better to know the relationship between one another.

Let’s start saying it is convenient to perform an analytical continuation from real to
imaginary time as: t→ −iτ with τ ∈ R. There is also a correspondence with the momentum
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space as k0 → −ik4 and k4 ∈ R as well. Now define the probability amplitude for a particle
to make a transition between (q, t) → (q′, t′) as

F
(
q′, t′; q, t

)
= ⟨q′| e−iH(t′−t) |q⟩ (2.1)

where the temporal evolution is described by a Hamiltonian with a time-independent potential
V (q). From now on, it has been taken a linear motion in R and with natural units (ℏ = 1).
If one wants to make the analytical continuation of F, mentioned above, to imaginary time
it just need a change like

F
(
q′, t′; q, t

)
→ F

(
q′,−iτ ′; q,−iτ

)
= ⟨q′| e−H(τ ′−τ) |q⟩ . (2.2)

Now is when the path integral formalism can be proposed for the F quantity. Define the
time interval [τ, τ ′] and the length of each successive division as ϵ = (τ − τ ′)/(n+ 1) when
n→ ∞ and take the well-known classical Hamiltonian for the time evolution in 2.2 with the
momentum P and position q operators given by

e−(τ ′−τ)H = exp

(
−(τ ′ − τ)

(
P̂ 2

2m
+ V (q)

))
(2.3)

when trying to reach the bracket form of 2.2 let’s introduce a complete set of position
operator eigenstates at times τ1 . . . τn

⟨ql+1| e−(τ ′−τ)H |ql⟩ = ⟨ql+1| exp

(
−(τ ′ − τ)

(
P̂ 2

2m
+ V (q)

))
|ql⟩

= ⟨ql+1| exp

(
−ϵ(n+ 1)

(
P̂ 2

2m
+ V (q)

))
|ql⟩ .

(2.4)

At this point it is convenient to introduce the Lie product formula for A and B bounded
operators

lim
n→∞

(
eA/neB/n

)n
= eA+B (2.5)

and then turning back to the computation in (2.4), it can be followed by

⟨ql+1| exp

(
−ϵ(n+ 1)

(
P̂ 2

2m
+ V (q)

))
|ql⟩ = ⟨ql+1| exp

(
−ϵV (q)

2

)

exp

(
−ϵP̂ 2

2m

)
exp

(
−ϵV (q)

2

)
|ql⟩
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with ϵ→ 0. Reaching now the new form of the probability amplitude by

F
(
q′,−iτ ′; q,−iτ

)
= lim

ϵ→0

∫ n∏
l=1

dql ⟨ql+1| exp
(
−ϵV (q)

2

)

exp

(
−ϵP̂ 2

2m

)
exp

(
ϵV (q)

2

)
|ql⟩ .

(2.6)

The action of the momentum operator must be cleared with its matrix element, for which
one introduces a complete set of eigenstates |pl⟩ ⟨pl| alongside the operator in the previous
equation and putting all together in the probability amplitude one gets

F
(
q′,−iτ ′; q,−iτ

)
= lim

ϵ→0

( m

2πϵ

) 1
2

∫ n∏
l=1

dql

( m

2πϵ

) 1
2

× exp

(
−ϵ

(
n∑

l=0

m(ql+1 − ql)
2

ϵ2

)

+

n∑
l=0

V

(
ql+1 + ql

2

))
.

(2.7)

From this last expression its convenient to take a new definition which is nothing else
than the one for the differential element for the path integral

Dq(τ ′′) = lim
ϵ→0

( m

2πϵ

) 1
2

n∏
l=1

( m

2πϵ

) 1
2
dql . (2.8)

The argument of the exponential term in (2.7) is related with the Riemann sum such that
the Euclidean Action can be defined as

SE(τ
′ − τ) =

∫ τ ′

τ
dτ ′′

(
1

2
mq̇2(τ ′′) + V (q(τ ′′))

)
(2.9)

and finally the path integral formalism gives the probability amplitude

F
(
q′,−iτ ′; q,−iτ

)
=

∫
Dq(τ ′′)exp

(
−SE(τ ′ − τ)

)
(2.10)

a quantity tied to the boundary conditions on the path q(τ ′′) defined by q(τ) = q and
q(τ ′) = q′.

2.1.2 Partition Function in Quantum Mechanics

With all this computation the main objective is now to get a path integral definition for
the Partition function related with quantum statistical mechanics. First, one must take the
expression

Z(β) = Tr
(
e−βH

)
→
∑
n

(
e−βEn

)
(2.11)
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with evaluated trace over the eigenvectors of the Hamiltonian H, β = T−1 and units as
kB = 1. But the trace has another expression dealing with a complete set of the position
operator eigenstates like

Z(β) =

∫
dq ⟨q| e−βH |q⟩ . (2.12)

It is possible to make a connection with the probability amplitude in (2.1) such that

Z(β) =

∫
dqF (q,−iβ; q, 0) (2.13)

and with (2.10) one have reached the partition function as a path integral like

Z(β) =

∫
Dq(t)exp (−SE(β)) (2.14)

where the exponential term will have an integral over the Hamiltonian from 0 to β in
imaginary time and the paths in the partition function are restricted to the boundary
condition q(β) = q(0) as it was said with Im t) = β.

With the path integral formalism, like in QFT, the mathematical object known as
generating functional can be defined by the Euclidean action with an additional term for
some external source

Z(β, j) =

∫
Dq(τ)exp

(
SE(β) +

∫ β

0
dτj(τ)q(τ)

)
(2.15)

such that the previous object can be understood as a functional which by its differentiation
defined as

1

Z(β)

δ2Z(β, j)

δj(τ1)δj(τ2)

∣∣∣∣∣
J=0

=
1

Z(β)

∫
Dq(τ)q(τ1)q(τ2)exp (SE(β)) (2.16)

2.2 Thermal Correlators

The generating functional is now the key to understand the nature of some important
quantities in QFT with finite temperature formalism. Indeed, the thermal average of a
time-ordered product of position operators is written like

〈
T (q(−iτ1)q(−iτ2))

〉
β
=

1

Z(β)
Tr[e−βHT (q(−iτ1)q(−iτ2))] (2.17)

where, it is useful to describe the position operator in term of the Heisenberg picture by

q(t) = eiHtqe−iHt

q(−iτ) = eHτqe−Hτ .
(2.18)

11



Universidad de Oviedo
2024

Beta equilibrium reaction rates
at strong coupling using gauge/gravity duality

By definition, the thermal average of an arbitrary operator Â is

〈
Â
〉
β
=

1

Z(β)
Tr
(
Âe−βH

)
. (2.19)

Moreover, the time-ordered product was defined in the context of imaginary time, that is

T (q(−iτ1)q(−iτ2)) =


q(−iτ1)q(−iτ2), τ1 > τ2

q(−iτ2)q(−iτ1), τ2 > τ1

.

(2.20)

So, if one needs the operator form of the generating functional it can be seen by

Z(β, j) = Tr

(
e−βHT

(∫ β

0
dτj(τ)q(−iτ)

))
(2.21)

and using the relation (2.17) together with the cyclic property of the trace and the periodicity
of the path integral in (2.14) which is q(β) = q(0), one can derive an important property for
the propagator which is

〈
T (q(−iβ)q(−iτ))

〉
β
=

1

Z(β)
Tr[e−βHT (q(−iβ)q(−iτ))]

=
〈
T (q(0)q(−iτ))

〉
β

(2.22)

where one can notice the same argument of cyclic trace property seen before and then let’s
define a new function as

∆(τ) =
〈
T (q(−iτ)q(0))

〉
β

(2.23)

also being periodic in imaginary time meaning ∆(τ −β) = ∆(τ) for τ ∈ [0, β]. It is now time
to move on and giving the explicit formulation for the potential term in the Hamiltonian.
Let’s use the Harmonic Oscillator which implies

V (q) =
1

2
ω2q2 . (2.24)

Now one may focus on knowing the time-ordered product in (2.17). But first it is necessary
to include the explicit computation of Z(β, j) and for that purpose, using the path integral
seen in (2.15) one has

Z(β, j) =

∫
Dq(τ)exp

(
−
∫ β

0

1

2
q(τ)

(
− d2

dτ2
+ ω2

)
q(τ)− j(τ)q(τ)dτ

)
Z(β, j) = Z(β)exp

(
1

2

∫
dτdτ ′j(τ)K(τ, τ ′)j(τ ′)

) (2.25)

such that the new function K(τ, τ ′) is just the Green function which also satisfy(
− d2

dτ2
+ ω2

)
K(τ, τ ′) = δ(τ − τ ′) . (2.26)
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Using some of the equations derived so far it is possible to make a correspondence between
the Green function and the ∆(τ) function. Specifically, the relations (2.16), (2.23) and (2.25)
are manipulated to obtain

∆F (τ − τ ′) = K(τ, τ ′) (2.27)

where the subscript F is used to make it clear when taking the Harmonic Oscillator formalism
on the free field approach. There is also another way to describe the ∆F (τ − τ ′) function
when τ ∈ [0, β] by

∆F (τ) =
1

2ω

{
(1 + n(ω))e−ωτ + n(ω)eωτ

}
(2.28)

with the new function n(ω) as the Bose-Einstein distribution

n(ω) =
1

eβ|ω| − 1
(2.29)

2.2.1 Two-point function formalism

The next logical step is to define correlators for real values of time component. For this,
let’s define the following two-point functions, as in QFT by

D>(t, t′) =
〈(
q(t)q(t′)

)〉
β

D<(t, t′) =
〈(
q(t′)q(t)

)〉
β

(2.30)

and then checking by symmetry that it is possible to associate one another throughD<(t, t′) =

D>(t′, t). Another useful expression for the previous functions can be found inserting a
complete set of eigenstates of the Hamiltonian, |n⟩ ⟨n| and |m⟩ ⟨m| between the exponential
terms and q(0) and using the equation (2.22) it is possible to write

D>(t, t′) =
1

Z(β)
Tr[
(
q(t)q(t′)e−βH

)
]

D>(t, t′) =
1

Z(β)
Tr
(
e−βHq(0)eiH(t′−t)q(0)eiH(t−t′)

)

D>(t, t′) =
〈(
q(t)q(t′)

)〉
β
=

1

Z(β)

∑
m,n

e−βEneiEm(t′−t)

e−iEn(t′−t)|⟨n| q(0) |m⟩|2 .
(2.31)

If is needed to see the convergence of the previous definition, this is given by the exponential
terms, so the two-point functions are define in−β ≤ Im t− t′) ≤ 0, D>(t, t′)

β ≥ Im t− t′) ≥ 0, D<(t, t′)
(2.32)

where one notice that e−βH is an imaginary time evolution operator such that

q(t+ iβ) = e−βHq(t)eβH . (2.33)
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Now on it is convenient to mention the Kubo-Martin-Schwinger relation (KMS) which
is important in understanding the periodicity properties of both two-point functions

D>(t, t′) = D<(t+ iβ, t′) (2.34)

and for the previous interval τ ∈ [0, β], there is an equation between the Delta and the
two-point functions

D>(−iτ, 0) =
〈
q(−iτ)q(0)

〉
β

D>(−iτ, 0) = ∆(τ) .
(2.35)

The time ordered propagator when (t, t′) ∈ R, must be defined by its importance in the
next sections as

D(t, t′) =
〈
T
(
q(t)q(t′)

)〉
=θ(t− t′)D>(t, t′) + θ(t′ − t)D<(t, t′)

(2.36)

which may remember the definition of the Feynman propagator in QFT.

2.2.2 Definition of the Spectral Function

Let’s start with the introduction of a new label for the two-point functions, which will be
useful later, by

D>(t) = D>(t, 0)

D<(t) = D<(t, 0)
(2.37)

and the Fourier transform for both written as

D>(k0) =

∫ ∞

−∞
eik0tD>(t) dt

D<(k0) =

∫ ∞

−∞
eik0tD<(t) dt =

∫ ∞

−∞
eik0 tD>(t− iβ) dt

(2.38)

where the second equation holds from KMS relation. It is also possible to show an important
property following from the previous relations with

D<(k0) = D>(−k0) = e−βk0D>(k0) (2.39)

what this means is that the two-point function are real-valued functions with traslational
invariance and remember the position operators q which are Hermitic. It is possible to define
a commutation relation for the position operators by introducing the "spectral function" as

ρ(k0) = D>(k0)−D<(k0) (2.40)

14



Universidad de Oviedo
2024

Beta equilibrium reaction rates
at strong coupling using gauge/gravity duality

which contains indeed a commutator by

ρ(k0) = D>(k0)−D<(k0)

=
〈
q(k0)q(0)

〉
β
−
〈
q(0)q(k0)

〉
β

=
〈
[q(k0), q(0)]

〉
β

(2.41)

which means that the spectral function is a thermal average value. There is another way to
write the two-point Green functions by the introduction of a new quantity such that

f(k0) =
(
eβk0 − 1

)−1
(2.42)

and with the relations in (2.39) one has

D<(k0) = e−βk0D>(k0) + e−βk0D<(k0)− e−βk0D<(k0)

= e−βk0ρ(k0) + e−βk0D<(k0)

D<(k0) = f(k0)ρ(k0)

(2.43)

and with an analogous procedure

D>(k0) = (1 + f(k0))ρ(k0) . (2.44)

An explicit version of the spectral function can be computed, using the relations in (2.39)
and the equation (2.31), by the expression

ρ(k0) =
2π

Z(β)

∑
n,m

eβEn (δ(k0 + En − Em)− δ(k0 + Em − En)

× |⟨n| q(0) |m⟩|2
(2.45)

from this one can highlight the following properties

• the spectral function ρ(k0) is an odd real-valued function of k0; ρ(k0) = −ρ(−k0)

• the spectral function satisfy the positivity condition described by ϵ(k0)ρ(k0) > 0 with
ϵ as the sign function.

At this point, it is convenient to go further in the Harmonic Oscillator formalism taking
the position operators as a sum of the ladder ones by

q(t) =
1√
2ω

(
âe−iωt + â†eiωt

)
(2.46)

so, with the commutation relation derived from (2.41) and the Harmonic Oscillator form in
the previous equation, one has

D>(t)−D<(t) =
〈
[q(t), q(0)]

〉
β

=
1

2ω

〈
e−iωt[â, â†] + eiωt[â†, â]

〉
β

(2.47)
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and if [â, â†] = 1 one finally gets

D>(t)−D<(t) =
1

2ω

〈
e−iωt − eiωt

〉
β
. (2.48)

A different kind formalism inside Harmonic Oscillator theory can be related to the two-
point function quantities through the canonical commutation rule between position operator
and its derivative where∫ ∞

−∞
dk0

1

2π
k0e

ik0t
(
D>(k0)−D<(k0)

)
= i

d

dt

(
D>(t)−D<(t)

)
= i

d

dt

〈
[q(t), q(0)]

〉
β

(2.49)

and if one takes the limit when t → 0, a general sum rule expression over the spectral
function can be written by ∫ ∞

−∞
dk0

1

2π
ρ(k0) = 1 . (2.50)

Once again, in the free field approach one gets the free spectral, temperature-independent,
function by a Fourier transform on the equation (2.48) and with a particular fact about
δ-function on composition property such that

ρ(k0) =

∫
dteik0t

1

2ω

〈
e−iωt − eiωt

〉
β

=
1

2ω

(∫
ei(k0−ω)tdt−

∫
ei(k0+ω)tdt

)
ρF (k0) = 2πϵ(k0)δ(k

2
0 − ω2)

(2.51)

2.2.3 The Matsubara Propagator

There was a first approach to the Matsubara propagator, also named as Imaginary
propagator, previously in this section by the introduction of delta function in equation (2.23).
The purpose now is to define some properties starting from its Fourier transform in

∆(iωn) =

∫ β

0
dτeiωnτδ(τ) (2.52)

and the inverse transformation as

∆(τ) = T
∑
n

e−iωnτ∆(iωn) (2.53)

where the periodicity property can be remembered from equation (2.23). The fact that
Fourier transforming procedure is defined considering the [0, β] time interval, the frequency
becomes discrete given by the values

ωn =
2πn

β
(2.54)
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known as Matsubara frequencies. Now, if once again τ ∈ [0, β], together with the Fourier
transform of two-point Green function in (2.38) one gets

∆(τ) = D>(−iτ) =
∫ ∞

−∞
dk0

1

2π
e−k0τD>(k0) . (2.55)

There is also another path to describe the imaginary propagator in (2.52) by using the
spectral function together with equation (2.44) to prove that

∆(iωn) = −
∫ ∞

−∞
dk0

1

2π

ρ(k0)

iωn − k0
(2.56)

and using the free field approach in (2.51) together with the composition property of
δ-function one gets

∆(iωn) = −
∫ ∞

−∞
dk0

1

2π

2πϵ(k0)δ(k
2
0 − ω2)

iωn − k0
;

δ(x2 − α2) =
1

2|α|
(δ(x+ α) + δ(x− α))

(2.57)

and then one can finally write

∆F (iωn) =
1

ω2
n + ω2

(2.58)

where it is possible to see this expression as the Fourier transform of the previous equation
for the free Delta Function in (2.23).

Another pair of operators must be defined in order to achieve a time-ordered propagator
value. These ones are the retarded and advanced propagators like

DR(t) =
〈
θ(t)[q(t), q(0)]

〉
β

DA(t) = −
〈
θ(−t)[q(t), q(0)]

〉
β

(2.59)

where the θ-function defined as

θ(t) = i

∫ ∞

−∞
dk′0

1

2π

e−ik′0t

k′0
2 + iη

. (2.60)

The equation (2.56) for the time-imaginary propagator owns an analytical continuation
which is not unique. To know it, its enough to take in count the condition of convergence
|∆(z)| → 0 when |z| → ∞ and also ∆(z) must satisfy being analytic beyond the real axis,
all together joined in the expression

∆(z) = −
∫ ∞

−∞
dk0

1

2π

ρ(k0)

z − k0
. (2.61)

It is also useful for the sections to come, performing a Fourier transform on the definitions
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(2.59) of retarded propagator

DR(k0) = i

∫ ∞

−∞
dk′0

1

2π

ρ(k′0)

k0 − k′0 + iη
(2.62)

and using relation (2.56) one gets a correspondence in momentum space between the retarded
and advanced propagators with the Matsubara’s by

DR(k0) = −i∆(k0 + iη)

DA(k0) = i∆(k0 − iη)
(2.63)

So the analytic continuation in (2.61) is analogous to the complex contour used when defining
the Feynman propagator in QFT, and for (2.62), it makes the retarded propagator analytic
in the upper half of the k0-complex plane

Until now, it has been possible to define a wide range of quantities in the momentum
space through the Fourier transform and with the components of (2.36) one is able to do
the same like

D(t) = θ(t− t′)D>(t, t′) + θ(t′ − t)D<(t, t′)

D(k0) =

∫
dk0e

ik0t
(
θ(t− t′)D>(t, t′) + θ(t′ − t)D<(t, t′)

) (2.64)

and finally, using the θ-function in (2.60) together with the Fourier transform in (2.43) and
(2.44) one gets

D(k0) = i

∫
dk0

1

2π

ρ(k′0)

k0 − k′0 + iη
+ f(k0)ρ(k0) . (2.65)

For the Green retarded and advanced functions, one notes a temperature-invariance given
by the spectral function and joining this with the free field approach in (2.51) its possible to
re-write (2.98) by

DF (k0) = i

∫
dk′0

1

2π

ρF (k
′
0)

k0 − k′0 + iη
+ f(k0)ρF (k0)

= i

∫
dk′0

ϵ(k′0)δ(k
′
0
2 − ω2)

k0 − k′0 + iη
+ 2πϵ(k0)δ(k

2
0 − ω2)f(k0)

DF (k0) =
i

k20 − ω2 + iη
+ 2πn(k0)δ(k

2
0 − ω2)

(2.66)

where a new function given by n(k0) =
(
eβ|k0| − 1

)−1. Such function gives an important
remark on temperature-dependence by the second term of the free field function DF regarding
the first temperature-invariant term.

2.2.4 Green Function in Quantum Field Theory

The main purpose now, once the formalism of the generating functional in quantum
mechanics is established, is to find the generalized form in quantum field theory, considering,
for simplicity, the scalar field operator in spacetime coordinates. Such a field, like the
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position operators, evolves in the Heisenberg picture as

ϕ̂(x) = eitĤ ϕ̂(0)e−itĤ (2.67)

such that the coordinates (x) belong to a flat spacetime in which one can identify x0 = t

that could be a complex valued parameter, t ∈ C. Previously in this section, it was defined
the Green function depending on operators in quantum mechanics (2.36). What one needs
now in quantum field theory is a definition of the thermal Green function given by

GC(x1, x2, . . . , xN ) =
〈
TC (ϕ(x1)ϕ(x2) . . . ϕ(xN ))

〉
β

(2.68)

where the time-ordered operator TC is defined along the complex time path C. From now
on the notation of field operators will be simplified by ϕ̂→ ϕ.

The path C is essential for defining the path integral and the generating functional later
on. However, there will be difficulties due to the fact that it is a complex path, and one
needs to define real quantities. Therefore, it is possible to redefine the coordinate t from the
previous path using a parameter map such that

t = z(v) (2.69)

with the identification v ∈ R which increase in such way that the ordering along the path
C will agree with the increasing ordered values of v. The quantum mechanical formalism
required the definitions of the θ- and δ- functions to define the correlators like in (2.36),
which will have a similar structure in this new formalism of the complex path C by

θC(t− t′) = θ(v − v′)

δC(t− t′) =

(
∂z

∂v

)−1

δ(v − v′) .
(2.70)

With these new definitions, one can define the time-ordered operator in the complex path
C, in a similar way of (2.20), as

TC
(
ϕ(x)ϕ(x′)

)
= θC(t− t′)ϕ(x)ϕ(x′) + θC(t

′ − t)ϕ(x′)ϕ(x)

∂tTC
(
ϕ(x)ϕ(x′)

)
= δC(t− t′)[ϕ(x), ϕ(x′)] + TC

(
∂tϕ(x)ϕ(x

′)
)
.

(2.71)

There is still the definition of the functional derivative that one needs to give a generalized
version with spacetime coordinates by

δj(x)

δj(x′)
= δC(t− t′)δ(3)(x− x′) (2.72)

where the source functions j(x) are defined along the path C.
As it was made in (2.16), one needs to construct the Generating functional, given by

the notation along the C path by ZC(β, j), to get the Green Function from functional
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differentiation depending on the sources from

GC(x1, . . . , xN ) =
1

Z(β)

δNZC(β, j)

iδj(x1) . . . iδj(xN )

∣∣∣∣∣
j=0

. (2.73)

The specific structure of the new generating functional could be analogous to that in
quantum mechanics given for example in (2.21), now along the C path and related to the
possible results of the previous Green function, by

ZC(β, j) = Tr

[
e−βHTC

(
exp

(
i

∫
C
d4xj(x)ϕ(x)

))]
(2.74)

in which the path C must cover all the arguments of the Green’s function definition. One
can also notice the boundary condition ZC(β, j = 0) = Z(β) = Tr(exp(−βH)), where it
can be found the correspondence with quantum mechanics definition without considering
the path C.

The structure for the propagator D in (2.36) can be brought to this formalism with the
generalized expression for the complex path

DC(x, x
′) = θC(t− t′)D>

C (x, x
′) + θC(t

′ − t)D<
C (x, x

′) (2.75)

and considering the definition for the D< and D> operators given in (2.30) by their new
complex path formalism one finally gets

D>
C (x, x

′) =
〈
ϕ(x)ϕ(x′)

〉
β

D<
C (x, x

′) = D>
C (x

′, x) =
〈
ϕ(x′)ϕ(x)

〉
β
.

(2.76)

The operators previously describes are both analytical while −β < Im t − t′) < 0 and
0 < Im t− t′) < β respectively and analogous to (2.31) and (2.32). From these requirements,
looking at the propagator in (2.75), it is necessary to define the path C such that the
imaginary part of (t− t′) doesn’t increase when the parameter v in does because that will
change the intervals of analytical definition, so one needs to add spacetime components and
complex values of t looking for a new structure of (2.36).

The starting point guided for the previous purpose can be to postulate translation
invariance for the propagator DC(x, x

′) as

DC(x− x′) = θC(t− t′)
[
D>

C (x− x′)−D<
C (x− x′)

]
+D<

C (x− x′) (2.77)

and if also one uses the definition of the spectral function given in (2.40) with a generalization
to 4-dimensional spacetime the new spectral function will be

ρ(k) = ρ(t, k⃗) (2.78)

so, through the Fourier transform procedure one gets a 4-momentum expression for the
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propagator in (2.77) with

DC(x− x′) =

∫
d4k

(2π)4
e−ik(x−x′)

(
θC(t− t′) + f(k0)

)
ρ(k) (2.79)

where it was possible to find a symmetry rule by DC(x−x′) = DC(x
′−x) and was preserved

the form of f(k0) given in (2.42), also using a new relation such that

1 + f(k0) + f(−k0) = 0 . (2.80)

One can find some other relation in quantum mechanics formalism introducing again the
"free" concept as for the free spectral function now in spacetime coordinates by

ρF (k) = 2πϵ(k0)δ(k
2 −m2) . (2.81)

At this point it is missing the path integral formalism to much used in the quantum
mechanics section. For this reason, the following concentrates in developing a consistent
formalism for the path integral to be incorporated to the generating functional and the field
operator states. So, the field operator is given by ϕ(x) = ϕ(t, x⃗) in the Heisenberg picture
and be |ϕ(x⃗); t⟩ the state vector when at a given time t is an eigenstate of the field operator
with eigenvalue ϕ(x⃗), formally

ϕ(x) |ϕ(x⃗); t⟩ = ϕ(x⃗) |ϕ(x⃗); t⟩ . (2.82)

Those state vectors evolve by the action of the Hamiltonian operator such that

|ϕ(x⃗); t⟩ = eitH |ϕ(x⃗); t = 0⟩ (2.83)

where this states form a complete set for any value of time. These set will be the key to
define the path integral later starting from the definition for the thermal average of an
arbitrary operator in (2.19) and now in the field operator formalism

〈
Â
〉
β
=

1

Z(β)
Tr
(
e−βHÂ

)
=

1

Z(β)

∫
[dϕ] ⟨ϕ(x⃗); t| e−βHÂ |ϕ(x⃗); t⟩ .

(2.84)

The exponential term defined by the Hamiltonian acts on the dual state as an evolution
operator on the time path and in a similar way like (2.22), with the integral over [dϕ] which
is counting all possible field configurations, the generating functional on the complex path
C is now given by

ZC(β, j) =

∫
[dϕ′] ⟨ϕ′(x⃗); t− iβ|TC

(
exp

(
i

∫
C
d4xj(x)ϕ(x)

))
|ϕ′(x⃗); t⟩ (2.85)

where the evolution operator makes clear the path followed by the time coordinate on C
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starting from an initial value ti ending in ti − iβ. Like in (2.15), the generating functional is
described under the path integral formalism which later will be formalized but first, one
needs to indicate the new domain of the integral in the exponential term by

ZC(β, j) =

∫
Dϕexp

(
i

∫
C
d4xL(x) + j(x)ϕ(x)

)
. (2.86)

The Green functions GC will be obtained from functional derivative on the previous
definition and the difference between [dϕ] and Dϕ is analogous to that in (2.8).

Figure 2.1: Followed paths which C is composed by

So far, the presented definitions are meant to be expressed in a complex path C formalism
starting from an initial time ti to a final one ti − iβ and within this, the imaginary part
of the time coordinate must be a non-increasing quantity evaluated by the parameter v in
(2.2.4). The complex path C must be identified by some split rules depending on the Real or
Complex axis that the coordinate t follows as described in figure 2.1 with σ ∈ [0, β]. Those
partial paths will be useful for the physical interpretation of the quantities so far depending
on the path followed by the formalism.

With the free field approach is possible to define again the Green functions DC but taking
the partial paths described in figure 2.1 by

DF
C (x− x′) = θC(t− t′)D>F

C (x− x′) + θC(t
′ − t)D<F

C (x− x′) (2.87)

where one can postulate a new free generating functional in which the followed path C can
be factorized by

ZF
C (β, j) = N1Z

F
C12

(β, j)ZF
C34

(β, j) (2.88)

with a normalization constant and where the components had been taken splitting the hori-
zontal and vertical paths in two different functions. It is not a formal physical interpretation,
in such way that is formed by real and complex expressions of time.

In a similar way, one can do the same for the free Green function depending on the
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followed path. Such components are given by the rules

DF
11(t− t′) =DF (t− t′)

DF
22(t− t′) =D∗

F (t− t′)

DF
12(t− t′) =DF

C (t− (t′ − iσ)) = D<(t− t′ + iσ)

DF
21(t− t′) =DF

C ((t− iσ)− t′) = D>(t− t′ − iσ)

(2.89)

where one can notice that the last two equations satisfy the fact that "times" on the path
C2 are always later than those in C1. Finally, one can review the Fourier transform in each
of these parts in a similar procedure that was made on (2.66) with the introduction of n(k0)
function. The results are

DF
11(k) =

i

k2 −m2 + iη
+ n(k0)2πδ(k

2 −m2)

=
(
DF

22(k)
)∗

DF
12(k) =e

σk0f(k0)ρF (k)

DF
21(k) =e

−σk0 (1 + f(k0)) ρF (k) .

(2.90)

There are some useful symmetries depending on the choice of σ but the physical results
don’t depend on that. Those are first when σ = β/2 by

DF
12(k) = DF

21(k) = exp

(
β|k0|
2

)
n(k0)2πδ(k

2 −m2) (2.91)

and the second one when σ = 0, going back to reference (2.43) and (2.44) by

DF
12(k) =D

<
F (k0)

DF
21(k) =D

>
F (k0) .

(2.92)

There is an easier way to see the functional derivative action on the partition function
related to the time ordered operator by

Z [0] =

∫
DϕeiS (2.93)

where this definition make it is possible to define the Feynman Propagator for a two point
function as

⟨Ω|T [ϕ(x)ϕ(y)] |Ω⟩ =
∫
Dϕϕ(x)ϕ(y)eiS∫

DϕeiS

=

∫
Dϕϕ(x)ϕ(y)eiS

Z [0]
.

(2.94)
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The functional derivative can be also re-defined with the following expression

δ

δJ(x)
J(y) = δ(4)(x− y)

δ

δJ(x)

∫
J(y)ϕ(y)d4y = ϕ(x) .

Once with these definitions, the structure of the numerator in equation (2.94) can be seen
as functional derivatives over a generalized form of the generating functional

Z [J ] =

∫
DϕeiS+i

∫
J(x)ϕ(x)d4x (2.95)

such that for the two point function the functional derivatives act like

δ

δJ(x)
Z [J ]

∣∣∣∣∣
J=0

=
δ

δJ(x)

∫
DϕeiS+i

∫
J(z)ϕ(z)d4z

∣∣∣∣∣
J=0

= i

∫
Dϕϕ(x)eiS

δ

δJ(x)

δ

δJ(y)
Z [J ]

∣∣∣∣∣
J=0

= i2
∫

Dϕϕ(x)ϕ(y)eiS

∣∣∣∣∣
J=0

. (2.96)

This was an specific example but a general expression for the Feynman propagator in
terms of generating functional can be written as

〈
T [ϕ(x1)ϕ(x2) . . . ϕ(xn)]

〉
=

1

Z [0]

∫
Dϕϕ(x1)ϕ(x2) . . . ϕ(xn)e

iS

=
1

Z [0]

(
1

i

)n δZ [J ]

δJ(x1)δJ(x2) . . . δJ(xn)

∣∣∣∣∣
J=0

(2.97)

2.3 Ward identities

In a quantum field theory the presence of a symmetry leads to an invariant action
term under specific elements of a given transformation group. Take for example the Dirac
Lagrangian and transformations under U(1) like ψ → eiθψ and promoting the transformation
parameter to a space-time function θ → θ(x), so the Lagrangian transforms as

L = iψ̄γµ∂µψ

L′ → iψ̄′γµ∂µψ
′ = i

(
e−iθ(x)ψ̄

)
γµ∂µ

(
eiθ(x)ψ

)
L′ = L+ iψ̄γµψ∂µθ(x) .

Now, with the new Lagrangian term, the modified action is then given by

S′ =

∫
L′d4x = S +

∫
iψ̄γµψ∂µθ(x)d

4x

S′ = S − i

∫
θ(x)∂µ

(
ψ̄γµψ

)
d4x

(2.98)
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where it was performed an integration by parts over the second term of the first line. Both
action term and hence the generating functional must be invariant under the symmetry
transformation U(1). With the expressions (2.93) and (2.98) it it possible to change the
form of Z by

Z ′ =

∫
DψDψ̄eiS

′
.

If θ is small enough it is also possible to expand the exponential term as

Z ′ =

∫
DψDψ̄eiS

(
1 +

∫
θ(x)∂µ

(
ψ̄γµψ

)
d4x+O(θ2)

)
Z ′ = Z +

∫ 〈
∂µ
(
ψ̄γµψ

)〉
θ(x)d4x+ . . . .

As it was said, the generating functional must remain invariant for a symmetry, then since
θ ̸= 0 the expectation value term within the integral must be 0 for all θ(x), such relation its
known as the Ward Identity, which also shows the conservation of the Dirac current in

∂µ
〈
ψ̄γµψ

〉
= ∂µ

〈
jµ(x)

〉
= 0 (2.99)

2.4 Comments on Quantum Chromodynamics

Connecting observations from neutron stars to properties of ultra-dense matter is an
example of probing our understanding of fundamental theories such as Quantum Chromo-
dynamics (QCD) with the help of astrophysics [4]. QCD is the SU(3) non-abelian gauge
theory of color charge [7], describing the Strong Force which actually acts on quarks, not
the leptons.

An action principle for QCD is generally written as

SQCD =

∫
d4x[−1

2
Tr
(
GµνG

µν
)
+ i
∑
i=1

q̄iγ
µDµq

i −miq̄iq
i] (2.100)

where i runs over the various quarks, fermions which carry charge under SU(3) named color
charge (red, blue, green). The field strength associated to the flavored gauge potential is

Gµν = ∂µA
f
ν − ∂νA

f
µ − igs[A

f
µ, A

f
ν ] (2.101)

with gs as the strong coupling constant and the field Af
µ is the one associated to 8 independent

gauge fields called gluons from the dimension of the gauge group where dimSU(N) = N2−1

with N=3.
The gluons couple to the quarks through the covariant derivative

Dµq
a = ∂µq

a − igs(Aµ)
a
bq

b (2.102)

where quarks also have the flavor index in Standard Model as: up, down, charm, strange,
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top, bottom.
The QCD action describes massless gluons interacting with quarks, but this description is

incomplete because quarks are not free in space. Unlike a massless gauge field associated
with a classical force like 1/r2, the strong force is confined within the radius of a nucleus.
Coupling constants are not truly constants, they depend on the energy or distance scale
at which the theory is evaluated. At sufficiently long distances, the classical theory breaks
down because the coupling becomes stronger. For systems containing a qq̄ pair, the potential
V (r) = −σ r is observed, where σ is a constant known as the string tension. When quarks
are forced into pairs or groups of three, the theory is said to be confining.

The strong interaction becomes weak at high energies, and the theory can rely on
perturbative QCD, where quarks exhibit asymptotic freedom. At sufficiently high baryon
density, matter is deconfined, and quarks and gluons become the relevant degrees of freedom.
This phase of matter is called quark matter or, at high temperatures, quark-gluon plasma
(QGP). In the context of neutron stars, quark matter is primarily composed of three quark
flavors: up, down, and strange quarks; other quark flavors are too heavy to exist at the
densities and temperatures typical for a neutron star [4].
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Chapter 3

Gauge/Gravity Duality

The AdS/CFT correspondence is a theoretical framework in which the quantum physics
of strongly correlated systems has a dual theory of gravitational dynamics in one additional
dimension [8]. At this point, some important quantities are better calculated in one specific
regime or the other. For this reason, there are rules contained in a dictionary where
important objects are related to their dual counterparts. This chapter deals with the
theoretical definition of Anti-de Sitter spaces and Conformal Field Theories related by the
AdS/CFT correspondence, emphasizing the symmetry groups involved and exploring the
relations between the field content on both sides. Following this, an example in scalar field
theory is performed based on the background given in [9].

3.1 Overview on Lie Algebra

Group theory plays a crucial role in the development of theoretical physics. Understanding
its definitions paves the way to defining symmetry transformations that act as representations
of a given group on physical objects, depending on their nature. These representations
associate a group element with a linear map (specifically, a matrix), which can be considered
as elements of transformation. This section on Lie Theory is directly related to the following
section on Conformal Field Theory, where the correct definition of generators is essential.
With this purpose in mind, there are other statements to consider.

A Lie Group is a mathematical group, meaning algebraic structure, which satisfy two
main properties

• It is a continuous group.

• It has a differentiable manifold structure associated, which means that its elements
can be understood in a geometrical context as manifold points.

Formally speaking, a Lie group G is a differentiable manifold which is endowed with a group
structure such that the group operations G×G→ G; (g1, g2) → g1.g2 and the inverse of an
element G→ G; g → g−1 are differentiable [10]. Such differentiable manifold is called "Lie
Group manifold" and must be smooth (C∞) and without singularities. Being a differentiable
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manifold implies an association between each point of the manifold with a tangent space
that cover it locally.

A Tangent Space of a manifold M defined at a given point p ∈M denoted by Tp(M) is
the space of all tangent vectors to all curves at p. In the neighbourhood of every point p
can be associated a space like Rn such that the point p is then described by the common
coordinates used in Rn. The dimension of the tangent space is RdimG and its basis vectors
set up the structure named as Lie Algebra. Such basis is also known as generators, tA, of
the Lie Algebra. So, like a vector field, an arbitrary element X of the Lie Algebra can be
written by

X =
dimG∑
A=1

θAtA (3.1)

the θA elements are parameters or coordinates in the algebra. An important remark is that
perturbative theory in theoretical physics deal with an algebra located at the neutral point
of the associated group.

Given the definition of an element inside the algebra, one can ask about how such point
can be related with its group, so given the algebra and one point like (3.1) the group element
is given by the exponential map

gX = eX . (3.2)

Within the Algebra it is possible to define the Commutation between two elements which
allows one to find a third one, (by group properties). If X and Y are elements of the Algebra,
then X → gX

Y → gY

(3.3)

so the corresponding composition rule gX.gY = gZ. Z as an element of the Algebra satisfy
the Baker-Campbell-Hausdorff formula

Z = X + Y +
1

2
[X,Y] + . . . . (3.4)

The commutator operator must satisfy the following properties

• Anti-symmetric: [X,Y] = −[Y,X]

• Bilinear: [aX + bY,Z] = a[X,Z] + b[Y,Z]

• Jacobi Identity: [X, [Y,Z]] + [Z, [X,Y]] + [Y, [Z,X]] = 0 .

The commutation rules are very important to compute relations between the Algebra
generators, tA. Each rule defined by elements named as structure constants in such way
that

[tA, tB] =

dimG∑
C=1

f C
AB tC (3.5)
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with f C
AB as those structure constants and tC another Algebra generator. The structure

constants determine the Algebra uniquely.

3.2 Conformal Field Theory

In Quantum Field Theory, one deals with Lorentz and later Poincaré symmetries and
their contributions to the understanding of physical objects. Following this, there arises
the question of a further generalization known as Scale Invariance. This type of symmetry
relates physics at different scales, but it isn’t always an intrinsic property of a given QFT;
however, it can provide useful information, as is the case with QCD.

The Conformal Group involves Scale and Poincaré invariance transformations but a field
theory not always satisfy both, only proven for dim=2 field theories.

3.2.1 Conformal Algebra

Related with previously said definition, the Conformal group is the transformation group
that leaves the metric invariant up to an arbitrary space-time dependent scale factor [9]

gµν (x) → Ω−2 (x) gµν (x) ≡ e2σ(x)gµν (x) (3.6)

where Ω−2 (x) is a smooth non-vanishing function of the spacetime coordinates. In other
words, a conformal transformation is a local dilatation in which spacetime described by g̃µν
is very different to the one by gµν and curvature tensors are not invariant under these but
Conformal transformations do preserve the causal structure of the spacetime, meaning that
space-like, null and time-like curves in gµν have their corresponding ones in g̃µν .

If one takes the Euclidean signature in Rd Cartesian coordinates

ds2 = δµνdx
µdxν (3.7)

the conformal transformations leaves the form of the metric invariant up to a scale factor
like (3.6)

δµν
∂x′µ

∂xα
∂x′ν

∂xβ
= Ω−2δαβ (3.8)

where one notice that a conformal transformation is a local dilatation [11].
Now, in a Minkowski spacetime where gµν (x) → ηµν (x), an infinitesimal transformation

on the coordinates given by xµ → xµ + ϵµ(x), the metric transforms as

ηµν → ηµν + ∂νϵµ + ∂µϵν (3.9)

by the rules of tensor transformation. If one compares this with the general rule given in
(3.6) one gets, expanding the exponential term,

2σ(x)ηµν = ∂µϵν + ∂νϵµ . (3.10)
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If one then multiplies both sides by ηµν contracting the indices, then one gets, in d
dimensions, the expression

∂ · ϵ = d · σ(x) (3.11)

where it is then needed an infinitesimal transformation on the spacetime coordinates to give
rise to a conformal change by the metric. This is achieved if the parameter ϵ(x) satisfy

(
ηµν∂

ρ∂ρ + (d− 2)∂µ∂ν
)
∂ · ϵ = 0 . (3.12)

The Conformal group of the Minkowski space-time is generated by Poincaré transforma-
tions, scale transformations and special conformal transformations given by

xµ → λxµ

xµ → xµ + aµx2

1 + 2xνaν + a2x2
.

(3.13)

For these finite conformal transformations it is also useful to introduce an inversion given
by xµ → xµ/x2 mapping the point x = 0 to infinity which does not belong to Euclidean or
Minkowski spacetime, something similar happens for the special conformal.

As seen in the Lie Algebra section, such group can also be described by the Algebra of its
generators which satisfy the following commutation relations

[Mµν , Pρ] = −i
(
ηµρPν − ηνρPµ

)
[Mµν ,Mρσ ] = −iηµρMνσ + permutations

[D,Pµ] = −iPµ

[Mµν ,Kρ] = −i
(
ηµρKν − ηνρKµ

)
[Mµν , D] = 0

[D,Kµ] = iKµ

[Pµ,Kν ] = 2iMµν − 2iηµνD

(3.14)

where the generators are Mµν for Lorentz transformations and Pµ for Translations, which are
always present in any relativistic invariant quantum field theory, Kµ for those transformations
as (3.13) and D for scaling transformations like xµ → λxµ.

There is an important isomorphism relation between this Algebra and the one for SO(d,2),
(the special orthogonal group of Lorentz transformations adding up one space-like dimension
and one time-like). This fact is a hint of a relation between d-dimensional Conformal
field theory, a field theory on d-dimensional Minkowski space that is invariant under the
Conformal group, and a gravity theory in d+1-dimensional Anti-de Sitter space [12]. The
isomorphism put the conformal algebra in the standard form of SO(d,2) Algebra which
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generators Jab, with a, b = 0, 1, . . . , d+ 1, are defined by

Jµν =Mµν

Jµd =
1

2
(Kµ − Pµ)

Jµ(d+1) =
1

2
(Kµ + Pµ)

J(d+1)d = D .

(3.15)

Some applications are better studied within an Euclidean space and for this case the
conformal group is isomorphic to SO(d+1,1).

3.2.2 Primary Operators

For physical applications, the most interesting representations of the conformal group
are those which relate operators or fields as eigenfunctions of the scale operator D with an
eigenvalue given by −i∆, with ∆ known by the name of "scaling dimension" of the field.
This means that under a scale transformation like xµ → λxµ, the fields transform as

ϕ(x) → ϕ′(x) = λ∆ϕ(λx) . (3.16)

The transformations under the Conformal Algebra are done in irreducible representations
on the fields, all done by a procedure called induced representations. The commutation
rules given by the Algebra in (3.14) have, specially for the translation and special conformal
transformation generators, an effect on the dimension of the field by the action of the scaling
operator

D(Pµϕ) = −i(1 + ∆)Pµϕ

D(Kµϕ) = −i(∆− 1)Kµϕ
(3.17)

so, Pµ raises the dimension of the field and Kµ lowers it. For the special case with the Kµ

operator, there must by a lower limit for the dimension of a field which is annihilated by
it, such limit is given by ∆ ≥ (d− 2)/2. From this statement, each representation of the
conformal group must have some operator with such dimension that will be annihilated by
Kµ in (x = 0) and this kind of operators are called as primary operators. For this kind, one
can postulate the scaling dimension of those fields from the operator D by

[D,ϕ(0)] = −iΛϕ(0) . (3.18)

By the first rule in (3.13) a field which transforms covariantly under an irreducible
representation of the conformal algebra has a fixed scaling dimension and is therefore an
eigenstate of the dilatation operator D [9]. The alluded action of Kµ is then seen as

[Kµ, ϕ(0)] = 0 (3.19)
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thus, the conformal algebra has irreducible multiplets in which the conformal primary
fields are those of lowest scaling dimension that satisfy (3.19) and all other fields are called
conformal descendants of ϕ, obtained by raising the scaling dimension with the operator
Pµ.

The conformal group generators acting on primary operators satisfy the following commu-
tation rules

[Pµ, ϕ(x)] = i∂µϕ(x)

[Mµν , ϕ(x)] = [i (xµ∂ν − xν∂µ) + Σµν ]ϕ(x)

[D,ϕ(x)] = i (−∆+ xµ∂µ)ϕ(x)

[Kµ, ϕ(x)] = [i
(
x2∂µ − 2xµx

ν∂ν + 2xµ∆
)
− 2xνΣµν ]ϕ(x)

(3.20)

where the matrices Σµν are those representations for the Lorentz group acting on the indices
of the field ϕ. So far, these last representations of the conformal group on the primary
operators are classified by the Lorentz representation and the scaling dimension ∆. There is
another way to classify those representations by the subgroup of the conformal one given by
SO(d)×SO(2). The SO(2) generator is defined by J0(d+1) = 1/2(K0+P0) together with the
previously Lorentz generator can describe the conformal generators as well. This subgroup
is useful for the radial quantization of a Conformal field theory in a space S(d−1) × R which
will be related to the Anti-de Sitter space AdS in global coordinates.

In local field theories, there is a property called Operator Product Expansion, OPE, which
creates a local perturbation at one specific point when two operators like O1(x) and O2(y)

are brought to it. The general form of such expansion is given by

O1(x)O2(y) →
∑
n

Cn
12(x− y)On(y) (3.21)

which define the correlation functions expression and those coefficients Cn
12 do not depend

on other operators inside the function and, in a conformal theory, are given by just the
conformal invariance

Cn
12(x− y) =

cn12

|x− y|∆1+∆2−∆n
(3.22)

3.3 Anti-de Sitter Spacetime

It is known that Anti-de Sitter spacetime, AdS for short, is a maximally symmetric space-
time with a negative cosmological constant. These concepts are related to the homogeneous
and isotropic nature of such a space, which is characterized by a constant curvature, and its
metric satisfies the Einstein field equations with a cosmological constant.

If wanted a better understanding of the isometry group, a (d+1)-dimensional AdS, AdSd+1,
can be embedded in a higher dimensional flat spacetime, specifically a (d+2)-dimensional
Minkowski spacetime described by coordinates (X0, X1, . . . , Xd+1) ∈ Rd,2 and a line element
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given by

ds2 =− (dX0)2 + (dX1)2 + · · ·+ (dXd)2 − (dXd+1)2

=η̃MNdx
MdxN

(3.23)

with the signature η̃MN = diag(−,+, . . . ,+,−) and the subscripts M,N ∈ [0, 1, . . . , d, d+1].
The AdSd+1 space is an hyperboloid, as said being embed in Rd,2, described by

η̃MNX
MXN = −(X0)2 +

d∑
i=1

(Xi)2 − (Xd+1)2 = −L2 (3.24)

where L is the radius of curvature of the AdS space. One can check an invariance under the
group O(d, 2) by the previous hypersurface, acting on Rd,2, which means that the isometry
group of the AdS space is clearly O(d, 2) and also, later one can identify a conformal
boundary. For large values of XM , the hypersurface described by (3.24), can be related to a
light-cone in Rd,2 by

η̃MNX
MXN = −(X0)2 +

d∑
i=1

(Xi)2 − (Xd+1)2 = 0 (3.25)

whose boundary region will be described by the set of trajectories satisfying the asymptotic
|XM | → ∞ behaviour of the lightcone below. In a simplified way, AdS and the lightcone
have both d+1 dimensions and the boundary has d. Formally speaking, the boundary region
of the AdS space is the set of points which satisfy

∂AdSd+1 : {[X]|X ∈ Rd,2, X ̸= 0, η̃MNX
MXN = 0} . (3.26)

Something important to mention is because of η̃MNX
MXN = 0 one can identify two

sets of points related by a real number like [X] = λ[X̃] and call ∂AdSd+1 as the conformal
boundary of AdSd+1. The set of points in ∂AdSd+1 satisfy (3.25) and one can then identify
a conformal boundary with the |XM | → ∞ limit by

d∑
i=1

(Xi)2 = 1

(X0)2 + (Xd+1)2 = 1

(3.27)

where the second equation is obtained from the first one in (3.25). So, the first equation
represent a (d-1)-sphere Sd−1 and the second one S1, then one can define the topology of
the conformal boundary ∂AdSd+1 by the coset (S1 × Sd−1)/Z2, in which Z2 : {[X] ∈ Rd,2}.

3.3.1 Conformal Compactifications on AdS space

The main topic this part is about try to establish the basics of conformal structure of flat
spacetime, that will lead to a basic feature of AdS/CFT correspondence which relates the
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isometry group of AdSp+2 with the conformal symmetry of flat Minkowski space R1,d [13].
If one takes the flat metric with Euclidean signature Rd, this can be compactified, (an

extension of a topological space which is a compact topological space), to the n-sphere Sn,
with infinity added by an additional point, in which a conformal theory can be defined. In a
similar way, the (n+1)-dimensional hyperbolic space, which is the Euclidean form of the
AdS space, can be conformally mapped to a (n+1)-dimensional disk Dn+1.

For example, with the Minkowski spacetime R1,1, the general metric, ds2 = −dt2 + dx2,
(−∞ < t, x <∞), can be changed by a coordinate transformation

ds2 = −du+du−

ds2 =
1

4 cos2 ũ+ cos2 ũ−

(
−dτ2 + dθ2

) (3.28)

where (u± = t ± x = tan ũ±) and ũ± = (τ + θ)/2. Thus, the Minkowski spacetime was
conformally mapped inside the compact region defined by |ũ±| < π/2, which has limits for
the asymptotic values of (3.28) known as the Poincaré horizon

Figure 3.1: Compact region which the two-dimensional Minkowski spacetime was conformally
mapped in

The line element that represent a null trajectory, satisfied by a light ray, is invariant under
conformal transformation on the metric, so these kind are useful for describing the causal
behaviour of R1,1. Those new coordinates in (3.28) are well defined with the asymptotic
regions in figure 3.1, where the corners (τ, θ) = (0,±π) belong to infinite points by the
original coordinates when x = ±∞. Because of this, one can describe the asymptotic flatness
by a compactification, which means that spacetime has the same boundary structure of a
flat one after a conformal compactification.

Some procedure, which importance will be clear later with AdS spacetime, is to embed the
space R1,1 in a cylinder described by R × S1. It has been proved [13], that the correlation
functions in a Conformal field theory R1,1 have an analytical continuation to the cylinder
previously introduced.
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When it is necessary to describe Minkowski higher dimensional spaces like R1,p, p ≥ 2, the
transformation on the line element is given by

ds2 = −dt2 + dr2 + r2dΩ2
p−1 (3.29)

where dΩ2
p−1 is for the line element in the unitary sphere Sp−1. And by a change of

coordinates analogous to the one in (3.28), the new line element is

ds2 = −du+du− +
1

4
(u+ − u−)

2 dΩ2
p−1

ds2 =
1

4 cos2 ũ+ cos2 ũ−

(
−dτ2 + dθ2 + sin2 θdΩ2

p−1

) (3.30)

as well as before, one can see a conformal compactification of a Minkowski spacetime in
which the region (t, r) is mapped inside a triangle similar to one described in 3.1 by the
(τ, θ) plane.

An analogous procedure of conformal compactifications can be applied to AdSd+1 which
will lead to understand ∂AdSd+1 as a compactification of the d-dimensional Minkowski
spacetime. first, let’s introduce the change of the hyperbolic coordinates

X0 = L cosh ρ cos τ

Xd+1 = L cosh ρ sin τ

Xi = LΩi sinh ρ, i = 1, . . . , d

(3.31)

with the element Ωi satisfying
∑d

i=1Ω
2
i = 1 so it parameterizes the (d-1)-sphere Sd−1. the

other coordinates also belong to ρ ∈ R+ and τ ∈ [0, 2π). The full group of coordinates
(τ, ρ,Ωi) are called "Global Coordinates of AdSd+1". The previous change of coordinates in
(3.31) should be applied in the line element (3.23) to get

ds2 = L2
(
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2

d−1

)
. (3.32)

One can come up with another change in one specific coordinate such that sinh ρ = tan θ,
and then the new line element would be

ds2 =
L2

cos2 θ

(
−dτ2 + dθ2 + sin2 θ dΩ2

d−1

)
(3.33)

this one represent a static Einstein universe R × Sd up to a positive squared scale factor. In
fact, the isometry group of AdSd+1 embed in Rd,2 is just SO(2, d) whose Maximal compact
subgroup is given by the product SO(2)× SO(d), where the translation on the coordinate
τ are representations of SO(2) and rotation on the (d-1)-sphere are those for SO(d). It
could be possible to ad such point that θ = π/2 corresponding to the spatial infinity and in
general θ ∈ [0, π), covering just the half of the Einstein space R × Sd.

When scaling the metric in (3.33) it is possible to avoid the overall factor without any
change in the causal structure, as the line element for the light-cone obtained when ds2 = 0

35



Universidad de Oviedo
2024

Beta equilibrium reaction rates
at strong coupling using gauge/gravity duality

in the metric. Then the compactified spacetime is

ds2 = −dτ2 + dθ2 + sin2 θ dΩ2
d−1 (3.34)

with the coordinates described by their values in θ ∈ [0, π/2] and τ ∈ [0, 2π). When θ = π/2

the metric is then changed by
ds2 = −dτ2 + dΩ2

d−1 . (3.35)

After this procedure, one can see that the boundary θ = π/2 in (3.35) of the conformally
compactified AdSd+1 space is the same as the conformally compactified d-dimensional
Minkowski spacetime, such feature is a basic pillar of the AdS/CFT duality.

The timelike coordinate τ is periodic by 2π and because of this the AdS space has closed
timelike curves. To avoid inconsistencies, consider another version of the AdS denoted by
ÃdS called Universal covering of AdS which unwraps the timelike circle τ to τ ∈ R.

The conformal compactification is an useful procedure to describe the asymptotic regions
of AdS space. In general, if a spacetime can be compactified in a conformal way into a region
which has the same boundary structure as the half static Einstein universe, such spacetime
is called "Asymptotically AdS" [13].

It is also useful to introduce another change of coordinates with the purpose of describing
the spacetime by the common quantities of a gravity theory. So, by using the new coordinates
t ∈ R, x⃗ = (x1, . . . , xd − 1) and r ∈ R+ one gets

X0 =
L2

2r

(
1 +

r2

L4
(x⃗2 − t2 + L2)

)
Xi =

rxi

L

Xd =
L2

2r

(
1 +

r2

L4
(x⃗2 − t2 − L2)

)
Xd+1 =

rt

L

(3.36)

with i ∈ [1, d − 1]. The constraint r > 0 just covers the half AdSd+1 space. These local
coordinates are called as the "Poincaré patch", and then the metric in (3.23) is given by

ds2 ≡ L2

r2
dr2 +

r2

L2
ηµνdx

µdxν (3.37)

identifying µ, ν ∈ [0, d], x0 = t and ηµν = diag(−,+, . . . ). For such spacetime, the Ricci’s
scalar is then

R = −d(d+ 1)

L2
(3.38)

and, as said at the beginning of this section, the metric (3.37) satisfy the Einstein field
equations with Tµν and negative cosmological constant given by

Λ = −d(d− 1)

2L2
. (3.39)
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As a final quote, the gauge theories of special interest are those in 3+ 1-dimensional space
which is related with the geometry above with AdS5. This geometry is the one studied by
the Maldacena’s conjecture in which the dual QFT is a super Yang-Mills theory with four
supersymmetries (N = 4SYM) [8]

3.4 AdS/CFT correspondence and Holography

With Conformal Field Theory and Anti-de Sitter spaces described, it is now possible to
delve into the AdS/CFT correspondence, also known as "Gauge/Gravity Duality". Two
physical theories are considered dual to each other if there exists a mapping between param-
eters and observables in both theoretical frameworks, supported by precise mathematical
tools and dynamic calculations bridging both sides.

In one side there could exist a quantum field theory in which is mandatory to define the
following elements

• Some field operator set: ϕ̂i

• An specific Lagrangian defined by the mass term and the coupling constants

• Define the point of the free field in which the frame can be developed by perturbation
theory, for example around the trivial vacuum < ϕi >= 0 or around a condensate
< ϕi ≯= 0.

There is also possible to give a QFT description by gauge invariant field operators labelled
as Ôi(x) and including correlation functions of these operators with the vacuum state
being characterized by the one point function. It will be clarified later that the coupling
constants vary depending on the energy scale g(Λ) and the renormalization procedure on
those operators also depend on that scale.

Any dual representation of a QFT must give a complete procedure on how vacuum
expectation values, gauge invariant operators and correlation functions are represented in
the dual theory, with non gauge invariant operators representing non observable entities.

One of the most important tools in describing dual correspondence is the Gubser-Klebanov-
Polyakov-Witten (GKP-W) relation between a gravitational theory in AdSd+1, being the
bulk, and a CFT in d dimension as the boundary. But first, it is convenient to define the
rules of the correspondence by the following items

1. For each gauge invariant field operator Ôi(x) in a QFT, there is a field associated in
the bulk theory ϕi

2. If φ(0) is the parameter condition in the boundary of the field ϕ, that will be the source
of the operator Ô in the dual QFT and also depend on the d-dimensional spacetime
coordinates xµ

Now the GKP-W relation establishes the correspondence between the partition function in
the bulk as a function of the boundary condition φ(0) with the generating functional of the
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correlating functions in the QFT. In the Euclidean signature, the generating functional is
given by the source ϕ(0)

Z[ϕ(0)] = e−W [ϕ(0)] =
〈
exp

{(∫
ddxϕ(0)(x)O(x)

)}〉
CFTd

(3.40)

Son−shell
grav [φ(0)] = −WQFT [φ(0)] (3.41)

where left hand side is related to the gravity action and a field equations solution evaluated
by the boundary condition φ(0) and the right hand side is the QFT partition function in the
strong coupling t’Hooft limit when N → ∞, something that will be later explained.

The AdS/CFT correspondence is one of the most studied examples of a gauge/gravity
duality by its simple way to notice symmetries between both sides. The correspondence
establish the mathematical frame to describe physical quantities in the bulk of the AdS
space by a field theory in one less dimension. Such task isn’t trivial by the fact that not only
the CFT has an infinite number of degrees of freedom but the area of the AdS boundary is
also infinite.

3.4.1 Holographic Procedure

The starting point for dealing with this difficulty is to explain the known Bekenstein
bound, which describes the maximum entropy within a region of a given space by

Smax =
A∂

4GN
(3.42)

Here, A∂ denotes the area of the region’s boundary. This expression suggests that the
number of degrees of freedom distinguishing a region grows with the area of its boundary
rather than its volume. According to the Holographic principle, in a quantum gravity theory,
all physics within a volume can be described in terms of a theory on the boundary, which
has fewer than one degree of freedom per Planck area [13]. In this sense, such entropy can
satisfy the Bekenstein bound.

Let’s propose a regularization for the QFT side by adding a regulator for both limits UV
and IR. Taking a system as an spatial box of size R and introduce a lattice spacing ϵ. If the
system is embed in a d-dimensional space, it has Rd−1/ϵd−1 cells. If one also takes CQFT as
the number of degrees of freedom per lattice site, the QFT will have

NQFT
dof =

(
R

ϵ

)d−1

CQFT (3.43)

as the total number of degrees of freedom. With a gauge theory SU(N), the fields are matrices
of N ×N in the adjoint representation, so for large N, the number CQFT is proportional to
N2. A similar expression can be taken for the AdSd+1 space and it will be the same that
(3.42) for a gravitational theory with Smx as the total number of degrees of freedom in such
space. If one now takes the integral of the volume element in AdSd+1 space at a slice z = ϵ
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one gets the area of the boundary given by

A∂ =

(
RL

ϵ

)d−1

(3.44)

where the system was put inside the same box of size R. Now, because of the previously
idea about Planck area, it is necessary to introduce the Planck lp and the Planck mass Mp

for a gravitational theory in (d+ 1)-dimensions related to the gravitational constant by

GN = (lp)
d−1 =

1

(Mp)d−1
. (3.45)

So, the number of degrees of freedom inside AdS space can now be defined with (3.42) as
follows

NAdS
dof =

A∂

4GN
=

1

4

(
R

ϵ

)d−1(L
lp

)d−1

. (3.46)

It can also be noticed that both number of degrees of freedom in a QFT by (3.43) and in
AdS space in (3.46) are related by the same proportional factor (R/ϵ)d−1 which means that
NAdS

dof and NQFT
dof scales in the same way with the cutoff values R and ϵ for the IR and UV

limits respectively. The number CQFT for (3.43) can be computed by

NAdS
dof = NQFT

dof → 1

4

(
L

lp

)d−1

= CQFT . (3.47)

To finish with these comments on degrees of freedom topic, if a QFT has a dual gravitational
theory in AdS space it happens that when there are a large number of them by volume unit
or, explicitly when (

L

lp

)d−1

≫ 1 (3.48)

where the gravitational theory has a classical limit.
The following part of the procedure is to add a cutoff to the number of degrees of freedom

in the QFT side and see the correspondence with the gravity theory. Such procedure can be
seen starting from another way to write the AdS metric by

ds2 = R2
{
−
(
1 + r2

1− r2

)2

dt2 +
4

(1− r2)2
(dr2 + r2 dΩ2)

}
(3.49)

where the AdS boundary can be found when r → 1. When one needs to compute the
correlation functions the boundary conditions must be specified with r = 1− δ and take the
limit when δ → 0. Close to that boundary one can also use the Metric form given by the
Poincaré d-dimensional invariance that acts on the xµ coordinates by

ds2 =
L2

z2
(
dz2 + ηµνdx

µdxν
)
= gmndx

mdxn (3.50)

with L as the curvature radius and the metric being solution of the Einstein field equation
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with cosmological constant given in (3.39) and scale invariant under z → λz and xµ → λxµ,
so that the dual theory at the boundary is also expected as scale invariant. One can see
(3.50) just being another expression for (3.37) and with a boundary located at z → 0.

The action of the conformal group on the Poincaré coordinates is giving, to the radial
coordinate z, the role of an energy scale since a conformal transformation is performed to
locate objects in the CFT. Such energy scale relates the UV limit of the QFT when z → 0

and the IR limit when z → ∞. A cutoff at z ∼ δ, which is known as "UV-IR relation",
corresponds to the UV cutoff in the field theory at distances δ[13].

The metric (3.50) is also invariant under special conformal transformations (3.13) such
that

δxµ = 2(ρνxν)x
µ − (z2 + xνxν)ρ

µ

δz = 2(ρνxν)z .
(3.51)

The isometry group of the AdSd+1 space-time is SO(2, d) which agrees with the conformal
group of a d-dimensional QFT. By the scale transformation given in the first line of (3.13)
and also with the same for the radial coordinate z, one can identify the last with the
renormalization group flow direction of the dual QFT with the boundary conditions related
to the energy scale through the UV-IR relation. For this purpose, it is convenient to
transform the radial coordinate by

z = e−Ar A−1 (3.52)

with A = L−1. Inserting this change in (3.50) one gets

ds2 = dr2 + e2Ar ηµνdx
µdxν . (3.53)

The flat Minkowski space part of the metric is now modified by a global factor which
is r-dependent. Then the theory identify the product Ar with the scale energy of the
renormalization group flow

Ar ∼ logµ (3.54)

It is understood that a field theory on the boundary of AdS space describes the physics
within that volume. However, different regions of AdS space, defined by distinct radial
coordinates, correspond to physical theories defined at different energy scales within the
field theory. The fundamental correspondence here establishes that a quantum field theory
at strong coupling is related to a gravity theory at weak coupling, characterized by the
energy scale associated with the z coordinate in AdS space. Formally, one can posit that
an AdS manifold in (d+ 1) dimensions with negative curvature defines computations that
asymptotically match those of a QFT in d dimensions.

Consider now the computation of the correlation functions from the AdS correspondence
with another way to state the GKP-W prescription which link the calculation of the generating
functional of the correlation functions in the dual CFT with the partition function in the
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gravity-dependence side as〈
exp

{(∫
ddxϕ(0)(x)O(x)

)}〉
CFTd

= exp{−Sgrav[ϕ(x, z)]}

ϕ(x, z)
∣∣
z=0

= ϕ(0)(x)

(3.55)

with ϕ(0) as the source of the CFT in the boundary like it was explained at the beginning of
this section. The previous expression is only a classical approach to the gravitational side
and the O(x) term are just the field operators of the CFT.

Note that the GKP-W relation pertains to a classical limit of a hypothetical path integral
in quantum gravity. It is not certain that such a path integral exists, but it is believed
that the right-hand side of (3.55) exists in this context within string theory, albeit without
well-established details due to the difficulty of quantizing strings in the AdS background.
It may suffice to consider the classical limit, which allows for the computation of CFT
correlation functions from the classical equations of motion of bulk theories [14].

So far, the task of giving a well-formulated correspondence between scalar fields like ϕ(x, z)
in the bulk and field operators Ô(x) in the dual CFT, has been accomplished. But there are
other fields that one can find in the bulk like the graviton by a (d+ 1)-dimensional metric
and the gauge fields. Starting from the classical action principle

SM =

∫
dmx

√
−gLM (3.56)

where one can take a perturbation on the metric by gµν → gµν + δgµν and notice the
variation on the action SM by

δSM =
1

2

∫
dmx

√
−g Tµν δgµν (3.57)

and finally by the GKP-W relation in (3.41) one can find the variation on the CFT side

δW [g] =

∫
ddx
〈
Tµν

〉
δgµν . (3.58)

Thus, it is possible to observe a perturbation in the metric that couples to the conserved
energy-momentum tensor. Another example involves gauge fields that couple with conserved
currents, which will be the central correspondence hypothesis in the next two sections.
Based on these observations, one can propose a correspondence where a fluctuation in a
(d+1)-dimensional metric corresponds analogously to the presence of a gauge field in (d+1)

dimensions coupled with a conserved current in d dimensions.
There are also divergent terms in the on-shell action in GKP-W because of the integration

procedure near the limit z → 0. One possible solution is to add a cutoff with z = ϵ and
local counterterms in the boundary of the AdS spacetime. Those counterterms are given by
the values of the metric or the scalar fields and its derivatives in the boundary. One needs
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to impose boundary conditions to solve the equations of motions within the gravitational
theory.

The isometries of AdS space act on the boundary by mapping points from it back to the
boundary itself. This action corresponds precisely to the conformal group in dd-dimensions.
The scale invariance described in (3.50) manifests as a dilation on the boundary [15]. The
structure of a dual Quantum Field Theory (QFT) naturally emerges in large N gauge
theories, characterized by a gauge group SU(N) with fields in the adjoint representation.

3.4.2 The Role of the Radial Coordinate

In a QFT one deals with typically massive particles, described by a quantum state of its
position or momentum. But a scale invariant theory doesn’t allow particles to have mass.
So, all particles in such a theory are massless. However, with large N gauge theories there
exist some weakly interactive excitations. These are object created from the action of single
trace operators on the vacuum state. For example, given an operator like Tr(FµνFµν ), the
created state at zero coupling with a given 4-momentum is a gluons pair that sum up to the
total momentum.

In a Conformal Field Theory (CFT), objects can be understood as having not only
position but also size, which is treated as another continuous variable. Therefore, particles
are identified not within the CFT itself but rather in AdS space. In other words, the size of
a given state in a CFT is related to the position of a particle labeled by the radial coordinate
in AdS space.

Figure 3.2: Size/radius correspondence between weakly interactive excitations in a CFT and
particles of different radial position in the AdS space. [15]

The key idea linking these different perspectives is that in a Conformal Field Theory
(CFT), excitations exhibit a specific size. The same object within the CFT can be described
with two different sizes related to each other by dilation. These states correspond to a pair
of particles with the same intrinsic size but located at different radial positions in AdS space,
as illustrated in Figure 3.2. Essentially, these particles in AdS serve as a parameterization
of representations of the conformal group. In other words, unitary representations of the
conformal group correspond to a bijection between particles or fields in AdS space with
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well-defined boundary conditions. These representations are also characterized by the scaling
dimension ∆, which determines the mass of the corresponding particle or field.

3.4.3 Scalar Field example in AdS/CFT correspondence

There have been previous examples of correspondences between AdS quantities and
operators on the CFT side, such as the scalar field, the conserved energy-momentum tensor,
and the conserved currents. Up to now, these correspondences have been developed in a
qualitative manner, emphasizing concepts like the GKP-W relation and the constant scaling
dimension. Now, it is crucial to undertake a more detailed computation to illustrate the
behavior of quantities on the gravity side and how they relate to boundary quantities in the
AdS/CFT framework.

To begin with, let’s consider the proposal given by GKP-W in equation (3.55), alongside
insights from holographic calculations that emphasize boundary behavior. Specifically, let’s
focus on the scalar field ϕ, which is dual to a primary operator in the CFT. The gravitational
action principle for such a field can be formulated as follows:

Sgrav = −C
2

∫
dz ddx

√
−g

(
gmn∂mϕ∂nϕ+m2ϕ2

)
(3.59)

with C ∝ N2 in the large N limit by the gauge group SU(N). For a generic scalar field ϕ in
the AdSd+1/CFTd correspondence, there is an equation which relates the fields mass with
the scaling dimension of the dual primary operator, such relation belongs to the holographic
dictionary and is given by

m2L2 = ∆(∆− d) (3.60)

with L as the AdS curvature radius. For the AdS spacetime in which one must define the
gravity side, it is convenient to take the metric in Poincaré coordinates given by (3.50). The
equation of motion, which are calculated starting from the action principle (3.59) by the
Euler-Lagrange equations, show that the field ϕ satisfy the Klein-Gordon equation

(
□g −m2

)
ϕ = 0 (3.61)

with □g as the D’Alembertian linked to the AdS metric in (3.50), which can be written as
follows

□gϕ =
1√
−g

∂m
(√

−g gmn ∂nϕ
)

(3.62)

by another way, taking the Poincaré metric such D’Alembertian is more convenient to write
by

□g

∣∣
AdS

=
1

L2

(
z2 ∂2z − (d− 1) z ∂z + z2 ηµν∂

µ∂ν
)
. (3.63)

So far, equations have been described for a scalar field in the AdS spacetime, such field
will take the form ϕ→ ϕ(z, x). Now, it is possible to take a solution given by the Fourier
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decomposition in the flat space and also considering a plane wave form by

ϕ(z, x) = eip
µxµ ϕp(z) (3.64)

where the functions ϕp(z) are called as Fourier modes. One can then see if this solution
satisfy the Klein-Gordon equation given in (3.61), considering that for the Fourier modes
one gets

z2 ∂2z ϕp(z)− (d− 1) z ∂z ϕp(z)− (z2 p2 + L2m2)ϕp(z) = 0 . (3.65)

The previous equation has two independent solutions given by their asymptotic behaviour
in the boundary when z → 0

ϕp(z) ∼

z∆+

z∆−
(3.66)

where the first solution is called to be "normalisable" and the second one "non-normalisable",
(such labels will be later explain) and the Delta-terms are given by the roots of equation
(3.60) by

∆± =
d

2
±
√
d2

4
+m2L2 (3.67)

such that it can be notice that ∆+ > ∆− and also useful ∆+ +∆− = d. Near the boundary
it is possible to make an expansion on ϕ(z, x) taking the form (3.66) by

ϕ(z, x) ∼ ϕ(0)(x) z
∆− + ϕ(+)(x) z

∆+ + . . . (3.68)

where one doesn’t take into account the subleading terms in z by the expansion. The
non-normalisable term define the associated field in the boundary that is dual to the source
of the CFT where

ϕ(0)(x) ≡ lim
z→0

ϕ(z, x) z−∆− = lim
z→0

ϕ(z, x)z∆+−d (3.69)

and the normalisable term also define a duality in which the field ϕ(+)(x) is dual to the
vacuum expectation value for a dual scalar field operator with scaling dimension ∆ = ∆+.

As it was said above, the definitions of normalisable and non-normalisable in (3.66) deal
with the finiteness of the action (3.59) when evaluated on those solutions. For example, a
solution is normalisable if the action evaluated on that solution is finite. It can be proven
taking the action term and the field solution depending on z by

Sgrav = −C
2

∫
dz ddx

√
−g

(
gmn∂mϕ(z)∂nϕ(z) +m2ϕ2(z)

)
= −C

2
(L)d−1

∫
dz ddx

1

zd+1

(
z2 (∂zϕ(z))

2 + L2m2ϕ2(z)
) (3.70)

together with the condition of finiteness by the z dependence and then introducing a solution
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with the form ϕ(z) ∼ z∆ and taking the cutoff IR limit, one gets

Sgrav = −C
2
(L)d−1

∫
ddx

∫ zIR

ϵ
dz

1

zd+1

(
z2 (∆z∆−1)2 + L2m2z2∆

)
= −C

2
(L)d−1

∫
ddx

(∆2 + L2m2)

2∆− d

(
(zIR)

2∆−d − ϵ2∆−d
) (3.71)

where one can notice that the condition ∆ > d/2 must be satisfied for the convergence
condition and also notice that such requirement agrees with ∆ = ∆+ in (3.67). This result
then leads to a normalisable mode.
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Chapter 4

Electroweak Rates and Bulk Viscosity

The primary objective of this dissertation is to explore a theoretical framework where
developments in Quantum Field Theory (QFT) serve as a foundational approach for comput-
ing reaction rates under non-equilibrium conditions prevalent within the cores of compact
neutron stars, known for their extreme matter properties. At high densities, it is hypothe-
sized that matter exists in a deconfined state where quarks, rather than hadrons, become
the natural dynamical degrees of freedom [16]. Accordingly, the calculations presented here
primarily focus on non-leptonic electroweak processes, with some discussion on semi-leptonic
processes, albeit their contributions are relatively minor.

An essential focus of this study is the divergence of the density current of constituent
particles within the core region, which is analyzed in terms of chemical imbalances arising from
deviations from beta-equilibrium conditions. Additionally, an important aspect discussed is
the calculation of bulk viscosity, albeit briefly touched upon as it is not the primary focus of
this work. Bulk viscosity in three-flavor quark matter is primarily generated by non-leptonic
and semi-leptonic weak processes, manifesting as a function of thermodynamic variables,
chemical potentials of constituents, and density oscillations [17].

4.1 Quark Matter Reaction Rates

The beta-equilibrium condition in the core of compact neutron stars governs the particle
densities of quark and leptonic constituents. This condition restricts the range of thermo-
dynamic processes inside the stars and plays a crucial role in determining their mass and
radius properties. Governed by quark decay processes, the beta-equilibrium condition is
expressed by the following relation for chemical potentials in deconfined hadronic matter:

µu + µd = µu + µs (4.1)

Neutrons, protons, and leptonic species play pivotal roles in the beta-equilibrium condition,
imposing relationships among their relative abundances in the core of compact neutron stars.
When a density perturbation drives matter out of the equilibrium condition described in
(4.1), weak processes are activated to restore equilibrium. These processes contribute to an
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effective bulk viscosity.
As mentioned earlier, efforts are focused on determining rates for electroweak processes.

However, due to the densities involved, perturbative treatments of strong interactions are
not applicable. Therefore, this study employs non-perturbative methods such as holographic
dual calculations. The rates of change of interest have been computed at tree-level, assuming
massless up and down quarks and a strange quark mass smaller than its chemical potential
[17].

For the densities expected in the interior of neutron stars one should be able to restrict to
three quark flavors (u,d,s) and two lepton flavors (e,µ). The relevant weak processes in the
out-of-beta-equilibrium conditions are produced by the exchange of a W boson like

u + d↔ u + s u + l− → d, s + νl

d, s → u + l− + ν̄l l−1 → l−2 + ν1 + ν̄2 .
(4.2)

The purely quark process will have the main technical development here, considering the
other ones just for mentioning. Assuming neutrino-transparency regime, the beta equilibrium
for quark matter, implied by the previous reactions, impose conditions on the quark and
lepton chemical potentials by

µu + µℓ = µd = µs, µℓ = µe = µµ . (4.3)

where it is necessary for the calculations present here that the chemical potential is larger
than the mass of the corresponding particle.

If a perturbation on the density takes place, the chemical potential relations will suffer
changes according to non-equilibrium processes that will be understood as

µd = µs → δµd = −δµs
µu + µl = µd,s → δµu + δµl = −δµd,s .

(4.4)

One can think about these changes like a sum on the contribution for a special flavor and
a subtraction for the decay of it. With this idea in mind, one can then postulate the density
changes according to the weak rates, for the processes in (4.2) just for electrons, by

dnu
dt

= Γd→ueν̄ − Γue→dν + Γs→ueν̄ − Γue→sν , (4.5a)

dnd
dt

= Γus→ud − Γud→us + Γue→dν − Γd→ueν̄ , (4.5b)

dns
dt

= Γud→us − Γus→ud + Γue→sν − Γs→ueν̄ , (4.5c)

dne
dt

= Γd→ueν̄ − Γue→dν + Γs→ueν̄ − Γue→sν . (4.5d)

after which it is also possible to confirm the conservation of electric charge and baryon
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number

nB =
1

3
(nu + nd + ns)

nQ =
2

3
nu − 1

3
nd −

1

3
ns − ne

(4.6)

through their time derivatives
dnB
dt

=
dnQ
dt

= 0 . (4.7)

The set of equations for the divergence of the particle density current can be written at
linear order in the chemical imbalances [17] or the same can be thought as assuming the
deviation of the chemical potentials from their beta equilibrium values is small to the baryon
chemical potential (µB = µu + µd + µs) the rates can be expanded as differences like [3]

Γud→us − Γus→ud ≈ λds(µs − µd), (4.8a)

Γue→dν − Γd→ueν̄ ≈ λude(µd − µu − µe), (4.8b)

Γue→sν − Γs→ueν̄ ≈ λuse(µs − µu − µe) . (4.8c)

Once with the weak rates, one can relate them to the divergence of the particle density
current associated and for that purpose the strategy will be to find the lambda coefficients
using Ward identities for the non-conservation flavor currents due to the weak sector coupling.

4.2 Flavor Symmetry breaking by electroweak processes

The electroweak sector gives the theory of the main processes studied here as u+d→ u+s

and u+e→ d, s+νe through an exchange of a W+ boson. Enrico Fermi first model β decays
by 1933 in the limit of mass to much higher than the momentum in the Feynman propagator
formalism, which gives a correction term in the effective Lagrangian of the process, known
as the 4-Fermi interaction [18]

∆Lew = −2
√
2GF

(
Jµ
ch

)†
Jch,µ (4.9)

where GF denotes the Fermi coupling constant and the term Jch is for the left charged
current. To see explicitly the form of this current it is necessary to take the three massless
flavors of quarks qi = (u, d, s), as seen in the electroweak sector of interest, and one massless
lepton flavor la = (νe, e), but it is not enough until the Cabbibo angle is introduce to give
the change of basis between mass and flavor eigenstates. Now the form of the current is

Jµ
ch = ν̄eLγ

µeL + cos θC ūLγ
µdL + sin θC ūLγ

µsL (4.10)
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but the expression is only valid for the particular reaction u + e → d, s + νe. Now it is
convenient to introduce the following notation, referred to matrix elements as

(
Jµ
q

)i
j
= q̄jγ

µqi,
(
Jµ
l

)a
b
= l̄bγ

µla . (4.11)

Now the equation (4.10) can be written by

Jµ
ch = l̄1γ

µl2 + cos θC q̄1γ
µq2 + sin θC q̄1γ

µq3

Jµ
ch =

(
Jµ
l

)2
1
+ cos θC

(
Jµ
q

)2
1
+ sin θC

(
Jµ
q

)3
1
.

(4.12)

As mentioned before, the currents are related with their transformation symmetry group.
In this case, (Jµ

l ) is the current for the SU(2)L lepton symmetry and (Jµ
q ) is the current

for the SU(3)L flavor symmetry. With the previous expressions, the electroweak term in
equation (4.9) is then

∆Lew =− 2
√
2GF

{(
Jµ
l

)2
1
† + cos θC

(
Jµ
q

)2
1
† + sin θC

(
Jµ
q

)3
1
†}

×
{
(Jµ,l)

2
1 + cos θC (Jµ,q)

2
1 + sin θC (Jµ,q)

3
1

}
,

(4.13)

where the dagger operator change the form of the current matrix elements notation as

(
Jµ
l

)2
1
† =

(
Jµ
l

)1
2(

Jµ
q

)2
1
† =

(
Jµ
q

)1
2(

Jµ
q

)3
1
† =

(
Jµ
q

)1
3

and putting these together and neglecting terms that include the currents associated with
leptons and terms that mix lepton and quark currents, one can have

∆Lew =− 2
√
2GF

(
cos2 θC

(
Jµ
q

)1
2
(Jµ,q)

2
1 + sin2 θC

(
Jµ
q

)1
3
(Jµ,q)

3
1

+cos θC sin θC
{(
Jµ
q

)1
2
(Jµ,q)

3
1 +

(
Jµ
q

)1
3
(Jµ,q)

2
1

})
.

(4.14)

It will be also important for Section 4 the electroweak term considering leptonic interactions.
Later, depending on the calculation purpose, ∆Lew will take a complete form given by

∆LEW =− 2
√
2GF

[
cos2 θC(J

µ
q L)

2
1(Jq Lµ)

1
2 + sin2 θC(J

µ
q L)

1
3(Jq Lµ)

3
1

+ cos θC sin θC

(
(Jµ

q L)
2
1(J

µ
q L)

1
3 + (Jµ

q L)
3
1(J

µ
q L)

1
2

)
+ cos θC

(
(Jµ

l L)
2
1(Jq Lµ)

1
2 + (Jµ

l L)
1
2(Jq Lµ)

2
1

)
+sin θC

(
(Jµ

l L)
2
1(Jq Lµ)

1
3 + (Jµ

l L)
1
2(Jq Lµ)

3
1

)]
.

(4.15)

If one needs the expression (4.14), it is convenient to introduce the projectors (Pkl)
i
j =
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δikδ
l
j to make simple the writing of

∆Lew =− 2
√
2GF

[
cos2 θCtr

(
P11J

µ
q P22Jq µ

)
+ sin2 θCtr

(
P11J

µ
q P33Jq µ

)
+cos θC sin θCtr

(
P11J

µ
q P32Jq µ + P11J

µ
q P23Jq µ

)]
.

(4.16)

The main purpose now is to achieve the Ward identity expression for a transformation
under the group SU(3). As seen before, one can find the Ward identities starting from a
transformed Lagrangian and then show how is the change over the generating functional, so
it is necessary to find how the term ∆Lew transforms under SU(3)L × SU(3)R which is the
representation where the flavor currents belong. Then the law of rotation by an equal angle
is

qi → e−iθATA
qi (4.17)

where TA are the generators of the gauge group, with the normalization rule defined by
tr(TATB) = 1

2δ
AB, and θA is the transformation parameter. Then the flavor current,

explicitly defined as Jµ
q = Jµ

q,L + Jµ
q,R , is

J ′
q
µ = Jµ

q + δθJ
µ
q

J ′
q
µ = Jµ

q + iθA[T
A, Jµ

q ]
(4.18)

Notice that expression (4.15) can also be simplified using another kind of projectors such
that (

P̃ai

)b
j
= δba δ

i
j(

P̃ T
ia

)j
b
= δab δ

j
i

(4.19)

with these projector relating quark and lepton currents each other by the following rules

P̃ Jµ
q P̃

T ∼ Jµ
l

P̃ TJµ
l P̃ ∼ Jµ

q

(4.20)

as it were made for the quark currents, the leptonic ones can also be transformed under the
action of the SU(2)R × SU(2)L rotation group which leaves the vector currents as

δϕ J
µ
l = iϕα[τ

α , Jµ
l ] (4.21)

where the generators τα satisfy the normalization rule tr(τα τβ) = 1
2δ

αβ .
If one wish to know the Ward identities it is necessary the procedure of section 2.3 in

which one transforms the Lagrangian under SU(3)R × SU(3)L. The general computation,
without details, must include

L′ = (L0 +∆LEW ) + (δL0 + δ∆LEW ) (4.22)
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where the generating functional varies depending on small perturbations as

Z ′ =

∫
DAµDqDq̄e

i
∫
(L0+∆LEW )+(δL0+δ∆LEW )d4x

=

∫
DAµDqDq̄e

iS

(
1 + i

∫
δL0d

4x

)(
1 + i

∫
δ∆LEWd

4x

) (4.23)

and finally, because of the invariance on Z, the form of Ward identities involve the form of δL0

which is the QCD Lagrangian with no mass and no kinetic term, under the transformation
group as well as δ∆LEW . Based on these, the Ward identities relate

〈
δL0

〉
with

〈
δ∆LEW

〉
through

δL0 = 2θA

(
Dµ J

µ
q,L

)
TA (4.24)

where the covariant derivative has the form

Dµ J
µ
q,L = ∂µ J

µ
q,L − i[Af

µ, J
µ
q,L] (4.25)

for a background flavor gauge potential with no coupling constant (gs)by the fact that it
isn’t a color-charged field. The rule defined in (4.18) change the electroweak term as

δ∆LEW = −2
√
2GF (iθA)

{
cos2 θC

(
tr
(
P11J

µ
q,L P22[T

A, Jq,L,µ]

+P11[T
A, Jµ

q,L ]P22Jq,L,µ

))
+ sin2 θC

(
tr
(
P11J

µ
q,L P33

[TA, Jq,L,µ] + P11[T
A, Jµ

q,L ]P33Jq,L,µ

))
+ cos θC sin θC

(
tr
(
P11J

µ
q,L P23[T

A, Jq,L,µ] + P11

[TA, Jµ
q,L ]P23Jq,L,µ + P11[T

A, Jµ
q,L ]P32Jq,L,µ

+P11J
µ
q,L P32[T

A, Jq,L,µ]
))}

.

(4.26)

At this point the ward identities can be defined from the previous elements starting with
δL0 = δ∆LEW and taking the trace at both sides using the cyclic properties one finally gets

Dµ J
µ
q = i

√
2GF×(

cos2 θC

[
Jq L ,µ , P11 J

µ
q L P22 + P22 J

µ
q L P11

]
+ sin2 θC

[
Jq L ,µ , P11 J

µ
q L P33 + P33 J

µ
q L P11

]
+ cos θC sin θC

([
Jq L ,µ , P11 J

µ
q L P23 + P23 J

µ
q L P11

]
+
[
Jq L ,µ , P11 J

µ
q L P32 + P32 J

µ
q L P11

]))
.

(4.27)

Just remember that the quark masses wasn’t included in the calculations with the QCD
Lagrangian, those terms would have represented another kind of contributions to the
expression above.
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4.3 Formulas for the Weak Quark Decay Rate

The electroweak rates could be calculated starting from the Ward identities in (4.27) for
each one of the quark and lepton currents.

Figure 4.1: Bulk viscosity of three-flavor quark matter for different values of the strange
quark mass at ω/2π = 1 kHz in the neutrino-free regime [17]

As it was said above, this work only concentrates in the quark weak decays, just to
mention that this statement holds because lepton contributions for the complete set of rates
represent a small deviation for the bulk viscosity behaviour related to temperature as it can
be seen in Figure 4.1, Where the first peak at T ∈ [0.05 , 0.1]MeV , which is the range of
temperatures typical of a neutron star, is determined by the rate of the non-leptonic process,
and the lowest peaks are due to the leptonic contribution to the rates. One should highlight
the non-changing shape of the curve around the temperatures of interest if leptonic processes
are not considered.

The rate calculations will consider non-vanishing chemical potentials, which will be
introduced by a time component in a 4-spacetime background flavor gauge potential with a
diagonal matrix notation such that

(Aq
0)

i
j = µi δ

i
j (4.28)

from which one can identify the chemical potentials of the three main quarks as µ1 =

µu , µ2 = µd , µ3 = µs. It is also possible to identify the quark currents by its diagonal
components in matrix notation as (Jµ

q )11 = Jµ
u , (J

µ
q )22 = Jµ

d , (J
µ
q )33 = Jµ

s .
Starting from the previous notation, one can identify the quark and lepton densities from

the time component of the currents by

(J0
q )

1
1 = nu , (J

0
q )

2
2 = nd , (J

0
q )

3
3 = ns , (J

0
l )

l
l = nl . (4.29)
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Now, one can identify such currents with the Ward identities mentioned above with not
only the quark contribution but better with the complete form of the electroweak term in
(4.15). This procedure reflects interest in the flavor-changing contributions introduced by
Fermi’s interaction. Leaving the details in such calculation, one can arrive to the following
Ward identities

∂µ ⟨Jµ
u ⟩ = i

√
2GF ηµν

[
cos θC

〈
(Jµ

q L)
u
d(J

ν
l L)

e
νe − (Jµ

q L)
d
u(J

ν
l L)

νe
e

〉
+sin θC

〈
(Jµ

q L)
u
s(J

ν
l L)

e
νe − (Jµ

q L)
s
u(J

ν
l L)

νe
e

〉]
,

∂µ
〈
Jµ
d

〉
= i

√
2GF ηµν

[
cos θC sin θCηµν

〈
(Jµ

q L)
u
s(J

ν
q L)

d
u − (Jµ

q L)
s
u(J

ν
q L)

u
d

〉
− cos θC

〈
(Jµ

q L)
u
d(J

ν
l L)

e
νe − (Jµ

q L)
d
u(J

ν
l L)

νe
e

〉]
,

∂µ ⟨Jµ
s ⟩ = i

√
2GF ηµν

[
− cos θC sin θCηµν

〈
(Jµ

q L)
u
s(J

ν
q L)

d
u − (Jµ

q L)
s
u(J

ν
q L)

u
d

〉
− sin θC

〈
(Jµ

q L)
u
s(J

ν
l L)

e
νe − (Jµ

q L)
s
u(J

ν
l L)

νe
e

〉]
,

∂µ ⟨Jµ
ν ⟩ = i

√
2GF ηµν

[
− cos θC

〈
(Jµ

q L)
u
d(J

ν
l L)

e
νe − (Jµ

q L)
d
u(J

ν
l L)

νe
e

〉
− sin θC

〈
(Jµ

q L)
u
s(J

ν
l L)

e
νe − (Jµ

q L)
s
u(J

ν
l L)

νe
e

〉]
,

∂µ ⟨Jµ
e ⟩ = i

√
2GF ηµν

[
cos θC

〈
(Jµ

q L)
u
d(J

ν
l L)

e
νe − (Jµ

q L)
d
u(J

ν
l L)

νe
e

〉
+sin θC

〈
(Jµ

q L)
u
s(J

ν
l L)

e
νe − (Jµ

q L)
s
u(J

ν
l L)

νe
e

〉]
.

(4.30)

where the numbered notation of (4.11) was changed by the flavored one identifying qi =
(u, s, d) with qi = (1, 2, 3) and the same for the first leptonic family with la = (νe, e) with
la = (1, 2).

Now, one needs to find such two point functions value developing a theory in real time but
starting from a general point of view involving complex path and finite temperature formalism
as seen in Section 2. A thermal correlator in such theory is defined by (2.68) with a complex
path in the Schwinger-Keldysh formalism identified by labeled sections as in figure 2.1. From
now on, it is more convenient to take another notation when (ti → −∞) and (tf → +∞) by
C1 → (ti, tf ) ∪ C3 → (tf , tf − iσ) ∪ C2 → (tf − iσ, ti − iσ) ∪ C4 → (ti − iσ, ti − iβ).

The two point correlators in (2.68) will have two possible contributions depending on
the location of the coordinates. If one locates the x1 time component along C1 path,
corresponding to the real axis, the correlator is equal to the Feynman two point function by

〈
TC (ϕ(x1)ϕ(x2))

〉
=
〈
T (ϕ(x1)ϕ(x2))

〉
= GF

1,2(t1 − t2, x⃗1 − x⃗2) (4.31)

when the time component of x2 is in the same C1 path. On the other hand, if such component
is located on the C3 path, the thermal correlator is equal to the Wightman correlator given
by 〈

TC (ϕ(x1)ϕ(x2))
〉
= G<

1,2(t1 − t2 + iσ, x⃗1 − x⃗2) (4.32)

in the same way which it was described the thermal correlator by the third equation in
(2.89). Inside the framework of Fermi electroweak theory, the correlator function as a thermal
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mean value, can be written, analogously to (2.22), in a perturbative way by the following
expression

⟨O(x)⟩GF
=
〈
TC

[
O(x)ei

∫
C d4x′ ∆LEW (x′)

]〉
0
≈
〈
TC

[
O(x)

(
1 + i

∫
C
d4x′∆LEW (x′)

)]〉
0

≈ ⟨O(x)⟩0 + i

∫
C
d4x′

〈
TC
[
O(x)∆LEW (x′)

]〉
0
.

(4.33)

where the subscript "0" means that the expectation value is calculated without Fermi
interaction considerations. The electroweak term in the right hand side of the previous
equation can be submitted to the same formalism described in equations (4.31) and (4.32)
with the Feynman and Wightman contributions. So, if the x -time coordinate in (4.33) is on
the real axis path and x′ is defined along the complex path C, the integral term will be∫

C
d4x′

〈
TC
[
O(x)∆LEW (x′)

]〉
0
=

∫
d4x′

(
GF

O∆LEW
(t− t′, x⃗− x⃗′)

+G<
O∆LEW

(t− t′ + iσ, x⃗− x⃗′)
)
.

(4.34)

At this point, one has the proper mathematical tools to compute the correlators for the
current expressions in (4.30), but after some calculations it it necessary to apply another
approximation, this time on the terms which mix the current correlators and those in the
∆LEW term, considering if one needs only the quark-dependent expression in (4.14) or the
mixed one in (4.15).

So far, the equations for the rates in (4.30) are defined by the expectation value of the
non-diagonal components of current quadratic terms appearing in the right hand side of
the Ward identities. Such correlators, as seen before, can be computed starting from the
expression (4.34) considering the absence of flavor-breaking terms where the most general
form of current correlators would be〈

(Jµ
f L)

a
b (J

ν
f L)

c
d

〉
= G1 δ

a
b δ

c
d +G2 δ

a
d δ

c
b . (4.35)

and if for instance, the action has not only the electroweak term but also mass term or
chemical potential introduced by a gauge field, the δ-term previously introduced must be
changed for a matrix one associated to these quantities, something that could add new
terms in the Ward identities but if such matrices are diagonal, (4.35) holds with the index
notation.

Once with the perturbative way to compute the current thermal correlators, one will have
four-point expressions for the rates. Such new correlators can be treated by an approximation
with the factorization procedure where single trace operators are basically classical objects
in the large N limit ⟨OO⟩ ≈ ⟨O⟩ ⟨O⟩ + O( 1

N2 ) [19], also considering that could be some
non-factorizable contributions but they are assumed to be small. With this in mind, the

55



Universidad de Oviedo
2024

Beta equilibrium reaction rates
at strong coupling using gauge/gravity duality

4-point correlator functions for the currents as a result of (4.33) can be written by〈[
(Jµ

f )
a
b(x)(J

ν
f )

c
d(x)

] [
(Jα

f ′)a
′
b′(x

′)(Jβ
f ′)

c′
d′(x

′)
]〉

0
≈

δff ′

(〈
(Jµ

f )
a
b(x)(J

α
f )

a′
b′(x

′)
〉
0

〈
(Jν

f )
c
d(x)(J

β
f )

c′
d′(x

′)
〉
0
+〈

(Jµ
f )

a
b(x)(J

β
f )

c′
d′(x

′)
〉
0

〈
(Jν

f )
c
d(x)(J

α
f )

a′
b′(x

′)
〉
0

)
.

(4.36)

After the theory described below and some long calculations, one can find for example the
approximated expression for the Ward identity current associated to the d-quark in (4.30) as

∂µ
〈
Jµ
d (x)

〉
≈ 4G2

F cos2 θC sin2 θCηµνηαβ

∫
C
d4x′{〈

TC

[
(Jµ

q L)
u
s(x)(J

α
q L)

s
u(x

′)
]〉

0

〈
TC

[
(Jν

q L)
d
u(x)(J

β
q L)

u
d(x

′)
]〉

0

−
〈
TC

[
(Jµ

q L)
s
u(x)(J

α
q L)

u
s(x

′)
]〉

0

〈
TC

[
(Jν

q L)
u
d(x)(J

β
q L)

d
u(x

′)
]〉

0

}
.

(4.37)

The next step, as seen above, is to use the formalism in (4.34) and later performing a
Fourier transform on it, such that the correlators will take the following form

∂µ
〈
Jµ
d (x)

〉
≈ 4G2

F cos2 θC sin2 θCηµνηαβ[∫
d4q

(2π)4

[
GF µα

us,su(q)G
F νβ
du,ud(−q)−GF µα

su,us(q)G
F νβ
ud,du(−q)

]
+

∫
d4q

(2π)4

[
G<µα

us,su(q)G
<νβ
du,ud(−q)−G<µα

su,us(q)G
<νβ
ud,du(−q)

] ]
.

(4.38)

where the Fourier transform expression used on the Feynman and Wightman correlators
was given by

GF,<µα
ab,a′b′ (x− x′) =

∫
d4q

(2π)4
eiq·(x−x′)GF,<µα

ab,a′b′ (q) . (4.39)

Both equations (4.37) and (4.38) were derived using the only quark-dependent expression
of ∆LEW in (4.14) and there is still some new change of notation to make both expression
shorter with

γus→ud = γFus→ud + γ<us→ud

= ηµν ηαβ

(∫
d4q

(2π)4

[
GF µα

us,su(q)G
F νβ
du,ud(−q)−GF µα

su,us(q)G
F νβ
ud,du(−q)

]
+

∫
d4q

(2π)4

[
G<µα

us,su(q)G
<νβ
du,ud(−q)−G<µα

su,us(q)G
<νβ
ud,du(−q)

]) (4.40)

and once with these new quantities, one can define the rate of change of the d-quark current
in (4.38) by

∂µ
〈
Jµ
d

〉
= 4G2

F sin θ2C cos2 θC γus→ud . (4.41)

Once with all the mathematical development described above for the d-quark rate of
change with all the non-vanishing contributions and without specifying the calculation
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details, it is natural now to give the expressions for the other rates of change in (4.30) as
follow

∂µ ⟨Jµ
s ⟩ = −4G2

F sin θ2C cos2 θC γus→ud = −∂µ
〈
Jµ
d

〉
(4.42)

where one can see the relation between currents due to to first process in (4.4).

4.3.1 Rates in Thermal Field Theory at finite Chemical Potential

The best way to compute the gamma function described in (4.42) deals with the Thermal
correlator formalism seen in Chapter 2. A good starting point is to re-write the correlator
components of gamma function in (4.40) by its spacetime coordinates, taking the example
in (4.31) and (4.32), by

GF µα
us,su(q) → GF µα

us,su(t− t′, x⃗− x⃗′) =
〈
T
[
(Jµ

q L)
u
s(x) (J

α
q L)

s
u(x

′)
]〉

β

G<µα
us,su(q) → G<µα

us,su(t− t′ + iσ, x⃗− x⃗′) =
〈
TC

[
(Jµ

q L)
u
s(x) (J

α
q L)

s
u(x

′)
]〉

β

(4.43)

and with an analogous procedure for the other correlators in (4.40). Now, one has to
remember the definition of a thermal correlator given in (2.84) to see the previous expression
by the time dependence with a general form

G<µν
ab,cd(t, t

′) = Tr
(
ρ(Jν

q )
c
d(t

′) (Jµ
q )

a
b(t)
)

G>µν
ab,cd(t, t

′) = Tr
(
ρ(Jµ

q )
a
b(t) (J

ν
q )

c
d(t

′)
) (4.44)

where the definition agrees with that in (2.30) and with a new quantity given by the
ρ-function as

ρ =
e−β Hµ

Z(β)
(4.45)

with the expression for the partition function illustrated in (2.11). For correct use of this last
expression in the ρ-function one has to state the Hamiltonian operator Hµ as the one where
there exist a chemical potential µ conjugate to a charge Q associated with the corresponding
currents. So, the new Hamiltonian gives the grand partition function by [6]

Z(β) → Z(β , µ) = Tr
(
exp
{
−β (Ĥ − µ Q̂)

})
. (4.46)

Notice that the previous Hamiltonian has turned the time component of the background
flavor gauge potential on, like shown in (4.28), and as seen in (2.67), one has to introduce
the adjoint representation of the currents to get the eigenvalues of such effective Hamiltonian
of the form Hµ = H − µQ with

(Jµ
q )

a
b(t) = ei t Ĥ (Jµ

q )
a
b(0) e

−i t Ĥ

= ei t (Ĥµ+µQ) (Jµ
q )

a
b(0) e

−i t (Ĥµ+µQ)

= ei t Ĥµ ei t µa (Jµ
q )

a
b(0) e

−i t Ĥµ e−i t µb = ei t (µa−µb) (Ĵµ
q )

a
b(t)

(4.47)
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then, in a similar procedure like (2.31) introducing evolution operators, one can find the
correlator functions in (4.44) by the following expressions

G>µν
ab,cd(t, t

′) = eiµabt+iµcdt
′
Tr
(
e−βHµ(Ĵµ

q )
a
b(t) (Ĵ

ν
q )

c
d(t

′)
)
= eiµabt+iµcdt

′
Ĝ>µν

ab,cd(t, t
′)

G<µν
ab,cd(t, t

′) = eiµabt+iµcdt
′
Tr
(
e−βHµ(Ĵν

q )
c
d(t

′) (Ĵµ
q )

a
b(t)
)
= eiµabt+iµcdt

′
Ĝ<µν

ab,cd(t, t
′) .

(4.48)

where, for simplicity, was introduced the notation (µab = µa − µb). Also notice that the
new correlators labelled by Ĝ do not depend on the chemical potentials and their thermal
dependence is related to the new Hamiltonian Hµ. Starting from these equations, one can
figure out, by the KMS formula in (2.34), a relation between the correlators G<µν

ab,cd and
G>µν

ab,cd through a temperature dependent exponential term given by

G<µν
ab,cd(t+ iβ, t′) = e−µab β ei(µab t+µcd t′) Ĝ<µν

ab,cd(t+ iβ, t′)

G<µν
ab,cd(t+ iβ, t′) = e−µabβ G>µν

ab,cd(t, t
′)

(4.49)

This last equation is very important in the thermal correlators formalism because after
some Fourier transform procedures one can derive relations that depend on the chemical
potential in the framework of Bose-Einstein distribution. Starting from a Fourier transform,
that follows from the KMS condition like (2.38), on this equation, one can find that both
correlators in 4-momentum space are related analogously as (2.39) with the (k0) exponential
term. But, one also must notice that such correlators have been already related by another
exponential quantity given by (e−µabβ) which is non dependent on the coordinates if one
takes the condition of interest (cd→ ba), that takes place in the rate of change equations,
then one can see

G<µν
ab,ba(k0) = e−β(k0 +µab)G>µν

ab,ba(k0) (4.50)

where such correlators must be defined inside a Bose-Einstein distribution with (k0 →
k0 + µab)e. Taking the formalism of the spectral function seen in Chapter 2, specifically in
(2.40), it is possible to write the correlators in a similar way than (2.43) and (2.44) by

G>µν
ab,ba(k0)−G<µν

ab,ba(k0) = ρµν
ab,ba(k0) (4.51)

and each of one correlators with their own expressions written as

G>µν
ab,ba(k0) = (1 + fab(k0)) ρ

µν
ab,ba(k0)

G<µν
ab,ba(k0) = fab(k0) ρ

µν
ab,ba(k0)

(4.52)

where the f -function is defined by the modified Bose-Einstein distribution mentioned above

fab(k0) =
1

eβ(k0+µab) − 1
. (4.53)

All of the mathematical formalism so far for the correlators defined by the (<,>) labels will
state the time-ordered correlator function, which is needed for the rate of change expressions.
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Starting from the same time-ordered expression for a generic function given in (2.36), one
has

GF µα
ab,ba(t, t

′) = θ(t− t′)G>µν
ab,ba(t, t

′) + θ(t′ − t)G<µν
ab,ba(t, t

′) (4.54)

with the usual definition of the θ-function. But it is not ended here when the expression
needed is such that defined by the Fourier transform in the 4-momentum space like in (2.65).
So, the new time-ordered correlator function is given by

GF µν
ab,ba(k0) = i

∫
dk′0
2π

ρµν
ab,ba(k

′
0)

k0 − k′0
+ fab(k0) ρ

µν
ab,ba(k0) . (4.55)

This last expression is useful to get the Time-reversal symmetry formula for the time-
ordered correlator function. Applying (2.80) and considering that the correlator must be a
real-valued function, then it is satisfy the following property

GF µν
ab,ba(−k0,−k⃗) = GF νµ

ba,ab(k0, k⃗) . (4.56)

The theoretical framework developed so far, states the prerequisites to find the contri-
butions of the gamma functions in the rate of change equations (4.42). Starting from the
Feynman contributions in (4.38) for the quark current components and using the previous
symmetry property, one has

γus→ud = ηµν ηαβ

∫
d4q

(2π)4

[
GF µα

us,su(q)G
F νβ
du,ud(−q)−GF µα

su,us(q)G
F νβ
ud,du(−q)

]
= ηµν ηαβ

∫
d4q

(2π)4
GF µα

us,su(q)G
F νβ
du,ud(−q)−

∫
d4q

(2π)4
GF µα

su,us(q)G
F νβ
ud,du(−q)

= ηµν ηαβ

∫
d4q

(2π)4
GF µα

us,su(q)G
F νβ
du,ud(−q)−

∫
d4q

(2π)4
GF µα

su,us(−q)G
F νβ
ud,du(q)

= ηµν ηαβ

∫
d4q

(2π)4
GF µα

us,su(q)G
F νβ
ud,du(q)−

∫
d4q

(2π)4
GF µα

us,su(q)G
F νβ
ud,du(q)

= 0 .

(4.57)

Notice that it was taken a flexible notation, ignoring the metric terms ηµν ηαβ and because
the correlators depend on a 4-momentum argument. One can separate the integral in two
parts given by (dq0) and the other for (d3q), as the same for the argument of the correlators
where (q → q0, q⃗ ) but the result shown in (4.57) holds, considering the following property
satisfied by the Wightman correlators

G>µν
ab,ba(t, x⃗ ) = G<νµ

ba,ab(−t,−x⃗ ) . (4.58)

Now one has to look for the Wightman correlators contribution, associated to the gamma
function described above in the second term of (4.40). For this purpose, it is convenient to
use the spectral function equation in (4.52), considering

G<µν
ba,ab(k0) = fba(k0) ρ

µν
ba,ab(k0) (4.59)
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where one must remember that the function fba only have the time-component dependence
fba → fba(k0) and the spectral function will be ρµν

ba,ab → ρµν
ba,ab(k0, k⃗ ). With such details one

is now able to find the contribution given by the Wightman correlators, focusing on the time
dependence by

γ<us→ud = ηµν ηαβ

∫
d4q

(2π)4

[
G<µα

us,su(q)G
<νβ
du,ud(−q)−G<µα

su,us(q)G
<νβ
ud,du(−q)

]
= ηµν ηαβ

∫
d4q

(2π)4

(
fus(q

0) ρµα
us,su(q) fdu(−q0) ρ

νβ
du,ud(−q)

−fsu(q0) ρµα
su,us(q) fud(−q0) ρ

νβ
ud,du(−q)

)
= ηµν ηαβ

∫
d4q

(2π)4

(
fus(q

0) ρµα
us,su(q) fdu(−q0) ρ

νβ
du,ud(−q)

−fsu(−q0) ρµα
su,us(−q) fud(q0) ρ

νβ
ud,du(q)

)
= ηµν ηαβ

∫
d4q

(2π)4

(
fus(q

0) ρµα
us,su(q) (1 + fud(q

0)) ρ νβ
ud,du(q)

−(1 + fus(q
0)) ρµα

us,su(q) fud(q
0) ρ νβ

ud,du(q)
)

= ηµν ηαβ

∫
d4q

(2π)4
(
fus(q

0)− fud(q
0)
)
ρµα
us,su(q) ρ

νβ
ud,du(q) .

(4.60)

Finally, one gets the expression for the rate of change for the d-quark current with only
quark dependence in (4.41) by

∂µ
〈
Jµ
d

〉
= 4G2

F sin θ2C cos2 θC ηµνηαβ

×
∫

d4q

(2π)4
(
fus(q

0)− fud(q
0)
)
ρµα
us,su(q) ρ

νβ
ud,du(q) .

(4.61)

By the comments on the introduction, and by direct comparison, the divergence of the
particle density current is equivalent to the function (Γud→us) in (4.8) for the selected process.
The result of such identification is given by

4G2
F sin θ2C cos2 θC γus→ud ≈ Γud→us − Γus→ud (4.62)

with the γ-factor as seen in (4.60) with the Bose-Einstein distribution and the spectral
function. Just to mention that one can check in beta equilibrium condition (4.2) that if
(µu − µs = µu − µd), the Bose-Einstein function which depends on the chemical potential
difference (4.53), losses such difference and both fus and fud would be the same in (4.60)
and for that reason the γus→ud-function will vanish and then the rate of change in (4.61)
will be zero, as it would be expected from beta equilibrium condition.

Previous discussions have addressed how fluctuations within the quark matter region
of compact neutron stars can disrupt the beta equilibrium condition. When deviations
occur from this equilibrium, the primary quantities that adjust are the chemical potentials.
These changes are necessary to restore the system to its equilibrium state, following a small
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perturbation around the equilibrium values during such processes.

µa = µeqa + δµa . (4.63)

Now, one can introduce such perturbation formula in (4.61) which will only affect the
Bose-Einstein function within the exponential factor. So, the γ- factor can be approximated
by

γ
us→ud

≈ (δµs − δµd) Λus→ud , (4.64)

using (4.63) in (4.53) with Λ representing the integral factor with the spectral functions
involved. Its expression will take place after the procedure described above in which the
remnant part, after the change on the Bose-Einstein functions, is given by

Λ
us→ud

= ηµνηαβ

∫
d4q

(2π)4

ρeq µα
us,su (q)ρ

eq νβ
ud,du(q)

4T sinh2
(
q0 +∆µeq

sd
2T

) . (4.65)

where ∆µeqsd is defined by the difference of equilibrium chemical potential values for the
quarks involved (∆µeqsd = µeqs − µeqd ).

After all this theoretical framework, one can finally get, by the correspondence between
(4.62) and the linear expansion in (4.8) for the down and strange quarks process, the
expression for the Lambda coefficients after going through the calculation in holography by

λds ≈ 4G2
F sin2 θC cos2 θC Λus→ud . (4.66)

The next chapter will deal with the holographic model dual calculation of this lambda
coefficient.

4.4 Bulk viscosity from electroweak processes

Bulk viscosity, also known as volume or dilatational viscosity, encompasses a comprehensive
set of equations governing the dynamics of viscous fluids. It quantifies the resistance to
compression and expansion within a fluid element in a given system. In neutron stars,
changes in volume due to radial pulsations lead to fluctuations in baryon density [3].

Bulk viscosity in neutron stars is predominantly influenced by chemical re-equilibration,
particularly through flavor-changing processes. Electroweak reactions contribute significantly
to bulk viscosity because their timescales align with the oscillation periods of the star, which
are typically comparable to its rotation period [4].

As discussed earlier, bulk viscosity is intricately linked to electroweak rates and beta
equilibrium conditions, which are the focus of this and the subsequent sections. This part
aims to outline this relationship, emphasizing how the reaction rates of weak processes and
externally induced volume oscillations are computed to determine the bulk viscosity of dense
hadronic matter [4].

One has to notice how the baryon or better the quark density changes from its equilibrium
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value by
nB/q ≃ neqB/q +∆nB/q sin(ωt) . (4.67)

considering that such deviation value is defined by a small homogeneous oscillation of period
τ = 2π/ω. By the existent relation between density and volume, such change in the density
number for a given quark flavor can be seen as a change in the specific volume like VB = n−1

B

and then if one takes the temporal derivative, both quantities will be coupled by

dVB
dt

= −(nB)
−2 dnB

dt

≃ −ω∆nB
(neqB )2

cos (wt) + . . .
(4.68)

where by definition, the equilibrium density number doesn’t change in time (dnB/dt = 0).
The baryon density also satisfy the continuity equation

ṅB +∇ · (nB v⃗) = 0 (4.69)

where the divergence of the velocity of the fluid is then given by the derivative on the baryon
density in (4.68) as

∇ · v⃗ = − ṅB
nB

≃ −ω∆nB
neqB

cos(ωt) . (4.70)

The bulk viscosity coefficient (ζ) is responsible for dissipation in the presence of a nonzero
divergence [4], like the previous equation. So, if one takes the dissipated energy (Ė) of the
star rotation, averaging over an oscillation period, the equation will be dependent on the
baryon density by 〈

Ė
〉
τ
= −ζ

τ

∫ τ

0
dt(∇ · v⃗)2

≃ −ζω
2

2

(
∆nB
neqB

)2 (4.71)

There is also another way to evaluate the energy loss with an expression that involve the
mechanical work induced by pressure oscillations which is

〈
Ė
〉
τ
=
neqB
τ

∫ τ

0
dt P (t)

dVB
dt

=
1

neqB
(−ω∆nB)

∫ τ

0
dt P (t) cos (ωt) .

(4.72)

With equation (4.68) governing the volume derivative and the ability to describe pressure in
terms of chemical potentials as thermodynamic variables within the context of the grand
canonical potential, this theory necessitates expressing non-equilibrium pressure through
deviations of chemical potentials via the Gibbs-Duhem equation [17].

P = P0 +
∑
a

∂P

∂µa
δµa . (4.73)
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The quark flavor density is another quantity that has an expansion due to the dependence
on chemical potentials as thermodynamic variables by

na = n0a +
∑
b

∂na
∂µb

δµb . (4.74)

in which the derivative term is associated to the susceptibilities as

χ b
a =

∂na
∂µb

. (4.75)

If one considers the relationship between density and the rates in (4.5) and their linear
expansion in (4.8), the time-dependent variations of the chemical potentials must be included
in the pressure expansion (4.73) and in the number density (4.74). One can then incorporate
these expressions into the dissipated energy formula to obtain the bulk viscosity coefficients,
resulting in

ζ =
λ1A

2
1

ω2 + λ21C
2
1

(4.76)

where λ1 = λds in (4.8) counts for the quark decay without leptonic contribution and the
other factors will relate the susceptibilities and density number by

C1 =
1

χdd
+

1

χss
, A1 =

nd
χdd

− ns
χss

. (4.77)
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Chapter 5

Holographic calculation of the
Electroweak Rate

This final chapter encompasses observables derived from gauge/gravity duality, particularly
focusing on correlators of gauge-invariant operators. The computation of flavor currents
commences with the action principle of the holographic QCD model, based on its field
content. Subsequently, equations of motion are derived, followed by the introduction of
the Schwarzschild-AdS metric to describe the asymptotic behavior of the radial coordinate.
Solutions for the left gauge field are evaluated, which are connected to the two-point functions
of the flavor currents through the spectral function.

5.1 Holographic Model of Correspondence and Action Term

As it was seen in Section 3 for the scalar field example in the AdS/CFT correspondence,
specifically in (3.68), the expansion for a scalar field in the bulk theory must satisfy the
IR and UV boundary conditions, which for this model will be identified with a quark mass
matrix as the source and another matrix composed by the quark condensate in the IR
condition satisfying the vacuum expectation value of the dual scalar field.

Figure 5.1: Operator/Field correspondence in AdS5/CFT4 space bottom-up model [20]

With the mass dimension in figure 5.1, for the quark condensate and using this value in
the scaling dimension and mass equation (3.60) one gets two solutions for ∆ through (3.67),
which give the exponential number for the holographic dimension (z). So, the scalar field
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would be given by its asymptotic expansion by

Xab ∼
1

2
Mabz +

1

2
Σabz

3 . (5.1)

where, as it was said, (M) will be the quark mass matrix given as

M =

 mu 0 0

0 md 0

0 0 ms

 (5.2)

and (Σ) shall be considered as an input parameter of the model linked to the quark condensate
of the form

Σαβ =
〈
qα q̄β

〉
. (5.3)

In addition, not only the scalar field correspondence is needed but also the model must
include two additional massless gauge fields which are dual to the current operators (q̄L γµ qL)
and (q̄R γ

µ qR). This correspondence was made by including the electroweak action term in
(4.9) into the holographic model, knowing that such is a double-trace term introduced by
the boundary conditions described above. Assembling all these important quantities, the
considered action for the flavor fields in a commonly used Holographic QCD model will be
given by

Sf =
1

16πG5

Nf

Nc

∫
dx5

√
−g Tr

(
−|DX|2 + 3|X|2 − 1

4g2s

(
F 2
(R) + F 2

(L)

))
(5.4)

where the complex scalar field (X) is dual to the quark bi-linear in the bi-fundamental
representation and also couples to the (A(L)) and (A(R)) gauge fields in representation
SU(Nf )L × SU(Nf )R with flavor fields fixed by (Nf = 3), through the covariant derivative
as

DNX = ∂NX − iAN
(L)X + iXAN

(R)(
DNX

)†
= ∂NX† + iX†AN

(L) − iAN
(R)X

†
(5.5)

and the field strength defined as usual in a Yang-Mills theory by

FAB = ∂AAB − ∂B AA + i [AA , AB] . (5.6)

Just to simplify the notation in subsequent calculations, one shall refer the left and right
components of the gauge field by the association (AN

(R) = RN ) and ((AN
(L) = LN )).

5.2 Equations of Motion and Field Fluctuations

In classical field theory, the action principle reveals a coupling between gravity and the field
content of the theory. For the model of interest, the action is given by (5.4), incorporating
dynamical fields associated with the AdS metric, scalar field, and gauge fields. Using the
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constructed holographic dictionary, one can derive the expression for the retarded correlator
of the two-point function of left flavor currents from the solutions to the fluctuation equations.
Applying the variational principle to these fields and neglecting the back-reaction onto the
metric, the Euler-Lagrange formalism yields the equations of motion

1√
−g

DM

(√
−g FMN

(R)

)
= jN(R)

1√
−g

DM

(√
−g FMN

(L)

)
= jN(L)

1√
−g

DM

(√
−g DMX

)
= −3X

(5.7)

where the currents at the right hand side are expressions in terms of the scalar field and its
complex conjugate by the following equations

jN(R) = i
((
DNX

)†
X −X† (DNX

))
jN(L) = i

((
DNX

)
X† −X

(
DNX

)†) (5.8)

so one can notice the Hermitian rule in ( jN(R,L) = (jN(R,L))
† ). Consider now a simple model

of gravity in five dimensional space hold by the AdS5/QFT4 approach. These models are
conjectured to be dual to confining gauge theories [9], less motivated by string theory also
called bottom-up models.

From this point, a massless quark formalism will be developed by the reasons exposed in
the previous section and by this reason the right hand side of (5.7) will vanish.

1√
−g

∂M

(√
−g FMN

(L)

)
= 0 . (5.9)

The Einstein action principle for a gravitational theory with negative cosmological constant
is given by

Sc =
1

16πG5

∫
d5x

√
−g (R− 2Λ) (5.10)

where the Schwarzschild black hole is a solution for the field equations. Then, it is possible
to consider the asymptotic regime of such space when the radial component tends to
infinity, such that the Schwarzschild solution tends to AdS spacetime. By combining this
with the approximation (Nf/Nc ≪ 1), the solution for the field equations is given by the
Schwarzschild-AdS metric

ds2 =
1

z2

(
dz2

f(z)
− f(z)dt2 + dx⃗2

)
; f(r) = 1− z4

z4H
(5.11)

where rH is known as the horizon radius. As it was shown in (4.28), the time component of
the gauge field is related to the equilibrium value of the chemical potential for each quark
flavor. In order to make a correspondence with the treatment of those chemical potentials
out of the beta equilibrium as well as the perturbation on the electroweak term (∆LEW ),
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through some fluctuations in quark density, it is now needed to examine the fluctuations on
the field content in the holographic model around spatially homogeneous equilibrium values
expanding such fluctuations in Fourier modes as

Rµ(x, z) →
∫
dω

2π

∫
d3k

(2π)3
e−iωt+ik⃗·x⃗Rµ(ω, k⃗, z)

Lµ(x, z) →
∫
dω

2π

∫
d3k

(2π)3
e−iωt+ik⃗·x⃗ Lµ(ω, k⃗, z)

(5.12)

where one can notice the oscillatory feature of the fluctuations, related to the compact
neutron stars out of the beta equilibrium phenomena described in the previous section.

From now on, the solution to the fluctuation equations will be given in terms of the Fourier
modes as mentioned in (5.12) and in the subsequent procedures. Let the following be the
fluctuation equations for the left transverse gauge field in (5.11) by

∂2z (Li)
a
b −

1

z
∂z(Li)

a
b + (ω2 − k2) (Li)

a
b = 0 (5.13)

The solutions of such differential equation are given by Bessel functions depending on
the existing relation between (ω) and (k⃗). If is satisfied the condition (ω2 > k2), then the
solutions are given by the sum of Bessel J and Bessel Y functions like

(Li)
a
b = c1 z J1

[
z
√
ω2 − k2

]
+ c2 z Y1

[
z
√
ω2 − k2

]
(5.14)

but if the condition satisfied is (ω2 < k2), then the solutions will be given by

(Li)
a
b = c1 z I1

[
z
√
k2 − ω2

]
+ c2 z K1

[
z
√
k2 − ω2

]
. (5.15)

With the Bessel functions it is also possible to give solutions for the left transverse gauge
potential with the two kinds of Hankel functions if (ω2 > k2), by

(Li)
a (α)
b = C

(α)
i z H

(α)
1

[∣∣ω2 − k2
∣∣1/2 z] e−iω t+i k⃗ ·x⃗ (5.16)

where this set of solutions is related to the Fourier modes in (5.12) transformation. The
complete set of solutions will be a superposition of plane waves in which on has to distinguish
the ingoing and outgoing solutions. Taking the asymptotic form of the first and second kind
Hankel functions when (z → ∞) one gets

H
(1)
1

(∣∣ω2 − k2
∣∣ 12 z) ∼ ei |ω2−k2|1/2 z

H
(2)
1

(∣∣ω2 − k2
∣∣ 12 z) ∼ e−i |ω2−k2|1/2 z

(5.17)

from which one must notice for the first kind, inserted (5.16), the ingoing solution for (ω > 0)

and the outgoing one for (ω < 0). The same must be done for the second kind where the
opposite assignment takes place with the ingoing solution for (ω < 0) and the outgoing
solution for (ω > 0). One is particularly interested in both ingoing solutions for the (5.16)
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expression closing to the limit (z → ∞)

(Li)
a (α)
b =

(Li)
a (1)
b , ω > 0

(Li)
a (2)
b , ω < 0 .

(5.18)

One can fix the value of the C(α)
i coefficient in (5.16) so that the (z H

(α)
1 ) solution will

have the appropriate normalization proportional to the source. After this, both solutions for
(5.18) will be given in terms of the second-order series expansion in (z) for the two kinds of
Hankel functions and the source Ei, resulting in

L
(1)
i ≈ Ei

(
1− 1

4
(ω2 − k2)

(
−1 + 2γE − iπ + 2 log

(ω2 − k2)1/2

2
+ 2 log z

)
z2

)

L
(2)
i ≈ Ei

(
1− 1

4
(ω2 − k2)

(
−1 + 2γE + iπ + 2 log

(ω2 − k2)1/2

2
+ 2 log z

)
z2

)
.

(5.19)

with (γE) as the Euler constant.
It is easy to notice that both solutions only differ by the sign of the imaginary term

according to the ingoing solutions in (5.18), so one can join them in a general expression
with the sign function referred to the frequency by

Li ≈ Ei

(
1− 1

4
M2

(
−1 + 2γE − iπ sign (ω) + 2 log

M

2
+ 2 log z

)
z2
)
. (5.20)

where the quantity (M) was taken as M =
∣∣ω2 − k2

∣∣1/2 just for simplicity.

5.3 Correlator Solutions and Final Calculation for the Rate

Once with the solutions for the left gauge field, one needs to compute the associated left
current one-point function which is extracted from the boundary value of

〈
J i
q, L

〉
= − 1

16πG5

Nf

Nc
lim
z→0

√
−g gii gzz Fzi

= − 1

16πG5

Nf

Nc
lim
z→0

1

z

(
ηii ∂z Li

)
.

(5.21)

The next logical step is to compute the derivative for the solution in (5.20), which is given
by

∂z Li = −M2 z

(
γE + log

M

2
+ log z − 1

2
iπ sign (ω)

)
Ei . (5.22)

So, following the expression for the current in (5.21) one gets

〈
J i
q,L

〉
=

1

16πG5

Nf

Nc
M2

(
γE + log

M

2
− 1

2
iπ sign (ω)

)
Ei . (5.23)

The two-point function, which is the main focus of the model, is obtained by taking the
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variation of the correlator in (5.23) respect to the source and due to the current conservation
because there is no flavor symmetry braking term and then〈

J i
q,L J

j
q,L

〉
=

1

16πG5

Nf

Nc
M2

×
(
δij − ki kj

k2

) (
γE + log

M

2
− 1

2
iπ sign (ω)

)
.

(5.24)

It is possible to relate the previous expression with the retarded Green function (GR(ω, k⃗)).
This relationship is critical for obtaining the spectral functions needed in equation (4.65)
to find the Λ-factor for the associated rate. As mentioned, the expression for the spectral
function is given by the imaginary part of the retarded correlator, and then

ρij = −2 Im
(
G i j

R (ω, k⃗)
)

=
1

16G5

Nf

Nc
M2 sign (ω)

(
δij − ki kj

k2

) (5.25)

where only the transverse component of the left currents contributes. This corresponds to
an incomplete calculation for the correlator, in which not only the transverse components
contribute but also the temporal and longitudinal ones. However, it is possible to derive the
general expression using the current conservation theorem, as follows

∂µ ⟨Jµ(x) Jν(0)⟩ = 0 → qµ ⟨Jµ Jν⟩ = 0 (5.26)

with (qµ = (ω, k⃗)) and then the two point function as well as its transverse component can
both be written by

⟨Jµ Jν⟩ =
(
q2 ηµν − qµ qν

)
Π(ω, k⃗)〈

J i J j
〉
⊥ =

(
δij − ki kj

k2

)
GR(ω, k⃗)

(5.27)

so, one can find an equation that relates both Π and GR terms through

Π(ω, k⃗) =
1

q2
GR(ω, k⃗) . (5.28)

All the theory developed so far is written in terms of the frequency and momentum
positivity relation (ω2 > k2). This is precisely the main contribution to the rates since the
opposite relation (ω2 < k2), which gives the solution (5.15), leads to a real-valued expression
for the transverse component of the left gauge field, and then the spectral function will
vanish. As seen in (5.28), the Π-function only differs from the retarded Green function by
a constant factor so the general spectral function will vanish too. It is then necessary to
provide a new equation for the spectral function that takes this difference into account,
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which will be given by adding the unit step function as

ρ ij ∼=
1

16G5

Nf

Nc
Θ(ω2 − k2)M2 sign (ω)

(
δij − ki kj

k2

)
. (5.29)

Finally, based in (5.27) the expression for the spectral function is then the imaginary part
in

ρµν =
(
q2 ηµν − qµ qν

)
× (−2 ImΠ(ω,k)) Θ(ω2 − k2) (5.30)

so the contracted form which is the contribution for the Λ-factor in (4.65) will be given by

ηµν ηαβ ρ
µα(q)ρ νβ(q) = ηµν ηαβ

(
q2 ηµα − qµ qα

) (
q2 ηνβ − qν qβ

)
× (−2 ImΠ(ω,k))2 Θ(ω2 − k2)2

= 9 (q2)2 (−2 ImΠ(ω,k))2 Θ(ω2 − k2)2

= 36
(

ImGR(ω, k⃗)
)2

Θ(ω2 − k2)2

(5.31)

where one can introduce the expression (5.25) getting

ηµν ηαβ ρ
µα(q)ρ νβ(q) =

9

256

1

G2
5

(
Nf

Nc

)2

(ω2 − k2)2Θ(ω2 − k2)2 (5.32)

As mentioned before, this last expression must be introduced in (4.65) where the difference
between the involved chemical potentials in equilibrium vanish, and then to obtain the rates
the computation was made using the Mathematica software [21], resulting in the following
value:

Λ
us→ud

= ηµνηαβ

∫
d4q

(2π)4

ρeq µα
us,su (q)ρ

eq νβ
ud,du(q)

4T sinh2
(
q0 +∆µeq

sd
2T

)
Λ

us→ud
=

9

256

1

G2
5

(
Nf

Nc

)2 π

T (2π)4

∫ ∞

−∞
dω

∫ ∞

0
dk k2

(ω2 − k2)2Θ(ω2 − k2)

sinh2 ω
2T

Λ
us→ud

=
9

256

1

G2
5

(
Nf

Nc

)2 1

T (2π)3

∫ ∞

0
dω

∫ |ω|

0
dk k2

(ω2 − k2)2

sinh2 ω
2T

Λ
us→ud

=
27 ζ[7]

4π3G2
5

(
Nf

Nc

)2

T 7 .

(5.33)

Finally the Lambda coefficient in (4.66) will be approximated by

λds ≈ 4G2
F sin2 θC cos2 θC Λus→ud

λds ≈
27 ζ[7]

π3G2
5

(
Nf

Nc

)2

G2
F sin2 θC cos2 θC T

7 .
(5.34)

Then, the rates difference in (4.8) for the calculation of quark density change according to
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(4.5) will give the following relation

−dnd
dt

=
dns
dt

= Γud→us − Γus→ud = λds (µs − µd)

−dnd
dt

=
dns
dt

≈ 27 ζ[7]

π3G2
5

(
Nf

Nc

)2

G2
F sin2 θC cos2 θC T

7 .

(5.35)

For that purpose, this dissertation has accomplished the development of an expression for
the equilibrium rates, which turn out to be only temperature-dependent.
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Chapter 6

Conclusions and Further Aims

This work has been done with the perspective of gaining insight into quantum chromo-
dynamics for systems in which perturbative methods are not suitable. Holography was
proposed as a new method to perform calculations in such regimes, focusing on physical
systems that meet these conditions, such as compact neutron stars with high baryonic
density.

The theoretical background involved here contains a wide variety of tools and concepts
related to physical systems. Seeing all of them naturally come together to calculate phys-
ical quantities present in real environments, such as neutron stars, is highly interesting.
Especially when such different theories as QFT and gravity are brought closer by the
Maldacena conjecture, allowing one to compute quantities on both sides of the holographic
correspondence.

The neutron star condition known as beta equilibrium was examined through the density
changes in quark flavors and the calculation of such changes using the holographic model
presented here. One should notice from the final expression in (5.35) that the quark density
changes depend only on temperature, with other factors being constants of the model
involved.

There are reasons to conduct further analysis in the developed work, given that certain
approximations were made, such as massless quarks and low-temperature behavior of the
spectral function. These hypotheses can be altered by introducing mass into the holographic
model in the QFT dual, and also by incorporating semi-leptonic processes as discussed in
Section 4. These processes involve the non-conservation of electroweak currents due to flavor
symmetry breaking, as indicated by the Ward identities, and the associated rates affecting
the leptonic density change.

In [4], a result for the lambda factor is provided in (5.34), where the authors consider
non-leptonic processes and also express the quark number density as a linear expansion.
The results presented there depend on the chemical potential and also on the square of the
temperature, which contrasts with the calculation in this work. Therefore, this work can be
extended by possibly examining how to calculate (5.34) considering the back-reaction of the
charge density.
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