
ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN

MÁSTER UNIVERSITARIO EN INGENIERÍA DE

TELECOMUNICACIÓN

ÁREA DE TEORÍA DE LA SEÑAL Y COMUNICACIONES

TRABAJO FIN DE MÁSTER

Wireless Control and Coordination of Industrial Robots using 5G

(Control inalámbrico y coordinación de robots industriales mediante 5G)

Villanueva Fernández, Miguel

TUTOR: Rodriguez Larrad, Ignacio

CO-TUTOR: Mogensen, Preben

FECHA: Julio de 2024

This MSc thesis was written in collaboration with Aalborg University

Abstract
Rapid technological advancements across many different fields like wireless communications, Internet

of Things, cloud computing, robotics, and smart production processes have driven the necessary innovation

to make the Industry 4.0 a reality. All of them allow for increased efficiency and safety, and more flexible

manufacturing processes. This work aims to investigate, design, deploy and validate an industrial use

case for Ultra Reliable Low Latency Communications (URLLC) over 5G, including real-time multi-robot

coordination. The selected use case scenario aims at enhancing a traditional production cell composed by

two robotic arms, by enabling coordinated mobility of one of them and overall synchronized actuation,

resulting in a more flexible and efficient setup.

In order to implement a solution capable of this, three different objectives were set. The first one was

to investigate and characterize the time synchronization in 5G networks considering static and mobile use

cases with common synchronization mechanisms such as NTP. The next one was to design and develop

the industrial testbed over 5G with coordinated wireless robots. The last objective was to validate the use

case scenario and evaluate its performance over 5G, comparing it with WiFi 6E as an alternative wireless

access method.

All objectives were successfully met. The achieved time synchronization over 5G was below +/-0.1

ms, and the industrial use case was feasible. It was demonstrated that the developed industrial use case

involving 5G-coordinated robotic elements had a reliable performance in all runs, with an Operational

Closed Loop Latency of 14.33 ms in average, and 19.89 ms as maximum. WiFi 6E in ideal controlled

conditions managed to achieve even better results, with a mean of 6.82 ms and a maximum of 9.37

ms. However, as WiFi does not have a scheduled access to the medium, is susceptible of performance

degradation if the network is loaded with background traffic. In that scenario, the results showed that the

total latency over WiFi 6E was worse than in the 5G case, reaching cycle times of up to 100 ms, which are

not acceptable for our URLLC case, where the maximum delay tolerance was 30 ms.

In summary, while WiFi 6E in ideal conditions presented the best performance for the implemented

use case, in operational conditions 5G offered the best reliable performance.

Resumen
Los rápidos avances tecnológicos en campos como las comunicaciones inalámbricas, el Internet de

las cosas, el cloud computing, la robótica y los procesos de producción inteligentes, han impulsado la

innovación necesaria para hacer realidad la Industria 4.0. Todos ellos permiten una mayor eficiencia y

seguridad, y procesos de fabricación más flexibles. Este trabajo tiene como objetivo investigar, diseñar,

implementar y validar un caso de uso industrial para comunicaciones ultra confiables de baja latencia

(URLLC) sobre 5G, incluyendo coordinacion multi-robot en tiempo real. El caso de uso seleccionado

intentaría mejorar una célula de producción tradicional compuesta por dos brazos roboticos, permitiendo

la movilidad coordinada en uno de ellos y la sincronización temporal en su actuación, resultando en una

configuración más flexible y eficiente.

Para desarrollar una solución capaz de ello, se plantearon tres objetivos diferentes. El primero fue

investigar y caracterizar la sincronización temporal en redes 5G considerando escenarios estáticos y

móviles conmecanismos comunes comoNTP. El siguiente fue diseñar y desarrollar el caso de uso industrial

sobre 5G con robots inalámbricos coordinados. El último objetivo fue validar el escenario de caso de

uso y evaluar su rendimiento sobre 5G, comparándolo con WiFi 6E como método alternativo de acceso

inalámbrico.

Todos los objetivos fueron alcanzados. Se consiguió una sincronización temporal sobre 5G inferior a

+/-0,1 ms y el caso de uso industrial propuesto fue realizable. Se demostró que el caso de uso industrial

desarrollado involucrando elementos roboticos coordinados sobre 5G tuvo un rendimiento confiable en

todas las ejecuciones sobre 5G, con una latencia operativa de circuito cerrado de 14,33 ms en promedio y

19,89 ms como máximo. WiFi 6E en condiciones ideales controladas consiguió aún mejores resultados,

con una media de 6,82 ms y un máximo de 9,37 ms. Sin embargo, como WiFi no tiene un acceso

programado al medio, es susceptible de degradación del rendimiento si la red se carga con tráfico de

fondo. En este escenario, la latencia total sobre WiFi 6E solo era peor que en el caso de 5G, alcanzando

tiempos de ciclo de 100 ms, completamente inaceptables para un caso de uso de URLLC donde el máximo

retardo tolerable es de 30 ms.

En resumen, aunqueWiFi 6E en condiciones ideales presentó el mejor rendimiento para el caso de uso

implementado, en condiciones operacionales 5G ofrece la mejor confiabilidad.

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 State of the Art . 4

1.2.1 Wired/Ethernet networks . 4

1.2.2 Wireless industrial networks . 5

1.3 Thesis application scenario . 6

1.4 Objectives . 8

1.5 Thesis outline . 9

2 Project Fundamentals 11

2.1 Data communication . 11

2.1.1 5G . 11

2.1.2 WiFi 6/6E . 13

2.1.3 OSI model . 15

2.2 Hardware . 17

2.2.1 5G network . 18

2.2.2 Wireless gateway . 19

2.2.3 UR robotic arms . 21

2.2.4 MiR robots . 22

2.2.5 ER robot . 23

3 Time Synchronization in industrial 5G systems 26

3.1 Introduction . 26

3.2 Network Time Protocol . 27

3.2.1 Chrony . 28

3.3 Robust NTP synchronization in industrial 5G 28

3.3.1 NTP server configuration . 30

3.3.2 Base NTP client configuration . 31

3.3.3 Base NTP client measurements . 32

3.3.4 Optimized NTP client configuration . 32

3.3.5 Optimized NTP client measurements 34

3.4 Time synchronization conclusions . 36

4 Design and Development of an Industrial Testbed with Coordinated Robots 38

4.1 General requirements . 38

4.2 Physical architecture . 41

4.3 Software architecture . 42

4.3.1 5G gateway configuration for IT/OT integration 42

4.3.2 Static UR robot . 45

4.3.3 Mobile ER robot (MiR+UR) . 48

4.3.4 Master Controller . 50

4.3.5 MQTT broker implementation . 51

4.3.6 Message sequence diagrams . 52

4.4 Operational KPIs for the demonstration execution 54

4.5 Industrial Testbed Development Conclusions 56

5 Validation and Performance Evaluation Results 57

5.1 Validation . 57

5.2 Industrial use case performance evaluation results over 5G 63

5.2.1 KPI1: Operational Closed Control Loop Latency 63

5.2.2 KPI2: Percentage of Successful Iterations 66

5.3 Industrial use case performance evaluation results over WiFi 6E 67

5.3.1 KPI1: Operational Closed Control Loop Latency 69

5.3.2 KPI2: Percentage of Successful Iterations 74

5.4 Validation and Performance Evaluation Conclusions 74

6 Conclusions and future work 76

6.1 Conclusions . 76

6.2 Future work . 77

6.2.1 Better time synchronization . 77

6.2.2 Centralised controller functions . 77

6.2.3 Intel RealSense camera streaming . 78

A Code developed for the Use Case Implementation 87

A.1 mqtt_Slave_static.py . 87

A.2 mqtt_Slave_mobile.py . 96

A.3 mqtt_Slave_controler.py . 107

A.4 my_tools.py . 120

A.5 consts.py . 122

A.6 mir_api_s.py . 125

List of Figures

1.1 Examples of emerging technologies [1] . 1

1.2 History of the industrial revolutions [2] . 3

1.3 Typical wired industrial PLC in a factory [6] . 5

1.4 Possible use cases for the interconnected Industry 4.0 [12] 6

1.5 Traditional industrial multi-robotic cell scenario 7

1.6 Proposed industrial multi-robotic cell wireless scenario over 5G 8

2.1 5G use cases: eMBB, URLLC and mMTC [15] 12

2.2 Representation of the problem of mobility and handover in WiFi 14

2.3 OSI layers architecture . 15

2.4 MQTT generic architecture diagram [30] . 16

2.5 AAU 5G Smart Production Lab . 18

2.6 Private 5G infrastructure at the AAU 5G Smart Production Lab 19

2.7 5G to Ethernet gateway SBC from the top and bottom 20

2.8 SIM8262E-M2 5G modem . 20

2.9 UR5e and UR5 robotic arms . 21

2.10 MiR 100 robot and its graphical control webpage 22

2.11 MiR 100 robot and its graphical control webpage 23

2.12 Block programming of the ER robots [41] . 24

2.13 ER robot picking up a tray using a checkerboard marker as positional reference . 25

3.1 NTP Stratum architecture [51] . 27

3.2 NTP architecture for 5G synchronization testing 29

3.3 Baseline 5G NTP synchronization accuracy for the different reference cases . . . 33

3.4 Optimized 5G NTP synchronization results as compared to the baseline ones . . 35

3.5 Statistical representation of the optimized 5G NTP syncrhonization results as

compared to the baseline ones . 36

4.1 Sketch of the proposed use case idea . 39

4.2 Demo physical architecture . 41

4.3 SIM card and 5G modem connection in one of the 5G gateways 43

4.4 Laptop connected to the configuration port of the 5G router 43

4.5 FireHOL configuration . 45

4.6 UR robot software architecture . 46

4.7 Mobile ER robot software architecture . 48

4.8 MiR-Cloud-UR message sequence diagram . 53

4.9 UR-Cloud-UR message sequence diagram . 54

4.10 Evaluation of recorded traffic captures with Wireshark 55

5.1 MiR robot in Ready state (green lights) . 57

5.2 Chrony NTP synchronization query . 58

5.3 Demo images preparation steps . 59

5.4 Demo images initial steps previous to the gripper release 60

5.5 Demo images from the gripper release event . 61

5.6 Demo images finishing steps . 62

5.7 Uplink latency CDF graph (representative of Ttx) 63

5.8 Downlink latency CDF graph (representative of Trx) 64

5.9 Processing time in the cloud CDF graph (representative of Tpr) 65

5.10 Operational Closed Control Loop Latency CDF graph (OCCLL) 66

5.11 WiFi network architecture diagram . 67

5.12 Comparison of 5G and WiFi NTP synchronization 68

5.13 Uplink latency CDF graph of all scenarios . 70

5.14 Downlink CDF graph all scenarios . 71

5.15 Processing time in the cloud CDF graph all scenarios 72

5.16 Operational Closed Control Loop Latency CDF graph all scenarios 74

6.1 Centralised controller MiR-Cloud-UR message sequence diagram 78

List of Tables

5.1 Uplink time statistics (Ttx) reference values . 69

5.2 Downlink time (Trx) reference values . 71

5.3 Processing time in the Cloud (Tpr) reference values 72

5.4 Operational Closed Control Loop Latency (OCCLL) reference values 73

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 1 of 141

1. Introduction

Technology is advancing at a tremendous pace. It has revolutionized the way we live,

work, and interact with the world around us. Rapid advancements across many different fields

have driven innovation, transforming industries and shaping the present, and the future, of how

society works. In the last decades, we have experienced an unprecedented wave of technological

achievements, mainly in the fields of telecommunications and computing. Some of them can

be observed in Artificial Intelligence/Machine Learning (AI/ML), Wireless communications,

Virtual Reality, the Internet of Things (IoT), and many more as depicted in Figure 1.1. These

advancements have not only enhanced our capabilities but have also presented new opportunities

and challenges.

Figure 1.1.- Examples of emerging technologies [1]

These advancements have significantly changed our daily lives, providing us with smarter

services and tools that feel more intuitive, responsive, and immersive. In particular, one of

the most benefited applications in this regard has been the industry. Machines are generating

more data than ever, and in exchange they can be directed with a finer control, and they can

even implement new functionalities such as failure prediction systems as means of prevention.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 2 of 141

Behind these actions there are predictive models, smart algorithms, and autonomous systems

that continually evolve and optimize their performance. All these different technologies and

techniques are what nowadays compose the Industry 4.0. Within this context, this work will

assess a number of relevant technologies and explore advancements within relevant Industry 4.0

scenarios and applications.

1.1.- Motivation

But why exactly dowe need these advancements that comewith the Industry 4.0? There is one

specific target that the industry has been aiming since it was born, and that is automation, because

with it comes the ability to produce large quantities of products in an efficient and profitable way.

The evolution of industry from the first industrial revolution to the current state has been marked

by significant technological advancements and paradigm shifts in manufacturing and production

processes, as it is graphically summarized in Figure 1.2.

The first industrial revolution started in the late 18th century in England, and it was

characterized by the mechanization of production processes. These were primarily driven by

the invention of the steam engine and several machine tools, and the mechanization of textile

manufacturing.

Around a century later started the second industrial revolution, which was marked by

advancements in mass production and assembly-line manufacturing techniques. Key innovations

included the introduction of electricity, the assembly line, and interchangeable parts. This

led to significant improvements in productivity, efficiency, and standardization, particularly in

industries like automotive and steel production.

The third industrial revolution, also known as the Digital Revolution, was characterized by the

widespread adoption of electronics, computers, and automation technologies such as PLCs that

began to take place at the end of the 20th century. This revolution led to increased automation

of manufacturing processes, improved precision, and the emergence of new industries such as

electronics and telecommunications.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 3 of 141

Figure 1.2.- History of the industrial revolutions [2]

And at last, the present state. The fourth industrial revolution, or Industry 4.0, is taking

place, and it builds upon the digital revolution with the integration of advanced communication

systems, Cyber-Physical Systems (CPS), and the Internet of Things (IoT). Some key technologies

include wireless networks, AI/ML, big data analytics, cloud computing, robotics, and IoT sensors

[3]. All of them enable the creation of ”smart factories” where machines, products, and systems

communicate and cooperate with each other autonomously, leading to many benefits:

• Highly flexible manufacturing processes: using wireless networks to communicate the

machines in the factory opens the possibility of having fast and easily reconfigurable

production cells and mobile robots that lead to increased flexibility and efficiency.

• Innovation and growth: Industry 4.0 offers opportunities for innovation and new business

models. Companies can develop and commercialize novel products and services enabled

by these cutting-edge technologies, opening up new revenue streams and driving growth

by exploiting competitive advantages.

• Increased quality and efficiency: combining all Industry 4.0 technologies, such IoT,

AI/ML, robotics, and advanced data analytics, processes can be streamlined and optimized

in efficiency. Companies are motivated to adopt these technologies to reduce costs and

improve productivity.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 4 of 141

• Safety and reliability: more sensors help identify potential failures and mitigate safety risks

with predictive maintenance. In addition, they enhance safety training and awareness, and

create safer work environments for employees.

1.2.- State of the Art

Industrial network communications have evolved greatly in the last decades. The overall

trend has been to move from cabled electric buses towards Ethernet-based networks; which have

been more recently complemented by wireless network systems such as Wi-Fi or 5G [4].

1.2.1.- Wired/Ethernet networks

Once Programmable Logic Controllers (PLCs) were starting to become prevalent in the industry,

a way of communication between them was needed. At first, this was done through dedicated

automation networks called ”fieldbus systems”, that had to integrate communications at a

physical level with CAN, PROFIBUS or INTERBUS networks.

As Ethernet got increasingly popular in the Information Technology (IT) world, it started to

be adopted by the industry, even though it lacked genuine real-time capabilities in its standard

form, but it brought high-speed data transmission and seamless integration with many different

types of networks, unlike previous fieldbus technologies. Many dedicated solutions arose to

solve those problems, and even some standards were developed for Real-Time Ethernet (RTE),

like PROFINET-Isochronous Real Time (IRT) or EtherCAT [5]. This way, Ethernet enables real-

time communication between devices such as PLCs, human-machine interfaces (HMIs), sensors,

and actuators at sub-millisecond speeds.

The main problem with the use of this technology is that, being cabled, it is a fixed solution.

Mobility is heavily restricted, and set up complexity increases exponentially as the number

of devices grow, as it is displayed in the photo of Figure 1.3 where just a few devices are

connected. That is the reason why, as wireless technologies evolved and increased their capacity

and reliability, implementations without cables grew in industrial deployments over the last years.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 5 of 141

Figure 1.3.- Typical wired industrial PLC in a factory [6]

1.2.2.- Wireless industrial networks

The first means of wireless communications between computers appeared in the 70s, but it was

in the 90s that both IEEE 802.11 (also nicknamed WiFi) and the second generation of mobile

communications (2G) brought them to the general public. The problem is that, even though they

have been increasingly used credit to their flexibility, it was only in subsystems, as they were very

far from cabled solutions in terms of reliability for the actual infrastructures. Anyhow, wireless

communications have evolved a lot in the recent times, and many new different technologies that

could be used in factories have appeared like WirelessHART [7], ZigBee [8] or even LoRa [9].

But both IEEE 802.11 and cellular networks continue being the reference in performance with

their latest revisions. Strict requirements in latency, coverage, reliability and big data throughput

(in cases like depth or high resolution cameras), render 5G [10] and WiFi 6/6E [11] as the main

wireless options for the demanding scenarios inside the factories.

These wireless networks bring many new possible use cases to the Industry 4.0 revolution

[13]. Figure 1.4 depicts some of them. First of all, it makes possible the transition from just

Autonomous Guided Vehicles (AGVs), that need predefined and fixed routes to work, into

Autonomous Mobile Robots (AMRs), that can handle navigating changing environments. This

last type robots were not possible before, as they inherently need wireless communications to

navigate the changing environments usually found in warehouses, for example. In addition,

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 6 of 141

Figure 1.4.- Possible use cases for the interconnected Industry 4.0 [12]

wireless communications can also benefit machines without full mobility by making them

very easily movable and re-configurable. Deployments or changes for new functionalities

become much faster and cheaper than with cabled solutions. Furthermore, having all these

machines interconnected will allow for real-time tracking of assets and inventory, and even the

predictive maintenance and anomalies monitoring. Lastly, generating so much data in real-time

permits creating digital twins that perfectly simulate the real behaviours and situations, and even

Augmented Reality (AR) or Virtual Reality (VR) use cases.

1.3.- Thesis application scenario

Up until the 4th industrial revolution, the traditional industrial scenario would be to have

robots in a factory, like a robotic arm with its sensors and actuators, that are driven by PLCs

through cable technologies such as fieldbus or Ethernet. This is depicted in Figure 1.5. These

PLCs are in the end the controllers that are connected to the different sensors and actuators of

a system, such as a robotic arm, and takes the decisions on what to do. These PLCs can be

communicated together to coordinate different robots by wired networks and other high level

PLCs or computers.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 7 of 141

Robotic arm

Master PLC/
Computer

Robotic arm

Robotic Cell 1

Robotic Cell 2

On-board PLC

On-board PLC

Figure 1.5.- Traditional industrial multi-robotic cell scenario

Meanwhile, nowadays the trend is to create more wireless links to communicate robots. First

it was just to extract and analyze data out of the machines to prevent failures or warn about

dangers. But as wireless networks became better, the new aim is to also control and coordinate

robots over wireless networks, to allow for mobile robots and more easily configurable factories.

This involves a more complex architecture, which inevitably leads to worse performance and

reliability than wired networks, but that enables new functionalities never possible before.

As depicted in Figure 1.6, the proposed wireless architecture over 5G would be to connect a

5G modem instead of a PLC to the robotic arm. This device would connect to the software PLC

that is running in the Edge Cloud of the factory over the 5G network. This network is composed

of a 5G Radio Access Network to provide the wireless access to the network, a 5G Core that

executes all the 5G functionalities and enables communication with other users, and then the

own factory network to connect wired elements and other networks.

In order to execute the movements with precision and accuracy at the right time, each

robot needs exact instructions at the right time. But the clocks present in the microprocessors

and microcontrollers of these devices are not very precise, that is why there are different

time synchronization mechanisms that ensure agreement between nodes in a network. Cabled

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 8 of 141

5G Modem

5G RAN

Network devices

Robotic arm

Edge Cloud PLC
5G Core

5G Modem
Robotic arm

Robotic Cell 1

Robotic Cell 2

Figure 1.6.- Proposed industrial multi-robotic cell wireless scenario over 5G

solutions are very stable in this regard, as both latency (delay between ends in a message

transmission) and jitter (difference in latency between messages) are very consistent and minimal

Meanwhile, time synchronization is more difficult to achieve in wireless networks, as they

have more latency and jitter, which can affect the delay of the instructions and the drift in

the clocks. Wireless solutions offer many advantages, like enabling full mobility and easily

reconfigurable production chains. However, in order to make those scenarios a reality, it is very

important to guarantee robot coordination and synchronization, and that requires the study and

development of new technologies and techniques.

1.4.- Objectives

In general terms, the global aim with the project is the investigation and validation of

wireless architectures and protocols for the synchronization and control of industrial robots. The

capabilities of new advanced technologies such as 5G and WiFi 6E will be examined and put

in perspective of the limitations from traditional wired networks, taking full advantage of the

wireless potential. Both synchronization, latency and possible new functionality are evaluated to

investigate the new use cases that these state-of-the-art networks can bring into factories. Within

this general objective, some specific action points can be defined:

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 9 of 141

• OB1: investigation and characterization of time synchronization in 5G networks

considering static and mobile industrial use case conditions.

• OB2: design and development of a industrial testbed including 5G wireless-synchronized

behavior of robotic entities.

• OB3: validation and performance evaluation of the implemented 5G solution and

comparison with alternative wireless access methods (e.g., WiFi 6E).

This work will serve as a reference for the experimentation and implementation of new

technologies and use cases in the industrial domain that could benefit from the recent development

of wireless networks. In addition, the results can be useful to researchers and engineers in

the areas of sensors, IoT, computer networks, wireless communications and different industry

verticals making use of robotics, especially in manufacturing.

1.5.- Thesis outline

This section comprises a summary of every chapter in the thesis.

• Chapter 1 - Introduction: it is a general presentation to the motivations of the research, an

analysis of the state of industrial networks with the new possible use cases that bring the

use of wireless networks in factories, and the objectives set.

• Chapter 2 - Project Fundamentals: it exposes the fundamental concepts needed to

understand the used technologies and then specifies the available hardware at the AAU

5G Smart Production Lab to develop the thesis.

• Chapter 3 - Time Synchronization in industrial 5G systems: this chapter explores the tools

available to synchronize industrial devices over wireless networks, and their performance

both in stock and optimized form.

• Chapter 4 - Design and Development of an Industrial Testbed with Coordinated Robots:

it explains the process of selecting, designing and implementing an industrial use case to

showcase the possibilities of coordinated robots over 5G.

• Chapter 5 - Validation and Performance Evaluation Results: the resulting demonstration,

and its closed control loop in specific, is evaluated in performance over a 5G and a WiFi

6E network.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 10 of 141

• Chapter 6 - Conclusions: some conclusions are drawn from the results presented in each

chapter, showcasing as well future areas of work and improvement.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 11 of 141

2. Project Fundamentals

This chapter surveys the most relevant technologies and physical hardware elements

considered in the development of the project.

2.1.- Data communication

In this section, the two main wireless technologies that are being adopted by industry

are introduced, along with a brief recapitulation of all the network layers involved for

telecommunication, as well as some of the most commonly found protocols.

2.1.1.- 5G

Cellular networks managed to offer wireless packet connectivity with 2G even before WiFi, but

it was very limited until 3.5G and 4G (HSPA+ and LTE) were brought along. These technologies

managed to provide users speeds closer to the ones delivered byWiFi in the early 2010s, but with

a much wider connectivity range. It meant a revolution for the mobile phone world, as many

more applications and use cases sprung up.

The fifth generation of cellular technology (also known as 5G), is designed to be a unified,

more capable platform that not only elevates today’s mobile broadband experiences but also

supports new services and capabilities for a wide range of industries. There are three primary

scenarios inside 5G, often referred to as 5G use cases, represented in Figure 2.1: EnhancedMobile

Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive

Machine Type Communications (mMTC) [14].

eMBB is the most common scenario, as it is aimed to the human-centric use cases for access

to multimedia content, services and data. It aims to improve the performance of the general

mobile broadband services. This includes faster data speeds and higher capacity for Augmented

and Virtual Reality (AR/VR), High-definition video streaming, and cloud services.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 12 of 141

Figure 2.1.- 5G use cases: eMBB, URLLC and mMTC [15]

URLLC is probably the most related scenario with this thesis, as it is designed for applications

that require highly reliable and low-latency communication. This scenario is essential for

mission-critical and time-sensitive applications where even minimal delays can have significant

consequences. Those applications could be real-time wireless industrial automation, self-driving

cars, or even remote surgery.

The last one, mMTC, is more focused on Internet of Things (IoT). It is designed for scenarios

with a very large number of connected devices typically transmitting a relatively low volume of

non-delay sensitive data. This is best suited for applications like smart cities, where numerous

sensors can be deployed throughout a city to monitor and manage resources like water, electricity,

and traffic. Smart agriculture is as well a part of it, as sensors can monitor soil moisture,

temperature, and other factors to optimize farming practices, and even wearable devives such

as fitness trackers, health monitors, and other wearable technology can benefit from consistent,

low-power connectivity.

As it was discussed earlier, URLLC is the most useful use case in factories, because the

industry needs very high reliability for their processes as they are usually running all the time

and they want to minimize downtime. But there is an aspect that can affect the connection in

scenarios with mobility, and that is user handover between cells [16]. There are three types of

handover ranging from best to worst: Intra-gNodeB Handover, as the User Equipment (UE) does

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 13 of 141

not change of 5G base station; Inter-gNodeB Handover, in which a UE changes from one 5G

base station to another; and Inter-RAT (Radio Access Technology) Handover, as the user has to

change of radio technology to operate, such as from 5G to 4G. There are many parameters that

are monitored to ensure this action is done with as little impact on the UE connection as possible,

and 5G improves this with network slicing and with dual connectivity. These technologies allow

the user to use an specific network slice depending on its needs, and to be able to connect to both

access points and even two different 5G base stations in order to minimize the effect of handover.

In addition, 5G operates over a licensed spectrum, which in Europe it would be over the 3.5

GHz band (n78) for industrial cases (although this could change depending on the legislation of

each country). Being a licensed spectrum, the access to the radio-electric medium employs a

scheduled mechanism, in which devices wait for time slots to transmit data. This translates to a

more reliable and deterministic performance that increases the guarantee of Quality of Service

(QoS) [17].

All these technologies make 5G the most desirable wireless network choice for industrial

implementations.

2.1.2.- WiFi 6/6E

The first WiFi standard, referred as IEEE 802.11, appeared in 1997, offering up to 2 Mbps of

speed [18]. This was quickly improved with ”b” and ”a” revisions, that operated at a maximum

of 11 Mbps in the 2.4 Ghz band, and achieving even 54 Mbps at 5 Ghz. Afterwards, steady

improvements in the radiocommunication part such as advanced modulation techniques, MIMO

and OFDMA managed to steadily improve the maximum speeds to up to 9.6 Gbps in WiFi 6.

All these advancements made WiFi the most common wireless connectivity solution in every

kind of scenario, from homes to offices. But while it canmeet many application requirements, it is

not always ideal, mainly due to its operation in unlicensed bands, leading to potential interference

from neighboring networks. WiFi uses mechanisms like Listen-Before-Talk (LBT) to prevent

collisions by ensuring a channel is clear before transmitting. This is crucial in the congested 2.4

and 5 GHz bands (and also applies to 6 and 60 GHz) due to widespread use by technologies such

as Bluetooth and Zigbee [19]. These methods can introduce latency as devices must wait for a

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 14 of 141

clear channel before transmitting data, specially in areas congested with many of these wireless

devices, even if the WiFi network is not crowded. That is the reason why WiFi 6E is the most

promising form of all the options for industrial use cases, specially time-sensitive ones, as they

will likely experience less adverse effects from it in the 6 GHz band [20].

Another concern when using WiFi in industrial scenarios is mobility of devices and their

handover processes between access points, as they differ between those of 5G. In this case, it is

handled by the Base Station (BS), which determines when and how to manage roaming as devices

move out of one Access Point (AP) into another [21]. During this transition, there is a brief loss

of connection because Wi-Fi uses a ”break before make” approach, disconnecting from the first

AP before connecting to the second. This can cause devices, such as Autonomous Mobile Robots

(AMRs), to temporarily lose connection in the border area between APs, as represented in Figure

2.2. Although advancements in Wi-Fi 6 (IEEE 802.11ax) aim to improve mobility, they still fall

short of meeting the tough reliability demands for the industry [22].

WiFi Access Point 1 WiFi Access Point 2

Handover
zone

Mobile robot

Figure 2.2.- Representation of the problem of mobility and handover in WiFi

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 15 of 141

2.1.3.- OSI model

According to the Open Systems Interconnection (OSI) model for communications developed by

the International Organization for Standardization (ISO) [23], there are seven different layers in

the network architecture as depicted in Figure 2.3.

Figure 2.3.- OSI layers architecture

The first layer describes the transmission and reception of raw data bits over the physical

medium. Therefore, it defines the hardware equipment, wiring, frequencies and signals used.

In cabled solutions it would be the Ethernet cable and Network Interface Cards (NICs), but in

wireless solutions like WiFi or 5G involves the electromagnetic waves, antennas and modems

used to transmit and receive the signals over the air.

Then, the Data Link layer describes how data frames are transferred and handled over the

different nodes. This includes error detection and correction, and flow control to ensure integrity

in the communications. Medium Access Control (MAC) is a crucial part of this layer, as its major

responsibility is to offer reliable link to link data transfer [24].

The Network Layer, the third one, is responsible for data routing, packet forwarding and

fragmentation, and logical addressing of devices attached to the network. The Internet Protocol

(IP) [25] is in charge of all these functions by giving nodes an IP address, determining the best

paths for reaching other computers, controlling the fragmentation and the integrity of the data, and

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 16 of 141

limiting the lifespan of packets to prevent infinite loops. The Internet Control Message Protocol

(ICMP) [26] also operates in this layer, offering many diagnostics services, one of them being

the ”ping” messages.

Afterwards, in the Transport Layer, the protocols are used to provide end-to-end

communication services for applications [27], with the main options being TCP and UDP. TCP

is a reliable, connection-oriented transport service that ensures end-to-end reliability,

re-sequencing, and flow control. In contrast, UDP is a connectionless transport service, often

referred to as ”datagram” service, that is used when quick transmission times are essential in

detriment of the reliability.

MQTT is a Client Server publish/subscribe messaging transport protocol that operates above

the Transport Layer, and it is designed to be light weight, open, simple, and easy to implement.

It is ideal for many situations, including constrained environments such as for communication in

Machine to Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint

is required and/or network bandwidth is at a premium. The protocol runs over TCP/IP, or over

other network protocols that provide ordered, lossless, bi-directional connections [28]. Along

with OPC-UA, they are becoming the main options for implementing communications between

machines inside factories in the Industry 4.0 [29]. Although OPC-UA offers very interesting

features, MQTT is proven to provide superior performance when applied to wireless robotic cells,

so it is the best option to develop the robot’s control for this thesis.

Figure 2.4.- MQTT generic architecture diagram [30]

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 17 of 141

The general architecture of MQTT is composed by three different nodes, represented in

Figure 2.4: the publishers, the message broker and the subscribers. Publishers are the nodes

in charge of sending the messages. They categorize their information using topics, and they send

it to the broker. Meanwhile, the broker is the intermediary between publishers and subscribers.

It forwards data based on their topic subscription. Lastly, the subscribers are the final nodes

that receive the messages, so they have to notify the the broker which messages they want to

receive using a specific topic (or a wildcard to subscribe to multiple). This architecture makes

the communication asynchronous, as the receiver does not need to poll the transmitter for new

updated information, making all the interactions more efficient because there are less messages

in the network.

2.2.- Hardware

To give a real-world industrial dimension to the project, it was developed at the AAU

5G Smart Production Lab at Aalborg University, Denmark. Here, a small industrial research

facility with a dedicated commercial industrial 5G network with full coverage was available

for experimentation. Likewise, real industrial machinery including autonomous mobile robots,

robotic arms, production lines, etc, was also at hand for prototype implementation. A picture of

the lab is shown in Figure 2.5.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 18 of 141

Figure 2.5.- AAU 5G Smart Production Lab

2.2.1.- 5G network

It is out of scope for this thesis to explain in detail how the complex combination of 4G, 5G NSA,

5G SA, WiFi 5 and WiFi 6 operate all together inside the AAU 5G Smart Production Lab [31].

That is why only the 5G Stand Alone private network will be described. The equipment for that

part of the network comes from Nokia, and is operated at the laboratory site. Is is composed of

a private 5G NR mini-core with a pico Base Station and three Access Points, pictured in Figure

2.6. The radio access part serves connection on the 3.7 GHz band in Stand Alone mode, with a

100 MHz spectrum slice, using TDD technology, and employing 3 cells to cover the entire 1200

squared metres of space inside the lab [13]. All three cells employ the same frequency in order

to improve handover.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 19 of 141

(a) 5G Core and Base Station (b) 5G Access Point

Figure 2.6.- Private 5G infrastructure at the AAU 5G Smart Production Lab

2.2.2.- Wireless gateway

In order to give 5G connectivity to devices that do not implement it out of the box (something

still very typical nowadays in the industry), a 5G to Ethernet gateway was used. This ”5G box” is

composed of a Gateworks Neport GW6404 single board computer (SBC), and a SIM8262E-M2

5G modem. This last component is the modem that gives 5G connection to the device using a

SIM card, and the Gateworks SBC acts as a router that redirects all IP/Ethernet traffic from the

connected device to the 5G network.

Figure 2.7 depicts the hardware layout of the gateway. The main specs of the computer are a 4

core 1.5GHz ARM SoC processor, 2 GB of DDR4 RAM, 8GB of eMMC Flash Memory, 4 mini-

PCIe slots, 5 Ethernet ports and native support for CAN bus and GPS [32]. The mini-PCIe slots

are what enable connectivity with the 5G module and many other, like the Intel AX210 modem

that is compatible with even the WiFi 6E specification. It comes with a specific distribution of

Ubuntu 20.04 that is purposely made by Gateworks for these devices.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 20 of 141

(a) Top (b) Bottom

Figure 2.7.- 5G to Ethernet gateway SBC from the top and bottom

The 5G modem used in them is the Simcom SIM8262E-M2, compatible with 5G, 4G (LTE)

and even 3G (HSPA+) networks [33]. Following 3GPP Release 16, it provides connectivity to

both 5G Non Stand Alone (NSA) and Stand Alone (SA) networks, and can handle up to 3.4 Gbps

of Downlink data transfer and up to 1 Gbps of Uplink. It also supports many different Global

Navigation Satellite System technologies, and it can be used in many different ways with PCIe,

USB or even GPIO adapters. In this case, it will be connected to the mini-PCIe slots on the

Gateworks modem.

Figure 2.8.- SIM8262E-M2 5G modem

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 21 of 141

2.2.3.- UR robotic arms

Universal Robots (UR) is a Danish manufacturer of collaborative robots, commonly known as

cobots, that started out in 2005 and has become one of the largest robotic armmanufacturers in the

world [34]. These robotic arms are designed to work alongside humans in a shared workspace,

and they are renowned for their versatility, ease of use, and safety features. They are commonly

found along different industries for tasks such as assembly, pick and place, welding, and quality

inspection.

(a) UR5e with gripper (b) UR5 with tray holder

Figure 2.9.- UR5e and UR5 robotic arms

In the experimental work, two very similar robotic arms were used: the UR5 and the UR5e.

They both have a payload of 5 kg, a 85 cm reach with the arm, and 6 Degrees of Freedom (DoF).

The main difference is in their repeatability, as the UR5 has 0.1 mm of uncertainty while the

newest robot has 0.03 mm. In addition, the UR5e also has an integrated force/torque sensor for

improved precision and sensitivity, a more user-friendly interface, and even more safety features.

But in general, they are pretty much the same robotic arm and they work the same way.

The last difference that the two robotic arms that were present at the laboratory were in the

attached gripper. Figure 2.9 illustrates the visual differences. The UR5 arm didn’t had a gripper,

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 22 of 141

it just had an adapter to grab trays made with a 3D printer. Meanwhile, the static robot had an

air pressure machine next to it that enabled the robot to have a compressed air gripper from The

Gripper Company [35]. These grippers are completely made out of washable materials that even

allow the robots to handle food, and they are designed for grabbing delicate objects, The used

one in specific was the Four Fingers Lip model, with model number TGC-SFG-4X-MRIB-XX.

For controlling both the UR5 and UR5e robotic arms, the Real-Time Data Exchange (RTDE)

interface is used. It is a real-time communication protocol on top of port 30004 of TCP [36]. The

RTDE allows users to send commands to the robot and receive data directly from its registers,

enabling precise control and monitoring of the robot’s operations.

2.2.4.- MiR robots

MiR (Mobile Industrial Robots) is a leadingmanufacturer of AutonomousMobile Robots (AMRs)

designed for industrial and commercial applications. These robots are designed to transport goods

and materials autonomously within industrial and warehouse environments. With their advanced

navigation capabilities, collaborative operation, and seamless integration with existing systems,

these robots help businesses improve productivity, reduce labor costs, and enhance workplace

safety.

(a) MiR 100 AMR [37] (b) MiR v3 dashboard webpage

Figure 2.10.- MiR 100 robot and its graphical control webpage

The MiR robots present at the AAU 5G Smart Production Lab are 100 and 200 models as

depicted in Figure 2.10, commonly found in many companies. They both offer around 10 hours

of continuous use, a maximum speed of up to 1.5 m/s (only 1 m/s with payload), and a maximum

transport payload of 100 kg and 200 kg respectively [38]. These robots are basically composed

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 23 of 141

of two motors with their controller, two SICK safety LIDARs and two Intel RealSense cameras

along many other small sensors, various safety equipment, a NUC computer and a WiFi router to

give wireless communications [39].

(a) MiR Fleet Manager v4 Mission (b) MiR Fleet Manager v4 Map

Figure 2.11.- MiR 100 robot and its graphical control webpage

The whole control of the robot is intended to be conducted over their webpage interface,

which is accessed by putting the robot’s IP in a web browser. From that Graphic User Interface

(GUI), the user can configure activities, missions (a group of activities), the surrounding map

with checkpoints and forbidden zones, and many other, as represented in Figure 2.11.

The biggest difference present between some of AAU’s MiR robots is their software version,

as some use version 3 and others version 4. This translates into the ones on v3 being run

independently (the robot directly takes the assigned tasks/missions), while v4 robots rely on

a centralised Fleet Manager that sends the assigned missions to the robots, so the user has to

program their behaviours from the MiR Fleet Manager webpage. For this thesis project, MiR

v3 software is used, as the lent robot was running that version, and it actually makes the 5G

integration easier.

2.2.5.- ER robot

Enabled Robotics is an integrator company of mobile robots and robotic arms that has been

operating since 2016 [40]. Not only they combine both into a unique product, but they also

develop specialized software for them to make its programming and integration with other

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 24 of 141

software much easier. As it is depicted in Figure 2.12, they use a block programming interface

in the robot’s webpage to easily configure the desired tasks for the robot.

Figure 2.12.- Block programming of the ER robots [41]

The ER robot that the university owns is a MiR 200 model mobile platform that has the

previously mentioned UR5 robotic arm nicely integrated on top. At the tip of the arm there is not

a gripper, but a 3D printed tray holder that also integrates an Intel RealSense D435 camera with

depth sensing capabilities. All these components integrate into a package that, combined with

the block programming on the webpage, allows to easily configure the robot to make tasks like

calibrating the arm’s position to pick up a tray by the use of checkerboard markers, as shown

in Figure 2.13. This allows for very fast configuration of simple tasks, making it very easy

to integrate these robots into a factory. But it also comes with drawbacks, as the options for

communicating with other devices are quite limited, making it impossible to integrate it over 5G.

That is why the the robot was used for the project, but not the actual software that came with it.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 25 of 141

Figure 2.13.- ER robot picking up a tray using a checkerboard marker as

positional reference

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 26 of 141

3. Time Synchronization in industrial
5G systems

This chapter sets the basis of the practical work done in this thesis by presenting an initial study

of multi-robot time/clock synchronization in industrial settings using wireless 5G technology.

3.1.- Introduction

There are many reasons on why computers need to have synchronized clocks between devices

[42]. The main one is for data synchronization in networking and communications. You could

think that it is important for multimedia applications such as live video conferencing or streaming,

but the most important one is probably for money transactions like in the stockmarket, or between

banks. It is also important in cybersecurity to protect from DDoS attacks for example [43].

In this industrial case specifically, it is needed that all components in the network have very

accurate synchronization because the different robots need to move in coordination with very

precise timings. But how is it done?

Every computer has a Real-Time Clock (RTC) chip powered by a small battery that keeps the

current date and time even when it is turned off. But this method is not very precise, as every

hour the clock may drift up to a few seconds a day. If you want to get the absolute best accuracy,

you would either need an atomic clock (very difficult and expensive to get), access to a GPS

signal, which is expensive and tricky to get (specially inside buildings)[44], or rubidium clocks

[45], which are also very expensive for consumer electronics. That is why clock synchronization

in distributed real-time systems has been a big research topic for many years [46] [47], with

protocols such as Network Time Protocol (NTP) or Precision Time Protocol (PTP) being the

most common ways to reach accurate synchronization in networked systems nowadays [48].

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 27 of 141

3.2.- Network Time Protocol

The Network Time Protocol (NTP) is a protocol designed to synchronize the clocks of the

computers to Coordinated Universal Time (UTC) [49]. This is a global timescale independent of

geographic position, it is used by national laboratories and disseminated by radio, satellite and

telephone modem. It is the most commonly found option to synchronize devices over the Internet

and private networks. This is because it is very simple while offering good precision, it has a wide

support, and it doesn’t require specialized hardware. In addition, with some calibration, its results

can significantly improve [50].

As displayed in Figure 3.1, NTP uses a hierarchical system of time sources to synchronize,

each divided into stratum levels. The first one, Stratum 0, are the ultra highly accurate time

sources, such as atomic or GPS clocks. These sources are then connected to the primary servers

to spread the time reference, and are considered Stratum 1. That is why, when you create a NTP

server, the best Stratum you can get if you do not have an available time source it will be Stratum

2, as it will be connected to one of the reference servers. And more than likely, the common

devices used in a network are part of the Stratum 3 or below.

Figure 3.1.- NTP Stratum architecture [51]

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 28 of 141

Even though the higher the Stratum, the more accurate and reliable the reference, in this

testing a local server connected to Stratum 1 references was used. That is why the NTP server in

the network is Stratum 2, and the connected devices would be Stratum 3.

The basic synchronization algorithm for NTP is very simple, as it only requires two network

packets with a total of four timestamps, and doesn’t need the server to store any client information.

The origin timestamp T1 is recorded upon departure of the client request. Next, the receive

timestamp T2 is registered when the packet arrives at the server, and then the transmit timestamp

T3 is reported just before the departure of the server reply.Finally, the destination timestamp T4

is recorded once the message arrives to the client. With these timestamps, both the clock offset

and round trip delay samples can be calculated using the following formulas:

Offset = [(T2 − T1) + (T3 − T4)]/2

RTT = (T4 − T1) − (T3 − T2)

3.2.1.- Chrony

Chrony is a modern implementation of the Network Time Protocol (NTP) used for synchronizing

computer clocks over a network. It is the reference NTP client and server in practical industrial

implementations, as it is more accurate, robust and offers more tools than its predecessor

(ntpd). It is designed to provide accurate timekeeping while being robust and resistant to

network disturbances and fluctuations. It performs well in a wide range of conditions, including

intermittent network connections, heavily congested networks, changing temperatures (ordinary

computer clocks are sensitive to temperature), and systems that do not run continuously, or run

on a virtual machine.

3.3.- Robust NTP synchronization in industrial 5G

With the aim of understanding the reference level of synchronization with simple NTP

solutions over industrial 5G, an initial experiment was proposed. The experiment was oriented

to investigate and characterize the accuracy of 5G wireless synchronization in both static and

mobile industrial conditions.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 29 of 141

The network architecture used for the time synchronization testing over 5G is depicted in

Figure 3.2. The 5G network is very simplified, but the important concept to know is that the

Chrony NTP server is running in the main router of the private network (192.168.100.1 IP). This

router is directly connected through cable to the whole private 5G network inside the laboratory,

which gives wireless connection to the 5G gateway running the Chrony NTP client. This gateway

is on top of a mobile MiR robot in order to asses both the static and mobile cases.

5G gateway
w/NTP client

5G Access Points &
Base Station

Main Router
w/NTP server

Mobile robot

Figure 3.2.- NTP architecture for 5G synchronization testing

The typical achieved accuracy between twomachines synchronised over the Internet is within

a few milliseconds, and the accuracy in wired LANs is typically in tens of microseconds [52].

With wired links and hardware time stamping, or a hardware reference clock, sub-microsecond

accuracy may be possible [53]. However, this is not the aimed scenario, as most of the industrial

devices used do not have those capabilities, and wireless networks are more unreliable in their

synchronization.

As explained in subsection 2.1.1 for URLLC use cases over 5G, the desired latency should

be around the 1 ms mark, so consequently, the synchronization level has to be better, even with

very simple time synchronization solutions. The related Key Performance Indicator (KPI) for

this section is to achieve synchronization levels one order of magnitude lower, around the 0.1

millisecond mark. Even though more advanced and complex solutions exist that offer better

metrics [54], this solution could pose more usage of hardware and network resources. The target

in this thesis is to use very simple synchronization mechanisms, such as a NTP implementation

with Chrony, to achieve adequate results for typical industrial scenarios.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 30 of 141

3.3.1.- NTP server configuration

The Chrony configuration of the NTP server was kept quite simple, as it was the default one. That

way, variables were minimized, and as it is a router directly connected to the Internet Service

Provider (ISP), the time reference that it gets from the NTP pool is very reliable. In addition, it

was not desirable to change anything on the main router, in order to not affect in any moment the

rest of the network.

The actual Chrony configuration file is listed next. As Ubuntu 20.04 was used, the file is

located at ”/etc/chrony/chrony.conf”. First, the NTP server is specified, which is the default

NTP pool of servers, along with specific modes for updating the client faster in startup The

minimum and maximum polling intervals were kept at default values, which are kept at 10

(every 1024 seconds, as the number refers how many times 2 is multiplied to get the seconds).

Next, they are specified the path to save the keys for NTP authentication; the path to the file

that stores the estimated rate of the clock’s drift, in order to increase accuracy while it’s not

synchronized; the NTS dump directory to save keys and cookies; and the log directory of Chrony.

The ”maxupdateskew” directive sets the threshold for determining whether an estimate might be

so unreliable that it should not be used. Afterwards, the ”makestep” directive allows to quickly

correct the system clock if the offset is bigger than 1 second for up to 3 times after Chrony starts, in

this configuration. Then, ”rtcsync” is related to enabling the synchronization of the system clock

with the hardware Real-Time Clock (RTC), helping maintaining the correct time across reboots,

and ”leapsectz” specifies the time zone file to use for leap seconds. Finally, the last two directives

allow clients from those networks to connect to the server, serving the NTP time reference. These

networks are just the internal wired and WiFi network inside the lab (192.168.100.0/24), and the

private 5G network that is also present (10.94.0.0/24).

1 pool pool.ntp.org iburst

2 keyfile /etc/chrony/chrony.keys

3 driftfile /var/lib/chrony/chrony.drift

4 ntsdumpdir /var/lib/chrony

5 logdir /var/log/chrony

6 maxupdateskew 100.0

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 31 of 141

7 makestep 1 3

8 rtcsync

9 leapsectz right/UTC

10 allow 192.168.100.0/24

11 allow 10.94.0.0/24

3.3.2.- Base NTP client configuration

The base Chrony configuration used inside the configuration file, found at

”/etc/chrony/chrony.conf” in Ubuntu 20.04, was the following one:

1 server 192.168.100.1 minpoll -6 maxpoll 2 iburst

2 keyfile /etc/chrony/chrony.keys

3 driftfile /var/lib/chrony/chrony.drift

4 ntsdumpdir /var/lib/chrony

5 logdir /var/log/chrony

6 maxupdateskew 100.0

7 makestep 1 3

8 rtcsync

9 leapsectz right/UTC

This is a very typical configuration for a Chrony client. First of all, the NTP server is

specified, as well as the minimum and maximum polling intervals, along with specific modes

for updating the client. This translates into a typical polling rate of 4 seconds (determined by

the ”maxpoll” directive), but with opportunities to update faster the clock, specially at startup.

Next, they are specified the path to save the keys for NTP authentication; the path to the file

that stores the estimated rate of the clock’s drift, in order to increase accuracy while it’s not

synchronized; the NTS dump directory to save keys and cookies; and the log directory of Chrony.

The ”maxupdateskew” directive sets the threshold for determining whether an estimate might be

so unreliable that it should not be used. Afterwards, the ”makestep” directive allows to quickly

correct the system clock if the offset is bigger than 1 second for up to 3 times after Chrony starts,

in this configuration. And the last ones are related to enabling the synchronization of the system

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 32 of 141

clock with the hardware Real-Time Clock (RTC), helping maintaining the correct time across

reboots, and finally, specifying the time zone file to use for leap seconds.

The main change with respect to the default one was that the NTP server was changed from

a public internet one to the private one running on the router at ”192.168.100.1” IP address, and

the use of the ”minpoll”, ”maxpoll” and ”iburst” directives. These were specified to better ensure

a reference configuration from which to compare changes made afterwards.

3.3.3.- Base NTP client measurements

Once both the NTP server and client were configured, the time synchronization measurements

over 5G could be taken. This was done recording every second the ”Last Offset” parameter that

the command ”chronyc -n tracking”. Three different runs of more than two hours were done for

the static case, and then another three for the mobile case. For the static case, the mobile robot

was just left turned on without moving, while for the mobile case, the robot was moving across

the laboratory at a maximum pace of 1 m/s. The route was specifically designed to make the

robot change between two of the 5G Access Points in the laboratory, located one at each end.

All the six resulting runs are represented in Figure 3.3. Considering the defined 0.1 ms target

in the KPI, the results were not satisfactory. While in general, the offset is low and contained

below 0.1 ms, at certain instances spikes of up to +/-2.5 ms are experienced. It was identified that

this problem is something that could be alleviated with a better configuration of the client, as most

of these peaks were in both directions (positive and negative offset), suggesting that they could

be due to bad estimates that then have to be corrected. Nonetheless, the performance for both

static and mobile cases is very similar, which indicates that the NTP synchronization is robust to

dynamic multi-path radio propagation and handover scenarios, independently of the movement

of the 5G terminal (at least for the considered use cases).

3.3.4.- Optimized NTP client configuration

Once observed the undesired behaviour in the clock synchronization, the configuration was

tweaked to better tailor the 5G SA network in the AAU 5G Smart Production Lab. The first

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 33 of 141

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Of
fs

et
 (m

s)

Instant NTP offset over time

1º Static
2º Static
3º Static
1º Mobile
2º Mobile
3º Mobile

Figure 3.3.- Baseline 5G NTP synchronization accuracy for the different

reference cases

change made was to add the ”maxdelaydevratio” directive, as it discards NTP packets that take

too long to arrive in comparison to the mean delay. Setting it at a deviation ratio of 2.6 seemed

to be the best, as below that there could be too many packet discards, and above that there would

be unreliable estimates. This value depends on network congestion and the performance of the

network, so it could be different for other environments.

Next, the ”xleave” directive was added, as it improves accuracy by enabling the server to

respond with more accurate timestamps on transmission. Included as well was ”maxslewrate”,

because it limits how quickly Chrony can adjust the clock, balancing between rapid corrections

and avoiding abrupt changes that could affect system stability.

In addition, both the ”maxupdateskew” and the ”makestep” directives were modified. The

first one was reduced to just 3 parts-per-million, to help reduce the effect of unreliable estimates.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 34 of 141

Meanwhile, the other one was modified to help correct faster the clock if the program has just

started.

1 confdir /etc/chrony/conf.d

2 server 192.168.100.1 minpoll 0 maxpoll 1 iburst xleave maxdelaydevratio 2.6

3 keyfile /etc/chrony/chrony.keys

4 driftfile /var/lib/chrony/chrony.drift

5 ntsdumpdir /var/lib/chrony

6 logdir /var/log/chrony

7 maxslewrate 30

8 maxupdateskew 3.0

9 makestep 0.5 20

10 rtcsync

11 leapsectz right/UTC

3.3.5.- Optimized NTP client measurements

Once the NTP client had an updated configuration, the time synchronization measurements over

5G could be taken. This was done recording every second the ”Last Offset” parameter that the

command ”chronyc -n tracking”, just as described in Subsection 3.3.3. The mobile case was set

up the exact same way as in the previous measurements, but in this round of measurements, only

one run for each case was possible.

Figure 3.4 depicts the instant offset that the Chrony client in the 5G gateway calculates

through NTP with respect to the server, which is the main router in the laboratory, before and

after the configuration change. First of all, the synchronization after it is mostly below the

0.1ms, something that was impossible with the baseline configuration. But most importantly,

the big spikes that regularly throw off the synchronization more than +/-1 ms are now gone. This

improvements translates into a very reliable clock synchronization between different devices in

the 5G network, meeting the previously set mark for the time synchronization KPI below +/-0.1

ms (at least for more than 99% of the time).

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 35 of 141

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

In
st

an
t o

ffs
et

 (m
s)

Instant NTP offset over time
Baseline-Static
Baseline-Mobile
Optimized-Static
Optimized-Mobile

Figure 3.4.- Optimized 5G NTP synchronization results as compared to the

baseline ones

In Figure 3.5, a Cumulative Distribution Function (CDF) plot of the baseline measurements

and the new ones with the optimized configuration are shown. It is worth noting that in this

representation, the ideal representation would be a line that is vertical in the 0 ms offset mark, so

the closer a representation is to the centre, the better. Even though the crossover between offsets

is not completely centered at the 50% mark, specially in the case after the modifications, that is

not important, as it could just be due to an internal RTC clock that is going a bit faster or slower

than Chrony had previously calculated. The crucial aspect shown in this graph is that the offset

distribution is much tighter, specially in the upper bounds of the offset.

The offset after the configuration changes is nearly 10 times better than before in the 1%

and 99% percentiles. Only in the peak cases it goes out of the +/-0.1ms bound, but those are

only on the worst 0.1% of the time. Meanwhile, with the baseline configuration it could go even

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 36 of 141

100 10 1 10 2 0 10 2 10 1 100

Offset (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

CDF of the NTP synchronization offset
Baseline-Static
Baseline-Mobile
Optimized-Static
Optimized-Mobile

Figure 3.5.- Statistical representation of the optimized 5G NTP

syncrhonization results as compared to the baseline ones

out of the +/-1ms bound. Another important remark is that in both the baseline and optimized

configurations, static and mobile cases do not show a significant difference.

3.4.- Time synchronization conclusions

To conclude this chapter, it is necessary to make a recapitulation of the objectives

and KPIs set. From all the objectives, the completed work fulfills the first objective

”OBJ1”: investigation and characterization of time synchronization in 5G networks. This

investigation was carried out using Chrony, an NTP implementation that was configured

on the Main router as a server and on the 5G gateway as its client. Both static and mobile

industrial scenarios were considered for two different client configurations, although it was

observed that this did not translate into any meaningful difference in the results. The

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 37 of 141

baseline configuration did not yield the desired outcome set for the KPI beforehand as

occasional peaks threw the time synchronization by more than +/-1 ms. Nevertheless, the

optimized one did improve the previous results by managing to operate 99.9% of the time

below the +/-0.1 ms offset threshold. As a result, the initially set KPI threshold for this

experiment over 5G has been met with the optimized configuration of the Chrony client,

meeting the industrial reliability specification.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 38 of 141

4. Design and Development of an
Industrial Testbed with
Coordinated Robots

This chapter builds up on time-synchronized 5G-based multi-robot systems and proposes a

real-world use case implementation taking advantage of the learnings from Chapter 3.

4.1.- General requirements

Different aspects need to be considered before the design of an industrial testbed

demonstration with coordinated robots. There are many possible use cases in the industry,

ranging from time-critical, relaxed real-time, and delay-tolerant. As a reference, these 3 use

cases categories (UCCs) [55] are described from a manufacturing process perspective:

• UCC1 ”Time critical processes”: they include real-time closed-loop robotic control,

video-driven machine-human interactions, and Augmented Reality/Virtual Reality for

maintenance and training. They all have a direct impact in manufacturing efficiency, yields

and safety.

• UCC2 ”Non real-time processes inside the factory”: they comprise tracking products and

machine inventory, non-real-time sensor data, and remote inspection and diagnostics. They

all support the management at the production facilities.

• UCC3 ”Enterprise communication”: it comprises the warehousing and logistics planes,

with employee and back-office communications and tracking of post-production goods.

Obviously, the most difficult use cases to implement over wireless networks are the ones

in UCC1, as they are the most dependant on the network performance to succeed and ensure

the safety of the workers in the factory. As it was previously discussed in the introduction, the

expected use case that the demonstration is required to cover is the ”Cloud Control of Machines”.

This will enable to rely on virtualized computing resources, storage, applications, and services

that are managed by software so the data generated can be accessed on-demand, instead of

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 39 of 141

being dependant on programmable logic controllers that are hardwired into computing systems

to implement the control management.

Prior to the use case definition, a baseline use case was implemented, where two static

arms passed a tennis ball between each other using the same concept of a 5G connected cloud

controller. Even though this already requires good synchronization between the computers, it

lacks the complexity of coordinating a mobile platform in addition to the movements of the arms.

That is why, as exposed in Chapter 3, the first thing that was needed was to ensure precise time

synchronization between the 5G gateways that are going to be used.

After discovering the synchronization limitations over 5G, learning about the different types

of industrial use cases, and being trained on how to operate the robots, the next step was to

decide the actual application to implement. Many meetings and talks were held with various

stakeholders, mainly inside the Wireless Communication Networks and the Manufacturing and

Production departments at Aalborg University, in order to get directives and recommendations

on what was relevant, novel, and technically-feasible to be considered. Figure 4.1 contains the

sketch representing the proposed industrial use case demonstration idea.

Figure 4.1.- Sketch of the proposed use case idea

The main idea, depicted in Figure 4.1, was to pass an object, in this case a tennis ball, from

the static arm to the tray of the mobile robot without stopping, as that is something that requires

coordination and synchronization. This idea was well received by all stakeholders, as it meant

demonstrating an industrial use case scenario that is not seen in current factories, and that could

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 40 of 141

serve to promote more flexible and efficient use cases with robots, as traditionally the robot would

need to stop. The use case was inspired in [56], where 4G LTE was used, leading to a not very

reliable performance.

There are a few steps needed to implement the desired use case:

1. Two time synchronized 5G gateways, one for the static UR robotic arm and another for the

mobile ER robot, to execute the Slave programs, and a Virtual Machine in the Edge-Cloud

to execute the Master program that will control them. The full physical architecture will

be outline in Section 4.2, the next one.

2. The static robotic arm needs to have a gripper and an object (for example, a tennis ball),

and the mobile robotic arm needs something to grab the object (for example, a tray), so that

it is possible to pass the object from one arm to the other.

3. The mobile robot will start from a specific position, and it will move in a straight line at a

constant pace towards the static robot.

4. Once that the mobile robot enters a specified zone at which the exchange can be made,

without stopping the movement, the static robot will drop the tennis ball into the tray, and

both robots will resume normal operation afterwards.

It was a big concern to know whether the object exchange without stopping was possible, as

the tray was only 14 cm wide. Is a 14 cm margin enough to make the use case work? Operating

at a speed of 0.5 m/s (typical for industrial robots), and knowing that the available distance is

0.14 m, that leaves a total of 280 ms for the ball to drop into the tray. That could seem like a lot,

but taking into account that it drops from 12 cm, the ball already takes around 160 ms to drop. In

addition, both the position request and the gripper activation have to be taken into account, as the

position request usually takes 30 ms and the gripper activation with a typical air solenoid valve

can take up to 50 ms [57]. That leaves a maximum total of 30 ms to send the message from the

mobile robot to the static robot without dropping the ball.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 41 of 141

4.2.- Physical architecture

The physical architecture of the devices that interact in the demonstration is depicted in Figure

4.2.

Static Robot

Mobile Robot

Intel RealSense
camera

MiR robot

5G gateway

5G gateway

UR arm 2

5G Access Points &
Base Station

Main Router

UR arm 1

Edge-Cloud Virtual Server

Internet

Telenor's
5G network

Figure 4.2.- Demo physical architecture

On the left, both the static and the mobile robots are represented. The static one involves the

UR5e robotic arm, with its internal computer directly connected to the Gateworks gateway in

order to provide 5G connectivity, hold the NTP client for the time synchronization, and run the

slave program for the demo. The mobile robot is a bit more complex, as everything is built on

top of the MiR robot platform. Both its UR5 arm and the 5G box are connected to its internal

switch, creating a cabled network. In addition, the iRS camera is connected to the gateway via

USB, as some testing was done to stream its live content to the server, although in the end it was

not used.

Both 5G routers are connected to the 5G private network using their integrated modems and

SIM cards. This network is composed of a few radio access points along the AAU 5G Smart

Production Lab, and a private 5G core that is connected to both the Internet and the Telenor 5G

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 42 of 141

network (a Danish telecommunications company) using a general router. The on-site Edge-Cloud

servers are also directly connected by cable to this router, in order to run virtual instances like the

one used for the Virtual PLC. The main router is also running the NTP server used by all devices

to synchronize time.

4.3.- Software architecture

In order to implement the use case coordination and functionality, a number of SW solutions

were developed, and implemented over the described physical architecture. The baseline NTP-

based over 5G explained in Chapter 2 was implemented, and MQTT was leveraged for control

message exchange between elements for functional operation.

4.3.1.- 5G gateway configuration for IT/OT integration

This subsection explains the required hardware and software configuration for one of the two 5G

gateways that is depicted in Figure 4.2. As two gateways are required, this would mean repeating

the process two times, just ensuring to adapt it for the different IPs that are used in each case.

The first step is to add the 5G modem to the Gateworks gateway if it is not included already.

This is done by getting a mini PCIe daughter board and a private NOKIA SIM card that had

already been activated for the 5G network. Both are combined and then inserted into the

gateway’s motherboard as shown in Figure 4.3 (a). Then, the selected 5G modem is inserted

into the daughter PCB with just one screw, and the antennas can be connected to the module as

displayed in Figure 4.3 (b). Be aware that, if there are not enough antennas to connect to all the

available connectors on the 5G modem, it is needed to make sure that they are connected to the

ports used for the N78 band, as the standalone 5G network runs on it.

Once the hardware part is ready, it is time to set up the software. A computer is needed

to configure the router using a direct Ethernet connection to the ”blue port” (eth2 interface), as

demonstrated in Figure 4.4.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 43 of 141

(a) SIM card and daughter board (b) Daughter board and 5G modem into the 5G gateway

Figure 4.3.- SIM card and 5G modem connection in one of the 5G gateways

Figure 4.4.- Laptop connected to the configuration port of the 5G router

This network interface should be running a DHCP server that will give the PC an IP in the

10.42.0.0/24, making it possible to connect through SSH to the SBC using the IP 10.42.0.1, as

username ”aau”, and as password ”aau” as well.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 44 of 141

Once connected, it is needed to create a 5G connection profile in Network Manager with

the following command ”sudo nmcli c add type gsm ifname cdc-wdm0 con-name nsa-aau5g apn

internet”, and then activate it with ”sudo nmcli c up nsa-aau5g”.

The next step is to configure the firewall to perform routing with NAT andmasquerade. These

lines were inserted in the FireHOL configuration file at the ”/etc/firehol/firehol.conf” directory,

resulting in the image shown in Figure 4.5:

1 dnat4 to 192.168.12.20:80 proto tcp dport 80

2 dnat4 to 192.168.12.20:443 proto tcp dport 443

3 dnat4 to 192.168.12.20:8080 proto tcp dport 8080

4 dnat4 to 192.168.12.20:9090 proto tcp dport 9090

5

6 # ----- Content previously in the file -----

7

8 router eth-to-5g inface eth1 outface wwan0

9 masquerade

10 client all accept

11 server all accept

12

13 router 5g-to-eth inface wwan0 outface eth1

14 masquerade

15 client all accept

16 server all accept

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 45 of 141

Figure 4.5.- FireHOL configuration

Once the file is saved, and the firewall is restarted with ”sudo firehol try”, then the gateway

should be ready to be connected, in this case to the mobile robot using the red port (eth1 interface),

as the interface was configured with the 192.168.12.20 internal IP of the MiR robot.

4.3.2.- Static UR robot

To ease the understanding of the SW implementation at the static UR robot side, Figure 4.6

represents the software architecture and network communications of the program that runs in

the 5G box. It is directly connected by cable to the UR robotic arm controller, which has the

10.42.0.233 IP, in order to communicate with the RTDE API running in it at the 30004 TCP port.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 46 of 141

For that network interface, the device uses the IP 10.42.0.1, and acts as a DHCP server for that

closed network, and as a gateway to the 5G network.

Figure 4.6.- UR robot software architecture

On the other side, the computer is connected to the 5G network in the factory with the

10.94.132.9 IP using the previously described 5G modem and SIM card. The developed slave

controller Python program uses MQTT over the 1883 TCP port to communicate with the broker

running in the Edge-Cloud server described in 4.3.5. That server also hosts the master controller

program, and is connected to the MQTT broker as well in order to communicate with both slave

controllers.

Now that the general overview of the software is done, it is time to explain the developed code

for the slave controller running in the 5G gateway of the static UR robot. The Python program is

called ”mqtt_Slave_static.py”, and it is included in Annex A, at Section A.1.

First, the imported libraries are displayed. Most of them are general libraries very commonly

used in Python, like ”sys” in order to access system tools, ”threading” to create different execution

threads inside Python, ”time” to get information about the system’s clock, ”socket” to manage

network sockets, ”logging” and ”json” to access and save log and json format information, and

the ”namedtuple” from collections for a unified way of codification of tuples. In order to manage

MQTT messages, the Paho MQTT library was used, and to govern the RTDE communications

with the robotic arm, a specific library from UR was used. The last two libraries are internally

developed libraries at the university. ”consts” contains general values for both the MQTT and

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 47 of 141

RTDE communications, like the information to connect to the broker, some general topics used,

the RTDE communication rate, or the threshold from which it can be considered that the robotic

arm has reached the desired position. Meanwhile, ”my_tools” just contains a few functions to

publish MQTT messages, determine if two positions (the actual and the desired) are within the

given threshold, and manage csv files to log information. This last library does not follow the

best practices when defining its functions, so with Python versions different than 3.9.X, it can

give runtime errors.

The beginning of the actual Python code, there are some variable definitions that set the initial

position of the robotic arm when launching the code, the UR arm IP and RTDE port, and then the

name of the configuration file for the RTDE recipes.

Afterwards, the program will get the recipes from the configuration file and they will be sent

to the UR arm. These recipes define the registers the code will access and modify from the robotic

arm’s computer. Then, the registers are set up and the joint values for the arm are initialized to

the initial values previously defined, and the whole configuration up to this point is sent. Next,

the SDO (controlling the gripper) and the speed slider of the robot are configured and sent to the

arm controller.

The last part of the main code consists of defining the MQTT topics for communicating with

the Master controller and creating the thread that is going to handle incoming MQTT messages,

and another new thread (”thread_read”) to handle the interrupts generated by the incoming RTDE

messages from the arm. The main thread is occupied by the ”report_cur_pos()”, which publishes

via MQTT the current joint arm positions if they have been changed in the last iteration.

Other important functions defined in the code is ”change_sdo()”, as is the one in charge to

change the SDO of the arm, which moves the gripper through RTDE. Likewise, ”write_RTDE()”

is in charge of sending the desired joint values to the arm through RTDE. ”on_connect()” is a

MQTT helper function that subscribes to the desired topics, and ”on_message()” is the function

that is called whenever there is a new MQTT message to process them and call the necessary

functions to move the arm or the gripper if necessary.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 48 of 141

4.3.3.- Mobile ER robot (MiR+UR)

The software architecture of the mobile ER robot is a bit more complex that the previously

explained case in Section 4.3.2 for the static UR robot, as there are more nodes inside the

closed network used to communicate the robotic parts. This network is managed by the MiR

robot, which has a router in the 192.168.12.1 IP with a DHCP server. It is configured to give

the 192.168.12.20 IP to the MiR robot computer, the 192.168.12.40 IP to the UR robotic arm

computer, the 192.168.12.30 IP to the ER computer, and the 192.168.12.35 IP to the 5G gateway.

All of them are connected through an internal switch by cable.

Figure 4.7.- Mobile ER robot software architecture

This network disposition permits the slave controller to communicate with the RTDE API

running in the UR arm, and with the open REST API inside the MiR robot with the typical 80

TCP port for HTTP, as illustrated in Figure 4.7. The intended use case scenario for the MiR robot

is to control it from the graphical interface of a web browser in the administrator’s computer, but

by using the internal REST API the robot can be controlled from code, and accessing it from

the slave controller that is directly connected by cable to the API server, latency is significantly

reduced.

Now that the software architecture has been reviewed, it is time to explain the developed code

for the slave controller running in the 5G gateway of the mobile ER robot. The Python program

is called ”mqtt_Slave_mobile.py”, and it is included in Annex A, at Section A.2.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 49 of 141

The imports are the same as in the static case, but with three more additions. As the MiR

REST API works with HTTP messages, it is needed to use the ”requests” and the ”urllib3”

standartd libraries to handle these communications, and then there is a non-standard library called

”mir_api_s”, which has multiple functions to handle the REST API inside the MiR. It contains

the necessary headers, request links and operations to communicate with the API, making the

tasks of sending the mobile robot to a position much easier.

Next, the same variables are defined to control the robotic arm, with some additional ones to

keep track of various states, to log data from the MiR robot, and more MQTT topics. The robotic

arm configuration procedure is the same, but in this case commenting out the functions related

with the SDO and the speed variables, as the robotic arm present in the mobile robot (UR5) did

not support it.

The MQTT client is configured the same way, and has the same ”on_connect()” and

”on_message()” helper functions, and the functions for controlling the robotic arm are identical.

However, there is another thread running the ”control_MiR()” function, which controls the

general state and actions related with the mobile part of the robot. This function has a loop

in which it checks for three things:

1. Whether there has been a new action posted for the MiR robot, in which case it sends a

POST request to the API with the desired behaviour (moving to a checkpoint or making a

relative move, for example).

2. It asks for the state of the MiR with the ”state_MiR()” function, to control if the mobile

robot has finished with the assigned action (the MiR platform is in ”Ready” state after

having posted the behaviour).

3. If the robot has not yet asked to drop the ball, is moving and the x-axis position is at the

desired gripper release position, it will send a message to the Master controller to open the

gripper. This position is calculated by using the exact position of the release (4.15 m in the

x-axis), and the tray width (15 cm), to check if the robot is in the position with a +/- 7cm

margin.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 50 of 141

4.3.4.- Master Controller

The Master Controller is the code that acts as the Virtual PLC across the 5G network, and that

runs in the Edge-Cloud Virtual Server represented in Figure 4.2. The developed Python program

is called ”mqtt_Master_controller.py”, and it is included in Annex A, at Section A.3.

First of all, the libraries are imported. There are some generic ones, like ”math”, ”time”,

”logging”, ”threading” and ”socket”, which are very typical. In addition, the paho-mqtt library

is also used to handle the MQTT messaging with the broker, and then the ”consts”, ”my_tools”

and ”mir_api_s” previously developed libraries are also used.

Afterwards, there is a class that helps keep track of the different timestamps related with

relevant timings. Many variables are also defined, some for the timestamp logging, others for the

demo states, others for the MQTT topics, and some even for the robotic arm control.

Then, the usual functions for handling MQTT connections and messages are defined.

Specially important is the ”on_message()” function, as some received messages can trigger

changes of states (for example, that the gripper has been released or that the robot has reached a

certain position) that affect the operation of the main program. Several functions are defined

as well to trigger the gripper (”move_gripper()”), send a new position to the MiR robot

(”move_mir()”), move both arms (”move_arms()”) or move them individually (”move_arm1()”

and ”move_arm2()”). In addition, there are two relevant functions, as ”wait_pos()” is the function

that waits on both robotic arms to reach their position in order to not continue with the execution

of the use case, and ”write_data()” logs the gripper control timings to a CSV file.

Finally, ”run()” encapsulates the main loop of the controller’s program, and therefore the

industrial use case actions. The step enumeration matches the ”demo_counter” variable.

0. The gripper is closed in order to grip the object, and move the arms into a safe position.

1. Once the arms are in position, the mobile robot is sent to the starting position for the relative

move.

2. When the robot has reached the coordinates, the arms are moved into the needed position

for the exchange.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 51 of 141

3. As soon as the arms have finished moving, the mobile robot starts moving 2 metres in a

straight line at a speed of 0.5 m/s.

4. Once the mobile robot has entered the defined exchange area, a message is sent to the

gripper to release the object.

5. When the mobile robot has finished moving, a message is sent to the gripper to be in a

relaxed state, and both arms are retracted into a safe position. Then, the recorded gripper

timestamps are stored in a CSV file with the ”write_data()” function.

6. Finally, as soon as the the arms are in position, the mobile MiR robot is sent to a finishing

position, and the program is closed once it arrives.

4.3.5.- MQTT broker implementation

The configuration file for theMosquittoMQTT broker, found at ”/etc/mosquitto/mosquitto.conf”,

is shown next. It is very basic, as it only has a few lines. The ”pid_file” ensures that there is a

record of the broker’s process ID, which helps in management. Then, the ”persistance” variable

is set to true, and the place to save the data is specified. This ensures that client sessions and

messages are retained even if the broker restarts. Finally, the destination log file of the broker

and the directory for additional configurations are stated.

1 pid_file /var/run/mosquitto.pid

2 persistence true

3 persistence_location /var/lib/mosquitto/

4 log_dest file /var/log/mosquitto/mosquitto.log

5 include_dir /etc/mosquitto/conf.d

If the additional configurations folder is searched, a file would appear at

”/etc/mosquitto/conf.d/default.conf”. Inside this file there are just two directives as shown next,

stating that every user has to log into the broker (no anonymous clients are allowed), and that

the file containing the encrypted user and password combinations is located in

”/etc/mosquitto/passwd”.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 52 of 141

1 allow_anonymous false

2 password_file /etc/mosquitto/passwd

4.3.6.- Message sequence diagrams

This subsection intention is to illustrate the functional control logic implemented by showcasing

the message exchange between the different network elements represented in Figure 4.2.

Runtime execution starts when the Cloud controller sends an MQTT message to the Slave

running in the 5G gateway of the mobile robot, as showcased in Figure 4.8. This message triggers

an HTTP POST message to the MiR internal server, so that an specific mission related with

movement is started. In the positioning case, it is just a matter of sending the robot to a specific

checkpoint on the map, but for the gripper event case (the one represented), a relative move of 2

metres in a straight line at 0.5 m/s is requested.

Afterwards, the Slave ensures to constantly poll the MiR REST API in order to get both the

state and the position of the robot. That way, the program can determine whether the robot has

already moved to the desired position and it is ready for the next step. In this case, once the

robot passes the indicated zone for the object dropping, the slave sends an MQTT message to

the controller, that then sends another message to the static robotic arm to release the gripper

through the set Standard Digital Output RTDE message. Finally, when the robot reaches the final

destination and switches from the ”Executing” to the ”Ready” state, another MQTT message is

sent to the virtual controller to continue with the next step of the demonstration.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 53 of 141

MiR 5G box

HTTP Req (Position)

Position!

Ready!

Cloud controller
w/MQTT broker

MQTT Pub ('demo_gripper')

UR 5G boxMiR robot

HTTP Req (Position)

HTTP Resp (Position)

UR robot

Gripper!

HTTP GET (Position)

HTTP Resp (Position)

Sequence diagram of the demo position/gripper activation

MQTT Pub ('mir_control')
HTTP POST (Mission)

MQTT Pub ('demo_gripper')

HTTP Resp (Position)

RTDE Msg (set SDO)

HTTP Req (Position)

HTTP Resp (Position)

MQTT Pub ('demo_ready')

Figure 4.8.- MiR-Cloud-UR message sequence diagram

The other diagram in Figure 4.9 shows the sequence diagram of the messages exchanged by

the controller with the UR arms in order to control their position. Both arms have the same control

schema, so it is enough to explain one of them. Everything starts sending the requested values

for each of the joints of both arms. This message generates on the respective 5G box a RTDE

message to change the robot’s registers for the target position. Both arms constantly send the

current position of each joint at a specific rate previously defined through RTDE, independently

of the rest of the messages. If the desired and actual position do not match (within a threshold),

the Slave will keep sending to the Master controller a message with the current joint values, until

they match inside the given threshold, in which case the Slave sends a message indicating that it

is ready for the next step. Once the Cloud controller receives both ready messages, it continues

with the demonstration loop.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 54 of 141

MiR 5G box Cloud controller
w/MQTT broker UR 5G box

Position!

MiR robot UR robot

RTDE Msg (tmp_current_pos)

Sequence diagram of the demo UR arms communication

MQTT Pub ('joints_val2')
RTDE Msg (set reg:actual_q)

MQTT Pub ('joints_val1')
RTDE Msg (set reg:actual_q)

MQTT Pub ('current_val2')
RTDE Msg (tmp_current_pos)

MQTT Pub ('current_val2')
RTDE Msg (tmp_current_pos)

MQTT Pub ('ready2')

RTDE Msg (tmp_current_pos)
... Position!

RTDE Msg (tmp_current_pos)

RTDE Msg (tmp_current_pos)

RTDE Msg (tmp_current_pos)

RTDE Msg (tmp_current_pos)

RTDE Msg (tmp_current_pos)

MQTT Pub ('current_val1')

MQTT Pub ('current_val1')

MQTT Pub ('current_val1')

MQTT Pub ('ready1') ...

Figure 4.9.- UR-Cloud-UR message sequence diagram

4.4.- Operational KPIs for the demonstration execution

Once the idea for the industrial use case was established and developed, the related KPIs

considered for its evaluation can be defined:

• KPI1 ”Operational Closed Control Loop Latency (OCCLL)”: this KPI would refer to the

time it takes the announcement message from the 5G gateway in the mobile robot takes to

arrive to the 5G gateway on the static robot. In the description of the Master Controller in

Subsection 4.3.4, this would refer to step 4. The maximum allowed time, as described in

Section 4.1, is 30 ms to ensure a correct operation of the use case. To better analyze the

whole process, it can be divided into three timed stages, which are: the transmission time

of the MQTT message from the 5G gateway of the mobile robot to the Cloud Controller

(Ttx), the processing time at the controller (Tpr), and the time it takes the MQTT message

to go from the controller to the 5G gateway of the static robot (Trx). The representation of

these messages is depicted in Figure 4.8 as both MQTT Pub (’demo_gripper’) messages.

This is how the resulting equation would be:

OCCLL[ms] = Ttx[ms] + Tpr[ms] + Trx[ms]

• KPI2 ”Percentage of Successful Iterations (PSI)”: out of all the iterations executed,

determine the percentage of successful ones. The equation is just divide the number of

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 55 of 141

successful runs (Nsuc) by the number of total iterations (Ntot), and multiplying by 100.

PSI[%] = (Nsuc/Ntot) ∗ 100

To be able to extract meaningful results out of the use case, it would require to run it a

relevant number of times to generate meaningful statistics. Industrial use cases demand very

high reliability (99.99% at least), but testing time for the thesis project was very limited due to

operational constrains within the research lab, so 20 different executions would be the minimum

allowable amount.

However, in order to ensure that those tests were accurate and to extract more data,

network traffic was captured in all three devices involved in the use case (the two 5G gateways

and the cloud controller). This, combined with ping values while the measurements were

running, allowed to have more collected data, that later translated into benefits like assessing

synchronization errors, checking if there were lost packets, and verifying the logged results

against those recorded in the captures, like the ones illustrated in Figure 4.10.

Figure 4.10.- Evaluation of recorded traffic captures with Wireshark

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 56 of 141

4.5.- Industrial Testbed Development Conclusions

An outline of the outcomes of this chapter is done. The achieved results are aligned with

the second objective set at the start of the thesis in Section 1.4, named ”OBJ2”: design and

development of a industrial testbed including 5G wireless-synchronized behavior of robotic

entities. The chapter starts with a description of how the idea for the industrial use case

came along. Afterwards, the hardware architecture with the available devices at the AAU

5G Smart Lab is explained. Then, all the developed software and configuration files to

achieve the use case are explained, along with architecture and message diagrams. Finally,

the related KPIs for the performance evaluation of this use case are set.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 57 of 141

5. Validation and Performance
Evaluation Results

This chapter summarizes the performance results and observations to validate the

implementation of the industrial use case.

5.1.- Validation

In order to validate the developed use case, some functional tests in industrial operational

conditions were carried out at the AAU 5G Smart Production Lab.

In order to successfully run the industrial use case, some operational considerations have to

be taken into account beforehand.

• The private 5G network of the university has to be online and all devices connected to it.

• Verify that the MiR robot is turned on and that it is in ”Ready” mode with green lights, as

illustrated in Figure 5.1, not in ”Emergency Stop” with red lights or in ”Pause” mode with

static yellow lights. In addition, it is a good practice to check in the GUI of the robot’s

webpage whether the map is not calibrated with the robot’s position.

Figure 5.1.- MiR robot in Ready state (green lights)

• Make sure that the robotic arms are turned on and executing the ”slave_robot.urp” file, that

they are in play and the speed is set to 30%.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 58 of 141

• It is strongly recommended to use Python 3.9.X with virtual environments to install and

use the required libraries and avoid incompatibilities. Remember to activate the virtual

environments before running the code.

• Each of the computers running the programs have to be synchronized in time with the local

NTP server. This can be checked through a simple query with Chrony as depicted in Figure

5.2. It has to be ensured that in the response the ”System time” value is not bigger than

1ms, as that might indicate that the clock is still adjusting, and that the timestamp value

(”Ref Time (UTC)”) is not older than 2 minutes, as that might indicate that the clock lost

the synchronization reference.

Figure 5.2.- Chrony NTP synchronization query

After ensuring all the previous considerations are met, it is time to run the code. First,

it is needed to connect to each of the 5G gateways by using SSH and their assigned 5G IP

(10.94.0.4 for the mobile robot, 10.94.0.9 for the static robot). Nowadays there is no need to

use an external SSH client such as Putty, both Windows and Linux integrate it in their command

terminals. The only information needed are the destination IP, the username (”aau” in this

case), and the password, as it will be asked after sending the connection request. The resulting

command would be ”ssh aau@10.94.0.4”. After successfully connecting to both 5G gateways of

the static arm and the mobile robot, the Slave program has to be run (”mqtt_Slave_static.py” in

the static arm and ”mqtt_Slave_mobile.py” in the mobile robot). Lastly, the Controller program

(”mqtt_Master_controler.py”) is run in the Edge-Cloud server, acting as the virtual PLC that

controls the slaves and the demo starts.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 59 of 141

The first action is to retract the arms into a safe position. This step would relate with action

point 0 of the enumeration described at Subsection 4.3.4. The actual message exchange during

this move is described in Figure 4.9 Afterwards, as illustrated in Figure 5.3, the mobile robot gets

into place with the MQTT commands sent by the controller, corresponding to step 1 of the Master

Controller detailed in Subsection 4.3.4.

(a) Getting to the starting position (b) Arrived to the starting position

Figure 5.3.- Demo images preparation steps

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 60 of 141

The next step is to set the arms into the positions for the exchange as shown in Figure 5.4,

related with step 2 defined in Subsection 4.3.4. Once the arms are in position, the described

messages in Figure 4.8 start their flow by sending the POST request for a relative move to the

MiR platform, and the robot starts moving in a straight line for 2 meters from the starting position,

corresponding to step 3 of the Master Controller code.

(a) Moving the arms out (b) Starting the relative move

Figure 5.4.- Demo images initial steps previous to the gripper release

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 61 of 141

When the robot enters the exchange position area message, an MQTT message is sent to the

cloud controller and then to the gripper to drop the ball, as described in the messages represented

in Figure 4.8. This corresponds to step 4 of the Master Controller code explained in Subsection

4.3.4. If there was no problem during the execution of this step, the gripper should open in time

and the ball would land on the tray, as depicted in Figure 5.5.

(a) Dropping the ball (b) The ball is on the tray

Figure 5.5.- Demo images from the gripper release event

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 62 of 141

Once the MiR platform finishes moving, the arms retract into a safe position, as illustrated

in Figure 5.6, and finally, the mobile robot is sent to the finishing place by sending a new POST

request to the internal MiR REST API. These steps are related with the fifth and last ones of the

Master Controller execution that is showcased in Subsection 4.3.4.

(a) Retracting the arms into a safe position (b) Arriving to the final destination

Figure 5.6.- Demo images finishing steps

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 63 of 141

5.2.- Industrial use case performance evaluation results over 5G

Knowing that all clocks are synchronized as per the algorithms detailed in Chapter 2, there is

no problem at comparing the timestamps from the different clocks to measure latency in 5G, as

they are above the 1ms mark, and the achieved clock synchronization is mostly below a +-0.1ms.

5.2.1.- KPI1: Operational Closed Control Loop Latency

As discussed in Section 4.4, the KPIs defined for this use case aimed at evaluating the execution

runtime performance for the gripper release event. First, the cycle time for the different use case

components is analyzed.

Message transmission time (Ttx) is analyzed in Figure 5.7 in terms of Cumulative Distribution

Function (CDF). As displayed, this runtime spans from 3.5 to 12 ms, with a median value of 7.7

ms. The measured transmission time performance from the 5G gateway on mobile robot to the

Cloud server, representative of those signaling messages to trigger the ball passing action, is

driven by the 5G uplink transmission performance. In 80% of the cases, Ttx is faster than 10 ms.

100 101 102

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Uplink time (Ttx) (Mobile 5G GW -> Cloud)
5G

Figure 5.7.- Uplink latency CDF graph (representative of Ttx)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 64 of 141

Similarly, the CDF for the transmission time from Cloud to the 5G gateway of the static robot

(Trx), which is representative of the orders send from the Cloud server to the UR robotic arm

on top of the mobile robot, is detailed in Figure 5.8. As illustrated, the performance is slightly

more deterministic than in the Ttx case. Trx presents values spanning from 4 to 7 ms, with a

median value of 5.7 ms. This different performance can be explained from the fact that Trx is

dominated by 5G downlink transmission with is typically faster than the uplink one. This is due

to the configured downlink/uplink scheduling ration configured in the 5G private network with

is 7/3. Therefore, there are more air time slots allocated for Trx messages than for Ttx messages.

Further, Ttx messages in uplink are not immediate, as the 5G network needs to issue an uplink

permission for transmission, while downlink is generally instantaneous.

100 101 102

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Downlink time (Trx) (Cloud -> Static 5G GW)
5G

Figure 5.8.- Downlink latency CDF graph (representative of Trx)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 65 of 141

The final contributor to the overall OCCLL is the processing time at the cloud (Tpr). The

statistical distribution for Tpr is shown in Figure 5.9. As shown, processing time is really quick

and lower than 2 ms in all cases.

10 1 100 101

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Processing time in the Cloud (Tpr)
5G

Figure 5.9.- Processing time in the cloud CDF graph (representative of Tpr)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 66 of 141

The overall use case control loop latency (OCCLL) is analyzed in Figure 5.10. The

combination of the different Ttx, Tpr, and Trx performance results in a distribution spanning

from 8 to 19.9 ms, with a median value of 14 ms.

100 101 102

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Total time (OCCLL) (Mobile 5G GW -> Cloud -> Static 5G GW)
5G

Figure 5.10.- Operational Closed Control Loop Latency CDF graph (OCCLL)

As previously discussed in the general requirements definition in Section 4.1, the maximum

allowed time for the total OCCLL was defined in 30 ms. The measurements show that, even in

the worst observed case of 19.9 ms, the industrial use case is viable over a 5G wireless network.

5.2.2.- KPI2: Percentage of Successful Iterations

While testing the demo over 5G, a run of 20 iterations was used to characterize the loop, the

minimum amount stated at the KPI definition in Section 4.4. All of those executions had a

favourable result at receiving the ball, translating into a 100% of successful actions. Even though

this number of iterations are not enough to draw conclusions for an industrial case that needs

to operate without any kind of stop during the entire year, the results are promising enough to

encourage larger tests of reliability.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 67 of 141

5.3.- Industrial use case performance evaluation results over WiFi 6E

While the 5G investigations and evaluationswere performed, a questionwas raised: would the

same synchronization and control scheme perform successfully over WiFi? Therefore, in order

to verify this fact, similar implementations and tests were proposed usingWiFi 6E in replacement

of 5G.

In order to do that, some changes had to be made to the general architecture and devices used

as seen in Figure 5.11. The 5G network was replaced by the Cisco SW9162 WiFi 6E Access

Point, and the Gateworks gateways were changed by Intel NUCs 12 with their Intel AX210 WiFi

6E network card, because the gateways were having trouble with the driver of that network card.

To give Internet access to the AP, as all the cabled network of the laboratory was tear down, a

laptop was set up to share the ”eduroam”WiFi connection of the university using a direct cable to

it. The entire network was configured to make use of the 6 GHz band offered in the latest version

of the IEEE 802.11 protocol, in order to avoid interference and get the best performance.

Intel NUC 12

Cisco CW9162

Intel NUC 12

PC/Server

ER robot

UR arm

WiFi 6E

WiFi 6E

Figure 5.11.- WiFi network architecture diagram

As it was done with the 5G network, the OCCLL of the developed use case is measured.

However, For WiFi, two different network scenarios were explored:

1. Best-case scenario (unloaded WiFi): only the two WiFi 6E modems for the industrial use

case are connected in the network.

2. Worst-case scenario (loadedWiFi): apart from the robotic devices, an additional Intel NUC

12 to the WiFi network, and a big file is sent from the Server computer to it with SCP

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 68 of 141

while running the industrial application. This was done to simulate a user connected to

the network that is demanding a lot of resources from the network, as it is the case, for

example, when watching a high resolution video, or downloading an update for a system.

This is a common scenario in WiFi networks that share connection with industrial and

office applications. The file was created by creating a zip file with 10 copies of Big Buck

Bunny in FullHD surround [58], making it approximately a 9 GB file.

The last consideration to take into account is time synchronization. As illustrated in Figure

5.12, where synchronization accuracy over WiFi 6E and over 5G are compared in terms of clock

offset, a comparable synchronization level (within +/-0.1 ms) is experienced. It should be noted

that the WiFi case presented a few odd spikes of up to 0.3-0.5 ms, which are caused by the

aforementioned difference in air transmission access method.

Figure 5.12.- Comparison of 5G and WiFi NTP synchronization

Knowing that all clocks are synchronized below the millisecond, the same method to measure

latency as in 5G is used. In this case, 30 samples were taken for each of the two runs (one without

the interference source and the other with it).

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 69 of 141

5.3.1.- KPI1: Operational Closed Control Loop Latency

The results depicted in Figure 5.13 show that Uplink transmission times (Ttx) over WiFi can be

much faster than over 5G. Table 5.1 showcases the most relevant values. However, there is a

really big difference between unloaded and loaded WiFi in the worst measured cases.

WiFi with interference does not show a big difference in the minimum values with respect to

without it, but already the median value doubles the one unloaded, and in the 90%-ile value it is

more than 10 times higher. Even worse, the maximum recorded value climbs up to the 174 ms

mark, completely unacceptable for any URLLC scenario.

Comparing these results to 5G, unloaded WiFi performs much better. Across all measured

values, WiFi without interference is 4 times faster than 5G. However, as discussed in the previous

paragraph, interferedWiFi performed poorly. Even with the interference, WiFi can perform better

that 5G in up to 70% of the cases, however, in the remaining 30%, the performance drastically

worsens leading to Ttx values of up to 174 ms (e.g., 13 times worse than the maximum ones

achieved over 5G).

Uplink time statistics (Ttx) (Mobile 5G GW -> Cloud)

5G WiFi unloaded WiFi loaded

Min [ms] 3.44 1.21 1.26

Mean [ms] 7.84 1.89 14.01

50%-ile [ms] 7.77 1.77 4.05

90%-ile [ms] 10.60 2.70 34.67

Max [ms] 13.07 3.17 174.16

Std [ms] 2.19 0.53 27.30

Table 5.1.- Uplink time statistics (Ttx) reference values

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 70 of 141

100 101 102 103

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Uplink time (Ttx) (Mobile 5G GW -> Cloud)
5G
WiFi unloaded
WiFi loaded

Figure 5.13.- Uplink latency CDF graph of all scenarios

Downlink reception times (Trx) times are illustrated in Figure 5.14, with relevant values

referenced in Table 5.2, and they show much closer performance across all scenarios

WiFi unloaded performs againwell, with a 50%-ile latency of 4.13ms, although themaximum

creeps up to 7.52 ms. MinimumWiFi values with interference, as in the uplink case, are not very

different from the unloaded WiFi values, but the median value is again double than that without

interference, in the 90%-ile it is more than 3 times higher, and the maximum is nearly 10 times

worse.

Comparing these results to 5G, unloaded WiFi performs a better, but the difference is not as

big as before. Across all measured values, WiFi measurements without interference are around

25% lower than those of 5G, except in the maximum one which is comparable. However, as

discussed in the previous paragraph, worst-caseWiFi performed very bad again. This time, nearly

all measurements with the loadedWiFi network were worse than in 5G. In the 50%-ile the latency

is already double than over 5G, in the 90%-ile triple, and the maximum creeps up to more than

50 ms.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 71 of 141

Downlink time (Trx) (Cloud -> Static 5G GW)

5G WiFi unloaded WiFi loaded

Min [ms] 3.95 2.92 3.72

Mean [ms] 5.74 4.37 12.04

50%-ile [ms] 5.73 4.13 9.93

90%-ile [ms] 6.70 5.62 16.88

Max [ms] 7.08 7.52 62.78

Std [ms] 0.68 1.16 9.58

Table 5.2.- Downlink time (Trx) reference values

100 101 102

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Downlink time (Trx) (Cloud -> Static 5G GW)
5G
WiFi unloaded
WiFi loaded

Figure 5.14.- Downlink CDF graph all scenarios

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 72 of 141

Processing time at the cloud server (Tpr), shown in Figure 5.15, is very similar across all

measurements, as it is independent of the network used. Most of the results are below 1 ms, and

the highest recorded maximum across all of them is just 1.53 ms. This indicates that none of

the measured runs were affected by a big processing time, so the network is the most influential

factor in the total latency time. Relevant reference values are summarized in Table 5.3.

Processing time in the Cloud (Tpr)

5G WiFi unloaded WiFi loaded

Min [ms] 0.43 0.26 0.08

Mean [ms] 0.74 0.55 0.60

50%-ile [ms] 0.59 0.48 0.62

90%-ile [ms] 1.14 0.89 1.02

Max [ms] 1.53 1.04 1.12

Std [ms] 0.32 0.23 0.31

Table 5.3.- Processing time in the Cloud (Tpr) reference values

10 1 100 101

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Processing time in the Cloud (Tpr)
5G
WiFi unloaded
WiFi loaded

Figure 5.15.- Processing time in the cloud CDF graph all scenarios

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 73 of 141

Finally, Figure 5.13 represents the total latency of the use case, defined in the KPI as OCCLL.

WiFi unloaded performs very well, as the 50%-ile of the total time is 6.71 ms, and even the

maximum is less than 10 ms, as showcased in Table 5.4. However, latency in WiFi loaded is

mostly more than double the one without interference. But even worse, upwards of the 75%-ile,

the total time in loaded worst-case conditions climbs above the 30 ms mark, and the maximum

reaches more 186 ms.

Comparing WiFi to 5G, unloaded WiFi performs considerably better than 5G, but in the

loaded case performs very bad. Across all the measurements, the OCCLL of 5G is usually more

than double of that of the case of unloaded WiFi. However, WiFi with interference is worse than

5G in most of the cases, and as exemplified in the downlink case, its performance gets drastically

worse above the 75%-ile, specially in the worst-case scenario, as the maximum is nearly 10 times

higher than the one with 5G.

Total time (OCCLL) (Mobile 5G GW -> Cloud -> Static 5G GW)

5G WiFi unloaded WiFi loaded

Min [ms] 8.06 4.70 6.92

Mean [ms] 14.33 6.82 26.66

50%-ile [ms] 14.15 6.71 16.70

90%-ile [ms] 17.49 8.28 52.76

Max [ms] 19.89 9.37 186.13

Std [ms] 2.44 1.22 28.48

Table 5.4.- Operational Closed Control Loop Latency (OCCLL) reference

values

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 74 of 141

100 101 102 103

Offset (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Total time (OCCLL) (Mobile 5G GW -> Cloud -> Static 5G GW)
5G
WiFi unloaded
WiFi loaded

Figure 5.16.- Operational Closed Control Loop Latency CDF graph all

scenarios

5.3.2.- KPI2: Percentage of Successful Iterations

Unfortunately, it was not possible to asses this KPI in the WiFi case due to operational constrains

at the AAU 5G Smart Production Lab which was undergoing a renovation during the final testing

phase, making the reference scenario slightly changed as compared to the original one explored

with 5G.

5.4.- Validation and Performance Evaluation Conclusions

As an ending for this chapter, it is necessary to summarize the objectives and KPIs set.

The fulfilled tasks are aligned with the third objective ”OBJ3”: validation and performance

evaluation of the implemented 5G solution and comparison with alternative wireless access

methods (e.g., WiFi 6E). This evaluation was carried out testing the developed industrial

use case over both the private 5G network at the laboratory and a WiFi 6E network.

In addition, the WiFi scenario was assessed both without and with interference from a

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 75 of 141

external device. In respect to the first KPI, the OCCLL, ideal WiFi without interference

performed the best across all metrics (except processing time in the cloud, as it is not

dependant on the network used). WiFi achieved approximately half of the latency of 5G

in both uplink, downlink and total time. However, as already discussed in Section 1.2, WiFi

is very susceptible from interference, and this was clearly showed in the completed tests

with a crowded network. Performance dropped massively, in all cases worse than 5G. In

the worst 10% of the situations, the total latency was more than 50 ms, and in the worst

1%, it was more than 100 ms. The results show that, even if WiFi 6E can offer the best

performance, unless it is satisfied that the WiFi network will always run completely free of

disturbances (either from its own or external networks), it is not as suitable for the URLLC

industrial use cases as 5G.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 76 of 141

6. Conclusions and future work
6.1.- Conclusions

This thesis dealt with integration of wireless networks into robotics within the fourth industrial

revolution (Industry 4.0) context. By leveraging wireless, industrial manufacturing use cases and

applications can enhance their flexibility, quality, efficiency, increase safety and reliability.

In particular, in this work, the main objective was the investigation and validation of wireless

architectures and protocols for the synchronization and control of industrial robots. Being able

to synchronize multiple robots in a wireless fashion will bring industry to the next level, as this

will enable the coordination of mobile and static elements. In order to achieve this, the work was

structured in 3 phases.

The objective OB1, related with the ”investigation and characterization of time

synchronization in 5G networks considering static and mobile industrial use case conditions”

was analyzed in Chapter 3. In it, the time synchronization of a 5G gateway on a mobile robot

was analyzed, both in static and mobile cases. The first tests with the baseline configuration of

the NTP client were not satisfactory for URLLC use cases, as the synchronization offset had

regular spikes over the +/-1 ms mark. However, the results of the configuration optimization in

the 5G gateway did achieve synchronization offsets below the +/-0.1 ms mark on 99.9% of the

time, achieving the KPI objective set. In addition, it was demonstrated that there is no

difference to the time synchronization between static and mobile industrial cases (up to 1 m/s).

The following objective OB2, related with the ”design and development of a industrial testbed

including 5Gwireless-synchronized behavior of robotic entities” was described in Chapter 4. The

development process is detailed, from the initial idea to make a industrial use case scenario, going

through the specification and programming of the different network and robotic elements used,

and describing the messages and the KPI that are involved in the use case.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 77 of 141

The last objective, OB3, related with the ”validation and performance evaluation of the

implemented 5G solution and comparison with alternative wireless access methods (e.g., WiFi

6E)” was analyzed in Chapter 5. Both 5G andWiFi 6E over the 6 GHz band were tested. WiFi 6E

managed to achieve approximately half of the latency of 5G in both uplink, downlink and total

time, when operated in ideal conditions (e.g., full control of connected devices and no background

traffic), going from a mean of 14.33 ms in 5G to just 6.82 ms in OCCLL (total time). However, it

has to be taken into account the susceptibility of WiFi to interference, as the for the same statistic,

it can worsen up to 52.76 ms in the 90% worst percentile, and a maximum of even 186 ms. That

is why WiFi is not suitable for URLLC UCs unless it can be ensured that both the network and

the radio-electric band are going to be reserved and monitored to perform at its best, as otherwise

5G offers the most reliable performance, with bounded OCCLL values of maximum 19.89 ms.

6.2.- Future work

A number of actions are proposed for potential continuation and optimization of the presented

work.

6.2.1.- Better time synchronization

Even though the achieved synchronization levels were good enough for the requirements of the

project, there is still room for improvement. There is the possibility that NTP results could still be

enhanced with a bit more of tweaking, specially if the server gets the time reference signal from

a GPS signal. But most likely, the biggest improvement would be to change the update protocol

to PTP, even if that requires the use of more specific hardware.

6.2.2.- Centralised controller functions

The original implementation of having a slave controller that told the controller when it was in

the desired position worked well, but another implementation was also thought. The diagram is

shown in Figure 6.1, and it is more aligned with the idea of having a very simple slave program on

the 5G boxes, and implementing the functionality in the cloud controller. Instead of the MiR 5G

gateway being the computer in charge of taking the decision on when the robot is at the desired

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 78 of 141

MiR 5G box

HTTP Req (Position)

Cloud controller
w/MQTT broker

Position!

MQTT Pub ('mir_position')

UR 5G boxMiR robot

HTTP Req (Position)

HTTP Resp (Position)

UR robot

Gripper!

HTTP GET (Position)

HTTP Resp (Position)

Sequence diagram of the demo position/gripper activation

MQTT Pub ('mir_control')
HTTP POST (Mission)

MQTT Pub ('demo_gripper')

HTTP Resp (Position)

RTDE Msg (set SDO)

HTTP Req (Position)

HTTP Resp (Position)

MQTT Pub ('mir_position')

MQTT Pub ('mir_position')

MQTT Pub ('mir_position')

Ready!

Figure 6.1.- Centralised controllerMiR-Cloud-URmessage sequence diagram

position, it would be the Cloud controller the one in charge. This behaviour puts more load to

the network, but it should not be as big to have a significant impact to the performance of the

demonstration, and it makes implementing new functionality or just the reconfiguration of the

demo much easier.

6.2.3.- Intel RealSense camera streaming

Even though it was out of the scope of this thesis, it was very interesting to test the video and

depth streaming over the 5G network. In my opinion, this is an interesting line of investigation,

as Computer Vision becomes more prevalent in the robotic field and devices become lighter, so

that the processing is offloaded to the Cloud and specially Edge-Cloud.

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 79 of 141

Bibliography
[1] Top 15 New Technology Trends In [2024] – Dev Technosys. en. Section: AI

Development. July 2022. URL: https://devtechnosys.com/insights/new-

technology/ (visited on 07/13/2024).

[2] Industrial Revolutions through the Ages | Simio. URL: https://digital-twin.

simio . com / digital - twin - industry - 40 / industrial - revolution -

through-the-ages.php (visited on 07/13/2024).

[3] Baotong Chen et al. “Smart Factory of Industry 4.0: Key Technologies, Application

Case, and Challenges”. In: IEEE Access 6 (2018). Conference Name: IEEE Access,

pp. 6505–6519. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2783682. URL:

https://ieeexplore.ieee.org/document/8207346 (visited on 07/13/2024).

[4] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. “The Future of

Industrial Communication: Automation Networks in the Era of the Internet of Things

and Industry 4.0”. In: IEEE Industrial Electronics Magazine 11.1 (Mar. 2017).

Conference Name: IEEE Industrial Electronics Magazine, pp. 17–27. ISSN: 1941-

0115. DOI: 10.1109/MIE.2017.2649104. URL: https://ieeexplore.ieee.

org/abstract/document/7883994 (visited on 07/13/2024).

[5] M. Felser. “Real-Time Ethernet - Industry Prospective”. In: Proceedings of the IEEE

93.6 (June 2005). Conference Name: Proceedings of the IEEE, pp. 1118–1129. ISSN:

1558-2256. DOI: 10.1109/JPROC.2005.849720. URL: https://ieeexplore.

ieee.org/document/1435742 (visited on 03/04/2024).

[6] Modernización completa de sistemas eléctricos. es-ES. URL: https://autecnia.

com / all / nuestros - servicios / modernizaciones - y - migraciones - de -

sistemas-electricos-y-de-control-antiguos/ (visited on 07/13/2024).

[7] Tomas Lennvall, Stefan Svensson, and Fredrik Hekland. “A comparison of

WirelessHART and ZigBee for industrial applications”. In: 2008 IEEE International

Workshop on Factory Communication Systems. May 2008, pp. 85–88. DOI: 10 .

Miguel Villanueva Fernández

https://devtechnosys.com/insights/new-technology/
https://devtechnosys.com/insights/new-technology/
https://digital-twin.simio.com/digital-twin-industry-40/industrial-revolution-through-the-ages.php
https://digital-twin.simio.com/digital-twin-industry-40/industrial-revolution-through-the-ages.php
https://digital-twin.simio.com/digital-twin-industry-40/industrial-revolution-through-the-ages.php
https://doi.org/10.1109/ACCESS.2017.2783682
https://ieeexplore.ieee.org/document/8207346
https://doi.org/10.1109/MIE.2017.2649104
https://ieeexplore.ieee.org/abstract/document/7883994
https://ieeexplore.ieee.org/abstract/document/7883994
https://doi.org/10.1109/JPROC.2005.849720
https://ieeexplore.ieee.org/document/1435742
https://ieeexplore.ieee.org/document/1435742
https://autecnia.com/all/nuestros-servicios/modernizaciones-y-migraciones-de-sistemas-electricos-y-de-control-antiguos/
https://autecnia.com/all/nuestros-servicios/modernizaciones-y-migraciones-de-sistemas-electricos-y-de-control-antiguos/
https://autecnia.com/all/nuestros-servicios/modernizaciones-y-migraciones-de-sistemas-electricos-y-de-control-antiguos/
https://doi.org/10.1109/WFCS.2008.4638746
https://doi.org/10.1109/WFCS.2008.4638746

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 80 of 141

1109/WFCS.2008.4638746. URL: https://ieeexplore.ieee.org/document/

4638746 (visited on 07/13/2024).

[8] Juan Carlos Cano et al. “Evolution of IoT: An Industry Perspective”. In: IEEE

Internet of Things Magazine 1.2 (Dec. 2018). Conference Name: IEEE Internet of

Things Magazine, pp. 12–17. ISSN: 2576-3199. DOI: 10 . 1109 / IOTM . 2019 .

1900002. URL: https://ieeexplore.ieee.org/document/8717596 (visited

on 07/13/2024).

[9] Mattia Rizzi et al. “Using LoRa for industrial wireless networks”. In: 2017 IEEE 13th

International Workshop on Factory Communication Systems (WFCS). May 2017,

pp. 1–4. DOI: 10.1109/WFCS.2017.7991972. URL: https://ieeexplore.

ieee.org/document/7991972 (visited on 07/13/2024).

[10] Bernd Holfeld et al. “Wireless Communication for Factory Automation: an

opportunity for LTE and 5G systems”. In: IEEE Communications Magazine 54.6

(June 2016). Conference Name: IEEE Communications Magazine, pp. 36–43. ISSN:

1558-1896. DOI: 10.1109/MCOM.2016.7497764. URL: https://ieeexplore.

ieee.org/document/7497764 (visited on 07/13/2024).

[11] Mina Rady et al. “How does Wi-Fi 6 fare? An industrial outdoor robotic scenario”.

In: Ad Hoc Networks 156 (Apr. 2024), p. 103418. ISSN: 1570-8705. DOI: 10.1016/

j.adhoc.2024.103418. URL: https://www.sciencedirect.com/science/

article/pii/S1570870524000295 (visited on 07/13/2024).

[12] Private 5G use cases for industry 4.0. en-GB. URL: https : / / stlpartners .

com / articles / private - cellular / private - 5g - use - cases/ (visited on

07/13/2024).

[13] Ignacio Rodriguez et al. “5G Swarm Production: Advanced Industrial Manufacturing

Concepts Enabled by Wireless Automation”. In: IEEE Communications Magazine

59.1 (Jan. 2021). Conference Name: IEEE Communications Magazine, pp. 48–

54. ISSN: 1558-1896. DOI: 10 . 1109 / MCOM . 001 . 2000560. URL: https : / /

ieeexplore . ieee . org / document / 9356516 / authors # authors (visited on

07/08/2024).

Miguel Villanueva Fernández

https://doi.org/10.1109/WFCS.2008.4638746
https://doi.org/10.1109/WFCS.2008.4638746
https://ieeexplore.ieee.org/document/4638746
https://ieeexplore.ieee.org/document/4638746
https://doi.org/10.1109/IOTM.2019.1900002
https://doi.org/10.1109/IOTM.2019.1900002
https://ieeexplore.ieee.org/document/8717596
https://doi.org/10.1109/WFCS.2017.7991972
https://ieeexplore.ieee.org/document/7991972
https://ieeexplore.ieee.org/document/7991972
https://doi.org/10.1109/MCOM.2016.7497764
https://ieeexplore.ieee.org/document/7497764
https://ieeexplore.ieee.org/document/7497764
https://doi.org/10.1016/j.adhoc.2024.103418
https://doi.org/10.1016/j.adhoc.2024.103418
https://www.sciencedirect.com/science/article/pii/S1570870524000295
https://www.sciencedirect.com/science/article/pii/S1570870524000295
https://stlpartners.com/articles/private-cellular/private-5g-use-cases/
https://stlpartners.com/articles/private-cellular/private-5g-use-cases/
https://doi.org/10.1109/MCOM.001.2000560
https://ieeexplore.ieee.org/document/9356516/authors#authors
https://ieeexplore.ieee.org/document/9356516/authors#authors

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 81 of 141

[14] Jorge Navarro-Ortiz et al. “A Survey on 5G Usage Scenarios and Traffic Models”.

In: IEEE Communications Surveys & Tutorials 22.2 (2020). Conference Name: IEEE

Communications Surveys & Tutorials, pp. 905–929. ISSN: 1553-877X. DOI: 10.

1109 / COMST . 2020 . 2971781. URL: https : / / ieeexplore . ieee . org /

document/8985528 (visited on 07/15/2024).

[15] 5G Applications and Use Cases. en-US. URL: https://www.digi.com/blog/

post/5g-applications-and-use-cases (visited on 07/15/2024).

[16] Vikash Mishra, Debabrata Das, and Namo Narayan Singh. “Novel Algorithm to

Reduce Handover Failure Rate in 5G Networks”. In: 2020 IEEE 3rd 5G World

Forum (5GWF). Sept. 2020, pp. 524–529. DOI: 10 . 1109 / 5GWF49715 . 2020 .

9221410. URL: https://ieeexplore.ieee.org/document/9221410 (visited

on 07/15/2024).

[17] Preben Mogensen and Ignacio Rodriguez. “5G for Smart Production”. en. In:

The Future of Smart Production for SMEs: A Methodological and Practical

Approach Towards Digitalization in SMEs. Ed. by Ole Madsen et al. Cham: Springer

International Publishing, 2023, pp. 327–333. ISBN: 978-3-031-15428-7. DOI: 10.

1007/978-3-031-15428-7_28. URL: https://doi.org/10.1007/978-3-

031-15428-7_28 (visited on 07/17/2024).

[18] Steve Shellhammer, Alfred Asterjadhi, and Yanjun Sun. “Overview of IEEE 802.11”.

In: IEEE 802.11ba: Ultra-Low Power Wake-up Radio Standard. Conference Name:

IEEE 802.11ba: Ultra-Low Power Wake-up Radio Standard. IEEE, 2023, pp. 9–24.

ISBN: 978-1-119-67099-5. DOI: 10.1002/9781119671015.ch2. URL: https:

//ieeexplore.ieee.org/document/10017396 (visited on 07/15/2024).

[19] M. Bertocco, G. Gamba, and A. Sona. “Is CSMA/CA really efficient against

interference in a wireless control system? An experimental answer”. In: 2008 IEEE

International Conference on Emerging Technologies and Factory Automation. ISSN:

1946-0759. Sept. 2008, pp. 885–892. DOI: 10.1109/ETFA.2008.4638501. URL:

https://ieeexplore.ieee.org/document/4638501 (visited on 07/13/2024).

[20] Rony Kumer Saha. “Coexistence of Cellular and IEEE 802.11 Technologies

in Unlicensed Spectrum Bands -A Survey”. In: IEEE Open Journal of the

Miguel Villanueva Fernández

https://doi.org/10.1109/COMST.2020.2971781
https://doi.org/10.1109/COMST.2020.2971781
https://ieeexplore.ieee.org/document/8985528
https://ieeexplore.ieee.org/document/8985528
https://www.digi.com/blog/post/5g-applications-and-use-cases
https://www.digi.com/blog/post/5g-applications-and-use-cases
https://doi.org/10.1109/5GWF49715.2020.9221410
https://doi.org/10.1109/5GWF49715.2020.9221410
https://ieeexplore.ieee.org/document/9221410
https://doi.org/10.1007/978-3-031-15428-7_28
https://doi.org/10.1007/978-3-031-15428-7_28
https://doi.org/10.1007/978-3-031-15428-7_28
https://doi.org/10.1007/978-3-031-15428-7_28
https://doi.org/10.1002/9781119671015.ch2
https://ieeexplore.ieee.org/document/10017396
https://ieeexplore.ieee.org/document/10017396
https://doi.org/10.1109/ETFA.2008.4638501
https://ieeexplore.ieee.org/document/4638501

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 82 of 141

Communications Society 2 (2021). Conference Name: IEEE Open Journal of the

Communications Society, pp. 1996–2028. ISSN: 2644-125X. DOI: 10 . 1109 /

OJCOMS.2021.3106502. URL: https://ieeexplore.ieee.org/document/

9520660 (visited on 07/15/2024).

[21] PejmanRoshan and Jonathan Leary. 802.11Wireless LANFundamentals. en. Google-

Books-ID: 752JrPawu_sC. Cisco Press, 2004. ISBN: 978-1-58705-077-0.

[22] Andreas Fink et al. “Empirical Performance Evaluation of EnterpriseWi-Fi for IIoT

Applications Requiring Mobility”. In: European Wireless 2021; 26th European

Wireless Conference. Nov. 2021, pp. 1–8. URL: https : / / ieeexplore . ieee .

org/abstract/document/9657101 (visited on 07/17/2024).

[23] Open Systems Interconnection Model - an overview | ScienceDirect Topics. URL:

https : / / www . sciencedirect . com / topics / computer - science / open -

systems-interconnection-model (visited on 07/16/2024).

[24] Chunju Shao et al. IEEE 802.11 Medium Access Control (MAC) Profile for Control

and Provisioning of Wireless Access Points (CAPWAP). Request for Comments RFC

7494. Num Pages: 13. Internet Engineering Task Force, Apr. 2015. DOI: 10.17487/

RFC7494. URL: https://datatracker.ietf.org/doc/rfc7494 (visited on

07/16/2024).

[25] J. Postel. Internet Protocol. en. Tech. rep. RFC0791. RFC Editor, Sept. 1981,

RFC0791. DOI: 10.17487/rfc0791. URL: https://www.rfc-editor.org/

info/rfc0791 (visited on 07/15/2024).

[26] Internet Control Message Protocol. Request for Comments RFC 792. Num Pages:

21. Internet Engineering Task Force, Sept. 1981. DOI: 10.17487/RFC0792. URL:

https://datatracker.ietf.org/doc/rfc792 (visited on 07/16/2024).

[27] Robert T. Braden. Requirements for Internet Hosts - Communication Layers. Request

for Comments RFC 1122. Num Pages: 116. Internet Engineering Task Force, Oct.

1989. DOI: 10.17487/RFC1122. URL: https://datatracker.ietf.org/doc/

rfc1122 (visited on 07/16/2024).

Miguel Villanueva Fernández

https://doi.org/10.1109/OJCOMS.2021.3106502
https://doi.org/10.1109/OJCOMS.2021.3106502
https://ieeexplore.ieee.org/document/9520660
https://ieeexplore.ieee.org/document/9520660
https://ieeexplore.ieee.org/abstract/document/9657101
https://ieeexplore.ieee.org/abstract/document/9657101
https://www.sciencedirect.com/topics/computer-science/open-systems-interconnection-model
https://www.sciencedirect.com/topics/computer-science/open-systems-interconnection-model
https://doi.org/10.17487/RFC7494
https://doi.org/10.17487/RFC7494
https://datatracker.ietf.org/doc/rfc7494
https://doi.org/10.17487/rfc0791
https://www.rfc-editor.org/info/rfc0791
https://www.rfc-editor.org/info/rfc0791
https://doi.org/10.17487/RFC0792
https://datatracker.ietf.org/doc/rfc792
https://doi.org/10.17487/RFC1122
https://datatracker.ietf.org/doc/rfc1122
https://datatracker.ietf.org/doc/rfc1122

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 83 of 141

[28] MQTT Version 3.1.1. URL: https://docs.oasis-open.org/mqtt/mqtt/v3.1.

1/os/mqtt-v3.1.1-os.html (visited on 07/16/2024).

[29] David Arias-Cachero Rincón. “Kill-the-PLC: implementation and performance

evaluation of a disruptive robotic cell environment based on 5G and edge-cloud

technologies”. eng. Accepted: 2023-07-28T07:58:38Z. MA thesis. July 2023. URL:

https : / / digibuo . uniovi . es / dspace / handle / 10651 / 69235 (visited on

07/16/2024).

[30] What is Industry 4.0 and how does it work? | IBM. en-us. URL: https://www.ibm.

com/topics/industry-4-0 (visited on 02/28/2024).

[31] Melisa López et al. “Towards the 5G-Enabled Factories of the Future”. In: 2023 IEEE

21st International Conference on Industrial Informatics (INDIN). ISSN: 2378-363X.

July 2023, pp. 1–8. DOI: 10.1109/INDIN51400.2023.10217837. URL: https:

//ieeexplore.ieee.org/document/10217837 (visited on 07/17/2024).

[32] Gateworks.Newport GW6400 Single Board Computer. en-US. URL: https://www.

gateworks.com/products/industrial-single-board-computers/octeon-

tx-single-board-computers-gateworks-newport/gw6400-single-board-

computer/ (visited on 07/17/2024).

[33] SimCom. SIM8262X-M2 Series. URL: https://www.simcom.com/product/

SIM8262X-M2.html (visited on 07/17/2024).

[34] Our history. en. URL: https : / / www . universal - robots . com / about -

universal-robots/our-history/,%20https://www.universal-robots.

com/about-universal-robots/our-history/ (visited on 07/13/2024).

[35] FORSIDE_release | The Gripper Company. en-US. URL: https : / /

thegrippercompany.com/forside_release/ (visited on 07/14/2024).

[36] Real-Time Data Exchange (RTDE) Guide - 22229. URL: https : / / www .

universal- robots.com/articles/ur/interface- communication/real-

time-data-exchange-rtde-guide/ (visited on 07/14/2024).

[37] MiR100 - Cost-Effective Mobile Robot. en-US. URL: https : / / www .

industrialcontrol.com/mir100 (visited on 07/16/2024).

Miguel Villanueva Fernández

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://digibuo.uniovi.es/dspace/handle/10651/69235
https://www.ibm.com/topics/industry-4-0
https://www.ibm.com/topics/industry-4-0
https://doi.org/10.1109/INDIN51400.2023.10217837
https://ieeexplore.ieee.org/document/10217837
https://ieeexplore.ieee.org/document/10217837
https://www.gateworks.com/products/industrial-single-board-computers/octeon-tx-single-board-computers-gateworks-newport/gw6400-single-board-computer/
https://www.gateworks.com/products/industrial-single-board-computers/octeon-tx-single-board-computers-gateworks-newport/gw6400-single-board-computer/
https://www.gateworks.com/products/industrial-single-board-computers/octeon-tx-single-board-computers-gateworks-newport/gw6400-single-board-computer/
https://www.gateworks.com/products/industrial-single-board-computers/octeon-tx-single-board-computers-gateworks-newport/gw6400-single-board-computer/
https://www.simcom.com/product/SIM8262X-M2.html
https://www.simcom.com/product/SIM8262X-M2.html
https://www.universal-robots.com/about-universal-robots/our-history/,%20https://www.universal-robots.com/about-universal-robots/our-history/
https://www.universal-robots.com/about-universal-robots/our-history/,%20https://www.universal-robots.com/about-universal-robots/our-history/
https://www.universal-robots.com/about-universal-robots/our-history/,%20https://www.universal-robots.com/about-universal-robots/our-history/
https://thegrippercompany.com/forside_release/
https://thegrippercompany.com/forside_release/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.industrialcontrol.com/mir100
https://www.industrialcontrol.com/mir100

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 84 of 141

[38] MiR 100 robot móvil | Vinssa. es. URL: https://www.vinssa.com/mobile-

industrial-robots/mir-100/ (visited on 07/16/2024).

[39] Robotics Alias. Teardown - Mobile Industrial Robots MiR100. URL: https : / /

aliasrobotics.com/teardown-mir100.php (visited on 07/16/2024).

[40] About. en. URL: https : / / www . enabled - robotics . com / about (visited on

07/14/2024).

[41] Software. en. URL: https://www.enabled-robotics.com/software (visited on

07/14/2024).

[42] Barbara Simons. “An overview of clock synchronization”. en. In: Fault-Tolerant

Distributed Computing. Ed. by Barbara Simons and Alfred Spector. New York, NY:

Springer, 1990, pp. 84–96. ISBN: 978-0-387-34812-4. DOI: 10.1007/BFb0042327.

[43] Markus Ullmann and Matthias Vögeler. “Delay attacks — Implication on NTP

and PTP time synchronization”. In: Control and Communication 2009 International

Symposium on Precision Clock Synchronization for Measurement. ISSN: 1949-0313.

Oct. 2009, pp. 1–6. DOI: 10 . 1109 / ISPCS . 2009 . 5340224. URL: https : / /

ieeexplore.ieee.org/document/5340224 (visited on 07/16/2024).

[44] Liang Gong et al. “preciseSLAM: Robust, Real-Time, LiDAR–Inertial–Ultrasonic

Tightly-Coupled SLAMWith Ultraprecise Positioning for Plant Factories”. In: IEEE

Transactions on Industrial Informatics 20.6 (June 2024). Conference Name: IEEE

Transactions on Industrial Informatics, pp. 8818–8827. ISSN: 1941-0050. DOI: 10.

1109/TII.2024.3361092. URL: https://ieeexplore.ieee.org/document/

10480585 (visited on 07/16/2024).

[45] P. Arpesi et al. “Rubidium Pulsed Optically Pumped Clock for Space Industry”. In:

2019 Joint Conference of the IEEE International Frequency Control Symposium and

European Frequency and Time Forum (EFTF/IFC). ISSN: 2327-1949. Apr. 2019,

pp. 1–3. DOI: 10.1109/FCS.2019.8856140. URL: https://ieeexplore.ieee.

org/document/8856140 (visited on 07/16/2024).

Miguel Villanueva Fernández

https://www.vinssa.com/mobile-industrial-robots/mir-100/
https://www.vinssa.com/mobile-industrial-robots/mir-100/
https://aliasrobotics.com/teardown-mir100.php
https://aliasrobotics.com/teardown-mir100.php
https://www.enabled-robotics.com/about
https://www.enabled-robotics.com/software
https://doi.org/10.1007/BFb0042327
https://doi.org/10.1109/ISPCS.2009.5340224
https://ieeexplore.ieee.org/document/5340224
https://ieeexplore.ieee.org/document/5340224
https://doi.org/10.1109/TII.2024.3361092
https://doi.org/10.1109/TII.2024.3361092
https://ieeexplore.ieee.org/document/10480585
https://ieeexplore.ieee.org/document/10480585
https://doi.org/10.1109/FCS.2019.8856140
https://ieeexplore.ieee.org/document/8856140
https://ieeexplore.ieee.org/document/8856140

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 85 of 141

[46] R. Bridgham, G. Winkler, and F.H. Reder. “Synchronized Clock Experiment”. In:

13th Annual Symposium on Frequency Control. May 1959, pp. 342–349. DOI: 10.

1109/FREQ.1959.199390. URL: https://ieeexplore.ieee.org/document/

1536330 (visited on 07/16/2024).

[47] Hermann Kopetz and Wilhelm Ochsenreiter. “Clock Synchronization in Distributed

Real-Time Systems”. In: IEEE Transactions on Computers C-36.8 (Aug. 1987).

Conference Name: IEEE Transactions on Computers, pp. 933–940. ISSN: 1557-

9956. DOI: 10.1109/TC.1987.5009516. URL: https://ieeexplore.ieee.

org/abstract/document/5009516 (visited on 07/16/2024).

[48] Baoying Wei, Kun Liang, and Tian Yu. “Simulation and Evaluation of Time

Synchronization Performance Based on NTP and PTP”. In: 2023 Joint Conference of

the European Frequency and Time Forum and IEEE International Frequency Control

Symposium (EFTF/IFCS). ISSN: 2327-1949. May 2023, pp. 1–4. DOI: 10.1109/

EFTF/IFCS57587.2023.10272125. URL: https://ieeexplore.ieee.org/

document/10272125 (visited on 07/16/2024).

[49] How NTP Works. en. Section: documentation. URL: https : / / www . ntp . org /

documentation/4.2.8-series/warp/ (visited on 07/05/2024).

[50] Faten Mkacher and Andrzej Duda. “Calibrating NTP”. In: 2019 IEEE International

Symposium on Precision Clock Synchronization for Measurement, Control, and

Communication (ISPCS). ISSN: 1949-0313. Sept. 2019, pp. 1–6. DOI: 10.1109/

ISPCS.2019.8886646. URL: https://ieeexplore.ieee.org/document/

8886646 (visited on 07/16/2024).

[51] geeks. Network Time Protocol (NTP) - GeeksforGeeks. URL: https : / / www .

geeksforgeeks.org/network-time-protocol-ntp/ (visited on 07/16/2024).

[52] chrony. chrony – chrony.conf(5). URL: https://chrony-project.org/doc/4.

4/chrony.conf.html (visited on 07/08/2024).

[53] Pedro Moreira et al. “White rabbit: Sub-nanosecond timing distribution over

ethernet”. In: Control and Communication 2009 International Symposium on

Precision Clock Synchronization for Measurement. ISSN: 1949-0313. Oct. 2009,

Miguel Villanueva Fernández

https://doi.org/10.1109/FREQ.1959.199390
https://doi.org/10.1109/FREQ.1959.199390
https://ieeexplore.ieee.org/document/1536330
https://ieeexplore.ieee.org/document/1536330
https://doi.org/10.1109/TC.1987.5009516
https://ieeexplore.ieee.org/abstract/document/5009516
https://ieeexplore.ieee.org/abstract/document/5009516
https://doi.org/10.1109/EFTF/IFCS57587.2023.10272125
https://doi.org/10.1109/EFTF/IFCS57587.2023.10272125
https://ieeexplore.ieee.org/document/10272125
https://ieeexplore.ieee.org/document/10272125
https://www.ntp.org/documentation/4.2.8-series/warp/
https://www.ntp.org/documentation/4.2.8-series/warp/
https://doi.org/10.1109/ISPCS.2019.8886646
https://doi.org/10.1109/ISPCS.2019.8886646
https://ieeexplore.ieee.org/document/8886646
https://ieeexplore.ieee.org/document/8886646
https://www.geeksforgeeks.org/network-time-protocol-ntp/
https://www.geeksforgeeks.org/network-time-protocol-ntp/
https://chrony-project.org/doc/4.4/chrony.conf.html
https://chrony-project.org/doc/4.4/chrony.conf.html

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 86 of 141

pp. 1–5. DOI: 10.1109/ISPCS.2009.5340196. URL: https://ieeexplore.

ieee.org/abstract/document/5340196 (visited on 07/13/2024).

[54] Paola Iovanna et al. “SDN-based architecture to support Synchronization in a

5G framework”. In: 2016 IEEE International Symposium on Precision Clock

Synchronization for Measurement, Control, and Communication (ISPCS). ISSN:

1949-0313. Sept. 2016, pp. 1–4. DOI: 10 . 1109 / ISPCS . 2016 . 7579504. URL:

https://ieeexplore.ieee.org/document/7579504 (visited on 07/16/2024).

[55] Eoin O’Connell, Denis Moore, and Thomas Newe. “Challenges Associated with

Implementing 5G in Manufacturing”. In: Telecom 1 (June 2020), pp. 48–67. DOI:

10.3390/telecom1010005.

[56] Nima Enayati et al. “Using Cellular Connectivity for On-the-move Cooperation of

Stationary Manipulator and Mobile Platform”. In: 2021 26th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA). Sept.

2021, pp. 1–8. DOI: 10 . 1109 / ETFA45728 . 2021 . 9613325. URL: https : / /

ieeexplore.ieee.org/document/9613325 (visited on 07/13/2024).

[57] K. A. Venkataraman, K. Kanthavel, and B. Nirmal Kumar. “Investigations of

Response Time Parameters of a Pneumatic 3/2 Direct Acting Solenoid Valve Under

Various Working Pressure Conditions”. en. In: Engineering, Technology & Applied

Science Research 3.4 (Aug. 2013). Number: 4, pp. 502–505. ISSN: 1792-8036. DOI:

10 . 48084 / etasr . 360. URL: https : / / etasr . com / index . php / ETASR /

article/view/360 (visited on 07/18/2024).

[58] blender. Index of /peach/bigbuckbunny_movies/. URL: https : / / download .

blender.org/peach/bigbuckbunny_movies/ (visited on 07/17/2024).

Miguel Villanueva Fernández

https://doi.org/10.1109/ISPCS.2009.5340196
https://ieeexplore.ieee.org/abstract/document/5340196
https://ieeexplore.ieee.org/abstract/document/5340196
https://doi.org/10.1109/ISPCS.2016.7579504
https://ieeexplore.ieee.org/document/7579504
https://doi.org/10.3390/telecom1010005
https://doi.org/10.1109/ETFA45728.2021.9613325
https://ieeexplore.ieee.org/document/9613325
https://ieeexplore.ieee.org/document/9613325
https://doi.org/10.48084/etasr.360
https://etasr.com/index.php/ETASR/article/view/360
https://etasr.com/index.php/ETASR/article/view/360
https://download.blender.org/peach/bigbuckbunny_movies/
https://download.blender.org/peach/bigbuckbunny_movies/

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 87 of 141

A. Code developed for the Use Case
Implementation

Inside this annex, all the code developed for the industrial use case is gathered.

A.1.- mqtt_Slave_static.py

This is the Python code for the Slave controller at the static robot (”mqtt_Slave_static.py”).

1 import sys

2 sys.path.append("..")

3 import threading

4 import time

5 import socket

6 import logging

7 import json

8 from collections import namedtuple

9 import paho.mqtt.client as mqtt

10 # Using Universal Robots RTDE libraries

11 import rtde.rtde as rtde

12 import rtde.rtde_config as rtde_config

13

14 import consts

15 import my_tools

16

17

18 # == RTDE CONFIGURATION

==

19

20 # We start the motion variable to an initial position value,

21 # before getting data from RTDE we need to have something

22 motion = [0, -1.57, -1.57, -1.57, 1.57, 0]

23 # Set up a IP and port of the RTDE server inside the robot

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 88 of 141

24 ROBOT_HOST = "10.42.0.233"

25 ROBOT_PORT = 30004

26 # Configuration file to follow

27 config_filename = "control_loop_configuration.xml"

28

29 # We apply the configuration file of RTDE

30 conf = rtde_config.ConfigFile(config_filename)

31 state_names , state_types = conf.get_recipe("state")

32 actualq_names , actualq_types = conf.get_recipe("actualq")

33 sdo_names , sdo_types = conf.get_recipe("sdo") # standard digital output

34 speed_names , speed_types = conf.get_recipe("speed") # speed

35

36 # We start a RTDE connection

37 con = rtde.RTDE(ROBOT_HOST , ROBOT_PORT)

38 con.connect()

39 print("Connected to RTDE")

40

41 # get controller version

42 con.get_controller_version()

43

44 # setup recipes

45 con.send_output_setup(state_names , state_types)

46 actual_q = con.send_input_setup(actualq_names , actualq_types)

47 sdo = con.send_input_setup(sdo_names , sdo_types) # standard digital output

48 speed = con.send_input_setup(speed_names , speed_types) # speed

49

50 # We apply the initial position to the joints

51 actual_q.input_double_register_24 = motion[0]

52 actual_q.input_double_register_25 = motion[1]

53 actual_q.input_double_register_26 = motion[2]

54 actual_q.input_double_register_27 = motion[3]

55 actual_q.input_double_register_28 = motion[4]

56 actual_q.input_double_register_29 = motion[5]

57 # start data synchronization

58 if not con.send_start():

59 sys.exit()

60

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 89 of 141

61 # We send to the robot via RTDE the initial position

62 con.send(actual_q)

63

64 # We configure Digital output

65 # standard digital output

66 sdo.standard_digital_output_mask = 255 # This is 7 "ones" in the binary

system, which means all 7 digits are 1. Without this, we cannot change

standard digital outputs

67 sdo.standard_digital_output = 0

68

69 # The arms cannot move too fast, or else the bases of them will shake and be

not stable. Therefore every time when we run the program, we set the

speed to 50%.

70 speed.speed_slider_mask = 4294967295 # This is 32 "ones" in the binary

system, which means all 32 digits are 1.

71 speed.speed_slider_fraction = 0.2

72

73 # start data synchronization

74 if not con.send_start():

75 sys.exit()

76

77 con.send(sdo) # standard digital output

78 con.send(speed) # speed

79

80 # == RTDE CONFIGURATION

==

81

82 # Topics for MQTT

83 #print("Please input the index of the arm, starting from 1, 2, 3, ...")

84 arm_idx = 1

85 topic_sub = "{}{}".format(consts.TOPIC_TGT_PREFIX , arm_idx)

86 topic_pub = "{}{}".format(consts.TOPIC_CUR_PREFIX , arm_idx)

87 topic_grip = "{}{}".format(consts.TOPIC_GRIP_PREFIX , arm_idx)

88

89 # Current position of the arm

90 current_RTDE = None

91

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 90 of 141

92 # to notify the "publish" thread that the "rtde" thread receives a new

current position

93 e_new_cur = threading.Event()

94

95 # The timestamp when lasted message was received

96 last_recv_time = time.time()

97

98

99 # Function used to read the data of the joints using RTDE

100 def read_RTDE():

101 global current_RTDE

102 conf = rtde_config.ConfigFile("record_configuration.xml")

103 output_names , output_types = conf.get_recipe("out")

104 # get controller version

105 con.get_controller_version()

106

107 # setup recipes

108 if not con.send_output_setup(

109 output_names , output_types , frequency=consts.RTDE_FREQ):

110 logging.error("Unable to configure output")

111 sys.exit()

112

113 # start data synchronization

114 if not con.send_start():

115 logging.error("Unable to start synchronization")

116 sys.exit()

117

118 keep_running = True

119 while keep_running:

120 try:

121 # Getting data from the joints from RTDE

122 # This will block if there is not new data.

123 state = con.receive()

124 # We convert the data into json object

125 data = json.dumps(state.__dict__) # serialize data object

126 # Converting JSON data into Python readable object

127 current_RTDE = json.loads(

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 91 of 141

128 data,

129 object_hook=lambda d: namedtuple('a', d.keys())(*d.values())

)

130 # notify another thread to report this current position

131 e_new_cur.set()

132 except KeyboardInterrupt:

133 keep_running = False

134 except rtde.RTDEException:

135 con.disconnect()

136 sys.exit()

137

138 con.send_pause()

139 con.disconnect()

140

141

142 # Function used to write the joint with the values we get from the edge

cloud

143 def write_RTDE(motion):

144

145 actual_q.input_double_register_24 = motion[0]

146 actual_q.input_double_register_25 = motion[1]

147 actual_q.input_double_register_26 = motion[2]

148 actual_q.input_double_register_27 = motion[3]

149 actual_q.input_double_register_28 = motion[4]

150 actual_q.input_double_register_29 = motion[5]

151

152 con.send(actual_q)

153 print("POSITION HAS APPLIED TO THE ROBOT USING RTDE")

154 print(motion)

155

156

157 def on_connect(client, userdata, flags, return_code):

158 if return_code == 0:

159 print("UR Robot connected to broker!")

160 # We subscribe

161 client.subscribe(topic_sub)

162 print("Subscribed to topic: " + topic_sub)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 92 of 141

163 client.subscribe(topic_grip)

164 print("Subscribed to topic: " + topic_grip)

165 print("WE HAVE SUBSCRIBED TO THE BROKER")

166 else:

167 print("could not connect to mqtt broker, return code:", return_code)

168

169

170 def on_message(client, userdata, message):

171 global motion, last_recv_time

172 try:

173 # We receive the message of the motion of the other robot

174 topic = message.topic

175 if topic == topic_sub:

176 # We need to measure "Uplink time", "Downlink time", and "

Processing time", but the "gripper" messages do not nave uplink time, so

we only research the time of "Arm movements" messages.

177 last_recv_time = time.time()

178

179 message_float = message.payload.decode("utf-8")

180 message = eval(message_float)

181 message_motion = message[:-1]

182 goals_time = message[-1]

183 while True:

184 current_time = time.time()

185 if current_time > goals_time:

186 motion = message_motion

187 write_RTDE(motion)

188 break

189 time.sleep(0.001)

190 elif topic == topic_grip:

191 grip_recv_time = time.time()

192 message_float2 = message.payload.decode("utf-8")

193 message2 = eval(message_float2)

194 message_grip = message2[:-1]

195 goals_time2 = message2[-1]

196 while True:

197 current_time = time.time()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 93 of 141

198 if current_time > goals_time2:

199 # change_sdo(message_grip[0]) # This was aimed to become

an intermediate state, but this design seems unnecessary and this

implementation is too simple, so I remove this unnecessary behavior.

200 change_sdo(message_grip[1])

201 if (message_grip[1] == 1):

202 #current_time = time.time()

203 my_tools.publish(client, "demo_gripper", "[{}, {}]".

format(2, grip_recv_time))

204 break

205 time.sleep(0.001)

206 else:

207 print("Message from unknown topic: {}".format(topic))

208

209 # We convert the string list to a normal list

210 except Exception as e:

211 print("EXCEPTION: ", e)

212

213

214 # change standard digital outputs.

215 def change_sdo(value: int):

216 sdo.standard_digital_output = value

217 con.send(sdo)

218

219

220 # report the current joints position

221 def report_cur_pos():

222 # We create an old list to know the old position

223 old_current_pos_list = ""

224 while True:

225

226 # if rtde does not get a new current position , the code will be

blocked here.

227 # Here, we do not need a timeout, although the possibility that "a

set" of the event is before clear() after reading the shared_value still

exists, the read_RTDE thread calls e_new_cur.set() every RTDE period, so

there is always the next set after a set. However, if we have a timeout,

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 94 of 141

at the beginning of this program, if read_RTDE thread thread does not set

a value before the timeout here, the following code will crash.

228 e_new_cur.wait()

229

230 # With the above e_new_cur.wait, we do not need this check None,

because only after rtde get set a value to current_RTDE , rtde will do

e_new_cur.set(), unless rtde gives us a None value.

231 # if current_RTDE is None:

232 # # at the beginning this variable is None, which will make the

following code crash, so we should continue here

233 # continue

234

235 tmp_current_RTDE = current_RTDE # in case of current_RTDE changes

during the following code

236

237 # clear the event after reading the latest current positions , so the

next loop will still be blocked until rtde receives the next current

position

238 e_new_cur.clear()

239

240 # We store the current position

241 current_pos_list = "[" + str(tmp_current_RTDE.actual_q[0]) + "," +

str(

242 tmp_current_RTDE.actual_q[1]) + "," + str(

243 tmp_current_RTDE.actual_q[2]) + "," + str(

244 tmp_current_RTDE.actual_q[3]) + "," + str(

245 tmp_current_RTDE.actual_q[4]) + "," + str(

246 tmp_current_RTDE.actual_q[5]) + "]"

247 # If our last position (old) and the current one are different , we

publish our last position

248 if len(old_current_pos_list) == 0 or (not my_tools.joints_pos_equal(

249 eval(old_current_pos_list), eval(current_pos_list))):

250 cur_send_time = time.time()

251 cur_pos_with_times = "[{}, {}, {}]".format(current_pos_list ,

252 last_recv_time ,

253 cur_send_time)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 95 of 141

254 # publish current positions , downlink message received time, and

uplink message sent time

255 my_tools.publish(client, topic_pub , cur_pos_with_times)

256 old_current_pos_list = current_pos_list

257

258

259 client = mqtt.Client()

260 client.username_pw_set(username=consts.BROKER_USER ,

261 password=consts.BROKER_PASSWD)

262 client.on_connect = on_connect # subscribe is in this on_connect

263 client.on_message = on_message

264 client.connect(consts.BROKER_IP ,

265 consts.BROKER_PORT) # here, the subscribe will be executed

266 client.socket().setsockopt(socket.IPPROTO_TCP , socket.TCP_NODELAY , True)

267 client.loop_start()

268

269 # We start a thread used for reading the joint values using RTDE

270 thread_read = threading.Thread(target=read_RTDE)

271 thread_read.start()

272

273 try:

274 # report the current joints position

275 report_cur_pos()

276 finally:

277 client.loop_stop()

278 client.unsubscribe(topic_sub)

279 client.disconnect()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 96 of 141

A.2.- mqtt_Slave_mobile.py

This is the Python code for the Slave controller at themobile robot (”mqtt_Slave_mobile.py”).

1 import sys

2

3 sys.path.append("..")

4

5 import logging

6 import json

7

8 import paho.mqtt.client as mqtt

9

10 # Using Universal Robots RTDE libraries

11 import rtde.rtde as rtde

12 import rtde.rtde_config as rtde_config

13

14 from collections import namedtuple

15 import threading

16 import time

17 import socket

18

19 import consts

20 import my_tools

21 import mir_api_s

22

23 import requests

24 import urllib3

25

26 # We start the motion variable to none

27 # before getting data from RTDE we need to have something even though it is

empty

28 # Initial position

29 motion = [0.5, -2.007, -2.269, -2.007, -1.57, 1.57]

30 demo_state = "Start"

31 demo_mision = "None"

32 demo_gripper = 0

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 97 of 141

33 topic_mir_control = "mir_control"

34 topic_demo_ready = "demo_ready"

35 topic_demo_state = "demo_state"

36 topic_demo_mision = "mir_control"#"demo_mision"

37 topic_demo_gripper = "demo_gripper"

38 ready_sent = False

39 mir_csv_data = []

40

41 # == RTDE CONFIGURATION

==

42

43 # Set up a RTDE server inside the robot

44 # Set the IP

45 ROBOT_HOST = "192.168.12.40"

46 # Set the port

47 ROBOT_PORT = 30004

48 # Config to follow

49 config_filename = "control_loop_configuration.xml"

50

51 # logging.getLogger().setLevel(logging.INFO)

52

53 # We apply the configuration file of RTDE

54 conf = rtde_config.ConfigFile(config_filename)

55 state_names , state_types = conf.get_recipe("state")

56 actualq_names , actualq_types = conf.get_recipe("actualq")

57 # watchdog_names , watchdog_types = conf.get_recipe("watchdog")

58

59 #sdo_names , sdo_types = conf.get_recipe("sdo") # standard digital output

60 #speed_names , speed_types = conf.get_recipe("speed") # speed

61

62 # We start a RTDE connection

63 con = rtde.RTDE(ROBOT_HOST , ROBOT_PORT)

64 con.connect()

65 print("Connected to RTDE")

66

67 # get controller version

68 con.get_controller_version()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 98 of 141

69

70 # setup recipes

71 con.send_output_setup(state_names , state_types)

72 actual_q = con.send_input_setup(actualq_names , actualq_types)

73 #sdo = con.send_input_setup(sdo_names , sdo_types) # standard digital output

74 #speed = con.send_input_setup(speed_names , speed_types) # speed

75

76 # We apply the initial position to the joints

77 actual_q.input_double_register_24 = motion[0]

78 actual_q.input_double_register_25 = motion[1]

79 actual_q.input_double_register_26 = motion[2]

80 actual_q.input_double_register_27 = motion[3]

81 actual_q.input_double_register_28 = motion[4]

82 actual_q.input_double_register_29 = motion[5]

83 # start data synchronization

84 if not con.send_start():

85 sys.exit()

86

87 # We send to the robot via RTDE the initial position

88 con.send(actual_q)

89

90 # We configure Digital output

91 # standard digital output

92 #sdo.standard_digital_output_mask = 255 # This is 7 "ones" in the binary

system, which means all 7 digits are 1. Without this, we cannot change

standard digital outputs

93 #sdo.standard_digital_output = 0

94

95 # The arms cannot move too fast, or else the bases of them will shake and be

not stable. Therefore every time when we run the program, we set the

speed to 50%.

96 #speed.speed_slider_mask = 4294967295 # This is 32 "ones" in the binary

system, which means all 32 digits are 1.

97 #speed.speed_slider_fraction = 0.5

98

99 # start data synchronization

100 if not con.send_start():

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 99 of 141

101 sys.exit()

102

103 #con.send(sdo) # standard digital output

104 #con.send(speed) # speed

105

106 # == RTDE CONFIGURATION

==

107

108 # Topics for MQTT

109 #print("Please input the index of the arm, starting from 1, 2, 3, ...")

110 arm_idx = 2

111 topic_sub = "{}{}".format(consts.TOPIC_TGT_PREFIX , arm_idx)

112 topic_pub = "{}{}".format(consts.TOPIC_CUR_PREFIX , arm_idx)

113 topic_pub2 = "{}{}".format(consts.TOPIC_RDY_PREFIX , arm_idx)

114 topic_grip = "{}{}".format(consts.TOPIC_GRIP_PREFIX , arm_idx)

115

116 # Current position of the arm

117 current_RTDE = None

118

119 # to notify the "publish" thread that the "rtde" thread receives a new

current position

120 e_new_cur = threading.Event()

121

122 # The timestamp when lasted message was received

123 last_rx_arm = time.time()

124 last_tx_grp = time.time()

125 last_rx_mir = time.time()

126 last_tx_mir = time.time()

127

128

129 # Function used to read the data of the joints using RTDE

130 def read_RTDE():

131 global current_RTDE

132 conf = rtde_config.ConfigFile("record_configuration.xml")

133 output_names , output_types = conf.get_recipe("out")

134 # get controller version

135 con.get_controller_version()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 100 of 141

136

137 # setup recipes

138 if not con.send_output_setup(

139 output_names , output_types , frequency=consts.RTDE_FREQ):

140 logging.error("Unable to configure output")

141 sys.exit()

142

143 # start data synchronization

144 if not con.send_start():

145 logging.error("Unable to start synchronization")

146 sys.exit()

147

148 keep_running = True

149 while keep_running:

150 try:

151 # Getting data from the joints from RTDE

152 # This will block if there is not new data.

153 state = con.receive()

154 # We convert the data into json object

155 data = json.dumps(state.__dict__) # serialize data object

156 # Converting JSON data into Python readable object

157 current_RTDE = json.loads(

158 data,

159 object_hook=lambda d: namedtuple('a', d.keys())(*d.values())

)

160 # notify another thread to report this current position

161 e_new_cur.set()

162 except KeyboardInterrupt:

163 keep_running = False

164 except rtde.RTDEException:

165 con.disconnect()

166 sys.exit()

167

168 con.send_pause()

169 con.disconnect()

170

171

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 101 of 141

172 # Function used to write the joint with the values we get from the edge

cloud

173 def write_RTDE(motion):

174

175 actual_q.input_double_register_24 = motion[0]

176 actual_q.input_double_register_25 = motion[1]

177 actual_q.input_double_register_26 = motion[2]

178 actual_q.input_double_register_27 = motion[3]

179 actual_q.input_double_register_28 = motion[4]

180 actual_q.input_double_register_29 = motion[5]

181

182 con.send(actual_q)

183 print("POSITION HAS APPLIED TO THE ROBOT USING RTDE")

184 print(motion)

185

186

187 def on_connect(client, userdata, flags, return_code):

188 if return_code == 0:

189 print("UR Robot connected to broker!")

190 # We subscribe

191 client.subscribe(topic_sub)

192 print("Subscribed to topic: " + topic_sub)

193 client.subscribe(topic_grip)

194 print("Subscribed to topic: " + topic_grip)

195 client.subscribe(topic_demo_mision)

196 print("Subscribed to topic: " + topic_demo_mision)

197 print("WE HAVE SUBSCRIBED TO THE BROKER")

198 else:

199 print("could not connect to mqtt broker, return code:", return_code)

200

201

202 def on_message(client, userdata, message):

203 global motion, last_rx_arm , last_rx_grp , last_rx_mir , demo_state ,

demo_mision , ready_sent

204 try:

205 # We receive the message of the motion of the other robot

206 topic = message.topic

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 102 of 141

207 if topic == topic_sub:

208 # We need to measure "Uplink time", "Downlink time", and "

Processing time", but the "gripper" messages do not nave uplink time, so

we only research the time of "Arm movements" messages.

209 last_rx_arm = time.time()

210

211 message_float = message.payload.decode("utf-8")

212 message = eval(message_float)

213 message_motion = message[:-1]

214 goals_time = message[-1]

215 while True:

216 current_time = time.time()

217 if current_time > goals_time:

218 motion = message_motion

219 write_RTDE(motion)

220 ready_sent = False

221 break

222 time.sleep(0.001)

223 # No need to evaluate gripper -> There's no gripper on ER robot

224 # We receive the demo mission, no need for the demo state

225 #elif topic == topic_demo_state:

226 # demo_state = message.payload.decode("utf-8")

227 elif topic == topic_demo_mision:

228 last_rx_mir = time.time()

229 demo_mision = message.payload.decode("utf-8")

230

231 elif topic == topic_grip:

232 last_rx_grp = time.time()

233

234 else:

235 print("Message from unknown topic: {}".format(topic))

236

237 # We convert the string list to a normal list

238 except Exception as e:

239 print("EXCEPTION: ", e)

240

241

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 103 of 141

242 # change standard digital outputs.

243 #def change_sdo(value: int):

244 # sdo.standard_digital_output = value

245 # con.send(sdo)

246

247

248 # report the current joints position

249 def report_cur_pos():

250 global ready_sent

251 # We create an old list to know the old position

252 old_current_pos_list = ""

253 while True:

254

255 # if rtde does not get a new current position , the code will be

blocked here.

256 # Here, we do not need a timeout, although the possibility that "a

set" of the event is before clear() after reading the shared_value still

exists, the read_RTDE thread calls e_new_cur.set() every RTDE period, so

there is always the next set after a set. However, if we have a timeout,

at the beginning of this program, if read_RTDE thread thread does not set

a value before the timeout here, the following code will crash.

257 e_new_cur.wait()

258

259 # With the above e_new_cur.wait, we do not need this check None,

because only after rtde get set a value to current_RTDE , rtde will do

e_new_cur.set(), unless rtde gives us a None value.

260 # if current_RTDE is None:

261 # # at the beginning this variable is None, which will make the

following code crash, so we should continue here

262 # continue

263

264 tmp_current_RTDE = current_RTDE # in case of current_RTDE changes

during the following code

265

266 # clear the event after reading the latest current positions , so the

next loop will still be blocked until rtde receives the next current

position

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 104 of 141

267 e_new_cur.clear()

268

269 # We store the current position

270 current_pos_list = "[" + str(tmp_current_RTDE.actual_q[0]) + "," +

str(

271 tmp_current_RTDE.actual_q[1]) + "," + str(

272 tmp_current_RTDE.actual_q[2]) + "," + str(

273 tmp_current_RTDE.actual_q[3]) + "," + str(

274 tmp_current_RTDE.actual_q[4]) + "," + str(

275 tmp_current_RTDE.actual_q[5]) + "]"

276 # If our last position (old) and the current one are different , we

publish our last position

277 if len(old_current_pos_list) == 0 or (not my_tools.joints_pos_equal(

278 eval(old_current_pos_list), eval(current_pos_list))):

279 cur_send_time = time.time()

280 cur_pos_with_times = "[{}, {}, {}]".format(current_pos_list ,

281 last_rx_arm ,

282 cur_send_time)

283 # publish current positions , downlink message received time, and

uplink message sent time

284 my_tools.publish(client, topic_pub , cur_pos_with_times)

285 old_current_pos_list = current_pos_list

286 else:

287 my_tools.publish(client, topic_pub2 , cur_pos_with_times)

288

289 def state_MiR(mir):

290 global demo_state , demo_mision , demo_gripper , ready_sent , mir_csv_data

291 t1 = time.time_ns()

292 response_json = mir.get_system_info(mir.local_link)

293 t2 = time.time_ns()

294 req_rtt_ms = ((t2-t1)/1000000)

295 state = [response_json["state_text"], response_json["velocity"]["linear"

], response_json["velocity"]["angular"],

296 response_json["position"]["x"], response_json["position"]["y"],

response_json["position"]["orientation"],

297 req_rtt_ms , demo_state , demo_mision , demo_gripper , ready_sent ,

t1]

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 105 of 141

298 print("Last response: ",req_rtt_ms)

299 mir_csv_data.append(state)

300 return state

301

302 def control_MiR():

303 global demo_state , demo_mision , demo_gripper , ready_sent , mir_csv_data

304

305 mir = mir_api_s.MiR()

306 prev_demo_mision = demo_mision

307 keep_running_cMiR = True

308 while keep_running_cMiR:

309 time.sleep(0.01)

310 try:

311 if (prev_demo_mision != demo_mision):

312 print("-------------Post mission------------")

313 result = mir.post_to_mission_queue(mir.local_link , mir.

mission_dict[demo_mision])

314 prev_demo_mision = demo_mision

315 demo_state = "Not Ready"

316 time.sleep(1)

317 state = state_MiR(mir)

318 if (((state[0] == "Ready" and state[1] == 0)) and demo_state!="

Ready"):

319 demo_state = "Ready"

320 my_tools.publish(client, topic_demo_ready , demo_state)

321 if (demo_gripper == 1):

322 ready_sent = False

323 demo_gripper = 0

324 my_tools.write_csv_file("saved_data/data_mir_" + str(int

(time.time())) + ".csv", mir_csv_data)

325 mir_csv_data.clear()

326 if (((abs(state[3] - 4.15 +0.07) <0.07)) and demo_gripper!=1 and

demo_state!="Ready"):

327 demo_gripper = 1

328 current_time = time.time()

329 my_tools.publish(client, topic_demo_gripper , "[{}, {}]".

format(demo_gripper , current_time))

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 106 of 141

330

331 except KeyboardInterrupt:

332 keep_running_cMiR = False

333 except:

334 print("No response obtained")

335

336

337

338

339 client = mqtt.Client()

340 client.username_pw_set(username=consts.BROKER_USER ,

341 password=consts.BROKER_PASSWD)

342 client.on_connect = on_connect # subscribe is in this on_connect

343 client.on_message = on_message

344 client.connect(consts.BROKER_IP ,

345 consts.BROKER_PORT) # here, the subscribe will be executed

346 client.socket().setsockopt(socket.IPPROTO_TCP , socket.TCP_NODELAY , True)

347 client.loop_start()

348

349 # We start a thread used for reading the joint values using RTDE

350 thread_read = threading.Thread(target=read_RTDE)

351 thread_read.start()

352

353 # We start a thread used for moving the MiR robot

354 thread_mir = threading.Thread(target=control_MiR)

355 thread_mir.start()

356

357 try:

358 # report the current joints position

359 report_cur_pos()

360 finally:

361 client.loop_stop()

362 client.unsubscribe(topic_sub)

363 client.disconnect()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 107 of 141

A.3.- mqtt_Slave_controler.py

This is the Python code for the Master controller at the Edge-Cloud server

(”mqtt_Master_controler.py”).

1 import math

2 from paho.mqtt import client as mqtt_client

3 import time

4 import logging

5 import threading

6 import socket

7

8 import consts

9 import mir_api_s

10 import my_tools

11

12 # ---- This controller is made to rx the current position of the slave 2 and

tx two fixed positions ----

13

14 # For measurement , to record the key time points of a round of messages.

15 class OneRoundTimes:

16 def __init__(self):

17 # This class is for measurement , in every round, we should record:

18 # the time when controller sends the target position

19 self.t_c_send_tgt = time.time()

20 # the time when slave receives the target position

21 self.t_s_recv_tgt = time.time()

22 # the time when slave sends the current position

23 self.t_s_send_cur = time.time()

24 # the time when controller receives the current position

25 self.t_c_recv_cur = time.time()

26

27 times1 = OneRoundTimes()

28 times2 = OneRoundTimes()

29 timesg = OneRoundTimes()

30 timesmir = OneRoundTimes()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 108 of 141

31 timesg_ = []

32

33 arm1_csv_data = []

34 arm2_csv_data = []

35 armg_csv_data = []

36 armmir_csv_data = []

37

38 # Current position (subscribed)

39 current_pos_with_time_1 = None

40 current_pos_with_time_2 = None

41

42 # Number of iterations

43 pair = 0

44 demo_state = "None"

45 demo_mision = "None"

46 demo_counter = 0

47 demo_next_ready = "True"

48 demo_gripper = "Hold"

49

50 topic_mir_control = "mir_control"

51 topic_mir_state = "mir_state"

52 topic_demo_state = "demo_state"

53 topic_demo_ready = "demo_ready"

54 topic_demo_gripper = "demo_gripper"

55

56 demo_dict = {

57 0: "None",

58 1: "Start",

59 2: "Initial",

60 3: "Positioned",

61 4: "Placed",

62 5: "Loaded",

63 6: "Finishing",

64 7: "End"

65 }

66

67 def deg_to_rad(motiond_l):

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 109 of 141

68 motionr_l=[0,0,0,0,0,0]

69 for i in range(len(motiond_l)):

70 motionr_l[i]=motiond_l[i]*math.pi/180

71 return motionr_l

72

73 static_arm0_deg=[0,-92.5,-92.5,-80,90,0]

74 static_arm1_deg=[-90,-92.5,-92.5,-80,90,0]

75 motion_deg1=[30,-115,-130,-115,-90,90]

76 motion_deg2=[-90,-115,-130,-115,-90,90]

77 #motion_deg3=[-50,-125,-110,-125,-90,90]

78 static_arm0_rad=deg_to_rad(static_arm0_deg)

79 static_arm1_rad=deg_to_rad(static_arm1_deg)

80 motion_rad1=deg_to_rad(motion_deg1)

81 motion_rad2=deg_to_rad(motion_deg2)

82 #motion_rad3=deg_to_rad(motion_deg3)

83

84 # to notify the "publish" thread that the "subscribe" thread receives a new

current position

85 e_new_cur = threading.Event()

86

87 # The time to wait until executing the behaviors

88 #print("Please input the timestamp_to_delay in second")

89 timestamp_to_delay = 0.02 #float(input())

90

91

92 # Function for connecting the broker

93 def connect_mqtt() -> mqtt_client.Client:

94 def on_connect(client, userdata , flags, rc):

95 if rc == 0:

96 print("Robot operator has connected to MQTT Broker!\n")

97 else:

98 print("Failed to connect, return code %d\n", rc)

99

100 client = mqtt_client.Client()

101 # Uncomment when using authenticated communications

102 client.username_pw_set(username="testbed", password="1234")

103 client.on_connect = on_connect

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 110 of 141

104 client.connect(consts.BROKER_IP , consts.BROKER_PORT)

105 client.socket().setsockopt(socket.IPPROTO_TCP , socket.TCP_NODELAY , True)

106 return client

107

108 # SUBSCRIBER function

109 def subscribe(client: mqtt_client.Client):

110

111 def on_message(client, userdata , msg):

112 global demo_state , demo_counter , demo_gripper , demo_next_ready ,

current_pos_with_time_1 , current_pos_with_time_2 , timesg_, armg_csv_data

113 recv_time = time.time()

114 # Message received

115 topic = msg.topic

116 rx_msg = msg.payload.decode() #"utf-8"

117 if msg.topic == topic_demo_state:

118 demo_state = rx_msg

119 elif msg.topic == topic_demo_ready:

120 demo_ready = rx_msg

121 if (demo_ready == "Ready"):

122 print("----Next step----")

123 demo_counter = demo_counter+1

124 demo_state = demo_dict[demo_counter]

125 demo_next_ready = True

126 elif msg.topic == topic_demo_gripper:

127 demo_gripper = eval(rx_msg)[0]

128 print("Msg: demo_gripper", demo_gripper)

129 if (demo_gripper == 1):

130 print("----Next step----")

131 timesg.t_c_send_tgt = eval(rx_msg)[1]

132 timesg.t_s_recv_tgt = recv_time

133 timesg_.append(eval(rx_msg)[1])

134 print(eval(rx_msg)[1])

135 timesg_.append(recv_time)

136 demo_counter = demo_counter+1

137 demo_state = demo_dict[demo_counter]

138 demo_next_ready = True

139 elif (demo_gripper == 2):

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 111 of 141

140 print("----Gripper execution ----")

141 timesg.t_c_recv_cur = eval(rx_msg)[1]

142 timesg_.append(eval(rx_msg)[1])

143 print(eval(rx_msg)[1])

144 armg_csv_data.append(timesg_)

145 #armg_csv_data.append([

146 # timesg.t_c_send_tgt , timesg.t_s_recv_tgt , timesg.

t_s_send_cur , timesg.t_c_recv_cur])

147

148

149 else:

150 # the original message has 3 elements:

151 # 1. current positions;

152 # 2. target position received time;

153 # 3. current position sent time.

154 # We append the current position received time to it as the 4th

element.

155 tmp = eval(rx_msg)

156 tmp.append(recv_time)

157

158 if topic == consts.TOPIC_CUR1:

159 current_pos_with_time_1 = tmp

160 elif topic == consts.TOPIC_CUR2:

161 current_pos_with_time_2 = tmp

162 else:

163 #print()"Message from unknown topic: {}, this \"on_message\"

will return."format(topic))

164 return

165

166 e_new_cur.set(

167) # notify the "wait_pos" function that we receives a new

current position , and "wait_pos" will check that position.

168 """

169 print("---------------------------------")

170 print("Received message " + rx_msg)

171 print("Topic: " + rx_topic)

172 print("---------------------------------")

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 112 of 141

173 """

174 client.subscribe(consts.TOPIC_CUR1 , qos=consts.QOS_LEVEL)

175 print("Subscribed to topic: " + consts.TOPIC_CUR1)

176 client.subscribe(consts.TOPIC_CUR2 , qos=consts.QOS_LEVEL)

177 print("Subscribed to topic: " + consts.TOPIC_CUR2)

178 client.subscribe(consts.TOPIC_RDY1 , qos=consts.QOS_LEVEL)

179 print("Subscribed to topic: " + consts.TOPIC_RDY1)

180 client.subscribe(consts.TOPIC_RDY2 , qos=consts.QOS_LEVEL)

181 print("Subscribed to topic: " + consts.TOPIC_RDY2)

182 #client.subscribe(topic_mir_control , qos=consts.QOS_LEVEL)

183 #print("Subscribed to topic: " + topic_mir_control)

184 client.subscribe(topic_demo_state , qos=consts.QOS_LEVEL)

185 print("Subscribed to topic: " + topic_demo_state)

186 client.subscribe(topic_demo_ready , qos=consts.QOS_LEVEL)

187 print("Subscribed to topic: " + topic_demo_ready)

188 client.subscribe(topic_demo_gripper , qos=consts.QOS_LEVEL)

189 print("Subscribed to topic: " + topic_demo_gripper)

190 client.on_message = on_message

191

192 # loop_start will create a thread for subscribing

193 def subscriber(client: mqtt_client.Client):

194 subscribe(client)

195 client.loop_start()

196

197 # PUBLISH function

198 def publish(client: mqtt_client.Client, topic_pub , msg):

199 # We publish the message

200 result = client.publish(topic_pub , msg, qos=consts.QOS_LEVEL)

201 status = result[0]

202 if status == 0:

203 pass

204 # print(f"Successful! Sent message \"{msg}\" to topic {topic_pub}")

205 else:

206 print(f"Failed to send message \"{msg}\" to topic {topic_pub}")

207

208

209 def move_arm1(client, positions):

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 113 of 141

210 current_time = time.time()

211 do_time = current_time + timestamp_to_delay

212 publish(

213 client, consts.TOPIC_TGT1 , "[{}, {}, {}, {}, {}, {}, {}]".format(

214 positions[0], positions[1],

215 positions[2], positions[3],

216 positions[4], positions[5],

217 do_time))

218 # Instead of directly write them into files, we save them in variables

and write to files later. This is to avoid the possible effects from I/O.

219 arm1_csv_data.append([

220 times1.t_c_send_tgt , times1.t_s_recv_tgt , times1.t_s_send_cur ,

221 times1.t_c_recv_cur

222])

223

224 def move_arm2(client, positions):

225 current_time = time.time()

226 do_time = current_time + timestamp_to_delay

227 publish(

228 client, consts.TOPIC_TGT2 , "[{}, {}, {}, {}, {}, {}, {}]".format(

229 positions[0], positions[1],

230 positions[2], positions[3],

231 positions[4], positions[5],

232 do_time))

233 # Instead of directly write them into files, we save them in variables

and write to files later. This is to avoid the possible effects from I/O.

234 arm1_csv_data.append([

235 times2.t_c_send_tgt , times2.t_s_recv_tgt , times2.t_s_send_cur ,

236 times2.t_c_recv_cur

237])

238

239 def move_gripper(client, position):

240 global timesg_, armg_csv_data

241 current_time = time.time()

242 do_time = current_time# + timestamp_to_delay

243 publish(client, consts.TOPIC_GRIP1 , "[{}, {}, {}]".format(3, position,

do_time))

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 114 of 141

244 timesg.t_s_send_cur = current_time

245 timesg_.append(current_time)

246

247 def move_mir(client, movement):

248 global timesmir, armmir_csv_data

249 current_time = time.time()

250 do_time = current_time + timestamp_to_delay

251 publish(client, topic_mir_control , movement)#"[{}, {}]".format(movement ,

do_time))

252 armmir_csv_data.append([

253 timesmir.t_c_send_tgt , timesmir.t_s_recv_tgt , timesmir.

t_s_send_cur ,

254 timesmir.t_c_recv_cur

255])

256

257 # Function used for executing the movement

258 def move_arms(client, pos_arm1 , pos_arm2):

259 global times1, times2, arm1_csv_data , arm2_csv_data

260

261 e_new_cur.clear() # unset the event

262 current_time = time.time()

263 do_time = current_time + timestamp_to_delay

264 publish(

265 client, consts.TOPIC_TGT1 , "[{}, {}, {}, {}, {}, {}, {}]".format(

266 pos_arm1[0], pos_arm1[1],

267 pos_arm1[2], pos_arm1[3],

268 pos_arm1[4], pos_arm1[5],

269 do_time))

270 # the above publish needs some time, because it includs network

transmission , so we need to get the time again here, to accurately

measure the data transmission time of the second arm.

271 topic2_pub_time = time.time()

272 publish(

273 client, consts.TOPIC_TGT2 , "[{}, {}, {}, {}, {}, {}, {}]".format(

274 pos_arm2[0], pos_arm2[1],

275 pos_arm2[2], pos_arm2[3],

276 pos_arm2[4], pos_arm2[5],

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 115 of 141

277 do_time))

278 times1.t_c_send_tgt = current_time

279 times2.t_c_send_tgt = topic2_pub_time

280 wait_pos(pos_arm1, pos_arm2)

281 # Instead of directly write them into files, we save them in variables

and write to files later. This is to avoid the possible effects from I/O.

282 arm1_csv_data.append([

283 times1.t_c_send_tgt , times1.t_s_recv_tgt , times1.t_s_send_cur ,

284 times1.t_c_recv_cur

285])

286 arm2_csv_data.append([

287 times2.t_c_send_tgt , times2.t_s_recv_tgt , times2.t_s_send_cur ,

288 times2.t_c_recv_cur

289])

290

291 # Function used for waiting to the final position

292 def wait_pos(pos1, pos2):

293 global times1, times2

294

295 while True:

296 # if controller does not receive a new current position from arms,

the code will be blocked here.

297 # The timeout is for the possibility that the that "the last set" of

the event is before clear() after reading the shared_value. Therefore ,

we do a check if we have not received a new position in a double period

of RTDE.

298 e_new_cur.wait(timeout=1 / consts.RTDE_FREQ * 2)

299

300 # Even we have the above e_new_cur.wait(), we still this "check None

", because e_new_cur will be set when either current_pos_with_time_1 or

current_pos_with_time_2 is set, but the other one may still be None.

301 if current_pos_with_time_2 is None:

302 # at the beginning this variable is None, which will make the

following code crash, so we should continue here

303 continue

304

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 116 of 141

305 # We get the current ur5 position of the joints and convert it to

list

306 # print("CURRENT POS B4 CONVERT: ", current_pos)

307 dest_pos2 = pos2

308

309 # in case of variables changes during the following code

310 tmp_current_pos_with_time_2 = current_pos_with_time_2

311

312 # clear the event after reading the latest current positions , so the

next loop will still be blocked until receiving the next current

position

313 e_new_cur.clear()

314

315 # The 1st element of current_pos_with_time_X is a stringed list of

current joints positions

316 current_mqtt_position2 = tmp_current_pos_with_time_2[0]

317

318 time_tgt_recv_2 = tmp_current_pos_with_time_2[1]

319 time_cur_sent_2 = tmp_current_pos_with_time_2[2]

320 time_cur_recv_2 = tmp_current_pos_with_time_2[3]

321

322 # both the 2 arms reaches their target positions

323 if my_tools.joints_pos_equal(dest_pos2 , current_mqtt_position2):

324 break

325

326

327 def write_data():

328 logging.info("Write measurement data into csv files.")

329 #my_tools.write_csv_file(consts.DATA_FILE_ARM1 , arm1_csv_data)

330 #my_tools.write_csv_file(consts.DATA_FILE_ARM2 , arm2_csv_data)

331 my_tools.write_csv_file("saved_data/data_gripper_" + str(int(time.time()

)) + ".csv", armg_csv_data)

332 #my_tools.write_csv_file(consts.DATA_FILE_ARM2+"m", armg_csv_data)

333 #arm1_csv_data.clear()

334 #arm2_csv_data.clear()

335 armg_csv_data.clear()

336 #armmir_csv_data.clear()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 117 of 141

337

338

339 # Main function

340 def run():

341 global demo_state , demo_mision , demo_counter , demo_next_ready

342

343 demo_counter = 0

344 demo_state = demo_dict[demo_counter]

345 demo_next_ready = True

346 try:

347 # We connect

348 client = connect_mqtt()

349 # subscribe and loop_start

350 subscriber(client)

351

352 mir = mir_api_s.MiR()

353

354 while (demo_counter!=7):

355 if (demo_counter == 0 and demo_next_ready == True):

356 demo_next_ready = False

357 print("Moving arm1, arm2 and gripper")

358 g_position = 2 # Closed

359 move_gripper(client, g_position)

360 position_arm1 = static_arm0_rad

361 position_arm2 = motion_rad1

362 #move_arm1(client, position_arm1)

363 #move_arm2(client, position_arm2)

364 #wait_pos(position_arm1 , position_arm2)

365 move_arms(client, position_arm1 , position_arm2)

366 print("----Next step----") #Doesn't wait for the "Ready"

367 demo_counter = demo_counter+1

368 demo_state = demo_dict[demo_counter]

369 demo_next_ready = True

370

371 elif (demo_counter == 1 and demo_next_ready == True):

372 demo_next_ready = False

373 print("Moving mir to start of relative move")

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 118 of 141

374 move_mir(client, "demo-relstart")

375 #publish(client, topic_mir_control , "demo-relstart")#"[{}]".

format(position))

376

377 elif (demo_counter == 2 and demo_next_ready == True):

378 demo_next_ready = False

379 print("Move both arms out")

380 position_arm1 = static_arm1_rad

381 position_arm2 = motion_rad2

382 #move_arm1(client, position_arm1)

383 #move_arm2(client, position_arm2)

384 #wait_pos(position_arm1 , position_arm2)

385 move_arms(client, position_arm1 , position_arm2)

386 print("----Next step----") #Doesn't wait for the "Ready"

387 demo_counter = demo_counter+1

388 demo_state = demo_dict[demo_counter]

389 demo_next_ready = True

390

391 elif (demo_counter == 3 and demo_next_ready == True):

392 demo_next_ready = False

393 print("Start relative move")

394 move_mir(client, "demo-relmove")

395 #publish(client, topic_mir_control , "demo-relmove")#"[{}]".

format(position))

396 #time.sleep(2+0.2) # 1/0.5

397

398 elif (demo_counter == 4 and demo_next_ready == True):

399 demo_next_ready = False

400 print("Gripper opened")

401 g_position = 1 # Opened

402 move_gripper(client, g_position)

403

404 elif (demo_counter == 5 and demo_next_ready == True):

405 demo_next_ready = False

406 print("Move tray back")

407 g_position = 0 # Intermidiate

408 move_gripper(client, g_position)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 119 of 141

409 position_arm1 = static_arm0_rad

410 position_arm2 = motion_rad1

411 #move_arm1(client, position_arm1)

412 #move_arm2(client, position_arm2)

413 #wait_pos(position_arm2)

414 move_arms(client, position_arm1 , position_arm2)

415 print("----Next step----") #Doesn't wait for the "Ready"

416 demo_counter = demo_counter+1

417 demo_state = demo_dict[demo_counter]

418 demo_next_ready = True

419 write_data()

420

421 elif (demo_counter == 6 and demo_next_ready == True):

422 demo_next_ready = False

423 print("Move MiR to finish position")

424 move_mir(client, "demo-start")

425

426

427 time.sleep(0.001)

428

429

430 except (KeyboardInterrupt , SystemExit):

431 print("KeyboardInterrupt")

432 finally:

433 client.loop_stop()

434 client.unsubscribe(consts.TOPIC_CUR1)

435 client.unsubscribe(consts.TOPIC_CUR2)

436 client.disconnect()

437

438

439 if __name__ == '__main__':

440 run()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 120 of 141

A.4.- my_tools.py

This is the Python code with some of the used functions (”my_tools.py”) that is used by both

Slave programs.

1 import csv

2 import paho.mqtt.client as mqtt

3

4 import consts

5

6

7 # PUBLISH function

8 def publish(client: mqtt.Client, topic_pub , msg):

9 # We publish the message

10 result = client.publish(topic_pub , msg, qos=consts.QOS_LEVEL)

11 status = result[0]

12 if status == 0:

13 pass

14 # print(f"Successful! Sent message \"{msg}\" to topic {topic_pub}")

15 else:

16 print(f"Failed to send message \"{msg}\" to topic {topic_pub}")

17

18

19 # Check whether 2 joints positions are equal

20 def joints_pos_equal(pos1: list[float], pos2: list[float]) -> bool:

21 if len(pos1) != len(pos2):

22 return False

23 for i, _ in enumerate(pos1):

24 if abs(pos1[i] - pos2[i]) > consts.POS_EQ_THR:

25 return False

26 # The 2 positions are equal only when all joints are equal.

27 return True

28

29

30 # initialize a csv data file with headers

31 def init_csv_file(file_name: str, headers: list[str]):

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 121 of 141

32 with open(file_name , 'w', newline='') as csv_file:

33 writer = csv.writer(csv_file , delimiter=",")

34 writer.writerow(headers)

35

36

37 # append multiple lines to a csv data file

38 def write_csv_file(file_name: str, data: list[list[float]]):

39 with open(file_name , 'a', newline='') as csv_file:

40 writer = csv.writer(csv_file , delimiter=",")

41 writer.writerows(data)

42

43

44 # read the headers and data from a csv file

45 def read_csv_file(csv_file_name: str):

46 with open(csv_file_name , 'r') as csv_file:

47 csv_reader = csv.reader(csv_file, delimiter=",")

48

49 # read headers and initialize data arrays

50 cdf_headers = next(csv_reader)

51 cdf_data = [[] for i in range(len(cdf_headers))]

52

53 # read data

54 for row in csv_reader:

55 for idx, one_data in enumerate(row):

56 cdf_data[idx].append(float(one_data))

57

58 return cdf_headers , cdf_data

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 122 of 141

A.5.- consts.py

This is the Python code with some of the used constants (”consts.py”) that is used by both

Slave programs.

1 import math

2

3 # Broker information

4 BROKER_IP = "192.168.100.173"

5 BROKER_PORT = 1883

6 BROKER_USER = "testbed"

7 BROKER_PASSWD = "1234"

8

9 # target arm joints topics

10 TOPIC_TGT_PREFIX = "joints_val"

11 TOPIC_TGT1 = TOPIC_TGT_PREFIX + "1"

12 TOPIC_TGT2 = TOPIC_TGT_PREFIX + "2"

13

14 # current arm joints topics

15 TOPIC_CUR_PREFIX = "current_val"

16 TOPIC_CUR1 = TOPIC_CUR_PREFIX + "1"

17 TOPIC_CUR2 = TOPIC_CUR_PREFIX + "2"

18

19 # arm ready topics

20 TOPIC_RDY_PREFIX = "ready"

21 TOPIC_RDY1 = TOPIC_RDY_PREFIX + "1"

22 TOPIC_RDY2 = TOPIC_RDY_PREFIX + "2"

23

24 # grip topics

25 TOPIC_GRIP_PREFIX = "Grip"

26 TOPIC_GRIP1 = TOPIC_GRIP_PREFIX + "1"

27 TOPIC_GRIP2 = TOPIC_GRIP_PREFIX + "2"

28

29 # The QoS level of MQTT messages

30 QOS_LEVEL = 0

31

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 123 of 141

32 # RTDE check frequency

33 RTDE_FREQ = 57 # unit: Hz

34

35 # The threshold that we use to check whether 2 joint positions are the same

36 POS_EQ_THR = 0.000175 * 5

37 '''

38 # Our threshold is 0.01/180*pi = 0.000175 (this is our error of position in

radians of every joint)

39 # This is because the robot joint usually changes the 0.01 degree, it is not

stable

40 # We will do it with the threshold 5 times

41 '''

42

43 # joints positions that compose the path of Arm 1

44 ALL_POSITIONS1 = [

45 [-1.57, -2.007, -2.269, -2.007, -1.57, 1.57],

46 [0.5, -2.007, -2.269, -2.007, -1.57, 1.57]

47]

48

49 # joints positions that compose the path of Arm 2

50 ALL_POSITIONS2 = [

51 [-1.57, -2.007, -2.269, -2.007, -1.57, 1.57],

52 [0.5, -2.007, -2.269, -2.007, -1.57, 1.57]

53]

54

55 # the index of the arm positions at which we need to operate the grippers

56 POS_IDX_GRIP = 6

57

58 # constants about csv data files

59 DATA_FILE_ARM1 = "data_arm_1.csv"

60 DATA_FILE_ARM2 = "data_arm_2.csv"

61 CSV_DATA_HEADERS = [

62 "Controller sends target", "Arm receives target", "Arm sends current",

63 "Controller receives current"

64]

65 ARM1_NTP_OFFSET_FILE = "arm1_ntp_offset.csv"

66 ARM2_NTP_OFFSET_FILE = "arm2_ntp_offset.csv"

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 124 of 141

67 CONTROLLER_NTP_OFFSET_FILE = "controller_ntp_offset.csv"

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 125 of 141

A.6.- mir_api_s.py

This is the Python code with some of the used constants (”mir_api_s.py”) that is used by the

”mqtt_Slave_mobile.py” program.

1 import requests

2 import json

3 import math

4 import time

5

6 import urllib3

7

8 class MiR():

9

10 def __init__(self):

11

12 self.headers = {}

13 self.headers['Content-Type'] = 'application/json'

14 self.headers['Accept-Language'] = 'en_US'

15 self.headers['Authorization'] = 'Basic

RGlzdHJpYnV0b3I6NjJmMmYwZjFlZmYxMGQzMTUyYzk1ZjZmMDU5NjU3NmU0ODJiYjhlNDQ4MDY0MzNmNGNmOTI5NzkyODM0YjAxNA

=='

16 #

YWRtaW46OGM2OTc2ZTViNTQxMDQxNWJkZTkwOGJkNGRlZTE1ZGZiMTY3YTljODczZmM0YmI4YTgxZjZmMmFiNDQ4YTkxOA

=='

17 self.group_id = 'mirconst -guid -0000-0011-missiongroup'

18 self.session_id = '85cd7f3f-f2b7-11ea-ad20 -0001299f16e3' #'a2f5b1e6 -

d558-11ea-a95c -0001299f04e5'

19 self.local_link = "https://192.168.12.20/api/v2.0.0/"

20 self.external_link = "https://192.168.100.51/api/v2.0.0/"

21 self.mission_dict = {

22 "demo-start": "00e6b5b0 -0628-11ef-b2f8-20a7870098ae",

23 "demo-placement": "80597d2b-0627-11ef-b2f8-20a7870098ae",

24 "demo-finish": "0c4fc706 -0628-11ef-b2f8-20a7870098ae",

25 "demo-relstart": "e8459301 -0720-11ef-bf68-20a7870098ae",

26 "demo-relmove": "ced8d6a8 -06cd-11ef-bf68-20a7870098ae"

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 126 of 141

27 }

28 urllib3.disable_warnings()

29

30 # get the system information

31 def get_system_info(self, mir_ip):

32 result = requests.get(mir_ip + 'status', headers=self.headers,

verify=False)

33

34 return result.json()

35

36 # get all missions

37 def get_all_missions(self, mir_ip):

38 result = requests.get(mir_ip + 'missions', headers=self.headers,

verify=False)

39

40 return result.json()

41

42 # get missions

43 def get_specific_mission(self, mir_ip, guid):

44 result = requests.get(mir_ip + 'missions/' + guid, headers=self.

headers, verify=False)

45

46 return result.json()

47

48 # get actions of a missions

49 def get_actions_of_mission(self, mir_ip, guid):

50 result = requests.get(mir_ip + 'missions/' + guid + '/actions',

headers=self.headers, verify=False)

51

52 return result.json()

53

54 # get all maps infomation

55 def get_maps(self, mir_ip):

56 result = requests.get(mir_ip + 'maps', headers=self.headers, verify=

False)

57

58 return result.json()

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 127 of 141

59

60 def get_specific_maps(self, mir_ip, guid):

61 result = requests.get(mir_ip + 'maps/' + guid, headers=self.headers,

verify=False)

62

63 return result.json()

64

65 def get_register(self, mir_ip):

66 result = requests.get(mir_ip + 'registers', headers=self.headers,

verify=False)

67

68 return result.json()

69

70

71 # get specific map by the map name

72 def get_map_positions(self, mir_ip, map_name):

73 result = requests.get(mir_ip + 'maps/' + map_name + '/positions',

headers=self.headers, verify=False)

74

75 return result.json()

76

77 # get positions details

78

79 def get_all_position(self, mir_ip):

80 result = requests.get(mir_ip + 'positions', headers=self.headers,

verify=False)

81

82 return result.json()

83

84 # get positions details

85 def get_specific_position(self, mir_ip, guid):

86 result = requests.get(mir_ip + 'positions/' + guid, headers=self.

headers, verify=False)

87

88 return result.json()

89

90 # get a specific guid from the name of a position

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 128 of 141

91 def get_position_guid(self, mir_ip, name):

92 positions = self.get_all_position(mir_ip)

93 for item in positions:

94 if item['name'] == name:

95 guid = item['guid']

96 break

97

98 return guid

99

100 # post a new mission

101 def post_mission(self, mir_ip, name):

102 parameters = {"name": name, "hidden": False, "group_id": self.

group_id , 'session_id': self.session_id}

103 post_mission = requests.post(mir_ip + 'missions', json=parameters ,

headers=self.headers, verify=False)

104 print(post_mission)

105

106 return post_mission.json()

107

108 # post actions to mission

109 def post_action_to_mission(self, mir_ip, mission_id , position_id ,

action_type):

110 parameters = {'action_type': action_type , 'mission_id': mission_id ,

111 'parameters': [

112 {'id': 'position', 'input_name': None, 'value': position_id},

113 {'id': 'cart_entry_position', 'input_name': None, 'value': 'main'},

114 {'id': 'main_or_entry_position', 'input_name': None, 'value': 'main'

},

115 {'id': 'marker_entry_position', 'input_name': None, 'value': 'entry'

},

116 {'id': 'retries', 'input_name': None, 'value': 10},

117 {'id': 'distance_threshold', 'input_name': None, 'value': 0.1}],

118 'priority': 1}

119

120 result = requests.post(mir_ip + 'missions/' + mission_id + '/actions

', json=parameters , headers=self.headers, verify=False)

121

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 129 of 141

122 return result.json()

123

124 # post position

125 def post_position(self, mir_ip, name):

126

127 system_info = self.get_system_info(mir_ip)

128 position = system_info['position']

129 pos_x = position['x']

130 pos_y = position['y']

131 orientation = position['orientation']

132 map_id = system_info['map_id']

133

134 parameters = {"name": name, "pos_x": pos_x, "pos_y": pos_y, "

orientation": orientation , "type_id": 0,

135 "map_id": map_id}

136 post_position = requests.post(mir_ip + 'positions', json=parameters ,

headers=self.headers, verify=False)

137

138 def post_to_mission_queue(self, mir_ip, mission_id):

139 mission_id = {"mission_id": mission_id}

140 post_mission = requests.post(mir_ip + 'mission_queue', json=

mission_id , headers=self.headers, verify=False)

141

142 return post_mission

143

144 def get_mission_queue(self, mir_ip):

145 result = requests.get(mir_ip + 'mission_queue', headers=self.headers

, verify=False)

146

147 return result.json()

148

149 def get_spe_mission_from_queue(self, mir_ip, queue_id):

150 result = requests.get(mir_ip + 'mission_queue/' + queue_id , headers=

self.headers, verify=False)

151

152 return result.json()

153

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 130 of 141

154 # pause robot executing

155 def put_state_to_pause(self, mir_ip):

156 parameters = {"state_id": 4}

157 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

158

159 # start executing

160 def put_state_to_execute(self, mir_ip):

161 parameters = {"state_id": 3}

162 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

163

164 # start mir

165 def put_state_to_start(self, mir_ip):

166 parameters = {"state_id": 1}

167 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

168

169 # start shutdown

170 def put_state_to_shutdown(self, mir_ip):

171 parameters = {"state_id": 2}

172 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

173

174 # Abort Mission

175 def put_state_to_abort(self, mir_ip):

176 parameters = {"state_id": 6}

177 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

178

179 # get the details of a mission

180 def get_mission_guid(self, mir_ip, name):

181 missions = self.get_all_missions(mir_ip)

182 for item in missions:

183 if item['name'] == name:

184 mission = self.get_specific_mission(mir_ip, item['guid'])

185 break

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 131 of 141

186

187 return mission['guid']

188

189 # function for deleting missions by name

190 def delete_mission(self, mir_ip, name):

191 missions = self.get_all_missions()

192 result = None

193 for item in missions:

194 if item['name'] == name:

195 guid = item['guid']

196 result = requests.delete(mir_ip + 'missions/' + guid,

headers=self.headers, verify=False)

197 break

198

199 if result == None:

200 result = 'No mission named {0}'.format(name)

201

202 return result

203

204 # function for deleting positions by name

205 def delete_position(self, mir_ip, name):

206 positions = self.get_all_position(mir_ip)

207 result = None

208 for item in positions:

209 if item['name'] == name:

210 guid = item['guid']

211 result = requests.delete(mir_ip + 'positions/' + guid,

headers=self.headers, verify=False)

212 # break

213 if result == None:

214 result = 'No position named {0}'.format(name)

215

216 return result

217

218 # get details of a specific mission's actions

219 def get_details_mission_actions(self, guid):

220 actions = self.get_actions_of_mission(guid)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 132 of 141

221 len_actions = len(actions)

222 i = 1

223 for item in actions:

224 guid = item['parameters'][0]['value']

225 result = self.get_specific_position(guid)

226 i = i + 1

227 text = 'text'

228

229 return text

230

231 # create a mission with a certain name and return it's guid

232 def create_mission(self, name):

233 result = self.post_mission(name)

234 print(result)

235 mission_id = result['guid']

236

237 return mission_id

238

239 # create an action in a specific mission with a default action_type move

240 def create_action(self, mission_id , position_name , action_type='move'):

241 all_position = self.get_all_position()

242 for item in all_position:

243 if item['name'] == position_name:

244 guid = item['guid']

245 break

246 # create an action with the specific type

247 result = self.post_action_to_mission(mission_id , guid, action_type)

248

249 return result, guid

250

251 # calculate distance in meters between two points

252 # def cal_distance(self, origin, dist):

253

254 # return geodesic(origin, dist).meters

255

256 # get the current position of the robot if accessible otherwise return

None

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 133 of 141

257 def get_current_position(self, mir_ip):

258 sys_info = None

259 tries = 0

260 while tries < 10:

261 try:

262 sys_info = self.get_system_info(mir_ip)

263 origin = (sys_info['position']['x'], sys_info['position']['y

'], sys_info['position']['orientation'])

264 return origin

265

266 except KeyError:

267 print('Retrying to get information!', 'Time: ', time.time())

268 time.sleep(0.1)

269

270 return None

271

272 # get the position defined on the map with the shortest eucledian

distance to the robot

273 def get_nearest_position(self):

274 origin = self.get_current_position()

275 all_positions = self.get_all_position()

276 best_distance = float("inf")

277 cloest_location = ''

278 for item in all_positions:

279 if item['name'] != 'Config position':

280 position = self.get_specific_position(item['guid'])

281 dist = (position['pos_x'], position['pos_y'])

282 temp_distance = self.cal_distance(origin, dist)

283 if temp_distance < best_distance:

284 best_distance = temp_distance

285 cloest_location = item['name']

286

287 return (best_distance , cloest_location)

288

289 # check if the destination has been reached by comparing current

position to a specific position

290 def check_reach_des(self):

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 134 of 141

291 origin = self.get_current_position()

292 all_positions = self.get_all_position()

293 best_distance = float("inf")

294 cloest_location = ''

295 for item in all_positions:

296 if item['name'] != 'Config position':

297 position = self.get_specific_position(item['guid'])

298 temp_distance = math.sqrt(

299 math.pow(

300 origin[0] -

301 position['pos_x'],

302 2) +

303 math.pow(

304 origin[1] -

305 position['pos_y'],

306 2))

307 if temp_distance < best_distance:

308 best_distance = temp_distance

309 cloest_location = item['name']

310

311 return best_distance , cloest_location

312

313 # get details of the mission that is currently being executed

314 def get_exe_mission(self):

315 exe_mission = self.get_mission_queue()

316 mission_name = 'None'

317 for item in exe_mission:

318 if item['state'] == 'Executing':

319 mission_gen = self.get_spe_mission_from_queue(str(item['id'

]))

320 mission_detail = self.get_specific_mission(mission_gen['

mission_id'])

321 mission_name = mission_detail['name']

322

323 return mission_name

324

325 def is_mission_exe(self, mir_ip):

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 135 of 141

326 mission_queue = self.get_mission_queue(mir_ip)

327 for item in mission_queue:

328 if item['state'] == 'Executing':

329 return True

330

331 return False

332

333 # Check if there are pending missions in the queue

334 def is_mission_pend(self, mir_ip):

335 mission_queue = self.get_mission_queue(mir_ip)

336 for item in mission_queue:

337 if item['state'] == 'Pending':

338 return True

339

340 return False

341

342 # Check if a mission is done or not

343 def is_mission_done_or_not(self, id):

344 exe_mission = self.get_mission_queue()

345

346 for item in exe_mission:

347 print(item)

348 if (item['id'] == id):

349 print(item['state'])

350 if (item['id'] == id) and (item['state'] == 'Done'):

351 return True

352

353 return False

354

355 def is_latest_mission_done(self,mir_ip):

356 exe_mission = self.get_mission_queue(mir_ip)

357 if exe_mission[-1]['state'] == 'Done':

358 return True

359

360 return False

361

362 # move the mir robot with joystick using continuos velocity messages

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 136 of 141

363 def move_mir(self, mir_ip, state_id , velocity , joystick_web_session_id):

364 parameters = {"velocity":velocity}

365 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

366

367 # added so the position of the MiR can be changed

368 def set_position(self, mir_ip, guid, x, y , orientation):

369 parameters = {"pos_x": x, "pos_y": y, "orientation": orientation}

370 response = requests.put(mir_ip + "positions/" + guid, headers=self.

headers, json=parameters , verify=False)

371

372 return response.json()

373

374 # change the state of the robot manually from (1 to 5)

375 def chang_manual(self, mir_ip, state_id):

376 parameters = {"state_id": state_id}

377 requests.put(mir_ip + 'status', json=parameters , headers=self.

headers, verify=False)

378

379 # Send mission to mir

380 def set_mission(self, mir_ip, GUID):

381 data = {"mission_id": GUID}

382 response = requests.post(mir_ip + "mission_queue", headers=self.

headers, json=data, verify=False)

383

384 return response.json()

385

386 # Delete the mission queue

387 def delete_mission_queue(self, mir_ip):

388 response = requests.delete(mir_ip + "mission_queue/", headers=self.

headers, verify=False)

389

390 # Delete a specific mission based upon mission_id

391 def delete_specific_mission(self, mir_ip, guid):

392 response = requests.delete(mir_ip + "mission_queue/" + guid, headers

=self.headers, verify=False)

393

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 137 of 141

394 return response.json()

395

396 def move_to_coordinate(self, mir_ip, x_dst, y_dst,ori):

397 move_to_coordinate = {

398 'mission_id': '3eb49381-face-11ed-a1eb -000e8e98416b',

399 'parameters': [

400 {'input_name': 'x', 'value': x_dst},

401 {'input_name': 'y', 'value': y_dst},

402 {"input_name": "ori", "value":ori}

403],

404 'message': '',

405 'priority': 1

406 }

407 response = requests.post(mir_ip + "mission_queue", headers=self.

headers, json=move_to_coordinate , verify=False)

408

409 def move_to_pos(self, mir_ip, mission_id , pos_guid):

410 move_to_pos = {

411 'mission_id': mission_id ,

412 'parameters': [

413 {'input_name': 'pos', 'value': pos_guid}

414],

415 'message': '',

416 'priority': 1

417 }

418 response = requests.post(mir_ip + "mission_queue", headers=self.

headers, json=move_to_pos , verify=False)

419 # print(response)

420

421 def set_desired_speed(self, mir_ip, speed):

422 body = {'value': speed}

423 response = requests.put(mir_ip + "settings/2078", headers=self.

headers, json=body, verify=False)

424

425 def set_path_deviation(self, mir_ip, deviation):

426 body = {'value': deviation}

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 138 of 141

427 response = requests.put(mir_ip + "settings/2070", headers=self.

headers, json=body, verify=False)

428

429 def set_maximum_distance_from_path(self, mir_ip, dist):

430 body = {'value': dist}

431 response = requests.put(mir_ip + "settings/1769", headers=self.

headers, json=body, verify=False)

432

433 def set_waiting_for_obstacle(self, mir_ip, sec):

434 body = {'value': sec}

435 response = requests.put(mir_ip + "settings/2069", headers=self.

headers, json=body, verify=False)

436

437 def post_pos_to_path(self, mir_ip, path_guid , pos_guid , pos_type):

438 parameters = {

439 "path_guide_guid": path_guid ,

440 "pos_guid": pos_guid ,

441 "pos_type": pos_type ,

442 "priority": 1

443 }

444 response = requests.post(mir_ip + 'path_guides/' + path_guid + '/

positions', json = parameters , headers = self.headers)

445

446 def get_map_guid(self, mir_ip, name):

447 result = self.get_maps(mir_ip)

448 for item in result:

449 if item['name'] == name:

450 guid = item['guid']

451 break

452

453 return guid

454

455 def get_all_path(self, mir_ip, map_id):

456 response = requests.get(mir_ip + 'maps/' + map_id + '/path_guides',

headers = self.headers)

457 return response.json()

458

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 139 of 141

459 def get_path_guid(self, mir_ip, map_id, name):

460 response = self.get_all_path(mir_ip, map_id)

461 for item in response:

462 if item['name'] == name:

463 guid = item['guid']

464 break

465

466 return guid

467

468 def post_zone(self, mir_ip, map_name , zone_name , type, cell_points):

469 map_id = self.get_map_guid(mir_ip, map_name)

470

471 body = {

472 "name": zone_name ,

473 "type_id": type,

474 "polygon": [

475 {

476 "x": cell_points[0][0],

477 "y": cell_points[0][1]

478 },

479 {

480 "x": cell_points[1][0],

481 "y": cell_points[1][1]

482 },

483 {

484 "x": cell_points[2][0],

485 "y": cell_points[2][1]

486 },

487 {

488 "x": cell_points[3][0],

489 "y": cell_points[3][1]

490 }

491],

492 "map_id": map_id,

493 }

494 response = requests.post(mir_ip + 'zones', headers=self.headers,

json = body, verify=False)

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 140 of 141

495

496 def get_all_zone(self, mir_ip):

497 result = requests.get(mir_ip + 'zones', headers=self.headers, verify

=False)

498

499 return result.json()

500

501 def get_zone_type(self, mir_ip, name):

502 zones = self.get_all_zone(mir_ip)

503 result = None

504 for item in zones:

505 if item['name'] == name:

506 result = item['type_id']

507 # break

508 if result == None:

509 result = 'No zone named {0}'.format(name)

510

511 return result

512

513 def delete_zone(self, mir_ip, name):

514 zones = self.get_all_zone(mir_ip)

515 result = None

516 for item in zones:

517 if item['name'] == name:

518 guid = item['guid']

519 result = requests.delete(mir_ip + 'zones/' + guid, headers=

self.headers, verify=False)

520 # break

521 if result == None:

522 result = 'No zone named {0}'.format(name)

523

524 return result

525

526 def is_waiting_for_obstacle(self, mir_ip):

527 status = self.get_system_info(mir_ip)

528

529 text = status['mission_text']

Miguel Villanueva Fernández

UNIVERSIDAD DE OVIEDO
Escuela Politécnica de Ingeniería de Gijón Page 141 of 141

530 if ("Waiting for obstacles" in str(text)):

531

532 return True

533

534 return False

535

536

537

538

539 def clear_errors(self, mir_ip):

540 status = self.get_system_info(mir_ip)

541

542 body = {'clear_error': True}

543

544 try:

545 response = requests.put(mir_ip + 'status', headers=self.headers,

json=body, verify=False)

546 except Exception as e:

547 print("Fatal error")

Miguel Villanueva Fernández

	Introduction
	Motivation
	State of the Art
	Wired/Ethernet networks
	Wireless industrial networks

	Thesis application scenario
	Objectives
	Thesis outline

	Project Fundamentals
	Data communication
	5G
	WiFi 6/6E
	OSI model

	Hardware
	5G network
	Wireless gateway
	UR robotic arms
	MiR robots
	ER robot

	Time Synchronization in industrial 5G systems
	Introduction
	Network Time Protocol
	Chrony

	Robust NTP synchronization in industrial 5G
	NTP server configuration
	Base NTP client configuration
	Base NTP client measurements
	Optimized NTP client configuration
	Optimized NTP client measurements

	Time synchronization conclusions

	Design and Development of an Industrial Testbed with Coordinated Robots
	General requirements
	Physical architecture
	Software architecture
	5G gateway configuration for IT/OT integration
	Static UR robot
	Mobile ER robot (MiR+UR)
	Master Controller
	MQTT broker implementation
	Message sequence diagrams

	Operational KPIs for the demonstration execution
	Industrial Testbed Development Conclusions

	Validation and Performance Evaluation Results
	Validation
	Industrial use case performance evaluation results over 5G
	KPI1: Operational Closed Control Loop Latency
	KPI2: Percentage of Successful Iterations

	Industrial use case performance evaluation results over WiFi 6E
	KPI1: Operational Closed Control Loop Latency
	KPI2: Percentage of Successful Iterations

	Validation and Performance Evaluation Conclusions

	Conclusions and future work
	Conclusions
	Future work
	Better time synchronization
	Centralised controller functions
	Intel RealSense camera streaming

	Code developed for the Use Case Implementation
	mqtt_Slave_static.py
	mqtt_Slave_mobile.py
	mqtt_Slave_controler.py
	my_tools.py
	consts.py
	mir_api_s.py

