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1 Introduction

General relativity (GR), formulated by Albert Einstein in 1915, revolutionized our understanding of

gravity by describing it as the curvature of spacetime caused by mass and energy, replacing the New-

tonian concept of gravity as a force between masses with a geometric interpretation: massive objects

cause spacetime to curve, and this curvature dictates the motion of objects.

One of the most fascinating predictions of GR is the existence of black holes (BH), regions of space-

time where the gravitational field is so strong that nothing, not even light, can escape. The properties

of the BH, namely charge, mass and spin, give rise to different conditions which we will analyze and

review. The study of such phenomena has provided deep insights into the nature of gravity, quan-

tum mechanics, and thermodynamics, prompting profound questions about the fundamental nature of

spacetime, information, and the ultimate fate of matter.

While GR successfully describes the macroscopic behavior of gravity, it does not integrate well with

the principles of quantum mechanics that govern the other fundamental forces of nature. This lim-

itation has driven physicists to search for a more comprehensive theory that can unify gravity with

the other forces. That theory is supergravity, which extends GR by incorporating the principles of

supersymmetry. An important property is that, in such theories, each particle has a superpartner with

differing spin properties.

We proceed as follows. First we make a review about the main topics of the theory, the metric,

geodesics to end talking about maximally symmetric spaces. Then we introduce a new formalism, the

p-forms, which makes both the theory and computations easier, to end up with the vielbein formalism

and its relation with spinors. This covers section 2. In section 3 we review everything related to BHs,

with more emphasis on the Reissner–Nordström (RN) type, since we will work with them later in section

5.

Section 4 covers a brief introduction to supergravity, starting from the free Rarita-Schwinger field

and ending with N = 2 minimal gauge supergravity, where we build the framework around the extreme

RN BH, since its special stability makes it suitable for computations. Last in this section we review

two of the simplest N = 2 supergravity solutions.

And in section 5 we classify the supersymmetric RN solutions, explicitly constructing the Killing

spinors in all cases, with special emphasis on intermediate calculations. The gauged version of N = 2

supergravity, where the cosmological constant Λ is necessarily negative, provides the natural frame-

work for analyzing supersymmetry. The easiest supersymmetry case is reviewed in subsection 5.3. In

subsection 5.4, another supersymmetric solution is described, analogous to the extreme RN BH in flat

space. When Λ is nonzero, the minimal coupling of the Maxwell field to the gravitini disrupts the

duality symmetry between electric and magnetic fields, resulting in supersymmetry selecting the purely

electric solution. The last class of supersymmetric RN solutions, referred to as ”cosmic monopoles” and

discussed in subsection 5.5, have no flat-space analogue because the magnetic charge becomes infinite

in the flat space limit.

Last section contains a brief discussion about the results and some of their possible implications.
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2 Review of General Relativity

2.1 What’s General Relativity?

Newton’s theory of gravity, which served us well for 250 years, needs replacing. We have realized that

it fails when considering disturbances in the gravitational field. Imagine, for instance, that the Sun

were to explode. What would we observe? For 8 minutes—the time it takes light to travel from the

Sun to Earth—we would remain unaware of the impending doom, continuing to bask in sunlight. But

what about Earth’s orbit? If the Sun’s mass distribution changes drastically, when would Earth start

deviating from its elliptical path? Would this happen immediately, or would Earth continue its orbit

for 8 minutes before sensing the change?

To answer that, we need special relativity. Since no signal can travel faster than the speed of light,

Earth must continue its orbit for 8 minutes. But how is the information about the Sun’s explosion

transmitted? Does it travel at the speed of light? What medium carries this information?

Answering these questions requires rethinking our fundamental notions of space and time, leading us

to some of modern physics’ most profound ideas, including cosmology and black holes. The theoretical

frame, more general than Special Relativity, where we encompass all of these ideas is General Relativity.

General relativity is the theory of space, time, and gravity. At its core, the theory posits that gravity

is geometry: the effects we attribute to gravity result from the bending and warping of spacetime. This

principle applies to phenomena ranging from falling objects to orbiting planets, and even to the motion

of the cosmos on a grand scale.

We can view it as the high-energy and curvature Newton’s gravity generalization, and it is that,

whatever theory we come up to, if it’s valid at high energies (usually that’s a synonym of non-zero

curvature), it has to reproduce the result of Newton’s gravity theory, the first and most basic intuition

about gravity and its effects.

2.2 Geodesics

Geodesics are one of the key topics in GR, since they are the path followed by a test particle, one on

which no external forces are acting. More technically, they are the generalization to general manifolds

of the notion of straight lines in flat space. To define them, first we have to introduce the concept of

parallel transport.

2.2.1 Parallel transport

Given a curve γ defined in a manifold

γ :(a, b) ∈ R −→M (1)

λ −→ γ(λ) (2)

which we take to the calculus world (the one we know how to calculate) through

Ψ ◦ γ :(a, b) ∈ R −→ Rn (3)

λ −→ xµ(λ) (4)
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In flat-spacetime, if a vector V µ fulfills

dV µ

dλ
=
dxν

dλ

∂V µ

∂xν
= 0 (5)

we say it’s constant along γ. We say then that a vector is paralleled transported along the curve γ.

If (5) ̸= 0, we get a notion of the change of a vector field along a curve (compared to the parallel-

transported vector). In curved spacetimes, parallel transport depends on the followed path. Now we

can generalize this concept onto differentiable manifolds

DV µ

Dλ
=
dxν

dλ
∇vV µ = 0 (6)

Now we can define strictly what a geodesic is. It’s defined as a curve that transports parallel its own

tangent vector. Since the tangent vector to the γ curve is (in a coordinate basis)

T = Tµ∂µ =
dxµ

dλ
∂µ (7)

the geodesic equation reads

D

Dλ

dxµ

dλ
=
dxν

dλ
∇ν

dxµ

dλ

=
dxν

dλ

(
∂

∂xν
dxµ

dλ

)
+
dxν

dλ
Γµνρ

dxρ

dλ

=
d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0

(8)

A geodesic then gives us the straightest possible curve, tightly related concept to the shortest possible

path between two points. How’s that? Let’s imagine the path a particle follows from point A to B.

Since it’s a particle (it’s massive), its spacetime interval must be smaller than zero.

ds2 = −gµν dxµ dxν = −dτ2 < 0 (9)

where the τ parameter is the proper time, the one measured in the particle’s reference frame. For a

curve parameterised as xµ(a) = A and xµ(b) = B

dτ

dλ
=

√
−gµν

dxµ

dλ

dxν

dλ
=
√
−gµν ẋµẋν (10)

where the total “distance” covered by the particle is given by the action

S[x(λ)] ≡
∫
dτ =

∫ b

a

dλ
√
−gµν ẋµẋν (11)

If we extremize it under δxµ(λ), we would find the the EOM are in fact the geodesic equation.

2.3 The metric gµν

First of all, the convention used for the Minkowski flat-space metric is

η = diag(−1, 1, 1, 1) (12)

in D = 4. In a nutshell, the metric is just a symmetric (0,2)-rank tensor field gµν(x) accounting for the

form of spacetime. For further purposes, it’s worth defining the inner product of two contravariant vec-

tors Uµ(x) and V ν(x) is gµν(x)U
µ(x)V ν(x), which is a scalar field. The metric its usually taken to be
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non-singular, being the tool you use when you need to lower or raise an index, like Vµ(x) = gµν(x)V
ν(x),

providing a natural isomorphism between the spaces of contravariant and covariant vectors and tensors.

Mathematically, the metric or inner product on a real vector space V is a non-degenerate bilinear

map from V ⊗ V → R. The inner product must satisfy the following properties:

1. bilinearity, (u, c1v1 + c2v2) = c1(u, v1) + c2(u, v2) and (c1v1 + c2v2, u) = c1(v1, u) + c2(v2, u);

2. non-degeneracy, if (u, v) = 0 for all v ∈ V , then u = 0;

3. symmetry, (u, v) = (v, u).

It is convenient to summarize the properties of the metric by the line element

ds2 = gµν(x)dx
µdxν . (13)

which must also satisfy

gµρgρν = gνρg
ρµ = δµν (14)

As we shall see, the metric tensor contains all the information we need to describe the curvature of

the manifold (at least in what is called Riemannian geometry).

A metric is characterized by its signature, which is the number of positive and negative eigenvalues

it has. If all of the signs are positive, the metric is called Euclidean or Riemannian (or just positive

definite), while if there is a single minus it is called Lorentzian or pseudo-Riemannian, and any metric

with some +1’s and some −1’s is called indefinite. (So the word Euclidean sometimes means that the

space is flat, and sometimes doesn’t, but it always means that the canonical form is strictly positive;

this is just a mess what we have to deal with.) The spacetimes of interest in GR have Lorentzian

metrics.

2.4 Fields in GR

In GR, every function we work with can be classified into a general type of mathematical object, a

tensor field, which is nothing more than a bunch of scalar functions related among them and numbered

with indices, all put together.

A general form of a tensor is

T = Tµ1···µk
ν1···νlEµ1 ⊗ · · · ⊗ Eµk

⊗ Eν1 ⊗ · · · ⊗ Eνl (15)

We will usually take the shortcut of denoting the tensor T by its components Tµ1···µk
ν1···νl . A

particularly useful basis is a corodinate basis Eµ = ∂µ and Eµ = dxµ.

The action of the tensors on a set of vectors and dual vectors is defined as

T (ω(1), . . . , ω(k), V (1), . . . , V (l)) = Tµ1···µk
ν1···νlω

(1)
µ1
· · ·ω(k)

µk
V (1)ν1 · · ·V (l)νl . (1.50)

where the order of the indices is important, since the tensor might not act in the same way on its various

arguments.

One of the most important tensorial features is how do they transform under a general coordinate

transformation. The answer is just what you would expect from index placement
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T̄µ1...µm
ν1...νn =

(
m∏
p=1

∂x′µp

∂xρp

n∏
q=1

∂xσq

∂x′νq

)
T ρ1...ρmσ1...σn

(16)

Thus, each upper index gets transformed like a vector, and each lower index gets transformed like

a dual vector.

2.5 Covariant derivative

It’s natural to think of the notion of “curvature” as something that depends on the metric, but this

turns out to be not quite true, or at least incomplete. In fact, there is one additional structure we need

to introduce—a “connection”—which is characterized by the curvature. We will show how the existence

of a metric implies a certain connection, whose curvature may be thought of as that of the metric.

The connection becomes necessary when we attempt to address the problem of the partial deriva-

tive not being a good tensor operator. We would like a covariant derivative; that is, an operator which

reduces to the partial derivative in flat space with Cartesian coordinates but transforms as a tensor on

an arbitrary manifold. The need is obvious; equations such as ∂µT
νρ = 0 have to be generalized to

curved space somehow.

In flat space in Cartesian coordinates, the partial derivative operator ∂µ is a map from (k, l) tensor

fields to (k, l + 1) tensor fields, which acts linearly on its arguments and obeys the Leibniz rule on

tensor products. All of this have to continue to be true in the more general situation we would now

like to consider, and here’s comes the problem. The map provided by the partial derivative depends

on the coordinate system used. To solve it, we define a covariant derivative operator ∇ to perform the

functions of the partial derivative, but in a way independent of coordinates. We require that ∇ be a

map from (k, l) tensor fields to (k, l + 1) tensor fields which has these two properties:

1. linearity: ∇(T + S) = ∇T +∇S;

2. Leibniz (product) rule: ∇(T ⊗ S) = (∇T )⊗ S + T ⊗ (∇S).

If ∇ is going to obey the Leibniz rule, it can always be written as the partial derivative plus some

linear transformation. Therefore we expect the covariant derivative to be the partial derivative plus a

correction to make the result covariant.

As example, let’s see what this means for the first non-trivial case, the covariant derivative of a

vector

∇µV ν = ∂µV
ν + ΓνµλV

λ (17)

where the Γνµλ are called connection coefficients. These components aren’t tensors, since they do

not transform in a proper way

Γν
′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν
′

∂xν
Γνµλ −

∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν
′

∂xµ∂xλ︸ ︷︷ ︸
non-tensorial behaviour

(18)

This is not problematic, since we want the covariant derivative to be a tensor, not its separated

components. Then, the connection coefficients purpose is to encode all of the information necessary to

take the covariant derivative of a tensor of arbitrary rank. In the case of covectors, we have

∇µων = ∂µων − Γλµνωλ (19)
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and the general case reads

∇σTµ1µ2···µk
ν1ν2···νl = ∂σT

µ1µ2···µk
ν1ν2···νl

+ Γµ1

σλT
λµ2···µk
ν1ν2···νl + Γµ2

σλT
µ1λ···µk
ν1ν2···νl + · · ·

− Γλσν1T
µ1µ2···µk

λν2···νl − Γλσν2T
µ1µ2···µk

ν1λ···νl − · · ·

(20)

For now we’ve defined everything about the connection but its explicit form. There are a large

number of connections we could define on any manifold, with each of them implying a distinct notion

of covariant differentiation. In general relativity this freedom is not a big concern, because it turns out

that every metric defines a unique connection, which is the one used in GR. To start, we define the

torsion tensor

T λ
µν = Γλµν − Γλνµ = 2Γλ[µν] (21)

valid for every connection. A connection symmetric in µ, ν indices is called torsion-free. This is one of

the requirements we will always work with in GR. The other feature we can require is that

∇ρgµν = 0 (22)

By this, we are choosing a connection with the metric compatibility property, which, from all the

possible connections, will make our computations easier. Then expanding (22) for three different index

permutations

∇ρgµν = ∂ρgµν − Γλρµgλν − Γλρνgµλ = 0 (23)

∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ = 0 (24)

∇νgρµ = ∂νgρµ − Γλνρgλµ − Γλνµgρλ = 0 (25)

Then

(23)− (24)− (25) =⇒ ∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλµνgλρ = 0 (26)

so

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (27)

which we will refer to as the Christoffel connection.

2.6 Riemann curvature tensor

The curvature is quantified by the Riemann tensor, which is derived from the connection. It’s defined

as

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (28)

which satisfies
Rρσµν = −Rρσνµ
Rρσµν = −Rσρµν
Rρσµν = Rµνρσ

Rρσµν +Rρµνσ +Rρνσµ = 0

(29)

using Rρσµν = gρλR
λ
σµν . From this we can derive a useful identity, the Bianchi identity

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0 (30)
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It is frequently useful to consider contractions of the Riemann tensor. A useful one is the Ricci

tensor:

Rµν = Rλµλν (31)

The connection usually used to make a contraction out of the Riemann tensor is usually the Christof-

fel connection, for which the Ricci tensor is the only independent contraction. It’s symmetric

Rµν = Rνµ, (3.91)

as a consequence of the various symmetries of the Riemann tensor. We can take a last contraction to

form the Ricci scalar:

R = Rµµ = gµνRµν (32)

2.7 Einstein Hilbert action and field equations

Let’s introduce the concept of action. It’s the integral over spacetime of a Lagrange density (usually

referred to as Lagrangian, even when it’s not the same)

S =

∫
dnxL (33)

This Lagrangian density is a tensorial object, which can be written as
√
−g times a scalar. With this

information, comes the question, what scalars can we make out of the metric?. To start with, we know

that expanding about a point p ∈M

gµν(p) = ηµν(p) + ∂σgµν

∣∣∣∣
p

(p) + ∂ρ∂σgµν

∣∣∣∣
p

p2 + . . . (34)

where we can always set ∂σgµν

∣∣∣∣
p

= 0 because of diffeomorphism invariance.

Therefore, any nontrivial scalar must be composed, at least, by second metric derivatives. We know

one tensor which is made up of this stuff, the Riemann tensor, from which we can construct a scalar,

the Ricci scalar R, being this the only independent one linear in the Riemann tensor. This is what

Hilbert took as an ansatz to construct the action, since this is the simplest way possible, proposing

L =
√
−gR (35)

If you add other terms like RµνR
µν , the field equations end up with higher-than-two order deriva-

tive terms, which is not like the equations describing other dynamical systems, ie., the KG equation

□ϕ = m2ϕ.

If we vary the action with respect to the metric, we should get the equations of motion (EOM), so

δS =

∫
dnx

[√
−ggµνδRµν +

√
−gRµνδgµν +Rδ

√
−g
]
= (δS)1 + (δS)2 + (δS)3. (36)

where we’ve used that R = gµνRµν . In (δS)1, we have the δRµν . To compute this we can use the fact

that the Ricci tensor is the contraction of the Riemann tensor, given by

Rρµλν = ∂λΓ
ρ
µν + ΓρλσΓ

σ
νµ − (λ↔ ν) (37)
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We will first vary the Christoffel connection as

δΓρµν(x) = Γ̃ρµν(x
′)− Γρµν(x) (38)

which is itself a tensor. Taking the covariant derivative

∇λ(δΓρµν) = ∂λ(δΓ
ρ
µν) + ΓρλσδΓ

σ
µν − ΓσλµδΓ

ρ
σν − ΓσλνδΓ

ρ
µσ (39)

which implies that

δRρµλν = ∇λ(δΓρνµ)−∇ν(δΓ
ρ
λµ) (40)

so (and using the fact that ∇σgµν = 0)

(δS)1 =

∫
dnx
√
−g gµν

[
∇λ(δΓλνµ)−∇ν(δΓλλµ)

]
(41)

=

∫
dnx
√
−g∇σ

[
gµσ(δΓλλµ)− gµν(δΓσνµ)

]
(42)

Using the Stokes theorem for a vector V µ defined in a region Σ∫
Σ

∇µV µ
√
−g dnx =

∫
∂Σ

nµV
µ
√
|γ| dn−1x (43)

for nµ orthogonal to the boundary ∂Σ and γ is the induced metric on ∂Σ, we see that this is equivalent

to a boundary contribution at infinity, which we can assume to be zero since we are far away from the

source.

For the (δS)3 term, we can use the already well known identity

δ
√
−g = −1

2

√
−ggµνδgµν (44)

getting

δS =

∫
dnx
√
−g
[
Rµν −

1

2
Rgµν

]
δgµν =

δS

δgµν
δgµν (45)

which should vanish for arbitrary variations. We get the Einstein’s vacuum equations

1√
−g

δS

δgµν
= Rµν −

1

2
Rgµν = Gµν = 0 (46)

We can be interested in also getting the equations in a more general scenario. Considering the action

as the sum of two terms, one for the gravity coupled to matter and the other for the additional matter,

which for now we leave arbitrary.

S =
1

8πG
SH + SM (47)

we get to

1√
−g

δS

δgµν
=

1

8πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0 (48)

where if we identify

Tµν = − 1√
−g

δSM
δgµν

(49)

we get the field equations

Gµν = 8πG Tµν (50)
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Note that

∇µGµν = 0 =⇒ ∇µTµν = 0 (51)

so the stress-energy tensor is conserved.

We can question “What metrics obey Einstein’s equations?” Well, in the absence of some constraints

on Tµν , any metric at all. For a given metric, just compute Gµν and make it fulfill (49). It will auto-

matically be conserved by the Bianchi identity, ∇µGµν = 0. This is one of the cases where to think

about Einstein’s equations without specifying the theory of matter from which Tµν is derived is more

useful, since this leaves us with a great deal of arbitrariness.

Nevertheless, our real concern is with the existence of solutions to Einstein’s equations in the presence

of “realistic” sources of energy and momentum, whatever that means. To make sure that Tµν makes

sense, it’s usually demanded that Tµν represent positive energy densities — that is, no negative masses

are allowed. In a locally inertial frame this requirement can be stated as ρ = T00 ≥ 0. To turn this into

a coordinate-independent statement, we ask that

TµνV
µV ν ≥ 0, for all timelike vectors V µ (52)

This is known as the Weak Energy Condition, or WEC. Many of the important theorems about

solutions to general relativity (such as the singularity theorems of Hawking and Penrose) rely on this

condition or something very similar, that’s why it’s a fairly reasonable requirement. But this isn’t

an absolute definition, since it’s possible to create otherwise respectable classical field theories which

violate the WEC, and almost impossible to invent a quantum field theory which obeys it. Nevertheless,

we will assume that the WEC holds in all but the most extreme conditions.

2.8 Cosmological constant

The cosmological constant is the simplest thing we can add to the Einstein-Hilbert action.

We refer to Λ as a cosmological constant; it’s the lowest order scalar we can create. On it’s own,

a constant doesn’t lead to very interesting dynamics. Let’s try plugging it into the Einstein-Hilbert

action, given by

S =

∫
dnx
√
−g(R− 2Λ) (53)

with the field equation being

Rµν −
1

2
Rgµν + Λgµν = 0 (54)

Einstein realized that the vacuum case was not useful, since there was not solution to a non-vacuum

static cosmology (a universe which doesn’t change with time over large scales). Here’s where the cos-

mological constant plays a crucial role. If the cosmological constant is finely tuned, it is possible to find

a static solution, although it is unstable to small perturbations.

We can interpret the term ∝ Λ in (54) as an energy-momentum tensor with Tµν = −Λgµν (auto-

matically conserved due to metric compatibility). Thus, Λ can be viewed as the “energy density of the

vacuum”, representing energy and momentum present even without matter fields. This interpretation

is crucial because quantum field theory predicts a non-zero vacuum energy and momentum. This is

why, even when the search for static solutions became less significant after Hubble’s discovery that the

universe is expanding, leading Einstein to abandon his proposal, the cosmological constant has persis-

tently reappeared in theoretical physics.
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As we all know, in ordinary quantum mechanics, a harmonic oscillator with frequency ω and min-

imum classical energy E0 = 0 has a ground state energy E0 = 1
2ℏω upon quantization. A quantized

field can be considered an infinite collection of harmonic oscillators, with each mode contributing to the

ground state energy. We end up with an infinite result, which must be appropriately regularized if we

want our theory to hold. For that purpose we can introduce a cutoff at high energies or use some of

the regularization methods, like dimensional regularization (DIMREG) + M̄S.

The scale of the regularized sum of the energies of the ground state oscillations of all the fields of a

theory, referred to as the final vacuum energy is expected to be or the order

Λ ∼ m4
P (55)

with mP the Planck mass, with a value of the order of 1019 GeV. This theoretical value leads to one of

the greatest discrepancies between theory and data, since the actual measured value (on large scales)

is smaller than (55) by a factor of, at least, 10120. This is why the “cosmological constant problem” is

regarded as one of the most important unsolved problems today.

What we do know is that

Λ ∼ 10−44 GeV (56)

which is non-zero. In fact, it can take values that can significantly impact the evolution of the universe.

Thus, Einstein’s mistake continues to perplex both physicists, who aim to understand why Λ is so small,

and astronomers, who seek to determine whether it is indeed small enough to be negligible.

2.9 Lie derivative

Given a vector field V µ(x), we can define the integral curves of the vector field as

dxµ

dλ
= V µ (57)

for some curve xµ(λ). We can ask the question, how fat does a tensor change when traveling along

an integral curve? To answer that question, we first need to introduce the concept of diffeomorphism,

which is no more than a spacetime translation, such as an infinitesimal general coordinate translation

xµ → x′µ = xµ + ξµ(x).

The Lie derivative is just diffeomorphisms way of acting on tensors along a contravariant vector

field ξµ(x). It’s defined as

LξTµ1µ2···µk
ν1ν2···νl = ξσ∇σTµ1µ2···µk

ν1ν2···νl − (∇λξµ1)Tλµ2···µk
ν1ν2···νl − (∇λξµ2)Tµ1λ···µk

ν1ν2···νl − · · ·

· · ·+ (∇ν1ξλ)T
µ1µ2···µk

λν2···νl + (∇ν2ξλ)T
µ1µ2···µk

ν1λ···νl + · · ·
(58)

where ∇µ represents any symmetric (torsion-free) covariant derivative. If we were to expand all the

covariant derivatives, it would be like having replaced ∇µ → ∂µ, since all the connection coefficients

would cancel. A particularly useful formula is for the Lie derivative of the metric:

LV gµν = ξσ∇σgµν + (∇µξλ)gλν + (∇νξλ)gµλ = ∇µξν +∇νξµ (59)

or equivalently

Lξgµν = 2∇(µξν) (60)
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For an scalar function it takes the form

δξf = Lξf = ξµ∇µf (61)

which is just the directional derivative.

Let us consider the transformation properties of (7.3)-(7.5) for infinitesimal coordinate transforma-

tions, namely those for which x′µ = xµ − ξµ(x). To first order in ξµ(x), the transformation rules of

everyday objects can be expressed in terms of Lie derivatives as

δϕ(x) ≡ ϕ′(x)− ϕ(x) = Lξϕ, (62)

δUµ(x) ≡ U ′µ(x)− Uµ(x) = LξUµ, (63)

δωµ(x) ≡ ω′
µ(x)− ωµ(x) = Lξωµ, (64)

δTµν(x) ≡ T ′µ
ν(x)− Tµν(x) = LξTµν (65)

Thus one of the useful roles of Lie derivatives is in the description of infinitesimal coordinate transfor-

mations.

2.10 Symmetries, isometries and Killing vectors

That GR is invariant under diffeomorphism can be seen at the level of EH action. Under a general

change of metric we have

δS =
1

8πG

∫
d4x
√
−gGµνδgµν (66)

up to boundary terms. Imposing δS = 0 for ANY δgµν , then Gµν = 0.

On the other hand, a symmetry of the action are variations that leave δS = 0 for any choice of

metric. For diffeomorphisms xµ → xµ + δxµ where δxµ = −xµ

δgµν = 2∇(µXν) (67)

so

δS =
1

8πG

∫
d4x
√
−gGµν∇µXν (68)

Integrating by parts leads to the Bianchi identity

∇µGµν = 0 (69)

So it’s invariant under diffeomorphism that lead to vacuum Einstein equations with Gµν the con-

served current.

Another instance in which δS is left invariant is when δgµν = 0, ie

δgµν = LKgµν ⇐⇒ ∇(µKν) = 0 (70)

A K = Kµ∂µ with this property is called a Killing vector, and are a possible feature of specific metrics,

rather than GR in general.

A metric is said to be form-invariant under some coordinate transformation when

g′µν(x
′)
∂x′ρ

∂xµ
∂x′σ

∂xν
= gµν(x) (71)
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equivalently

g′µν(x
′) = gµν(x

′) (72)

If a coordinate transformations leaves the metric form-invariant, we call that an isometry. This is

equivalent to saying that the metric admits a Killing vector (we say then that the metric have an

isometry). Killing vectors are important because they define conserved quantities along geodesics.

Consider a massive particle following some trajectory xµ(τ), then

Q = Kµ
dxµ

dτ
(73)

is a conserved charge along a geodesic. Explicitly

dQ

dτ
= ∂νKµ

dxν

dτ

dxµ

dτ
+Kµ

d2xµ

dτ2
(74)

= ∂νKµ
dxν

dτ

dxµ

dτ
−KµΓ

µ
ρσ

dxρ

dτ

dxσ

dτ
(75)

= ∇νKµ
dxν

dτ

dxµ

dτ
= 0 (76)

which follows from (70) and the geodesic equation.

The power of this resides in that, instead of finding all the symmetries of the metric, we can restrict

ourselves to find the Killing vectors, which will, at the end of the day, simplify our computations.

2.11 Maximally symmetric spaces

Examples of homogeneous (translation invariant) and isotropic (Lorentz transformation invariant)

spaces.

They’re called maximally symmetric because they enjoy the maximal number of isometries possible

in a given dimension given the sign of the Ricci scalar. This is equivalent to saying that it possesses

the maximum number of Killing vectors, that is, D(D + 1)/2 for a D-dimensional one.

They’re characterized by a constant Ricci scalar R, in terms of which

• Riemann tensor

Rρσµν = R(gρµgσν − gρνgσµ) (77)

• Ricci tensor

Rµν =
R

D
gµν (78)

where D is the dimension. Classified by their signature (Euclidean vs Lorentzian), their Ricci scalar

R and discrete information relative to topology that will be important for us here. If we ignore their

topology, there are

Euclidean signature


HD if R < 0 (Hyperboloid)

RD if R = 0 (Flat)

SD if R > 0 (Sphere)

(79)

Lorentzian signature


AdSD if R < 0 (Anti-de Sitter)

MinkD if R = 0 (Minkowski)

dSD if R > 0 (de Sitter)

(80)
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Maximally symmetric spaces are examples of spaces with a cosmological constant, ie, taking a

Lorentzian D = 4 space

Rµν =
R

4
gµν (81)

Gµν = Rµν −
1

2
Rgµν = −R

4
gµν (82)

so Λ = R
4 .

Thus 
AdS4 has Λ < 0

Mink4 has Λ = 0

dS4 has Λ > 0

(83)

Maximally symmetric spaces (with R ̸= 0) can be defined by their embedding into D+1 dimensions in

terms of embedding coordinates plus a constant.

• In the case of SD, we can write the metric as

ds2 =

D+1∑
i=1

dY 2
i (84)

subject to
D+1∑
i=1

Y 2
i = L2 (85)

We see that this metric has an SO(D + 1) invariance.

We can define the Yi’s in D + 1 = 3 as

Yi = L(sin θ cosϕ, sin θ sinϕ, cos θ) (86)

so

ds2(S2) = L2(dθ2 + sin2 θdϕ2) (87)

• de Sitter dSD

ds2 = −dY 2
0 +

D∑
i=1

dY 2
i (88)

subject to

−Y 2
0 +

D∑
i=1

Y 2
i = L2 (89)

We see that this metric has an SO(1, D) invariance.

We can define the Yi’s as static coordinates

Y0 =
√
L2 − r2 sinh

( r
L

)
(90)

Y1 = cosh
( r
L

)
(91)

Yi = ryi (92)

such that ∑
i

y2i = 1 , i = 2, . . . , D (93)
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Then

ds2(dSD) = −
(
1− r2

L2

)
dt2 +

(
1− r2

L2

)−1

dr2 + r2ds2(SD−2) (94)

• Anti-de Sitter AdSD

ds2 = −dY 2
0 − dY 2

1 +

D−1∑
i=1

dY 2
i (95)

subject to

−Y 2
0 − Y 2

1 +

D−1∑
i=1

Y 2
i = −L2 (96)

We see that this metric has an SO(2, D − 1) invariance.

We can define Global coordinates

Y0 = L sinh ρ cos t̃ (97)

Y1 = L sinh ρ sin t̃ (98)

Yi = L cosh ρyi s.t
∑
i

y2i = 1 for i = 2, . . . , D (99)

Then

ds2 = L2[− sinh2 ρdt̃2 + dρ2 + cosh2 ρds2(S2−D)] (100)

and changing coords as r = L cosh ρ and t = Lt̃

ds2(dSD) = −
(
1 +

r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2ds2(SD−2) (101)

Maximally symmetric spaces inherit the isometries of their D + 1 embedding space, the Killing

vectors corresponding to these isometries are given by the independent components of the matrix

MAB = (YA∂µYB − YB∂µYA)gµν∂ν (102)

2.12 p-forms

In search of a better formalism in which to describe our theories, physicist/mathematicians have come

up with an idea, the p-forms, which simplify calculus by making use of two tensorial properties, the

antisymmetry of its indices and its absence. It’s worth to make a quick review of it.

In an d-dimensional manifold (think of spacetime), we have a set of basis vectors Ea, which allows

us to represent vectors as

u =
∑
µ

uµEµ, (103)

and one-forms (the dual of vectors) as

ω =
∑
µ

ωµE
µ (104)

where ⟨ω, u⟩ = R, ⟨Eµ, Eν⟩ = δµν , and its also linear. It is often useful to work in a coordinate basis

where Eµ = ∂µ and Eµ = dxµ. However, other choices of basis can be useful, for instance the vielbein

basis as we shall see later.

A p-form is defined to be a tensor of type (0, p) whose components are totally antisymmetric (in any

basis):

T = Tµ1...µp
Eµ1 ⊗ . . .⊗ Eµp = Tµ1...µp

E[µ1 ⊗ . . .⊗ Eµp] =
1

p!
Tµ1...µp

(Eµ1 ∧ . . . ∧ Eµp) (105)
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Before going any further, let’s see what ∧ means. It’s basically telling you to take the antisymmetric

product:

Eµ ∧ Eν = Eµ ⊗ Eν − Eν ⊗ Eµ (106)

Eµ ∧ Eν ∧ Eρ = Eµ ⊗ Eν ⊗ Eρ + Eν ⊗ Eρ ⊗ Eµ + Eρ ⊗ Eµ ⊗ Eν−

−Eµ ⊗ Eρ ⊗ Eν − Eν ⊗ Eµ ⊗ Eρ − Eρ ⊗ Eν ⊗ Eµ
(107)

As we can see, a general case Ea1 ∧ . . .∧Eap is antisymmetric under the interchange of any adjacent

pair of indices. In d dimensions, the number of linearly independent p-forms objects is

d(d− 1) . . . (d− p+ 1)

p!
=

d!

p!(d− p)!
=

(
d

p

)
. (108)

This means one must have p ≤ d, because one will get nothing otherwise.

2.12.1 Wedge product

We will also need to perform p-forms product. A p-form P can in any basis be written as

P =
1

p!
Pµ1...µp

Eµ1 ∧ . . . ∧ Eµp (109)

similarly

Q =
1

q!
Qν1...νqE

ν1 ∧ . . . ∧ Eνq (110)

We define the wedge product of a p-form with a q-form to be

P ∧Q =
1

(p+ q)!
Pµ1...µpQν1...νqE

µ1 ∧ Eµ2 ∧ . . . ∧ Eµp ∧ Eν1 ∧ Eν2 ∧ . . . ∧ Eνq (111)

where P ∧ Q is really equivalent to a tensor of type (0, p + q) that is antisymmetric on all its p + q

indices.

2.12.2 Exterior derivative

We will also need to derivate. Starting from a p-form in a coordinate basis:

P =
1

p!
Pµ1...µp dx

µ1 ∧ dxµ2 ∧ . . . ∧ dxµp︸ ︷︷ ︸
p-form

(112)

We already know what d does on 0-forms (functions). We define

dP =
1

p!

∂Pµ1...µp

∂xν
dxν ∧ dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp . (113)

which we will call the exterior derivative d on a p-form. It has some useful properties, such as

• From (113) we see that d maps p-forms to (p+ 1)-forms.

• d2 = 0

• The operator d is Leibnizian

dPµ1...µp ∈ dP =
∂Pµ1...µp

∂xν
dxν (114)

•
d(P ∧Q) = dP ∧Q+ (−1)pP ∧ dQ. (115)
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We could argue that this doesn’t hold in general, since we’ve used a coordinate basis to derive all

these results. Its straightforward to see that this is inessential. The action of d is independent of a

choice of co-ordinates.

2.12.3 Hodge dual

This maps a p-form into a d− p-form. The Hodge dual of P is defined as

∗P =
1

(D − p)!
(∗P )µ1...µD−p

Eµ1 ∧ . . . ∧ EµD−p (116)

where

(∗P )µ1...µD−p
=

1

p!
ϵµ1...µD−p

ν1...νpPν1...νp (117)

As an example of the utility of this notations one can consider Maxwell theory in GR, defined by

equations

∇[µFνρ] = 0⇐⇒ ∂[µFνρ] = 0 (118)

∇µFµν = −Jν (119)

in form notation this becomes

dF = 0 , ∗d ∗ F = −J (120)

for

F =
1

2
Fµνdx

µ ∧ dxν , J = Jµdx
µ (121)

2.13 Vielbein formalism

In GR we are used to working with line element

ds2 = gµνdx
µdxν (122)

where the dxµ means we are working in a coordinate basis. General idea of vielbein formalism is to

work in a non-coordinate basis such that the metric becomes flat. They’re defined as

ea = eaµdx
µ (123)

whose components are defined such that

eaµe
b
νηab = gµν , eaµe

b
νg
µν = ηab (124)

where in D = 4, ηab = diag(−1, 1, 1, 1) is the usual flat space Minkowski metric. We refer to “a” as a

flat or tangent space index and µ as a curved index.

The line element can now be written as

ds2 = ηabe
aeb (125)

but notice that by doing this we have introduced an additional O(1, 3) symmetry, i.e.

under ea → Λaeb for Λ⊤ηΛ = η (126)
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ds2 → ΛacΛ
b
aηabe

ced = ηabe
aeb = ds2 (127)

which leaves the metric invariant.

So the vielbein is not unique, it is defined up to a local (i.e. Λ = Λ(x)) Lorentz transformation.

• Now curved indices can be raised/lowered with gµν and flat ones with ηab. In particular, it follows

that ea
µ is the inverse of eaµ since

eaµe
ν
a = δνµ , eaµe

µ
b = δab (128)

The vielbein can also be used to map between curved and flat space indices, i.e.

V a = eaµV
µ , V µ = eµaV

a (129)

At the end of the day, what the vielbeins do is connect the flat spacetime with the curved one.

One thing that this formalism allow us to do (whose importance will be seen in later sections) is to

introduce a curved space analog of the gamma matrices γa, i.e., if

{γa, γb} = 2ηab1 (130)

it follows that γµ = eaµγa and

{γµ, γν} = 2eaµe
b
νηab = 2gµν1 (131)

which we can view as the “curved Clifford algebra”. This is one step on the path to introducing

spinors to GR, but we also need to generalize the covariant derivative to take account of local Lorentz

transformations.

2.14 Spin connection and Covariant derivative

If one only has curved indices the covariant derivative of a vector is

∇µVν = ∂µVν − ΓλµνVλ (132)

We need to introduce an analog of the affine connection for flat indices. This is the spin connection

(ωµ)
ab
, so the covariant derivative with respect to flat indices becomes

∇µVa = ∂µVa + (ωµ)
b

a Vb (133)

Similarly to how we demand ∇µgαβ = 0 ⇒ Γλαβ , one can define the spin connection through the

vielbein postulate

∇µeaν = 0 , ∇µηab = 0 (134)

Expanding out

0 = ∇µeaν = ∂µe
a
ν − Γλµνe

a
λ + (ωµ)

a
b e
b
ν =⇒

=⇒ (ωµ)
a
b = −e

ν
b∂µe

a
ν + Γλµνe

a
λe
ν
b

(135)

using ∇µηab = 0 implies

(ωµ)[ab] = 0 (136)
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i.e., that the spin connection is antisymmetric.

In form notation one can introduce

ωab = −ωba = (ωµ)abdx
µ , Rab =

1

2
Rabµνdx

µ ∧ dxν (137)

Assuming no torsion one then has

dea + ωab ∧ eb = 0 (138)

dωab + ωac ∧ ωcb = Rab (139)

These are Cartan’s first and second structure equations, which give a useful way to compute

the spin connection from the vielbein and curvature tensors from the spin connection.

2.15 Addition of fermions

In order to couple fermions to GR we also need to know how the covariant derivative acts on them.

This can be derived from consistency with

∇µVa = ∂µVa + (ωµ)a
bVb (140)

For the choice Va = Ψ̄γaψ with ψ a spinor, the result is

∇µψ = ∂µψ +
1

4
(ωµ)abγ

abψ (141)

Thus the Dirac equation in GR becomes

(γµ∇µ −m)ψ = 0 (142)

where the generalization of the flat space equation is contained in γµ = eaµγa and the definition of the

covariant derivative for spinors.

Under a local Lorentz transformation of the vielbeins like in (126), the corresponding action on a

spinor is given by

ψ′ = S(Λ)ψ, (143)

where S(Λ) is a spinor representation of the Lorentz group in the spinor space and satisfies:

S(Λ)γaS−1(Λ) = Λabγ
b. (144)

3 Black holes

3.1 The Chandrasekhar limit

We all know that a black hole starts as a star, but not a usual one. Something unusual has to happen if

we want that everyday object to transform into one of, if not the most, mysterious object in the universe.

When a star is born, fusion in its nucleus begin to occur, giving the star its aspect, but this process

eventually stops as the star runs out of fuel (hydrogen mainly). That’s where the star cools and

contracts, giving rise to a white dwarf, but is this always the case? To arrive to this state, its assumed

the non-relativistic character of the electrons, so the electron degeneracy pressure can counteract the

collapse. But, what if this approximation is not valid? What if electrons are relativistic? Well, this
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happens if we have a sufficiently large mass, therefore

E = Ekin + Egrav (145)

where

Egrav ∼ −
GM2

R
(146)

and

Ekin ∼ nR3⟨E⟩ (147)

where ⟨E⟩ is the average kinetic energy of atoms. We have

⟨E⟩ = ⟨pe⟩c = ℏcn1/3
e (148)

then

Ekin ∼ neR3⟨E⟩ ∼ ℏcR3n4/3e ∼ ℏcR3

(
M

mpR3

)4/3

∼ ℏc
(
M

mp

)4/3
1

R
(149)

where we’ve used the fact that, since me ≪ mp, they will become degenerated first, occupying each one

a cube of side of Compton wavelength

n−1/3
e ∼ ℏ

⟨pe⟩
(150)

and also because of the mass difference between protons and electrons,

M ≈ neR3me,=⇒ ne ∼
M

mpR3
(151)

Now we have that the energy goes as

E ∼ −α
R

+
β

R
(152)

To reach equilibrium, one must have α = β, getting

M ∼ 1

m2
p

(
ℏc
G

)3/2

(153)

If we increase the mass unlimitedly, the radius must also decrease, making impossible for electrons

pressure degeneracy to support the star. There’s a critical mass (and a radius),

MC ∼
1

m2
p

(
ℏc
G

)3/2

=⇒ RC ∼
1

memp

(
ℏ3

Gc

)1/2

(154)

above (under) the initial star cannot end as a white dwarf. This is known as the Chandrasekar limit,

of about ≈ 1.4M⊙ (solar masses). The solution is a more extreme type of star, a neutron star.

3.2 Neutron stars

Just as in the white dwarfs, were the electron pressure was the force holding everything stable, if we

surpassMC , we need to account for the neutron-degeneracy pressure. That’s because when we go above

that limit, a process that was previously impossible begins to happen, inverse β-decay

e− + p+ → n+ νe (155)
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which cannot be countered with the reactions

n+ νe → e− + p+ or n→ e− + p+ + ν̄e (156)

because neutrinos escape the star and energy levels to where electrons of β-decay would go are occupied.

Here we see that, at the end of the day, we are effectively removing electrons (therefore losing their

degeneracy pressure) and getting neutrons instead.

But, how far can we go? The limit for a stable neutron star is ∼ 3M⊙. Beyond that, is there any

other state to go to? The answer is yes, there are two options, a new (and unobserved) ultra-high

density state or a black hole. Even if the first one exist, (quark star), we will assume the latter, since

for large enough M you will still end up with a BH.

3.3 The Schwarzschild Black Hole

Let’s start by reviewing the easiest case of a black hole. It emerges as a solution of the vacuum

Einsteins equations, Rµν = 0. It’s the only spherically symmetric solution in vacuum (which is proved

by Birkhoff’s theorem). Its metric is given by

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2ds2(S2) (157)

where we are working in natural units, that’s G = c = 1, 0 < r < ∞ and ds2(S2) is the two-sphere

metric

ds2(S2) = dθ2 + sin2 θ dϕ2 (158)

We see a problem with the metric, at r = 2M it blows up. That value of the radius is what we

call a horizon, a point which is not a physical singularity (as we will see), but a frontier between “our”

universe and what lies beyond. Another problems comes when r = 0. This is a physical singularity,

and a good way to check this is with scalars, since they’re invariant under coordinate transformations,

making them independent of the observer’s frame of reference. Using the Kretschmann scalar, a measure

of the curvature of spacetime

K = RµνρσR
µνρσ =

48M2

r6
(159)

which blows up at r = 0.

In order to make further computations easier, let’s put the metric in the form

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2ds2(S2) (160)

where

e2α = e−2β =

(
1− 2GM

r

)
(161)

For now, we will assume that the metric is continuous, so it must be valid on the surface of the star.

Let’s consider a trajectory followed by freely-falling particles (geodesic). For simplicity we will assume

that it follows a path along the radial direction, that is dθ = dϕ = 0, at the same time we neglect the

counter reaction on the metric. Its action is given by

S =

∫
Ldτ =

1

2m

∫ (
gµν

dxµ

dτ

dxν

dτ
−m2

)
dτ (162)

where τ denotes the proper time. The trajectory followed by the particle can be parameterized by
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xµ(τ) = (t(τ), r(τ), θ0, ϕ0). Using the geodesic equation (8) we have

(µ = t)
d2t

dλ2
+ 2(∂rα)

dr

dλ

dt

dλ
= 0 (163)

(µ = r)
d2r

dλ2
+ e2(α−β)(∂rα)

(
dt

dλ

)2

+ (∂rβ)

(
dr

dλ

)2

− re−2β

[(
dθ

dλ

)2

+ sin2 θ

(
dϕ

dλ

)2
]
= 0 (164)

(µ = θ)
d2θ

dλ2
+

2

r

dθ

dλ

dr

dλ
− sin θ cos θ

(
dϕ

dλ

)2

= 0 (165)

(µ = ϕ)
d2ϕ

dλ2
+

2

r

dϕ

dλ

dr

dλ
+ 2 cot θ

dθ

dλ

dϕ

dλ
= 0 (166)

If we take θ0 = π/2, the θ equation is automatically satisfied. The t and ϕ equations simplify to

(µ = t)

(
dλ

dt

)
× d2t

dλ2
+ 2(∂rα)

dt

dλ
· dr
dλ

= 0 (167)

(µ = ϕ)

(
dλ

dϕ

)
× d2ϕ

dλ2
+

2

r

dϕ

dλ

dr

dλ
= 0 (168)

Massaging a little bit, we end up with two conservation laws

dt

dλ

(
1− 2M

r

)
= E (169)

dϕ

dλ
r2 = J (170)

The radial geodesic reads

d2r

dλ2
+ e2(α−β)(∂rα)

(
dt

dλ

)2

+ (∂rβ)

(
dr

dλ

)2

− re−2β

(
dϕ

dλ

)2

= 0 (171)

Using the conservation laws (169) and (170), and multiplying by 2e2β ṙ, we end up with the conser-

vation equation

1

2

(
dr

dλ

)2

+
1

2

(
1− 2GM

r

)(
J2

r2
+ χ

)
︸ ︷︷ ︸

V (r)

=
1

2
E2︸︷︷︸
ε

(172)

Where the χ parameter covers the range χ ≥ 0 for massless (χ = 0) or massive particles. The radial

equation is precisely the equation of a particle of unit mass and energy ε in a one-dimensional potential.

In the case of a massive particle, it’s usual to choose λ = τ (proper time).

As we’ve seen, the metric has two problematic points, r = 0 and the Schwarzschild radius r = 2M .

In reality, nothing special happens in the second case, since it’s just a point where our coordinate system

fails, but not spacetime!, as we see from the fact that curvature is finite at that point. We fix that by

performing a coordinate change. It’s usual to start with the one adapted to infalling observers , then

the one adapted to outgoing observers, and then kind of merge both of them into the Kruskal-Szekeres

coordinates.

In the infalling radial case we define (massless case for convenience)

dt2 =
dr2(

1− 2M
r

)2 ≡ (dr∗)2 (173)
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with

r∗ = r + 2M ln

∣∣∣∣r − 2M

2M

∣∣∣∣ (174)

This is the Regge-Wheeler radial coordinate, better know as the tortoise coordinate, since its behaviour

is “slower” than r. What we’ve done is send the problematic behaviour from r = 2M to r∗ = −∞, so

−∞ < r∗ <∞. Now for the ingoing radial null coordinate, we define

v = t+ r∗, −∞ < v <∞ (175)

and rewrite the Schwarzschild metric in ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ).

ds2 =

(
1− 2M

r

)(
−dt2 + dr∗2

)
+ r2ds2(S2) = −

(
1− 2M

r

)
dv2 + 2drdv + r2ds2(S2) (176)

Now we can analytically continue the metric to all r > 0. We see that the drdv cross-term in EF

coordinates is non-singular at r = 2M , so this singularity in Schwarzschild coordinates was in fact a

coordinate singularity. There is nothing at r = 2M to prevent the star collapsing at that point. To

illustrate this a little bit, let’s analyze the associated Finkelstein diagram

Figure 1: Ingoing coordinates Finkelstein diagram.

In Figure (1), as we approach the Schwarzschild radius, r = 2M , the light cone distorts, making

that no real thing can reach r > 2M starting from r ≤ 2M . In fact, all geodesics that cross the horizon

end up at the singularity at r = 0. This is translated in mathematical form as, if we are in r ≤ 2M ,

2dr dv = −
[
−ds2 +

(
2M

r
− 1

)
dv2 + r2dΩ2

]
≤ 0 (177)

when ds2 ≤ 0.

for all timelike or null worldlines dr dv ≤ 0. dv > 0 for future-directed worldlines, so dr ≤ 0 with

equality when r = 2M , dΩ = 0 (i.e., ingoing radial null geodesics at r = 2M).
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3.3.1 Outgoing geodesics

The hypersurface r = 2M is like a one-way membrane. This may seem paradoxical in view of the

time-reversibility of Einstein’s equations. Define the outgoing radial null coordinate u by

u = t− r∗, −∞ < u <∞ (178)

and rewrite the Schwarzschild metric in theoutgoing Eddington-Finkelstein coordinates (u, r, θ, ϕ).

ds2 = −
(
1− 2M

r

)
du2 − 2dr du+ r2ds2(S2) (179)

Just as in the previous case, metric can be analytically continued to all r > 0. However the r < 2M

region in outgoing EF coordinates is NOT the same as the r < 2M region in ingoing EF coordinates.

They represent different regions of spacetime.

As before, for r ≤ 2M

2dr du = −ds2 +
(
2M

r
− 1

)
du2 + r2dΩ2 ≥ 0 (180)

when ds2 ≤ 0.

i.e. dr du ≥ 0 on timelike or null worldlines. But du > 0 for future-directed worldlines so dr ≥ 0,

with equality when r = 2M , dΩ = 0, and ds2 = 0. In this case, a star with a surface at r < 2M must

expand and explode through r = 2M , as illustrated in (2).

Figure 2: Outgoing coordinates Finkelstein diagram.

This corresponds with a white hole, the time reverse of a black hole. Both black and white holes are

allowed by GR, but white holes are believed to not be physical, since they require very special initial

conditions near the singularity and, unlike black holes, they cannot form from the gravitational collapse

of stars.
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3.4 Kruskal-Szekeres Coordinates

The exterior region r > 2M is covered by both ingoing and outgoing Eddington-Finkelstein coordinates.

We may write the Schwarzschild metric in this terms (u, v, θ, ϕ)

ds2 = −
(
1− 2M

r

)
du dv + r2ds2(S2) (181)

We can pack all the information about Schwarzschild BH into a Penrose diagram, like the one in

Figure (3). It’s worth explaining this diagram in more detail.

Figure 3: Penrose diagram for Schwarzschild black hole, derived via Kruskal-Szekeres coordinates. The
horizon is at r = 2GM (v = ±u), singularity at r = 0.

Horizons and Singularities. The wavy lines at the edges labeled r = 0 represent the singularities

inside the black hole where the curvature becomes infinite, while the diagonal lines running from top

left to bottom right (or vice versa) represent the event horizons r = 2M (in natural units, where M is

the mass of the black hole). These horizons separate the regions from which no escape is possible from

the black hole’s gravitational pull.

Future and Past Infinity. The points at the top and bottom of the diagram represent future

and past timelike infinity (i+ and i−), where worldlines (geodesics) of particles end up as t→ +∞ and

t→ −∞, respectively.

The lines going off to the right and left edges represent future and past null infinity (I+ and I−),
where light rays end up as t→ ±∞.

The vertical curved blue lines represent surfaces where the radial coordinate r is constant, while the

horizontal curved magenta lines represent surfaces where the time is constant.

Causal Structure.

• Light Cones: The 45-degree lines (diagonal lines in the diagram) represent the paths that light

rays would take. The causal structure of spacetime can be inferred by following these lines.
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• Future and Past: Movement towards the top of the diagram represents moving forward in time,

while movement towards the bottom represents moving backwards in time.

And introduce the new coordinates (U, V ) defined (for r > 2M) by

U = −e−u/4M , V = ev/4M (182)

in terms of which the metric is

ds2 = −32M3

r
e−r/2MdU dV + r2ds2(S2) (183)

where r(U, V )) is given implicitly by UV = −er∗/2M or

UV = −er
∗/2M = −

(
r − 2M

2M

)
er/2M (184)

Initially the metric is defined for U < 0 and V > 0, but it can be extended by analytic continuation

to U > 0 and V < 0. Note that r = 2M corresponds to UV = 0, i.e. either U = 0 or V = 0. The

singularity at r = 0 corresponds to UV = 1.

If we were to plot this description of spacetime in a diagram, we will end up with Figure (4).

Figure 4: Kruskal spacetime

Since the Kruskal-Szekeres coordinates resolve the issues with the problematic points of the Schwarzschild

metric by extending the Schwarzschild solution beyond the event horizon, thus providing a complete

and nonsingular description of the black hole’s spacetime, this is the maximum analytic continuation

of the Schwarzschild metric. We see that there are four regions

• Region I: The external regions where r > 2M , representing the universe outside the black hole.
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• Region II: The regions inside the event horizons but outside the singularity, known as the black

hole interior.

• Region III: The regions inside another event horizon in the white hole part of the extended

solution, which is a time-reversed black hole.

• Region IV : The external regions to the other side of the white hole.

What’s the physical interpretation?

• Event Horizon (EH): The boundaries between regions I and II (and similarly, regions III and

IV ) are the event horizons. Particles or light that cross these boundaries can no longer escape to

the region I (the external universe).

• Singularity: The wavy lines labeled r = 0 indicate the singularities where the spacetime curva-

ture becomes infinite. These are inside the black holes.

• Multiple Universes: Regions I and IV can be interpreted as separate asymptotically flat

universes connected by a black hole and a white hole.

Its usual to plot lines of constant U and V (outgoing or ingoing radial null geodesics) as 45 axis.

There are four regions which depend on the signs of U and V . However, the only regions relevant to

gravitational collapse are the I and II because the other regions are then replaced by the star’s interior,

e.g. for collapse of homogeneous ball of pressure-free fluid, represented in Figure (5). Regions I and

II are also covered by the ingoing Eddington-Finkelstein coordinates. Similarly, regions I and III are

those relevant to a white hole.

Figure 5: Kruskal spacetime

So the white hole and second universe have disappeared, but the horizon and singularity at r = 0

remain!

The Schwarzschild black hole is only the simplest among a number of black hole solutions to the

Einstein equations. In fact, the astrophysical black holes for which we have observational evidence

appear to be rotating and have charge, while the Schwarzschild BH doesn’t account for any of these

features. In this section we review two further, more general, black hole solutions.
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3.5 Charged Black Holes

Among the properties a black hole can have, one of them is charge. This is the case we now focus on,

which receives the name of Reissner-Nordström black hole. To start with, let’s use the Einstein-

Maxwell action, accounting for both the mass (encoded in the curvature, encoded in R) and electric

charge (electromagnetic tensor), that is, gravity coupled to the electromagnetic field

S =
1

16πG

∫
d4x
√
−g [R− FµνFµν ] (185)

where Fµν = ∂µAν − ∂νAµ.

The Maxwell term appearing in the action is normalized such that the Coulomb force between two

charges Q1 and Q2 separated by a (large enough) distance is

G|Q1Q2|
r2

(186)

This corresponds to geometrized units of charge.

The equations of motion are

Gµν = 2FµλF
λ
ν −

1

2
gµνFρσF

ρσ (187)

∂µF
µν = 0 (188)

which admit the usual spherically symmetric solution

ds2 = −V (r)dt2 + V (r)−1dr2 + r2ds2(S2) (189)

with

V (r) = 1− 2M

r
+
Q2

r2
(190)

which is known as the Reissner-Nordström solution. The electric potential is defined as

At =
Q

r
, Ai = 0 (191)

We interpret Q as the charge of the black hole (by analogy with the electric potential of a point

charge) and M as its mass. We assume that Q > 0. Just like in the Scharzchild case, here also exist a

theorem like Birkhoff’s theorem, which guarantees that the Reissner-Nordström solution is the unique

asymptotically flat, spherically symmetric solution to the Einstein-Maxwell equations. It’s often refered

to as Reissner-Nordström no-hair theorem.

Now, instead of just one problematic radius, we have two, where V (r) = 0, which are

r± =M ±
√
M2 −Q2 (192)

It is convenient to introduce the function

∆ = Q2 − 2Mr + r2 = (r − r+)(r − r−) (193)

allowing us to rewrite the metric as
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ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2ds2(S2) (194)

There are three separate cases to look at: Q > M , Q < M , and Q = M . Let’s consider them in

turn.

3.5.1 Super-Extremal RN: Q > M

If Q > M then r± ∈ C and the metric is regular for all r > 0. However, there’s still a curvature

singularity at r = 0, which doesn’t lie behind a horizon. This is why these kind of clack holes are believed

to be non-physical, since it would mean that a black hole have formed with with GM2 < Q2, stating

that the total energy of the hole is less than the contribution to the energy from the electromagnetic

fields alone1.

For that reason we assume that the Cosmic Censorship Conjecture is true.

This conjecture was formulated by Roger Penrose, stating that “Nature abhors a naked singularity”,

that is, naked singularities (except for the Big Bang) are unphysical and do not occur in the real world

because the gravitational collapse of physical matter configurations would never produce such a thing2.

In fact, we should not ever expect to find

As a curiosity, could it be that an electron is just a charged black hole? The answer is no, because

the electron is a quantum mechanical object, whose Compton wavelength λ = h
mc = 2.4 × 10−12 m is

much larger than its Schwarzschild radius rs =
2Gme

c2 = 1.4× 10−57 m.

3.5.2 Sub-Extremal RN: Q < M

Now ∆ has two real roots r+ > r− creating two coordinate singularities. As always, we can avoid them

if we find a suitable coordinate system. Following our strategy with the Schwarzschild metric, let us

define a tortoise coordinate r∗

∆

r2
dr2∗ =

r2

∆
dr2, (195)

ithen

ds2 = −∆

r2
(dt2 − dr2∗) + r2ds2(S2). (196)

Radial null geodesics are follow the equation t± r∗ = const with θ = ϕ = const. A solution of (2.6)

with a convenient choice of sign and integration constant is

r∗ = r +
1

2κ+
ln

(
r − r+
r

)
+

1

2κ−
ln

(
r − r−
r

)
, (197)

where

κ+ =
r+ − r−
2r2+

> 0 and κ− =
r− − r+
2r2−

< 0. (198)

If we define the null coordinates u = t − r∗ and v = t + r∗ and ingoing Eddington-Finkelstein

coordinates (v, r, θ, ϕ). In terms of the latter, the metric becomes

ds2 = −∆

r2
dv2 + 2dvdr + r2ds2(S2), (199)

1That is, the mass of the matter which carried the charge would have had to be negative.
2Of course, it’s just a conjecture, and it may not be right; there are some claims from numerical simulations that

collapse of spindle-like configurations can lead to naked singularities.
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which is regular for all r > 0, including r = r+ and r = r−. Since it has an abstract form, in order

to understand the spacetime structure close to r = r± we can use two different sets of Kruskal-type

coordinates at each of the two radii:

U± = − exp(−κ±u) and V± = exp(κ±v). (200)

This gives rise to the Penrose diagram shown in Figure (6).

Figure 6: Penrose diagram for the sub-extremal Reissner-Nordström solution.

The diagram shows an infinite extension of the Schwarzschild solution, being able to see each

diamond-shaped section as a separate patch of spacetime. The diagram is symmetric around the vertical

axis, indicating that the spacetime can be extended into an infinite series of black holes and white holes.

Notice that a timelike trajectory can avoid r = 0, since the r = 0 singularity is timelike itself. In

fact, to hit r = 0, one must accelerate toward it (this time it is like a position in space).
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3.5.3 Extremal RN: Q =M

The metric of the extremal Reissner-Nordström solution is

ds2 = −
(
1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2ds2(S2), (201)

which has one coordinate singularity at r = r+ = r− = M . To get rid of it, define the tortoise

coordinate dr∗ =
(
1− M

r

)−2
dr so

ds2 = −
(
1− M

r

)2

(dt2 − dr2∗) + r2ds2(S2), (202)

and change to ingoing Eddington-Finkelstein coordinates (v, r, θ, ϕ). We get

ds2 = −
(
1− M

r

)
dv2 + 2dvdr + r2ds2(S2), (203)

which is regular at r =M . The inner and outer horizons have now coalesced. The result is the Penrose

diagram shown in Figure (7).

An interesting feature of the extremal case is that the near horizon limit of BH is now AdS2 × S2.

To see this we express the BH geometry as

ds2 = −
(
1− MG

r

)2

dt2 +

(
1− MG

r

)−2

dr2 + r2ds2(S2)

= −
(
1 +

MG

v

)−2

dt2 +

(
1 +

MG

v

)2 [
dv2 + v2ds2(S2)

] (204)

where v = r −MG. Near the horizon, v → 0, so(
1 +

MG

v

)−2

=

(
MG

v

)−2
1(

v
MG + 1

)2 ≃ v2

(MG)2
· 1

1 + v
MG

≃ v2

(MG)2

(
1− v

MG

)
≃ v2

(MG)2

(205)

so

ds2 ≃ − v2

(MG)2
dt2 +

(MG)2

v2
dv2 + (MG)2ds2(S2) (206)

and defining z = (MG)2

v =⇒ dz = − (MG)2

v2 dv = − z2

(MG)2 dv

ds2 ≈ − 1

z2
(MG)2dt2 +

z2

(MG)2
dv2 + (MG)2ds2(S2)

= − 1

z2
(MG)2dt2 +

z2

(MG)2
· (MG)4

z4
dz2 + (MG)2ds2(S2)

=
GM2

z2
[
−dt2 + dz2

]
+GM2ds2(S2)

= GM2[ds2 (AdS2) + ds2
(
S2
)
]

(207)

where we see that near the horizon is indeed AdS2×S2.

3.6 Rotating Black Holes

We’ve only discussed solutions with spherical symmetry. Let’s study the Kerr-Newman solution to the

Einstein-Maxwell equations, which describes a rotating charged black hole of mass M , charge Q and

angular momentum J = Ma with a being the angular momentum per unit mass. This type of BH is
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Figure 7: Penrose diagram for extreme RN black hole.

astrophysically important, since it is a good approximation to the metric outside of a rotating star at

large distances. In Boyer-Lindquist coordinates (t, r, θ, ϕ), in which the black hole rotates about the

polar axis, the metric reads

ds2 = −
(
∆− a2 sin2 θ

Σ

)
dt2 +

Σ

∆
dr2 +Σdθ2 +

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdϕ2−

−2a sin2 θ(r2 + a2 −∆)

Σ
dtdϕ

(208)

where

Σ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2 +Q2. (209)

The components of the electromagnetic potential are

At =
Qr

Σ
, Aϕ =

Qar sin2 θ

Σ
, Ar = Aθ = 0. (210)

This contains the previous BH geodesics as limiting cases. So for a = Q = 0, we recover the

Schwarzschild solution. For a = 0, we recover the Reissner-Nordström solution. Finally, the solution is

symmetric under the simultaneous replacements ϕ→ −ϕ and a→ −a, so we can set a ≥ 0 without loss

of generality.

We cannot use the same reasoning as in the spherically symmetric case during gravitational collapse

with rotating matter to argue that, on the surface of the collapsing matter, the metric should be of

the form given above when a black hole is rotating, since there is no analogue of Birkhoff’s theorem.

All we can say is that, after enough time has passed and matter and spacetime have ”settled down” to

equilibrium, they will be described by the Kerr-Newman solution.

It’s worth investigating the structure of the simple special case of a rotating black hole with zero

charge Q = 0. The metric then reduces to the Kerr solution

ds2 = Σ

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θdϕ2 +

2Mr

Σ

(
a sin2 θdϕ− dt

)2 − dt2, (211)
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where ∆ and Σ are redefined accordingly. This metric is a solution to the vacuum Einstein equations.

The coordinate singularities happen when

∆ = 0 =⇒ r = r± =M ±
√
M2 − a2 (212)

Now we also have a curvature singularity (a real one, not just from the coordinate system used) at

Σ = 0 =⇒ r = 0 and cos θ = 0 (213)

This is interesting. It’s telling us that only when we approach with an angle θ = π/2 the singularity

conditions are fulfilled and therefore it exists, i.e. when r = 0 is approached along the equator. When

approached from any other angle, there is no singularity at r = 0!, i.e, it has a “ring” like singularity.

From the three cases to consider: M < a, M = a and M > a we will concentrate on the M > a

case, for which there are two coordinate singularities at r+ (the “outer” horizon) and r− (the “inner”

horizon). To remove them, we do a coordinate transformation to ingoing Kerr coordinates (v, r, θ, χ),

where v = t+ r∗ and r∗ and χ are defined by

dr∗ =
r2 + a2

∆
dr, dχ = dϕ+

a

∆
dr. (214)

We see from the definition of χ that a constant ϕ angle doesn’t correspond to χ = const. For example,

in order to stay at χ = const. as you fall inwards (dr < 0), you need to rotate to: dϕ = − a
∆dr. In terms

of ingoing Kerr coordinates the metric becomes

ds2 =−
(
∆− a2 sin2 θ

Σ

)
dv2 + 2dvdr − 2

a sin2 θ(r2 + a2 −∆)

Σ
dvdχ

− 2a sin2 θdχdr +

[
(r2 + a2)2 −∆a2 sin2 θ

Σ

]
sin2 θdχ2 +Σdθ2

(215)

Like before, we’ve solved the coordinate singularities problem, since there are no more factors of

∆ in the numerators and the metric is regular at r+ and r−. We still have, of course, the curvature

singularity at ρ2 = 0.

To draw the Penrose diagram is more difficult because the metric is not spherically symmetric. Since

the curvature singularity at r = 0 only appears when θ = π/2, the Penrose diagram should look very

different for θ ̸= π/2 and θ = π/2. In order to represent both cases, it is customary to draw a Penrose

diagram that is an amalgam of the Penrose diagram for an observer falling in from the north pole

(θ = 0) and of that for an observer falling in in the equatorial plane (θ = π/2) at fixed ϕ̃. Notice that

ϕ̃ = const. means that ϕ is not constant, so the observer falling in at θ = π/2 rotates about the polar

axis.

The procedure is very similar to that for the sub-extremal Reissner-Nordström solution. First,

perform a coordinate transformation to coordinates (u, v, θ, ϕ̃) where u = t− r∗ and v = t+ r∗ with r∗

as defined in (2.20). Then, define Kruskal-type coordinates U± and V± close to r = r±, respectively,

and draw the Penrose diagram. This leads to the infinitely sequence of spacetime regions we saw in

Figure 14. Up to this point, the analysis is identical for θ = 0 and θ = π/2. The only difference is

that the Penrose diagram for θ = 0 has a curvature singularity at r = 0, whereas the Penrose diagram

for θ = π/2 has none. In the amalgam Penrose diagram for the Kerr spacetime, we indicate this by

drawing an interrupted wavy line at r = 0. The result is shown in Figure (8).
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Figure 8: Penrose diagram for the sub-extremal Kerr black hole.

3.6.1 The ergoregion

In Schwarzschild spacetime, you (or a test particle) can travel along integral curves of the Killing vector

k = ∂t anywhere outside the horizon, appearing stationary3 to observers at infinity, since your position

in space is not changing. This was possible because g00 is negative everywhere for r > 2M , so that

k2 = g00 is negative, meaning that the integral curves of k are timelike.

And here’s the interesting part; this is not the case in Kerr spacetime: there is a region around the

outer horizon, called the ergosphere4 or ergoregion, in which it is impossible for anything to remain

stationary with respect to observers at infinity. That is, everything rotates. It’s represented in Figure

(9). This happens because

g00 = −
(
1− 2Mr

Σ

)
(3.25)

becomes positive in the region

2Mr

Σ
> 1 =⇒ ξ(r) ≡ Σ− 2Mr = r2 + a2 cos2 θ − 2Mr < 0, (3.26)

part of which lies outside the outer horizon r = r+ when a ̸= 0. This is easy to see by noting that

3Not moving in space from the point of view of the an external observer.
4It’s usully not used because it’s not a sphere, but a oblate spheroidal.
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the equation for ξ(r) is a parabola with roots at r̃± =M ±
√
M2 − a2 cos2 θ with r̃+ being bigger than

r+ = M +
√
M2 − a2 for θ ̸= 0, π. Hence g00 is positive in the ellipsoidal region r+ < r < r̃+, which

has a maximum extent on the equator θ = π
2 where r̃+ =M +

√
M2 + a2.

In the ergoregion, the orbits of k = ∂t are not timelike, preventing anything from traveling along them

while remaining stationary relative to distant observers. For a curve xµ = (t, r, θ, ϕ) to be timelike,

its tangent vector uµ = dxµ

dτ must satisfy u2 = −1. However, within the ergoregion, every term in

u2 = gµνu
µuν is positive, except for gtϕu

tuϕ, which implies that uϕ = dϕ
dτ cannot be zero. Furthermore,

since ut > 0 for a future-directed worldline and gtϕ < 0, uϕ must be positive. Consequently, any

timelike worldline is dragged in the direction of the black hole’s rotation, a phenomenon known as

frame dragging.

Figure 9: Schematic location of the horizons, ergosurfaces, and curvature singularity in the Kerr space-
time.

4 Supergravity

As we have seen, general relativity can be coupled to scalars φ, gauge fields Aµ and through the vielbein

formalism also spinors ψ. Including also the metric, that means we have fields of the following spins

φ ψ Aµ ? gµν

s 0 1
2 1 3

2 2

This begs the question: what about spin 3
2 fields? These can indeed be included, which leads to

supergravity, which enjoys an additional symmetry called ”Supersymmetry”.

4.1 The free Rarita–Schwinger field

As a first approximation to supergravity, we will study the free spin-3/2 field, the Rarita-Schwinger

field Ψµ, referred to as a gravitini. The free limit means that the various fields don’t interact, allowing
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us to consider them separately. Its structure is the one of a vector whose components are all spinors.

As such, it transforms under both local Lorentz transformations and diffeomorphisms as

Ψµ → ΩΨµ =⇒ δΩΨµ = λabγabΨµ and Ψ′
µ →

∂xν

∂x′µ
Ψν (216)

which also has the gauge symmetry

Ψµ → Ψµ +∇µϵ =⇒ δϵΨµ = ∇µϵ (217)

where ϵ = ϵ(x) is a spinor.

The action of ψµ is given by

SΨµ = i

∫
d4x
√
−gΨ̄µγµνρ∇νΨρ, (218)

where Ψ̄µ = (γ0Ψµ)
†. The equation of motion reads

γµνρ∇νΨρ = 0, (219)

which has some resemblance with its electromagnetic analogous ∇µFµν = 0. Under an infinitesimal

gauge transformation δϵΨµ = ∇µϵ transforms as

δϵSΨµ
=

∫
d4x
√
−g (−iGµν ϵ̄γµΨν) (220)

up to boundary terms, where Gµν is the Einstein tensor. Thus, in Ricci flat spaces Rµν = 0, the action

is indeed gauge invariant.

The solution also suggest that gravity (encoded in the Einstein tensor) affects general ϵα-gauge

invariance since

δϵSΨ ∝ Gµν ϵ̄γµΨν ̸= 0 (221)

in general. The construction of a theory that is fully gauge invariant leads to supergravity.

4.2 N = 1 supergravity with Λ = 0

To construct a theory that is fully gauge invariant, we need to introduce a new type of symmetry,

“supersymmetry”. We will focus on the minimal N = 1 D = 4 case, minimal supergravity in this

section since it contains a part of the action common to all supergravity theories.

To see how this works, we can consider the combined action

S = Sg + Sψµ
(222)

Sg =
1

8πG

∫
d4x
√
−ggµνRµν =

1

8πG

∫
d4x
√
−g
(
eµae

ν
bRµν

ab(e)
)

(223)

Sψ = − i

8πG

∫
d4x
√
−gΨ̄µγµνρ∇νΨρ (224)

where we assume no torsion and that Ψµ is “Majorana”. This means there exists an intertwiner B such

that

B−1γµB = γ∗µ (225)

in terms of which Ψcµ ≡ BΨ∗
µ = Ψµ.
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The idea is to supplement δϵΨµ = ∇µϵ by some transformation δeaµ such that δϵS = 0. Working up

to quadratic order in Ψµ, it is possible to show

δϵe
a
µ =

i

2
ϵ̄γaΨµ , δϵΨµ = ∇µϵ (226)

indeed leaves the combined action invariant.

However, we are left with some ϵ̄Ψ3
µ terms that do not cancel.

To resolve this issue, it is necessary to generalize the action of Ψµ to include quadratic terms. This

leads to S = Sg + SΨµ where

SΨ = − i

8πG

∫
d4x
√
−g
(
Ψ̄µγ

µνρ∇νΨρ + LQuartic

)
(227)

where

LQuartic = −
1

16
[
(
Ψ̄ργµΨν

)
(Ψ̄ργµΨν + 2Ψ̄ργ

νΨµ)− 4
(
Ψ̄µγ

ρΨρ
) (

Ψ̄µγνΨν
)
] (228)

and the transformation rules become

δϵe
a
µ =

i

2
ϵ̄γaΨµ (229)

δϵΨµ = ∇̂µϵ = ∇µϵ+Kµνργ
νρϵ (230)

with

Kµνρ = −
i

4

(
Ψ̄µγρΨν − Ψ̄νγµΨρ + Ψ̄ργνΨµ

)
(231)

This makes the theory fully ϵ gauge invariant, and in the process, we have introduced local super-

symmetry. The classical theory of its own is not very interesting, as we should fix Ψµ to zero, meaning

that (230) reduces to

∇µϵ = 0 (232)

while we have restricted to vacuum solutions of GR (Rµν = 0).

It is possible to add matter to N = 1 supergravity in such a way that supersymmetry is preserved,

leading to more interesting theories, even classically.

Such generalizations obey an equation similar to (232) and in many cases, this can be shown to

imply Einstein’s equations, which is helpful because solving (232) or its generalizations is often much

easier.

4.3 Anti-de Sitter supergravity

If we want to expand the supergravity theory described so far, one of the ways to do so is to derive

it in another type of spacetime, let’s say AdSn rather than Minkowski. We need a modified covariant

derivative ∇̂µ, which acts on spinors as

∇̂µϵ ≡
(
∇µ −

1

2L
γµ

)
ϵ =

(
∂µ +

1

4
ωµabγ

ab − 1

2L
γµ

)
ϵ (233)
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where it’s commutator[
∇̂µ, ∇̂ν

]
ϵ =

1

4

(
Rµνab(e) +

1

L2
(eaµebν − ebµeaν)

)
γabϵ

≡ 1

4
R̂µνab(e)γ

abϵ

(234)

and

R̂µa ≡ R̂µνabebν = Rµa +
3

L2
eaµ (235)

R̂ ≡ R̂µaeaµ = R+
12

L2
(236)

As a starting point, we consider the action (222) and replace ∇ν → ∇̂ν . Afterwards we add a

cosmological term whose value is so Rµν = 0. We find

S =
1

8πG

∫
d4x
√
−g
(
R− iΨ̄µγµνρ∇̂νΨρ +

6

L2

)
=

1

8πG

∫
d4x
√
−g
(
R− iΨ̄µγµνρ∇νΨρ −

i

L
Ψ̄µγ

µνΨν +
6

L2

) (237)

The term “anti” in anti-de Sitter comes from the constant negative potential term appearing in

(237), which can be viewed as a negative cosmological constant5. We can be tempted to identify the

term ∝ Ψ2
µ as a mass-like term, where we identify

mΨ =
1

L
(238)

but this is a wrong interpretation, since the true nature of (237) is a description of a massless gravitino

in an AdS4 background geometry.

4.4 N = 2 minimal gauge supergravity

Among all the black-hole solutions we’ve review earlier, the extreme Reissner-Nordström (RN) black

hole occupies a special position because of its complete stability with respect to both classical and

quantum processes. This case is special since it admits supersymmetry within the context of N = 2

(ungauged) supergravity. Analogues of the RN solutions to Einstein-Maxwell theory with a cosmological

constant Λ have been known for some time, that’s why we’re concerned with identifying cosmological

analogues of the extreme RN black holes with respect to supersymmetry in section 5.

In the following, we will define what is necessary in the final section to address the RN solutions clas-

sification within the context of N = 2 gauged supergravity, and then we will assume that the gravitini

vanish in the background, with the field equations derived from (239) becoming the Einstein-Maxwell

equations defined above, with Λ = −3g2. This allows us to use the solutions of a cosmological RN black

hole as background solutions to gauged N = 2 supergravity.

The Lagrangian of the theory has four fields, namely graviton, gravitini (really two Majorana gravi-

tini combined into a single complex gravitini Ψµ ≡ Ψ1
µ+ iΨ2

µ) and a Maxwell vector field Aµ minimally

coupled to the gravitini with strength g (g ̸= 0 is what we mean by gauge supergravity). The action is

5In de Sitter moels, used for actual cosmological descriptions of the universe, the sign is the opposite.
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S =

∫
d4x
√
−g
[
R− 2iΨ̄µγ

µνρDνΨρ − FµνFµν +
1

2
(F + F̃ )µνΨ̄ργ[µγ

ρσγν]Ψσ+

+2igΨ̄µγ
µνΨν + 6g2

] (239)

where supersymmetry fixes Λ = −3g2. The Lorentz- and gauge-covariant derivative Dµ acting on

spinorial objects is defined by

Dµ = ∇µ − igAµ (240)

in terms of the Lorentz-covariant derivative ∇µ = ∂µ+
1
4 (ωµ)abγ

ab. The supercovariant field strength

is

F̂µν = Fµν − Im
(
Ψ̄µΨν

)
(241)

which will become the well known electromagnetic tensor when we evaluate the theory in the back-

ground.

The action (239) is invariant under the N = 2 supersymmetry transformations

δeaµ = Re(ϵ̄γaΨµ)

δΨµ = ∇̂µϵ

δAµ = Im(ϵ̄Ψµ)

where ϵ is a Dirac spinor. The supercovariant derivative is

∇̂µ ≡ Dµ +
1

2
gγµ +

i

4
F̂abγ

abγµ. (242)

Before moving on to the more interesting problem of supersymmetric black holes in section 5, let us

consider some simple solutions on mathcalN = 2 gauged and ungauged supergravity.

4.4.1 AdS4

Before any computation, it’s worth defining some useful Clifford algebra identities

γn1...nkγm = (−1)k
(
γmn1...nk − k gm[n1γn2...nk]

)
(243)

γmγn1...nk = γmn1...nk + kgm[n1γn2...nk] (244)

It comes as a natural question, what solutions live in N = 2 supergravity? To answer that, we

are going to consider a couple of particular solutions in the classical version of supergravity. First

we consider the case of AdS4, since it is the unique maximally supersymmetric solution for gauged

supergravity (g ̸= 0).

The AdS4 metric reads

ds2 (AdS4) = −V (r)dt2 +
1

V (r)
dr2 + r2ds2(S2) (245)

with V (r) = 1 + r2

α2 , where
1
α2 = − 1

3Λ = g2.

Black holes. Theory and construction Página 40



Black holes. Theory and construction

Upon fixing the gravitino and the ,the Killing spinor equations read

∇̂t = ∂t +
1

2
g2rγ01 +

1

2
gUγ0 = ∂t − T (r) (246)

∇̂r = ∂r +
1

2
g−1U−1γ1 (247)

∇̂θ = ∂θ −
1

2
Uγ12 +

1

2
grγ2 (248)

∇̂ϕ = ∂ϕ −
1

2
U sin θγ13 −

1

2
cos θγ23 +

1

2
gr sin θγ3 (249)

Assuming ϵ(r, t, θ, ϕ) =M1(r)M2(t)M3(θ)M4(ϕ)ϵ0, we have that

∂rϵ = −
1

2
gU−1γ1ϵ =⇒ lnM1(r) = −

∫
g
1

2
U−1γ1dr =

{
gr = sinh(θ)

gdr = cosh(θ)dθ

}
=

= −1

2
gγ1

∫
1√

1 + sinh2 θ
cosh(θ)

dθ

g
= −1

2
γ1θ = −

1

2
γ1 arcsinh(gr) =⇒

=⇒M1(r) = e−
1
2γ1 arcsinh gr

(250)

Calling ϵ(r, t, θ, ϕ) =M1(r)ϵ̃(t, θ, ϕ), the time component

∂tϵ =M1∂tϵ̃(t, θ, ϕ) =

(
−1

2
g2rγ0 −

1

2
guγ0

)
ϵ = T (r)ϵ (251)

So we have that

∂tϵ̃(t, θ, ϕ) =M1(r)
−1T (r)M1(r)ϵ̃(t, θ, ϕ) (252)

where

T (r) = −1

2
g (grγ01 + Uγ0) = −

1

2
gγ0 (grγ1 + U) (253)

To solve this we can use the properties of an exponential of the type eαX , where α is a variable and

X is a matrix obeying the property X2 = 1. Then

X2 = 1 ; X3 = X (254)

so

eαX =

∞∑
n=0

αnXn

n!
= 1+ αX +

α2

2!
X2 +

α3

3!
X3 +

α4

4!
X4 +

α5

5!
X5 + · · · =

= 1

(
1 +

α2

2!
+
α4

4!
+ · · ·

)
+X

(
α+

α3

3!
+
α5

5!
+ · · ·

)
= sinhαX + coshα1

(255)

so calling gr = sinhα and U = coshα

grγ1 + U = eαγ1 = eγ1 arcsinh gr (256)

Then

∂tϵ̃(t, θ, ϕ) =M1(r)
−1

(
−1

2
gγ0

)
eγ1 arcsinh grM1(r)ϵ̃(t, θ, ϕ) =

= −1

2
gγ0M1(r)e

γ1 arcsinh grM1(r)︸ ︷︷ ︸
1

ϵ̃(t, θ, ϕ)
(257)

so

∂tM2(t) = −
1

2
gγ0M2(t) =⇒M2(t) = e−

1
2 gγ0t (258)

For ∇̂θ, calling ϵ̂(θ, ϕ) =M3(θ)M4(ϕ)ϵ0, we have:
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M1(r)M2(t)∂θ ϵ̂(θ, ϕ) =

(
1

2
Uγ12 −

1

2
grγ2

)
ϵ = N(r)M1(r)M2(t)ϵ̂ (259)

The form of N(r), following the same procedure as before

N(r) = −1

2
γ2 (Uγ1 + gr) = −1

2
γ2γ1 (U + grγ1) =

1

2
γ12e

γ1 arcsinh gr (260)

We want to pass N(r) to the right side of M2, so we need to pay attention at how the gamma

matrices products commute M1 ∝ γ1 =⇒ γ1γ12 = −γ12γ1
M2 ∝ γ0 =⇒ γ0γ12 = γ12γ0

(261)

therefore

∂θ ϵ̂ =M−1
2 M

−1
1 N(r)M1M2ϵ̂ =M−1

2

(
1

2
γ12

)
M2ϵ̂ =

1

2
γ12ϵ̂ (262)

so

∂θM3(θ) =
1

2
γ12M3(θ) =⇒M3(θ) = e

1
2γ12θ (263)

In the last case, we have

M1M2M3∂ϕM4(ϕ)ϵ0 =

(
1

2
U sin θγ13 +

1

2
cos θγ23 −

1

2
gr sin θγ3

)
ϵ = Φ(r, θ)ϵ (264)

Again

Φ (r, θ) =
1

2
coshα sin θγ13 +

1

2
cos θγ23 −

1

2
sinhα sin θγ3 =

=
1

2
cos θγ23 +

1

2
sin θγ13 (coshα+ sinhαγ1) =

=
1

2
cos θγ23 +

1

2
sin θγ13e

αγ1 =
1

2
γ23 (cos θ − sin θγ12e

αγ1)

(265)

and since

M1 ∝ γ1 =⇒

γ1γ23 = γ23γ1

γ1γ12 = −γ12γ1
(266)

then

M−1
1 Φ(r, θ)M1 =

1

2
γ23M−1

1 (cos θ − sin θγ12e
αγ1)M1 =

=
1

2
γ23
(
cos θe

α
2 γ1 − sin θγ12e

α
2 γ1
)
M1 =

=
1

2
γ23 (cos θ − sin θγ12) e

α
2 γ1e−

α
2 γ1 =

1

2
γ23e

−γ12θ

(267)

Now

M2 ∝ γ0 =⇒

γ0γ23 = γ23γ0

γ0γ12 = γ12γ0
(268)

so

M−1
2

1

2
γ23e

−θγ12M2 =
1

2
γ23e

−θγ12 (269)

and
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M3 ∝ γ12 =⇒ γ12γ23 = −γ23γ12 (270)

1

2
M−1

3 γ23e
−iθγ12M3 =

1

2
γ23M3e

−iθγ12M3 =
1

2
γ23 (271)

∂ϕM4 =
1

2
γ23M4 =⇒M4(ϕ) = e

1
2γ23ϕ (272)

So the spinor reads:

ϵ(t, r, θ, ϕ) =M1(r)M2(t)M3(θ)M4(ϕ)ϵ0 = e−
1
2γ1 arcsinh(gr)e−

1
2γ0gte

1
2γ12θe

1
2γ23ϕϵ0 (273)

which provides an explicit construction of the general Killing spinors in a AdS4 spacetime. Note

that the constant ϵ0 is completely unconstrained so it depends on four complex or eight real constants

which is the maximal possible for a Killing spinor in N = 2 supergravity, meaning that the solution is

maximally supersymmetric.

4.4.2 AdS2×S2

Now let’s consider a maximally supersymetric solution in the ungauged limit (g = 0), namely AdS2×S2,
which appears as the near horizon limit of the RN BH with vanishing cosmological constant.

We have that the AdS2 metric is

ds2 (AdS2) = −r2dt2 +
1

r2
dr2 (274)

but we can write it in a more convenient form

ds2 (AdS2) = − sinh2(r)dt2 + dr2 (275)

where the vielbeins are

ea = L(sinh(r)dt, dr, dθ, sin θdϕ)a (276)

To compute the spinors we need the spin connection, whose non-zero components are

ω01 = −coth(r)

L
e0

ω23 = −cot θ

r
e3

where the antisymmetry of ωab is understood. The 4-potential is

At = − cosh(r)Q , Aϕ = −H cos θ (277)

which gives the field strenght

F =
Q

L2
· e0 ∧ e1 + H

L2
e2 ∧ e3 = Q sinh(r)dt ∧ dr +H sin θdθ ∧ dϕ (278)

Black holes. Theory and construction Página 43



Black holes. Theory and construction

The supercovariant derivatives decompose as

∇̂t = ∂t +
1

2
(− cosh)γ01 + ig coshQ+

1

2
gL sinh γ0 +

i

2

1

L2

(
Qγ01 +Hγ23

)
L sinh γ0 =

= ∂t +
1

2
γ01 sinh+����igQ cosh +

�
���

��1

2
gL sinh γ0 −

i

2L
sinh

(
Qγ1γ023

)
(279)

∇̂r = ∂r +
1

2
gγ1L+

i

2L

(
Qγ01 +Hr23

)
γ1 (280)

∇̂θ = ∂θ +
1

2
gγθ +

i

2L2
(· · · )γθ = ∂θ +

L

2
gγ2 +

i

2L
(Qγ01 +Hγ23)γ2 (281)

∇̂ϕ = ∂ϕ +
1

2
(− cos θ)γ23 + igH cos θ +

1

2
gγϕ +

i

2L2
(. . .)γϕ =

= ∂ϕ −
1

2
cos θγ23 + igH cos θ +

1

2
gL sin θγ3 +

i

2L
sin θ

(
Qγ01 +Hγ23

)
γ3 (282)

We will assume ϵ(r, t, θ, ϕ) =M1(r)M2(t)M3(θ)M4(ϕ)ϵ0. Starting from the ∇̂r equation

∂rM1 =

[
−1

2
gγ1L−

i

2L

(
Qγ0 +Hγ123

)]
M1 =⇒

=⇒M1(r) = exp

[
−1

2

(
gγ1L−

i

L
(Qγ0 −Hγ123)

)
r

]
g=0
= exp

[
i

2L
(Qγ0 −Hγ123) r

] (283)

For convenience, we’re going to define the operator

P =
i

L
(Qγ0 −Hγ123) (284)

which fulfils P 2 = 1, since we had L2 =M2 = Z2 in this case.

For the t direction

M1 ∝ γ0, γ123 =⇒

γ0γ01 = −γ01γ0
γ123γ

01 = −γ01γ123
(285)

so

∂tM2(t) =M−1
1

1
2
γ01 cosh+

i

2L
( Qγ1 +Hγ023︸ ︷︷ ︸
−γ01(Qγ0−Hγ123)

) sinh

M1M2 =

(288)
=

1

2
M−1

1 γ01
[
cosh− i

L
(Qγ0 −Hγ123) sinh

]
M1M2 =

1

2
γ01M1e

−PrM1︸ ︷︷ ︸
1

M2

(286)

then

M2(t) = e
1
2γ

01t (287)

Now for θ

M1 ∝ γ0, γ123 =⇒

γ0γ12 = γ12γ0

γ123γ
12 = γ12γ123

(288)

so

∂θM3 =M−1
2 M

−1
1

(
− i

2L

(
Qγ01 +Hγ23

)︸ ︷︷ ︸
γ12(Qγ0+Hγ123)

γ2

)
M1M2M3 =

=M−1
2

i

2L
γ12 (Qγ0 −Hγ123)M2M3 =

i

2L
γ12 (Qγ0 −Hγ123)M3

(289)

then

M3(θ) = exp

(
i

2L
γ12 (Qγ0 −Hγ123) θ

)
(290)

and for ϕ

Black holes. Theory and construction Página 44



Black holes. Theory and construction

∂ϕM4 =M−1
3 M

−1
2 M

−1
1

C(θ)︷ ︸︸ ︷(
1

2
cos θγ23 − i

2L
sin θ (Qγ01 +Hγ23)γ3︸ ︷︷ ︸

−γ13(Qγ0−Hγ123)

)
M1M2M3M4 (291)

where

C(θ) =
1

2
γ23(cos θ −

γ12︷ ︸︸ ︷
γ23γ13 sin θ (Qγ0 −Hγ123)) =

=
1

2
γ23

(
cosh(iθ)− γ12

L
(Qγ0 −Hγ123) sinh(iθ)

)
= e−

i
Lγ

12(Qγ0−Hγ123)θ = (M−1
3 )2

(292)

then

∂ϕM4 =
1

2
γ23M4 =⇒M4(ϕ) = e

1
2γ

23ϕ (293)

So finally

ϵ(r, t, θ, ϕ) = e
1
2Pre

1
2γ

01te
1
2γ

12Pθe
1
2γ

23ϕϵ0 (294)

with P defined in (284), which provides an explicit construction of a general Killing spinors in the

AdS2×S2 limit.

5 Supersymmetric black holes in cosmological Einstein-Maxwell

theory

This section is based on the L. J. Romans paper [5]., whose computations I reproduce.

Our final goal is going to be build the Killing spinors in all supersymmetric RN solutions. Something

special about the “cosmic monopoles” supersymmetric RN BH class is that they don’t have flat-space

analogue, since the magnetic charge blows up in the formal limit to flat space, as we will see.

5.1 Cosmological Einstein-Maxwell theory

If we take the Lagrangian for Einstein-Maxwell theory with cosmological constant Λ to be

S =

∫
d4x(R− FµνFµν − 2Λ) (295)

the field equations are

Rµν = 2FµρFν
ρ − 1

2
gµνFρσF

ρσ + Λgµν (296)

and

∇µFµν = 0 , dF = 0 (297)

The previous BH we considered where Λ = 0. Now we’re considering BHs with non-vanishing cos-

mological constant within Einstein-Maxwell theory. There is the following solution for arbitrary Λ.

As we’ve seen, the metric of this BHs has the stationary, spherically symmetric form
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ds2 = −V dt2 + dr2

V
+ r2

(
dθ2 + sin2 θdϕ2

)
(298)

with vielbeins

ea =
(
Udt, U−1dr, rdθ, r sin θdϕ

)a
(299)

where U =
√
V . The vector potential is taken to be

At =
Q

r
and Aϕ = −H cos θ (300)

so F has non-vanishing Fab components

F01 =
Q

r2
and F23 =

H

r2
(301)

where Q and H are the electric and magnetic charge respectively. If we define a “total charge” Z

as Z2 = Q2 +H2, V (r) takes the form

V (r) = 1− 2M

r
+
Z2

r2
− 1

3
Λr2 (302)

5.2 Supersymmetric Reissner-Nordström solutions

If we fix the spinors of N = 2 gauged supergravity to zero and fix Λ = −3g2, we observe that its action

coincides with that of cosmological Einstein-Maxwell theory.

A solution is supersymmetric if it obey the Killing spinor equation

∇̂µϵ = 0 (303)

What form does each of this equations take in general? We have for Ψµ = 0 that

∇̂µϵ = ∂µϵ+
1

4
ω ab
µ γabϵ− igAµϵ+

1

2
gγµϵ+

i

4
Fabγ

abγµϵ (304)

where the non-zero components of ωab are

ω01 = −U ′e0

ωa1 =
U

r
ea for a = 2, 3

ω23 = −cot θ

r
e3

where the anti-symmetry of ωab is understood. To obtain them we’ve used Cartan’s First Structure

Equation (138).

What form does each one of the Killing spinor equations take? We have
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∇̂tϵ =

∂t + 1

4

2ωt01γ
01︷ ︸︸ ︷(

ωt01γ
01 + ωt10γ

10
)
−igAt +

1

2
gγt +

i

2

(
F01γ

01 + F23γ
23
)
γt

 ϵ = (305)

=

[
∂t −

1

2
U ′Uγ01 − igQ

r
+

1

2
gUγ0 +

i

2

(
Q

r2
γ01 +

H

r2
γ23
)
Uγ0

]
ϵ

∇̂rϵ =
[
∂r +

1

2
gU−1γ1 +

i

4
�FU

−1γ1

]
ϵ (306)

∇̂θϵ =
[
∂θ −

1

2
Uγ12 +

1

2
grγ2 +

i

4
�Frγ2

]
ϵ (307)

∇̂ϕϵ =
[
∂ϕ −

1

2

(
U sin θγ13 + cos θγ23

)
+ igH cos θ +

1

2
gr sin θγ3 +

i

4
�Fr sin θγ3

]
ϵ (308)

where we’ve defined

�F = Fabγ
ab =

2

r2
(Qγ01 +Hγ23) (309)

using the property

Fab = −Fba ; γab = −γba (310)

5.2.1 Algebraic constraints

It is possible to obtain some purely algebraic constraints on ϵ from (303) via

Ωµνϵ =
[
∇̂µ, ∇̂ν

]
ϵ = 0 (311)

In the following, we might be sloppy at the time of explicitly putting the spinor ϵ, yet it is always there.

If we define

∇̂µ = ∇µ +∆µ (312)

where

∆µ = −igAµ +
1

2
gγµ +

i

4
Fabγ

abγµ (313)

on expands (311)

(∇̂µ∇̂ν − ∇̂ν∇̂µ)ϵ = (∇µ +∆µ) (∇ν +∆ν)− (µ←→ ν)

= ∇µ∇ν +∇µ∆ν +∆µ∇ν +∆µ∆ν − (µ←→ ν)

= [∇µ,∇ν ] ϵ︸ ︷︷ ︸
1
4Rµνabγabϵ

+(∇µ∆ν −∇ν∆µ) ϵ+ [∆µ,∆ν ] ϵ = 0 (314)

where we’ve been careful in the intermediate steps, since we have extra terms from the fact that the

∇µ is acting both on ∆µ and ϵ. We now need to substitute (313) into each expresssion. We find

∇µ∆ν = ∇µ
[
−igAν +

(
1

2
g +

i

4
�F

)
γν

]
= −ig∇µAν +

1

2
(���*0
∇µeaν)gγa+

+
i

4
Fab

∝∇µe
a
α+∇µe

b
β=0︷ ︸︸ ︷

(∇µeaαebβ) γαβ +
i

4
�F����:0
(∇µeaν)γa +

i

4
(∇µFab) γabγν = −ig∇µAν +

i

4
(∇µFab) γabγν

(315)
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so

∇µ∆ν −∇ν∆µ = −ig(
Fµν︷ ︸︸ ︷

∂µAν − ∂nuAµ

=0 assuming no torsion︷ ︸︸ ︷
−ΓλµνAλ + ΓλνµAλ )+

+
i

4

[
(∇µFab) γabγν − (∇νFab) γabγµ

]
= −igFµν +

i

2
γabγ[ν

(
∇µ]Fab

) (316)

While for the [∆µ,∆ν ] term we have

∆µ∆ν −∆ν∆µ =

[
−igAµ +

(
1

2
g +

i

4
�F

)
γµ

] [
−igAν +

(
1

2
g +

i

4
�F

)
γν

]
− (µ←→ ν) =

= −g2���AµAν −((((((ig(. . . )Aµγν −((((((ig(. . . )Aνγµ +

(
1

2
g +

i

4
�F

)
γµ

(
1

2
g +

i

4
�F

)
γν − (µ←→ ν) =

=

(
1

2
g +

i

4
�F

)
γµ

(
1

2
g +

i

4
�F

)
γν −

(
1

2
g +

i

4
�F

)
γν

(
1

2
g +

i

4
�F

)
γµ =

=
1

4
g2γµγν +

1

2
gγµ

i

4
�Fγν +

i

4
�Fγν

1

2
gγµ +

i2

42
�Fγµ�Fγν − (µ←→ ν) =

=
1

2
g2γµν +

i

8
g
(
γµ�Fγν − γν�Fγµ

)
+
i

8
g�F (γµγν − γνγµ)−

1

16
�F
(
γµ�Fγν − γν�Fγµ

)
=

=

(
1

2
g2 +

i

4
g�F

)
γµν +

(
i

8
g − 1

16
�F

)
(γµ�Fγν − γν�Fγµ)

(317)

where the red crossed terms cancel with the ones inside (µ←→ ν).

The result can then be expressed as

Ωµν =

A︷ ︸︸ ︷
1

4
Rµνabγ

ab−igFµν +

B︷ ︸︸ ︷
i

2
γabγ[ν

(
∇µ]Fab

)
+ (318)

+

(
1

2
g2 +

i

4
g�F

)
γµν +

(
i

8
g − 1

16
�F

)
(γµ�Fγν − γν�Fγµ)︸ ︷︷ ︸

C

(319)

but we can do better, it is possible to factorise Ωµν as

Ωµν = XµνΘ (320)

where the Xµν components are in general non-singular, making (311) only able to be satisfied iif ϵ

is an “eigenspinor” of Θ with zero eigenvalue. Then form of Θ is

Θ ≡ U + grγ1 +

{
1

r
− M

Z2

}
(iγ0Q− iγ123H) (321)

with (320) reducing to

Θϵ = 0 (322)

Before continuing, let’s compute a couple of Xµν terms to show that (320) is indeed true. Starting

from Ωtϕ, the A term is composed of the Riemann curvature tensor (presented as a curvature 2-form)

which can be obtained using the spin connection through Cartan’s Second Structure Equation

(139).

If we expand it, we get the curvature tensor

Rµνab = ∂µ(ων)ab − ∂ν(ωµ)ab + (ωµ)ac(ων)
c
b − (ων)ac(ωµ)

c
b (323)
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so the A term reads

1

4
Rtϕabγ

ab =
1

4

(
����:0 ∀a, b
∂tωϕab −����:0 ∀a, b

∂ϕωtab + ωtacωϕ
c
b − ωϕacωtcb

)
γab (324)

For what values of a and b this isn’t zero?

ωtac ̸= 0 iif

a = 0, c = 1 =⇒ ωϕ
1
b ∝ ωϕ1b ̸= 0 iif b = 3

a = 1, c = 0 =⇒ ωϕ
0
b ∝ ωϕ0b = 0 ∀b

ωϕac ̸= 0 iif



a = 1, c = 3 =⇒ ωt
3
b = 0 ∀b

a = 3, c = 1 =⇒ ωt
1
b ̸= 0 iif b = 3

a = 2, c = 3 =⇒ ωt
3
b = 0 ∀b

a = 3, c = 2 =⇒ ωt
2
b ̸= 0 iif b = 3

(325)

therefore

1

4
Rtϕabγ

ab =
1

4
(ωt01ωϕ

1
3γ

03 − ωϕ31ωt10γ30 − ωϕ32ωt23��>
0

γ33) =
1

2
ωt01ωϕ13γ

03 =
1

2
U ′U2 sin θγ03 (326)

The B term reads

B =
i

2
γabγ[ϕ

(
∇t]F ab

)
(327)

where we have that

∇µF ab = ∂µF
ab + (ωµ)

a
cF

cb + (ωµ)
b
cF

ac (328)

and since none of the F ab components depends on t or ϕ, we only have to care about the spin

connection terms. The contribution to B is

∇tF ab = (ωt)
a
cF

cb + (ωt)
b
cF

ac (329)

∇ϕF ab = (ωϕ)
a
cF

cb + (ωϕ)
b
cF

ac (330)

For the t direction, we have that all the a,b terms give zero, since the unique non zero (ωt)ab components

are the ones where a = 0, 1 and b = 1, 0 respectively. This translates into

∇tF 01 = (ωt)
0
cF

c1 + (ωt)
1
cF

0c (331)

and vice versa. So, if we choose the c’s which make F c1 or F 0c not zero, we end up with a spin

connection of the form (ωt)
0
0 and (ωt)

1
1, which using the antisymmetry property

ωab = ηacωcb = −ηacωbc (332)

is always zero, since the flat-space metric is diagonal. Now for the ϕ direction, we have to be more

careful. We have two components which at first sight we could think they don’t contribute, but we have

to account for the spin connection. They are

∇ϕF 03 = (ωϕ)
0
cF

c3 + (ωϕ)
3
cF

0c = (ωϕ)
3
1F

01 = −U sin θ
Q

r2
(333)

Black holes. Theory and construction Página 49



Black holes. Theory and construction

since F c3 ̸= 0 iif c = 2, leading to (ωϕ)
0
2 = 0. We also have

∇ϕF 12 = (ωϕ)
1
cF

c2 + (ωϕ)
2
cF

1c = (ωϕ)
1
3F

32 +�
���*

0
(ωϕ)

2
0F

10 = U sin θ
H

r2
(334)

Then the term of B that contributes is

− i
4
γabγt∇ϕF ab = −

i

2
(γ03γt∇ϕF 03 + γ12γt∇ϕF 12) =

=
i

2

(
γ03Uγ0U sin θ

Q

r2
− γ12UγtU sin θ

H

r2

)
=

=
i

2

U2 sin θ

r2
(Qγ3 +Hγ012) = − i

2

U2 sin θγ03

r2
(−Qγ0 −H γ0γ3γ012︸ ︷︷ ︸

γ3γ12=γ312=γ123

) =

= − i
2

U2 sin θγ03

r2
(Qγ0 −Hγ123) (335)

For now, we have

Ωtϕ =
1

2
U ′U2 sin θγ03 − ig

∝F03=0︷︸︸︷
Ftϕ − i

2

U2 sin θγ03

r2
(Qγ0 −Hγ123)+

+

(
1

2
g2 +

i

4
g�F

)
γtϕ +

(
i

8
g − 1

16
�F

)
(γt�Fγϕ − γϕ�Fγt)︸ ︷︷ ︸

C

(336)

The C term is composed of

γt�Fγϕ = 2e0t e
3
ϕγ0�Fγ3 = −2Ur sin θγ0�Fγ3 (337)

where

γ0�Fγ
3 = 2

(
Q

r2
γ0γ01γ3︸ ︷︷ ︸

−γ13

+
H

r2
γ0γ23γ3︸ ︷︷ ︸

γ02

)
= 2

(
−Q
r2
γ13 +

H

r2
γ02
)

(338)

and

γϕ�Fγt = 2e3ϕe
0
tγ0�Fγ3 = −2Ur sin θγ3�Fγ0 (339)

with

γ3�Fγ
0 = 2

(
Q

r2
γ3γ01γ0 +

H

r2
γ3γ23γ0

)
= 2

(
−Q
r2
γ13 +

H

r2
γ02
)

(340)

therefore

C = γt�Fγϕ − γϕ�Fγt = 0 (341)

So we end up with
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Ωtϕ =
1

2
U ′U2 sin θγ03 − i

2

U2 sin θγ03

r2
(Qγ0 −Hγ123)−

1

2
g2Ur sin θγ03+

+
ig

4
× 2

(
Q

r2
γ01 +

H

r2
γ23
)

e0t e
3
ϕγ03︸ ︷︷ ︸

−Ur sin θγ03

=

=
1

2
U ′U2 sin θγ03 − i

2

U2 sin θγ03

r2
(Qγ0 −Hγ123)−

− 1

2
g2Ur sin θγ03 − ig

2
Ur sin θ

L︷ ︸︸ ︷(
Q

r2
γ01γ03︸ ︷︷ ︸
γ13

+
H

r2
γ23γ03︸ ︷︷ ︸
γ02

)
(342)

We can rewrite the L term as

L = (−Qγ3 +Hγ02γ1)γ1 = γ03(−Q

γ0︷ ︸︸ ︷
γ03γ3 +H γ03γ02γ1︸ ︷︷ ︸

γ3γ2γ1=γ32γ1=γ132=−γ123

)γ1 = γ03(Qγ0 −Hγ123)γ1 (343)

having

Ωtϕ =
1

2
U sin θ

[
(U ′U − g2r)γ03 − ig

r
γ03(Qγ0 −Hγ123)γ1 −

iU

r2
γ03(Qγ0 −Hγ123)

]
(344)

The derivative of U is

U ′ =
1

2
U−1

(
2M

r2
− 2Z2

r3
+ 2g2r

)
=⇒ U ′U = −Z

2

r2

(
1

r
− M

Z2

)
+ g2r (345)

and

(Qγ0 −Hγ123)(Qγ0 −Hγ123) = −Q2 −QH γ0γ123︸ ︷︷ ︸
γ0123

−HQγ123γ0︸ ︷︷ ︸
−γ0123

+H2 γ123γ123︸ ︷︷ ︸
−I

= −Z2 (346)

substituting both (345) and (346) in (344)

Ωtϕ =
U sin θ

2r2
γ03(Qγ0 −Hγ123)

[(
1

r
− M

Z2

)
(Qγ0 −Hγ123)− iU − igrγ1

]
× i

i
=

=
U sin θ

2ir2
γ03(Qγ0 −Hγ123)︸ ︷︷ ︸

Xtϕ

[(
1

r
− M

Z2

)
(iQγ0 − iHγ123) + U + grγ1

]
︸ ︷︷ ︸

Θ

(347)

Now for Ωtθ, the A part

A =
1

4
Rtθabγ

ab =
1

4
(����:0
∂tωθab −����:0

∂θωtab + ωtacωθ
c
b − ωθacωtcb)γab =

1

2
ωt01ωθ12γ

02 =
1

2
U ′U2γ02 (348)

where

ωtac ̸= 0 iif

a = 0, c = 1 =⇒ ωθ
1
b ̸= 0 iif b = 2

a = 1, c = 0 =⇒ ωθ
0
b = 0 ∀b

ωθac ̸= 0 iif



a = 1, c = 2 =⇒ ωt
3
b = 0 ∀b

a = 1, c = 3 =⇒ ωt
1
b = 0 ∀b

a = 2, c = 1 =⇒ ωt
3
b ̸= 0 iif b = 0

a = 3, c = 1 =⇒ ωt
2
b ̸= 0 iif b = 0

(349)
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Then

B =
i

2
γabγ[θ

(
∇t]F ab

)
= − i

4
γabγt∇θF ab = −

i

2

(
−γ02U2 Q

r2
γ0 − γ13γ0U2H

r2

)
=

= − iU
2

2r2
γ02(Qγ0 +H γ02γ013︸ ︷︷ ︸

γ2γ13=−γ123

) = − iU
2

2r2
γ02(Qγ0 −Hγ123)

(350)

where the non-zero terms are

∇θF 02 =����:0
∂θF

02 +����*
0 ∀c

(ωθ)
0
cF

c1 + (ωθ)
2
cF

0c = (ωθ)
2
1F

01 = −U
r2
Q (351)

∇θF 13 = (ωθ)
1
cF

c3 + (ωθ)
3
cF

1c = (ωθ)12F
23 = −U

r2
H (352)

and

γt�Fγθ = −2Urγ0�Fγ2 = −4U

r
(Qγ0γ01γ2︸ ︷︷ ︸

−γ12

+H γ0γ23γ2︸ ︷︷ ︸
−γ03

) =
4U

r
(Qγ12 +Hγ03) (353)

γθ�Fγt = −2Urγ2�Fγ0 = −4U

r
(Qγ2γ01γ0︸ ︷︷ ︸

−γ12

+H γ2γ23γ0︸ ︷︷ ︸
−γ03

) =
4U

r
(Qγ12 +Hγ03) (354)

γt�Fγθ − γθ�Fγt = 0 (355)

So

Ωtθ =
1

2
U ′U2γ02 − ig��*0

Ftθ −
iU2

2r2
γ02(Qγ0 −Hγ123) +

1

2
g2γtθ +

ig

4
× 2

(
Q

r2
γ01 +

H

r2
γ23
)
γtθ =

=
1

2
U ′U2γ02 − iU2

2r2
γ02(Qγ0 −Hγ123)−

1

2
Urg2γ02 − ig

2

(
Q

r2
γ01γ02︸ ︷︷ ︸
−γ02γ01

+
H

r2
γ23γ02︸ ︷︷ ︸
−γ02γ23

)
Ur =

=
1

2
Uγ02

[
U ′U2 − g2r︸ ︷︷ ︸
−Z2

r2
( 1

r−
M
r2
)

+
ig

r
(Qγ01 +Hγ23)︸ ︷︷ ︸
(Qγ0−Hγ123)γ1

− iU
r2

(Qγ0 −Hγ123)
]
=

(346)
=

U

2ir2
γ02(Qγ0 −Hγ123)︸ ︷︷ ︸

Xtθ

[(
1

r
− M

r2

)
(iQγ0 − iHγ123) + grγ1 + U

]
(356)

Finally, a more complex term Ωθϕ

A =
1

4
Rθϕabγ

ab =
1

4

(
∂θωϕab −����:0

∂ϕωθab + ωθacωϕ
c
b − ωϕacωϕcb

)
γab =

=
1

2
(������−U cos θγ13 + sin θγ23 +������

ωθ12ωϕ23γ
13 − ωθ12ωϕ13γ23) =

=
1

2
sin θ(1− U2)γ23 (357)

where

∂θωϕab ̸= 0 iif

a = 1, b = 3→ ∂θ(−U sin θ) = −U cos θ

a = 2, b = 3→ ∂θ(− cos θ) = sin θ
(358)

and
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ωθac ̸= 0 iif

a = 1, c = 2 =⇒ ωϕ
2
b ̸= 0 iif b = 3

a = 2, c = 1 =⇒ ωϕ
1
b ̸= 0 iif b = 3

(359)

ωϕac ̸= 0 iif



a = 1, c = 3 =⇒ ωθ
3
b = 0 ∀b

a = 2, c = 3 =⇒ ωθ
3
b = 0 ∀b

a = 3, c = 1 =⇒ ωθ
1
b ̸= 0 iif b = 2

a = 3, c = 2 =⇒ ωθ
2
b ̸= 0 iif b = 1

(360)

B =
i

2
γabγ[ϕ

(
∇θ]F ab

)
=
i

4
γab(γϕ∇θF ab − γθ∇ϕF ab)

(333),(334)
(351),(352)

=

= − iU
2r2

[
− γ03γ2︸ ︷︷ ︸
γ203=−γ230

r sin θQ+ γ12γ2︸ ︷︷ ︸
γ1

r sin θH + γ02γ3︸ ︷︷ ︸
γ302=γ230

r sin θQ+ γ13γ3︸ ︷︷ ︸
γ1

r sin θH

]
=

= − iU
2r

sin θ(2Qγ23γ0 + 2Hγ1) = −
iU

r
sin θγ23(Qγ0 −Hγ123) (361)

also

γθ�Fγϕ = r2 sin θ

(
γ2γ01γ3︸ ︷︷ ︸
γ2301=γ0123

Q

r2
+ γ2γ23γ3︸ ︷︷ ︸

⊮

H

r2

)
× 2 = 2 sin θ(Qγ0123 +H) (362)

γϕ�Fγθ = −2 sin θ(Qγ0123 +H) (363)

then

γθ�Fγϕ − γϕ�Fγθ = 4 sin θ(Qγ0123 +H) (364)

Therefore

Ωθϕ = − iU
r

sin θγ23
P︷ ︸︸ ︷

(Qγ0 −Hγ123)+
1

2
sin θ(1− U2)γ23 − igFθϕ +

(
1

2
g2 +

ig

4
�F

)
γθϕ+

+

(
ig

8
− 1

16
�F

)
4 sin θ(Qγ0123 +H)

(366),(367)
(369),(368)

= − iU
r

sin θγ23P +
1

2
sin θγ23

(
2M

r
− Z2

r2
−�

��g2r2
)

−igH sin θ︸ ︷︷ ︸
A

+�������1

2
g2r2 sin θγ23 +

ig

2
sin θγ23(Qγ0 +Hγ123)γ1︸ ︷︷ ︸

B

+
ig

2
sin θγ23(Qγ0 −Hγ123)γ1︸ ︷︷ ︸

C

−

− 1

2r2
sin θZ2γ23

(346),(370)
=

sin θ

r
γ23P

[
−iU +

(
1

r
− M

r2

)
P − igrγ1

]
× i

i
=

=
1

ir
sin θγ23(Qγ0 −Hγ123)︸ ︷︷ ︸

Xθϕ

Θ (365)

where we’ve used

1− U2 =
2M

r
− Z2

r2
− g2r2 (366)

(Qγ0123 +H) = γ23(Qγ01 −Hγ23) = γ23(Qγ0 −Hγ123)γ1 (367)

�Fγ
23 ∝ (Qγ01 +Hγ23)γ23 = γ23(Qγ0 +Hγ123)γ1 (368)
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�F (Qγ
0123 +H) ∝ (Qγ01 +Hγ23)(Qγ0123 +H) =

= Q2 γ01γ0123︸ ︷︷ ︸
γ23

+����QHγ01 +HQ����
γ23γ0123︸ ︷︷ ︸

−γ01

+H2γ23 = Z2γ23 (369)

C +B +A =
ig

2
sin θγ23[−Qγ0 −Hγ123 −Qγ0 +Hγ123 + 2Hγ23γ1]γ1 = −ig sin θγ23Pγ1 (370)

For (311) to be true, it must be fulfilled that detΘ = 0 for all r. We have

detΘ =

[
1− 2gH −

(
M2 − 2gHMr

)
Z2

]
×

[
1 + 2gH −

(
M2 + 2gHMr

)
Z2

]
(371)

so

1± 2gH − M2

Z2
= 0 and gHM = 0 (372)

This leads to 3 cases that can be compatible with supersymmetry.

g = 0 , Z2 =M2 (373)

H = 0 , Q2 =M2 (374)

M = 0 , H = ± 1

2g
(375)

One thing to note is that, for the solutions where g ̸= 0, the metric function V (r) is always positive

(as we will see in the following sections), meaning that the singularity at the origin is not surrounded

by an horizon, contradicting Penrose’s principle of cosmic censorship.

We are not guaranteed that solving the first integrability condition, namely (311), guarantee a

solution for the Killing spinor equation (303). To address this problem, we must use the original first-

order equation, but taking advantage of the conditions that Θ gives us. Let’s compute the spinor for

each one of the conditions.

5.3 Flat-space extreme Reissner-Nordström solutions

Starting from the case g = 0, Z2 = M2, we are dealing with the ungauged N = 2 theory in flat space.

We have

U =
√
V =

√
1− 2M

r
+
Z2

r2
+ g2r2

∣∣∣∣∣ g=0
M2=Z2

=

√
1− 2M

r
+
M2

r2
= 1− M

r
(376)

then

Θϵ =

[
U +

(
1

r
− 1

M

)
(iγ0Q− iγ123H)

]
ϵ = U

[
1− 1

M
(iγ0Q− iγ123H)

]
ϵ = 0 =⇒

=⇒ i

M
(γ0Q− γ123H) ϵ = ϵ =⇒ Hγ123ϵ = (γ0Q+ iM) ϵ

(377)
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The Killing spinor equations are

∇̂tϵ =
[
∂t −

1

2
U ′Uγ01 +

i

2

(
Q

r2
γ01 +

H

r2
γ23
)
γt

]
ϵ = 0 =⇒

=⇒ ∂tϵ =

1
2
U ′Uγ01 − i

2r2
(
Qγ01 +Hγ23

)︸ ︷︷ ︸
χ

Uγ0

 ϵ (378)

∇̂rϵ = ∂rϵ+
iU−1

2r2
χγ1︸ ︷︷ ︸

−A(r)

ϵ = 0⇒ ∂rϵ = A(r)ϵ
(379)

∇̂θϵ = 0⇒ ∂θϵ =

[
1

2
Uγ12 − i

2r
χγ2

]
ϵ = B(r)ϵ = 0 (380)

∇̂ϕϵ = ∂ϕϵ−
1

2

(
U sin θγ13 + cos θγ23

)
ϵ+

i

2r
sin θχγ3ϵ = 0 =⇒

=⇒ ∂ϕϵ =

[
1

2

(
U sin θγ13 + cos θγ23

)
− i

2r
sin θχγ3

]
ϵ = H(r, θ)ϵ

(381)

If we use the relation (377), from the time direction we get a trivial equation

∂tϵ =
1

2
U

[
M

r2
γ01 − i

r2
χγ0︸︷︷︸

γ01χ=γ01 M
i

]
ϵ = 0 (382)

so our spinor doesn’t depend on time.

Assuming that we can decompose our spinor as

ϵ(r, θ, ϕ) = f(r)M1(θ)M2(ϕ)ϵ0 (383)

where the M’s are exponential matrices and ϵ0 is a constant spinor. It’s convenient to define ϵ̃ =

M1(θ)M2(ϕ)ϵ0. For the r direction, we have that

∂rϵ = ∂rf(r)ϵ̃ = A(r)f(r)ϵ̃ =⇒ ∂rf(r)

f(r)
= ∂r(ln f(r)) = A(r) =⇒

=⇒ ln f =

∫
A(r)dr = − iχ

2
γ1

∫
1

r(r −M)
=
−iχγ1

2
·
ln
(
1− M

r

)
M

=⇒

=⇒ f(r) = exp

(
− iχγ1

2M
ln

(
1− M

r

)) (384)

but

χγ1 = (Qγ01γ1︸ ︷︷ ︸
γ0

+H γ23γ1︸ ︷︷ ︸
γ123

) = Qγ0 +Hγ123
(377)
= Qγ0 −Qγ0 + iM = iM (385)

f(r) = exp

[
1

2
ln

(
1− M

r

)]
=

√
1− M

r
=
√
U = V (r) (386)

For the θ direction

∂θϵ = f(r)∂θ ϵ̃ = B(r)f(r)ϵ̃⇒ ∂θ ϵ̃ = B(r)ϵ̃⇒ ϵ̃ ∝ exp(B(r)θ) (387)

which has to be theM1(θ) part. Using the projector

γ21 × (377) =⇒ γ21 × [Hγ123ϵ =
(
−Qγ0 + iM

)
ϵ] =⇒ Hγ3ϵ = (−Qγ21γ0︸ ︷︷ ︸

γ021=−γ201

+iMγ21)ϵ
(388)
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χγ2 = (Qγ01γ2︸ ︷︷ ︸
γ201

+H γ23γ2︸ ︷︷ ︸
−γ3

) = Qγ201 −Hγ3 (388)
= −iMγ21 = iMγ12 (389)

and B(r) reduces to

B(r) =

(
1

2
U − i

2r
iM

)
γ12 =

(
1

2
− M

2r
+
M

2r

)
γ12 =

1

2
γ12 (390)

so

M1(θ) = exp

(
1

2
γ12θ

)
(391)

Now, for the ϕ part

∂ϕϵ = f(r)M1(θ)∂ϕϵ̂ = H(r, θ)f(r)M1(θ)ϵ̂ (392)

where ϵ̂ =M2(ϕ)ϵ0. Therefore

∂ϕϵ̂ =M−1
1 (θ)H(r, θ)M1(θ)ϵ̂ (393)

Working a little bit on H(r, θ)

γ31 × (377) =⇒ H γ31γ123︸ ︷︷ ︸
−γ2

ϵ = γ31
(
−Qγ0 + iM

)
ϵ =⇒ Hγ2ϵ = (Qγ031 − iMγ31)ϵ

(394)

χγ3 = (Qγ01γ3︸ ︷︷ ︸
γ301=−γ031

+H γ23γ3︸ ︷︷ ︸
γ2

) = −Qγ031 +Hγ2
(394)
= −iMγ31 = iMγ13 (395)

so

H(r, θ) =

[
1

2

(
U sin θγ13 + cos θγ23

)
− i

2r
sin θ ·

(
iMγ13

)]
=

=
1

2
sin θγ13

(
U +

M

r

)
+

1

2
cos θγ23 =

1

2

(
sin θγ13 + cos θγ23

)
= H(θ)

(396)

It seems that H(θ) can not be further simplified, supposing a problem to our computations since it

disables us to factorise the spinor into variable independent parts.

To overcome this, we can use the properties of an exponential of the type eαX , where α is a variable

and X is a matrix obeying the property X2 = −1. Then

X2 = −1 ; X3 = −X ; X4 = 1 ; X5 = X (397)

so

eαX =

∞∑
n=0

αnXn

n!
= 1+ αX +

α2

2!
X2 +

α3

3!
X3 +

α4

4!
X4 +

α5

5!
X5 + · · · =

= 1

(
1− α2

2!
+
α4

4!
− · · ·

)
+X

(
α− α3

3!
+
α5

5!
− · · ·

)
= 1 cosα+X sinα

(398)

obtaining

H(θ) =
1

2
γ23

(
cos θ − sin θγ23γ13

)
=

1

2
γ23

(
cos θ − sin θγ12

)
=

1

2
γ23e−γ

12θ (399)

and

∂ϕϵ̂ =M−1
1 (θ)H(θ)M1(θ)ϵ̂ = e−

1
2γ

12θ 1

2
γ23e−γ

12θe
1
2γ

12θ ϵ̂ (400)

Let’s try to moveM−1
1 (θ) to the right of H(θ). We have

M−1
1 (θ)γ23 =

∞∑
n=0

(−1)nθn

2nn!
(γ12)nγ23

(402)
= γ23

∞∑
n=0

(−1)2nθn

2nn!
(γ12)n = γ23e

1
2γ

12θ = γ23M1(θ) (401)
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where we’ve used the property

(γ12)nγ23 = (γ12)n−1 γ12γ23︸ ︷︷ ︸
γ23(−γ23γ12γ23)=−γ23γ12

= −(γ12)n−1γ23γ12 = n-1 more times = (−1)nγ23(γ12)n (402)

Then

∂ϕϵ̂ =
1

2
γ23e

1
2γ

12θe−γ
12θe

1
2γ

12θ ϵ̂ =
1

2
γ23ϵ̂ =⇒ ϵ̂ ∝ exp

(
1

2
γ23ϕ

)
=M2(ϕ) (403)

To finish, let’s see what form ϵ0 has (maybe it’s not trivial). The spinor we’ve found so far must

satisfy the (322) projector condition

Θϵ = 0 =⇒

C︷ ︸︸ ︷
i

M
(γ0Q− γ123H) f(r)M1M2ϵ0 = f(r)M1M2ϵ0 (404)

Does C conmute withM1 andM2 ?

C ∝ γ0Q+γ123H =⇒


CM1 ∝ γ0γ12 + γ123γ12 = γ012 + γ312γ12 = γ12γ0 + γ3 γ12γ12︸ ︷︷ ︸

−1

= γ12(γ0 + γ123)

CM2 ∝ γ0γ23 + γ123γ23 = γ23γ0 − γ1 = γ23(γ0 + γ23γ1︸ ︷︷ ︸
γ123

)

(405)

so we end up with

Cϵ = fM1M2Cϵ0 = fM1M2ϵ0 =⇒ Cϵ0 = ϵ0 (406)

The final spinor in full generality is

ϵ(r, θ, ϕ) = f(r)M1(θ)M2(ϕ)Cϵ0 =
√
U(r) exp

(
1

2
γ12θ

)
exp

(
1

2
γ23ϕ

)
Cϵ0 (407)

which provides an explicit construction of the Killing spinors for a general (flat-space) extreme RN

black hole, of where because Cϵ0 = ϵ0 imply that half of the components of ϵ0 are projected out so

supersymmetry is halved.

5.4 Electric AdS extreme Reissner-Nordström solutions

Second case, H = 0, Q2 =M2. Then Z2 = Q2 =M2, and

U(r) =

√
1− 2M

r
+
M2

r2
+ g2r2 =

√(
1− M

r

)2

+ g2r2 (408)

Our Θ operator now becomes

Θϵ =

[
U + grγ1 +

1
r−

1
M =− 1

M (1−M
r )︷ ︸︸ ︷(

1

r
− M

M2

)
iγ0Q

]
ϵ = 0 =⇒ (U + grγ1) ϵ = i

(
1− M

r

)
γ0ϵ (409)

where we’ve assumed Q = M since the Q = −M case can be recast into the actual one by a field

redefinition. We can use the projector to simplify the Killing spinor equations. Starting from the t

direction
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∇̂t = ∂t +
1

2
ωt01γ

01 − igAt +
1

2
gγt +

i

2
F01γ

01γt = ∂t −
U ′U

2
γ01 − igQ

r
+

1

2
gγt +

i

2

Q

r2
γ01Uγ0 =

= ∂t −
U

2

[
U ′γ01 + gγ0 +

iQ

r2
γ1 + 2ig

Q

r
U−1

]
= ∂t − T (r)

(410)

We have

U ′ =
1

2
· 1√
· · ·
·
[
2

(
1− M

r

)
M

r2
+ 2g2r

]
= U−1

[(
1− M

r

)
M

r2
+ g2r

]
=

= U−1

[(
1− M

r

)
M

r2
+

1

r

(
U2 −

(
1− M

r

)2
)]

=

(412)
= U−1

[(
1− M

r

)(
M

r2
− 1

r

(
1− M

r

))
︸ ︷︷ ︸

− 1
r (1−

2M
r )

+
U2

r

]
= −U

−1

r

(
1− M

r

)(
1− 2M

r

)
+
U

r

(411)

since

g2r =

[
U2 −

(
1− M

r

)2
]
1

r
(412)

and from (409) we know

γ01 ×
(
gγ1ϵ = −1

r

[
i

(
1− M

r

)
γ0 + U

]
ϵ

)
=⇒ gγ0ϵ = −1

r

[
i

(
1− M

r

)
γ1 + Uγ01

]
ϵ (413)

γ1 ×
(
gγ1ϵ = −1

r

[
i

(
1− M

r

)
γ0 + U

]
ϵ

)
=⇒ Uγ1ϵ =

[
i

(
1− M

r

)
γ01 − gr

]
ϵ (414)

so T(r) becomes

T (r)

(411)
(413)
=

U

2

[(
−U

−1

r

(
1− M

r

)(
1− 2M

r

)
+
�
��U

r

)
γ01+

+
iM

r2
γ1 +

2iMgU−1

r
− i

r

(
1− M

r

)
γ1 −

�
��U

r
γ01
]

= − 1

2r

(
1− M

r

)(
1− 2M

r

)
γ01 +

iM

r2
Uγ1 +

iMg

r
− iU

2r
γ1

= − 1

2r

(
1− M

r

)(
1− 2M

r

)
γ01 +

iU

2r

(
2M

r
− 1

)
γ1 +

iMg

r

= − 1

2r

(
1− 2M

r

)[(
1− M

r

)
γ01 + iUγ1

]
+
iMg

r

(414)
= − 1

2r

(
1− 2M

r

)[
�������
(
1− M

r

)
γ01 −

�������
(
1− M

r

)
γ01 − irg

]
+
iMg

r

=
ig

2
− igM

2
+
iMg

2
=
ig

2
(415)

so we ended up with

∂tϵ =
ig

2
ϵ (416)
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Now, for the radial part

∇̂r = ∂r +
1

2
gu−1γ1 +

i

2
U−1 Q

r2
γ01γ1︸ ︷︷ ︸
γ0

= ∂r +
1

2
U−1

(
gγ1 +

iQ

r2
γ0
)

= ∂r −R(r) (417)

We have that

(409) =⇒ iMγ0

r2
ϵ =

(
gγ1 +

U

r
+
iγ0

r

)
ϵ (418)

so

R(r) = −1

2
U−1

(
gγ1 +

iMγ0

r2

)
(418)
= −1

2
U−1

(
2gγ1 +

U

r
+
iγ0

r

)
= −1

2
U−1

(
2gγ1 +

iγ0

r

)
− 1

2r
(419)

For the θ direction

∇̂θ = ∂θ −
1

2
Uγ12 +

1

2
grγ2 +

i

2

Q

r
γ01γ2︸ ︷︷ ︸
γ201

= ∂θ −H(θ) (420)

and because

γ2 × (414) =⇒ Uγ12 = −i
(
1− M

r

)
γ201 + grγ2 (421)

we have

H(θ) =

[
1

2
Uγ12 − 1

2
grγ2 − i

2

M

r
γ201

]
=

(421)
=

[
− i
2

(
1− M

r

)
γ201 +

1

2
grγ2 − 1

2
grγ2 − i

2

M

2
γ201

]
= − i

2
γ201 (422)

And for the ϕ component

∇̂ϕ = ∂ϕ− 1

2

(
U sin θγ13 + cos θγ23

)
+

1

2
gr sin θγ3 +

i

2

Q

r
sin θγ01γ3 =

= ∂ϕ −
1

2

(
U sin θγ13 + cos θγ23

)
+

1

2
sin θ

(
gr +

iQγ01

r

)
γ3 = ∂ϕ − F (r, θ) (423)

γ3 × (414) =⇒ Uγ13 = −i
(
1− M

r

)
γ301 + grγ3 (424)

so

F (r, θ) =

[
1

2

(
U sin θγ13 + cos θγ23

)
− 1

2
sin θ

(
gr +

iMγ01

r

)
γ3

]
=

(424)
=

[
1

2
sin θ

(
�
��grγ3 − i

(
1−

�
��M

r

)
γ301

)
+

1

2
cos θγ23 − 1

2
sin θ

(
��gr +

�
�

��iMγ01

r

)
γ3

]
=

=

(
1

2
cos θγ23 − i

2
sin θγ301

)
=

1

2
γ23(cos θ + i sin θ γ23γ301︸ ︷︷ ︸

γ201

) =
1

2
γ23eiγ

201θ = F (θ) (425)

Then, assuming a spinor of the form

ϵ(t, θ, ϕ, r) = τ(t)M1(θ)M2(ϕ)ϱ(r) (426)
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we had, for the t direction

∂tϵ = ∂tτ(t)ϵ̃ =
ig

2
τ(t)ϵ̃ =⇒ τ(t) = exp

(
ig

2
t

)
(427)

for θ

∂θϵ = τ(t)∂θM1(θ)ϵ̂ = −
i

2
γ201τ(t)M1(θ)ϵ̂ =⇒ M1(θ) = exp

(
− i
2
γ012θ

)
(428)

and for ϕ

∂ϕϵ = τ(t)M1(θ)∂ϕM2(ϕ)ϱ(r) = τ(t)F (θ)M1(θ)M2(ϕ)ϱ(r) =⇒

=⇒ ∂ϕM2(ϕ) =M−1
1 (θ)F (θ)M1(θ)M2(ϕ) =

1

2
γ23M1(θ)e

iγ201θM1(θ)M2(ϕ) =
1

2
γ23M2(ϕ) =⇒

=⇒M2(ϕ) = exp

(
1

2
γ23ϕ

)
(429)

You may have noticed that we’ve left the radial component for last, as opposite with the previous

case. That’s not random, since now it is not as simple as before due to the r-dependence projection

constraint. Thus we are going to need a little bit more machinery. We have that

R(r) ∝ γ1 and γ0 (430)

so

RM1 =⇒

γ1γ012 = γ012γ1

γ0γ012 = γ012γ0
(431)

RM2 =⇒

γ1γ23 = γ23γ1

γ0γ23 = γ23γ0
(432)

so R(r) commutes with bothM1 andM2. Therefore

∂rϵ = τ(t)M1M2∂rϱ(r) = τ(t)R(r)M1M2ϱ(r) = τ(t)M1M2R(r)ϱ(r) =⇒

=⇒ ∂rϱ(r) = R(r)ϱ(r)
(433)

Following the appendix of [5] on how to solve the radial equation, if we put Θ as

Θ = U + grγ1 − i
(
1− M

r

)
γ0 = 2U

1

2

(
1 +

gr

U
γ1 −

i

U

(
1− M

r

)
γ0

)
= 2UΠ(r) (434)

which satisfies Πϵ = 0. Identifying

x(r) =
gr

U
; y(r) =

1

U

(
1− M

r

)
(435)

which satisfy the condition

x2 + y2 =
(gr
U

)2
+

(
1− M

r

)2
U2

=
1

U2

( U2︷ ︸︸ ︷
gr2 +

(
1− M

r

)2)
= 1 (436)

and

Γ1 = γ1 ; Γ2 = −iγ0 (437)
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which satisfy the other condition

Γ1Γ2 = −iγ1γ0 = +iγ0γ1 = −Γ2Γ1 (438)

If we combine Πη = 0 and the equation

η′ = (a(r) + b(r)Γ1 + c(r)Γ2) η(r) (439)

we get that

Πη = 0 =⇒ Γ2η = − 1

y(r)
(1 + x(r)Γ1) η (440)

so

η′ =

[
a(r)− c(r)

y(r)︸ ︷︷ ︸
ã(r)

+

(
b(r)− x(r)

y(r)
c(r)

)
︸ ︷︷ ︸

b̃(r)

Γ1

]
η(r) =

(
ã(r) + b̃(r)Γ1

)
η(r) (441)

assuming y(r) ̸= 0. So we can take c(r) = 0 and don’t lose any generality.

A general solution is

η(r) = (u(r) + v(r)Γ2)P (−Γ1) η0 (442)

where

u =

√
1 + x

y
eω ; v = −

√
1− x
y

eω (443)

ω =

∫ r

a (r′) dr′ (444)

and the projector P is defined as

P (Γ) =
1

2
(1 + Γ) (445)

so Γ2 = 1 and P 2 = P . P acting on some spinor is zero if it gives −1 eigenvalue and is equal to the

spinor if it gives the +1 eigenvalue.

Comparing with (439), we identify

∂rϵ = R(r)ϵ =

(
−U−1g︸ ︷︷ ︸
b(r)

γ1−U
−1

2r︸ ︷︷ ︸
c(r)

(−iγ0)−
1

2r︸︷︷︸
a(r)

)
ϵ (446)

and using ã(r)

ã(r) = − 1

2r
− U−1

2r

1

U−1
(
1− M

r

) =
M

2

1

r(r −M)
(447)

to compute ω(r)

ω(r) =

∫ r

ã(r′)dr′ =
M

2
·
ln
(
1− M

r

)
M

= ln

√
1− M

r
= ln

√
Uy (448)

we have

u =

√
1 + x

y

√
Uy︷︸︸︷
ew =

√
(1 + x)U =

√
U + gr (449)

v = −
√

1− x
y

√
Uy = −

√
U − gr (450)
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and finally, using (442)

ϱ(r) =
(√

U + gr +
√
U − gr iγ0

)
P (−γ1)ϵ0 (451)

where all the constants we’ve omitted along the way can be introduced into ϵ0.

One thing to note is that, because we have a projector in the spinor definition, supersymmetry is

again half maximal.

The final spinor form if

ϵ(t, θ, ϕ, r) = exp

(
ig

2
t

)
exp

(
− i
2
γ012θ

)
exp

(
1

2
γ23ϕ

)(√
U + gr +

√
U − gr iγ0

)
P (−γ1)ϵ0 (452)

which provides an explicit construction of the Killing spinors for a general electric AdS extreme Reissner-

Nordström BH.

5.5 Exotic AdS solutions (“cosmic monopoles”)

Last case where M = 0, H = 1
2g (H = − 1

2g it’s equivalent to sending g → −g). (322) can be cast into

the form

Θϵ =

[
2UΠ− 1

gr
γ1P (iγ23)

]
ϵ = 0 (453)

where both

Πϵ = 0 and P (iγ23)ϵ = 0. (454)

with

Πϵ =
1

2

{
1 +

1

U

[(
gr +

1

2gr

)
γ1 − iγ0Q

r

]}
ϵ = 0 (455)

obtaining two conditions this timeΠϵ = 0 =⇒
(
gr + 1

2gr

)
γ1ϵ =

(
iγ0Qr − U

)
ϵ (a)

P (iγ23)ϵ = 0 =⇒ iγ23 ϵ = −ϵ (b)
(456)

Then, (456b) is telling us that the projector P (iγ23) is getting the eigenvalue −1 when acting on ϵ.

The potential becomes

U(r) =

√
1 +

Z2

r2
+ g2r2 =

√(
gr +

1

2gr

)2

+
Q2

r2
(457)

where we clearly see that it doesn’t have a flat-space limit, since H and U(r) blow up when g → 0.

The overall AdS cosmological distance, defined as ∼ 1
g gives us the characteristic scales for size and

magnetic charge. For is usually referred to as a “cosmic monopole”.

using Z2 = Q2 + 1
4g2 . It’s derivative reads

U ′ =
1

2
U−1

[
2

(
gr +

1

2gr

)(
g − 1

2gr2

)
− 2Q2

r3

]
= ξ(r)U−1 (458)

The time equation is

∇̂t = ∂t −
1

2
UU ′γ01 − igQ

r
− 1

2
gUγ0 +

i

2

(
Q

r2
γ01 +

H

r2
γ23
)
Uγ0 (459)

where
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UU ′γ01 = ξ(r)γ01 = γ0ξ(r)γ0 = γ0
[(
gr +

1

2gr

)
·
(
g − 1

2gr2

)
− Q2

r3

]
γ1 =

(456a)
= γ0

(
g − 1

2gr2

)(
iγ0

Q

r
− U

)
− Q2

r3
γ01

(460)

and

γ23γ0ϵ = γ0γ23ϵ = iγ0ϵ (461)

so

∇̂t = ∂t +
igQ

2r
+
�
�
��1

2
gUγ0 − iQ

4gr3
�
�

��
−Uγ

0

4gr2
+
Q2

2r3
γ01 − igQ

r���
��

−1

2
gHγ0 − iQ

2r2
Uγ1 +

�
�

��U

4gr2
γ0 =

(464)
= ∂t −

iQ

4gr3
+
iQ2γ01

2r3
− iQ

2r2
γ1
[
iQ

r
γ0 −

(
gr +

1

2gr

)
γ1
]
− igQ

2r
= ∂t (462)

∂tϵ = 0 =⇒ time independent (463)

We’ve used

(456a) =⇒ Uγ1ϵ =

[
−iγ01Q

r
−
(
gr +

1

2gr

)]
ϵ (464)

For the θ component we will need

(456a) =⇒ Uγ12ϵ =

[
− iγ

012Q

r
+

(
gr +

1

2gr

)
γ2
]
ϵ (465)

∇̂θ = ∂θ −
1

2
Uγ12 +

1

2
grγ2 +

i

2

(
Q

r2
γ01 +

H

r2
γ23
)
rγ2 =

(465)
= ∂θ −

1

2

[
− iγ

012Q

r
+

(
gr +

1

2gr

)
γ2
]
+

1

2
grγ2 +

iQ

2r
γ012 +

1

4gr
γ2 = ∂θ

=⇒ θ independent (466)

and for the ϕ component

∇̂ϕ = ∂ϕ− 1

2

(
U sin θγ13 + cos θγ23

)
+
i

2
cos θ +

1

2
gr sin θγ3 +

i

2

(
Q

r2
γ01 +

H

r2
γ23
)
r sin θγ3 =

(468)
= ∂ϕ −

1

2
cos θ

(
γ23 − i1

)
+
��

����1

2
gr sin θγ3 +������iQ

2r
sin θγ013 +

�
���

��1

4gr
sin θγ3−

(((((((((((((((((

−1

2
sin θ

[
− iQ
r
γ013 +

(
gr +

1

2gr

)
γ3
]

(456b)
= ∂ϕ =⇒ ϕ independent (467)

we’ve used

(456a) =⇒ Uγ13ϵ =

[
− iγ

013Q

r
+

(
gr +

1

2gr

)
γ3
]
ϵ (468)

So our spinor only depends on r. To simplify the radial equation we will need

(456a) =⇒ iγ0Q

2r2
ϵ =

1

2r

[(
gr +

1

2gr

)
γ1 + U

]
ϵ (469)
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so

∇̂r = ∂r +
1

2
gU−1γ1 +

i

2
U−1

(
Q

r2
γ01 +

Q

r2
γ23
)
γ1 =

= ∂r + U−1

(
1

2
gγ1 +

iQ

2r2
γ0 − 1

4gr2
γ1
)

=

(469)
= ∂r + U−1

(
gγ1 +

U

2r

)
= ∂r +

g

U
γ1 +

1

2r
(470)

This has solution

ϵ(r) =

(√
U + gr +

1

2gr
+

√
U − gr − 1

2gr
iγ0
)
P (−γ1)P (−iγ23) ϵ0 (471)

where we’ve absorbed the 1√
Q

factor inside ϵ0. This time as we assumed (485) since in the derivation

we assumed two projections, in the solution we have two projectors action on the constant spinor

meaning that only one complex supercharge remains.

This is the explicit construction of the Killing spinors for a general exotic AdS Reissner-Nordström

BH.

6 Discussion

Among the electrically and magnetically charged Reissner-Nordström solutions of Einstein-Maxwell

theory with a cosmological constant Λ, we have identified a new type, supersymmetric black holes (for

Λ ≤ 0).

An important feature of supersymmetric RN solutions in AdS space is the presence of naked sin-

gularities, violating Penrose’s cosmic censorship hypothesis. In flat space, the naked singularity of

overextreme (Z2 > M2) RN solutions tends to be unstable, losing charge until reaching the extreme

state with an apparent horizon.

To rigorously address the stability of the supersymmetric solutions, one might adapt existing stabil-

ity proofs for black holes, supergravity theories, and anti-de Sitter backgrounds to the current context.

The critical challenge lies in establishing proper boundary conditions at the singularity.

This work have several potential extensions worth exploring. Examining charged configurations

might influence early inflationary models with de Sitter phases, and also cosmological analogues of

black-hole solutions in field theories with scalar fields could be investigated. Finally, the discussed

aspects of Reissner-Nordström solutions might reflect in the structure of certain conformal field theories

that can be interpreted in terms of charged black holes.
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