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Abstract: In the framework of the theory of linear viscoelasticity, we derive an analytical expres-
sion of the relaxation modulus in the Andrade model Gα(t) for the case of rational parameter
α = m/n ∈ (0, 1) in terms of Mittag–Leffler functions from its Laplace transform G̃α(s). It turns out
that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the
original parameter α = 1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross
functions. The asymptotic behaviours of Gα(t) for t → 0+ and t → +∞ are also derived applying the
Tauberian theorem. The analytical results obtained have been numerically checked by solving the
Volterra integral equation satisfied by Gα(t) by using a successive approximation approach, as well
as computing the inverse Laplace transform of G̃α(s) by using Talbot’s method.

Keywords: Andrade model; relaxation modulus in linear viscoelasticity; Mittag-Leffler function;
Laplace transform

1. The Andrade Model in Linear Viscoelasticity

In the framework of linear viscoelasticity theory, a “transient” phase of deformation
occurs right after the elastic response in creep phenomena and is marked by a strain rate
that changes over time [1]. Among the rheological laws that exhibit a transient phase, the
Andrade model has been effectively used to describe the behavior of various materials. This
model was initially introduced by Andrade in 1910 to describe the elongation of metallic
wires under constant tensile stress [2]. Its main feature is a transient that exhibits a fractional
power function time dependence ∼tα. In their empirical stress–strain relationship, Andrade
proposed the exponent α = 1/3 [3]. Nevertheless, later laboratory investigations have
shown that values within the range of 0 < α < 1 are indeed possible for certain materials [4].
It is worth noting that during the last dozen years, there has been an increasing interest
in the Andrade model [5,6]. Using the modern formulation of the Andrade model [7], the
creep compliance Jα(t) (i.e., the strain per unit stress) is given by

Jα(t) = JU + βtα +
t
η

, t ≥ 0, (1)

where JU is the unrelaxed compliance, η is the steady state Newtonian viscosity, β is the
magnitude of the inelastic contribution, and α represents the frequency of the compli-
ance. The number of free parameters that appear in (1) can be reduced by adopting a
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useful parametrization given in [8], whose validity is discussed in [4]. Essentially, this
parametrization performs the following change of variables:

JU =
1
µ

, β =
1

µ τα
, η = µ τ, (2)

thus, we obtain

Jα(t) =
1
µ

[
1 +

(
t
τ

)α

+
t
τ

]
, t ≥ 0, (3)

where the parameters µ, τ > 0 have a clear and important physical meaning. The aim of
this paper is to analytically calculate in closed form the relaxation modulus Gα(t) (i.e., the
stress per unit strain) from the creep compliance Jα(t) given in (3) by using the inverse
Laplace transform.

It is worth noting that the computation of Gα(t) from Jα(t) is also possible by numeri-
cally solving the following Volterra integral equation of the second kind ([9] [Eqn. 2.87]):

Gα(t) = µ

[
1 −

∫ t

0

dJα(t′)
dt′

Gα

(
t − t′

)
dt′

]
, (4)

just as has been done for other models such as that of Jeffrey-Lomnitz rheological law [10].
Another numerical approach is to obtain the relaxation modulus in the Laplace domain
G̃α(s) = L[Gα(t); s], and then numerically evaluate the inverse Laplace transform to obtain
Gα(t). However, an analytical solution is more desirable since it shows the role and weight
of the model parameters explicitly. In addition, analytical approaches are generally more
computationally efficient. In the present approach, we just analytically calculate the inverse
Laplace transform of G̃α(s). This result has been applied by some of the authors in [11],
and here we provide the mathematical details of the calculation.

Next, we derive G̃α(s) in the Andrade model. For this purpose, apply the Laplace
transform to (3) in order to obtain

L[Jα(t); s] = J̃α(s) =
1

µ s2

[
s + Γ(1 + α)τ−αs1−α +

1
τ

]
. (5)

However, since the following relation is satisfied in any linear viscoelasticity
rheology ([9] [Eqn. 2.8])

J̃α(s)G̃α(s) =
1
s2 , (6)

we conclude
G̃α(s) =

µ τ

s τ + Γ(α + 1)(s τ)1−α + 1
. (7)

As mentioned above, the range of values that are interesting for α are between 0
and 1, so we restrict our study to α ∈ (0, 1). It is worth noting that (7) can also be
obtained rewriting the Volterra integral Equation (4) in terms of the Laplace convolution
product [12], i.e.,

Gα(t) = µ

(
1 − Gα(t) ∗

dJα(t)
dt

)
, (8)

thus taking the Laplace transform in (8) and solving for G̃α(s), we arrive at (7).
The manuscript is organized as follows. In Section 2, we perform the calculation

of Gα(t) for α = 1/3 (as first suggested by Andrade) in terms of Miller-Ross functions.
Section 3 generalizes this result for rational α in terms of a finite sum of Mittag–Leffler
functions, which in turn can be expressed as a linear combination of Rabotnov functions.
It is worth highlighting that although in principle α can be a real number, the value it
actually acquires in rheological models is a positive fractional number less than unity.
Section 4 calculates the asymptotic behaviour of Gα(t) for t → 0+ and t → +∞ by using
the Tauberian theorem. Section 5 shows some numerical verifications on the expressions of
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Gα(t) derived in the previous sections, as well as on their asymptotic behaviors. Finally,
we collect our conclusions in Section 6.

2. Laplace Inversion in Terms of Miller-Ross Functions for α = 1/3

Consider in (7) the following change of variables:

b =
1
τ

, c =
Γ(α + 1)

τα
, (9)

to rewrite G̃α(s) as
G̃α(s) =

µ

b + s + c s1−α
. (10)

In order calculate the inverse Laplace transform of G̃α(s) for the case α = 1/3, i.e.,

G̃1/3(s) =
µ

b + s + c s2/3 , (11)

apply the identity

(x + y)
(

x2 − xy + y2
)
= x3 + y3, (12)

taking x = b + s, and y = c s2/3, to arrive at

1
µ

G̃1/3(s) = b2 1
p(s)︸︷︷︸
R̃(s)

+ 2b s
1

p(s)︸ ︷︷ ︸
Q̃(s)=s R̃(s)

+
s2

p(s)︸︷︷︸
s Q̃(s)

− bc
s2/3

p(s)︸︷︷︸
Ũ2/3(s)

− c s
s2/3

p(s)︸ ︷︷ ︸
s Ũ2/3(s)

+ c2 s4/3

p(s)︸︷︷︸
Ũ4/3(s)

, (13)

where

p(s) = s3 +
(

3b + c3
)

s2 + 3b2s + b3 =
3

∏
k=1

(s − sk), (14)

and sk are the roots of the cubic equation p(s) = 0, i.e.,

s1 = −1
3
(M − N − L),

s2 = −1
3

(
M + ei π/3N + e−i π/3L

)
,

s3 = −1
3

(
M + e−i π/3N + ei π/3L

)
,

(15)

being
M = 3b + c3,

L =
3

√
3
2

√
3b3c6(27b + 4c3)− 27

2
b2c3 − 9 bc6 − c9,

N =

(
6b + c3)c3

L
.

(16)

First, rewrite R̃(s) as

R̃(s) =
1

p(s)
=

3

∑
k=1

αk
s − sk

, αk =
3

∏
j ̸=k

1
sk − sj

. (17)

Note that a simple algebraic calculation shows that

3

∑
k=1

αk = 0,

3

∑
k=1

αk sk = 0.
(18)
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Now, define the following functions

R(t) = L−1[R̃(s); t
]
, (19)

thus,
Q(t) = L−1[Q̃(s); t

]
= L−1[s R̃(s); t

]
= R′(t) + R(0) δ(t), (20)

and
L−1[s Q̃(s); t

]
= Q′(t) + Q(0)δ(t) = R′′(t) + R′(0) δ′(t). (21)

Furthermore,

Uν(t) = L−1[Ũν(s); t
]
= L−1

[
sν

p(s)
; t
]

, (22)

thus
L−1[s Ũν(s); t

]
= U′

ν(t) + Uν(0) δ(t). (23)

Therefore, the inverse Laplace transform of G̃1/3(s) is given by

G1/3(t) = L−1[G̃1/3(s); t
]

(24)

= µ
{

b2 R(t) + 2b
[
R′(t) + R(0) δ(t)

]
+ R′′(t) + R′(0) δ′(t)

+ bc U2/3(t)− c
[
U′

2/3(t) + U2/3(0) δ(t)
]
+ c2 U4/3(t)

}
.

2.1. Calculation of R(T)
According to (17) and (19), we have

R(t) = L−1[R̃(s); t
]
=

3

∑
k=1

αkL−1
[

1
s − sk

; t
]
=

3

∑
k=1

αk exp(skt), (25)

so, that

R′(t) =
3

∑
k=1

αk sk exp(skt),

R′′(t) =
3

∑
k=1

αk s2
k exp(skt).

(26)

Therefore, from (18), we obtain

R(0) =
3

∑
k=1

αk = 0,

R′(0) =
3

∑
k=1

αk sk = 0.
(27)

2.2. Calculation of Uν(T)
According to (22), (17), and the inverse Laplace transform ([13] [Eqn. 2.1.2(9)])

L−1
[

sν

s − a
; t
]
= aνeatP(−ν, at), (28)

where

P(ν, x) =
γ(ν, x)

Γ(ν)
=

1
Γ(ν)

∫ x

0
zν−1e−zdz, (29)
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denotes the normalized lower incomplete gamma function ([14] [Eqn. 8.2.4]), we have

Uν(t) = L−1
[

sν

p(s)
; t
]

=
3

∑
k=1

αk L−1
[

sν

s − sk
; t
]

=
3

∑
k=1

αk sν
k exp(skt) P(−ν, skt). (30)

Therefore, apply the property ([14] [Eqn. 8.4.2])

lim
x→0

xνP(−ν, x) =
1

Γ(1 − ν)
, (31)

to calculate, according to (18), that

Uν(0) = lim
t→0

t−ν
3

∑
k=1

αk (skt)νP(−ν, skt)

= lim
t→0

t−ν

Γ(1 − ν)

3

∑
k=1

αk = 0. (32)

Furthermore, from the derivative formula

d
dt

[
eatP(−ν, at)

]
= a

[
eatP(−ν, at) +

(at)−ν−1

Γ(−ν)

]
, (33)

we calculate, according also to (18), that

U′
ν(t) =

3

∑
k=1

αk sν+1
k

[
exp(skt) P(−ν, skt) +

(skt)−ν−1

Γ(−ν)

]

=
3

∑
k=1

αk sν+1
k exp(skt) P(−ν, skt) +

t−ν−1

Γ(−ν)

3

∑
k=1

αk

=
3

∑
k=1

αk sν+1
k exp(skt) P(−ν, skt). (34)

2.3. Calculation of G1/3(T)
Insert (25)–(34) into (24) to arrive at the following result, after simplification,

G1/3(t) = µ
3

∑
k=1

αk exp(skt) (35){
(b + sk)

[
b + sk − c s2/3

k P
(
−2

3
, skt

)]
+ c2s4/3

k P
(
−4

3
, skt

)}
, t ≥ 0.

It is worth noting that we can rewrite (35) in terms of the Miller-Ross functions ([9]
[Eqn. E.37]), defined as

Et(ν, a) =
a−νeat

Γ(ν)
γ(ν, at) = a−νeat P(ν, at), (36)
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thus, after simplification, we arrive at the following result:

GMR
1/3(t) = µ

3

∑
k=1

αk

{
(b + sk)

[
(b + sk)eskt − c Et

(
−2

3
, sk

)]
+ c2 Et

(
−4

3
, skt

)}
, (37)

where the superscript MR takes into account that G1/3(t) is given in terms of Miller-Ross

functions. Furthermore, according to (9), the parameters b = 1/τ and c = Γ
(

4
3

)
τ−1/3.

Moreover, sk and αk are given in (15)–(17), respectively.

3. Laplace Inversion in Terms of Rabotnov Functions

Consider (7) for the case α = m
n ∈ Q,

0 < m < n, n, m ∈ N, (38)

and perform the change of variables r = (sτ)1/n,

G̃m/n(r) =
µ τ

rn + Γ
(

1 +
m
n

)
rn−m + 1︸ ︷︷ ︸

pn,m(r)

, (39)

where pn,m(r) is a polynomial of n-th order. If pn,m(r) has non-repeated roots rk, (k = 1, . . . , n),
then, according to ([15] [Eqn. 17:13:10]), we have

1
pn,m(r)

=
n

∑
k=1

1
p′n,m(rk)(r − rk)

, (40)

thus

G̃m/n(r) = µ τ
n

∑
k=1

1
p′n,m(rk)(r − rk)

, (41)

and

G̃m/n(s) = µ τ
n

∑
k=1

1
p′n,m(rk)

(
s1/nτ1/n − rk

) . (42)

Define,

fm/n(t) = L−1[G̃m/n(s/τ); t
]

= µ τ
n

∑
k=1

1
p′n,m(rk)

L−1
[

1
s1/n − rk

]
, (43)

and apply ([15] [Eqn. 45:14:4])

L−1
[

sµ−ν

sµ − a
; t
]
= tν−1 Eµ,ν(a tµ), (44)

where Eα,β(z) denotes the two-parameter Mittag–Leffler function ([15] [Eqn. 45:14:2]),

Eα,β(z) =
∞

∑
k=0

zk

Γ(β + α k)
. (45)

Therefore, for µ = ν = 1
n , we have

L−1
[

1
s1/n − a

; t
]
= t1/n−1E 1

n , 1
n

(
a t1/n

)
. (46)
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Insert (46) in (43) to arrive at

fm/n(t) = µ τ t1/n−1
n

∑
k=1

E 1
n , 1

n

(
rk t1/n

)
p′n,m(rk)

. (47)

Finally, apply the property ([13] [Eqn. 1.1.1(3)]),

L−1[F̃(s); t
]
= F(t) ↔ L−1[F̃(a s); t

]
=

1
a

F
(

t
a

)
, (48)

to obtain

Gm/n(t) = L−1[G̃m/n(s); t
]
=

1
τ

fm/n

(
t
τ

)
, (49)

i.e.,

Gm/n(t) = µ

(
t
τ

)1/n−1 n

∑
k=1

E 1
n , 1

n

(
rk (t/τ)1/n

)
p′n,m(rk)

, t ≥ 0, (50)

where remember that rk are the n non-repeated roots of the polynomial:

pn,m(r) = rn + Γ
(

1 +
m
n

)
rn−m + 1. (51)

Note that the solution is a linear combination of Rabotnov functions ([9] [Eqn. E.46]):

Rν(µ, t) = tν Eν+1,ν+1

(
µ tν+1

)
, (52)

thereby,

Gm/n(t) = µ
n

∑
k=1

R1/n−1(rk, t/τ)

p′n,m(rk)
. (53)

For the particular case α = m/n = 1/3, we have

GR
1/3(t) = µ

3

∑
k=1

R−2/3(rk, t/τ)

2 Γ
(

4
3

)
rk + 3 r2

k

, t ≥ 0, (54)

where the superscript R takes into account that G1/3(t) is given in terms of Rabotnov
functions, and rk are the three distinct roots of the cubic equation,

r3 + Γ
(

4
3

)
r2 + 1 = 0, (55)

i.e.,
r1 ≈ −1.40184,
r2 ≈ 0.254432 − 0.805364 i,
r3 ≈ 0.254432 + 0.805364 i.

(56)

4. Asymptotic Behaviour via Tauberian Theorem

Next, we will obtain the asymptotic behaviour of the relaxation modulus Gα(t) as
t → 0+ and as t → +∞ from its Laplace transform G̃α(s) by using the following version of
the Tauberian theorem, (for other version of the Tauberian theorem, see [16]).

Theorem 1. Consider that the Laplace transform of a function f (t) is given by f̃ (s) = L[ f (t); s].
The asymptotic behaviour of f̃ (s) as s → +∞ is given by

f̃ (s) ≈ L[g(t); s], s → +∞, (57)
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where g(t) is the asymptotic behaviour of f (t) as t → 0+. Furthermore, the asymptotic behaviour
of f̃ (s) as s → 0+ is given by

f̃ (s) ≈ L[h(t); s], s → 0+, (58)

where h(t) is the asymptotic behaviour of f (t) as t → +∞.

Proof. On the one hand, consider that the asymptotic behaviour of f (t) as t → 0+ is
given by

f (t) ≈ g(t) =
N

∑
k=1

ak tbk , t → 0+, (59)

with N = 0, 1, 2, . . ., and 0 ≤ b1 < b2 < . . . < bN . Apply the Laplace transform to (59) in
order to obtain

f̃ (s) = L[ f (t); s] ≈ L[g(t); s] =
N

∑
k=1

ak L
[
tbk ; s

]
=

N

∑
k=1

ak Γ(bk + 1)
sbk+1 .

Therefore, we obtain the asymptotic behaviour of f̃ (s) as s → +∞,

f̃ (s) ≈
N

∑
k=0

ak Γ(bk + 1)
sbk+1 , s → +∞,

as we wanted to prove.
On the other hand, consider that the asymptotic behaviour of f̃ (s) as s → 0+ is given by

f̃ (s) ≈
N

∑
k=1

ck sdk , s → 0+, (60)

with N = 0, 1, 2, . . ., and 0 ≤ d1 < d2 < . . . < dN . Apply the inverse Laplace transform
to (60) in order to obtain

f (t) = L−1[ f̃ (s); t
]
=

N

∑
k=1

ck L−1
[
sdk ; t

]
=

N

∑
k=1

ck

Γ(−dk) tdk+1 ,

Therefore, we obtain the asymptotic behaviour of f (t) as t → +∞,

f (t) ≈ h(t) =
N

∑
k=1

ck

Γ(−dk) tdk+1 , t → +∞,

as we wanted to prove.

4.1. Asymptotic Behaviour for T → +∞

We know that the Laplace transform of the relaxation modulus in the Andrade
model is (7)

G̃α(s) =
µ τ

s τ + Γ(α + 1)(s τ)1−α + 1
, α ∈ (0, 1). (61)

Since
1

1 − x
= 1 + x + x2 + . . . , |x| < 1, (62)

we have that
1

1 + x
≈ 1 − x, x → 0+, (63)
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thus, taking x = s τ + Γ(α + 1)(s τ)1−α, we get

G̃α(s) ≈ µ τ
[
1 − s τ − Γ(α + 1)(s τ)1−α

]
, s → 0+. (64)

Since α ∈ (0, 1),
G̃α(s) ≈ µ τ

[
1 − Γ(α + 1) (s τ)1−α

]
, s → 0+. (65)

According to (58), the asymptotic behaviour of Gα(t) as t → +∞ is calculated as

Gα(t) ≈ µ τL−1
[
1 − Γ(α + 1) (s τ)1−α; t

]
(66)

= µ τ δ(t)− µ
Γ(α + 1)
Γ(α − 1)

(
t
τ

)α−2
.

Applying the factorial property of the Gamma function, Γ(z + 1) = z Γ(z), and taking into
account that δ(t) = 0 as t → +∞, we conclude that

Gα(t) ≈ µ α(1 − α)

(
t
τ

)α−2
, t → +∞. (67)

Taking more terms in the expansion of G̃α(s) as s → 0+, we can calculate more terms of
Gα(t) as t → +∞ by using (58). Thereby, we obtain

Gα(t) ≈ µ α

[
(1 − α)

(
t
τ

)α−2
− 2

Γ2(1 + α)

Γ(2α − 1)

(
t
τ

)2α−3
+ . . .

]
, t → +∞. (68)

For the particular case α = 1
3 in (67), we have

G1/3(t) ≈
2
9

µ

(
t
τ

)−5/3
, t → +∞. (69)

As a consistency test, we can obtain (69) from the the expression given in (50) for Gm/n(t)
with m = 1 and n = 3, and the asymptotic formula ([17] [Eqn. 18.1(22)]),

Eα,β(z) ≈ −
N

∑
k=1

z−k

Γ(β − αk)
+ O

(
|z|−N

)
, z → ∞, |arg(−z)| <

(
1 − α

2

)
π. (70)

4.2. Asymptotic Behaviour for T → 0+

Rewrite the Laplace transform of the relaxation modulus (61), as follows:

G̃α(s) =
µ

s

[
1

1 + Γ(α + 1)(s τ)−α + (s τ)−1

]
. (71)

Note that, for a ∈ (0, 1) (thus 1 − a ∈ (0, 1)), and A ∈ R, we have that

lim
y→+∞

1 + A y−a + y−1

1 + A y−a = lim
y→+∞

y + A y1−a + 1
y + A y 1−a = 1, (72)

thus, taking A = Γ(α + 1), a = α ∈ (0, 1), and y = sτ → +∞, (i.e., s → +∞, since τ > 0),
we get

1 + Γ(α + 1)(s τ)−α + (s τ)−1 ≈ 1 + Γ(α + 1)(s τ)−α, s → +∞. (73)
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Apply (73) to (71), in order to obtain

G̃α(s) ≈
µ

s

[
1

1 + Γ(α + 1)(s τ)−α

]
, s → +∞. (74)

Now, perform the change of variables x = 1/z in (63),

1
1 + 1

z
≈ 1 − 1

z
, z → +∞, (75)

and take z = (s τ)α

Γ(α+1) → +∞ (i.e., s → +∞), to arrive at

G̃α(s) ≈ µ

[
1
s
− Γ(α + 1)

ταs α+1

]
, s → +∞. (76)

According to (57), the asymptotic behaviour of Gα(t) as t → 0+ is calculated as

Gα(t) ≈ µL−1
[

1
s
− Γ(α + 1)

ταs α+1 ; t
]

, (77)

i.e.,

Gα(t) ≈ µ

[
1 −

(
t
τ

)α]
, t → 0+. (78)

Again, taking more terms in the expansion of G̃α(s) as s → +∞, we can calculate more
terms of Gα(t) as t → 0+ by using (57). Thereby, we obtain

Gα(t) ≈ µ

[
1 −

(
t
τ

)α

+
Γ2(1 + α)

Γ(2α − 1)

(
t
τ

)2α

+ . . .

]
, t → 0+. (79)

Note that the particular case α = 1
3 in (78) yields

G1/3(t) ≈ µ

[
1 −

(
t
τ

)1/3
]

, t → 0+. (80)

As a consistency test, we can obtain (80) from the the expression given in (50) for
Gm/n(t) with m = 1 and n = 3, and the definition of the Mittag–Leffler Function (45).
Furthermore, the asymptotic formula given in (78) can be obtained from the Volterra
integral Equation (4). Indeed, taking into account (2) and (3) and performing the change of
variables x = t − t′, this integral equation reads as

Gα(t) = µ − 1
τ

∫ t

0

[
1 + α

(
t − x

τ

)α−1
]

Gα(x) dx, (81)

thus,
lim

t→0+
Gα(t) = µ. (82)

According to (82), we can take the approximation Gα(x) ≈ µ as t → 0+ in (81), thus

Gα(t) ≈ µ − µ

τ

∫ t

0

[
1 + α

(
t − x

τ

)α−1
]

dx (83)

= µ

[
1 − t

τ
−

(
t
τ

)α]
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Recalling that α ∈ (0, 1), we recover (78), i.e.,

Gα(t) ≈ µ

[
1 −

(
t
τ

)α]
, t → 0+. (84)

Figure 1 presents the graph of G1/3(t) for µ = 1 and different values of τ. Figure 2
shows the asymptotic behaviours given in (80) and (69) for G1/3(t) with µ = 1 and τ = 1

2 .
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1

2

5

Figure 1. Graph of G1/3(t) for µ = 1.
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Figure 2. Asymptotic behaviour of G1/3(t) for µ = 1 and τ = 1
2 .

5. Numerical Results
5.1. Volterra Integral Equation

The quadrature formulas to numerically solve the Volterra integral equation [18]
that satisfies Gα(t), i.e., Equation (81), fail because from (80), recalling that α ∈ (0, 1) and
µ, τ > 0, we have that

lim
t→0+

dGα(t)
dt

= −∞. (85)

However, we can apply a successive approximation method in order to numerically com-
pute Gα(t) ([19] [Sect. 2.1]). This method states that if we have the Volterra integral equation
of the second kind

u(t) = f (t) +
∫ t

0
K(x, t) u(x) dx, (86)

we take as zeroth approximation
u(0)(t) = f (t), (87)

and for the successive approximations j = 1, 2, . . .

u(j)(t) = f (t) +
∫ t

0
K(x, t) u(j−1)(x) dx. (88)
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Figure 3 shows the application of this successive approximation method to the solution
of (81) (i.e., taking as kernel K(x, t) = − 1

τ

[
1 + α

( t − x
τ

)α−1
]
, and f (t) = µ in (86)), for

µ = τ = 1 and α = 1/3. It is apparent that as the order of approximation increases, we get
a better approximation to the analytical solution G1/3(t) obtained in (37) or (54). Similar
graphs are obtained for other rational values of α ∈ (0, 1) compared to the analytical
solution Gα(t) obtained in (50).

Out[ ]=

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0

G1/3
(5)

(t)

G1/3
(10)

(t)

G1/3
(15)

(t)

G1/3(t)

Figure 3. Successive approximations G(j)
1/3(t) for µ = τ = 1.

Note that this successive approximation method has been successfully applied in
Section 4 in order to derive the first order asymptotic formula (78).

5.2. Inverse Laplace Transform

According to our numerical experiments, the relative error between the analytical
formulas of Gα(t) and the numerical Laplace inversion of G̃α(s), never exceeds the value of
10−9 in the time interval t ∈ [0, 5]. Below we present some of these numerical experiments.

Figure 4 shows the relative error ∆MR(t) between GMR
1/3(t) and Gnum

1/3 (t), i.e., the nu-
merical Laplace inversion of G̃1/3(s) using Talbot’s method [20],

∆MR(t) =

∣∣∣∣∣1 − GMR
1/3(t)

Gnum
1/3 (t)

∣∣∣∣∣. (89)

Out [ ] =

1 2 3 4 5
t

10-11

10-10

10-9

Relative error ΔMR(t)

Figure 4. Graph of ∆MR(t) for µ = τ = 1.

Figure 5 shows the relative error ∆R(t) between GR
1/3(t) and Gnum

1/3 (t),

∆R(t) =

∣∣∣∣∣1 − GR
1/3(t)

Gnum
1/3 (t)

∣∣∣∣∣. (90)
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Figure 5. Graph of ∆R(t) for µ = τ = 1.

6. Conclusions

Considering the Andrade model in linear viscoelasticity, we have derived for the first
time an analytical expression for the relaxation modulus in the time domain Gα(t) consid-
ering a rational parameter α ∈ (0, 1) in terms of Mittag–Leffler functions (or equivalently,
as a linear combination of Rabotnov functions). For the original parameter α = 1/3 of the
Andrade model, we have derived a particular expression for G1/3(t) in terms of Miller-Ross
functions. It turns out that this last expression is numerically more efficient (approximately
twice faster) than the equivalent one in terms of Rabotnov functions.

Furthermore, we have obtained the asymptotic behaviour of Gα(t) for t → 0+ and
t → +∞ using the Tauberian theorem. We have derived the same expression for the
asymptotic behaviour as t → 0+ by using the Volterra integral equation of the second kind
that Gα(t) satisfies.

Finally, numerical computations for particular values of the parameters have been
performed in order to verify the analytical solutions obtained. For this purpose, we have
used Talbot’s method for the numerical computation of the inverse Laplace transform,
and the method of successive approximations for the numerical evaluation of the Volterra
integral equation of the second kind.
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