
ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN

GRADO EN INGENIERÍA INFORMÁTICA EN TECNOLOGÍAS DE
LA INFORMACIÓN

Lenguajes y Sistemas Informáticos

Dispositivo IoT para la monitorización de pacientes de psiquiatrı́a

Noriega Rodrigo, D. Iván

TUTORES:
TUTOR: Muñı́z Sánchez, D. Rubén
COTUTOR: Dı́az González, D. Juan

FECHA: Julio 2024

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 2 of 81

Table of contents
Table of contents 2

List of figures 4

List of tables 5

1 Abstract 6

2 Purpose and Scope 7
2.1 Background . 7
2.2 Idea and objective . 7

3 System Definition and Analysis of Alternatives 9
3.1 Heart Rate Sensor . 9
3.2 Microcontroller . 11

3.2.1 Raspberry Pi Pico . 11
3.2.2 ESP32 . 12
3.2.3 Arduino Family . 13
3.2.4 STM32 Family . 14
3.2.5 Final microcontroller selection . 14

3.3 Other sensors . 14
3.3.1 INMP441 Microphone . 15
3.3.2 SHT21 Temperature and humidity 15
3.3.3 MPU6050 Intertial Measurement Unit 16

3.4 Protocols and communication . 16
3.4.1 SPI . 17
3.4.2 I2C . 17
3.4.3 I2S . 18
3.4.4 MQTT . 19

3.5 Alert handling . 19
3.5.1 FCM (Firebase Cloud Messaging) 20
3.5.2 MQTT and external alert forwarder 21
3.5.3 Android App . 21

3.6 Overall System . 22
3.6.1 Physical support and hardware . 22

4 System Development 28
4.1 Hardware Development . 28

4.1.1 First designs . 28
4.1.2 Sports-band for heart rate monitoring 29
4.1.3 Printed Circuit Board . 30
4.1.4 Second Circuit Board . 30

4.2 Microcontroller Software Development 32
4.2.1 Module List . 32
4.2.2 Library dependencies . 35
4.2.3 Configuration module . 36

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 3 of 81

4.2.4 Value Handler module . 37
4.2.5 Heart rate module . 39
4.2.6 IMU module . 41
4.2.7 SHT module . 43
4.2.8 Microphone module . 44
4.2.9 WiFiManager module . 45
4.2.10 MQTT module . 46
4.2.11 RPC module . 48
4.2.12 Real-time Sensor data stream module 52
4.2.13 Real-time audio stream . 54

4.3 Server Configuration . 55
4.3.1 Alert forwarder and crontab . 55
4.3.2 Docker configuration . 56

4.4 Supporting Software Development . 56
4.4.1 MQTT-Firebase alert forwarder 57
4.4.2 Android app: NotificationsTFG 57
4.4.3 Real-time Sensor data stream listener 58
4.4.4 Audio data stream listener . 58

4.5 Future work . 59
4.5.1 Sports band compatible board . 59
4.5.2 Android app improvements . 60
4.5.3 Reactive data logging . 60
4.5.4 Real-time stream improvements 61
4.5.5 Firebase alert forwarder improvements 61
4.5.6 Access control . 62
4.5.7 Improved IMU alerts . 62
4.5.8 Data visualization . 63

5 Technical documentation 66
5.1 User Requirements . 66
5.2 System Requirements . 67
5.3 Technical Manual . 70

6 Conclusions 73
6.1 Sample graphs and results . 74

7 Annex 75
7.1 ESP32 initialization sequence diagram . 75

Bibliography 77

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 4 of 81

List of Figures
3.1 ECG of a heart in normal sinus rhythm. (by Atkielski) 10
3.2 Raspberry Pi Pico pinout. [39] . 25
3.3 ESP32-WROOM-32 module pinout. [31] 25
3.4 Arduino UNO Rev.3 . 25
3.5 Digital bit representation and START/STOP signalling. (by Texas Instru-

ments Inc., Fig. 3.2 and 3.1) . 26
3.6 Frame of a simple I2C address and data transaction frame. (by Texas Instru-

ments Inc., Fig. 3.3) . 26
3.7 FCM Architectural overview. 26
3.8 General overview of the system components and the data flow. 27

4.1 Final iteration of the breadboard connections. 28
4.2 ESP32-WROOM-32 module pinout [50]. 29
4.3 Connectors at the sports-band. 29
4.4 Left is band electrode to band socket, right is band electrode to 3.5 jack

connector. 30
4.5 Diagram displaying the connections between the modules. 31
4.6 First iteration of the PCB (back side), with the patch cables. 31
4.7 The second prototype board iteration. 32
4.8 The underside of the board, with the ESP32 module. 64
4.9 Pull-up resistors on the data and clock lines of the I2C bus. 64
4.10 Simplified diagram with a sample packet including 1 of each data structure. 65
4.11 Sample notification from a heart rate alert. 65
4.12 Sample GUI image plotting data of an idle subject. 65

6.1 Parameters of an idle/resting test subject. 74
6.2 Acceleration and gyroscope values of a test subject simulating seizure shaking. 74

7.1 ESP32 initialization sequence diagram (part 1/2). 75
7.2 ESP32 initialization sequence diagram (part 2/2). 76

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 5 of 81

List of Tables
3.1 Summary table regarding handling messages (from Firebase). 20

4.1 ESP32 module list. 34
4.2 RPC functions. 50

5.1 User Requirements . 67
5.2 System Requirements . 70

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 6 of 81

1. Abstract
This work extends the concept of a ”smart band” for mechanically restrained patients by
Muñiz et al.. The system aims to maintain an unobtrusive monitoring solution while using
common and cost-effective solutions, integrating hardware sensors, a microcontroller, soft-
ware, and cloud computing. It focuses on timely alerts to medical staff for patient safety.
The system’s data can later aid in critical incident detection and long-term analysis. It also
offers remote configuration, adheres to safety regulations, and promotes openness and com-
patibility. This research presents a promising approach to enhance patient care in constrained
settings.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 7 of 81

2. Purpose and Scope
2.1.- Background

This builds upon the letter by Muñiz et al., in which they give hindsight into a possible
implementation of a smart band for mechanically restrained patients [33].

2.2.- Idea and objective

The general purpose of this project is to build a system capable of monitoring mechanically
constrained patients, while also being flexible, extensible and non-invasive for the end user.
For this, a combination of hardware sensors, a microcontroller, software and cloud-served
content will be used.

By building up on the background’s idea of a ”smart band”, we create a minimally inva-
sive framework for all the information we could need: heart rate, body humidity and temper-
ature, movement, and noise. This could be refined further to add breathing detection in the
future, but is not within the scope of this project due to it needing another, potentially tighter
belt [42], which is difficult to communicate with the rest of the sensors and needs per-subject
calibration and testing; or an external imaging system secured to the bed and pointed at the
subject [23], which can have a negative mental connotation in addition to the communication
problem.

It shall focus on the notification and alerts that could be given to the nursery staff, as
stated in the background. This device will aid on the detection of dangerous incidents that
could harm the patient, and notify another device which shall be carried by medical person-
nel, or be at a fixed place at their sight.

By giving this on-demand alerts, the patients can be treated in due time when needed,
without constantly checking their vitals, which can be fatal in an under-staff condition; or
simply due to bad timing, such as a cardiac arrest episode manifesting shortly after a nurse
visit.

In addition, regular monitoring of the aforementioned variables can be used for later
analysis in order to detect other problems by using techniques such as machine-learning
(to automate sudden movement detection); or just by reviewing with a certified doctor, to
discover erratic heart rate patterns or strange temperature variance.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 8 of 81

The device itself should be manageable and configurable remotely, in case it needs main-
tenance operations such as re-calibration, firmware updates or improvements. It shall also
comply with all electrical and safety regulations.

The system’s software shall be open and free to explore and audit, and all dependant
components of it shall be tested and accessible. Open and well-known standards should be
followed to ensure compatibility and maintainability.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 9 of 81

3. System Definition and Analysis of Al-
ternatives
3.1.- Heart Rate Sensor

The core sensor of the system shall be the sensor responsible of heart rate measuring, as
it is the primary factor to measure and act upon in an aggressive episode or other similar
situations that are potentially dangerous to the patient under mechanical constraint.

As stated in the background, this will be an improved version of the draft proposed by
Muñiz et al.. The usage of the AD8232 as a heart rate monitor front-end could be valid
for developing a heart pulse analyzer resembling an electrocardiogram, as it offers more
granularity and definition of all the pulse features by giving access to the analog signal that
represents it.

The heart activity as measured by such an analog front-end is seen below (see Figure
3.1), with added labels for the various parts of the ECG wave that can be analyzed.

It can be broken down in segments and peaks:

1. PR interval,

2. PR segment,

3. QRS complex,

4. ST segment,

5. QT interval,

6. P wave,

7. Q wave,

8. R peak,

9. S wave,

10. T wave.

These parameters represent various properties of the heart pulses that can be interpreted and
studied to discover possible heart problems [36], but that does not fall into the scope of this
project. To measure the heart rate from this data, the wave shall be profiled in order to detect

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 10 of 81

Figure 3.1: ECG of a heart in normal sinus rhythm. (by Atkielski)

the frequency of appearance of the QRS complex (which denotes the ventricular contraction),
consequence of the heart pulse. This comes with drawbacks in case you just want to measure
heart rate, as the signal has to be processed by a microcontroller using an algorithm to detect
this frequency (also called R-R interval), thus deriving the pulses per minute.

By that logic, we can select a better suited front-end for our electrocardiogram subsys-
tem that allows us to get the heart rate without constantly processing data. This is better
in terms of power usage (as a dedicated chip can off-load the calculations from the main
microcontroller), data reliability (pre-made algorithms tested in a controlled laboratory en-
vironment), and ease of development (no need to implement a QRS detection algorithm
such as Pan-Tompkins [37])

The aforementioned chip is the MAX30003. This is a controller similar to the AD8232,
as both are capable of reading an ECG from a single-lead configuration, which is perfect for
our sports-band use-case; but the former is able to process the heart rate and R-R interval
autonomously, with a very low power consumption (65 µW)[5]. It is generally available on

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 11 of 81

different suppliers, and handles movement of the test subject without issues.

As the system is focused on heart rate monitoring, with other sensors complementing it,
we have to adjust the hardware and software according to the chosen alternative for pulse
detection. Given the selection of the MAX30003 chip due to its various advantages and
availability with respect to other solutions, all other hardware should be fully compatible,
and software should be developed such that the heart rate monitoring and data collection is
not hindered in any way.

With it we can achieve our R-R detection by just importing a library and calling the
needed functions. Using the MAX30003WING development board [30] to help with general
system integration, the library of choice was "max30003_protocentral" by Protocentral,
due to its feature completeness and it having been tested for our use-case. The supported
connection by this library is SPI, or Serial Peripheral Interface, which can be found on pins
SCK, PICO, POCI and CS/SSEL. This is explained further in section 3.4: Protocols and
communication; subsection 3.4.1: SPI

3.2.- Microcontroller

It is clear that for the center of the system we need a microcontroller that can handle the
signals generated and used by the MAX30003 chip. Also, the power, efficiency and memory
of the chosen controller has to be taken into account. It shall also allow remote control and
updating of the running program as stated in section 2.2. Given this premises, there are
multiple alternatives to choose from:

3.2.1.- Raspberry Pi Pico

The Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040 micro-
controller chip [40]. It is a low cost device with 26 multi-function GPIO (General Purpose

Input Output) pins, with multiple peripherals (2 UART, 2 I2C, 2 SPI, 16 PWM channels) and
works with 3.3V logic, allowing its use with most commonly found sensors.

The board provides a Quad-SPI 2M flash for storing code and data. The CPU is a dual-
core cortex M0+ running at up to 133MHz, with 264KB of SRAM, which is plenty for our
use-case. It also has an RTC, sleep and low-power modes, a 12-bit ADC, and the main selling
point of the chip: 2 Programmable IO (PIO) blocks, with 8 state machines in total.

This PIO blocks allow for custom assembly programming [41](p. 310) that operates at

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 12 of 81

a very low level with a very fast speed, running on state machines outside of the main CPU,
yielding the possibility of having additional peripherals that the system does not have built-in
(including DVI/VGA video), having full control on a wave generation function, or integrating
custom protocols for transmission over the wire.

Although the official guide for this device promotes the use of the Python (on its Mi-
croPython implementation) programming language [22], the Raspberry Pi Foundation also
provides a C/C++ SDK to build bare-metal applications in which performance might be crit-
ical. It also has a port of the popular Arduino core library for microcontrollers, arduino-pico

[10], and allows remote OTA firmware updates for ease of management.

The Raspberry Pi Pico is a modern, well-rounded chip, but with the current amount of
selected sensors, the powerful PIO capabilities would be left unused.

3.2.2.- ESP32

The ESP32 is a low cost series of microcontrollers made by Espressif. They feature built-
in WiFi (802.11b/g/n) and Bluetooth (v4.2 BR/EDR, BLE) and a plethora of peripherals,
including but not limited to: 12bit ADC, 2 8bit ADC, 10 touch sensors, 4 SPI, 2 I2S, 2 I2C, 3

UART, PWM [48]. Different versions provide various features, such as in package PSRAM
or flash memory, but they can also be implemented externally.

Depending on said version, it contains an Xtensa single or dual core 32bit CPU which
can run at up to 240MHz; 448KB ROM, 520KB RAM, an RTC with 16KB of SRAM, and an
ULP(Ultra Low Power) coprocessor to aid on low power peripheral monitoring, while using
the main CPU sleep states to save energy. Power consumption in deep-sleep mode is as low
as 10µA

The chip has 34 GPIOs (5 of them used for strapping, another 6 are input-only, and 6
more needed for flash memory) which work with 3.3V logic, like the Raspberry Pi Pico,
making it suitable for most commercial hobby sensors. All output pins are able to generate
PWM signals.

The module selected as the target for analysis was the ESP32-WROOM-32, due to its
very high availability from a lot of distributors. It also provides an external Quad SPI flash,
ranging from 4MB up to 16MB, and optionally, an external PSRAM. It has 2 versions; one
with an integrated antenna, and another one with an external antenna connector compatible
with U.FL from Hirose, MHF I from I-PEX, or AMC from Amphenol [12](p. 28). The
pinout of the module is shown in Figure 3.3.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 13 of 81

It supports a wide variety of programming frameworks and languages, ranging from
MicroPython/CircuitPython, to pure C frameworks such as Arduino and ESP-IDF, or even
less known ones like MongooseOS (supporting JavaScript)[3] or µlisp (supporting Lisp)[26].
It also allows remote management features such as OTA updates, and it is able to burn e-fuses
to permanently save important, read-only information on the chip, such as MAC addresses
or secure IDs. It is a solid and powerful chip which builds on top of the legacy NodeMCU
(ESP8266) success, improving it in almost every way [13].

It is important to note that this was the microprocessor selected in the work from Muñiz
et al..

3.2.3.- Arduino Family

The Arduino Family of microcontroller boards are very popular within hobbyists due to start-
ing the revolution of makers with its low-cost open-source hardware, mixed with a simple
and easy to use environment and coding framework. Created at the Interaction Design Insti-
tute Ivrea, in Italy, by joining together efforts from students and professors of an electronics
class that wanted to create a board that they could use to teach electronics, while also being
simpler, cheaper and more tailored towards their use-case [29].

The most commonly found amongst hobby projects is the Arduino UNO, which is a
board based on the Atmel ATMega328P microcontroller [2]. It features 14 digital input/output
pins (6 of which can be used as PWM outputs), 6 analog inputs, a 16MHz crystal oscilla-
tor, and the possibility of replacing the main microcontroller, to encourage users to push the
hardware to its limits and not worry about burning the whole board. The microcontroller has
32KB of internal flash to hold data, a 1KB EEPROM, 2KB of internal SRAM, 2 8-bit and 1
16-bit timers, six PWM channels, an 8 channel 10-bit ADC, 1 SPI interface, 1 USART serial
interface. It has a very low power consumption, with the power-down mode consuming as
low as 1µA at 3 V.

Its main programming framework is the Arduino framework, which is well known within
the maker community for its simplicity and ease of use, even when the underlying program-
ming language is akin to C. Support outside of this framework is lacking. Connectivity has to
be done with external modules through the SPI interface or UART, and remote management
support is limited due to the very low power capabilities of the chip.

Although there are modern boards that are closer in power and capabilities as the previ-
ously mentioned ones, such as the Arduino MKR WiFi 1010 [1], we can see that the price is
higher than the alternatives, and it still does not come close to the amount of peripherals and

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 14 of 81

versatility the ESP32 or the Raspberry Pi Pico offer.

3.2.4.- STM32 Family

The STM32 family of microcontrollers are a bit less known on the hobby space. Neverthe-
less, they have been analyzed in order to investigate in some of the possibilities they can
offer.

They have a wide variety of chips for a lot of different applications and use-cases [44].
As our primary concern is gathering data from sensors and sending them through WiFi or a
similar alternative for further processing and analysis, the focus gravitates towards wireless-
enabled chips from this family.

Although prices are similar to the powerful board alternatives listed above [45], they
come with less GPIOs, flash memory and RAM, and they are a bare-bones chip. Shall you
factor in the expenses of all the supporting parts and an external flash, and the small savings
on the microcontroller alone are not worth the problems and design inconveniences that
appear.

For example, if we take the STM32WBA52CEU6 (which at the time of writing costs
less than $6) [46], it is cheaper than a whole ESP32-WROOM-32 development kit at C10
[32], or a Raspberry Pi Pico W at C8.40 [28]. But, given that we have more flash, a better
development environment, and a pre-packaged kit for tinkering, as well as more GPIOs for
future expansion, it makes sense to discard the STM32 as a valid alternative.

3.2.5.- Final microcontroller selection

Given all statements above, it is clear that the decision has to be taken between the Raspberry
Pi Pico and the ESP32. They are very comparable and have similar features, performance,
and price, barring exceptions such as the PIO from the Pico. That feature is not an advantage
on this project as we are trying to follow standards, and use cross-platform and already
implemented protocols for communication between the sensors and the microcontrollers.
We decided to keep using the ESP32 in order to continue iterating on the ideas from Muñiz
et al., as well as having double the storage for the program and other possible data, such as
SSL/TLS certificates, logs or configuration.

3.3.- Other sensors

Complementing the microcontroller and the heart rate sensor are 3 more peripherals:

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 15 of 81

• INMP441: A microphone to obtain audio/noise data.

• SHT21:A temperature/humidity sensor.

• MPU6050: An IMU (Inertial Measurement Unit) to capture movement.

These devices give us more insights and parameters to take into account for study, and
allow us more flexibility on alert definitions if necessary.

3.3.1.- INMP441 Microphone

A MEMS microphone that is cheap and readily available, with good digital audio and no
big compromises for general usage. Allows the use of 24-bit I2S[25] to obtain the sound
data digitally, with no analog conversions, which protects the audio quality from possible
electromagnetic disruptions, as well as evading the possibility of the audio causing them to
other sensors in the system.

An example of a non-important limitation of this microphone is its frequency response.
With it ranging from 60 to 15.5kHz, we can capture virtually all of the important sounds a
human can produce. The audio fidelity may be compromised if comparing it to commercial
microphones (usually with a range of 20 to 20kHz), but for our use-case, we are not hindered
by the loss of high frequency sounds.

As an omnidirectional microphone, it allows us to mount it in virtually any direction,
without dampening the quality of the audio and the range of capture, greatly reducing the
cost of product design. The only limitation by the high SNR of the device, so even though
there is flexibility on the possible microphone orientations, looking for a placement close to
the audio source is a must.

3.3.2.- SHT21 Temperature and humidity

A temperature and humidity sensor by Sensirion with very good performance/price ratio.
This can allow monitoring body parameters if placed close to the test subject’s skin. Commu-
nication is done using the I2C protocol, which will be explained in a later section (Subsection
3.4.2).

Containing a capacitive type humidity sensor, a band type temperature sensor, and a
specialized analog and digital integrated circuit; the maximum resolution for this device is
0.04% RH and 0.01% ºC, with a typical accuracy of ±2% RH and ±0.3% ºC. Communi-
cation with the sensor is carried out through I2C, and can share a bus with other devices
without an issue, allowing for a more efficient use of connections [43].

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 16 of 81

Some important details to take into account from the datasheet are the hysteresis and the
response time. With them being 1% RH and 8 seconds respectively for the humidity, and
between 5 and 30 seconds of response time for the temperature; we cannot expect a quick
change on values, as a slow descent or ascent will show up in the data even if the environment
suddenly changes.

As the aim of the device is to be in contact with body temperature and humidity, there
shall not be any issues, a human body normally does not experiment sudden temperature or
humidity changes. Nonetheless, there are no references to back this claim.

3.3.3.- MPU6050 Intertial Measurement Unit

A 6-axis (acceleration and gyroscope) MEMS motion sensor with an embedded low-power
DMP (digital motion processor). Cheap and used in many other projects, it allows motion
recognition in multiple ways, most importantly by itself with the aforementioned digital
motion processor.

Communication is done through I2C, similar to the SHT21 sensor mentioned before,
which allows for both of them to be on the same I2C bus, simplifying the PCB design.

With 6 degrees of freedom, 1KHz sampling rate and configurable sensitivity (4 steps for
both accelerometer and gyroscope, from ±2 to ±16 g and from ±250 to ±2000 degrees per
second respectively), it can be used for multiple scenarios, including general body motion
sensing [24].

Distance calculation or space motion is discouraged, as without another frame of refer-
ence (such as a magnetometer), acceleration accuracy errors add up quickly and orientation
changes can impact the end result. This could be leveraged with an external magnetometer
connected to the second I2C port on the MPU6050, or replacing the component for another
9-axis IMU that includes a compass. This additional ”static” reference aids us in compen-
sating for possible drift due to errors.

3.4.- Protocols and communication

Due to the very different nature of the used components and sensors, there are multiple
communication protocols used in this system. Depending on the type of data they carry, the
physical capabilities of the sensors, or the functional requirement they need to accomplish;
a different protocol has been selected. Most of the times we are restrained to a specific one

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 17 of 81

the closer we are to the actual sensor hardware, with more flexibility being gained as we go
up in the abstraction layers (such as getting aggregated data out of the main microcontroller)

3.4.1.- SPI

The Serial-Peripheral Interface protocol is a full-duplex bi-directional serial communication
protocol between multiple peripherals and a single controller. It requires a clock wire and
two data wires for transfer in a bus, as well as an extra wire for each chip you add (and
control) to the bus [8].

A theoretical example with a single peripheral and a single controller will be explained.
For this connection, four wires are needed, and are commonly named as follows:

• SCLK: Serial Clock. This is a constant pulse on a specific frequency.

• PICO: Peripheral In, Controller Out. Data written from the controller into the external
device.

• POCI: Peripheral Out, Controller In. Data read from the external device into the
controller.

• CS: Chip Select. This signals the peripheral that the transmission is directed to it.

Older resources may refer to PICO as MOSI, POCI as MISO, or CS as SS. Those names
have been deprecated by a large portion of hardware creators, and this work will continue to
refer to them as the former [35].

In a scenario with more than one peripheral, only one extra wire per chip is needed, as
that is the way for the protocol to address different devices connected in the bus. The other
three wires can be shared.

Most of the disadvantages can be seen just by the wire requirements: Needing 3 lines for
a bus, plus one extra line per device, can make board design hard and expensive when using a
large amount of devices. This could be mitigated by daisy-chaining [8, Daisy-Chain method;
Figure 7], but not all peripherals support it, and comes with the drawback of needing more
clock pulses to transmit data, slowing communication.

3.4.2.- I2C

The Inter-Integrated Circuit protocol is a half-duplex bi-directional serial communication
protocol between multiple peripherals and controllers. It only requires two signal wires to

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 18 of 81

exchange information [49].

The base premise is having a general bus ”data” line, and a clock line with pull-up resis-
tors in an open-drain configuration. All interactions are done by pulling the line low, which
helps to alleviate possible problems when multiple devices try to send data at the same time.
This fact, accompanied by the frame protocol definition, makes I2C a very robust and flex-
ible due to not needing more than two signal lines. The only drawback is a more complex
frame decoding phase and a half-duplex communication, which is fine in our case.

The following illustrates the basic communication flow on I2C:

StartCondition−> AddressFrame−> DataFrame(s)−> StopCondition

The START and STOP conditions operate the data and clock lines in a way not used on
frames (as seen in Figure 3.5), for signalling. The frames of I2C consist of 8 bits of data
and 1 bit for message acknowledge, which the peripheral has to assert at the correct time,
or the controller will assume the peripheral did not receive the message (either there was a
connection error or the device itself does not exist).

The peripheral can use clock stretching in order to respond the message acknowledge
later, if needed. Clock stretching is an operation done by the peripheral device, which holds
the clock line low for longer if needed in order to process a message. The controller will no-
tice the lack of control and wait for the peripheral to release the clock line before continuing
pulsing and sending data. This is the only instance in which the peripheral device is allowed
control of the clock line [49, Section 6.2].

3.4.3.- I2S

The Inter-IC Sound (I2S, or more commonly written I2S) is a single data line, unidirectional
serial communication protocol between two devices. Designed for high data rates, it is fo-
cused towards (but not limited to) audio transmission. It requires a clock line (SCK), and a
”word select” (WS) line, which work as control lines for signaling the transmission of the
data line (SD).

Unlike the other protocols, which used some type of addressing system, I2S focuses on
speed and throughput, so there is no parameters defined on the protocol. The ”controller”
device generates the constant clock signal, and switches the word select line from low to
high to get data from the left and right channels, respectively. No clock cycle is wasted; one
bit is transmitted at every clock cycle. The only norm is sending the MSB first. Therefore,
the LSB of a word will always be preceded of the MSB of the next word, with no delays

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 19 of 81

between clock cycles.

For the project’s use case, the ESP32 acts as a receiver and a controller, signalling the
INMP441 microphone the data rate, and the sound sample bits are directly placed into the
data line.

On an ESP32, a driver is installed which simplifies the high data rate configuration and
transmission, by the use of DMA or Direct Memory Access. This allows the microphone
to ”write” directly to defined memory buffers while the microcontroller is busy doing other
tasks, and come back later to read and interpret the data as needed [11].

3.4.4.- MQTT

MQTT is a lightweight client/server publish/subscribe messaging telemetry protocol [34]. It
is commonly used in IoT scenarios due to its simplicity, small code size and low network
overhead. It runs over TCP/IP as it requires ordered, lossless bi-directional data transfer. It
features a publish/subscribe pattern, in which the multiple clients can subscribe to different
topics, and when a message is received by the broker, it will forward it to all the subscribers
of that topic. It is agnostic to the payload content (so it can technically deliver binary data,
even if it is unusual) and has a quality of service system for messages that can assure their
delivery.

The topic is the key part of the system. It resembles an address, a place to publish a
message; but in contrast to normal addresses, any client that has subscribed to the topic

will receive the published message. The broker is the one in charge of message distribution
over the subscribers, therefore it is usually named an MQTT server, and other connections
are clients. This common naming is valid and can be easily understood in single-broker
configurations, but the brokers can also be interconnected together, typically called a bridge.

The MQTT protocol is the choice of message transport protocol for this project, on a
single broker configuration, due to its simplicity and ease of use on multiple devices. Stan-
dard measures and remote control will be implemented over this protocol, with out-of-band
custom protocols developed for more time-optimized scenarios such as real-time monitoring.

3.5.- Alert handling

The alert system has to be, first and foremost, fast and reliable; all while being relatively
secure, private, and easy to use. For this, a mixture of protocols and concepts will be used.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 20 of 81

3.5.1.- FCM (Firebase Cloud Messaging)

As Android is the platform of choice for receiving alert notifications, the cloud platform that
offers us the best developer and user experience is from the Android creators themselves
(Google) with Firebase Cloud Messaging. The architecture of FCM is a simple pub-sub
without polling, that can deliver messages to multiple types of devices. (see Figure [17])

Devices generate a token when installing your app, and that token subscribes to different
topics, to which you can push notifications and data to be received quickly. There is no
trouble of app background connections being terminated by the device, as this service is
optimized and is known as push, meaning that the server itself ”pushes” the notifications to
the device, instead of it asking (polling) the server at a fixed interval.

You can send messages directly to a specific device token, which allows for a more secure
communication and more flexibility on notification options (with an important setting being
the ”priority”), at the cost of having to send one request per end device.

In addition, there is a middle ground between topics and device tokens, called device

groups. They offer the same benefits as device tokens, with the ability to group up to 20 de-
vices [18]. The downside of this approach is having to manage the device group externally,
using Firebase API, adding and deleting tokens as needed. This, according to the documen-
tation, is typically oriented to a single user per client, which may have multiple devices. In
the context of this project, they could be used as one device group per ESP32, but that func-
tionality can be easily replicated as a mapping on the ”proxy” program between the MQTT
alerts generated by the microcontroller and the Firebase API.

The message structure can be broken down into an address part (the topic or token that
shall receive the message) and two information parts (notification and data). The address part
and at least one of the information parts shall appear in the message, but mixed messages
containing both types are possible. On Android devices, behaviour is different depending on
which of the two information parts you send.

App state Notification Data Both

Foreground onMessageReceived onMessageReceived onMessageReceived

Background System tray onMessageReceived Notification: system
tray; Data: in extras of
the intent

Table 3.1: Summary table regarding handling messages
(from Firebase).

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 21 of 81

{

"message": {

"topic": "device-312",

"notification": {

"title":"(312) Device Alert!",

"body":"Abnormal heart rate detected. Abnormal temperature detected."

},

"data": {

"device_id": "312",

"sensors": "hr,150,137,181;temp,38.7,38.2,39.1;",

},

"android": {

"priority":"high"

},

}

}

Listing 1: Sample FCM message.

3.5.2.- MQTT and external alert forwarder

As the FCM authentication requires us to possess digital keys and secret credentials, we
need to extract the requests into an external, secure service, that handles the alerts from the
ESP32 and forwards them to FCM. This allows us to generate alerts without worrying about
credentials being leaked or stolen if an ESP32 is analyzed, as well as apply additional checks
before sending the actual notifications to mobile devices.

For this, a Python script was developed (referred from now on as alert forwarder) that
will run alongside the MQTT server, forwarding alerts from the IoT devices to the necessary
end user devices. It is based on a quick-start code provided by Firebase [20] for the con-

nection token and message generation, with custom logic added to connect and listen to the
ESP32 alerts sent via MQTT.

3.5.3.- Android App

In order to receive the alerts generated by the ESP32 and forwarded to Firebase, a basic
Android app installed on a device is needed. Its Firebase token shall be retrieved and used
on the Python alert forwarder on the request to FCM.

As most of the notification functionality is provided by FCM, the development time of
this app is minimal; nevertheless, the overall system can be improved by a lot just by iterating
on this element. An easy-to-use management interface can be developed into the app (or
a separate ”admin” app for safety) so that new devices can be linked. The user can get

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 22 of 81

functionalities such as real-time monitoring on their phone, old sensor values and notification
history.

As of now, all of this functionality is out of scope and will be documented later on the
”Future Work” section (4.5).

3.6.- Overall System

All final components of the system can be observed in the general overview diagram (see
Figure 3.8), which highlights the main ”notifications” use-case with solid lines, and the sup-
porting functionality with dotted lines. Physical support is not shown for every component,
which will be analyzed in the following sub-sections.

An Internet connection is a must for the general system to work, or else, the alerting
functionality using FCM would not work. Given a specific use-case of needing a more secure
environment, with hardened restrictions, the Android app can be extended to connect directly
to a locally hosted MQTT broker, so that it can listen to the alert topics of each device. This
configuration is not in scope for this investigation and will not be analyzed; nevertheless, it
is still possible to implement as explained above, taking advantage of the modularity of the
system.

In the illustrated scenario diagram (Figure 3.8), all lines assume that the underlying hard-
ware is connected and able to transmit information in some way, without limits. The system
will not work if, for example, the Android device has no Internet connectivity to receive the
notifications from FCM, or if the ESP32 has a poor or limited connection to the WiFi router.

The physical hardware needed to run the MQTT broker, the alert forwarder, and other
supporting components, can be shared. This physical hardware is not illustrated in the sce-
nario diagram as the system is agnostic to it, as long as the required functionality and net-
working is met. A WiFi router could provide connectivity for both the Android device and
ESP32, and a single local server connected to it could host everything (except FCM); or
the system could span multiple access points, networks and cloud machines with different
paradigms.

3.6.1.- Physical support and hardware

As stated above, there are multiple ways to design the hardware requisites of the supporting
software:

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 23 of 81

• Cloud microservices and serverless

• Cloud VPS

• Local server

Cloud microservices, or the microservice architecture, is a pattern on system design fo-
cused on division of tasks between multiple, dedicated small programs. The modularity of
the architecture can help speed up development time, as well as build up resilience by the use
of proxies and multiple nodes for a given part of the system. Lots of cloud providers offer
tools to build microservice-oriented applications. All of this is inherently serverless, as you
think about the purpose of the systems, and not the underlying hardware.

Serverless describes a recent paradigm based on the parallelization and sharing of physi-
cal servers, offering auto-scaling capabilities without the hassle of managing the underlying
hardware. The users of this services can provide some code or machine configuration, and
the system automatically scales the supporting servers in order to meet the demand. This
allows them to have their application running without worrying about bottlenecks when the
usage goes up.

The price of this paradigm depends on the amount of computer resources consumed over
a given time. For example, imagine a system usually needs around 2Gb of RAM and uses
50% of a CPU core’s compute power for scheduled tasks and normal user behaviour. But
when office time starts, the system experiences a high load for over an hour, requiring 8Gb
of memory and two CPU cores at 100% utilization. Adapting the program to a serverless

paradigm allows it to automatically scale up the resources, and then scale them down when
they are no longer needed. You are only billed by resources you used over a period of time.
For the example above, 8Gb of RAM and two CPU cores are billed for an hour, and the 23
remaining hours only 2Gb and a single core is billed. This flexibility comes at a small extra,
and a machine with a static machine with the baseline parameters is usually cheaper than the
same configuration on a serverless system, even if there is no automatic scaling. Depending
on the application, there are ”hybrid” methods and architectures that mix standard machines
for meeting the baseline demand, and a serverless system ready to handle peaks of activity.

For this project, the only sudden change of connection or information only occurs if
multiple devices are connecting or disconnecting themselves for external factors, or a high
volume of alerts are sent. A trial was executed with Amazon Web Services (AWS), using
MQTT IoT Core for the MQTT broker, DynamoDB for data logging and Simple Notifi-
cation Service (SNS) for alert listening and forwarding; it was discarded due to the high

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 24 of 81

management overhead, and the free pricing tier could impose limitations for continuous use
or higher frequencies [4].

Cloud VPS (Virtual Private Server) refers to a virtual machine with shared resources,
rented out on a physical server that you do not control. It effectively works the same as a
local physical server, with the benefits of being configurable to tailor your needs of memory
and CPU power. The VPS is usually managed by the end user, although some providers offer
managed alternatives. This approach can be useful for systems that need to scale every once
in a while, or simple applications that only need a small amount of resources, and use them
in bursts depending on the activity.

Providers also offer different kinds of servers to rent, with options ranging from a vir-
tual machine with dedicated resources, full dedicated rental hardware, all the way up to
co-location of your own hardware in their data centers. All of this is provider dependant.

For this project, the issue of data safety and security arises. Given that it is medical
data, precautions shall be taken as to handle it correctly. Even if the parameters from the
body logged by the sensors are inherently anonymous and only linked with the device that
sends them (never with the person), it shall still be confidential. A cloud VPS or dedicated
server could be useful for testing or even running the final product, but the usage of hardware
not owned by a hospital (or hosted far from it) is discouraged due to the data concerns ex-
plained above. For this reason, the data acquisition has been done on either the development
machines (acting as servers for the microcontroller needs), or with dedicated low-power
hardware suitable for the supporting software.

The local server selection has to be able to handle multiple devices connected through the
MQTT protocol, as well as saving their measures in a database. Any computing device more
advanced than a microcontroller will suffice. A Raspberry Pi 4 has been selected for the proof
of concept, as it showcases CPU, memory and networking capabilities powerful enough for
the task, as well as enough room for possible future developments such as seizure prediction,
all while being in a small form factor and very energy efficient (compared with classic x86
servers).

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 25 of 81

Figure 3.2: Raspberry Pi Pico pinout. [39]

Figure 3.3: ESP32-WROOM-32 module pinout. [31]

Figure 3.4: Arduino UNO Rev.3

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 26 of 81

Figure 3.5: Digital bit representation and START/STOP signalling. (by Texas Instruments
Inc., Fig. 3.2 and 3.1)

Figure 3.6: Frame of a simple I2C address and data transaction frame. (by Texas Instruments
Inc., Fig. 3.3)

Figure 3.7: FCM Architectural overview.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 27 of 81

Figure 3.8: General overview of the system components and the data flow.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 28 of 81

4. System Development
4.1.- Hardware Development

4.1.1.- First designs

For designing the first iterations of the hardware, a breadboard was used in addition to jumper
cables in order to verify that the connection to the sensors was done correctly. This helped
during the first design iterations and testing, as there was an agile way of switching connec-
tions in order to test different pin combinations. It was a crucial part on early development.

This method of coupling peripherals, while not recommended for long standing devices,
is perfectly acceptable for testing a valid connection between the sensors and the micro-
controller using external libraries. Focus at this stage was set on installing and using those
libraries. High speed communication might not be available due to high resistances between
the multiple wires, but should not be an issue for light data transmission.

Figure 4.1: Final iteration of the breadboard connections.

Although there are recommended, default pins for each peripheral (see Figure 4.2), the
ESP32 has an internal pin muxer and GPIO matrix [14] that allows us to use some peripherals
(mainly lower-speed ones) on a wide variety of pins. In our use-case, we are only using one
I2S, one shared I2C bus, and an SPI connection, so only the latter needs our attention. The

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 29 of 81

pinout for our chosen board (generic ESP32-WROOM-32 devkit) is pictured below (see
Figure 4.2).

Figure 4.2: ESP32-WROOM-32 module pinout [50].

4.1.2.- Sports-band for heart rate monitoring

A sports-band was used with a modified cable in order to have access of its electrodes through
a 3.5 inch stereo jack (TRS), similar to audio ones, that connects into the MAX30003WING
for heart monitoring. This cable was made for easy development, as the final product shall be
encased in a cage that can clip onto this electrodes (like a general sports heart rate monitor).
By soldering an end onto some button pins, they can be inserted into the sockets and get a
3.5 inch connector on the other side, while maintaining the possibility of using the band with
other products. (see Figure 4.3)

Figure 4.3: Connectors at the sports-band.

We have to keep in mind that having a long cable connected like this will increase the

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 30 of 81

resistance (and thus the impedance) of the connection with the MAX30003 by almost 8%
(see Figure 4.4), and it can even act as an antenna and capture interference from other devices
around it, so our heart readings may not be fully reliable. Nonetheless, it is a good trade-off
to make in order to get a more agile and comfortable development of the system, and it is the
best way to run the device for debugging, as having it strapped to your chest could strain the
USB connector used for it.

Figure 4.4: Left is band electrode to band socket, right is band electrode to 3.5 jack connector.

4.1.3.- Printed Circuit Board

After initial testing and program debugging, a diagram (Figure 4.5) was formalized in order
to develop a basic prototype on a PCB (Printed Circuit Board). This ensures reliable connec-
tions between the components. The first prototype had some errors on production (2 missed
traces, and a miscalculation of a board width), but as the affected pins were dedicated to
low frequency of change signals like interrupts or chip selections, they could be fixed with
some jumper wires (see Figure 4.6) in order to finish the development of the program, while
having the high-speed traces in place for secure and safe data transmission.

4.1.4.- Second Circuit Board

To remedy the production errors of the first PCB, as well as to have a more compact design,
a second circuit board was developed in a prototype board, soldering pin headers for the
development boards of the sensors and the microcontroller, as well as the needed wires for
connection. Due to the compact size, all the sensors are placed in one side, and the micro-
controller lives in the other. This can make routing wires more difficult. Size was a general
problem on this board, as some sensors were very close together and did not have enough
room and pins around them to make ideal connections. Nevertheless, the diagram (Figure
4.5) was followed, getting a compact solution that could be encased in a box.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 31 of 81

Figure 4.5: Diagram displaying the connections between the modules.

Figure 4.6: First iteration of the PCB (back side), with the patch cables.

On Figure 4.8, the connections between the sensor modules can be seen, and some rough
patches can be appreciated. No short-circuits were detected, although the system needed
external pull-up resistors for the I2C bus, or else some interference / corruption would appear
on transmissions. The ESP32 was always reading an incorrect Z-axis acceleration from the
IMU. It was tricky to debug, and the main hypothesis is that the data bus was floating too
much time in an undetermined state, due to the internal ESP32 pull-up not being able to
raise the voltage fast enough. It could be analyzed further with an oscilloscope, but it was
not available during this development, and even then, it was quickly fixed by the addition
of the external pull-up resistors, with a value of 4.7kΩ, recommended as a baseline for I2C

connectivity (between 1kΩ and 10kΩ, [49, Section 6.5]).

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 32 of 81

Figure 4.7: The second prototype board iteration.

4.2.- Microcontroller Software Development

The software was developed in the C++ language, on Microsoft Visual Studio Code IDE and
using the plugin PlatformIO, which offers a great developer experience on a vast selection
of microcontrollers. The frameworks chosen for the actual code were a mix of the Arduino

framework (for access to a multitude of peripheral libraries), and the ESP-IDF, a frame-
work specific for Espressif devices with useful code for inter-process communication, task
handling and memory management.

4.2.1.- Module List

A module list is shown, detailing the functionality of every source file of the program loaded
into the microcontroller.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 33 of 81

File Module Description

main.cpp General Setup Initializes several device features such as Se-
rial communication (for debugging), mounts
SPIFFS and calls the configuration handler
setup, initializes I2C and calls the sensor-
specific initializations (as well as defning and
registering the heart rate ISR), calls wifimanager

to start the network connection, starts an SNTP

client to get the current time, calls the MQTT
setup function, and starts all the sensor tasks.

config.cpp Configuration
Handler

Loads the config.json located at the root of the
SPIFFS filesystem on flash, into a global vari-
able configuration for easy access anywhere
on the code.

max3.cpp Sensors: Heart
Rate

Initializes the MAX30003 sensor and all re-
quired components to retrieve heart rate infor-
mation. Responds to signals from the ISR to
read the data from the sensor and load it into
the needed structures and queues for later con-
sumption.

imu.cpp Sensors: IMU Initializes the MPU6050 sensor and all required
components to retrieve acceleration and gyro-
scope movement. Reads the sensor in an inter-
val defined on configuration and loads the
data into the needed structures and queues for
later consumption.

sht.cpp Sensors: Temper-
ature and Humid-
ity

Initializes the SHT21 sensor and all required
components to retrieve temperature and humid-
ity data. Reads the sensor in an interval defined
on configuration and loads the data into the
needed structures and queues for later consump-
tion.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 34 of 81

File Module Description

mic.cpp Sensors: Sound Initializes the INMP441 microphone, reserves
memory for its RingBuffer and installs the I2S
driver in order to load the audio data directly
into the ESP32 memory. The I2S driver handles
all of the reading according to the configuration
we set statically upon compilation. A task reads
the I2S data and writes it into the RingBuffer to
allow the audio stream functionality, located on
this module, but only enabled by an RPC call.

wifimanager.cpp WiFi Connection
Handler

Initializes the WiFi connection according to the
access points set in configuration, and starts
a task to maintain this connection or change ac-
cess points if needed.

mqtt.cpp MQTT Handler Initializes the MQTT connection according
to the configuration parameters, and starts
three different tasks to enable message sending
from anywhere in the program. A task runs the
”MQTT loop” which does all the queued net-
working; another task runs in an interval to send
the maximum, minimum and average values of
the sensors; and a final task handles the alerts
generated by values outside of the thresholds
defined in configuration.

rpc.cpp RPC Functions Upon initialization, a mapping is created that
contains all the RPC functions: Methods that
can be called remotely from MQTT.

stream sensors.cpp Real-time sensor
data stream

Contains the FreeRTOS task, started via RPC
over MQTT, that handles the data sensor
streaming.

Table 4.1: ESP32 module list.

All modules (except main.cpp) have a companion header file with the .h extension, with
the function definitions and variables needed for shared functionality with other modules,
useful for code separation. Looped tasks are defined on their modules while being called and
started from the main module. Additionally, there are three standalone header files:

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 35 of 81

• credentials.h: Hard-coded credentials for a secure MQTT connection, if defined in
configuration.

• stream_mic.h: Defines only a single task (void tMicTCPSender(void *pvParameters)),
which is called to start the microphone audio stream, with a struct formed of an IP ad-
dress and port as a parameter. The function is defined in mic.cpp as to keep the audio
functionality in the same module, and not have to share the ring buffer handle defini-
tion.

• valuehandler.h: Header containing all the relevant data containers. The handles for
the sensor data queues, as well as their data structs and helper functions, are all defined
here. Other generic structs such as the params_ip_port are found on this header,
allowing multiple tasks and functions throughout the code to pass an IP address and
port efficiently and in a structured manner.

In the following subsections, various modules will be explored, according to the program
initialization sequence diagram found in the Annex 7.1. Built-in modules that implement
functionality such as serial communication and logging (for debugging), WiFi, OTA update
functionality or file system initialization are considered out of scope and not explored in this
diagram.

4.2.2.- Library dependencies

Barring the frameworks themselves (Arduino and ESP-IDF), there is a number of libraries
that the project depends on in order to work. On the built-in libraries side, the dependencies
are:

• SPIFFS: The filesystem library chosen to store files on a predefined partition of the
embedded flash.

• Wire: Native implementation for the I2C protocol.

• SPI: Native implementation for the SPI protocol.

• WiFi / WiFiMulti: Enable WiFi functionality, and support for multiple APs defined,
to search for the best connection.

• WiFiClient / WiFiClientSecure: Network data connections via WiFi provided by the
Arduino framework.

The following list shows the external libraries needed:

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 36 of 81

• ArduinoJson (bblanchon/ArduinoJson): To aid in creating, serializing and deserial-
izing JSON objects from/into native types.

• MQTT (256dpi/MQTT): Manages the connection and messages between the ESP32
and the MQTT broker.

• SHT2X (robtillaart/SHT2x): Interfaces with the SHT21 temperature and humidity
sensor.

• MPU6050 (electroniccats/MPU6050): Interfaces with the MPU6050 IMU.

• Protocentral MAX30003 (protocentral/ProtoCentral MAX30003 ECG AFE Sensor
Library): Interfaces with the MAX30003 ECG sensor.

The Protocentral MAX30003 library has a small limitation: The chip select pin for the
SPI communication with the module is hard-coded on a #define directive, and is not the
same as the pin used in the project. The library was extracted and placed within the lib/

folder of the project, with the directive modified to the correct pin, to ensure correct func-
tionality. All the other libraries are defined as dependencies on the platformio.ini file,
and obtained from the PlatformIO registry [38] during the build process.

4.2.3.- Configuration module

Being the manager of the configuration object, this module is the first one to be initialized.
After the main module initializes the SPIFFS file system, the loadConfigFromFlash()

function is called. Using the ArduinoJson library, the configuration file (config.json) is
read from the file system and deserialized into a JSON object, available as a global ob-
ject (extern DynamicJsonDocument configuration) for any module that imports the
config.h header. No access restrictions are placed on the configuration; every module can
read or write to it at any time.

This is a known anti-pattern [7] caught very late in development, when every module was
already dependant on the external library object held in memory. The code is deeply coupled
with the accessors and defaults that are offered. To remedy this, a C/C++ structure shall be
created with the necessary parameters (with nested structures if needed) and custom logic
should be implemented to load the available parameters into it, and set hard-coded defaults
if needed. Then, all modules will use this structure directly, which removes the dependency.

This raises the question of thread-safety. Multiple reads at the same time are not an
issue, but we must take care of a thread reading while another is writing, as the ESP32 is a
dual-core device, so those threads can be executing concurrently. According to the ESP32

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 37 of 81

documentation for its FreeRTOS port, both cores have a ”symmetric” memory approach. If
they both try to access memory at the same time, their calls will be serialized [15]. So our
only worry is reading ”old” or stale data. No corruption will happen on whole words (up to
32-bit, as that is the architecture’s word size) even if both cores try to write at the same time.
Nevertheless, if they try to do a sequence of read/add/write or similar, the final value will be
the same as if only one of the cores were running.

So, in summary, all memory accesses are atomic on a word level, the only issues that
may arise are partially written structures or missing operations on relative modifications.
Absolute modifications (like the ones we are doing on the configuration module in section
4.2.11) are valid and safe.

4.2.4.- Value Handler module

This is a special module, as it does not have a source code file, it is a standalone header file.
It contains the definition of multiple structures needed for data handling, as well as locks and
queues. It also contains templated functions, in order to modify the values of a standardized
structured called the datum.

/**

* Basic structure for data aggregation.

* Saves the avg/min/max and the count of the aggregated data points.

* Initialize the datum by calling zeroDatum().

*/

template <typename T>

struct datum {

uint32_t count;

double_t avg;

T min;

T max;

};

Listing 2: The datum struct definition.

The modules will model their data structure using various datum, with a naming conven-
tion of (3-letter module name + avg). This structure generalizes the accesses to the properties
of the periodically reported measures. In order to save as much data as possible while keep-
ing a small size, a maximum, minimum and average value are continuously calculated by
the updateDatum() functions. This functions are called by the different modules using
semaphores as locks for access. This is the only instance of multi-core access lock used in
the program, as we want the structure to be atomic, that being, the three parameters shall be
originated from the same set of data at all times. If one core is zero-ing out the structure and

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 38 of 81

another is writing to it, some parts of it may be zero and others have meaningful data, which
renders the structure inconsistent. Serialized access to memory, as discussed before, will not
help here due to the modification of multiple values.

The checkDatumThreshold() function template is called by each module when they
update the different datum values on each sensor. The templated function is very useful,
as different modules may use different datum variable types as long as they are numeric,
but they all shall follow the same logic. If the values are over the configured thresholds,
it notifies the tMQTTAlert task through the use of an event group, provided by FreeRTOS.
Threshold checking through the parameter on configuration goes as follows:

• Parameter max: Notifies if the max value of the datum is higher than the parameter.

• Parameter high: Notifies if the avg value of the datum is higher than the parameter.

• Parameter low: Notifies if the avg value of the datum is lower than the parameter.

• Parameter min: Notifies if the min value of the datum is lower than the parameter.

Listing 3 shows the snippet of code that implements the checkDatumThreshold() func-
tion. The common anti-pattern talked about in subsection 4.2.3 of the external ArduinoJson

library can be seen here, as it gets values from the global configuration object and uses
them as the JsonVariant type from the library.

As a standard way of updating values, the modules send the new data on an interval
defined on configuration through the queue (even if no real-time task is started), then
acquire a lock using the semaphore and update the datum values of their specific structure
using updateDatum(). After that, the lock is released and the threshold is checked us-
ing checkDatumThreshold(), with parameters according to the specified sensor and mod-
ule. The MQTT alert task is notified if needed, using the xEventGroup series of functions
given by FreeRTOS. The minimum, maximum and average values stored in the structures are
cleared by calling zeroDatum() whenever a periodic report is sent. An example is explained
below, on listing 4:

The xEventGroup series of functions allow us to ”notify” one or more tasks that are
waiting on the object, like a shared semaphore, and carry a value that can be modified by
the caller. It is used as a way to signal the MQTT task which module triggered the alert,
without sharing task handles. The valuehandler.h module defines the Event Group handle,
allowing any module to use it, but the MQTT alert task in the MQTT module is the one that
initializes it.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 39 of 81

4.2.5.- Heart rate module

In charge of initializing and reading the measures from the MAX30003 heart rate sensor, this
module is crucial for the overall system. This follows the setup structure that other sensors
do: Create the data structure for the minimum, maximum and average measures (ECGavg);
the semaphore for locking them and the queue to communicate with the real-time stream task
if it starts. But the sensor library itself is initialized on ”R to R” mode. This will generate an

/**

* Checks thresholds for a datum and notifies the alert task

* with the provided bit if needed.

*/

template<typename T>

void checkDatumThreshold(datum<T> datum, const char* name, uint8_t bit) {

// Thresholds

JsonVariant max,high,low,min;

bool notify = false;

if(alert_events) { // Check if the event group handle is valid

max = configuration["monitoring"]["thresholds"][name]["max"];

high = configuration["monitoring"]["thresholds"][name]["high"];

low = configuration["monitoring"]["thresholds"][name]["low"];

min = configuration["monitoring"]["thresholds"][name]["min"];

if(max.is<T>() && datum.max > max) notify=true;

if(high.is<T>() && datum.avg > high) notify=true;

if(low.is<T>() && datum.avg < low) notify=true;

if(min.is<T>() && datum.min < min) notify=true;

if(notify) xEventGroupSetBits(alert_events, bit);

}

}

Listing 3: Threshold check implementation.

inline void _updateValues() {

xQueueSend(ecg_queue, &(ecg->heartRate), 0);

if(xSemaphoreTake(ecglock, 100)) {

updateDatum(ecgavg->hr, ecg->heartRate);

updateDatum(ecgavg->rr, ecg->RRinterval);

xSemaphoreGive(ecglock);

checkDatumThreshold(ecgavg->hr, "hr", BIT_HR);

}

}

Listing 4: ECG datum update code.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 40 of 81

interrupt on the sensor’s INTB pin whenever an R peak is detected on the ECG (as shown in
Section 3.1), and allows reading both the calculated heart rate as well as the interval of time
passed between the new and old peak. There is no need to continually poll the sensor; reading
data is done when the interrupt is received, giving us very low latency data acquisition.

This creates a task that differs from the other, time-based ones. To implement this in-
terrupt detection functionality, the MAX30003 INTB pin has to be connected to an input-
capable pin of the ESP32. In this case, it is connected to GPIO pin 26. The main module
has the ISR definition for this interrupt, as well as registering that function to handle the
change on the pin. The ECG data reading task is notified of the interrupt by the FreeRTOS
”task notification” features. Any task can send a signal to another task, given they have the
task handle. As only the main module has access to the task handles, the ISR is defined in
it, and sends the signal to the ECG task using the xTaskNotifyFromISR() function. The
task, which is blocked on the xTaskNotifyWait() function, will resume execution when
the ISR gives control back to the scheduler, and will read the values from the MAX30003
status register to obtain and save the heart rate and R-R interval data. This works similarly
to a semaphore, or the aforementioned Event Groups, but it is only targeted to a single task,
and readily available without any setup.

void tECGRead(void * param) {

uint8_t statusReg[3];

_readValues(statusReg); // first read to clear intr

while(1) {

xTaskNotifyWait(0,ULONG_MAX,nullptr,portMAX_DELAY);

_readValues(statusReg);

}

vTaskDelete(nullptr);

}

Listing 5: ECG data read task that waits for it to be notified.

Interrupts should be as short as possible, as to not cripple other tasks or miss other im-
portant interrupts, therefore the data itself has to be read externally by a task. The following
snippets of code show how the ECG data read task and the ISR are coded.

Executing FreeRTOS functions on the ISR itself can lead to errors due to scheduling is-
sues, so some useful functions have a special version dedicated to run in this context. On
a normal task, to notify another, you should use the xTaskNotify() function or deriva-
tives. But here, you need to use xTaskNotifyFromISR(), which also accepts an additional
ctx_switch argument. This argument will be set to true if the ISR has woken up a task
with higher priority to the one that was interrupted, and should yield execution to it. The

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 41 of 81

void IRAM_ATTR isrECG() {

BaseType_t ctx_switch;

if(htECGRead != nullptr)

xTaskNotifyFromISR(htECGRead,1,eSetBits,&ctx_switch);

if(ctx_switch)

portYIELD_FROM_ISR();

}

Listing 6: ISR that notifies the ECG task using its handle.

portYIELD_FROM_ISR() function signals the scheduler that it should continue normal exe-
cution, but first check for higher priority tasks that have woken up.

In this case, all sensor tasks are initialized with the same priority by the main module,
so the last part of this code will never run. Nevertheless, it is an important piece of code to
have, in case any future changes modify the priority of tasks.

This module uses the standard procedure of value updating: send via queue, lock ECGavg

structure, update data, release the lock, check thresholds.

4.2.6.- IMU module

The standard initialization procedure is followed when the main module calls IMUSetup():
Create and empty the minimum/maximum/average data structures (IMUavg,vIMUavg), the
locking semaphore and the queue for data streaming. After that, the MPU6050 library it-
self is initialized, the IMU accelerometer and gyroscope range is configured and they are
calibrated if needed.

The main task for updating the IMU values does the standard procedure of value updat-
ing, with the added catch that it has two data structures: IMUavg and vIMUavg. The first one
is the data coming directly from the sensor, but the second one (virtual IMU average) is made
up of computed parameters, currently the acceleration magnitude. The computed parameters
are not sent through the queue, as they are considered redundant.

The acceleration magnitude is calculated by obtaining the norm of the vector formed by
the three acceleration axis, using the Formula (4.1) [33]

||⃗a||=
√

aX2 +aY 2 +aZ2 (4.1)

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 42 of 81

For this, the values received from the MPU6050 have to be converted to g-units (g). The
algorithm was optimized for precision and speed by minimizing divisions and floating point
number usage, as the Xtensa LX6 CPU of the ESP32 has a limited FPU implementation.
Single precision is supported by the hardware, but comes with caveats on FreeRTOS context
switching, as it is assumed by default that tasks do not use floating point registers. Double
precision floating point arithmetic is software emulated, which is more prone to errors, and
consumes more CPU time. [15]

A naive approach would be to convert all three values to g-units, raise them to a power of
two, and add them, before finally getting the square root. This will use multiple floating point
operations, which we are trying to minimize The algorithm implemented tries to minimize
floating point usage until it is absolutely necessary (g-units conversion and square root),
operating on 32-bit integer numbers whenever possible.

double_t _vecMagnitude(int16_t ax, int16_t ay, int16_t az) {

uint32_t x2 = (int32_t)ax * (int32_t)ax;

uint32_t y2 = (int32_t)ay * (int32_t)ay;

uint32_t z2 = (int32_t)az * (int32_t)az;

return sqrt((x2+y2+z2))/ACCEL_MAX_RANGE_DIV;

}

Listing 7: Vector norm implementation for the raw MPU6050 values.

It may seem like too many operations are happening, but it can be optimized easily by
the compiler to three integer multiplications (from the promoted 16-to-32 bit integers), two
integer additions, and a final conversion to double precision floating point for the call to
the built-in square root function and division. ACCEL_MAX_RANGE_DIV is a double preci-
sion floating point number containing the result of 32768 (the maximum absolute value of a
signed 16-bit integer) divided by ACCEL_MAX_G, with ACCEL_MAX_G being the current range
of precision of the accelerometer in g-units. The maximum value this variable will hold is
16384.0, as the minimum acceleration range of the MPU6050 is ±2g.

The base formula is derived on Equation 4.2, with R = ACCEL_MAX_RANGE_DIV, and
lowercase ax,ay,az being the equivalent raw values from the MPU6050:

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 43 of 81

∥⃗a∥=
√

aX2 +aY 2 +aZ2

=

√
(
ax
R
)2 +(

ay
R
)2 +(

az
R
)2

=

√
ax2

R2 +
ay2

R2 +
az2

R2

=

√
ax2

R2 +
ay2

R2 +
az2

R2

=

√
(ax2 +ay2 +az2)

R2

=

√
(ax2 +ay2 +az2)

R

(4.2)

This value is finally used in conjunction with checkDatumThreshold() to send alerts if
the amount of movement goes over the configured threshold, in g-units.

4.2.7.- SHT module

The standard initialization procedure is followed when the main module calls SHTSetup():
Create and empty the minimum/maximum/average data structures (SHTavg), the locking
semaphore and the queue for data streaming. After that, the SHT21 library itself is initial-
ized. As an implementation detail, the library expects initialization by calling the begin()

method of the SHT21 object, which will restart the sensor. It is advised to check for connec-
tion after this operation, but due to the speed of the ESP32, the setup flow needs to wait a
bit before calling isConnected() on the SHT21, or else it will not respond correctly. This is
easily done by the FreeRTOS function vTaskDelay(), which accepts the number of FreeR-
TOS ticks that it should sleep. In reality it returns control to the scheduler, but as we are
still in the initialization phase of the program, no other tasks are running that could block or
extend the sleep time. In order to convert between a time value (for example, milliseconds)
and FreeRTOS ticks, the constant portTICK_PERIOD_MS is provided, signifying the period
of a tick in milliseconds. Also, the convenience macro pdMS_TO_TICKS() is also provided,
useful to make the code more readable. It is all used in conjunction on the following snip-
pet to delay execution for 1 second (1000 milliseconds) between the call to begin() and
isConnected():

This module uses the standard procedure of value updating: send via queue, lock SHTavg

structure, update data, release the lock, check thresholds. The thresholds are checked for both

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 44 of 81

void SHTSetup() {

// **Earlier code ommited from the snippet**

sht = new SHT21();

bool ret_ok;

ret_ok = sht->begin(&Wire);

ESP_LOGD(TAG, "Begin returned %s", ret_ok ? "true" : "false");

vTaskDelay(pdMS_TO_TICKS(1000));

ret_ok = sht->isConnected();

ESP_LOGD(TAG, "Connected returned %s", ret_ok ? "true" : "false");

if((! ret_ok)) {

ESP_LOGE(TAG, "SHT initialization error.");

sleep(3);

ESP.restart();

while(1);

}

ESP_LOGI(TAG, "SHT ready.");

}

Listing 8: Delay on SHT initialization.

temperature and humidity. Due to the nature of the sensor, it is checked less often than the
IMU, as the response time on the SHT (in respect to the real-life measures) is larger.

4.2.8.- Microphone module

The INMP441, as said before, uses I2S (explained in Subsection 3.4.3) to write data to the
ESP32 memory. This module calls the required functions to automatically handle the data
transfer, as the needed parameters are defined on its header as a constant. The standard ini-
tialization procedure is followed at the start, creating the micavg structure and the semaphore
lock to access it, but there is no queue to send data to the real-time data stream. Instead, a
ring buffer (circular buffer) is used to store the audio data as it comes, overwriting the old
data if it is not consumed by the real-time stream. At this stage, it is only created by defining
the needed size and calling xRingbufferCreate(), specifying that we want a byte buffer.
This functionality is provided as a supplemental feature on the FreeRTOS implementation
by ESP-IDF [16].

There are three different types of ring buffers according to the documentation:

• No-Split buffers: Intended to store items that must keep their structure contiguous in
memory. Every item stored requires an additional 8 bytes for a header. Rounds item
sizes to 32 bits.

• Allow-Split buffers: Intended to store items which structure does not need contiguous

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 45 of 81

memory. Every item stored requires an additional 8 bytes for a header. Rounds item
sizes to 32 bits.

• Byte buffers: Intended to store sequences of bytes, allowing reads and writes of arbi-
trary size within its bounds. Has no overhead, but does not guarantee 32-bit address
alignment.

For this use case, the byte buffer is the perfect match, as we will be treating the audio
data as a byte sequence. Memory alignment is not an issue, because this buffer is used to
read the data from the internal I2S buffer and hold it until the real-time audio stream task
sends it over the network.

After this buffer is initialized, a built-in I2S driver is installed according to the configu-
ration set in the mic.h header. The project uses a standard configuration, with the necessary
parameters adjusted in order to get a 22050 Hz sample rate, 16-bit single channel audio sig-
nal. There are 8 DMA buffers configured with 1024 samples each. At the aforementioned
sample rate, each buffer will fill in 1024/22050 milliseconds, which comes in a total of ap-
proximately 371 milliseconds to fill the 8 buffers. The standard looping task that handles the
microphone data has an execution interval of 100 milliseconds, so only around 3 buffers will
be full at any given time, but they are reserved in case the scheduler cannot meet the delay
demand and blocks the task for longer, so that audio is not lost.

The microphone data handler looping task simply executes on a similar flow to other
modules (updating the micavg structure), except that it calculates every buffer until there is
no more data left (while also inserting them into the ring buffer created prior), before calling
vTaskDelay() for another 100 milliseconds.

A 22050 Hz sampling rate was chosen given the properties of the microphone (especially
the frequency response) as well as the use-case (human noise detection). According to the
Nyquist-Shannon theorem, perfect reconstruction of the analog audio wave is guaranteed
given a sampling rate that doubles the maximum frequency cointained on the original wave.
The microphone will register frequencies up to 11025 Hz on this configuration. Higher
frequencies will be dampened by the low-pass filter included in the INMP441 itself [25],
which helps with possible aliasing.

4.2.9.- WiFiManager module

Upon initialization, the module will load the WiFI access points saved in the configuration,
check their validity, and add them to the WiFiMulti object offered by the external WiFiMulti

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 46 of 81

const i2s_config_t i2s_mic_config = {

.mode = i2s_mode_t(I2S_MODE_MASTER | I2S_MODE_RX),

.sample_rate = 22050,

.bits_per_sample = I2S_BITS_PER_SAMPLE_16BIT,

.channel_format = I2S_CHANNEL_FMT_ONLY_LEFT, // Ground the L/R pin

.communication_format = i2s_comm_format_t(I2S_COMM_FORMAT_STAND_I2S),

.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,

.dma_buf_count = 8, // 8 buffers, ~371 ms to get a full fill and lose data

.dma_buf_len = 1024, // 1024/22050 = 46.44 ms to fill up a buffer.

.use_apll = false,

.tx_desc_auto_clear = false,

.fixed_mclk = 0,

.mclk_multiple = i2s_mclk_multiple_t(),

.bits_per_chan = I2S_BITS_PER_CHAN_16BIT,

};

Listing 9: Configuration structure for the I2S driver.

library. Then, it offers the ”WiFi state” as returned by the WiFiMulti.run() call, in a global
variable WIFI_STATE defined in wifimanager.h. This can help other modules determine
the cause of the network error (no AP detected, general network errors...). It starts a small
task that loops every 5 seconds calling WiFiMulti.run(), to update and maintain the WiFi
connection state, as well as the global variable.

If the initialization procedure encounters an error connecting to the network, it will sig-
nal the device to restart. Errors during normal operation are allowed, and the library will
handle reconnection gracefully thanks to the loop task started prior. A hard-coded sin-
gle access point will be added to the WiFiMulti object in case the wifi parameter of the
configuration is malformed. The following code snippet (Listing 10) shows the initial-
ization procedure (without the loop task creation). Hard coupling and dependency with the
ArduinoJson library can be seen here.

4.2.10.- MQTT module

The MQTT Setup starts after all the sensors are initialized and a WiFi connection is ob-
tained. At first, the MQTTClient is created and configured according to the "mqtt" object
in configuration. Then, the RPC system is initialized by calling initRPC(). Then, the
MQTT connection to the configured broker is made, and a message handler (hMQTTmsg())
is registered to listen for RPC calls. A subscription request is made to the configured RPC
topic. After that, the setup is considered complete, and three tasks related to MQTT are
started.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 47 of 81

uint8_t WiFiSetup(){

WiFi.disconnect(true);

WiFi.mode(WIFI_STA);

if(!configuration.isNull()

&& configuration.containsKey("wifi")

&& configuration["wifi"].is<JsonArray>())

{

ESP_LOGI(TAG, "Using config WiFimulti...");

JsonArray wifis = configuration["wifi"].as<JsonArray>();

for(JsonVariant w : wifis) {

if(w["ssid"].is<const char*>() && w["pass"].is<const char*>()) {

ESP_LOGD(TAG, "Adding %s:%s\n",

w["ssid"].as<const char*>(),

w["pass"].as<const char*>()

);

wifiMulti.addAP(

w["ssid"].as<const char*>(),

w["pass"].as<const char*>()

);

}

else{

ESP_LOGW(TAG, "Skipping malformed wifi entry: %s",

w.as<String>().c_str()

);

}

}

WIFI_STATE = wifiMulti.run();

_checkAndTryFixError(WIFI_STATE);

}

else {

ESP_LOGI(TAG, "Using default WiFi parameters...");

wifiMulti.addAP(WIFI_SSID, WIFI_PASS);

WIFI_STATE = wifiMulti.run();

_checkAndTryFixError(WIFI_STATE);

//WiFi.begin(WIFI_SSID, WIFI_PASS);

}

// Start loop task...

}

Listing 10: WiFimanager setup procedure, verifying the WiFi parameters.

The MQTT loop (tMQTTLoop) is a bare-bones task that executes the loop() function
of the MQTTClient object repeatedly, in one second intervals. This will manage the internal
TCP connection to the broker, as well as send and receive any pending messages.

The MQTT sender (tMQTTSend) task is dedicated to the periodic reports of measures

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 48 of 81

stored in the avg structures of each sensor. As the structures are locked by semaphores, the
data is accessed in small chunks and stored in buffers inside the function, in order to lock the
minimum possible time. Formatting and sending the message with the locks still acquired
could result in delays or lost data in the sensor measuring tasks. In this minimal locking
time, the datum inside the structures are cleared by calling zeroDatum(), so the average

reported on this periodic messages is only calculated over that period of time. The period
between this reports can be modified with the parameter "update_period" on the "mqtt"

object inside configuration.

The MQTT alert (tMQTTAlert) task initializes the alert_events event group, used
for notifying it of a current threshold alert. After an initialization delay to ensure the sensor
values are settled, the task waits for any set bits on the event group, and analyzes the bits set
in order to report a correct alert. The actual syntax of the message sent to FCM is done here,
although it could be changed on-the-fly by the alert forwarder. The message is formatted
using objects from the ArduinoJson library according to the FCM documentation, before
finally being serialized and sent as an MQTT message.

As the MQTT loop task is running, any received messages on subscribed topics will be
handled by the function defined on onMessage(), which is set to hMQTTmsg as described in
the setup. This function will pass execution to the processRPC() function if it was sent to
the RPC topic.

4.2.11.- RPC module

This module implements a simple but functional RPC system, compliant with the JSON-
RPC protocol version 2.0 [27]. This version was chosen due to the comprehensive error
messages it can return, without being too complex. RPC error messages are defined on the
rpc.h header, on both id and text format, with specific names. The standard RPC errors are
implemented, as well as some custom ones for specific functions, complying with Section
5.1 of the specification. The data object is always omitted.

All RPC functions are defined in this module, on rpc.cpp, and they do not appear on its
header file as they should not be called from outside the RPC processRPC() function. If
the functionality grows more, it could be distributed in different source files inside a folder,
as long as the MQTT task is able to call the needed RPC function. In this case, to achieve
that functionality, on the RPC module initialization, all functions are ”registered”: Their
method name and a pointer to the function are added to a map structure. This structure was
chosen as an easy way to get the function pointer knowing the method name. The std::map
implementation offers a logarithmic time retrieval of the value of any key; this is better

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 49 of 81

than any manual array iterative search implemented manually, and is provided as part of the
standard library within the ESP-IDF framework. It can later be used to retrieve and call
the needed function based on its registered method name. A preprocessor macro is used to
simplify the task of updating the function map, passing a constant string as the method name
and the function as arguments, which will be casted to the types that the map accepts.

The processRPC() function is the entrypoint to the RPC ecosystem, and it is the function
that the MQTT task uses to handle RPC function requests. It handles message deserializa-
tion into a JsonDocument, returns errors if needed, finds the requested method and runs its
function. When it finishes execution, it returns the response object back to the MQTT task,
so it can send it to the broker.

All RPC functions have the same function signature/header: They accept a JsonVariant
argument, which is a reference to the "params" object of the RPC message received over
MQTT. They can modify the response by accessing the global variable ret (only under the
RPC module scope), which is a JsonDocument object. Again, a hard coupling with the
ArduinoJson library shows up, as well as another bad practice of having global variables.
There are no race conditions or overwriting as the RPC processing is done synchronously by
the MQTT module. No more than one RPC function may execute at the same time (although
they may start tasks that run in the background outside its module, such as real-time data
streaming)

Another preprocessor macro was created for the error processing, to aid on development
and make the logic code more clear. Whenever an RPC function needs to signal an error
back to the user (such as informing about wrong parameters, or internal errors) it should
call RPCError() and pass the id of the error as defined on the rpc.h header. The macro
makes use of preprocessor string concatenation to create the "error" object on the response
message, with the "code" and "message" derived from the provided error.

A table (4.2) is shown detailing the RPC functions, with their method name, needed
parameters and description:

Method Parameters Description

rpc.list None Returns a list containing all the RPC func-
tions currently registered and available.

config.get None Returns the current configuration ob-
ject.

config.set The new configu-

ration, as a com-

plete object.

Updates the configuration to the pro-
vided parameter.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 50 of 81

Method Parameters Description

system.info None Returns the microprocessor’s uptime as
microseconds, the current time, and the
available memory heap size in bytes.

system.reboot None Restarts the ESP32. Will always return
OK unless there is no memory to start the
task that delays the restart.

system.ota "url": The com-
plete URL of an
HTTP server con-
taining the binary
firmware update.

Updates the microcontroller’s firmware
over-the-air, remotely. If successful, the
device will restart.

stream.sensors.start "address": The
IP address of the
stream target.
"port": The
target’s listening
port.

Starts the real-time sensor data stream,
which will send data to the provided tar-
get. It will fail with JRPC_ERR_RUNNING

if the task is already running.

stream.sensors.stop None Stops the currently running real-time sen-
sor data stream task, if it is running. Will
always return OK.

stream.mic.start "address": The
IP address of the
stream target.
"port": The
target’s listening
port.

Starts the real-time audio data stream,
which will send data to the provided tar-
get. It will fail with JRPC_ERR_RUNNING

if the task is already running.

stream.mic.stop None Stops the currently running real-time au-
dio data stream task, if it is running. Will
always return OK.

Table 4.2: RPC functions.

Listing 14 shows a sample JSON-RPC message to start a real-time audio stream targeted
at the IP address 192.168.4.8 and port 3334:

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 51 of 81

// RPC Function type

typedef std::function<void(JsonVariant)> _rpcfun;

// RPC Function map

std::map<String,_rpcfun> functionMap;

/**

* Helper function. It is a define macro because

* we use the direct function, and then convert it

* to std::function with the typename.

*/

#define registerRPC(name, func) \

functionMap.insert({String(name), _rpcfun(func)})

/**

* Initialize RPC function map.

*/

void initRPC() {

// NOTE: add functions here to make them available.

registerRPC("rpc.list", rpcList);

registerRPC("config.get", getConfig);

registerRPC("config.set", setConfig);

registerRPC("system.info", systemInfo);

registerRPC("system.reboot", systemReboot);

registerRPC("system.ota", OTAupdate);

registerRPC("stream.sensors.start", streamSensorData);

registerRPC("stream.sensors.stop", stopStreamSensorData);

registerRPC("stream.mic.start", streamMicData);

registerRPC("stream.mic.stop", stopStreamMicData);

for(auto const &pair: functionMap) {

ESP_LOGI(TAG, "Registered function %s", pair.first.c_str());

}

}

Listing 11: RPC function map setup.

#define RPCError(code) \

JsonObject error = ret.createNestedObject("error"); \

error["code"] = code; \

error["message"] = code ## _TXT \

Listing 12: Preprocessor macro used for RPC errors.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 52 of 81

void streamMicData(JsonVariant params) {

if(params.isNull() || (!params.is<JsonObject>())) {

RPCError(JRPC_ERR_INVALID_PARAMS);

}

if(

(! params["address"].is<const char*>()) ||

(! params["port"].is<unsigned short>())

) {

RPCError(JRPC_ERR_INVALID_PARAMS);

}

// ** Function logic goes here... **

}

Listing 13: Sample usage of the RPC macro.

{

"id":0,

"jsonrpc": "2.0",

"method": "stream.sensors.start",

"params":{"address":"192.168.4.8","port":3334}

}

Listing 14: Sample JSON-RPC message.

4.2.12.- Real-time Sensor data stream module

This module only refers to the sensor data. The audio data is sent by a different task, by
reading the ring buffer of the mic module explained in Subsection 4.2.8. Its implementation
will be explained in the following subsection (4.2.13).

In order to get the measures out of the ESP32 and into the target device, outside of
the MQTT broker, we need to establish a connection between both devices, and send data
according to a specific protocol. The target of the protocol is to simplify the implementation
on the microcontroller, including low overhead in serialization. For this, TCP was chosen as
a base, and a simple byte structure was followed: a byte indicating the amount of ”structures”
with data, followed by the actual objects. This is repeated 3 times, one for each type of sensor
uploaded.

On the microcontroller, sensor measures are ”bundled” in queues, and emptied and seri-
alized all at once at a fixed interval. This brings some benefits worth looking into:

• More performance: Bundling allows for less task switching and reduces the system

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 53 of 81

calls for networking.

• Packet optimization: Multiple measures can fit in a single TCP packet instead of
being divided in several ones, which may improve network performance at the cost of
latency due to the bundling. This will depend on the networks MTU.

• Different frequencies: All three sensors could have different measuring frequencies
and still work correctly. For example, the IMU may report values every 100ms, the
SHT every 350ms, the ECG reports every time there is a pulse (usually between 700
and 1000ms) and you can send all the available information every 500ms.

The aforementioned serialization consists on reserving a big enough memory area and
repeating the same operation for the three types of sensor (IMU, SHT and ECG): skip the first
byte, dump the data from the queue in front of it, save the amount of structures dumped in the
byte you skipped. For reading, the sequence is similar: Read the first byte and read forward
that amount of objects, starting with the IMU, then SHT and finally the ECG. This allows for
an arbitrary number of structures, including 0. The smallest possible packet is comprised of
3 bytes, all set to 0, indicating that there are no IMUData, SHTData, or ECGData structures
to read on that packet. A simplified diagram is shown below (Figure 4.10).

While it is obvious that this protocol offers no forwards or backwards compatibility, no
error correction, no timing information and no boundary safety checks; those negatives are
justified by the benefits of simple multi-frequency compatibility, development speed, and
small network overhead. This development is enough for the project scope and proof of
concept.

The task that reads the audio data from the ring buffer and sends it through the network
is started with an RPC call (stream.sensors.start) indicating the address and port, and
stopped with its stop counterpart (stream.sensors.stop). A TCP socket will be initialized
with the parameters provided. It will reset the queues as to not send old data, and start a
loop of reading the queues, serializing the data and sending it through the sockets, every
half a second. It will close the socket on any network error and try to restart this process
indefinitely, until the aforementioned RPC stop call is made, which will kill this process and
reap its stack memory.

The header just contains the task function definition, which is needed for the RPC module
to create the actual task.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 54 of 81

4.2.13.- Real-time audio stream

The real-time audio stream task is defined on the mic.cpp file itself, but has a specific header
(stream_mic.h) in order to expose the task to other modules that require it (such as rpc.cpp).

The start flow is similar to the real-time sensor data stream task: Create a socket and
clear the ring buffer before starting, but instead of having a loop on a defined interval, it
waits for data on the ring buffer and sends it as soon as possible, on batches of 1024 bytes.
This is done to minimize the latency on the audio stream, as the network overhead and the
microphone data reading task already introduce a big delay. The ring buffer, when calling
xRingbufferReceiveUpTo() to receive data, returns a pointer (and accepts a modifiable
argument to return the size of the data contained), which can be both easily passed into
the primitive send() function of the built-in socket library, and then freed from the ring
buffer by using vRingbufferReturnItem() as to not overflow the internal ring pointers
and potentially lose data.

void tMicTCPSender(void *pvParameters) {

// **Earlier code ommited from the snippet**

// Send data periodically

while (true) {

item = (char *)xRingbufferReceiveUpTo(

ringbuffer_handle,

&item_size,

pdMS_TO_TICKS(1000),

STREAM_BATCH_SIZE

);

if(item == NULL) {

ESP_LOGE(TAG, "No data on ringbuffer for 1 second; continuing...");

continue;

}

net_err = send(sock, item, item_size, 0);

vRingbufferReturnItem(ringbuffer_handle, (void *)item);

if (net_err < 0) {

ESP_LOGE(TAG, "Data send error.");

break; // Exit the loop if sending data fails

}

}

// **close the socket and try to reconnect**

}

Listing 15: Audio stream task receiving data from the ring buffer and sending it through a
socket.

As the data is sent as a raw 16-bit samples over TCP, it can be reproduced using various
methods, with a simple implementation explained in Subsection 4.4.4.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 55 of 81

4.3.- Server Configuration

The Raspberry Pi was prepared with some external software to accommodate the system
needs. Using docker, a container was created for the MQTT broker mosquitto. Another
container (telegraf) was dedicated to store the periodic measures on a local database. As for
the python supporting software, a virtualenv was created with the needed libraries, which
will be used to run the alert forwarder.

Using crontab, the Firebase alert forwarder is set to run automatically at boot. The
mosquitto and telegraf containers will also start up after the Raspberry Pi boots, thanks to
the specified restart parameter on their docker-compose.yml.

4.3.1.- Alert forwarder and crontab

Cron is a Linux utility that executes commands at predetermined intervals or at a specific
time, according to a user-dependant configuration file named crontab. It can be edited for
the current user easily by running crontab -e. The file will open up on the default editor,
with instructions on the basic syntax. The classic functionality is defining a specific time,
and set ”*” on fields that should not matter. For example, to run a script every hour at minute
0, the crontab entry will read like: 0 * * * * /path/to/command.sh

The special @reboot parameter allows for running commands at system startup. No
time is configured; the line should only contain the parameter and the command to run.
This would be our complete example to run the Firebase alert forwarder startup script:
@reboot /home/pi/testBuzzer/supporting_python/firebase/start.sh

The startup script will wait for a bit to allow the docker containers to initialize, and after
that it starts the alert forwarder itself, on its virtualenv. It logs any console messages into
a latest.log file, to facilitate tracing errors. This virtualenv is just a Python environment
isolated from the system one, so that packages can co-exist without worrying about version
mismatching.

#!/bin/sh

sleep 30

cd /home/pi/testBuzzer/supporting_python/firebase

.venv/bin/python -u main.py > latest.log &

Listing 16: Startup script for the alert forwarder.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 56 of 81

4.3.2.- Docker configuration

Docker is an open-source platform allowing developers to build, deploy, run and easily man-
age containerized applications. [47] A container is a set of processes isolated from the host
machine, similar to a virtual machine, but with less overhead due to the kernel being shared
with the host.

Docker Compose is a tool for defining and running multi-container applications. [9] It
offers a nice and developer-friendly way of defining what containers should run for a given
system to work, including environment variables, shared networks, ports and files with the
host system. On this use-case, it is used as a way to easily manage a single container.

The docker-compose.yml files follows the documentation to create a single container
each (mosquitto and telegraf), with all the specific configuration files they might need mounted
from the host filesystem into the containers. The network that connects the two is created
externally, by executing docker network create tfg.

The directive restart: unless-stopped will guarantee execution of the containers
until it receives a explicit stop command, this way, the docker engine will restart the contain-
ers when the host is booted up.

On the mosquitto side, the configuration allows any user to connect to the MQTT broker.
It supports access control, users and passwords, which have not been configured for this proof
of concept, and are reviewed on Subsection 4.5.6. It accepts connections on ports 1883 and
8883, with the latter being a TLS-secure option with a self-signed certificate, generated for
this purpose.

As for telegraf, it is a server agent that collects metrics from various sources, transforms
them and sends them to other outputs. It is used as a simple service to ingest the periodic
measures sent over MQTT into a simple SQLite database, but it can be extended in the
future to acquire more data and send the measures to different sources such as a PostgreSQL
database.

4.4.- Supporting Software Development

Apart from the actual software embedded on the ESP32, and external programs and servers
such as an MQTT broker implementation, there is some custom code needed for the full
ecosystem to work.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 57 of 81

version: "3"

services:

mosquitto:

image: eclipse-mosquitto:latest

container_name: mosquitto

environment:

- TZ=Europe/Madrid

volumes:

- ./certs:/mosquitto/certs

- ./config:/mosquitto/config

- ./data:/mosquitto/data

- ./log:/mosquitto/log

ports:

- 1883:1883

- 8883:8883

restart: unless-stopped

networks:

- tfg

networks:

tfg:

external: true

Listing 17: Docker Compose YAML file for the mosquitto MQTT server.

4.4.1.- MQTT-Firebase alert forwarder

This is the main supporting component of the ecosystem. Being critical for alert delivery to
end devices, this software should be running at all times alongside the MQTT broker, and
have a reliable external connection to make the necessary requests to the Firebase API in
order to ensure a correct delivery of notifications.

As explained in the overview of Section 3.5.2, it is programmed in Python, with external
libraries needed for MQTT and Firebase communication. A Firebase example [20] was used
as a base, iterating upon it with the MQTT client functionality needed for listening to the
alert commands, and appending the Firebase device tokens needed for the FCM requests.

4.4.2.- Android app: NotificationsTFG

Already assessed on the overview of Section 3.5.3, a bare-bones Android App is necessary
in order to receive fast and safe notifications. Using the Android Studio IDE, a ”Hello world”
blank app was created. Then, logic was added to ask the user for the notification permission,
and to ensure the Firebase token is initialized and shown in the console.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 58 of 81

The notifications are formatted directly from the ESP32 and modified by the alert for-

warder, the App and FCM ecosystem display them directly on the notification bar of the
device. No more development is needed to enable the phone to receive them. Additional fea-
tures could be integrated in the future as explained in the overview, which will be expanded
further on Section 4.5.

4.4.3.- Real-time Sensor data stream listener

For this functionality, a basic TCP server was developed in the Python programming lan-
guage, in order to listen and unpack the sensor data sent as bytes directly from the ESP32,
and display it on the screen.

After an standard TCP socket initialization listening on any address and a specified port
(default 3334), the data processing loop receives all data sent by the microcontroller, and
prints it to the screen, as well as plotting it into a 2D plot.

The built-in libraries socket and struct are used to create a TCP socket and unpacking
the structures sent in the packets according to the protocol. Then, it is shown to the screen
with a series of 2D plots using the matplotlib library. Multi-threading was used to handle
the blocking nature of the network and the visualization parts. Currently, the CPython im-
plementation of Python 3.11 is being used, which features the GIL. It is a CPython constraint
that does not allow for multiple threads to access Python code and objects at the same time.
Only one thread may have the lock acquired at any given point. The rest of the threads can
only wait for it, or do computation and I/O outside of the Python realm. Therefore, the nature
of this lock does not allow for true parallel execution under normal circumstances. As this
is not a compute-heavy scenario, it is valid and functional for our purposes, as most of the
time is spent on a sleeping state or waiting for data on the socket, which is where Python
multi-threading model is best effective. The community is on the process of debating and
implementing the option to turn off the GIL in future versions of Python [21].

4.4.4.- Audio data stream listener

A module for the ESP32 was programmed to send raw audio data from it into a TCP server.
Creating a raw audio ingest server is not a trivial task, but receiving data through a socket
and piping it through a well-established audio transcoder can be done with a few simple
commands, given that we have the necessary programs installed.

To achieve this, a simple pipeline is launched, comprised of the ”ncat” utility from nmap

to open a socket, and ffplay (from ffmpeg) as the transcoder and audio player. Optionally, the

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 59 of 81

built-in command tee (on bash or powershell 7) can be used in the middle, saving the audio
stream to a file while still playing it in real time. A sample command is shown below:

ncat -l -p 3333 | ffplay -f s16le -ar 22050 -ac 1 -

This will launch ncat and make it create a listening TCP socket on port 3333, and ”pipe”
the data received into the standard input of the next program; which is ffplay, configured to
play a raw signed 16-bit (little endian) audio signal, with an audio frequency of 22050, and
a single (mono) channel, from its standard input.

With this, we have a simple setup to listen to the audio picked up by the microphone in
almost real time. Tests on a local network (ESP32 wireless ->WiFi router wired ->switch
wired ->PC) show a latency of around 5 seconds. Network usage shall average 352.8 kbps,
as that is the actual bitrate of the raw audio stream at this configuration (22050 Hz, 16-bit
mono); nonetheless, in real tests, actual network usage will be higher due to TCP and lower
OSI layer headers, and bandwidth consumed will fluctuate depending on buffer sizes, flush
timing, and general network conditions.

This functionality can be enabled on-demand with an RPC call to the ESP32 specifying
the server and port to connect to, but some interesting improvements can be developed in
the form of a recording framework that, in case of a predefined sensor threshold or scenario,
automatically started an audio stream session into a server, saving the data for later analysis.

4.5.- Future work

As the project is limited to a proof-of-concept system with basic features, there is multiple
functionality that can be useful but has not been implemented. This section will overview
some ideas as well as pending work to facilitate the use of this system in the future.

4.5.1.- Sports band compatible board

The current board iterations do not have in mind the wearable that they should be attached to.
A production board should include all the current hardware without the development boards,
as well as a battery and circuits needed for managing it, or a external power supply compliant
with medical safety protocols. This board should attach effortlessly to the sports band on its
front connectors, and have body contact for the temperature and humidity sensor.

A PCB should be designed following this needs of compactness and safety, as well as an

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 60 of 81

enclosure to protect both the board and the patient.

4.5.2.- Android app improvements

The bare-bones app for the implementation of notifications is sufficient for its purpose; never-
theless, multiple features come to mind when thinking of a phone app for an IoT monitoring
system:

• Device management: A way to manage new devices and assign them to be viewable
or not on the app would be helpful for end users. Any phone that ”registers” a device
shall receive its notifications, so the alert forwarder has to see this information.

• Measure visualization: Plotting and exploring historical periodic measures, while not
trivial, is a feature given for granted in any measure-obtaining system. Some kind of
connection is needed with the database, and a plot library shall be implemented on the
app.

• RPC function execution: Ranging from basic information view to reconfiguring the
configuration parameters, having a way to easily change the ESP32 behaviour from
the phone is a very good quality of life feature for the end users.

• Real-time measure visualization: Allow the app to receive the direct measures from
the ESP32 with the press of a button, and plot them on screen.

4.5.3.- Reactive data logging

The ESP32 still has some memory that is unused. A good use of this memory could be a
”replay” of sorts to be sent when any alert is triggered. Imagine the situation of a threshold
that is commonly reached for a patient, but the periodic measures do not offer any insights
as to why that happens. A system could be developed so that the ESP32 is continuously
recording the real-time data into a ring buffer of a given size, and is uploaded when an alert
is triggered. This way, the last few minutes of real-time data before the threshold is reached
are available for analysis. The implementation could be similar to the real-time audio send,
with a built-in ring buffer, except that it will always be overwriting itself until an alert is
fired. At that point, the ESP32 can check its configuration to send the whole ring buffer
data into a specified server, which will be listening and saving it into a database or a file for
later use.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 61 of 81

4.5.4.- Real-time stream improvements

The overall implementation of the real-time data streaming is valid. But even over a local
network in an specific binary format, transmitting data over an insecure TCP connection
brings some concerns. An effort should be made in the future to convert this plain TCP
connections into secure ones, using protocols like TLS, allowing for confidentiality of the
transferred data. This will cause some overhead in data transmission due to the data conver-
sion, but it is a good trade-off for safe use of the real-time feature on less secure networks.
Both the ESP32 code and the server implementation have to be compatible with the change.
Also, the current ESP32 implementation only allows one stream type at the same time (so a
maximum of one sensor stream and one audio stream). An interesting feature could be ex-
panding this to multiple receivers, be it with the connections done directly from the ESP32,
or through a distribution server.

Furthermore, a configuration parameter could define whether to start the real-time
streams on device startup, as a way to have a permanent data ingestion; or another parameter
to start a real-time stream whenever an alert occurs. The latter, paired with the reactive data
logging defined before (Subsection 4.5.3) could be a very competent mix, achieving low,
aggregated data transmission on normal situations, but adapting to a fast data transmission
on important scenarios.

Some network caveats may arise when using the current implementation of the real-time
data stream, as the receiver needs to have a port open for the connection to be established.
This is a problem on WAN networks, as the usage of a network address translation or NAT

is very extended, and may lead to not being able to receive external connections. Multiple
solutions could be used, but the most reliable is having a server that both end devices can
connect to, and forward their messages as needed. Another option is using the MQTT broker
as the middle server, but this option should be revised further, as it comes with overhead
and the throughput is to be analyzed and measured. For this project’s general use-case, all
data should always be on the local network, but the possibility of a future request of external
access may be impacted due to this problem.

4.5.5.- Firebase alert forwarder improvements

As of the end of this project, the alert forwarder developed in Python has all configuration
done statically on its source files. Some general cleanup should be done to obtain param-
eters through the environment or configuration files. A more important isssue is Firebase
tokens. Those should be able to be updated dynamically, without having to restart the script
entirely. To support multiple devices, the program needs to keep up with a mapping of the

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 62 of 81

currently registered ESP32 devices, and the Firebase tokens that it should notify on alert.
This configuration could be easily done through a specific topic via MQTT.

Security standard practices should be followed and some type of access control to this
parameters have to be implemented.

4.5.6.- Access control

As well as the access control for the alert forwarder, the ESP32 RPC could also benefit from
some type of permissions. This can be easily done via the MQTT broker configuration, as
the mosquitto server used allows for defining users and passwords to log into the server. This
users can have access control rules that define which topics they are allowed to subscribe to,
and to which ones they can publish. A special admin user could publish to RPC and the alert

forwarder configuration, but a standard user may only see periodic data and alerts of their
devices.

4.5.7.- Improved IMU alerts

The proof of concept only allows basic thresholds to be set for the IMU parameters, as well
as the calculated magnitude of the acceleration vector. Future developments could include a
more flexible alert system for this sensor.

For example, one simple implementation could be analyzing the vibration pattern. This
can be seen as a double threshold: one for the ”count this as a vibration”, and another for
”how many vibrations shall occur in a given timeframe to alert”. A patient could have a little
”twitch” or sudden movement, without signifying an emergency scenario. This can happen
multiple times over a long period of time, but if it happens too quickly, an alarm could be
sent. This can also be extrapolated to a more general use of the system: If you want to
monitor patients that are not movement-restrained, any fast spin while sleeping to reposition
may trigger the basic thresholds.

Another way of implementing improved alerts is via a machine learning algorithm run-
ning on the ESP32. By analyzing historic data, a machine learning algorithm could be de-
veloped that, given the real-time acceleration and information from the other sensors, can
predict whether the patient is suffering an emergency condition. This is a more advanced
way of generating alerts than the threshold, and may not be as flexible, but it can be adjusted
and fine-tuned to be more precise for specific cases, which can be critical to the survival of
the patient.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 63 of 81

4.5.8.- Data visualization

The telegraf container is saving all periodic measures into a database. The only way to
visualize this data is to query the database directly. A front-end should be developed that
allows users to explore and export historic data of specific devices, giving an easier way to
professionals to analyze the data.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 64 of 81

Figure 4.8: The underside of the board, with the ESP32 module.

Figure 4.9: Pull-up resistors on the data and clock lines of the I2C bus.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 65 of 81

Figure 4.10: Simplified diagram with a sample packet including 1 of each data structure.

Figure 4.11: Sample notification from a heart rate alert.

Figure 4.12: Sample GUI image plotting data of an idle subject.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 66 of 81

5. Technical documentation
5.1.- User Requirements

ID Name Description

UR1 Body parameter
monitoring

UR1.1 Parameters to
measure

The user needs to monitor the following parameters from
the patient over a defined period: Heart Rate, Body Hu-
midity, Body Temperature, Movement, Noise.

UR1.2 Modifiable report
period

The user will be able to modify the period in which the
measures are sent.

UR1.3 On-Demand real-
time view of pa-
rameters

The user will be able to view the measured parameters in
real-time, if needed.

UR2 Alerts and noti-
fications

UR2.1 Patient health
alert

The user will receive a phone notification when the body
parameters of the patient are within a defined threshold.

UR2.2 Modifiable
thresholds

The user will be able to modify the thresholds taken into
account for notifications.

UR3 Data storage
and access

UR3.1 Storage of peri-
odic measures

The periodic measures will be stored safely and the user
shall be in full possession of them.

UR3.2 Storage of real-
time measures

The real-time measures will be stored safely and the user
shall be in full possession of them.

UR3.3 Visualization of
stored measures

The user will be able to observe the measures.

UR3.4 Deletion of stored
measures

The user will be able to safely delete the measures.

UR4 Remote man-
agement and
configuration

UR4.1 Remote configu-
ration

The user will be able to modify the configuration remotely.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 67 of 81

ID Name Description

UR4.2 Remote operation The user will be able to control the devices remotely. This
includes restarting the device, and enabling or disabling
real-time measure report features.

UR4.3 Remote updates The user will be able to update the devices firmware re-
motely.

UR5 Compliance and
standards

UR5.1 Open source de-
pendencies

The system will use open source dependencies whenever
possible.

UR5.2 Use of standards The system will adhere to standards in every module, to
ensure maintainability and compatibility.

UR5.3 Safe for medical
use

The device will follow medical safety precautions, always
ensuring patient well-being, as well as their surroundings.

Table 5.1: User Requirements

5.2.- System Requirements
ID Name Description User Re-

quirement

— Functional Re-
quirements

FR1 Parameters to
measure

The device will monitor and periodically re-
port the following parameters from the patient:
Heart Rate, Body Humidity, Body Tempera-
ture, Movement, Noise. The data will be sent
out of the device via WiFi, over MQTT, on a
defined topic.

UR1.1

FR2 Modifiable report
period

The device will accept new configuration on its
RPC topic over MQTT. This configuration has
a field that changes the interval in which data
is periodically reported.

UR1.2,
UR4.1

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 68 of 81

ID Name Description User Re-
quirement

FR3 On-Demand real-
time view of pa-
rameters

The device will start a real-time transmission
of sensor data or audio data when a specific
RPC call is received over MQTT. This data
shall not be sent over MQTT, as to increase the
data throughput and reduce latency.

UR1.2,
UR4.2

FR4 Patient health
alert

The device will send an alert on a specific
MQTT topic when a defined threshold is
reached for any sensor. The alert handler will
check the phone tokens assigned to that device,
and forward this alert to FCM, in order to show
a notification on said phones.

UR2.1

FR5 Modifiable
thresholds

The device will accept new configuration on
its RPC topic over MQTT. This configuration
has four fields (min, low, high, max) for each
sensor, so multiple cases can be covered with a
single configuration.

UR2.2,
UR4.1

FR6 Storage of peri-
odic measures

The system will store the periodically reported
measures from devices into a local database.

UR3.1

FR7 Storage of real-
time measures

The system will store the real-time measures
from devices into a local database.

UR3.2

FR8 Visualization of
stored measures

The system will allow the user to see, filter and
extract data from the local database. Periodic
measures will be separated from real-time data.

UR3.3

FR9 Deletion of
stored measures

The system will allow the user to delete data
from the local database.

UR3.4

FR10 Remote configu-
ration

The device will accept new configuration on
its RPC topic over MQTT. This configuration
must be saved on the device file system, for
persistence.

UR4.1

FR11 Remote opera-
tion

The device will accept RPC calls on its spe-
cific topic over MQTT. This includes. but is
not limited to: restarting the device, starting or
stopping real-time data reporting.

UR4.2

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 69 of 81

ID Name Description User Re-
quirement

FR12 Remote updates The device will accept an RPC call with
a URL in which the OTA update binary is
hosted. Then, it must download the file and
perform the update, rolling back the version if
an error is found.

UR4.3

FR13 Open source de-
pendencies

The device and supporting components will
use open source libraries, frameworks and
tool-chains on its code. Some closed source
code is executed due to the necessity of FCM

and Android notifications.

UR5.1

FR14 Use of standards The device and supporting components will
adhere to standards on their specific domain.

UR5.2

FR15 Safe for medical
use

The device will follow medical safety precau-
tions, and guidance will be given for proper
usage.

UR5.3

— Non Functional
Requirements

NFR1 Usability The device should be minimally invasive, and
comfortable for long-term wear. The overall
system should be easy to use, given a basic
guidance.

NFR2 Maintainability The system shall adhere to open standards
and frameworks as much as possible. The de-
vices should be easy to maintain and replace.
Firmware updates and recalibration must be
possible remotely.

NFR3 Scalability The system must accept multiple devices and
phones simultaneously. The devices must be
suited for future functionality updates without
replacement.

NFR4 Performance The devices should be able to operate in real-
time. The alerts must arrive quickly to phones
without any delays.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 70 of 81

ID Name Description User Re-
quirement

NFR5 Reliability and
Availability

The overall system must be reliable and have
great availability, to ensure no alerts are
missed. The cost of parts and modules used
on devices should be minimized, but they must
be tested and generally available for purchase.

NFR6 Security and
Safety

Given the nature of the data obtained, the sys-
tem must adhere to strict security norms to
ensure patient data protection. The device must
comply with the needed safety precautions.

Table 5.2: System Requirements

5.3.- Technical Manual

The development environment is comprised of a Windows machine for general program-
ming, a phone running Android, and a Raspberry Pi 4 running Linux for the needed services.
Any similar configurations (such as using an Android emulator) may follow the same steps
as this manual. This manual assumes a standard installation of Windows and Linux are done
on their respective systems, and assumes the user can control both with no issues.

The first step is to get the IDE ready. Visual Studio Code can be downloaded and in-
stalled at https://code.visualstudio.com/Download. Upon installation, the PlatformIO
IDE extension can be installed from inside Visual Studio Code, by searching from it in the
extension marketplace from the extensions menu (Ctrl+Shift+X). The installation may take
a while, as multiple build dependencies are installed.

The project’s source (source.zip) code shall be decompressed into a folder, which will be
considered the root folder. This folder can be opened in Visual Studio Code for PlatformIO to
recognize the project. After that, the program can easily be built and uploaded to a connected
ESP32 from the PlatformIO menu on the left (the alien-looking icon). The connected ESP32
has to be in the bootloader; to access it, connect the ESP32 development board while holding
the boot button, or if it is already connected, hold the boot button and press the reset/RST

button. Any changes made to the project have to be uploaded into the ESP32 this way.

A sample of the entire ESP32 SPIFFS filesystem can be found under the data/ directory
of the project. To upload this into the SPIFFS partition of the ESP32, connect/put it in

Iván Noriega Rodrigo

https://code.visualstudio.com/Download

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 71 of 81

bootloader mode, and select ”Upload Filesystem Image” on the PlatformIO menu.

In order to set up the containers running on the Raspberry Pi, docker will need to be
installed. First, the apt sources shall be updated, and any packages too. Then, docker can
be installed using the convenience script. Adding the pi user to the docker group is not
mandatory, but very useful for later commands, to remove the need of using sudo every
time. The following snippet (18) shows how to do this steps:

sudo apt update

sudo apt upgrade

sudo curl -fsSL https://get.docker.com -o get-docker.sh

sudo sh get-docker.sh

sudo usermod -aG docker pi

Listing 18: Commands used to install docker onto a fresh Raspberry Pi.

A reboot should be done before continuing, to ensure everything is installed correctly,
and the group change for the pi user is effective. One of the many commands to reboot is
sudo reboot now. After that, the project’s source zip file can be extracted onto a folder.
The Docker/ folder contains the docker compose files to start up the mosquitto MQTT broker
and the telegraf metrics collector.

First, create the required network by running docker network create tfg. This
should only be done once. After that, navigate to their respective folders, and execute
docker compose up -d. It may take a while, as it downloads the images needed for the
containers. At the end, both should be up and running, which can be verified by running
docker ps. The following snippet of code (Listing 19) shows an example, given the source
zip file source.zip.

unzip source.zip -d tfgproject

docker network create tfg

cd tfgproject/Docker/mosquitto

docker compose up -d

cd ../telegraf

docker compose up -d

docker ps

Listing 19: Commands used to setup the containers for the first time.

After this, the services should start up whenever the Pi boots up. Only the Firebase

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 72 of 81

alert forwarder is left as the only critical component. Ensure the Python interpreter, as well
as the package manager pip and the virtual environment utility venv are installed with this
command: sudo apt install python3 python3-pip python3-venv. Now, in order to
create the needed virtual environments, navigate to the project’s root directory, and enter
the supporting_python/firebase/ folder. On there, the environment should be created
under the .venv directory name, and the library requirements from requirements.txt

shall be installed. The following commands (Listing 20) show how it should be done:

python3 -m venv .venv

.venv/bin/python -m pip install -r requirements.txt

Listing 20: Commands used to setup a Python virtual environment.

Finally, lets configure cron so that the Firebase starter script is called at boot. Ensure
the file is executable by running chmod +x setup.sh, and then open the crontab with
crontab -e. If it asks for an editor, just press enter to use the default nano editor. The
crontab will open in the editor. Navigate to the end of the file and add a line like this:

@reboot /home/pi/tfgproject/supporting_python/firebase/start.sh

Now, upon reboot, all three components will be running.

Finally, for the notifications to work, the NotificationsTFG app needs to be installed on a
device and the Firebase token should be saved.

Install Android Studio on the Windows development machine following the instructions
at https://developer.android.com/studio/install.

Open the android_source.zip in Android Studio and install the app on the phone or
emulator (or install the apk file). After accepting the notification permissions, the screen
and the logcat logs will show the firebase token. Add it to the list of tokens of the firebase
alert forwarder by modifying the FIREBASE_TOKENS list of mqtt.py, inside the Raspberry
Pi project folder. Restart the Raspberry Pi. You may now close the app. Now, any new alerts
will also be sent to that phone.

Iván Noriega Rodrigo

https://developer.android.com/studio/install

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 73 of 81

6. Conclusions
The end result is a working proof of concept that sends alerts as phone notifications every
time the configured threshold is reached for the sensor parameters. It has quality of life
features to configure and reprogram the microcontroller remotely. In order to use it as a final
product, some extra development is still needed, such as hardware design, but the baseline is
set and proven to work correctly. Data can be analyzed and recorded for later improvements,
which can be implemented without physical intervention thanks to the OTA firmware update
functionality. Overall, the project is in a modular and stable state, ready to be improved and
expanded easily.

Some of the developer experience could be simplified by having more automated tools,
but given the amount of modularity of the system, and the minimum of three devices, it is
still cumbersome to work on every side of the project at once. Multiple trade-offs had to
be done. Nevertheless, the experience and acquired knowledge about all the different topics
was very broad and entertaining, and the end result is a very big step towards a useful tool.

Currently, it can be used as a way to record some extended test data, but having the board
close to the patient skin is not safe nor comfortable. As such, the more meaningful data that
could be acquired safely are the measures reported by the IMU, as well as the audio. The
heart rate can also be acquired safely through the modified band connector, but some value
errors are to be expected, as they have appeared in current tests.

This project can be expanded into a functional medical product by the addition of the fu-
ture work outlined in Section 4.5, which could help future patients to have a better experience
and care during their therapy.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 74 of 81

6.1.- Sample graphs and results

Figure 6.1: Parameters of an idle/resting test subject.

Figure 6.2: Acceleration and gyroscope values of a test subject simulating seizure shaking.

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 75 of 81

7. Annex
7.1.- ESP32 initialization sequence diagram

Figure 7.1: ESP32 initialization sequence diagram (part 1/2).

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 76 of 81

Figure 7.2: ESP32 initialization sequence diagram (part 2/2).

Iván Noriega Rodrigo

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 77 of 81

Bibliography
[1] Arduino MKR WiFi 1010, . URL https://store.arduino.cc/products/arduino-

mkr-wifi-1010. Accessed on July 2023.

[2] Arduino Uno Rev.3, . URL https://store.arduino.cc/collections/boards/

products/arduino-uno-rev3. Accessed on July 2023.

[3] Mongoose OS - an IoT integrated development framework. URL https://mongoose-

os.com/mos.html. Accessed on July 2023.

[4] Amazon Web Services. AWS IoT Core pricing. URL https://aws.amazon.com/iot-

core/pricing/. Accessed on July 2024.

[5] Analog Devices Inc. Max30003 ultra-low power, single-channel integrated biopoten-
tial (ECG, R-to-R detection) AFE datasheet. URL https://www.analog.com/media/

en/technical-documentation/data-sheets/max30003.pdf. Accessed on Jan-
uary 2023.

[6] Anthony Atkielski. ECG of a heart in normal sinus rhythm. URL https://

commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg. Accessed on July
2023.

[7] Benoı̂t Blanchon. Why must I create a separate config object? URL https://

arduinojson.org/v6/faq/why-must-i-create-a-separate-config-object/.
Accessed on July 2024.

[8] Piyu Dhaker. Introduction to SPI interface, 2018. URL https://www.analog.com/

en/resources/analog-dialogue/articles/introduction-to-spi-

interface.html#author. Accessed on July 2023.

[9] Docker Inc. and collaborators. Docker compose overview, 2024. URL https://

docs.docker.com/compose/. Accessed on July 2024.

[10] Earle F. Philhower. Arduino-Pico. URL https://github.com/earlephilhower/

arduino-pico. Accessed on July 2023.

[11] Espressif Systems. ESP32 documentation: Inter-IC Sound (I2S), . URL
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-

reference/peripherals/i2s.html. Accessed on July 2024.

[12] Espressif Systems. ESP32-WROOM-32 Datasheet, . URL https:

//www.espressif.com/sites/default/files/documentation/esp32-wroom-

32e esp32-wroom-32ue datasheet en.pdf. Accessed on July 2023.

Iván Noriega Rodrigo

https://store.arduino.cc/products/arduino-mkr-wifi-1010
https://store.arduino.cc/products/arduino-mkr-wifi-1010
https://store.arduino.cc/collections/boards/products/arduino-uno-rev3
https://store.arduino.cc/collections/boards/products/arduino-uno-rev3
https://mongoose-os.com/mos.html
https://mongoose-os.com/mos.html
https://aws.amazon.com/iot-core/pricing/
https://aws.amazon.com/iot-core/pricing/
https://www.analog.com/media/en/technical-documentation/data-sheets/max30003.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/max30003.pdf
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
https://arduinojson.org/v6/faq/why-must-i-create-a-separate-config-object/
https://arduinojson.org/v6/faq/why-must-i-create-a-separate-config-object/
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html#author
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html#author
https://www.analog.com/en/resources/analog-dialogue/articles/introduction-to-spi-interface.html#author
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://github.com/earlephilhower/arduino-pico
https://github.com/earlephilhower/arduino-pico
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2s.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/i2s.html
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 78 of 81

[13] Espressif Systems. ESP8266EX Datasheet. . URL https://www.espressif.com/

sites/default/files/documentation/0a-esp8266ex datasheet en.pdf. Ac-
cessed on July 2023.

[14] Espressif Systems. GPIO matrix and pin mux, 2022. URL https:

//espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/

en/latest/tutorials/io mux.html. Accessed on July 2023.

[15] Espressif Systems. SMP on an ESP target, 2023. URL https://

docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/

system/freertos idf.html. Accessed on July 2024.

[16] Espressif Systems. FreeRTOS (supplemental features), 2023. URL
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-

reference/system/freertos additions.html. Accessed on July 2024.

[17] Firebase. FCM architectural overview., . URL https://firebase.google.com/

docs/cloud-messaging/fcm-architecture. Accessed on June 2024.

[18] Firebase. Firebase Documentation: Send messages to device groups on An-
droid, . URL https://firebase.google.com/docs/cloud-messaging/android/

device-group. Accessed on July 2024.

[19] Firebase. Firebase Documentation: Recieve messages on an Android app. han-
dling messages, . URL https://firebase.google.com/docs/cloud-messaging/

android/receive#handling messages. Accessed on June 2024.

[20] Firebase. Server side FCM sample, . URL https://github.com/firebase/

quickstart-python/blob/master/messaging/messaging.py. Accessed on June
2024.

[21] Sam Gross. Making the Global Interpreter Lock Optional in CPython, 2023. URL
https://peps.python.org/pep-0703. Accessed on July 2024.

[22] Gareth Halfacree and Ben Everard. Get Started with MicroPython on Raspberry Pi

Pico. Raspberri Pi Press, 2021. URL https://store.rpipress.cc/products/get-

started-with-micropython-on-raspberry-pi-pico. Accessed on July 2023.

[23] Muhammad Husaini, Latifah Munirah Kamarudin, Ammar Zakaria, Intan Kartika Ka-
marudin, Muhammad Amin Ibrahim, Hiromitsu Nishizaki, Masahiro Toyoura, and Xi-
aoyang Mao. Non-contact breathing monitoring using sleep breathing detection algo-
rithm (sbda) based on uwb radar sensors. Sensors, 22(14), 2022. ISSN 1424-8220. doi:
10.3390/s22145249. URL https://www.mdpi.com/1424-8220/22/14/5249.

Iván Noriega Rodrigo

https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/tutorials/io_mux.html
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/tutorials/io_mux.html
https://espressif-docs.readthedocs-hosted.com/projects/arduino-esp32/en/latest/tutorials/io_mux.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/freertos_idf.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/freertos_idf.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/freertos_idf.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/freertos_additions.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/system/freertos_additions.html
https://firebase.google.com/docs/cloud-messaging/fcm-architecture
https://firebase.google.com/docs/cloud-messaging/fcm-architecture
https://firebase.google.com/docs/cloud-messaging/android/device-group
https://firebase.google.com/docs/cloud-messaging/android/device-group
https://firebase.google.com/docs/cloud-messaging/android/receive#handling_messages
https://firebase.google.com/docs/cloud-messaging/android/receive#handling_messages
https://github.com/firebase/quickstart-python/blob/master/messaging/messaging.py
https://github.com/firebase/quickstart-python/blob/master/messaging/messaging.py
https://peps.python.org/pep-0703
https://store.rpipress.cc/products/get-started-with-micropython-on-raspberry-pi-pico
https://store.rpipress.cc/products/get-started-with-micropython-on-raspberry-pi-pico
https://www.mdpi.com/1424-8220/22/14/5249

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 79 of 81

[24] Invensense Inc. MPU6050 Datasheet. 2013. URL https://invensense.tdk.com/

wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. Accessed on June
2024.

[25] InvenSense Inc. INMP441 Datasheet. 2014. URL https://invensense.tdk.com/

wp-content/uploads/2015/02/INMP441.pdf. Accessed on June 2024.

[26] David Johnson-Davies. µlisp - Lisp for microcontrollers. URL http://

www.ulisp.com/show?3M. Accessed on July 2023.

[27] JSON-RPC Working Group. JSON-RPC 2.0 Specification, 2013. URL https://

www.jsonrpc.org/specification. Accessed on July 2024.

[28] Kubii. Buy Raspberry Pi Pico W from Kubii, official retailer. URL
https://www.kubii.com/es/las-tarjetas-raspberry-pi/3205-1641-

raspberry-pi-pico-w-h-wh-3272496311589.html#/version pico-pico w.
Accessed on July 2023.

[29] David Kushner. The Making of Arduino. 2011. URL https://spectrum.ieee.org/

the-making-of-arduino. Accessed on July 2023.

[30] Maxim Integrated. MAX30003WING expansion board. URL https:

//www.analog.com/media/en/technical-documentation/data-sheets/

MAX30003WING.pdf. Accessed on January 2023.

[31] Renzo Mischianti. ESP32-WROOM-32 Module Pinout. URL https:

//mischianti.org/2021/05/26/esp32-wroom-32-high-resolution-pinout-

and-specs/. Accessed on July 2023.

[32] Mouser. Buy ESP32-WROOM-32E from Mouser. URL https://mou.sr/46QwNy4.
Accessed on July 2023.

[33] Rubén Muñiz, Juan Dı́az, Juan A. Martı́nez, Fernando Nuño, Julio Bobes, Mª Paz
Garcı́a-Portilla, and Pilar A. Sáiz. A smart band for automatic supervision of restrained
patients in a hospital environment. Sensors, 20(18), 2020. ISSN 1424-8220. doi:
10.3390/s20185211. URL https://www.mdpi.com/1424-8220/20/18/5211.

[34] OASIS MQTT Technical Committee. MQTT version 3.1.1, 2014. URL https://

docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Accessed on
July 2024.

[35] OSHWA (Open Source HardWare Association). A resolution to redefine SPI signal
names, 2022. URL https://www.oshwa.org/a-resolution-to-redefine-spi-

signal-names/. Accessed on July 2023.

Iván Noriega Rodrigo

https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
http://www.ulisp.com/show?3M
http://www.ulisp.com/show?3M
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://www.kubii.com/es/las-tarjetas-raspberry-pi/3205-1641-raspberry-pi-pico-w-h-wh-3272496311589.html#/version_pico-pico_w
https://www.kubii.com/es/las-tarjetas-raspberry-pi/3205-1641-raspberry-pi-pico-w-h-wh-3272496311589.html#/version_pico-pico_w
https://spectrum.ieee.org/the-making-of-arduino
https://spectrum.ieee.org/the-making-of-arduino
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX30003WING.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX30003WING.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/MAX30003WING.pdf
https://mischianti.org/2021/05/26/esp32-wroom-32-high-resolution-pinout-and-specs/
https://mischianti.org/2021/05/26/esp32-wroom-32-high-resolution-pinout-and-specs/
https://mischianti.org/2021/05/26/esp32-wroom-32-high-resolution-pinout-and-specs/
https://mou.sr/46QwNy4
https://www.mdpi.com/1424-8220/20/18/5211
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 80 of 81

[36] Oxford Medical Education. ECG interpretation. URL https://

oxfordmedicaleducation.com/ecgs/ecg-interpretation/. Accessed on
July 2023.

[37] Jiapu Pan and Willis J. Tompkins. A real-time qrs detection algorithm. IEEE

Transactions on Biomedical Engineering, BME-32(3):230–236, 1985. doi: 10.1109/
TBME.1985.325532.

[38] PlatformIO. PlatformIO registry. URL https://registry.platformio.org/. Ac-
cessed on July 2024.

[39] Raspberry Pi Foundation. Raspberry Pi Pico Pinout. URL https:

//www.raspberrypi.com/documentation/microcontrollers/images/pico-

pinout.svg. Accessed on July 2023.

[40] Raspberry Pi Foundation. Raspberry pi pico datasheet, 2023. URL https:

//datasheets.raspberrypi.com/pico/pico-datasheet.pdf. Accessed on July
2023.

[41] Raspberry Pi Foundation. RP2040 Datasheet, 2023. URL https://

datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf. Accessed on July
2023.

[42] Marco Polo Sauza Aguirre. Breathing sensor 1 respiration sensor. URL
https://www.hackster.io/marco-polo-sauza-aguirre/breathing-sensor-

1-respiration-sensor-1b18de. Accessed on March 2023.

[43] Sensirion. SHT21 Datasheet. 2022. URL https:

//sensirion.com/media/documents/120BBE4C/63500094/

Sensirion Datasheet Humidity Sensor SHT21.pdf. Accessed on June 2024.

[44] STMicroelectronics. STM32 32-bit Microprocessors, . URL https:

//www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-

cortex-mcus.html. Accessed on July 2023.

[45] STMicroelectronics. Buy STM32 wireless MCUs, . URL https://estore.st.com/

en/products/microcontrollers-microprocessors/stm32-32-bit-arm-

cortex-mcus/stm32-wireless-mcus.html. Accessed on July 2023.

[46] STMicroelectronics. Buy STM32WBA52CEU6, . URL https://estore.st.com/

en/stm32wba52ceu6-cpn.html. Accessed on July 2023.

[47] Stephanie Susnjara and Ian Smalley. What is Docker?, 2024. URL https://

www.ibm.com/topics/docker. Accessed on July 2024.

Iván Noriega Rodrigo

https://oxfordmedicaleducation.com/ecgs/ecg-interpretation/
https://oxfordmedicaleducation.com/ecgs/ecg-interpretation/
https://registry.platformio.org/
https://www.raspberrypi.com/documentation/microcontrollers/images/pico-pinout.svg
https://www.raspberrypi.com/documentation/microcontrollers/images/pico-pinout.svg
https://www.raspberrypi.com/documentation/microcontrollers/images/pico-pinout.svg
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://www.hackster.io/marco-polo-sauza-aguirre/breathing-sensor-1-respiration-sensor-1b18de
https://www.hackster.io/marco-polo-sauza-aguirre/breathing-sensor-1-respiration-sensor-1b18de
https://sensirion.com/media/documents/120BBE4C/63500094/Sensirion_Datasheet_Humidity_Sensor_SHT21.pdf
https://sensirion.com/media/documents/120BBE4C/63500094/Sensirion_Datasheet_Humidity_Sensor_SHT21.pdf
https://sensirion.com/media/documents/120BBE4C/63500094/Sensirion_Datasheet_Humidity_Sensor_SHT21.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://estore.st.com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-wireless-mcus.html
https://estore.st.com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-wireless-mcus.html
https://estore.st.com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-wireless-mcus.html
https://estore.st.com/en/stm32wba52ceu6-cpn.html
https://estore.st.com/en/stm32wba52ceu6-cpn.html
https://www.ibm.com/topics/docker
https://www.ibm.com/topics/docker

Gijón Polytechnic School of Engineering
UNIVERSITY OF OVIEDO

Page 81 of 81

[48] Espressif Systems. ESP32 Datasheet. URL https://www.espressif.com/sites/

default/files/documentation/esp32 datasheet en.pdf. Accessed on July
2023.

[49] Texas Instruments Inc. A basic guide to I2C. 2022. URL https://www.ti.com/lit/

an/sbaa565/sbaa565.pdf. Accessed on June 2024.

[50] uPesy. How to use the gpio pins of the ESP32, 2022. URL https://www.upesy.com/

blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide.
Accessed on July 2023.

Iván Noriega Rodrigo

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.ti.com/lit/an/sbaa565/sbaa565.pdf
https://www.ti.com/lit/an/sbaa565/sbaa565.pdf
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide
https://www.upesy.com/blogs/tutorials/esp32-pinout-reference-gpio-pins-ultimate-guide

	Table of contents
	List of figures
	List of tables
	Abstract
	Purpose and Scope
	Background
	Idea and objective

	System Definition and Analysis of Alternatives
	Heart Rate Sensor
	Microcontroller
	Raspberry Pi Pico
	ESP32
	Arduino Family
	STM32 Family
	Final microcontroller selection

	Other sensors
	INMP441 Microphone
	SHT21 Temperature and humidity
	MPU6050 Intertial Measurement Unit

	Protocols and communication
	SPI
	I2C
	I2S
	MQTT

	Alert handling
	FCM (Firebase Cloud Messaging)
	MQTT and external alert forwarder
	Android App

	Overall System
	Physical support and hardware

	System Development
	Hardware Development
	First designs
	Sports-band for heart rate monitoring
	Printed Circuit Board
	Second Circuit Board

	Microcontroller Software Development
	Module List
	Library dependencies
	Configuration module
	Value Handler module
	Heart rate module
	IMU module
	SHT module
	Microphone module
	WiFiManager module
	MQTT module
	RPC module
	Real-time Sensor data stream module
	Real-time audio stream

	Server Configuration
	Alert forwarder and crontab
	Docker configuration

	Supporting Software Development
	MQTT-Firebase alert forwarder
	Android app: NotificationsTFG
	Real-time Sensor data stream listener
	Audio data stream listener

	Future work
	Sports band compatible board
	Android app improvements
	Reactive data logging
	Real-time stream improvements
	Firebase alert forwarder improvements
	Access control
	Improved IMU alerts
	Data visualization

	Technical documentation
	User Requirements
	System Requirements
	Technical Manual

	Conclusions
	Sample graphs and results

	Annex
	ESP32 initialization sequence diagram

	Bibliography

