

Universidad de Oviedo

ESCUELA POLITÉCNICA DE INGENIERÍA DE GIJÓN.

MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

ÁREA DE INGENIERÍA DE LA CONSTRUCCIÓN

ANEXO I: INFORME DEL EQUIPO

D. LINOS SOUTO, Illán TUTOR: D. Álvarez Álvarez, Juan Carlos

FECHA: Junio 2024

Table of Contents

General Arrangement Drawing	1
Deficiencies Summary	2
Nozzle Schedule	3
Nozzle Summary	4
Pressure Summary	5
Revision History	7
Settings Summary	8
Radiography Summary	10
Thickness Summary	11
Weight Summary	12
Hydrostatic Test	13
Corroded Hydrostatic Test	15
Vacuum Summary	16
Foundation Load Summary	17
Liquid Level bounded by Bottom Head	18
Top Head	19
Straight Flange on Top Head	22
Nozzle (A)	36
Nozzle (H)	50
Flange H	60
Top platform	72
Shell V1	73
MESH BLANKET	88
Nozzle (B)	89
Nozzle (C)	101
Nozzle (E1)	110
Nozzle (E2)	120
Nozzle (F1)	130
Nozzle (F2)	140
Nozzle (G)	150
Nozzle (K1)	160

Nozzle (K2)	170
Nozzle (L1)	180
Nozzle (L2)	190
Straight Flange on Bottom Head	200
Bottom Head	214
Nozzle (D)	217
B16.9 Elbow D	227
Nozzle Pipe (D)	230
Support Skirt	233
Skirt Base Ring	240
Skirt opening (SA1)	251
Seismic Code	258
Wind Code	260
DEMISTER	262
EXTRA WEIGHT	263
EXTRA WEIGHT PARA LIFTING	264
Extra weight para igualar pesos	265
Platform clips weight	266
Shell Insulation ring	267
Skirt insulation ring	268
TRUNNION EXTRA WEIGHT	269
Tailing Lugs weight	270
Top head platform snow load	271

Deficiencies Summary

No deficiencies found.

Warnings Summary

Warnings for <u>B16.9 Elbow D</u> Table 1A, note W14: These S values do not include a weld factor. For Section VIII, Division 1, and Section XII applications using welds made without filler metal, the tabulated tensile stress values shall be multiplied by 0.85. For welds made with filler metal, consult UW-12 for Section VIII, Division 1, or TW-130.4 for Section XII, as applicable. (warning)

Warnings for Flange H

TEMA Table D-5: Current bolt circle (120,6 mm) does not provide sufficient wrench clearance, 125,57 mm recommended. (warning) TEMA Table D-5: The actual edge distance (15,7 mm) is less than the minimum edge distance (19,05 mm). A flange outer diameter of 158,7 mm is recommended. (warning)

Warnings for <u>Nozzle (A)</u> The attached ASME B16.5 flange limits the nozzle MAWP. (warning) The attached ASME B16.5 flange limits the nozzle MAP. (warning) The design of this nozzle does not include mill undertolerance because a minimum (as built) thickness was entered. (warning)

Warnings for Nozzle (B)

Gasket dimensions should be specified when external load pressure reduction consideration is active. (warning) The attached ASME B16.5 flange limits the nozzle MAWP. (warning)

Warnings for Nozzle (C)

The attached ASME B16.5 flange limits the nozzle MAWP. (warning)

Warnings for Nozzle (D)

The design of this nozzle does not include mill undertolerance because a minimum (as built) thickness was entered. (warning)

Warnings for Nozzle (G)

The attached ASME B16.5 flange limits the nozzle MAWP. (warning) The attached ASME B16.5 flange limits the nozzle MAP. (warning)

Warnings for Nozzle (H)

The design of this nozzle does not include mill undertolerance because a minimum (as built) thickness was entered. (warning)

Warnings for Nozzle (K2)

The attached ASME B16.5 flange limits the nozzle MAWP. (warning) The attached ASME B16.5 flange limits the nozzle MAP. (warning)

Warnings for <u>Nozzle (L2)</u> Gasket dimensions should be specified when external load pressure reduction consideration is active. (warning)

Warnings for Nozzle Pipe (D)

The design of this cylinder does not include mill undertolerance because a minimum (as built) thickness was entered. (warning)

Warnings for Support Skirt

The Skirt/Legs/Saddles Stress Increase factor is 1,00 (Set Mode Options dialog on the Calculation page). AISC paragraph A5 permits a stress increase factor of 1/3. For the specified building code the recommended stress increase factor is 1.30. (warning)

Warnings for Vessel

This vessel has one or more weld neck flanges with para UG-44(b) option active. The analysis therein relies on certain assumptions about the flange in question: The assembly bolt load must comply with ASME PCC-1, Appendix O; The method was developed using a spiral wound gasket; The allowable factor should potentially be reduced for a sustained load where the bolted flange joint operates at a temperature causing significant creep/relaxation, usually above 450 degF (232 degC) metal temperature. (warning)

ASME B16.5 / B16.47 Flange Warnings Summary

Flange	Applicable Warnings
Nozzle (A)	1
Nozzle (C)	1
Nozzle (B)	1
Nozzle (G)	1
Nozzle (K2)	1
Right end of Nozzle Pipe (D)	1, 2

No. 1

Warning For Class 150 flanges, ASME B16.5 para. 5.4.3 recommends gaskets to be in accordance with Nonmandatory Appendix B, Table B1, Group No. I.

The nozzle external loads are not considered in the flange pressure rating of piping flanges. To comply with Interpretation VIII-1-16-2 85 user defined loads should be applied to the flange.

Nozzle Schedule

	Specifications										
Nozzle mark	Identifier	Size	Materials			Normalized	Fine Grain	Flange	Blind		
A	Nozzle	NPS 10 Sch 80 DN 250	Nozzle	SA-333 6 Wld & smls pipe	No	Yes	Yes	NPS 10 Class 150 WN A350 LF2 Cl.1 N	No		
B	Nozzle	355,18 OD x 26	Nozzle	SA-266 1	No	Yes	Yes	NPS 12 Class 150 WN A350 LF2 Cl.1 N	No		
<u>c</u>	Nozzle	710,2 OD x 60	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 24 Class 150 WN A350 LF2 Cl.1 N	NPS 24 Class 150 A350 LF2 Cl.1 N		
	Nozzle	NPS 2 Sch 80 (XS) DN 50	Nozzle	SA-333 6 Wld & smls pipe	No	Yes	Yes	N/A	No		
D	<u>B16.9 Elbow</u> <u>D</u>	NPS 2 Sch 80 (XS) DN 50	B16.9 Elbow	SA-420 WPL6	No	Yes	Yes	N/A	No		
	<u>Nozzle Pipe</u> <u>(D)</u>	NPS 2 Sch 80 (XS) DN 50	Nozzle Pipe	SA-333 6 Wld & smls pipe	No	Yes	Yes	NPS 2 Class 150 WN A350 LF2 Cl.1 N	No		
<u>E1</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		
<u>E2</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	No Yes Yes		NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		
<u>F1</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		
<u>F2</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		
G	Nozzle	77,72 OD x 13,46	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 150 LWN A350 LF2 Cl.1 N	No		
Ħ	Nozzle	NPS 2 Sch 80 (XS) DN 50	Nozzle	SA-333 6 Wld & smls pipe	No	Yes	Yes	App 2 Weld Neck Integral SA-350 LF2 CI 1	No		
<u>K1</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		
<u>K2</u>	Nozzle	77,72 OD x 13,46	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 150 LWN A350 LF2 Cl.1 N	No		
<u>L1</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		
<u>L2</u>	Nozzle	84,07 OD x 16,64	Nozzle	SA-350 LF2 CI 1	No	Yes	Yes	NPS 2 Class 300 LWN A350 LF2 Cl.1 N	No		

Nozzle Summary

Dimensions													
Nozzle	OD	tn	Req t _n	A1? A2?		A ₂ ?		Shell		Reinfor Pa		Corr	A _a /A _r
mark	(mm)	(mm)	(mm)	~1.	~ <u>2</u> .	Nom t (mm)	Design t (mm)	User t (mm)	Width (mm)	t _{pad} (mm)	(mm)	(%)	
<u>A</u>	273,05	15,09	9,71	Yes	Yes	24*	18,82		N/A	N/A	1,6	100,0	
B	355,18	26	9,93	Yes	Yes	21	14,75		N/A	N/A	1,6	100,0	
<u>C</u>	710,2	60	7,67	Yes	Yes	21	20,14		N/A	N/A	1,6	100,0	
D	60,33	5,54	5,02	Yes	Yes	24*	N/A		N/A	N/A	1,6	Exempt	
<u>E1</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>E2</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>F1</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>F2</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>G</u>	77,72	13,46	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
Ħ	60,33	5,54	5,02	Yes	Yes	24*	N/A		N/A	N/A	1,6	Exempt	
<u>K1</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>K2</u>	77,72	13,46	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>L1</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
<u>L2</u>	84,07	16,64	6,4	Yes	Yes	21	N/A		N/A	N/A	1,6	Exempt	
*Head n	ninimum	thickne	ss after	formi	ng								

	Definitions							
tn	Nozzle thickness							
Req t _n	ozzle thickness required per UG-45/UG-16							
Nom t	Vessel wall thickness							
Design t	Required vessel wall thickness due to pressure + corrosion allowance per UG-37							
User t	Local vessel wall thickness (near opening)							
A _a	Area available per UG-37, governing condition							
A _r	Area required per UG-37, governing condition							
Corr	Corrosion allowance on nozzle wall							

Pressure Summary

	Component Summary								
ldentifier	P Design (bar)	T Design (°C)	MAWP (bar)	MAP (bar)	MAEP (bar)	T _e external (°C)	MDMT (°C)	MDMT Exemption	Impact Tested
Top Head	15,5	121	29,3	31,38	13,66	23	-73,6	Note 1	Yes
Straight Flange on Top Head	15,5	121	28,94	30,97	15,58	23	-73,3	Note 2	Yes
<u>Shell V1</u>	15,5	121	25,07	27,15	12,77	23	-66,6	Note 3	Yes
Straight Flange on Bottom Head	15,5	121	28,89	30,97	15,58	23	-73,2	Note 5	Yes
Bottom Head	15,5	121	29,2	31,38	13,66	23	-73,4	Note 4	Yes
Nozzle (A)	15,5	121	16,9	19,6	9,76	23	-56,6	Note 6	No
Nozzle (B)	15,5	121	16,9	19,16	11,15	23	-48	Note 7	No
Nozzle (C)	15,5	121	16,9	18,62	11,92	23	-56,6	Note 6	No
Nozzle (D)	15,5	121	26,07	34,86	13,66	23	-105	Note 8	No
B16.9 Elbow D	15,5	121	132,53	202,56	81,5	23	-105	Note 9	No
Nozzle Pipe (D)	15,5	121	16,78	19,6	103,05	23	-56,2	Note 10, 11	No
Nozzle (E1)	15,5	121	25,07	27,15	12,77	23	-104	Note 12	No
Nozzle (E2)	15,5	121	25,11	27,15	12,77	23	-104	Note 13	No
Nozzle (F1)	15,5	121	25,11	27,15	12,77	23	-104	Note 13	No
Nozzle (F2)	15,5	121	25,11	27,15	12,77	23	-104	Note 13	No
Nozzle (G)	15,5	121	15,9	19,6	12,77	23	-53,7	Note 14	No
Nozzle (H)	15,5	121	25,67	34,86	13,66	23	-105	Note 8	No
Flange H	15,5	121	43,33	42,8	514,56	23	-49	Note 15	No
Flange H - Flange Hub	15,5	121	273,79	273,79	148,27	23	-105	Note 16	No
Nozzle (K1)	15,5	121	25,08	27,15	12,77	23	-104	Note 17	No
Nozzle (K2)	15,5	121	15,93	19,6	12,77	23	-53,8	Note 18	No
Nozzle (L1)	15,5	121	25,08	27,15	12,77	23	-104	Note 17	No
Nozzle (L2)	15,5	121	25,11	27,15	12,77	23	-99,3	Note 19	No

Chamber Summary						
Design MDMT	-15 °C					
Rated MDMT	-48 °C @ 15,9 bar					
MAWP hot & corroded	15,9 bar @ 121 °C					
MAP cold & new	18,62 bar @ 7 °C					
МАЕР	9,76 bar @ 23 °C					

	Notes for MDMT Rating	
Note #	Exemption	Details
1.	Material is impact tested per UG-84 to -46°C.	UCS-66(i) reduction of 27,6°C applied (ratio = 0,5421).
2.	Material is impact tested per UG-84 to -46°C.	UCS-66(i) reduction of 27,3°C applied (ratio = 0,5458).
3.	Material is impact tested per UG-84 to -46°C.	UCS-66(i) reduction of 20,6°C applied (ratio = 0,632).
4.	Material is impact tested per UG-84 to -46°C.	UCS-66(i) reduction of 27,4°C applied (ratio = 0,5453).
5.	Material is impact tested per UG-84 to -46°C.	UCS-66(i) reduction of 27,2°C applied (ratio = 0,5475).
6.	Flange rating governs: Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	UCS-66(i) reduction of 10,6°C applied (ratio = 0,8112).
7.	Nozzle impact test exemption temperature from Fig UCS-66M Curve C = -23,75°C 17°C MDMT reduction per UCS-68(c) applies. Fig UCS-66.1M MDMT reduction = 20,7°C, (coincident ratio = 0,6302) Rated MDMT of -61,45°C is limited to -48°C by UCS-66(b)(2)	UCS-66 governing thickness = 21 mm.
8.	Nozzle is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe).	
9.	Material is impact tested per material specification to -45°C.	Stress ratio = 0,1255 ≤ 0,35, MDMT per UCS-66(b)(3) = -105°C.
10.	Material is impact test exempt per UCS-66(d) (NPS 4 or smaller pipe)	
11.	Flange rating governs: Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 10,2°C applied (ratio = 0,8175).	
12.	LWN rated MDMT per UCS-66(c)(1) Flange rated MDMT = -105°C Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	Stress ratio = 0,3118 ≤ 0,35, MDMT per UCS-66(b)(3) = -105°C.
13.	LWN rated MDMT per UCS-66(c)(1) Flange rated MDMT = -105°C Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	Stress ratio = 0,3112 ≤ 0,35, MDMT per UCS-66(b)(3) = -105°C.
14.	LWN rated MDMT per UCS-66(c)(1) Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	UCS-66(i) reduction of 7,7°C applied (ratio = 0,8623).
15.	Flange is impact tested per material specification to -46°C with an additional 3°C reduction per UCS-66(g) UCS-66 governing thickness = 5,54 mm	Bolts rated MDMT per Fig UCS-66 note (c) = -104°C
16.	Material is impact tested per material specification to -46°C.	Stress ratio = 0,0624 ≤ 0,35, MDMT per UCS-66(b)(3) = -105°C.
17.	LWN rated MDMT per UCS-66(c)(1) Flange rated MDMT = -105°C Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	Stress ratio = 0,3117 ≤ 0,35, MDMT per UCS-66(b)(3) = -105°C.
18.	LWN rated MDMT per UCS-66(c)(1) Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	UCS-66(i) reduction of 7,8°C applied (ratio = 0,8607).
19.	LWN rated MDMT per UCS-66(c)(1) Bolts rated MDMT per Fig UCS-66 note (c) = -104°C Flange is impact tested per material specification to -46°C.	UCS-66(i) reduction of 53,3°C applied (ratio = 0,3959).

Revision History

	Revisions									
No	No. Date Operator Notes									
0	3/25/2022	marina.diaz	New vessel created ASME Section VIII Division 1 [COMPRESS 2022 Build 8200]							

Settings Summary

COMPRESS 2024 Build 8400	
ASME Section VIII Division 1, 2021 Edition Metric	MICO
Units Datum Line Location	MKS
	-50,00 mm from bottom seam
Vessel Design Mode	Rating Mode (Analysis)
Minimum thickness	1,5 mm per UG-16(b)
Design for cold shut down only	No
Design for lethal service (full radiography required)	No
Design nozzles for	Chamber MAWP
Corrosion weight loss	100% of theoretical loss
UG-23 Stress Increase	1,20
Skirt/legs stress increase	1,0
Minimum nozzle projection	150 mm
Juncture calculations for α > 30 only	Yes
Preheat P-No 1 Materials > 1,25" and <= 1,50" thick	Yes
UG-37(a) shell tr calculation considers longitudinal stress	No
Cylindrical shells made from pipe are entered as minimum thickness	No
Nozzles made from pipe are entered as minimum thickness	Yes
ASME B16.9 fittings are entered as minimum thickness	No
Butt welds	Tapered per Figure UCS-66.3(a)
Disallow Appendix 1-5, 1-8 calculations under 15 psi	No
Hydro/Pneumatic Test	
Shop test at user defined pressure	24,21 bar
Test liquid specific gravity	1,00
Field test at user defined pressure	24,21 bar
Wind load present @ field	25% of design
Maximum stress during test	95% of yield
Required Marking - UG-116	
UG-116(e) Radiography	RT1
UG-116(f) Postweld heat treatment	н
Code Cases\Interpretations	
Use Appendix 46	No
Use UG-44(b)	Yes
Use Code Case 3035	No
Apply interpretation VIII-1-83-66	No
Apply interpretation VIII-1-86-175	Yes
Apply interpretation VIII-1-01-37	Yes
Apply interpretation VIII-1-01-57	No
Apply interpretation VIII-1-07-50	No
Apply interpretation VIII-1-16-85	Yes
No UCS-66.1 MDMT reduction	No
No UCS-68(c) MDMT reduction	No
Disallow UG-20(f) exemptions	Yes
UG-22 Loadings	[
UG-22(a) Internal or External Design Pressure	Yes
UG-22(b) Weight of the vessel and normal contents under operating or test conditions	Yes
UG-22(c) Superimposed static reactions from weight of attached equipment (external loads)	Yes
UG-22(d)(2) Vessel supports such as lugs, rings, skirts, saddles and legs	Yes
UG-22(f) Wind reactions	Yes
UG-22(f) Seismic reactions	Yes
UG-22(j) Test pressure and coincident static head acting during the test:	Yes

Note: UG-22(b),(c) and (f) loads only considered when supports are present.

Note 2: UG-22(d)(1),(e),(f)-snow,(g),(h),(i) are not considered. If these loads are present, additional calculations must be performed.

License Information					
Company Name	Idesa				
License	Commercial				
License Key ID	24316				
Support Expires	June 07, 2025				
Account Number	411628768218139				

Radiography Summary

UG-116 Radiography								
	Lon	gitudinal Seam	Тор С	ircumferential Seam	Bottom	Circumferential Seam		
Component	Category (Fig UW- 3)	Radiography / Joint Type	Category (Fig UW- 3)	Radiography / Joint Type	Category (Fig UW- 3)	Radiography / Joint Type	Mark	
Top Head	A	Full UW-11(a) / Type 1	N/A	N/A	в	Full UW-11(a) / Type 1	RT1	
Shell V1	A	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	RT1	
Bottom Head	A	Full UW-11(a) / Type 1	в	Full UW-11(a) / Type 1	N/A	N/A	RT1	
Nozzle	Longitudinal Sea		Nozzle to	Vessel Circumferential Seam	Nozzle fro	ee end Circumferential Seam		
Nozzle (A)	N/A	Seamless No RT	D	N/A / Type 7	С	UW-11(a)(4) exempt / Type 1	N/A	
Nozzle (H)	N/A	Seamless No RT	D	N/A / Type 7	с	UW-11(a)(4) exempt / Type 1	N/A	
Nozzle (C)	A	Full UW-11(a) / Type 1	D	N/A / Type 7	с	Full UW-11(a) / Type 1	RT1	
Nozzle (B)	A	Full UW-11(a) / Type 1	D	N/A / Type 7	С	Full UW-11(a) / Type 1	RT1	
Nozzle (E1)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (E2)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (F1)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (G)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (K2)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (F2)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (K1)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (L1)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (L2)	N/A	Seamless No RT	D	N/A / Type 7	С	N/A	N/A	
Nozzle (D)	N/A	Seamless No RT	D	N/A / Type 7	В	UW-11(a)(4) exempt / Type 1	N/A	
B16.9 Elbow D	A	Full UW-11(a) / Type 1	в	UW-11(a)(4) exempt / Type 1	В	UW-11(a)(4) exempt / Type 1	RT1	
Nozzle Pipe (D)	N/A	Seamless No RT	в	UW-11(a)(4) exempt / Type 1	с	UW-11(a)(4) exempt / Type 1	N/A	
Nozzle Flange	Lon	igitudinal Seam		Flange Face		ozzle to Flange umferential Seam		
ASME B16.5/16.47 flange attached to Nozzle (A)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A	
Flange H	N/A	Seamless No RT	N/A	N/A / Gasketed	С	UW-11(a)(4) exempt / Type 1	N/A	
ASME B16.5/16.47 flange attached to Nozzle (C)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	Full UW-11(a) / Type 1	RT1	
ASME B16.5/16.47 flange attached to Nozzle (B)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	Full UW-11(a) / Type 1	RT1	
ASME B16.5/16.47 flange attached to Nozzle (E1)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (E2)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (F1)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (G)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (K2)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (F2)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (K1)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (L1)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to Nozzle (L2)	N/A	Seamless No RT	N/A	N/A / Gasketed	С	N/A	N/A	
ASME B16.5/16.47 flange attached to right end of Nozzle Pipe (D)	N/A	Seamless No RT	N/A	N/A / Gasketed	с	UW-11(a)(4) exempt / Type 1	N/A	
UG-116(e) Required Marking: RT1								

Thickness Summary

	Component Data								
Component Identifier	Material	Diameter (mm)	Length (mm)	Nominal t (mm)	Design t (mm)	Total Corrosion (mm)	Joint E	Load	
<u>Top Head</u>	SA-516 60	1.800 ID	474	24*	13,44	1,6	1,00	Internal	
Straight Flange on Top Head	SA-516 60	1.800 ID	50	24	13,52	1,6	1,00	Internal	
<u>Shell V1</u>	SA-516 60	1.800 ID	1.700	21	13,55	1,6	1,00	Internal	
Straight Flange on Bottom Head	SA-516 60	1.800 ID	50	24	13,56	1,6	1,00	Internal	
Bottom Head	SA-516 60	1.800 ID	474	24*	13,51	1,6	1,00	Internal	
Support Skirt	SA-516 60	1.814 ID	1.070	10	1,9	1,6	0,55	Wind	
*Head minimum thickness after fo	rming								

	Definitions						
Nominal t	Vessel wall nominal thickness						
Design t	Required vessel thickness due to governing loading + corrosion						
Joint E	Longitudinal seam joint efficiency						
	Load						
Internal	Circumferential stress due to internal pressure governs						
External	External pressure governs						
Wind	Combined longitudinal stress of pressure + weight + wind governs						
Seismic	Combined longitudinal stress of pressure + weight + seismic governs						

Weight Summary

	Weight (kg) Contributed by Vessel Elements										
Component	Metal	Metal	Insulation	Insulation	Ilation Piping Operating Liquid Test Liquid		Operating Liquid		Liquid	Surface Area	
Component	New*	Corroded	insulation	Supports	Lining	+ Liquid	New	Corroded	New	Corroded	m ²
Top Head	767,6	714,9	0	0	87,9	0	0	0	885,3	885,4	4,37
Shell V1	1.510,4	1.394	82,1	0	230,3	0	1.161,3	1.161,4	4.346,2	4.346,8	9,29
Bottom Head	778,6	725,1	34,6	0	87,9	0	890,9	890,9	880,8	880,8	4,42
Support Skirt	471,3	395,5	113,9	0	110,5	0	0	0	0	0	12,33
Skirt Base Ring	127,5	127,5	0	0	0	0	0	0	0	0	1,87
TOTAL:	3.655,3	3.357	230,7	0	516,5	0	2.052,2	2.052,4	6.112,3	6.113	32,28
*Sholls with atta	abad no-		voight roduo	od hv motor	ial aut a	t for one					

*Shells with attached nozzles have weight reduced by material cut out for opening.

	Weight (kg) Contributed by Attachments										
Component	Bod	y Flanges		zzles & inges**	Packed Ladders & Beds Platforms*		Trays	Tray Supports	Rings & Clips	Vertical Loads	Surface Area
	New	Corroded	New	Corroded	Beds	Platforms		Capports	Clips	Louus	m ²
Top Head	0	0	47,3	45	0	1.002,6	0	0	0	1.324*	0,42
Shell V1	0	0	671,9	666,1	0	76,5	0	0	0	1.312,4*	2,71
Bottom Head	0	0	12,9	10	0	54,9	0	0	0	0	0,27
Support Skirt	0	0	40,8	34,2	0	0	0	0	0	53	0
TOTAL:	0	0	772,9	755,2	0	1.134	0	0	0	2.689,4*	3,39

*** This number includes vertical loads which are not present in all conditions.
* Platforms and ladders are not included in surface area.
** Nozzle weight includes lining.

Vessel Totals								
	New	Corroded						
Operating Weight (kg)	10.456	10.140						
Empty Weight (kg)	8.404	8.088						
Test Weight (kg)	13.245	12.930						
Surface Area (m ²)	35,68	-						
Capacity** (liters)	6.056	6.056						
**The vessel capacity does not include volume	e of nozzle, piping	or other attachments.						

Vessel Lift Condition	
Vessel Lift Weight, New (kg)	6.591
Center of Gravity from Datum (mm)	665,72

Hydrostatic Test

Horizontal shop hydrostatic test based on user defined pressure

Gauge pressure at 7°C =24,21 bar

	Horizon	tal shop hydrost	atic test		
Identifier	Local test pressure (bar)	Test liquid static head (bar)	Stress during test (kg _f /cm ²)	Allowable test stress (kg _f /cm ²)	Stress excessive?
Top Head	24,39	0,19	839,546	2.140,894	No
Straight Flange on Top Head	24,39	0,19	945,213	2.140,894	No
Shell V1	24,39	0,19	1.078,481	2.140,894	No
Straight Flange on Bottom Head	24,39	0,19	945,213	2.140,894	No
Bottom Head	24,39	0,19	839,546	2.140,894	No
Flange H - Flange Hub	24,31	0,1	122,046	2.402,452	No
Flange H	24,31	0,1	461,908	2.402,452	No
B16.9 Elbow D	24,31	0,1	138,012	2.334,64	No
Nozzle (A)	24,32	0,11	1.558,605	3.211,341	No
Nozzle (B)	24,32	0,12	1.909,161	3.211,341	No
Nozzle (C)	24,36	0,15	1.961,694	3.211,341	No
Nozzle (D)	24,31	0,1	1.467,305	3.211,341	No
Nozzle (E1)	24,23	0,02	1.262,678	3.211,341	No
Nozzle (E2)	24,23	0,02	1.262,678	3.211,341	No
Nozzle (F1)	24,27	0,06	1.264,816	3.211,341	No
Nozzle (F2)	24,39	0,18	1.270,84	3.211,341	No
Nozzle (G)	24,39	0,18	1.406,704	3.211,341	No
Nozzle (H)	24,31	0,1	1.496,122	3.211,341	No
Nozzle (K1)	24,24	0,04	1.263,452	3.211,341	No
Nozzle (K2)	24,24	0,04	1.398,527	3.211,341	No
Nozzle (L1)	24,41	0,21	1.272,268	3.211,341	No
Nozzle (L2)	24,41	0,21	1.272,268	3.211,341	No
Nozzle Pipe (D)	24,3	0,09	122,165	2.334,64	No

(1) P_L stresses at nozzle openings have been estimated using the method described in Division 2 Part 4.5.

(2) 1,5*0,95*S_y used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L.
(3) The zero degree angular position is assumed to be up, and the test liquid height is assumed to the top-most flange.
(4) UG-99(I): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

The test temperature of 7 °C is warmer than the minimum recommended temperature of -31 °C so the brittle fracture provision of UG-99(h) has been met.

Vertical field hydrostatic test based on user defined pressure

Gauge pressure at 7°C =24,21 bar

	vertica	I field hydrostat	1	ñ	
Identifier	Local test pressure (bar)	Test liquid static head (bar)	Stress during test (kg _f /cm ²)	Allowable test stress (kg _f /cm ²)	Stress excessive?
Top Head	24,28	0,08	835,759	2.140,894	No
Straight Flange on Top Head	24,28	0,08	940,948	2.140,894	No
Shell V1	24,45	0,25	1.080,98	2.140,894	No
Straight Flange on Bottom Head	24,46	0,25	947,592	2.140,894	No
Bottom Head	24,5	0,29	843,178	2.140,894	No
Flange H - Flange Hub	24,24	0,03	121,694	2.402,452	No
Flange H	24,24	0,03	460,577	2.402,452	No
B16.9 Elbow D	24,53	0,32	139,263	2.334,64	No
Nozzle (A)	24,23	0,03	1.553,131	3.211,341	No
Nozzle (B)	24,38	0,18	1.913,959	3.211,341	No
Nozzle (C)	24,42	0,22	1.967,107	3.211,341	No
Nozzle (D)	24,52	0,31	1.480,016	3.211,341	No
Nozzle (E1)	24,44	0,24	1.273,831	3.211,341	No
Nozzle (E2)	24,37	0,16	1.269,746	3.211,341	No
Nozzle (F1)	24,37	0,16	1.269,746	3.211,341	No
Nozzle (F2)	24,37	0,16	1.269,746	3.211,341	No
Nozzle (G)	24,44	0,23	1.409,732	3.211,341	No
Nozzle (H)	24,24	0,03	1.491,811	3.211,341	No
Nozzle (K1)	24,44	0,23	1.273,576	3.211,341	No
Nozzle (K2)	24,37	0,16	1.405,493	3.211,341	No
Nozzle (L1)	24,44	0,23	1.273,453	3.211,341	No
Nozzle (L2)	24,37	0,16	1.269,746	3.211,341	No
Nozzle Pipe (D)	24,53	0,32	123,324	2.334,64	No

(1) P_L stresses at nozzle openings have been estimated using the method described in Division 2 Part 4.5.

(2) 1,5*0,95*S_y used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L. (3) UG-99(I): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

The test temperature of 7 °C is warmer than the minimum recommended temperature of -31 °C so the brittle fracture provision of UG-99(h) has been met.

Corroded Hydrostatic Test

Vertical field hydrostatic test based on MAWP per UG-99(b)

Gauge pressure at 7°C = $1,3 \cdot MAWP \cdot LSR$

 $=1,\!3\cdot15,\!9\cdot1$

=20,67 bar

		Vertical fie	ld hydrost	atic test			
Identifier	Local test pressure (bar)	Test liquid static head (bar)	UG-99(b) stress ratio	UG-99(b) pressure factor	Stress during test (kg _f /cm ²)	Allowable test stress (kg _f /cm ²)	Stress excessive?
Top Head (1)	20,75	0,08	1	1,30	765,08	2.140,894	No
Straight Flange on Top Head	20,75	0,08	1	1,30	860,624	2.140,894	No
Shell V1	20,92	0,25	1	1,30	1.000,053	2.140,894	No
Straight Flange on Bottom Head	20,92	0,25	1	1,30	867,736	2.140,894	No
Bottom Head	20,96	0,29	1	1,30	773,028	2.140,894	No
Flange H - Flange Hub	20,7	0,03	1	1,30	103,942	2.402,452	No
Flange H	20,7	0,03	1	1,30	390,601	2.402,452	No
B16.9 Elbow D	20,99	0,32	1	1,30	188,065	2.334,64	No
Nozzle (A)	20,7	0,03	1	1,30	1.472,043	3.211,341	No
Nozzle (B)	20,85	0,18	1	1,30	1.797,341	3.211,341	No
Nozzle (C)	20,89	0,22	1	1,30	1.745,838	3.211,341	No
Nozzle (D)	20,98	0,31	1	1,30	1.410,038	3.211,341	No
Nozzle (E1)	20,91	0,24	1	1,30	1.221,594	3.211,341	No
Nozzle (E2)	20,83	0,16	1	1,30	1.217,014	3.211,341	No
Nozzle (F1)	20,83	0,16	1	1,30	1.217,014	3.211,341	No
Nozzle (F2)	20,83	0,16	1	1,30	1.217,014	3.211,341	No
Nozzle (G)	20,9	0,23	1	1,30	1.356,499	3.211,341	No
Nozzle (H)	20,7	0,03	1	1,30	1.418,554	3.211,341	No
Nozzle (K1)	20,9	0,23	1	1,30	1.221,308	3.211,341	No
Nozzle (K2)	20,83	0,16	1	1,30	1.351,73	3.211,341	No
Nozzle (L1)	20,9	0,23	1	1,30	1.221,17	3.211,341	No
Nozzle (L2)	20,83	0,16	1	1,30	1.217,014	3.211,341	No
Nozzle Pipe (D)	20,99	0,32	1	1,30	153,038	2.334,64	No

(1) Top Head limits the UG-99(b) stress ratio.
 (2) P_L stresses at nozzle openings have been estimated using the method described in Division 2 Part 4.5.
 (3) 1,5*0,95*S_y used as the basis for the maximum local primary membrane stress at the nozzle intersection P_L.

(4) UG-99(I): Custom flange assemblies shall be tested with gaskets having identical geometries and gasket factors, and bolting having identical allowable stress at room temperature as used in the design calculations.

Vacuum Summary

Largest U	Largest Unsupported Length Le									
Component	Line of Support	Elevation above Datum (mm)	Length Le (mm)							
Top Head	-	2.274	N/A							
-	1/3 depth of Top Head	1.950	N/A							
Straight Flange on Top Head Top	-	1.800	2.100							
Straight Flange on Top Head Bottom	-	1.750	2.100							
Shell V1 Top	-	1.750	2.100							
Shell V1 Bottom	-	50	2.100							
Straight Flange on Bottom Head Top	-	50	2.100							
Straight Flange on Bottom Head Bottom	-	0	2.100							
-	1/3 depth of Bottom Head	-150	N/A							
Bottom Head	-	-474	N/A							

Foundation Load Summary

	Skirt Base Ring: Total Lo	ading at Base	;	
Load	Vessel Condition	Base Shear (kg _f)	Base Moment (kg _f -m)	Vertical Force (kg _f)
Weight Only (D)	Operating, Corroded	0	593	10.155,2
Weight Only (D)	Operating, New	0	596,1	10.472,3
Weight Only (D)	Empty, Corroded	0	593	8.102,8
Weight Only (D)	Empty, New	0	596,1	8.420,1
Weight Only (D)	Field Hydrotest, Corroded	0	593	12.941,8
Weight Only (D)	Field Hydrotest, New	0	596,1	13.258,5
Wind Only (W)	Operating, Corroded	652,9	1.779	0
Wind Only (W)	Operating, New	652,9	1.779	0
Wind Only (W)	Empty, Corroded	652,9	1.779	0
Wind Only (W)	Empty, New	652,9	1.779	0
Wind Only (W)	External Pressure, Corroded	652,9	1.779	0
Seismic Only (E)	Operating, Corroded	599,2	1.534,6	0
Seismic Only (E)	Operating, New	617,9	1.573,2	0
Seismic Only (E)	Empty, Corroded	478,1	1.300,3	0
Seismic Only (E)	Empty, New	496,8	1.340	0
Seismic Only (E)	External Pressure, Corroded	599,2	1.534,6	0
25% Wind Only (0,25 * W)	Field Hydrotest, New	163,2	444,7	0
25% Wind Only (0,25 * W)	Field Hydrotest, Corroded	163,2	444,7	0

All values reported are service loads for Allowable Stress Design (ASD).

Support Information	
Support Type	Skirt Base Ring
Base Ring Inner Diameter	1.754 mm
Base Ring Outer Diameter	2.014 mm
Base Ring Thickness	20 mm
Number of Anchor Bolts	4
Bolt Circle Diameter	1.934 mm
Bolt Size and Type	M24 x 3
Bolt Hole Clearance	12 mm
Center of Gravity (Distance from Support Base)	1.835,72 mm

Liquid Level bounded by Bottom Head

ASME Section VIII Division 1, 2021 Edition Metric				
Location from Datum (mm)				
Operating Liquid Specific Gravity	0,999			

Top Head

ASME Section VIII Division 1, 2021 Edition Metric						
Component		Ellipsoidal Head				
Mat	Material SA-516 60 (II-D Metric p. 16, In. 3)					
Attac	hed To	Shell V1				
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
Yes (-46°C)	Yes	Yes	Yes	No		
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Inte	ernal	15,5	121	-15		
Ext	ernal	1	23	-15		
		Static Liqui	d Head			
Con	dition	P _s (bar)	H _s (mm)	SG		
Test ho	orizontal	0,19	1.923,2	1		
Test vertical		0,07	750	1		
		Dimensi	ons			
Inner D	Diameter		1.800 mm			
Head	I Ratio	2				
Minimum	Thickness	24 mm				
Corrosion	Inner	0 mm				
	Outer		1,6 mm			
Leng	jth L _{sf}	50 mm				
Nominal T	hickness t _{s f}		24 mm	24 mm		
		Weight and (Capacity			
		Weig	Capacity (liters) ¹			
N	ew	76	879,66			
Corroded 714,87			4,87	879,66		
Lining						
		Thickness (mm)	Weight (kg)			
Lining		3 8.000 87,87				
		Radiogra	aphy			
Categor	y A joints	Full UW-11(a) Type 1				
Head to s	Head to shell seam Full UW-11(a) Type 1					
1 includes straig						

¹ includes straight flange

Results Summary	/
Governing condition	internal pressure
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm
Design thickness due to internal pressure (t)	<u>13,44</u> mm
Design thickness due to external pressure (t_e)	<u>6,19</u> mm
Maximum allowable working pressure (MAWP)	<u>29,3</u> bar
Maximum allowable pressure (MAP)	<u>31,38</u> bar
Maximum allowable external pressure (MAEP)	<u>13,66</u> bar
Rated MDMT	-73,6°C

UCS-66 Material Toughness Requirements				
Material impact test temperature per UG-84 =	-46°C			
$t_r = rac{15,9\cdot 1.800}{2\cdot 1.180\cdot 1 - 0,2\cdot 15,9} =$	12,14 mm			
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{12,\!14\cdot 1}{24 - 1,\!6} =$	0,5421			
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	27,6°C			
$MDMT = \max [T_{impact} - T_R, -105] = \max [-46 - 27, 6, -105] =$	-73,6°C			
Design MDMT of -15°C is acceptable.				

Design thickness for internal pressure, (Corroded at 121 °C) UG-32(c)(1)

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{15.5 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0.2 \cdot 15.5} + 1.6 = \underline{13.44} \text{ mm}$$

Maximum allowable working pressure, (Corroded at 121 °C) UG-32(c)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 1.180 \cdot 1 \cdot 22.4}{1.800 + 0.2 \cdot 22.4} - 0 = \underline{29.3} \text{ bar}$$

Maximum allowable pressure, (New at 7 °C) UG-32(c)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 1.180 \cdot 1 \cdot 24}{1.800 + 0.2 \cdot 24} - 0 = \frac{31.38}{31.38} \text{ bar}$$

Design thickness for external pressure, (Corroded at 23 °C) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0,8772 \cdot 1.848 = 1.621,09 \text{ mm}$

$$A = \frac{0,125}{R_o \ / \ t} = \frac{0,125}{1.621,09 \ / \ 4,59} = 0,000354$$

From Table CS-2 Metric: B = $360,063 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = \frac{B}{R_o \ / \ t} = \frac{353,1012}{1.621,09 \ / \ 4,59} = 1$$
 bar

t = 4,59 mm+Corrosion = 4,59 mm + 1,6 mm = 6,19 mm

The head external pressure design thickness (t_e) is <u>6,19</u> mm.

Maximum Allowable External Pressure, (Corroded at 23 °C) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0,8772 \cdot 1.848 = 1.621,09 \text{ mm}$

$$A = rac{0,125}{R_o \ / \ t} = rac{0,125}{1.621,09 \ / \ 22,4} = 0,001727$$

From Table CS-2 Metric: B = $1.007,9818 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = \frac{B}{R_o \ / \ t} = \frac{988,4924}{1.621,09 \ / \ 22,4} = 13,6587$$
bar

The maximum allowable external pressure (MAEP) is 13.66 bar.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 24}{318}\right) \cdot \left(1 - \frac{318}{\text{infinity}}\right) = 5,6604\%$$

Straight Flange on Top Head

ASME Section VIII Division 1, 2021 Edition Metric							
Com	Component		Cylinder				
Mat	terial	SA-516 60 (II-D Metric p. 16, In. 3)					
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP				
Yes (-46°C)	Yes	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Inte	ernal	15,5	121	-15			
Ext	ernal	1	23	-13			
		Static Liquid H	lead				
Con	dition	P _s (bar)	H _s (mm)	SG			
Test ho	Test horizontal		1.923,2	1			
Test vertical		0,08	800	1			
		Dimensions	\$				
Inner D	Diameter		1.800 mm				
	ngth	50 mm					
Nominal	Thickness	24 mm					
Corrosion	Inner	0 mm					
	Outer		1,6 mm				
		Weight and Cap					
		Weig	ht (kg)	Capacity (liters)			
N	ew	53	126,39				
Cori	Corroded		50,23				
Lining							
		Thickness (mm)	Density (kg/m ³)	Weight (kg)			
Lining		3 8.000 0					
Radiography							
Longitud	linal seam	Full UW-11(a) Type 1					
Bottom Circur	nferential seam	Full UW-11(a) Type 1					

Results Summary					
Governing condition	Internal pressure				
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm				
Design thickness due to internal pressure (t)	<u>13,52 mm</u>				
Design thickness due to external pressure (t_e)	<u>7,79 mm</u>				
Design thickness due to combined loadings + corrosion	<u>6,48 mm</u>				
Maximum allowable working pressure (MAWP)	<u>28,94 bar</u>				
Maximum allowable pressure (MAP)	<u>30,97 bar</u>				
Maximum allowable external pressure (MAEP)	<u>15,58 bar</u>				
Rated MDMT	-73,3 °C				

UCS-66 Material Toughness Requirements					
Material impact test temperature per UG-84 =	-46°C				
$t_r = rac{15,9 \cdot 900}{1.180 \cdot 1 - 0,6 \cdot 15,9} =$	12,23 mm				
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{12,23 \cdot 1}{24 - 1,6} =$	0,5458				
$\left[\text{Stress ratio longitudinal} = rac{266,878\cdot 1}{1.203,265\cdot 1} = ight. ight.$	0,2218				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	27,3°C				
$MDMT = \max \left[T_{impact} - T_R, -105 ight] = \max \left[-46 - 27, 3, -105 ight] =$	-73,3°C				
Design MDMT of -15°C is acceptable.					

Design thickness, (at 121 °C) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0,60 \cdot P} + \text{Corrosion} = \frac{15,5 \cdot 900}{1.180 \cdot 1,00 - 0,60 \cdot 15,5} + 1,6 = \underline{13,52} \text{ mm}$$

Maximum allowable working pressure, (at 121 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0,60 \cdot t} - P_s = \frac{1.180 \cdot 1,00 \cdot 22,4}{900 + 0,60 \cdot 22,4} - 0 = \underline{28,94} \text{ bar}$$

Maximum allowable pressure, (at 7 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1.180 \cdot 1.00 \cdot 24}{900 + 0.60 \cdot 24} = \frac{30.97}{30.97}$ bar

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2.100}{1.848} = 1,1364$$
$$\frac{D_o}{t} = \frac{1.848}{6,19} = 298,7497$$

From table G: A = 0,000224

From table CS-2 Metric: $B = 228,4802 \text{ kg/cm}^2(224,06 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 224,06}{3 \cdot (1.848/6,19)} = 1$$
 bar

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 6,19 + 1,6 = 7.79 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2.100}{1.848} = 1,1364$$
$$\frac{D_o}{t} = \frac{1.848}{22,4} = 82,5007$$

From table G: A = 0,001581

From table CS-2 Metric: $B = 983,2359 \text{ kg/cm}^2(964,2233 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 964, 22}{3 \cdot (1.848/22, 4)} = \underline{15, 58} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(rac{50 \cdot t}{R_f}
ight) \cdot \left(1 - rac{R_f}{R_o}
ight) = \left(rac{50 \cdot 24}{912}
ight) \cdot \left(1 - rac{912}{ ext{infinity}}
ight) = 1,3158\%$$

The extreme fiber elongation does not exceed 5%.

Thickness Required Due to Pressure + External Loads								
Condition	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Temperature		Load	Pressure	Req'd Thk Due to	Req'd Thk Due to
	s _t	S _c	(°C)	C (mm)		P (bar)	Tension (mm)	Compression (mm)
Operating, Hot & Corroded	1.203,3	<u>1.143,5</u>	121	1.6	Wind	<u>71,3</u>	<u>4,88</u>	<u>4,87</u>
	1.203,3	1.143,5	121		Seismic	<u>71,31</u>	<u>4,88</u>	<u>4,87</u>
Operating, Hot & New	1.203,3	<u>1.153,1</u>	121	0	Wind	<u>76,45</u>	<u>4,88</u>	<u>4,87</u>
	1.203,3				Seismic	<u>76,45</u>	<u>4,88</u>	<u>4,87</u>
Hot Shut Down, Corroded	1.203,3	<u>1.143,5</u>	121	1,6	Wind	0	<u>0,04</u>	<u>0,05</u>
The Shat Down, Conoded					Seismic	0	<u>0,04</u>	<u>0,05</u>
Hot Shut Down, New	1.203,3	<u>1.153,1</u>	121	0	Wind	0	<u>0,04</u>	<u>0,05</u>
					Seismic	0	<u>0,04</u>	<u>0,05</u>
Empty, Corroded	1.203,3	<u>1.143,5</u>	20	1,6	Wind	0	<u>0,04</u>	<u>0,05</u>
Empty, conoucu					Seismic	0	<u>0,04</u>	<u>0,05</u>
Empty, New	1.203,3 <u>1.1</u>	1.153,1	20	20 0	Wind	0	<u>0,04</u>	<u>0,05</u>
		<u>1.155,1</u>	20		Seismic	0	<u>0,04</u>	<u>0,05</u>
Vacuum	1.203,3	1.143,5	23 1,6	Wind	<u>67,51</u>	<u>0,37</u>	<u>0,38</u>	
Vacuum	1.203,3	1.143,5		1,0	Seismic	<u>67,52</u>	<u>0,37</u>	<u>0,38</u>
Hot Shut Down, Corroded, Weight &	1.203,3 <u>1.143,5</u>	121	1,6	Wind	0	<u>0,05</u>	<u>0,05</u>	
Eccentric Moments Only				Seismic	0	<u>0</u>	<u>0</u>	

Allowable Compressive Stress, Hot and Corroded- $S_{\mbox{cHC}}$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{924/22,4} = 0,003030$$
$$B = 1.143,5 \text{ kg/cm}^2$$
$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$

 $S_{cHC} = \min(B,S) = 1.143.5 \text{ kg/cm}^2$

Allowable Compressive Stress, Hot and New- $S_{\mbox{cHN}}$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{924/24} = 0.003247$$
$$B = 1.153.1 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$
$$S_{cHN} = \min (B,S) = \underline{1.153,1 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN}$, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{924/24} = 0.003247$$

$$B = 1.153.1 \text{ kg/cm}^2$$

$$S = \frac{1.203.3}{1.00} = 1.203.3 \text{ kg/cm}^2$$

$$S_{cCN} = \min (B,S) = \underline{1.153.1 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{924/22.4} = 0.003030$$
$$B = 1.143.5 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$

$$S_{cC} = \min(B,S) = 1.143.5 \text{ kg/cm}^2$$

Allowable Compressive Stress, Vacuum and Corroded- $S_{\mbox{cVC}}$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{924/22,4} = 0,003030$$

$$B = 1.143,5 \text{ kg/cm}^2$$

$$S = {1.203,3 \over 1,00} = 1.203,3 \, {
m kg/cm^2}$$

 $S_{cVC} = \min(B,S) = 1.143.5 \text{ kg/cm}^2$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15,5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15,5|} \\ &= 4,92 \ {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{206}{\pi \cdot 911,2^2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0,01 \ {\rm mm} \\ t_{\rm w} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{3.305,7}{2 \cdot \pi \cdot 911,2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0,04 \ {\rm mm} \\ t_t &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4.88 \ {\rm mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0,01 + (0,04) - (4.92)| \\ &= 4.87 \ {\rm mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (22.4 - 0.01 + (0.04))}{900 - 0.40 \cdot (22.4 - 0.01 + (0.04))}$$

= <u>71,3</u> bar

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \, {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{206.4}{\pi \cdot 912^2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0.01 \, {\rm mm} \\ t_{\rm W} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{3.360.8}{2 \cdot \pi \cdot 912 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.04 \, {\rm mm} \\ t_{\rm t} &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4.92 + 0.01 - (0.04) \\ &= 4.88 \, {\rm mm} \\ t_{\rm c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.01 + (0.04) - (4.92)| \\ &= 4.87 \, {\rm mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (24 - 0.01 + (0.04))}{900 - 0.40 \cdot (24 - 0.01 + (0.04))}$$

= 76,45 bar

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{206}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0,01 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.305, 7}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,01 - (0,04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,01 + (0,04) - (0) \end{split}$$

= <u>0.05 mm</u>

Hot Shut Down, New, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{206, 4}{\pi \cdot 912^{2} \cdot 1.130, 85 \cdot 1, 20} \cdot 98066.5 \\ &= 0, 01 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.360, 8}{2 \cdot \pi \cdot 912 \cdot 1.130, 85 \cdot 1, 20} \cdot 98.0665 \\ &= 0, 04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 01 - (0, 04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0, 01 + (0, 04) - (0) \\ &= 0.05 \text{ mm} \end{split}$$

Empty, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{206}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0,01 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.305, 7}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,01 - (0,04)| \\ &= 0,04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,01 + (0,04) - (0) \end{split}$$

= <u>0.05 mm</u>

Empty, New, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{206, 4}{\pi \cdot 912^{2} \cdot 1.130, 85 \cdot 1, 20} \cdot 98066.5 \\ &= 0, 01 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.360, 8}{2 \cdot \pi \cdot 912 \cdot 1.130, 85 \cdot 1, 20} \cdot 98.0665 \\ &= 0, 04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 01 - (0, 04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0, 01 + (0, 04) - (0) \\ &= 0.05 \text{ mm} \end{split}$$

Vacuum, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-1 \cdot 900}{2 \cdot 1.121,37 \cdot 1.20 + 0.40 \cdot |1|} \\ &= -0.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= \frac{206}{\pi \cdot 911,2^{-2} \cdot 1.121,37 \cdot 1,20} \cdot 98066.5 \\ &= 0.01 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{3.305,7}{2 \cdot \pi \cdot 911,2 \cdot 1.121,37 \cdot 1,20} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (total, net compressive) \\ &= |-0.33 + 0.01 - (0.04)| \\ &= 0.37 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.01 + (0.04) - (-0.33) \\ &= 0.38 \text{ mm} \\ \end{split}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 1.121.37 \cdot 1.20 \cdot (22.4 - 0.01 - 0.04)}{900 - 0.40 \cdot (22.4 - 0.01 - 0.04)}$$
$$= \frac{67.51}{10} \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{2}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.305, 7}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 00} \cdot 98.0665 \\ &= 0, 05 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0, 05)| \\ &= 0, 05 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0, 05) - (0) \end{split}$$

= <u>0.05 mm</u>

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \quad (Pressure) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot MetricFactor \quad (bending) \\ &= \frac{150}{\pi \cdot 911.2^{-2} \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot MetricFactor \quad (Weight) \\ &= \frac{3.305, 7}{2 \cdot \pi \cdot 911.2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \quad (total required, tensile) \\ &= 4.88 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \quad (total, net tensile) \\ &= |0 + (0.04) - (4.92)| \\ &= 4.87 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (22.4 - 0 + (0.04))}{900 - 0.40 \cdot (22.4 - 0 + (0.04))}$$
$$= \frac{71.31}{1.31} \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \quad (\text{Pressure}) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \quad (\text{bending}) \\ &= \frac{152.9}{\pi \cdot 912^{2} \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \quad (\text{Weight}) \\ &= \frac{3.360.8}{2 \cdot \pi \cdot 912 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.04 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \quad (\text{total required, tensile}) \\ &= 4.88 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \quad (\text{total, net tensile}) \\ &= |0 + (0.04) - (4.92)| \end{split}$$

= <u>4,87 mm</u>

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (24 - 0 + (0.04))}{900 - 0.40 \cdot (24 - 0 + (0.04))}$$
$$= 76.45 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{150}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.305, 7}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0,04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0,04) - (0) \end{split}$$

= <u>0.05 mm</u>

Hot Shut Down, New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{152,9}{\pi \cdot 912^{2} \cdot 1.130,85 \cdot 1,20} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.360,8}{2 \cdot \pi \cdot 912 \cdot 1.130,85 \cdot 1,20} \cdot 98.0665 \\ &= 0,04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0,04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0,04) - (0) \\ &= 0.05 \text{ mm} \end{split}$$

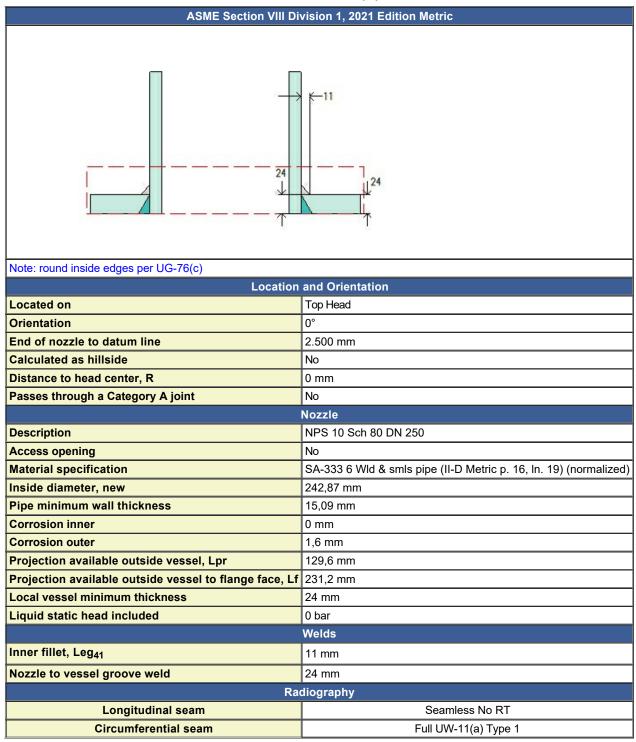
Empty, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{134,8}{\pi \cdot 911,2^{-2} \cdot 1.121,37 \cdot 1,20} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.305,7}{2 \cdot \pi \cdot 911,2 \cdot 1.121,37 \cdot 1,20} \cdot 98.0665 \\ &= 0,04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0,04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0,04) - (0) \end{split}$$

Empty, New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{138, 1}{\pi \cdot 912^{2} \cdot 1.130, 85 \cdot 1, 20} \cdot 98066.5 \\ &= 0 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{3.360, 8}{2 \cdot \pi \cdot 912 \cdot 1.130, 85 \cdot 1, 20} \cdot 98.0665 \\ &= 0, 04 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0 - (0, 04)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0 + (0, 04) - (0) \end{split}$$

= <u>0,05 mm</u>


Vacuum, Seismic, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_c \cdot K_s + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{-1 \cdot 900}{2 \cdot 1.121,37 \cdot 1.20 + 0.40 \cdot |1|} \\ &= -0.33 \ {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{150}{\pi \cdot 911,2^2 \cdot 1.121,37 \cdot 1.20} \cdot 98066.5 \\ &= 0 \ {\rm mm} \\ t_{\rm W} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{3.305,7}{2 \cdot \pi \cdot 911,2 \cdot 1.121,37 \cdot 1.20} \cdot 98.0665 \\ &= 0,04 \ {\rm mm} \\ t_{\rm t} &= |t_p + t_m - t_w| \qquad (total, net compressive) \\ &= |-0.33 + 0 - (0.04)| \\ &= 0.37 \ {\rm mm} \\ t_{\rm C} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0 + (0.04) - (-0.33) \\ &= 0.38 \ {\rm mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 1.121.37 \cdot 1.20 \cdot (22.4 - 0 - 0.04)}{900 - 0.40 \cdot (22.4 - 0 - 0.04)}$$
$$= \frac{67.52}{2} \text{ bar}$$

Nozzle (A)

ASME B16.5-2017 Fla	inge
Description	NPS 10 Class 150 WN A350 LF2 Cl.1 N
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)
Blind included	No
Rated MDMT	-56,6°C
Liquid static head	0 bar
Consider External Loads on Flange MAWP Rating	Yes
MAWP reduction due to external loads	20,02 bar
MAWP rating	16,9 bar @ 121°C
MAP rating	19,6 bar @ 7°C
Hydrotest rating	30 bar @ 7°C
PWHT performed	Yes
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes
Impact Tested	No
Circumferential joint radiography	Full UW-11(a) Type 1
Bore diameter, B (specified by purchaser)	242,87 mm
MAWP Reduction Due to Ext	ernal Loads
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 1.068, 3 \cdot 1000}{\pi \cdot 303, 76^{-3}} / 1,\! 02 \cdot 100 =$	19,04 bar
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -724}{\pi \cdot 303,76^{-2}} / 1,02 \cdot 100 =$	0,98 bar
$MAWP_{reduction} \; = \; \max \; [P_m + P_r, 0] = \; \max \; [19,\!04 + 0,\!98,\!0] =$	20,02 bar
Table UG-44-1 Moment Factor, $F_M =$	1,2
$MAWP = \min [MAWP, MAWP \cdot (1 + F_M) - MAWP_{reduction}] - P_s$ = min [16,9,16,9 \cdot (1 + 1,2) - 20,02] - 0 =	16,9 bar
Gasket	
Туре	ASME B16.20 Spiral-Wound
Description	Spiral-wound Carbon windings with filler
Factor, m	2,5
Seating Stress, y	703,07 kg _f /cm ²
Thickness, T	4,5 mm
Inner Diameter	287,3 mm
Outer Diameter	317,5 mm
Notes	
 (1) Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 10,6°C applied (ratio = 0,8112). Bolts rated MDMT per Fig UCS-66 note (c) = -104°C 	
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appendix S Appendix O.	i) shall comply with ASME PCC-1, Nonmandatory
(3) UG-44(b): The bolt material shall have an allowable stress equal to or greatemperature.	ater than SA-193 B8 Cl. 2 at the specified bolt size and

UCS-66 Material Toughness Requirements Nozzle	
Impact test temperature per material specification =	-45°C
External nozzle loadings per UG-22 govern the coincident ratio used.	
${ m Stress \ ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{2,92 \cdot 1}{15,09 - 1,6} =$	0,2165
Stress ratio ≤ 0,35, MDMT per UCS-66(b)(3) =	-105°C
$egin{array}{llllllllllllllllllllllllllllllllllll$	-105°C
Material is exempt from impact testing at the Design MDMT of -15	°C.

Reinforcement Calculations for Chamber MAWP

UG-3	7 Area C	alculatio	cm²)	UG-45 Su	mmary (mm)			
	For P The openir	The nozzle	passes UG-45					
A required	A available	A ₁	A ₂	Α3	A ₅	A welds	t _{req}	t _{min}
<u>28,0135</u>	<u>35,0703</u>	<u>26,3903</u>	<u>0,7594</u>	<u>9,71</u>	15,09			

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

	WRC 537											
Load Case	P (bar)	P _r (kg _f)	M ₁ (kg _f -m)	V ₂ (kg _f)	M ₂ (kg _f -m)	V ₁ (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-724	1.305	1.023,9	0	0	922,8	2.183,594	3.609,796	1.428,778	1.804,898	No
Load case 1 (Hot Shut Down)	0	-724	1.305	1.023,9	0	0	922,8	990,625	3.609,796	235,81	1.804,898	No
Load case 1 (Pr Reversed)	16,78	724	1.305	1.023,9	0	0	922,8	2.089,101	3.609,796	1.384,906	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	724	1.305	1.023,9	0	0	922,8	-990,625	3.609,796	-235,81	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

$$= \max \left[242,87, 121,44 + (15,09 - 1,6) + (24 - 1,6) \right]$$

= 242,87 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- = min $[2,5 \cdot (24 1,6), 2,5 \cdot (15,09 1,6) + 0]$
- = 33,72 mm

Nozzle required thickness per UG-27(c)(1)

$$t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$$
$$= \frac{16,7791 \cdot 121,44}{1.180 \cdot 1 - 0.6 \cdot 16,7791}$$
$$= 1,74 \text{ mm}$$

Required thickness t_r from UG-37(a)(c)

$$\mathbf{t}_{\mathsf{r}}$$
 = $\frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P}$

$$= \frac{16,7791 \cdot 0,9 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0,2 \cdot 16,7791}$$

= 11,53 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1.203,265$, $S_v = 1.203,265$ kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$\mathsf{A} \quad = \quad d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- = $(242,87 \cdot 11,53 \cdot 1 + 2 \cdot 15,09 \cdot 11,53 \cdot 1 \cdot (1-1))/100$
- $= 28,0135 \text{ cm}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following= <u>26,3903</u> cm²

- $= \quad d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (242,87 \cdot (1 \cdot 22,4 1 \cdot 11,53) 2 \cdot 15,09 \cdot (1 \cdot 22,4 1 \cdot 11,53) \cdot (1 1))/100$
- = 26,3903 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (2 \cdot (22,4+13,49) \cdot (1 \cdot 22,4-1 \cdot 11,53) 2 \cdot 15,09 \cdot (1 \cdot 22,4-1 \cdot 11,53) \cdot (1-1)) / 100$
- = 7,7987 cm²

 A_2 = smaller of the following= <u>7,9206</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (13,49 1,74) \cdot 1 \cdot 22,4) / 100$
- = 13,1542 cm²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= (5 \cdot (13,49 1,74) \cdot 1 \cdot 13,49) / 100$
- = 7,9206 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- $= (8,71^2 \cdot 1)/100$
- = <u>0,7594</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- = 26,3903+7,9206+0,7594
- = <u>35,0703</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$$\begin{array}{rcl} t_{a\mathrm{UG-27}} & = & \frac{P \cdot R_n}{S_n \cdot E - 0, 6 \cdot P} + \mathrm{Corrosion} \\ & = & \frac{16,7791 \cdot 121,44}{1.180 \cdot 1 - 0, 6 \cdot 16,7791} + 1,6 \\ & = & 3,34 \ \mathrm{mm} \\ t_{a\mathrm{UG-22}} & = & 4,57 \ \mathrm{mm} \\ t_a & = & \max\left[t_{a\mathrm{UG-27}}, t_{a\mathrm{UG-22}}\right] \\ & = & \max\left[3,34, 4,57\right] \\ & = & 4,57 \ \mathrm{mm} \\ t_{b1} & = & \frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0,2 \cdot P} + \mathrm{Corrosion} \\ & = & \frac{16,7791 \cdot 0,9 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0,2 \cdot 16,7791} + 1,6 \\ & = & 13,13 \ \mathrm{mm} \\ t_{b1} & = & \max\left[t_{b1}, t_{b\mathrm{UG16}}\right] \\ & = & \max\left[t_{3,13}, 3,1\right] \\ & = & 13,13 \ \mathrm{mm} \\ t_b & = & \min\left[t_{63}, t_{b1}\right] \\ & = & \min\left[9,71, 13,13\right] \\ & = & 9,71 \ \mathrm{mm} \\ t_{\mathrm{UG-45}} & = & \max\left[t_a, t_b\right] \\ & = & \max\left[4,57, 9,71\right] \\ & = & 9,71 \ \mathrm{mm} \\ \end{array}$$

Available nozzle wall thickness new, t_n = 15,09 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads	
Radial load, P _r	-724 kg _f
Circumferential moment, M ₁	1.305 kg _f -m
Circumferential shear, V ₂	1.023,9 kg _f
Longitudinal moment, M ₂	0 kg _f -m
Longitudinal shear, V ₁	0 kg _f
Torsion moment, M _t	922,8 kg _f -m
Internal pressure, P	16,78 bar
Mean dish radius, R _m	1.639,3 mm
Local head thickness, T	22,4 mm
Design factor	3

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{r_m}{t} = \frac{128,18}{13,49} = 9,5038$$

$$\rho = \frac{T}{t} = \frac{22,4}{13,49} = 1,6608$$

$$U = rac{r_o}{\sqrt{R_m \cdot T}} = rac{134,92}{\sqrt{1.639,3.22,4}} = 0,704$$

	WRC 537 Nondimensional Coefficients														
	$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$														
$\gamma = 5$		S	P-2			SM-2	2								
ρ́ = 1	M _x	М _у	N _x	Ny	M _x	My	N _x	Ny							
а	0,6211	0,3627	4,244	0,147	11,647	3,0505	2,3258	-0,0608							
b	21,6273	44,9628	2.909,7533	-1,6443	44,8126	18,7157	7,2896	-4,1861							
С	2,9619	3,7254	670,6484	0,1238	-215,542	-13,8221	-10,6212	0,3339							
d	29,2309	98,0346	7.883,0399	29,843	-990,6785	-19,0976	46,1723	9,0989							
е	2,1842	-0,2704	-1.025,2729	5,3816	1.206,7112	24,6135	23,7824	-0,3729							
f	86,1406	137,5921	-15.335,94	6,1433	5.063,1144	-108,1759	-198,2298	-7,5883							
g	-0,3873	0	482,899	-3,3272	-398,6713	-6,4014	18,2767	0,2136							
h	0	0	6.934,936	1,2597	5.228,5657	373,4437	767,1196	2,6114							
i	0	0	-34,8626	0,5351	0	0	0	-0,0422							
j	0	0	0	0	0	0	0	0							
Y	0,0601	0,0221	0,0555	0,1096	0,123	0,056	0,0878	0,0963							

	WRC 537 Nondimensional Coefficients														
	$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$														
$\gamma = 5$		S	P-3			SM-3									
ρ = 2	M _x	My	N _x	Ny	M _x	My	N _x	Ny							
а	0,3656	0,6924	194,6898	0,1169	3.575,8953	-1.612,8152	1,1658	-0,2512							
b	20,761	41,4599	35.425,74	0,0485	18.337,83	-16.367,04	6,6119	-4,0064							
с	2,1174	6,5648	6.712,6521	1,0834	-148.402,8	19.145,7	-1,8023	1,206							
d	39,8904	56,9657	67.541,61	6,5638	-1.113.150	231.710,9	-7,5795	11,6011							
е	-1,5403	-10,362	-7.076,6023	-1,4491	1.808.340	174.103,8	0,7851	-0,9153							
f	6,0842	50,3033	-38.750,21	-8,5622	1,9219E+07	969.880,3	-0,5602	-10,415							
g	0,3004	5,2068	7.127,4907	0,6633	-121.264,6	74.723,92	0,0402	0,1529							
h	0	-124,8434	52.813,19	4,7651	4.868.062	1.365.329	2,7493	3,6043							
i	0	-0,8506	-976,6428	-0,1059	-427.941,1	-91.957,24	0	0							
j	0	45,9146	0	-0,7887	8.286.525	1.729.110	0	0							
Y	0,0319	0,0335	0,0632	0,1572	0,0737	0,0945	0,1262	0,1673							

	WRC 537 Nondimensional Coefficients													
	$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$													
γ = 15		SP-	5			SM	-5							
ρ = 1	M _x	My	N _x	Ny	M _x	My	N _x	Ny						
а	2,5313	0,2573	0,2148	0,2565	5,0495	2,3071	1,3095	-0,0934						
b	473,1618	0,6261	75,2962	-4,0038	9,0562	10,326	7,1691	-5,4435						
с	188,3279	-3,2878	11,984	-1,0345	-14,0471	-11,3673	-4,9409	0,5761						
d	3.838,2426	-118,1855	347,0785	5,3696	47,3217	26,4081	25,6386	18,6046						
е	276,3502	12,6432	-2,8446	0,6823	32,2135	28,751	30,6153	-0,5013						
f	3.999,8712	597,9902	-59,4988	-7,5639	-73,3031	-148,3722	362,4322	-21,4549						
g	-70,677	-5,5092	0	1,7989	-10,377	-3,0892	-19,9268	0,5988						
h	0	-163,2562	0	21,8984	206,2954	706,8852	-74,8696	13,0083						
i	0	0,5296	0	-0,7141	2,0028	0	4,1492	0						
j	0	0	0	-7,0392	0	0	0	0						
Y	0,0681	0,0217	0,0353	0,1347	0,143	0,0522	0,0558	0,13						

		W	RC 537 No	ondimen	sional Coe	fficients									
	$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$														
γ = 15		SI	P-6			SM-	6								
ρ = 2	M _x	M _x M _y N _x			M _x	My	N _x	Ny							
а	0,4364	0,4568	0,5408	0,199	1,2527	1,9756	3,4348	-0,6545							
b	23,8528	18,4406	86,1146	1,3701	-9,7364	-10,5872	32,542	2,3553							
с	3,1218	0,5744	10,6552	0,9562	42,3407	-7,1545	-9,1948	3,7495							
d	57,2195	2,9177	210,1066	4,8904	581,7506	267,0319	0,2003	6,5143							
е	-1,23	0,2335	-2,8821	-0,1717	-11,5154	184,7135	14,4342	-2,6465							
f	-0,5058	37,5435	66,5636	-0,1752	-363,3128	406,7564	-130,0729	-5,4867							
g	0,4263	0	1,9553	0	4,4567	337,601	1,057	0,5907							
h	16,5587	0	0	0	555,7041	5.118,1159	350,2929	1,9002							
i	0 0 0		0	0	0 -155,8292		0								
j	0 0 0		0	0	0	2.619,7988	0	0							
Y	0,0434	0,0342	0,0386	0,1819	0,0921	0,0849	0,0693	0,1981							

Pressure stress intensity factor, I = 1,9185 (derived from Division 2 Part 4.5)

Local pressure stress =
$$\frac{I \cdot P \cdot R_i}{2 \cdot T} = 1.192,968 \text{ kg}_f/\text{cm}^2$$

Maximum combined stress $(P_L + P_b + Q) = 2.183,59 \text{ kg}_f/\text{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \text{ kg}_f/\text{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress (P_L) = 1.428,78 kg $_f$ /cm 2 Allowable local primary membrane stress (P_L) = ±1,5 · S = ±1.804,9 kg $_f$ /cm 2

The maximum local primary membrane stress (PL) is within allowable limits.

		Stre	esses at t	he nozzle	e OD per '	WRC Bul	letin 537			
Figure	Y		A _u	A _l	Bu	BI	Cu	CI	Du	DI
SP-1 to 10*	$\frac{N_x \cdot T}{P}$	0,0502	7,242	7,242	7,242	7,242	7,242	7,242	7,242	7,242
SP-1 to 10	$\frac{M_x}{P}$	0,0461	39,934	-39,934	39,934	-39,934	39,934	-39,934	39,934	-39,934
SM-1 to 10*	$\frac{N_x \cdot T \cdot \sqrt{R_m \cdot T}}{M_1}$	0,0913	0	0	0	0	-123,951	-123,951	123,951	123,951
SM-1 to 10	$\frac{M_x \cdot \sqrt{R_m \cdot T}}{M_1}$	0,0989	0	0	0	0	-805,718	805,718	805,718	-805,718
SM-1 to 10*	$\frac{N_x \cdot T \cdot \sqrt{R_m \cdot T}}{M_2}$	0,0913	0	0	0	0	0	0	0	0
SM-1 to 10	$M_r \cdot \sqrt{R_m \cdot T}$		0	0	0	0	0	0	0	0
Pi	ressure stress*		1.192,968	1.192,968	1.192,968	1.192,968	1.192,968	1.192,968	1.192,968	1.192,968
٦	Γotal O _x stress		1.240,144	1.160,276	1.240,144	1.160,276	310,476	1.842,042	2.169,813	478,509
Men	nbrane O _x stress*		1.200,21	1.200,21	1.200,21	1.200,21	1.076,259	1.076,259	1.324,161	1.324,161
SP-1 to 10*	$\frac{N_y \cdot T}{P}$	0,1522	21,936	21,936	21,936	21,936	21,936	21,936	21,936	21,936
SP-1 to 10	$rac{M_y}{P}$	0,0298	25,803	-25,803	25,803	-25,803	25,803	-25,803	25,803	-25,803
SM-1 to 10*	$\frac{N_y \cdot T \cdot \sqrt{R_m \cdot T}}{M_1}$	0,1576	0	0	0	0	-213,874	-213,874	213,874	213,874
SM-1 to 10	$\frac{M_y \cdot \sqrt{R_m \cdot T}}{M_1}$	0,078	0	0	0	0	-635,153	635,153	635,153	-635,153
SM-1 to 10*	$\frac{N_y \cdot T \cdot \sqrt{R_m \cdot T}}{M_2}$	0,1576	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_y \cdot \sqrt{R_m \cdot T}}{M_2}$	0,078	0	0	0	0	0	0	0	0
Pi	ressure stress*		1.192,968	1.192,968	1.192,968	1.192,968	1.192,968	1.192,968	1.192,968	1.192,968
-	Total O _y stress		1.240,707	1.189,102	1.240,707	1.189,102	391,68	1.610,381	2.089,734	767,822
Men	nbrane O _y stress*		1.214,904	1.214,904	1.214,904	1.214,904	1.001,03	1.001,03	1.428,778	1.428,778
;	Shear from M _t		35,997	35,997	35,997	35,997	35,997	35,997	35,997	35,997
:	Shear from V ₁		0	0	0	0	0	0	0	0
:	Shear from V ₂		10,757	10,757	-10,757	-10,757	0	0	0	0
То	otal Shear stress		46,754	46,754	25,24	25,24	35,997	35,997	35,997	35,997
	ombined stress (P _L +P _b +Q)		1.287,18	1.223,622	1.265,666	1.203,725	405,32	1.847,526	2.183,594	772,252
(1) * denot (2) The no	es primary stre zzle is analyzed	ss. I as a h	ollow atta	chment.						

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 121,44}{2 \cdot 13,49} - \frac{-724}{\pi \cdot \left(134,92\ ^2 - 121,44\ ^2\right)} \cdot 100 + \frac{1.305.027,6 \cdot 134,92}{8,9485 \text{E}+07} \cdot 100 \\ &= 280,464 \text{ kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.203,265 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\sigma_{shear} = \frac{\sqrt{V_1^2 + V_2^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{0^2 + 1.023,9^2}}{\pi \cdot 121,44 \cdot 13,49} \cdot 100 = 19,899 \text{ kg}_f/\text{cm}^2$$

$$\sigma_{\text{torsion}} = \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{922,8}{2 \cdot \pi \cdot 121,44^2 \cdot 13,49} \cdot 100000 = 73,844 \text{ kg}_f/\text{cm}^2$$

 $\sigma_{
m total} = \sigma_{
m shear} + \sigma_{
m torsion} = 19,899 + 73,844 = 93,743 ~ {
m kg}_{\,f}/{
m cm}^{\,2}$

UG-45: The total combined shear stress (93,743 kg_f/cm²) ≤ allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.203,265 = 842,286 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-:	37 Area C	alculatio	cm ²)	UG-45 Su	mmary (mm)			
	Fo The openi	The nozzle	passes UG-45					
A required	A available	A ₁	A ₂	A ₃	A 5	A welds	t _{req}	t _{min}
<u>5,5753</u>	<u>52,5696</u>	<u>43,2528</u>	<u>0,7594</u>	<u>3,67</u>	15,09			

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$$

$$= \max \left[242,87, 121,44 + (15,09 - 1,6) + (24 - 1,6) \right]$$

= 242,87 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- = min $[2,5 \cdot (24 1,6), 2,5 \cdot (15,09 1,6) + 0]$
- = 33,72 mm

Nozzle required thickness per UG-28 t_{rn} = 0,8 mm

From UG-37(d)(1) required thickness t_r = 4,59 mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1.203,265, S_v = 1.203,265 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$\mathsf{A} = 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$$

- = $(0.5 \cdot (242.87 \cdot 4.59 \cdot 1 + 2 \cdot 15.09 \cdot 4.59 \cdot 1 \cdot (1-1)))/100$
- $= 5,5753 \text{ cm}^2$

Area available from FIG. UG-37.1

 A_1 = larger of the following= 43,2528 cm²

 $= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r_1})$

$$= (242,87 \cdot (1 \cdot 22,4 - 1 \cdot 4,59) - 2 \cdot 15,09 \cdot (1 \cdot 22,4 - 1 \cdot 4,59) \cdot (1 - 1))/100$$

= 43,2528 cm²

$$= 2 \cdot (t+t_n) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= (2 \cdot (22,4 + 13,49) \cdot (1 \cdot 22,4 1 \cdot 4,59) 2 \cdot 15,09 \cdot (1 \cdot 22,4 1 \cdot 4,59) \cdot (1 1))/100$
- = 12,7819 cm²

 A_2 = smaller of the following= 8,5574 cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (13,49 0,8) \cdot 1 \cdot 22,4) / 100$
- = 14,2122 cm²
- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t_n$
- $= (5 \cdot (13,49 0,8) \cdot 1 \cdot 13,49) / 100$
- = 8,5574 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- $= (8,71^2 \cdot 1)/100$
- = <u>0,7594</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- = 43,2528+8,5574 + 0,7594
- = <u>52,5696</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 13,49 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	2,4 mm
$t_{a\mathrm{UG-22}}$	=	3,67 mm
t_a	=	$\max\ [t_{a\mathrm{UG-28}},\ t_{a\mathrm{UG-22}}]$
	=	$\max [2,4, 3,67]$
	=	3,67 mm

t _{b2}	=	$\frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0, 2 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 0.9\cdot 1.800}{2\cdot 1.180\cdot 1-0.2\cdot 1}+1.6$
	=	2,29 mm
t_{b2}	=	$\max~[t_{b2},~t_{b\mathrm{UG16}}]$
	=	\max [2,29, 3,1]
	=	3,1 mm
t_b	=	$\min \ [t_{t33}, \ t_{tb2}]$
	=	$\min [9,71, 3,1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3,67, 3,1]$
	=	<u>3,67</u> mm

Available nozzle wall thickness new, t_n = 15,09 mm

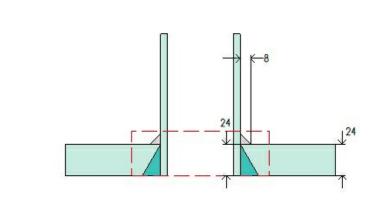
The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{231,2}{273,05} = 0,8467$$
$$\frac{D_o}{t} = \frac{273,05}{0,8} = 342,3199$$

From table G: A = 0,000257

From table CS-2 Metric: $B = 261,8041 \text{ kg/cm}^2(256,74 \text{ bar})$


$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 256,74}{3 \cdot (273,05/0,8)} = 1 \ \ {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + ext{Corrosion} = 0.8 + 1.6 = 2.4 \text{ mm}$

Nozzle (H)

Note: round inside edges per UG-76(c)

Location	and Orientation					
Located on	Top Head					
Orientation	270°					
End of nozzle to datum line	2.550 mm					
Calculated as hillside	Yes					
Distance to head center, R	450 mm					
Passes through a Category A joint	No					
	Nozzle					
Description	NPS 2 Sch 80 (XS) DN 50					
Access opening	No					
Material specification	SA-333 6 Wld & smls pipe (II-D Metric p. 16, In. 19) (normalized)					
Inside diameter, new	49,25 mm					
Pipe minimum wall thickness	5,54 mm					
Corrosion inner	0 mm					
Corrosion outer	1,6 mm					
Opening chord length	51,25 mm					
Projection available outside vessel, Lpr	263,15 mm					
Projection available outside vessel to flange face, Lf	327,75 mm					
Local vessel minimum thickness	24 mm					
Liquid static head included	0 bar					
	Welds					
Inner fillet, Leg ₄₁	8 mm					
Nozzle to vessel groove weld	24 mm					
Ra	diography					
Longitudinal seam	Seamless No RT					
Circumferential seam	Full UW-11(a) Type 1					
	,					

UCS-66 Material Toughness Requirements Nozzle						
Governing thickness, t _g =	5,54 mm					
Impact test exempt per UCS-66(d) (NPS 4 or smaller pipe) =	-105°C					
Material is exempt from impact testing at the Design MDMT	of -15°C.					

Reinforcement Calculations for Chamber MAWP

UG	UG-45 Sun	nmary (mm)						
	For P = 16,78 bar @ 121 °C							basses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>5,02</u>	5,54

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>2,76</u>	4 (corroded)	weld size is adequate					

WRC 537												
Load Case	P (bar)	P _r (kg _f)	M ₁ (kg _f -m)	V ₂ (kg _f)	M ₂ (kg _f -m)	V ₁ (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-106,05	54,8	150	0	0	38,7	1.600,538	3.609,796	1.187,274	1.804,898	No
Load case 1 (Hot Shut Down)	0	-106,05	54,8	150	0	0	38,7	435,411	3.609,796	22,147	1.804,898	No
Load case 1 (Pr Reversed)	16,78	106,05	54,8	150	0	0	38,7	1.585,633	3.609,796	1.183,336	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	106,05	54,8	150	0	0	38,7	-435,411	3.609,796	-22,147	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [51,25, 25,63 + (5,54 1,6) + (24 1,6)]$
- = 51,96 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (24 1.6), 2.5 \cdot (5.54 1.6) + 0 \right]$
- = 9,84 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot T$$

16.7791.24.63

$$= \frac{10,10124,00}{1.180 \cdot 1 - 0,6 \cdot 16,7791}$$

= 0,35 mm

Required thickness tr from UG-37(a)(c)

$$\mathbf{t}_{\mathbf{r}} = \frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P}$$

$$= \frac{16,7791 \cdot 0,9 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0,2 \cdot 16,7791}$$

= 11,53 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0, 6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 24,63}{1.180\cdot 1-0,6\cdot 16,7791} + 1,6$
	=	1,95 mm
$t_{a\mathrm{UG-22}}$	=	3,84 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}}, \; t_{a\mathrm{UG-22}} ight]$
	=	$\max[1,95, 3,84]$
	=	3,84 mm
t _{b1}	=	$\frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 0,9\cdot 1.800}{2\cdot 1.180\cdot 1-0,2\cdot 16,7791}+1,6$
	=	13,13 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max[13,13, 3,1]$
	=	13,13 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min\ [5,\!02,\ 13,\!13]$
	=	5,02 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3,84, 5,02]$
	=	<u>5,02</u> mm

Available nozzle wall thickness new, t_n = 5,54 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads						
Radial load, P _r	-106,05 kg _f					
Circumferential moment, M ₁	54,8 kg _f -m					
Circumferential shear, V ₂	150 kg _f					
Longitudinal moment, M ₂	0 kg _f -m					
Longitudinal shear, V ₁	0 kg _f					
Torsion moment, M _t	38,7 kg _f -m					
Internal pressure, P	16,78 bar					
Mean dish radius, R _m	1.639,3 mm					
Local head thickness, T	22,4 mm					
Design factor	3					

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{r_m}{t} = \frac{26,59}{3,94} = 6,7548$$

$$\rho = \frac{T}{t} = \frac{22,4}{3,94} = 5,6896$$

$$U = \frac{r_o}{\sqrt{R_m \cdot T}} = \frac{28,56}{\sqrt{1.639,3 \cdot 22,4}} = 0,149$$

	WRC 537 Nondimensional Coefficients										
$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$											
γ = 5		S	P-4			SM	-4				
ρ̈́ = 4	M _x	М _у	N _x	Ny	M _x	My	N _x	Ny			
а	0,1955	0,7443	2,537	0,1606	-3,9242	12,6132	-0,9607	-6,9959			
b	355,6102	7,533	1.071,7354	22,9473	-68,5346	29,9988	-43,2509	114,214			
с	21,1677	-2,6223	127,4587	10,3372	228,2976	-129,5801	-7,5852	81,2222			
d	1.539,5199	-7,6574	2.112,6475	-190,1285	9.214,6671	-214,241	8,1123	-726,9062			
е	-9,9855	9,5634	-131,0041	-76,2413	341,9835	558,1185	5,3251	-296,5262			
f	356,7674	64,1716	-8.161,6149	517,979	12.323,9	595,3023	11,1703	1.724,0898			
g	0	-5,6615	-54,494	186,8225	-372,3161	-319,0507	0	427,4096			
h	0	62,296	7.160,3101	-483,8102	0	2.813,0991	0	-1.948,4552			
i	0	0	102,0928	-102,4669	0	0	0	-195,9934			
j	0	0	-1.577,3732	408,8865	0	0	0	1.040,0273			
Y	0,035	0,2492	0,1005	0,3381	0,1544	1,1406	0,3774	-0,0238			
Note:	ρ is outside t	the bound	ls. ρ = 4 useo	d.							

WRC 537 Nondimensional Coefficients												
$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$												
γ = 15		SP-7	,			SI	VI-7					
ρ = 4	M _x	My	N _x	Ny	M _x	My	N _x	Ny				
а	0,1225	1,1858	0,152	0,2586	81.160,67	54,8627	-7,2531E+09	-2.889,5632				
b	10,2618	30,9469	6,4077	2,6992	2.773.928	313,4235	2,0933E+11	44.457,77				
С	0,0628	0,7386	-0,2621	2,1956	11.224,63	-805,6348	2,2821E+11	31.259,89				
d	2,5604	-22,7834	-20,1141	10,0386	-888.508,9	-5.199,714	6,2796E+12	-175.466,5				
е	-9,8501E-04	0,8686	0,1324	0,3281	-4.806,5269	2.622,0799	1,5072E+12	-81.861,2				
f	7,9918	86,4361	30,2989	-5,923	3.917.797	23.612,83	3,0942E+13	299.387,2				
g	0	-0,3301	0,2529	-0,3719	0	4.442,2399	1,7691E+11	85.306,95				
h	0	0	-12,616	4,2863	0	-21.199,17	3,2234E+12	-247.881,6				
i	0	0	-0,0853	0	0	-1.946,6481	0	-22.718,26				
j	0	0	1,8294	0	0	79.566,95	0	113.956,5				
Y	0,0505	0,2437	0,0728	0,3682	0,2035	1,1743	0,2853	0,0615				

	WRC 537 Nondimensional Coefficients										
	$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$										
γ = 15		SP	-8			SM	-8				
ρ́ = 10	M _x	My	N _x	Ny	M _x	My	N _x	Ny			
а	0,0089	0,7951	0,0353	0,3592	0,4473	5,8265	-4,7165	-0,0349			
b	5,0204	9,416	-2,6917	5,4358	78,6107	2,5265	-597,0121	-2,3803			
с	0,0154	-1,7189	-0,1634	3,4207	-8,384	-112,5814	161,5182	1,8888			
d	5,3485	-15,6863	-0,3186	-8,1149	-1.801,6236	-368,7197	18.269,05	6,6619			
е	0,0058	1,4218	0,3444	-8,9147	7,5876	81,5976	927,0814	-3,4378			
f	8,4286	9,5447	7,5748	4,7756	1.641,4093	-166,4983	-9.902,5503	-8,1245			
g	0	-0,4031	-0,4108	11,36	-2,1272	0	387,6637	1,9493			
h	0	0	-8,8672	9,0287	-813,4468	0	675,9853	3,3625			
i	0	0	0,2287	-4,7215	0	0	-69,6238	-0,3143			
j	0	0	3,9087	0	0	0	2.942,6661	0			
Y	0,006	0,2728	0,0283	0,428	0,0288	1,2413	0,1443	0,2299			

Pressure stress intensity factor, I = 1,8738 (derived from Division 2 Part 4.5)

Local pressure stress = $\frac{I \cdot P \cdot R_i}{2 \cdot T} = 1.165,127 \text{ kg}_f/\text{cm}^2$

Maximum combined stress $(P_L+P_b+Q)=1.600{,}54~~{
m kg}_f/{
m cm}^2$

Allowable combined stress $(P_L+P_b+Q)=\pm 3\cdot S=\pm 3.609$,8 kg $_{f}$ /cm 2

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.187,27~~{
m kg}_{f}/{
m cm}^{2}$

Allowable local primary membrane stress ($P_L)=\,\pm\,1{,}5\cdot S=\,\pm\,1{.}804{,}9\;\,\,{\rm kg}_{\,f}/{\rm cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stre	esses at t	he nozzle	OD per \	WRC Bul	letin 537			
Figure	Y		A _u	Al	B _u	Bl	Cu	CI	Du	DI
SP-1 to 10*	$\frac{N_x \cdot T}{P}$	0,0934	1,969	1,969	1,969	1,969	1,969	1,969	1,969	1,969
SP-1 to 10	$\frac{M_x}{P}$	0,0355	4,5	-4,5	4,5	-4,5	4,5	-4,5	4,5	-4,5
SM-1 to 10*	$\frac{N_x \cdot T \cdot \sqrt{R_m \cdot T}}{M_1}$	0,3543	0	0	0	0	-20,178	-20,178	20,178	20,178
SM-1 to 10	$\frac{M_x\cdot\sqrt{R_m\cdot T}}{M_1}$	0,1544	0	0	0	0	-52,801	52,801	52,801	-52,801
SM-1 to 10*	$\frac{N_x \cdot T \cdot \sqrt{R_m \cdot T}}{M_2}$	0,3543	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_x\cdot\sqrt{R_m\cdot T}}{M_2}$	0,1544	0	0	0	0	0	0	0	0
Р	ressure stress*	1	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127
	Total O _x stress		1.171,595	1.162,596	1.171,595	1.162,596	1.098,617	1.195,218	1.244,574	1.129,973
Mer	nbrane O _x stress*		1.167,096	1.167,096	1.167,096	1.167,096	1.146,917	1.146,917	1.187,274	1.187,274
SP-1 to 10*	$\frac{N_y \cdot T}{P}$	0,3463	7,312	7,312	7,312	7,312	7,312	7,312	7,312	7,312
SP-1 to 10	$\frac{M_y}{P}$	0,2497	31,638	-31,638	31,638	-31,638	31,638	-31,638	31,638	-31,638
SM-1 to 10*	$\frac{N_y \cdot T \cdot \sqrt{R_m \cdot T}}{M_1}$	-0,0005	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_y \cdot \sqrt{R_m \cdot T}}{M_1}$	1,1498	0	0	0	0	-393,227	393,227	393,227	-393,227
SM-1 to 10*	$\frac{N_y \cdot T \cdot \sqrt{R_m \cdot T}}{M_2}$	-0,0005	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_y \cdot \sqrt{R_m \cdot T}}{M_2}$	1,1498	0	0	0	0	0	0	0	0
Р	ressure stress*	I	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127	1.165,127
	Total O _y stress		1.204,077	1.140,801	1.204,077	1.140,801	810,85	1.534,028	1.597,304	747,574
Mer	mbrane O _y stress*		1.172,439	1.172,439	1.172,439	1.172,439	1.172,439	1.172,439	1.172,439	1.172,439
Shear from M _t			33,747	33,747	33,747	33,747	33,747	33,747	33,747	33,747
Shear from V ₁			0	0	0	0	0	0	0	0
Shear from V ₂			7,453	7,453	-7,453	-7,453	0	0	0	0
Total Shear stress			41,2	41,2	26,295	26,295	33,747	33,747	33,747	33,747
	combined stress (P _L +P _b +Q)		1.232,129	1.194,304	1.218,771	1.180,173	1.102,554	1.537,332	1.600,538	1.132,926
(1) * denot (2) The no	tes primary stre zzle is analyzed	ss. I as a h	ollow attac	chment.						

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot (R_o^2 - R_i^2)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 24,63}{2 \cdot 3,94} - \frac{-106,05}{\pi \cdot (28,56^2 - 24,63^2)} \cdot 100 + \frac{54.799,3 \cdot 28,56}{233.899,6} \cdot 100 \\ &= 738,807 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.203,265 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\sigma_{shear} = \frac{\sqrt{V_1^2 + V_2^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{0^2 + 150^2}}{\pi \cdot 24,63 \cdot 3,94} \cdot 100 = 49,249 \ \text{ kg}_f/\text{cm}^2$$

$$\sigma_{\text{torsion}} = \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{38,7}{2 \cdot \pi \cdot 24,63^2 \cdot 3,94} \cdot 100000 = 258,318 \text{ kg}_f/\text{cm}^2$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 49,249 + 258,318 = 307,567 \, {\rm kg}_{\rm f}/{\rm cm}^2$

UG-45: The total combined shear stress (307,567 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.203,265 = 842,286 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG	UG-37 Area Calculation Summary (cm ²)							
	For Pe = 1 bar @ 23 °C							basses UG-45
A required								t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	·36(c)(3)(a)	<u>3,64</u>	5,54

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description Required weld throat size (mm) Actual weld throat size (mm) Status								
Nozzle to shell fillet (Leg ₄₁)	<u>2,76</u>	4 (corroded)	weld size is adequate					

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [51,26, 25,63 + (5,54 1,6) + (24 1,6)]$
- = 51,97 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2,5 \cdot (24 1,6), 2,5 \cdot (5,54 1,6) + 0\right]$
- = 9,84 mm

Nozzle required thickness per UG-28 t_{rn} = 0,4 mm

From UG-37(d)(1) required thickness $t_r = 4,59 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 3,94 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0,7 \cdot t_{\min}] = 2.76 \text{ mm}$ $t_{c(actual)} = 0,7 \cdot \text{Leg} = 0.7 \cdot 5,71 = 4 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 2 mm

 $t_{a\mathrm{UG-22}}$ = 3,64 mm

		(
	=	$\max[2, 3,64]$
	=	3,64 mm
t _{b2}	=	$\frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 0.9\cdot 1.800}{2\cdot 1.180\cdot 1-0.2\cdot 1}+1.6$
	=	2,29 mm
t_{b2}	=	$\max\left[t_{b2}, \ t_{b\mathrm{UG16}}\right]$
	=	$\max [2,29, 3,1]$
	=	3,1 mm
t_b	=	$\min \ [t_{b3} , \ t_{b2}]$
	=	$\min [5,\!02, 3,\!1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3,64, 3,1]$
	=	<u>3.64</u> mm

 t_a

=

 $\max\left[t_{a\mathrm{UG-28}},\;t_{a\mathrm{UG-22}}
ight]$

Available nozzle wall thickness new, $t_n = 5,54 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{345,03}{60,33} = 5,7195$$
$$\frac{D_o}{t} = \frac{60,33}{0,4} = 150,8388$$

From table G: A = 0,000113

From table CS-2 Metric: $B = 115,3628 \text{ kg/cm}^2(113,13 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 113, 13}{3 \cdot (60, 33/0, 4)} = 1$$
 bar

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + ext{Corrosion} = 0,4 + 1,6 = 2 \text{ mm}$

Flange H

ASME	Section VIII Div	ision 1, 2021 Edi	tion Metric , Appendix 2	_				
	nge Type	Weld neck integral						
	hment Type	Figure 2-4 sketch (6)						
	ge Material	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36)						
	ached To		Nozzle (H)					
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP				
No	Yes	Yes	Yes	No				
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)				
h	nternal	15,5	121	-15				
E	xternal	1	23	-15				
		Static	Liquid Head					
Co	ondition		P _s (bar)					
Op	perating		0					
		Dir	nensions					
	nge OD, A	152 mm	200	2022				
	nge ID, B	49,2 mm	A					
	t Circle, C	120,6 mm	С					
	asket OD	85,9 mm	Gasket OD	_				
	asket ID	69,9 mm	Gasket ID	1				
	Thickness, t	17,5 mm						
	hickness, g ₁	14,37 mm						
Hub Ti	hickness, g ₀	5,54 mm	Тв→					
Hub	Length, h	44 mm						
Le	ength, e	64,6 mm	g1	*				
Corre	osion Bore	0 mm	е	· ·				
Corro	sion Flange	0 mm	,	0 h				
			Bolting					
M	laterial	SA-3	20 L7 Bolt ≤ 65 (II-D Metri	c p. 410, In. 33)				
De	scription		4 - 0,625" coarse thre	aded				
Corros	sion on root		0 mm					
			Gasket					
	Туре		Spiral-Wound					
	scription	Spiral-wound Sta		ase alloy windings with filler				
Fa	actor, m	ļ	3					
Seatir	ng Stress, y		703,07 kg _f /cm ²					
Thie	ckness, T		4,5 mm					
		We	eight (kg)					
	New		2,9 kg					
C	orroded		2,9 kg					
		Rac	liography					
Longit	udinal seam		Seamless No R1					
Left Circu	mferential seam		Full UW-11(a) Type	e 1				
		User D	efined Loads					
N	loment		54,8 kg _f -m					

-106,05 kg_f

Results Summary	
Flange design thickness:	16,45 mm
Maximum allowable working pressure, MAWP:	43,33 bar @ 121 °C
Maximum allowable pressure, MAP:	42,8 bar @ 7 °C
Maximum allowable external pressure, MAEP:	514,57 bar @ 23 °C
Rated MDMT	-49 °C

Note: this flange is calculated as an integral type.

UCS-66 Material Toughness Requirements						
Impact test temperature per material specification =	-46°C					
Additional reduction per UCS-66(g) =	3°C					
Bolts rated MDMT per Fig UCS-66 note (c) =	-104°C					
Material is exempt from impact testing at the Design MDMT	of -15°C.					

	Stress Summary										
· · · · ·		P (bar)	S _H (kg _f / cm ²)	Allow (kg _f / cm ²)	S _R (kg _f / cm ²)	S _T (kg _f / cm ²)	(S _H + S _R) / 2 (kg _f / cm ²)	(S _H + S _T) / 2 (kg _f / cm ²)	Allow (kg _f / cm ²)		
MAWP	Wind	Oper	43,33	<u>1.121,519</u>	2.110,813	<u>1.407,208</u>	<u>659,289</u>	<u>1.264,363</u>	<u>890,404</u>	1.407,208	
	vvinu	Seating	43,33	<u>1.010,039</u>	2.110,813	<u>1.267,331</u>	<u>593,755</u>	<u>1.138,685</u>	<u>801,897</u>	1.407,208	
MAP	Wind	Oper	42,8	<u>1.129,235</u>	2.110,813	<u>1.407,207</u>	<u>642,297</u>	<u>1.268,221</u>	<u>885,766</u>	1.407,208	
	vvinu	Seating	42,0	1.020,747	2.110,813	<u>1.272,014</u>	<u>580,59</u>	<u>1.146,381</u>	<u>800,669</u>	1.407,208	
MAEP	Wind	Oper	514,57	<u>1.121,519</u>	2.110,813	<u>1.407,208</u>	<u>659,289</u>	<u>1.264,364</u>	<u>890,404</u>	1.407,208	
	vinu	Seating	514,57	<u>965,548</u>	2.110,813	<u>1.211,506</u>	<u>567,601</u>	<u>1.088,527</u>	<u>766,574</u>	1.407,208	

	Bolt Summary										
			P (bar)	W (kg _f)	A _m (cm²)	A _b (cm²)					
MAWP	Wind Oper		43,33	<u>7.617,28</u>	<u>4,34</u>	5,21					
	vvinu	Seating	45,55	<u>6.879</u>	<u>3,92</u>	5,21					
MAP	Wind	Oper	42,8	<u>7.559,91</u>	<u>4,31</u>	5,21					
	vvinu	Seating	42,0	<u>6.879</u>	<u>3,92</u>	5,21					
MAEP	Wind	Oper 514,5		<u>58.505,47</u>	<u>1,66</u>	5,21					
	VIIIU	Seating	514,57	<u>6.879</u>	<u>3,92</u>	5,21					

Rigidity Summary								
			P (bar)	J	Allow			
MAWP	Wind	Oper	43,33	<u>0,1298</u>	1			
	vinu	Seating	43,33	<u>0,1136</u>	1			
MAP	Wind	Oper	42,8	<u>0,1207</u>	1			
	vinu	Seating	42,0	<u>0,1096</u>	1			
MAEP	Wind	Oper	514,57	<u>0,1263</u>	1			
	wind	Seating	514,57	<u>0,1086</u>	1			

Flange calculations for MAWP + Wind

Longitudinal bending moment on flange

$$P_m = \frac{16 \cdot M_b}{\pi \cdot G^3} = \frac{16 \cdot 54,8 \cdot \frac{10^5}{1,02}}{\pi \cdot 77,9^3} = 57,8969$$
 bar

Axial load on flange

$$P_r = rac{-4 \cdot F}{\pi \cdot G^2} = rac{-4 \cdot -106,05 \cdot rac{10^2}{1,02}}{\pi \cdot 77,9^2} = 2,1821$$
 bar

Total design load on flange (used for H - ref. III-1 NC-3658.1)

 $= P + P_s + P_m + P_r = 43,\!3318 + 0 + 57,\!8969 + 2,\!1821 = 103,\!4108 \ \ {\rm bar}$

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 8 mm

$$b_0 = \frac{N}{2} = 4 \text{ mm}$$

Effective gasket seating width, $b = b_0 = 4 \text{ mm}$

$$\begin{split} G &= \frac{\text{gasket OD} + \text{gasket ID}}{2} = \frac{85,9 + 69,9}{2} = 77,9 \text{ mm} \\ h_G &= \frac{C - G}{2} = \frac{120,6 - 77,9}{2} = 21,35 \text{ mm} \\ h_D &= R + \frac{g_1}{2} = 21,33 + \frac{14,37}{2} = 28,52 \text{ mm} \\ h_T &= \frac{R + g_1 + h_G}{2} = \frac{21,33 + 14,37 + 21,35}{2} = 28,53 \text{ mm} \\ H_p &= 2 \cdot b \cdot 3,14 \cdot G \cdot m \cdot P = 0.01 \cdot 2 \cdot 4 \cdot 3,14 \cdot 77,9 \cdot 3 \cdot 44,1862 = 2.593,97 \text{ kg}_f \\ H &= 0,785 \cdot G^2 \cdot P = 0,785 \cdot 77,9^2 \cdot 105,4497 = 5.023,31 \text{ kg}_f \\ H_D &= 0,785 \cdot B^2 \cdot P = 0,785 \cdot 49,2^2 \cdot 44,1862 = 839,63 \text{ kg}_f \\ H_T &= H - H_D = 5.023,31 - 839,63 = 4.183,68 \text{ kg}_f \\ W_{m1} &= H + H_p = 5.023,31 + 2.593,97 = 7.617,28 \text{ kg}_f \\ W_{m2} &= 3,14 \cdot b \cdot G \cdot y = 3,14 \cdot 4 \cdot 77,9 \cdot 703,0696 = 6.879 \text{ kg}_f \end{split}$$

Required bolt area, A_m = greater of A_{m1} , A_{m2} = 4,343 cm²

$$A_{m1} = \frac{W_{m1}}{S_b} = \frac{7.617,28}{1.753,912} = \frac{4.343 \text{ cm}^2}{4.343 \text{ cm}^2}$$
$$A_{m2} = \frac{W_{m2}}{S_a} = \frac{6.879}{1.753,912} = \frac{3.9221 \text{ cm}^2}{3.9221 \text{ cm}^2}$$

Total area for 4 - 0,625" coarse threaded bolts, corroded, $A_b = 5,2129 \text{ cm}^2$

$$W = \frac{(A_m + A_b) \cdot S_a}{2} = \frac{(4,343 + 5,2129) \cdot 1.753,912}{2} = 8.380,12 \text{ kg}_f$$
$$M_D = H_D \cdot h_D = 839,63 \cdot 0,0285 = 23,9kg_f - m$$
$$M_T = H_T \cdot h_T = 4.183,68 \cdot 0,0285 = 119,3kg_f - m$$

 $H_G = W_{m1} - H = 7.617,\!28 - 5.023,\!31 = 2.593,\!97 \ \mathrm{kg}_f$

 $M_G = H_G \cdot h_G = 2.593, 97 \cdot 0,0214 = 55,4 kg_f - m$

 $M_o = M_D + M_T + M_G = 23,9 + 119,3 + 55,4 = 198,7kg_f - m$ $M_g = W \cdot h_G = 8.380,12 \cdot 0,0214 = 178,9kg_f - m$

Hub and Flange Factors

 $g_0 = \min(g_0, t_n) = \min(5, 54, 3, 94) = 3, 94 \text{ mm}$

$$h_0 = \sqrt{B \cdot g_0} = \sqrt{49,2\cdot 3,94} = 13,92 \text{ mm}$$

From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{152}{49,2} = 3,0894$ T = 1,1845 Z = 1,2341 Y = 1,8171 U = 1,9969 $\frac{h}{h_0} = 3,1615$ $\frac{g_1}{g_0} = 3,65$ F = 0,5148 V = 0,0284 $e = \frac{F}{h_0} = 0,3699$

$$d = \left(\frac{U}{V}\right) \cdot h_0 \cdot g_0^2 = \left(\frac{1,9969}{0,0284}\right) \cdot 1,3918 \cdot 0,3937^{-2} = 15,1874 \text{ cm}^{-3}$$

Stresses at operating conditions - VIII-1 Appendix 2-7

$$\begin{split} f &= 1 \\ L &= \frac{t \cdot e + 1}{T} + \frac{t^3}{d} = \frac{1.75 \cdot 0.3699 + 1}{1.1845} + \frac{1.75}{15.1874} = 1.7435 \\ S_H &= \frac{f \cdot M_o}{L \cdot g_1^2 \cdot B} = \frac{1.e5 \cdot 1 \cdot 198,7}{1.7435 \cdot 14.37^{-2} \cdot 49,2} = \frac{1.121.519 \text{ kg}_{\text{f}}/\text{cm}^2}{1.21.519 \text{ kg}_{\text{f}}/\text{cm}^2} \\ S_R &= \frac{(1.33 \cdot t \cdot e + 1) \cdot M_o}{L \cdot t^2 \cdot B} = \frac{(1.33 \cdot 17.5 \cdot 0.037 + 1) \cdot 1e5 \cdot 198,7}{1.7435 \cdot 17.5^{-2} \cdot 49,2} = \frac{1.407.208 \text{ kg}_{\text{f}}/\text{cm}^2}{1.21.208 \text{ kg}_{\text{f}}/\text{cm}^2} \\ S_T &= \frac{Y \cdot M_o}{t^2 \cdot B} - Z \cdot S_R = \frac{1e5 \cdot 1.8171 \cdot 198,7}{17.5^{-2} \cdot 49,2} - 1.2341 \cdot 1.407,208 = \frac{659.289 \text{ kg}_{\text{f}}/\text{cm}^2}{1.203.265 \text{ kg}_{\text{f}}/\text{cm}^2} \\ \\ \text{Allowable stress } S_{\text{fo}} &= 1.407.208 \text{ kg}_{\text{f}}/\text{cm}^2 \\ \text{Allowable stress } S_{\text{no}} &= 1.203.265 \text{ kg}_{\text{f}}/\text{cm}^2 \\ \text{S}_{\text{T}} \text{ does not exceed } S_{\text{fo}} \\ \text{S}_{\text{H}} \text{ does not exceed } S_{\text{fo}} \\ \frac{S_H + S_R}{2} &= \frac{1.264.363}{1.264.363} \text{ kg}_{\text{f}}/\text{cm}^2 \text{ does not exceed } S_{\text{fo}} \\ \frac{S_H + S_T}{2} &= \frac{890.404}{2} \text{ kg}_{\text{f}}/\text{cm}^2 \text{ does not exceed } S_{\text{fo}} \end{aligned}$$

Flange rigidity at operating per VIII-1 Appendix 2-14

$$J = 52,14 \cdot V \cdot \frac{M_o}{L \cdot E \cdot g_0^2 \cdot K_I \cdot h_0} = 52,14 \cdot 0,0284 \cdot \frac{198,7}{1,7435 \cdot 20,06E + 05 \cdot 3,94^2 \cdot 0,3 \cdot 13,92} = 0.1298$$

The flange rigidity index J does not exceed 1; satisfactory.

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_{H} = \frac{f \cdot M_{g}}{L \cdot g_{1}^{2} \cdot B} = \frac{165 \cdot 1 \cdot 178,9}{1,7435 \cdot 14,37^{-2} \cdot 49,2} = \frac{1.010,039 \text{ kg}_{\text{f}}/\text{cm}^{2}}{1.010,039 \text{ kg}_{\text{f}}/\text{cm}^{2}}$$

$$S_R = \frac{(1,33 \cdot t \cdot e + 1) \cdot M_g}{L \cdot t^2 \cdot B} = \frac{(1,33 \cdot 17,5 \cdot 0,037 + 1) \cdot 1e5 \cdot 178,9}{1,7435 \cdot 17,5^2 \cdot 49,2} = \underline{1.267,331 \text{ kg}_{\underline{f}}/\text{cm}^2}$$

$$S_T = \frac{Y \cdot M_g}{t^2 \cdot B} - Z \cdot S_R = \frac{1,8171 \cdot 1e5 \cdot 178,9}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.267,331 = \frac{593,755 \text{ kg}_{\text{f}}/\text{cm}^2}{12000}$$

Allowable stress S_{fa} = 1.407,208 kg_f/cm² Allowable stress S_{na} = 1.203,265 kg_f/cm²

ST does not exceed Sfa

$$\begin{split} & \mathsf{S}_{\mathsf{H}} \text{ does not exceed } \min \ [1.5 \cdot S_{\mathit{fa}}, 2.5 \cdot S_{\mathit{na}}] = 2.110,813 \ \text{ kg}_{\mathit{f}}/\text{cm}^{\ 2} \\ & \mathsf{S}_{\mathsf{R}} \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \\ & \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} = \ \underline{1.138,685} \ \text{kg}_{\mathsf{f}}/\text{cm}^2 \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \\ & \frac{S_{\mathit{H}} + S_{\mathit{T}}}{2} = \ \underline{801,897} \ \text{kg}_{\mathsf{f}}/\text{cm}^2 \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \end{split}$$

Flange rigidity at gasket seating per VIII-1 Appendix 2-14

$$J = 52,14 \cdot V \cdot \frac{M_g}{L \cdot E \cdot g_0^2 \cdot K_I \cdot h_0} = 52,14 \cdot 0,0284 \cdot \frac{178,9}{1,7435 \cdot 20,63 \times 20,63 \times 10^3 \cdot 13,92} = 0.1136$$

The flange rigidity index J does not exceed 1; satisfactory.

Flange calculations for MAP + Wind

Longitudinal bending moment on flange

$$P_m = rac{16 \cdot M_b}{\pi \cdot G^3} = rac{16 \cdot 54,8 \cdot rac{10^3}{1,02}}{\pi \cdot 77,9^{-3}} = 57,8969 \;\; {
m bar}$$

Axial load on flange

$$P_r = rac{-4 \cdot F}{\pi \cdot G^2} = rac{-4 \cdot -106,05 \cdot rac{10^\circ}{1,02}}{\pi \cdot 77,9^{-2}} = 2,1821$$
 bar

Total design load on flange (used for H - ref. III-1 NC-3658.1)

 $= P + P_s + P_m + P_r = 42,8028 + 0 + 57,8969 + 2,1821 = 102,8817 \quad {\rm bar}$

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 8 mm

$$b_0 = \frac{N}{2} = 4 \text{ mm}$$

Effective gasket seating width, $b = b_0 = 4 \text{ mm}$

$$G = \frac{\text{gasket OD+gasket ID}}{2} = \frac{85,9+69,9}{2} = 77,9 \text{ mm}$$

$$h_G = \frac{C-G}{2} = \frac{120,6-77,9}{2} = 21,35 \text{ mm}$$

$$h_D = R + \frac{g_1}{2} = 21,33 + \frac{14,37}{2} = 28,52 \text{ mm}$$

$$h_T = \frac{R+g_1+h_G}{2} = \frac{21,33+14,37+21,35}{2} = 28,53 \text{ mm}$$

 $H_p = 2 \cdot b \cdot 3,14 \cdot G \cdot m \cdot P = 0.01 \cdot 2 \cdot 4 \cdot 3,14 \cdot 77,9 \cdot 3 \cdot 43,6467 = 2.562,3 \text{ kg}_f$

$$H = 0,785 \cdot G^2 \cdot P = 0,785 \cdot 77,9\ ^2 \cdot 104,9102 = 4.997,61 \ \ {
m kg}_f$$

$$H_D = 0.785 \cdot B^2 \cdot P = 0.785 \cdot 49.2\ ^2 \cdot 43.6467 = 829.38 \ \ {
m kg}_f$$

$$H_T = H - H_D = 4.997,61 - 829,38 = 4.168,23 \, \mathrm{kg}_f$$

 $W_{m1} = H + H_p = 4.997,\!61 + 2.562,\!3 = \overline{7.559,\!91} \; \mathrm{kg_f}$

 $W_{m2} = 3,14 \cdot b \cdot G \cdot y = 3,14 \cdot 4 \cdot 77,9 \cdot 703,0696 = 6.879 \text{ kg}_{f}$

Required bolt area, A_m = greater of A_{m1} , A_{m2} = 4,3103 cm²

$$A_{m1} = \frac{W_{m1}}{S_b} = \frac{7.559,91}{1.753,912} = \frac{4.3103 \text{ cm}^2}{4.3103 \text{ cm}^2}$$

 $A_{m2} = \frac{W_{m2}}{S_a} = \frac{6.879}{1.753,912} = \frac{3.9221 \text{ cm}^2}{1.753,912}$

Total area for 4 - 0,625" coarse threaded bolts, corroded, $A_b = 5,2129 \text{ cm}^2$

$$W = rac{(A_m + A_b) \cdot S_a}{2} = rac{(4,3103 + 5,2129) \cdot 1.753,912}{2} = 8.351,43 \;\; \mathrm{kg}_{\,f}$$

$$\begin{split} M_D &= H_D \cdot h_D = 829{,}38 \cdot 0{,}0285 = 23{,}7kg_f - m \\ M_T &= H_T \cdot h_T = 4.168{,}23 \cdot 0{,}0285 = 118{,}9kg_f - m \end{split}$$

$$H_G = W_{m1} - H = 7.559,91 - 4.997,61 = 2.562,3 \, \mathrm{kg}_f$$

 $M_G = H_G \, \cdot h_G \, = 2.562,\! 3 \cdot 0,\! 0214 = 54,\! 7kg_f - m$

 $M_o = M_D + M_T + M_G = 23,7 + 118,9 + 54,7 = 197,3 kg_f - m$

 $M_g = W \cdot h_G = 8.351,43 \cdot 0,0214 = 178,3kg_f - m$

Hub and Flange Factors

 $g_{0} = \min (g_{0}, t_{n}) = \min (5,54,5,54) = 5,54 \text{ mm}$ $h_{0} = \sqrt{B \cdot g_{0}} = \sqrt{49,2 \cdot 5,54} = 16,51 \text{ mm}$ From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{152}{49,2} = 3,0894$ $T = 1,1845 \quad Z = 1,2341 \quad Y = 1,8171 \quad U = 1,9969$ $\frac{h}{h_{0}} = 2,6658 \quad \frac{g_{1}}{g_{0}} = 2,5952$ $F = 0,6015 \quad V = 0,0635 \quad e = \frac{F}{h_{0}} = 0,3644$ $d = \left(\frac{U}{V}\right) \cdot h_{0} \cdot g_{0}^{2} = \left(\frac{1,9969}{0,0635}\right) \cdot 1,6505 \cdot 0,5537^{-2} = 15,9146 \text{ cm}^{-3}$

Stresses at operating conditions - VIII-1 Appendix 2-7

f=1

$$L = rac{t \cdot e + 1}{T} + rac{t^3}{d} = rac{1,75 \cdot 0,3644 + 1}{1,1845} + rac{1,75\ ^3}{15,9146} = 1,7193$$

$$S_{H} = \frac{f \cdot M_{o}}{L \cdot g_{1}^{2} \cdot B} = \frac{1e5 \cdot 1 \cdot 197,3}{1,7193 \cdot 14,37^{-2} \cdot 49,2} = \underline{1.129,235 \text{ kg}_{\text{f}}/\text{cm}^{2}}$$

$$S_R = \frac{(1,33 \cdot t \cdot e + 1) \cdot M_o}{L \cdot t^2 \cdot B} = \frac{(1,33 \cdot 17,5 \cdot 0,0364 + 1) \cdot 1e5 \cdot 197,3}{1,7193 \cdot 17,5 \, ^2 \cdot 49,2} = \frac{1.407,207 \text{ kg}_{\text{f}}/\text{cm}^2}{1.407,207 \text{ kg}_{\text{f}}/\text{cm}^2}$$

$$S_T = \frac{Y \cdot M_o}{t^2 \cdot B} - Z \cdot S_R = \frac{1e5 \cdot 1,8171 \cdot 197,3}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.407,207 = \frac{642,297 \text{ kg}_{\text{f}}/\text{cm}^2}{642,297 \text{ kg}_{\text{f}}/\text{cm}^2}$$

Allowable stress S_{fo} = 1.407,208 kg_f/cm² Allowable stress S_{no} = 1.203,265 kg_f/cm²

 S_{T} does not exceed S_{fo}

$$\begin{split} & \mathsf{S}_{\mathsf{H}} \text{ does not exceed } \min\left[1,5 \cdot S_{fo}, 2,5 \cdot S_{no}\right] = 2.110,813 \ \text{ kg}_{f}/\text{cm}^{2} \\ & \mathsf{S}_{\mathsf{R}} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \\ & \frac{S_{H} + S_{R}}{2} = \underbrace{1.268,221}_{2} \text{ kg}_{\mathsf{f}}/\text{cm}^{2} \text{ does not exceed } \mathsf{S}_{\mathsf{fo}} \end{split}$$

 $\frac{S_H + S_T}{2} = \frac{885,766}{8}$ kg_f/cm² does not exceed S_{fo}

Flange rigidity at operating per VIII-1 Appendix 2-14

$$J = 52,14 \cdot V \cdot \frac{M_o}{L \cdot E \cdot g_0^2 \cdot K_I \cdot h_0} = 52,14 \cdot 0,0635 \cdot \frac{197,3}{1,7193 \cdot 20,73E + 05 \cdot 5,54^2 \cdot 0,3 \cdot 16,51} = \underline{0,1207} + \underline{0,1207} +$$

The flange rigidity index J does not exceed 1; satisfactory.

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_H = \frac{f \cdot M_g}{L \cdot g_1^2 \cdot B} = \frac{1e5 \cdot 1 \cdot 178,3}{1,7193 \cdot 14,37 \cdot 2 \cdot 49,2} = \frac{1.020,747 \text{ kg}_{\text{f}}/\text{cm}^2}{1.020,747 \text{ kg}_{\text{f}}/\text{cm}^2}$$

$$S_R = \frac{(1,33 \cdot t \cdot e + 1) \cdot M_g}{L \cdot t^2 \cdot B} = \frac{(1,33 \cdot 17,5 \cdot 0,0364 + 1) \cdot 1e5 \cdot 178,3}{1,7193 \cdot 17,5 \,^2 \cdot 49,2} = \frac{1.272,014 \text{ kg}_{\text{f}}/\text{cm}^2}{1.272,014 \text{ kg}_{\text{f}}/\text{cm}^2} = \frac{1.272,014 \text{ kg}_{\text{f}}/\text{cm}^2$$

$$S_T = \frac{Y \cdot M_g}{t^2 \cdot B} - Z \cdot S_R = \frac{1,8171 \cdot 1e5 \cdot 178,3}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.272,014 = \frac{580,59 \text{ kg}_{\text{f}}/\text{cm}^2}{580,59 \text{ kg}_{\text{f}}/\text{cm}^2}$$

Allowable stress S_{fa} = 1.407,208 kg_f/cm² Allowable stress S_{na} = 1.203,265 kg_f/cm²

$$\begin{split} & \mathsf{S}_{\mathsf{T}} \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \\ & \mathsf{S}_{\mathsf{H}} \text{ does not exceed } \min\left[1.5 \cdot S_{\mathit{fa}}, 2.5 \cdot S_{\mathit{na}}\right] = 2.110,813 \ \text{ kg}_{\mathit{f}}/\text{cm}^{\ 2} \\ & \mathsf{S}_{\mathsf{R}} \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \\ & \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} = \ \underline{1.146,381} \ \text{kg}_{\mathsf{f}}/\text{cm}^2 \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \\ & \frac{S_{\mathit{H}} + S_{\mathit{R}}}{2} = \ \underline{800,669} \ \text{kg}_{\mathsf{f}}/\text{cm}^2 \text{ does not exceed } \mathsf{S}_{\mathsf{fa}} \end{split}$$

Flange rigidity at gasket seating per VIII-1 Appendix 2-14

$$J = 52,14 \cdot V \cdot \frac{M_g}{L \cdot E \cdot g_0^2 \cdot K_I \cdot h_0} = 52,14 \cdot 0,0635 \cdot \frac{178,3}{1,7193 \cdot 20,63E + 05 \cdot 5,54^2 \cdot 0,3 \cdot 16,51} = \underline{0,1096}$$

The flange rigidity index J does not exceed 1; satisfactory.

Flange calculations for MAEP + Wind per VIII-1, Appendix 2-11

Longitudinal bending moment on flange

$$P_m = rac{16 \cdot M_b}{\pi \cdot G^3} = rac{16 \cdot 54.8 \cdot rac{10^5}{1.02}}{\pi \cdot 77.9^3} = 57,8969 ext{ bar}$$

Axial load on flange

$$P_r = rac{4 \cdot F}{\pi \cdot G^2} = rac{4 \cdot -106,05 \cdot rac{10^2}{1,02}}{\pi \cdot 77,9^2} = -2,1821$$
 bar

Total design load on flange (used for H - ref. III-1 NC-3658.1)

 $= P + P_s + P_m + P_r = 514{,}5656 + 0 + 57{,}8969 + -2{,}1821 = 570{,}2804 \ \ {\rm bar}$

Gasket details from facing sketch 1(a) or (b), Column II

Gasket width N = 8 mm

$$b_0 = \frac{N}{2} = 4 \text{ mm}$$

Effective gasket seating width, $b = b_0 = 4 \text{ mm}$

$$G = \frac{\text{gasket OD+gasket ID}}{2} = \frac{85,9+69,9}{2} = 77,9 \text{ mm}$$

$$h_G = \frac{C-G}{2} = \frac{120,6-77,9}{2} = 21,35 \text{ mm}$$

$$h_D = R + \frac{g_1}{2} = 21,33 + \frac{14,37}{2} = 28,52 \text{ mm}$$

$$h_T = \frac{R+g_1+h_G}{2} = \frac{21,33+14,37+21,35}{2} = 28,53 \text{ mm}$$

$$H_p = 2 \cdot b \cdot 3,14 \cdot G \cdot m \cdot P = 0.01 \cdot 2 \cdot 4 \cdot 3,14 \cdot 77,9 \cdot 3 \cdot 524,7109 = 30.803,39 \text{ kg}_f$$

$$H = 0,785 \cdot G^2 \cdot P = 0,785 \cdot 77,9^2 \cdot 581,5242 = 27.702,08 \text{ kg}_f$$

$$H_D = 0,785 \cdot B^2 \cdot P = 0,785 \cdot 49,2^2 \cdot 524,7109 = 9.970,57 \text{ kg}_f$$

$$H_T = H - H_D = 27.702,08 - 9.970,57 = 17.731,51 \text{ kg}_f$$

$$W_{m1} = H + H_p = 27.702,08 + 30.803,39 = \frac{58.505,47 \text{ kg}_f}{58.505,47 \text{ kg}_f}$$
Required bolt area A... = greater of A... (A..., c = 3.9221 \text{ cm}^2

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

$$A_{m1} = 0,785 \cdot G^2 \cdot \frac{P_m - P_r}{S_b} = 0,785 \cdot 77,9^2 \cdot \frac{57,9 - -2,18}{1.753,912} = \frac{1.6639 \text{ cm}^2}{1.6639 \text{ cm}^2}$$

$$A_{m2} = \frac{W_{m2}}{S_a} = \frac{6.879}{1.753,912} = \frac{3.9221 \text{ cm}^2}{3.9221 \text{ cm}^2}$$

Total area for 4 - 0,625" coarse threaded bolts, corroded, $A_b = 5,2129 \text{ cm}^2$

$$W = \frac{(A_{m2} + A_b) \cdot S_a}{2} = \frac{(3,9221 + 5,2129) \cdot 1.753,912}{2} = 8.010,98 \text{ kg}_f$$
$$M_o = H_D \cdot (h_D - h_G) + H_T \cdot (h_T - h_G) = 9.970,57 \cdot (0,0285 - 0,0214) + 17.731,51 \cdot (0,0285 - 0,0214) = 198,7kg_f - m$$
$$M_g = W \cdot h_G = 8.010,98 \cdot 0,0214 = 171kg_f - m$$

Hub and Flange Factors

$$g_{0} = \min (g_{0}, t_{n}) = \min (5,54,3,94) = 3,94 \text{ mm}$$

$$h_{0} = \sqrt{B \cdot g_{0}} = \sqrt{49,2\cdot3,94} = 13,92 \text{ mm}$$
From FIG. 2-7.1, where $K = \frac{A}{B} = \frac{152}{49,2} = 3,0894$
 $T = 1,1845 \quad Z = 1,2341 \quad Y = 1,8171 \quad U = 1,9969$

$$\frac{h}{h_{0}} = 3,1615 \quad \frac{g_{1}}{g_{0}} = 3,65$$
 $F = 0,5148 \quad V = 0,0284 \quad e = \frac{F}{h_{0}} = 0,3699$
 $d = \left(\frac{U}{V}\right) \cdot h_{0} \cdot g_{0}^{2} = \left(\frac{1,9969}{0,0284}\right) \cdot 1,3918 \cdot 0,3937^{2} = 15,1874 \text{ cm}^{3}$
Stresses at operating conditions - VIII-1 Appendix 2-7
 $f = 1$
 $L = \frac{t \cdot e + 1}{T} + \frac{t^{3}}{d} = \frac{1.75 \cdot 0,3699 + 1}{1,1845} + \frac{1.75^{3}}{15,1874} = 1,7435$
 $S_{H} = \frac{f \cdot M_{o}}{L \cdot g_{1}^{2} \cdot B} = \frac{1.65 \cdot 1 \cdot 198,7}{1,7435 \cdot 14,37^{2} \cdot 49,2} = 1.121.519 \text{ kg}/\text{cm}^{2}$
 $S_{R} = \frac{(1,33 \cdot t \cdot e + 1) \cdot M_{o}}{L \cdot t^{2} \cdot B} = \frac{(1.53 \cdot 17,5 \cdot 0.037 + 1) \cdot 1e5 \cdot 198,7}{1,7435 \cdot 17,5^{2} \cdot 49,2} = \frac{1.407,208 \text{ kg}/\text{cm}^{2}}{1,75^{2} \cdot 49,2}$
Allowable stress $S_{f_{0}} = 1.407,208 \text{ kg}/\text{cm}^{2}$
Allowable stress $S_{f_{0}} = 1.407,208 \text{ kg}/\text{cm}^{2}$
 S_{T} does not exceed $S_{f_{0}}$
 S_{H} does not exceed $S_{f_{0}}$

 S_R does not exceed S_{fo}

 $\frac{S_H + S_R}{2} = \frac{1.264,364}{1.264,364} \text{ kg}_{\text{f}}/\text{cm}^2 \text{ does not exceed S}_{\text{fo}}$ $\frac{S_H + S_T}{2} = \frac{890,404}{1.264} \text{ kg}_{\text{f}}/\text{cm}^2 \text{ does not exceed S}_{\text{fo}}$

Flange rigidity at operating per VIII-1 Appendix 2-14

$$J = 52,14 \cdot V \cdot \frac{M_o}{L \cdot E \cdot g_0^2 \cdot K_I \cdot h_0} = 52,14 \cdot 0,0284 \cdot \frac{198,7}{1,7435 \cdot 20,61E + 05 \cdot 3,94 \cdot 2 \cdot 0,3 \cdot 13,92} = \underline{0,1263}$$

The flange rigidity index J does not exceed 1; satisfactory.

Stresses at gasket seating - VIII-1 Appendix 2-7

$$S_{H} = \frac{f \cdot M_{g}}{L \cdot g_{1}^{2} \cdot B} = \frac{1e5 \cdot 1 \cdot 171}{1,7435 \cdot 14,37^{-2} \cdot 49,2} = \frac{965,548 \text{ kg}_{\underline{f}}/\text{cm}^{2}}{965,548 \text{ kg}_{\underline{f}}/\text{cm}^{2}}$$

$$S_R = \frac{(1,33 \cdot t \cdot e + 1) \cdot M_g}{L \cdot t^2 \cdot B} = \frac{(1,33 \cdot 17,5 \cdot 0,037 + 1) \cdot 1e5 \cdot 171}{1,7435 \cdot 17,5^2 \cdot 49,2} = \underline{1.211,506 \text{ kg}_{\underline{f}}/\text{cm}^2}$$

$$S_T = \frac{Y \cdot M_g}{t^2 \cdot B} - Z \cdot S_R = \frac{1,8171 \cdot 1e5 \cdot 171}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text{ kg}_{\underline{f}}/\text{cm}^2}{17,5^2 \cdot 49,5^2} - 1,2341 \cdot 1.211,506 = \frac{567,601 \text$$

Allowable stress S_{fa} = 1.407,208 kg_f/cm² Allowable stress S_{na} = 1.203,265 kg_f/cm²

ST does not exceed Sfa

 $\begin{array}{ll} {\sf S}_{\sf H} \mbox{ does not exceed } \min \ [1.5 \cdot S_{fa}\,, 2.5 \cdot S_{na}\,] = 2.110, 813 \ \ \mbox{kg}_{\,f}/\mbox{cm}^{\,2} \\ {\sf S}_{\sf R} \mbox{ does not exceed } {\sf S}_{\sf fa} \end{array}$

 $\frac{S_H + S_R}{2} = \frac{1.088,527}{2} \text{ kg}_{\text{f}}/\text{cm}^2 \text{ does not exceed S}_{\text{fa}}$ $\frac{S_H + S_T}{2} = \frac{766,574}{2} \text{ kg}_{\text{f}}/\text{cm}^2 \text{ does not exceed S}_{\text{fa}}$

Flange rigidity at gasket seating per VIII-1 Appendix 2-14

$$J = 52,14 \cdot V \cdot \frac{M_g}{L \cdot E \cdot g_0^2 \cdot K_I \cdot h_0} = 52,14 \cdot 0,0284 \cdot \frac{171}{1,7435 \cdot 20,63\text{E} + 05 \cdot 3,94 \cdot 2 \cdot 0,3 \cdot 13,92} = \underline{0,1086} + \underline{0,1086$$

The flange rigidity index J does not exceed 1; satisfactory.

Flange H - Flange hub

	ASME Se	ction VIII Division 1, 202	1 Edition Metric				
Com	ponent	Flange Hub					
Ma	iterial	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36)					
Impact Tested	Normalized	Fine Grain Practice					
No	Yes	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Int	ernal	15,5	121	-15			
Ext	ternal	1	23	-15			
		Static Liquid Head	1				
Cor	ndition	P _s (bar)	H _s (mm)	SG			
Test h	orizontal	0,1	1.050,83	1			
Test	vertical	0,03	336,01	1			
		Dimensions					
Outer	Diameter	60,28 mm					
Le	ength	47,1 mm					
Nominal	Thickness	5,54 mm					
Corrosion	Inner	0 mm					
	Outer		0 mm				
		Weight and Capacit	ty				
		Weight (kg)	Capacity (liters)			
1	lew	0,86		0,09			
Cor	roded	0,86		0,09			
		Cladding					
		Material	Thickness (mm)	Thk Credit			
		SA-240 304L (low stress)	3,18	No			
		Radiography					
Longitu	dinal seam	Seamless No RT					
Bottom Circu	mferential seam	Full UW-11(a) Type 1					

Results Summary	
Governing condition	UG-16
Minimum thickness per UG-16	1,5 mm + 0 mm = 1,5 mm
Design thickness due to internal pressure (t)	<u>0,34 mm</u>
Design thickness due to external pressure (t_e)	<u>0,17 mm</u>
Maximum allowable working pressure (MAWP)	<u>273,79 bar</u>
Maximum allowable pressure (MAP)	<u>273,79 bar</u>
Maximum allowable external pressure (MAEP)	<u>148,27 bar</u>
Rated MDMT	-105 °C

UCS-66 Material Toughness Requirements		
Impact test temperature per material specification =	-46°C	
$t_r = rac{15,9\cdot 30,14}{1.380\cdot 1 + 0,4\cdot 15,9} =$	0,35 mm	
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.35 \cdot 1}{5.54 - 0} =$	0,0624	
Stress ratio ≤ 0,35, MDMT per UCS-66(b)(3) =	-105°C	
$egin{array}{llllllllllllllllllllllllllllllllllll$	-105°C	
Material is exempt from impact testing at the Design MDMT of -15°C.		

Design thickness, (at 121 °C) Appendix 1-1

$$t = \frac{P \cdot R_o}{S \cdot E + 0.40 \cdot P} + \text{Corrosion} = \frac{15.5 \cdot 30.14}{1.380 \cdot 1.00 + 0.40 \cdot 15.5} + 0 = \underline{0.34} \text{ mm}$$

Maximum allowable working pressure, (at 121 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} - P_s = \frac{1.380 \cdot 1.00 \cdot 5.54}{30.14 - 0.40 \cdot 5.54} - 0 = \underline{273.79} \text{ bar}$$

Maximum allowable pressure, (at 7 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} = \frac{1.380 \cdot 1.00 \cdot 5.54}{30.14 - 0.40 \cdot 5.54} = \frac{273.79}{273.79} \text{ bar}$$

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{47,1}{60,28} = 0,7814$$
$$\frac{D_o}{t} = \frac{60,28}{0,17} = 353,9838$$

From table G: A = 0,000266

From table CS-2 Metric: $B = 270,7284 \text{ kg/cm}^2(265,49 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 265, 49}{3 \cdot (60, 28/0, 17)} = 1 \ \, {\rm bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + ext{Corrosion} = 0,17 + 0 = \underline{0,17} \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{47.1}{60,28} = 0,7814$$

$$\frac{D_o}{t} = \frac{60,28}{5,54} = 10,8809$$

From table G: A = 0,057564

From table CS-2 Metric: $B = 1.233,8567 \text{ kg/cm}^2(1.209,9979 \text{ bar})$

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 1.210}{3 \cdot (60,\!28/5,\!54)} = rac{148,\!27}{148,\!27} \, \mathrm{bar}$

Top platform

Platform				
Distance from Base to Datum	2.286 mm			
Attached To	Top Head			
Orientation	0,00 degrees			
Offset	981 mm			
Width, W	2.557 mm (2,56 m)			
Length, L	1.962 mm (1,96 m)			
Wind Force Coefficient, C _f	2,00			
Floor Grating				
Unit Weight	150,00 kg/m^2			
Area	5,02 m^2			
Railing				
Height, h	1.300 mm (1,30 m)			
Length	9038,00 mm (9,04 m)			
Unit Weight	25,00 kg/m			
Ladder				
Distance from Start to Datum	-1.170 mm			
Angle	0,00 degrees			
Unit Weight	45,00 kg/m			
Length	3.456 mm (3,46 m)			
Allow Cage on Ladder	Yes			
Weight				
Platform & Railing Weight	978,48 kg			
Ladder Weight 155,52 kg				
Total Weight 1134,00 kg				
Included in Vessel Lift & Shipping Weight	No			
Present When Vessel is Empty	Yes			
Present During Test	Yes			

Platform Wind Shear Calculation

Method and assumptions taken from Wind Loads for Petrochemical and Other Industrial Facilities, ASCE, 2011.

Platform depth:	$H_p =$ 152,4 mm
Railing effective height:	$H_r = $ 243,84 mm
Platform diagonal length:	$L_d = \sqrt{L^2 + W^2} = \sqrt{1.962\ ^2 + 2.557\ ^2} =$ 3.222,99 mm
Platform projected area:	$A_{eP} = H_p \cdot L_d = 152,\!4\cdot 3.222,\!99 = 4.911,\!84 \mathrm{cm}^{2}$
Front Railing projected area:	$A_{eFR} = {H}_r \cdot L_d = 243,\!84\cdot 3.222,\!99 = 7.858,\!95~~{ m cm}^2$
Rear Railing projected area:	$A_{ m e \; RR} = H_r \cdot L_d = 243,\!84 \cdot 3.222,\!99 = 7.858,\!95 \;\;{ m cm}^2$
Total projected area:	$A_e = A_{eP} + A_{eFR} + A_{e RR} = 4.911,84 + 7.858,95 + 7.858,95 = 20.629,74 { m cm}^2$
Local wind pressure:	$P_w = 861,\!17Pa$
Wind shear:	$V_p = P_w \cdot C_f \cdot A_e \cdot \text{MetricFactor} = 861,\!17 \cdot 2,\!00 \cdot 20.629,\!74 \cdot 0,\!101972 = 362,\!32 \ \text{kg}f$

Shell V1

ASME Section VIII Division 1, 2021 Edition Metric					
Com	ponent	Cylinder			
Mat	terial	SA-516 60 (II-D Metric p. 16, In. 3)			
Impact Tested	Normalized	Fine Grain Practice PWHT M		Maximize MDMT/ No MAWP	
Yes (-46°C)	Yes	Yes	Yes	No	
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)	
Inte	ernal	15,5	121	-15	
Exte	ernal	1	23	-15	
		Static Liquio	d Head		
Con	dition	P _s (bar)	H _s (mm)	SG	
Oper	rating	0,04	455	0,999	
Test ho	orizontal	0,19	1.923,2	1	
Test	vertical	0,25	2.500	1	
	Dimensions				
Inner D	Diameter	1.800 mm			
Lei	ngth		1.700 mm		
Nominal	Thickness	21 mm			
Corrosion	Inner	0 mm			
Concolon	Outer		1,6 mm		
		Weight and C	apacity		
		W	eight (kg)	Capacity (liters)	
N	ew	1	1.510,35	4.297,18	
Corr	roded		1.393,96	4.297,18	
		Insulation\l	_ining		
		Thickness (mm)	Density (kg/m ³)	Weight (kg)	
Lir	ning	3 8.000		230,33	
Insu	lation	80 100		82,12	
		Spacing(mm) Individual Weight (kg)		Total Weight (kg)	
	lation ports	0 0		0	
		Radiogra	phy		
	linal seam	Full UW-11(a) Type 1			
	erential seam	Full UW-11(a) Type 1			
Bottom Circur	nferential seam	ו Full UW-11(a) Type 1			

Results Summary			
Governing condition	Internal pressure		
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm		
Design thickness due to internal pressure (t)	<u>13,55 mm</u>		
Design thickness due to external pressure (t _e)	<u>7,77 mm</u>		
Design thickness due to combined loadings + corrosion	<u>6,48 mm</u>		
Maximum allowable working pressure (MAWP)	<u>25,07 bar</u>		
Maximum allowable pressure (MAP)	<u>27,15 bar</u>		
Maximum allowable external pressure (MAEP)	<u>12,77 bar</u>		
Rated MDMT	-66,6 °C		

UCS-66 Material Toughness Requirements	
Material impact test temperature per UG-84 =	-46°C
$t_r = rac{15,94 \cdot 900}{1.180 \cdot 1 - 0,6 \cdot 15,94} =$	12,26 mm
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{12,26 \cdot 1}{21 - 1,6} =$	0,632
$\left[\text{Stress ratio longitudinal} = rac{308,578 \cdot 1}{1.203,265 \cdot 1} = ight. ight.$	0,2565
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	20,6°C
$MDMT = \max \left[T_{impact} - T_R, -105 ight] = \max \left[-46 - 20, 6, -105 ight] =$	-66,6°C
Design MDMT of -15°C is acceptable.	

Design thickness, (at 121 °C) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{15,54 \cdot 900}{1.180 \cdot 1.00 - 0.60 \cdot 15,54} + 1.6 = \underline{13,55} \text{ mm}$$

Maximum allowable working pressure, (at 121 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1.180 \cdot 1.00 \cdot 19.4}{900 + 0.60 \cdot 19.4} - 0.04 = \underline{25.07} \text{ bar}$$

Maximum allowable pressure, (at 7 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0,60 \cdot t} = \frac{1.180 \cdot 1,00 \cdot 21}{900 + 0,60 \cdot 21} = \underline{27,15} \text{ bar}$$

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2.100}{1.842} = 1,1401$$
$$\frac{D_o}{t} = \frac{1.842}{6,17} = 298,4016$$

From table G: A = 0,000224

From table CS-2 Metric: $B = 228,2138 \text{ kg/cm}^2(223,8 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 223,8}{3 \cdot (1.842/6,17)} = 1$$
 bar

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 6,17 + 1,6 = 7.77 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2.100}{1.842} = 1,1401$$
$$\frac{D_o}{t} = \frac{1.842}{19,4} = 94,9494$$

From table G: A = 0,001284

From table CS-2 Metric: $B = 927,4941 \text{ kg/cm}^2(909,5594 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 909,56}{3 \cdot (1.842/19,4)} = rac{12,77}{1200} \, \mathrm{bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{50 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{50 \cdot 21}{910,5}\right) \cdot \left(1 - \frac{910,5}{\text{infinity}}\right) = 1,1532\%$$

The extreme fiber elongation does not exceed 5%.

External Pressure + Weight + Wind Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{10 \cdot 6.395, 6}{2 \cdot \pi \cdot 909, 7} + \frac{10000 \cdot 1.619, 9}{\pi \cdot 909, 7^{-2}} = 17,4200 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9,803 \cdot \frac{17,42}{1 \cdot 1.842} = 0,0927 \\ n &= 5 \\ m &= \frac{1,23}{\left(\frac{L}{D_o}\right)^2} = \frac{1,23}{\left(\frac{2.100}{1.842}\right)^2} = 0,9463 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{5^2 - 1 + 0,9463 + 0,9463 \cdot 0,0927}{5^2 - 1 + 0,9463} = 1,0035 \end{split}$$

 $Ratio P_e \cdot P_e \leq MAEP$

 $(1,0035 \cdot 1 = 1) \le 12,77$

Cylinder thickness is satisfactory.

External Pressure + Weight + Seismic Loading Check (Bergman, ASME paper 54-A-104)

$$\begin{split} P_v &= \frac{W}{2 \cdot \pi \cdot R_m} + \frac{M}{\pi \cdot R_m^2} = \frac{10 \cdot 6.395, 6}{2 \cdot \pi \cdot 909, 7} + \frac{10000 \cdot 1.446, 2}{\pi \cdot 909, 7^2} = 16,7521 \text{ kg/cm} \\ \alpha &= \frac{P_v}{P_e \cdot D_o} = 9,803 \cdot \frac{16,7521}{1 \cdot 1.842} = 0,0892 \\ n &= 5 \\ m &= \frac{1,23}{\left(\frac{L}{D_o}\right)^2} = \frac{1,23}{\left(\frac{2.100}{1.842}\right)^2} = 0,9463 \\ Ratio P_e &= \frac{n^2 - 1 + m + m \cdot \alpha}{n^2 - 1 + m} = \frac{5^2 - 1 + 0,9463 + 0,9463 \cdot 0,0892}{5^2 - 1 + 0,9463} = 1,0034 \end{split}$$

 $Ratio P_e \cdot P_e \leq \text{MAEP}$

 $(1,\!0034\cdot 1=1)\leq 12,\!77$

Cylinder thickness is satisfactory.

Thickness Required Due to Pressure + External Loads								
Condition	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Temperature		Load		Req'd Thk Due to	Req'd Thk Due to
	s _t	S _c	(°C)	C (mm)		P (bar)	Tension (mm)	Compression (mm)
Operating, Hot & Corroded	1.203,3	1.111,7	121	1,6	Wind	<u>61,69</u>	<u>4,88</u>	<u>4,79</u>
	1.200,0	<u>,</u>		1,0	Seismic	<u>61,7</u>	<u>4,88</u>	<u>4,8</u>
Operating, Hot & New	1.203,3	1.130,1	121	0	Wind	<u>66,82</u>	<u>4,88</u>	<u>4,79</u>
	1.200,0	<u>1.100,1</u>	121	Ŭ	Seismic	<u>66,83</u>	<u>4,87</u>	<u>4,8</u>
Hot Shut Down, Corroded	1.203.3	1.111,7	121	1,6	Wind	0	<u>0,04</u>	<u>0,13</u>
	1.200,0	<u>,,</u>	121	1,0	Seismic	0	<u>0,04</u>	<u>0,13</u>
Hot Shut Down, New	1.203.3	1.130,1	121	0	Wind	0	<u>0,04</u>	<u>0,13</u>
	1.200,0	<u>1.100,1</u>	121	Ŭ	Seismic	0	<u>0,04</u>	<u>0,13</u>
Empty, Corroded	1.203,3	1.111,7	20	1.6	Wind	0	<u>0,04</u>	<u>0,13</u>
Linpty, conoded	1.200,0	<u>,,</u>	20	1,0	Seismic	0	<u>0,04</u>	<u>0,12</u>
Empty, New	1.203,3	1.130,1	20	0	Wind	0	<u>0,04</u>	<u>0,13</u>
	1.203,3	<u>1.130,1</u>	20	Ū	Seismic	0	<u>0,05</u>	<u>0,12</u>
Vacuum	1.203,3	1.111,7	23	1,6	Wind	<u>56,5</u>	<u>0,38</u>	<u>0,47</u>
	1.200,0	<u>,</u>	23		Seismic	<u>56,52</u>	<u>0.39</u>	<u>0.47</u>
Hot Shut Down, Corroded, Weight &	1.203,3	1.111,7	121	1,6	Wind	0	<u>0,08</u>	<u>0,12</u>
Eccentric Moments Only	1.200,0	<u>,</u>		1,0	Seismic	0	<u>0</u>	<u>0</u>

Allowable Compressive Stress, Hot and Corroded- $\rm S_{cHC},$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{921/19,4} = 0,002633$$

$$B = 1.111,7 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$

$$S_{cHC} = \min (B,S) = \underline{1.111,7 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Hot and New- $\rm S_{CHN},$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{921/21} = 0,002850$$

$$B = 1.130,1 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$

$$S_{cHN} = \min (B,S) = \underline{1.130,1 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Cold and New- S_{cCN} , (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{921/21} = 0,002850$$
$$B = 1.130,1 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$
$$S_{cCN} = \min (B,S) = \frac{1.130,1 \text{ kg/cm}^2}{1.130,1 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Cold and Corroded- \mathbf{S}_{cCC} , (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{921/19,4} = 0,002633$$
$$B = 1.111,7 \text{ kg/cm}^2$$
$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$
$$S_{o\mathbb{C}} = \min (B,S) = \underline{1.111,7 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Vacuum and Corroded- $S_{\mbox{cVC}}$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{921/19,4} = 0,002633$$

$$B = 1.111,7$$
 kg/cm²

$$S = \frac{1.203,3}{1,00} = 1.203,3 \; \text{ kg/cm}^2$$

 $S_{cVC} = \min(B,S) = 1.111,7 \text{ kg/cm}^2$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15,5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15,5|} \\ &= 4,92 \ {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{1.619,9}{\pi \cdot 909,7^2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0,04 \ {\rm mm} \\ t_{\rm w} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{6.395,6}{2 \cdot \pi \cdot 909,7 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0,08 \ {\rm mm} \\ t_t &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.88 \ {\rm mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.04 + (0.08) - (4.92)| \\ &= 4.79 \ {\rm mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (19.4 - 0.04 + (0.08))}{900 - 0.40 \cdot (19.4 - 0.04 + (0.08))}$$

= <u>61,69</u> bar

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15,5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15,5|} \\ &= 4,92 \ {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{1.622,9}{\pi \cdot 910,5^2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0,04 \ {\rm mm} \\ t_{\rm w} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{6.572,9}{2 \cdot \pi \cdot 910,5 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0,08 \ {\rm mm} \\ t_t &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.88 \ {\rm mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0,04 + (0,08) - (4.92)| \\ &= 4.79 \ {\rm mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (21 - 0.04 + (0.08))}{900 - 0.40 \cdot (21 - 0.04 + (0.08))}$$

= 66,82 bar

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.619, 9}{\pi \cdot 909, 7^{-2} \cdot 1.090, 21 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.090, 21 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 05 - (0, 08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \end{split}$$

= <u>0,13 mm</u>

Hot Shut Down, New, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.622,9}{\pi \cdot 910,5\ ^{2} \cdot 1.108,2 \cdot 1,20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.572,9}{2 \cdot \pi \cdot 910,5 \cdot 1.108,2 \cdot 1,20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,05 - (0,08)| \\ &= 0,04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \end{split}$$

= <u>0,13 mm</u>

Empty, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.619, 9}{\pi \cdot 909, 7^{-2} \cdot 1.090, 21 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.090, 21 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 05 - (0, 08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0, 05 + (0, 08) - (0) \end{split}$$

= <u>0,13 mm</u>

Empty, New, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.622, 9}{\pi \cdot 910, 5^{-2} \cdot 1.108, 2 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.572, 9}{2 \cdot \pi \cdot 910, 5 \cdot 1.108, 2 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,05 - (0,08)| \\ &= 0,04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \\ &= 0.13 \text{ mm} \end{split}$$

Vacuum, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-1 \cdot 900}{2 \cdot 1.090, 21 \cdot 1, 20 + 0.40 \cdot |1|} \\ &= -0.34 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= \frac{1.619, 9}{\pi \cdot 909, 7^{-2} \cdot 1.090, 21 \cdot 1, 20} \cdot 98066.5 \\ &= 0.05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.090, 21 \cdot 1, 20} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (\text{total, net compressive}) \\ &= |-0.34 + 0.05 - (0.08)| \\ &= 0.38 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (\text{total required, compressive}) \\ &= 0.05 + (0.08) - (-0.34) \\ &= 0.47 \text{ mm} \\ \end{split}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 1.090.21 \cdot 1.20 \cdot (19.4 - 0.05 - 0.08)}{900 - 0.40 \cdot (19.4 - 0.05 - 0.08)}$$
$$= \frac{56.5}{5} \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{593}{\pi \cdot 909,7^{-2} \cdot 1.090,21 \cdot 1,00} \cdot 98066.5 \\ &= 0,02 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909,7 \cdot 1.090,21 \cdot 1,00} \cdot 98.0665 \\ &= 0,1 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,02 - (0,1)| \\ &= 0.08 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,02 + (0,1) - (0) \end{split}$$

= <u>0,12 mm</u>

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{aligned} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} & (Pressure) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (bending) \\ &= \frac{1.446, 2}{\pi \cdot 909, 7^{2} \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} & (Weight) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} & (total required, tensile) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.88 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| & (total, net tensile) \\ &= |0.04 + (0.08) - (4.92)| \\ &= 4.8 \text{ mm} \end{aligned}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (19.4 - 0.04 + (0.08))}{900 - 0.40 \cdot (19.4 - 0.04 + (0.08))}$$
$$= 61.7 \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \, {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{1.472.1}{\pi \cdot 910.5^{-2} \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \, {\rm mm} \\ t_{\rm W} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{6.572.9}{2 \cdot \pi \cdot 910.5 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \, {\rm mm} \\ t_t &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.87 \, {\rm mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.04 + (0.08) - (4.92)| \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (21 - 0.04 + (0.08))}{900 - 0.40 \cdot (21 - 0.04 + (0.08))}$$
$$= 66.83 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.446, 2}{\pi \cdot 909, 7^{-2} \cdot 1.090, 21 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.090, 21 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \end{split}$$

= <u>0,13 mm</u>

Hot Shut Down, New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.472, 1}{\pi \cdot 910, 5^{-2} \cdot 1.108, 2 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.572, 9}{2 \cdot \pi \cdot 910, 5 \cdot 1.108, 2 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \\ &= 0,13 \text{ mm} \end{split}$$

Empty, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.352, 9}{\pi \cdot 909, 7^{-2} \cdot 1.090, 21 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.090, 21 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \end{split}$$

= <u>0,12 mm</u>

Empty, New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.379, 8}{\pi \cdot 910, 5^{-2} \cdot 1.108, 2 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.572, 9}{2 \cdot \pi \cdot 910, 5 \cdot 1.108, 2 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.05 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \\ &= 0.12 \text{ mm} \end{split}$$

Vacuum, Seismic, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_c \cdot K_s + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{-1 \cdot 900}{2 \cdot 1.090, 21 \cdot 1.20 + 0.40 \cdot |1|} \\ &= -0.34 \ {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_c \cdot K_s} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{1.446, 2}{\pi \cdot 909, 7^2 \cdot 1.090, 21 \cdot 1.20} \cdot 98066.5 \\ &= 0.04 \ {\rm mm} \\ t_{\rm W} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_c \cdot K_s} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{6.395, 6}{2 \cdot \pi \cdot 909, 7 \cdot 1.090, 21 \cdot 1.20} \cdot 98.0665 \\ &= 0,08 \ {\rm mm} \\ t_{\rm t} &= |t_p + t_m - t_w| \qquad (total, net compressive) \\ &= |-0.34 + 0.04 - (0.08)| \\ &= 0.39 \ {\rm mm} \\ t_{\rm c} &= t_{mc} + t_{wc} - t_{pc} \qquad (total required, compressive) \\ &= 0.04 + (0.08) - (-0.34) \\ &= 0.47 \ {\rm mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 1.090.21 \cdot 1.20 \cdot (19.4 - 0.04 - 0.08)}{900 - 0.40 \cdot (19.4 - 0.04 - 0.08)}$$

= <u>56,52</u> bar

MESH BLANKET

ASME Section VIII Division 1, 2021 Edition Metric			
Inputs			
Number of Trays in Group	2		
Distance from Bottom Tray to Datum	1.200 mm		
Space Between Trays	150 mm		
Number of Passes	1		
Weight			
Tray Weight	0,00 kg/m ²		
Tray Diameter	1.500 mm		
Support Weight	0 kg each		
Operating Liquid Depth on Tray	0 mm		
Tray Liquid Specific Gravity	1,00		
Estimated Tray Weight, Empty	0 kg each		
Estimated Tray Weight, Operating	0 kg each		
Loading Conditions			
Included in Vessel Lift & Shipping Weight	Yes		
Present When Vessel is Empty	Yes		
Present During Test	Yes		

Nozzle (B)
----------	----

ASME Section VIII Division 1, 2021 Edition Metric				
ASME Section VII DIVISION 1, 2021 Edition Metric $ \begin{array}{c} $				
Note: Per UW-16(b) minimum inside corner radius r ₁ = mi				
Location and Or				
Located on	Shell V1			
Orientation	90°			
Nozzle center line offset to datum line 900 mm				
End of nozzle to shell center 1.150 mm				
Passes through a Category A joint	No			
Nozzle				
Access opening	No			
Material specification	SA-266 1 (II-D Metric p. 12, In. 40) (normalized)			
Inside diameter, new	303,18 mm			
Wall thickness, t _n 26 mm				
Minimum wall thickness	10,31 mm			
Corrosion inner	0 mm			
Corrosion outer	1,6 mm			
Projection available outside vessel, Lpr	114,7 mm			
Heavy barrel length, L _{hb}	50 mm			
Projection available outside vessel to flange face, Lf 229 mm				
Local vessel minimum thickness	21 mm			
Liquid static head included	0 bar			
Welds				
Inner fillet, Leg ₄₁ 11 mm				
Nozzle to vessel groove weld 21 mm				
Radiography				
Longitudinal seam Full UW-11(a) Type 1				
Circumferential seam Full UW-11(a) Type 1				

ASME B16.5-2017 Flange			
Description	NPS 12 Class 150 WN A350 LF2 Cl.1 N		
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)		
Blind included	No		
Rated MDMT	-56,6°C		
Liquid static head	0 bar		
Consider External Loads on Flange MAWP Rating	Yes		
MAWP reduction due to external loads	19,51 bar		
MAWP rating	16,9 bar @ 121°C		
MAP rating	19,6 bar @ 7°C		
Hydrotest rating	30 bar @ 7°C		
PWHT performed	Yes		
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes		
Impact Tested	No		
Circumferential joint radiography	Full UW-11(a) Type 1		
Bore diameter, B (specified by purchaser)	303,18 mm		
MAWP Reduction Due	to External Loads		
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 1.486, 4 \cdot 1000}{\pi \cdot 342, 09^{-3}} / 1,\! 02 \cdot 100 =$	18,54 bar		
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -909{,}59}{\pi \cdot 342{,}09^{-2}} / 1{,}02 \cdot 100 =$	0,97 bar		
$MAWP_{reduction} \;=\; \max \; [P_m + P_r, 0] = \; \max \; [18,\!54 + 0,\!97,\!0] =$	19,51 bar		
Table UG-44-1 Moment Factor, $F_M =$	1,2		
$egin{aligned} MAWP &= \min \left[MAWP, MAWP \cdot (1+F_M) - MAWP_{reduction} ight] - P_s \ &= \min \left[16, 9, 16, 9 \cdot (1+1, 2) - 19, 51 ight] - 0 = \end{aligned}$	16,9 bar		
Gaske	et		
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler		
Note:	\$		
(1) Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 10,6°C applied (ratio = 0,8112). Bolts rated MDMT per Fig UCS-66 note (c) = -104°C			
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appendix S) shall comply with ASME PCC-1, Nonmandatory Appendix O.			
(3) UG-44(b): The bolt material shall have an allowable stress equal to or greater than SA-193 B8 Cl. 2 at the specified bolt size and temperature.			

UCS-66 Material Toughness Requirements Nozzle At Intersection	
Governing thickness, t _g =	21 mm
Exemption temperature from Fig UCS-66M Curve C =	-23,75°C
$t_r = rac{15,9 \cdot 900}{1.180 \cdot 1 - 0,6 \cdot 15,9} =$	12,23 mm
$ ext{Stress ratio} = rac{t_r \cdot \overline{E}^*}{t_n - c} = rac{12,23 \cdot 1}{21 - 1,6} =$	0,6302
$\text{Stress ratio longitudinal} = \frac{308,497 \cdot 1}{1.203,265 \cdot 1} =$	0,2564
Reduction in MDMT, T _R from Fig UCS-66.1M =	20,7°C
Reduction in MDMT, T _{PWHT} from UCS-68(c) =	17°C
$MDMT = \max \left[MDMT - T_R - T_{PWHT} ight. , -48 ight] = \max \left[-23,75 - 20,7 - 17, -48 ight] =$	-48°C
Material is exempt from impact testing at the Design MDMT of -15°C.	

UCS-66 Material Toughness Requirements Nozzle		
External nozzle loadings per UG-22 govern the coincident ratio used.		
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{3,02 \cdot 1}{10,31 - 1,6} =$	0,3469	
Stress ratio ≤ 0,35, MDMT per UCS-66(b)(3) =	-105°C	
Material is exempt from impact testing at the Design MDMT of -15°C.		

Reinforcement Calculations for Chamber MAWP

UG-37 Area Calculation Summary (cm ²)							UG-45 Su	mmary (mm)
For P = 16,78 bar @ 121 °C The opening is adequately reinforced							The nozzle	passes UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
<u>39,1338</u>	42,0006	<u>19,6825</u>	<u>21,5587</u>		-	<u>0,7594</u>	<u>9,93</u>	10,31

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary						
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status			
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate			

	WRC 537											
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-909,59	1.259,3	909,59	1.259,3	909,59	1.259,3	2.154,627	3.609,796	1.729,34	1.804,898	No
Load case 1 (Hot Shut Down)	0	-909,59	1.259,3	909,59	1.259,3	909,59	1.259,3	1.235,364	3.609,796	285,868	1.804,898	No
Load case 1 (Pr Reversed)	16,78	909,59	1.259,3	909,59	1.259,3	909,59	1.259,3	1.965,431	3.609,796	1.657,908	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	909,59	1.259,3	909,59	1.259,3	909,59	1.259,3	-1.232,973	3.609,796	-285,868	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

 $L_{R} = \max [d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [303,18, 151,59 + (10,31 1,6) + (21 1,6)]$
- = 303,18 mm

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

 L_{H} = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- = min $[2,5 \cdot (21 1,6), 2,5 \cdot (10,31 1,6) + 27,18]$
- = 48,5 mm
- $t_e = \min [49,08 + 15,69 \cdot \tan(30), 15,69 \cdot \tan(60)]$
 - = 27,18 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$ = $\frac{16,7791 \cdot 151,59}{1.180 \cdot 1 - 0.6 \cdot 16,7791}$ = 2,17 mm

Required thickness t_r from UG-37(a)

$$\mathbf{t}_{\mathsf{r}} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$16,7791 \cdot 900$$

$$= \frac{10,101,000}{1.180 \cdot 1 - 0,6 \cdot 16,7791}$$

= 12,91 mm

Area required per UG-37(c)

Allowable stresses: S_n = 1.203,265, S_v = 1.203,265 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

$$\mathsf{A} \quad = \quad d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})$$

- = $(303,18 \cdot 12,91 \cdot 1 + 2 \cdot 26 \cdot 12,91 \cdot 1 \cdot (1-1))/100$
- = <u>39,1338</u> cm²

Area available from FIG. UG-37.1

 A_1 = larger of the following = <u>19,6825</u> cm²

- $= d \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (303, 18 \cdot (1 \cdot 19, 4 1 \cdot 12, 91) 2 \cdot 26 \cdot (1 \cdot 19, 4 1 \cdot 12, 91) \cdot (1 1)) / 100$
- = 19,6825 cm²
- $= 2 \cdot (t+t_n) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r1})$
- $= (2 \cdot (19,4+8,71) \cdot (1 \cdot 19,4-1 \cdot 12,91) 2 \cdot 26 \cdot (1 \cdot 19,4-1 \cdot 12,91) \cdot (1-1)) / 100$
- = 3,6497 cm²

 A_2 = smaller of the following= <u>21,5587</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (24, 4 2, 17) \cdot 1 \cdot 19, 4) / 100$
- = 21,5587 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_p + t_e) \cdot f_{r2}$
- $= (2 \cdot (24,4-2,17) \cdot (2,5 \cdot 8,71+27,18) \cdot 1)/100$
- = 21,7587 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- = $(8,71^2 \cdot 1)/100$
- = <u>0,7594</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- = 19,6825+21,5587+0,7594
- = <u>42,0006</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$			
	=	$\frac{16,7791\cdot 151,59}{1.180\cdot 1-0.6\cdot 16,7791} + 1,6$			
	=	3,77 mm			
$t_{a\mathrm{UG-22}}$	=	4,68 mm			
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$			
	=	$\max[3,77, 4,68]$			
	=	4,68 mm			
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$			
	=	$\frac{16,7791\cdot 900}{1.180\cdot 1-0,6\cdot 16,7791}+1,6$			
	=	14,51 mm			
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$			
	=	$\max[14,51, 3,1]$			
	=	14,51 mm			
t_b	=	$\min \ [t_{b3}, \ t_{b1}]$			
	=	$\min [9,93, 14,51]$			
	=	9,93 mm			
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$			
	=	\max [4,68, 9,93]			
	=	<u>9,93</u> mm			
Available nozzle well thickness now $t = 10.21 \text{ mm}$					

Available nozzle wall thickness new, $t_n = 10,31 \text{ mm}$

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads					
Radial load, P _r	-909,59 kg _f				
Circumferential moment, M _c	1.259,3 kg _f -m				
Circumferential shear, V _c	909,59 kg _f				
Longitudinal moment, M _L	1.259,3 kg _f -m				
Longitudinal shear, V _L	909,59 kg _f				
Torsion moment, M _t	1.259,3 kg _f -m				
Internal pressure, P	16,78 bar				
Mean shell radius, R _m	909,7 mm				
Local shell thickness, T	19,4 mm				
Design factor	3				

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = rac{R_m}{T} = rac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 175,99}{909,7} = 0,1693$$

Pressure stress intensity factor, I = 1,8185 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 1.443,472 \text{ kg}_f/\text{cm}^2$

Local longitudinal pressure stress $= \frac{I \cdot P \cdot R_i}{2 \cdot T} =$ 721,701 kg $_f$ /cm 2

Maximum combined stress $(P_L + P_b + Q) = 2.154,63 \, \mathrm{kg}_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \mathrm{kg}_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.729,34~~{
m kg}_{\,f}/{
m cm}^2$

Allowable local primary membrane stress ($P_L) = \pm 1.5 \cdot S = \pm 1.804.9 ~~{
m kg}_{\,f}/{
m cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stres	sses at th	e nozzle	OD per V	VRC Bulle	etin 537			
Figure	Y		A _u	A	Bu	BI	Cu	CI	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	4,3636	0	0	0	0	22,498	22,498	22,498	22,498
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	6,928	35,716	35,716	35,716	35,716	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,0742	0	0	0	0	107,57	-107,57	107,57	-107,57
2C-1	$rac{M_{\phi}}{P}$	0,0406	58,847	-58,847	58,847	-58,847	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	1,775	0	0	0	0	-82,259	-82,259	82,259	82,259
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0782	0	0	0	0	-1.019,381	1.019,381	1.019,381	-1.019,381
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	5,3985	-250,152	-250,152	250,152	250,152	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L ~~/~~(R_m \cdot eta)}$	0,0281	-365,807	365,807	365,807	-365,807	0	0	0	0
	Pressure stress*		1.443,472	1.443,472	1.443,472	1.443,472	793,766	793,766	793,766	793,766
Tota	al circumferential stre	ss	922,076	1.535,996	2.153,994	1.304,686	-177,806	1.645,816	2.025,473	-228,427
Primary me	mbrane circumferent	ial stress*	1.229,036	1.229,036	1.729,34	1.729,34	734,005	734,005	898,523	898,523
3C*	$rac{N_x}{P \ / \ R_m}$	4,3636	22,498	22,498	22,498	22,498	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	6,928	0	0	0	0	35,716	35,716	35,716	35,716
1C-1	$\frac{M_x}{P}$	0,0787	114,179	-114,179	114,179	-114,179	0	0	0	0
2C	$\frac{M_x}{P}$	0,0388	0	0	0	0	56,246	-56,246	56,246	-56,246
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	3,3606	0	0	0	0	-155,73	-155,73	155,73	155,73
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0389	0	0	0	0	-507,687	507,687	507,687	-507,687
4B*	$rac{N_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	1,4886	-68,971	-68,971	68,971	68,971	0	0	0	0
2B-1	$rac{M_x}{M_L ~/~(R_m \cdot eta)}$	0,0444	-579,048	579,048	579,048	-579,048	0	0	0	0
	Pressure stress*		396,883	396,883	396,883	396,883	721,701	721,701	721,701	721,701
	otal longitudinal stress		-114,46 350,41	815,279	1.181,579	-204,874	150,246	1.053,128	1.477,079	349,215
Primary n	Primary membrane longitudinal stress*			350,41	488,352	488,352	601,687	601,687	913,147	913,147
Shear from M _t			33,326	33,326	33,326	33,326	33,326	33,326	33,326	33,326
	Circ shear from V _c	8,507	8,507	-8,507	-8,507	0	0	0	0	
	Long shear from V _L	0	0	0	0	-8,507	-8,507	8,507	8,507	
	Total Shear stress		41,833	41,833	24,818	24,818	24,818	24,818	41,833	41,833
Com	nbined stress (P _L +P _b +	Q)	1.039,91	1.538,387	2.154,627	1.510,404	331,779	1.646,87	2.028,637	583,688
* denotes	denotes primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 151,59}{2 \cdot 8,71} - \frac{-909,59}{\pi \cdot \left(160,3\ ^2 - 151,59\ ^2\right)} \cdot 100 + \frac{1.780.982,1 \cdot 160,3}{1,0385 \text{E} + 08} \cdot 100 \\ &= 434,459 \text{ kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.203,265 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{909,59^{-2} + 909,59^{-2}}}{\pi \cdot 151,59 \cdot 8,71} \cdot 100 = 31,012 \ \text{ kg}_f/\text{cm}^{-2} \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{1.259,3}{2 \cdot \pi \cdot 151,59^{-2} \cdot 8,71} \cdot 100000 = 100,142 \ \text{ kg}_f/\text{cm}^{-2} \end{split}$$

 $\sigma_{\mathrm{total}} = \sigma_{\mathrm{shear}} + \sigma_{\mathrm{torsion}} = 31,012 + 100,142 = 131,154 \, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

UG-45: The total combined shear stress (131,154 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.203,265 = 842,286 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)							UG-45 Su	mmary (mm)
For Pe = 1 bar @ 23 °C The opening is adequately reinforced						The nozzle	passes UG-45	
A required	A available	A ₁	A ₂	A 3	A ₅	A welds	t _{req}	t _{min}
<u>9,3576</u>	<u>63,5999</u>	<u>40,1012</u>	<u>22,7393</u>	-		<u>0,7594</u>	<u>3,61</u>	10,31

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

	UW-16 Weld Sizing Summary						
Weld description		Required weld throat size (mm)	Actual weld throat size (mm)	Status			
Nozzl	e to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate			

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [303,18, 151,59 + (10,31 1,6) + (21 1,6)]
- = 303,18 mm

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- = min $[2,5 \cdot (21 1,6), 2,5 \cdot (10,31 1,6) + 27,18]$
- = 48,5 mm
- $t_e = \min [49,08 + 15,69 \cdot \tan(30), 15,69 \cdot \tan(60)]$
 - = 27,18 mm

Nozzle required thickness per UG-28 t_{rn} = 0,96 mm

From UG-37(d)(1) required thickness $t_r = 6,17$ mm

Area required per UG-37(d)(1)

Allowable stresses: $S_n = 1.203,265$, $S_v = 1.203,265$ kg_f/cm²

$$\begin{aligned} f_{r1} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 1 \\ f_{r2} &= \text{lesser of 1 or } \frac{S_n}{S_v} = 1 \\ A &= 0.5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1})) \\ &= (0.5 \cdot (303.18 \cdot 6.17 \cdot 1 + 2 \cdot 26 \cdot 6.17 \cdot 1 \cdot (1 - 1)))/100 \\ &= 9.3576 \text{ cm}^2 \end{aligned}$$

Area available from FIG. UG-37.1

$$= d \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

$$= (303, 18 \cdot (1 \cdot 19, 4 - 1 \cdot 6, 17) - 2 \cdot 26 \cdot (1 \cdot 19, 4 - 1 \cdot 6, 17) \cdot (1 - 1)) / 100$$

= 40,1012 cm²

$$= \qquad 2\cdot (t+t_n)\cdot (E_1\cdot t-F\cdot t_r) - 2\cdot t_n\cdot (E_1\cdot t-F\cdot t_r)\cdot (1-f_{r1})$$

- $= (2 \cdot (19,4+8,71) \cdot (1 \cdot 19,4-1 \cdot 6,17) 2 \cdot 26 \cdot (1 \cdot 19,4-1 \cdot 6,17) \cdot (1-1)) / 100$
- = 7,4361 cm²

 A_2 = smaller of the following= 22,7393 cm²

$$= 5 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot t$$

- $= (5 \cdot (24,4-0,96) \cdot 1 \cdot 19,4)/100$
- = 22,7393 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_p + t_e) \cdot f_{r2}$
- $= (2 \cdot (24,4-0,96) \cdot (2,5 \cdot 8,71+27,18) \cdot 1)/100$
- = 22,9503 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- $= (8,71^2 \cdot 1)/100$
- = <u>0,7594</u> cm²

 $Area = A_1 + A_2 + A_{41}$

- = 40,1012+22,7393 + 0,7594
- = <u>63,5999</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 19 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8.71 = 6.1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-28}}$	=	2,56 mm
$t_{a { m UG-} 22}$	=	3,61 mm
t_a	=	$\max\left[t_{a\mathrm{UG-28}},\;t_{a\mathrm{UG-22}} ight]$
	=	$\max[2,56, 3,61]$

= 3,61 mm

t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 900}{1.180\cdot 1 - 0.6\cdot 1} + 1.6$
	=	2,36 mm
t_{b2}	=	$\max \ [t_{b2}, \ t_{b\mathrm{UG16}}]$
	=	\max [2,36, 3,1]
	=	3,1 mm
t_b	=	$\min \; [t_{b3}, \; \; t_{b2}]$
	=	$\min [9,93, 3,1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [3,\!61, \ 3,\!1]$
	=	<u>3,61</u> mm

Available nozzle wall thickness new, t_n = 10,31 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{246,28}{355,18} = 0,6934$$
$$\frac{D_o}{t} = \frac{355,18}{0,96} = 371,0232$$

From table G: A = 0,000279From table CS-2 Metric: $B = 283,7594 \text{ kg/cm}^2(278,27 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 278, 27}{3 \cdot (355, 18/0, 96)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,96 + 1,6 = 2,56 \text{ mm}$

Nozzle (C)					
ASME Section VIII Divisio	n 1, 2021 Edition Metric				
$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$					
Note: Per UW-16(b) minimum inside corner radius r ₁ = min	n [1 / 4*t , 3 mm] = 3 mm				
Location and	Orientation				
Located on	Shell V1				
Orientation	260°				
Nozzle center line offset to datum line	630 mm				
End of nozzle to shell center	1.223,4 mm				
Passes through a Category A joint	No				
Nozz	zle				
Access opening	Yes				
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)				
Inside diameter, new	590,2 mm				
Wall thickness, t _n	60 mm				
Minimum wall thickness	9,9 mm				
Corrosion inner	0 mm				
Corrosion outer	1,6 mm				
Projection available outside vessel, Lpr	150 mm				
Heavy barrel length, L _{hb}	60 mm				
Projection available outside vessel to flange face, Lf	302,4 mm				
Local vessel minimum thickness	21 mm				
User input radial limit of reinforcement	480 mm				
Liquid static head included	0,02 bar				
Weld	ds				
Inner fillet, Leg ₄₁	11 mm				
Nozzle to vessel groove weld	21 mm				
Radiog	raphy				
Longitudinal seam	Full UW-11(a) Type 1				

Circumferential seam

Full UW-11(a) Type 1

ASME B16.5-2017 Flange					
Description	NPS 24 Class 150 WN A350 LF2 Cl.1 N				
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)				
Blind included	Yes				
Rated MDMT	-56,6°C				
Liquid static head	0 bar				
MAWP rating	16,9 bar @ 121°C				
MAP rating	19,6 bar @ 7°C				
Hydrotest rating	30 bar @ 7°C				
PWHT performed	Yes				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
Bore diameter, B (specified by purchaser)	584 mm				
	Gasket				
Туре	ASME B16.20 Spiral-Wound				
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler				
Factor, m	3				
Seating Stress, y	703,07 kg _f /cm ²				
Thickness, T	4,5 mm				
Inner Diameter	628,7 mm				
Outer Diameter 685,8 mm					
Notes					
(1) Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 10,6°C applied (ratio = 0,8112). Bolts rated MDMT per Fig UCS-66 note (c) = -104°C					

UCS-66 Material Toughness Requirements Nozzle At Intersection				
Impact test temperature per material specification =	-46°C			
$t_r = rac{15,92 \cdot 900}{1.180 \cdot 1 - 0,6 \cdot 15,92} =$	12,24 mm			
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{12,\!24 \cdot 1}{21 - 1,\!6} =$	0,6309			
Stress ratio longitudinal = $\frac{308,357 \cdot 1}{1.203,265 \cdot 1}$ =	0,2563			
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	20,7°C			
$MDMT = \min ig[T_{impact} - T_{UCS-66(g)}, \max ig[T_{impact} - T_R, -105]ig] = \min ig[-46-3, \max ig[-46-20, 7, -105]ig] = min ig[-46-3, \max ig[-46-3, $	-66,7°C			
Material is exempt from impact testing at the Design MDMT of -15°C.				

UCS-66 Material Toughness Requirements Nozzle					
Impact test temperature per material specification =	-46°C				
$t_r = rac{15,92\cdot 295,1}{1.380\cdot 1 - 0,6\cdot 15,92} =$	3,43 mm				
$\operatorname{Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{3{,}43 \cdot 1}{9{,}9{-}1{,}6} =$	0,413				
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	47,5°C				
$\boxed{MDMT = \min \left[T_{impact} - T_{UCS-66(g)}, \max \left[T_{impact} - T_R, -105\right]\right] = \min \left[-46 - 3, \max \left[-46 - 47, 5, -105\right]\right] = 100}$	-93,5°C				
Material is exempt from impact testing at the Design MDMT of -15°C.					

Reinforcement Calculations for Chamber MAWP

UG-37 Area Calculation Summary (cm ²)					UG-45 Summary (mm)			
For P = 16,8 bar @ 121 °C The opening is adequately reinforced				The nozzle passes UG-45				
A required	A available	A ₁	A ₂	Α3	A 5	A welds	t _{req}	t _{min}
76,2581	<u>77,8573</u>	<u>23,9593</u>	<u>53,1386</u>			<u>0,7594</u>	<u>5,22</u>	9,9

UG-41 Weld Failure Path Analysis Summary The nozzle is exempt from weld strength calculations per UW-15(b)(1)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

Calculations for internal pressure 16,8 bar @ 121 °C

Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [590,2, 295,1+(9,9-1,6)+(21-1,6)]
- = 590,2 mm
- L_R = 480 mm (User Defined)

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (9.9 1.6) + 86.78\right]$
- = 48,5 mm
- $t_e = \min [59,08 + 50,1 \cdot \tan(30), 50,1 \cdot \tan(60)]$
 - = 86,78 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$ = $\frac{16,7957 \cdot 295,1}{1.380 \cdot 1 - 0.6 \cdot 16,7957}$ = 3,62 mm

Required thickness t_r from UG-37(a)

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{16,7957 \cdot 900}{1.180 \cdot 1 - 0.6 \cdot 16,7957}$$

= 12,92 mm

Area required per UG-37(c)

Allowable stresses: $S_n = 1.407,208$, $S_v = 1.203,265 \text{ kg}/\text{cm}^2$

$$\begin{aligned} f_{r1} &= \text{lesser of 1 or } \frac{S_n}{S_v} &= 1 \\ f_{r2} &= \text{lesser of 1 or } \frac{S_n}{S_v} &= 1 \\ A &= d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}) \\ &= (590, 2 \cdot 12, 92 \cdot 1 + 2 \cdot 60 \cdot 12, 92 \cdot 1 \cdot (1 - 1))/100 \\ &= \frac{76, 2581}{76, 2581} \text{ cm}^2 \end{aligned}$$

Area available from FIG. UG-37.1

A₁: (specified limit governs) = 23,9593 cm²

$$= (2 \cdot \text{limits} - d) \cdot (E_1 \cdot t - F \cdot t_r) - 2 \cdot t_n \cdot (E_1 \cdot t - F \cdot t_r) \cdot (1 - f_{r1})$$

- $= ((2 \cdot 480 590, 2) \cdot (1 \cdot 19, 4 1 \cdot 12, 92) 2 \cdot 60 \cdot (1 \cdot 19, 4 1 \cdot 12, 92) \cdot (1 1))/100$
- $= 23,9593 \text{ cm}^2$

 A_2 = smaller of the following= <u>53,1386</u> cm²

$$= 5 \cdot (t_n - t_{rn}) \cdot f_{r2} \cdot t$$

- $= (5 \cdot (58,4 3,62) \cdot 1 \cdot 19,4) / 100$
- = 53,1386 cm²

$$= 2 \cdot (t_n - t_{rn}) \cdot (2.5 \cdot t_p + t_e) \cdot f_{r2} - \left[(t_n - t_p)^2 \cdot \tan(30) + 2 \cdot (LIMIT - L_{hb} - L_{slope}) \cdot (t_n - t_p) \right] \cdot f_{r2}$$

- $= \left(2 \cdot (58,4-3,62) \cdot (2,5 \cdot 8,3+86,78) \cdot 1 \left[(58,4-8,3)^{-2} \cdot \tan(30) + 2 \cdot (107,53-1,6-59,08-28,93) \cdot (58,4-8,3)\right] \cdot 1\right) / 100$
- = 85,3598 cm²

 $A_{41} = Leg^2 \cdot f_{r2}$

- $= (8,71^2 \cdot 1)/100$
- $= 0.7594 \text{ cm}^2$

 $Area = A_1 + A_2 + A_{41}$

- = 23,9593+53,1386+0,7594
- = <u>77,8573</u> cm²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check (Access Opening)

 $egin{array}{rcl} t_{a\mathrm{UG-27}}&=&rac{P\cdot R_n}{S_n\cdot E-0,6\cdot P}+\mathrm{Corrosion}\ &=&rac{16,7957\cdot 295,1}{1.380\cdot 1-0,6\cdot 16,7957}+1,6\ &=&5,22\ \mathrm{mm}\ &t_a&=&\max\left[t_{a\mathrm{UG-27}},\ t_{a\mathrm{UG-22}}
ight]\ &=&\max\left[5,22\ \mathrm{mm}
ight]\ &=&5,22\ \mathrm{mm}\ &=&5$

Available nozzle wall thickness new, t_n = 9,9 mm

The nozzle neck thickness is adequate.

Reinforcement Calculations for External Pressure

UG-	37 Area C	n²)	UG-45 Sumn	nary (mm)							
	For The openir	The nozzle pa	sses UG-45								
A required	A available	A ₁	A ₂	A ₃	A 5	A welds	t _{req}	t _{req} t _{min}			
<u>18,2164</u>	<u>104,6488</u>	<u>48,9128</u>	<u>54,9767</u>	-	-	<u>0,7594</u>	<u>3,32</u>	9,9			

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary										
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status							
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate							

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [590,2, 295,1+(9,9-1,6)+(21-1,6)]$
- = 590,2 mm
- L_R = 480 mm (User Defined)

Outer Normal Limit of reinforcement per UG-40 and Fig. UG-40 sketch (e-1)

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- = min $[2,5 \cdot (21 1,6), 2,5 \cdot (9,9 1,6) + 86,78]$
- = 48,5 mm
- $t_e = \min [59,08 + 50,1 \cdot \tan(30), 50,1 \cdot \tan(60)]$
 - = 86,78 mm

Nozzle required thickness per UG-28 trn = 1,72 mm

From UG-37(d)(1) required thickness $t_r = 6,17$ mm

Area required per UG-37(d)(1)

Allowable stresses: S_n = 1.407,208, S_v = 1.203,265 kg_f/cm²

 f_{r1} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 f_{r2} = lesser of 1 or $\frac{S_n}{S_v}$ = 1

 $\mathsf{A} = 0,5 \cdot (d \cdot t_r \cdot F + 2 \cdot t_n \cdot t_r \cdot F \cdot (1 - f_{r1}))$

- = $(0.5 \cdot (590.2 \cdot 6.17 \cdot 1 + 2 \cdot 60 \cdot 6.17 \cdot 1 \cdot (1-1)))/100$
- = <u>18,2164</u> cm²

Area available from FIG. UG-37.1

A₁: (specified limit governs) = $\frac{48,9128}{2}$ cm²

- $= (2 \cdot \text{limits} d) \cdot (E_1 \cdot t F \cdot t_r) 2 \cdot t_n \cdot (E_1 \cdot t F \cdot t_r) \cdot (1 f_{r_1})$
- $= ((2 \cdot 480 590, 2) \cdot (1 \cdot 19, 4 1 \cdot 6, 17) 2 \cdot 60 \cdot (1 \cdot 19, 4 1 \cdot 6, 17) \cdot (1 1))/100$
- = <u>48,9128</u> cm²

 A_2 = smaller of the following= <u>54,9767</u> cm²

- $= 5 \cdot (t_n t_{rn}) \cdot f_{r2} \cdot t$
- $= (5 \cdot (58,4-1,72) \cdot 1 \cdot 19,4)/100$
- = 54,9767 cm²
- $= 2 \cdot (t_n t_{rn}) \cdot (2.5 \cdot t_p + t_e) \cdot f_{r2} \left[(t_n t_p)^2 \cdot \tan(30) + 2 \cdot (LIMIT L_{hb} L_{slope}) \cdot (t_n t_p) \right] \cdot f_{r2}$
- $= \left(2 \cdot (58,4-1,72) \cdot (2,5 \cdot 8,3 + 86,78) \cdot 1 \left[(58,4-8,3)^{-2} \cdot \tan(30) + 2 \cdot (107,53 1,6 59,08 28,93) \cdot (58,4 8,3)\right] \cdot 1\right) / 100$
- = 89,4353 cm²
- $A_{41} = Leg^2 \cdot f_{r2}$
 - $= (8,71^2 \cdot 1)/100$
 - $= 0.7594 \text{ cm}^2$

$$Area = A_1 + A_2 + A_{41}$$

- = 48,9128+54,9767+0,7594
- = 104,6488 cm²

As Area >= A the reinforcement is adequate.

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 19 \text{ mm}$

 $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8.71 = 6.1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check (Access Opening)

 $t_{a{
m UG-28}} = 3,32 \,\,{
m mm}$ $t_a = \max[t_{a{
m UG-28}}, t_{a{
m UG-22}}]$ $= \max[3,32, 0]$ $= 3,32 \,\,{
m mm}$

Available nozzle wall thickness new, $t_n = 9,9 \text{ mm}$

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{373,61}{710,2} = 0,5261$$
$$\frac{D_o}{t} = \frac{710,2}{1,72} = 412,4399$$

From table G: A = 0,000310From table CS-2 Metric: $B = 315,4276 \text{ kg/cm}^2(309,33 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 309, 33}{3 \cdot (710, 2/1, 72)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + ext{Corrosion} = 1,72 + 1,6 = 3,32 \text{ mm}$

Nozzle (E1)

ASME Section VIII Division 1, 2021 Edition Metric								
	-11 21 1							
Note: round inside edges per UG-76(c)								
Location and	Orientation							
Located on	Shell V1							
Orientation	330°							
Nozzle center line offset to datum line	150 mm							
End of nozzle to shell center	1.125 mm							
Passes through a Category A joint	No							
Nozz	le							
Access opening	No							
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)							
Inside diameter, new	50,8 mm							
Nominal wall thickness	16,64 mm							
Corrosion inner	0 mm							
Corrosion outer	1,6 mm							
Projection available outside vessel, Lpr	181,65 mm							
Projection available outside vessel to flange face, Lf	204 mm							
Local vessel minimum thickness	21 mm							
Liquid static head included	0,04 bar							
Weld								
Inner fillet, Leg ₄₁	11 mm							
Nozzle to vessel groove weld	21 mm							
Radiogr	l							
Longitudinal seam	Seamless No RT							

ASME B16.5-20	17 Flange
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)
Blind included	No
Rated MDMT	-104°C
Liquid static head	0,03 bar
Consider External Loads on Flange MAWP Rating	Yes
MAWP reduction due to external loads	21,25 bar
MAWP rating	45,97 bar @ 121°C
MAP rating	51,1 bar @ 7°C
Hydrotest rating	77 bar @ 7°C
PWHT performed	Yes
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes
Impact Tested	No
MAWP Reduction Due	to External Loads
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139,7}{\pi \cdot 77,9^{\ 2}} \ /1,02 \cdot 100 =$	2,87 bar
$MAWP_{reduction} \;=\; \max \; [P_m + P_r, 0] = \; \max \; [18,\!38 + 2,\!87,\!0] =$	21,25 bar
Table UG-44-1 Moment Factor, $F_M =$	0,5
$MAWP = \min [MAWP, MAWP \cdot (1 + F_M) - MAWP_{reduction}] - P_s$ = min [45,97,45,97 \cdot (1 + 0,5) - 21,25] - 0,03 =	45,94 bar
Gaske	it
Туре	ASME B16.20 Spiral-Wound
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler
Factor, m	3
Seating Stress, y	703,07 kg _f /cm ²
Thickness, T	4,5 mm
Inner Diameter	69,9 mm
Outer Diameter	85,9 mm
Notes(1) Flange is impact tested per material specification to -46°C.Stress ratio = 0,3118 \leq 0,35, MDMT per UCS-66(b)(3) = -105°C.Bolts rated MDMT per Fig UCS-66 note (c) = -104°C	
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory
(3) UG-44(b): The bolt material shall have an allowable stress equal to temperature.	or greater than SA-193 B8 Cl. 2 at the specified bolt size and

UCS-66 Material Toughness Requirements							
LWN rated MDMT per UCS-66(c)(1) =	-104°C						
Material is exempt from impact testing at the Design	MDMT of -15°C.						

Reinforcement Calculations for Chamber MAWP

	UG	UG-45 S	ummary (mm)								
		The nozz	le passes UG-45								
ree	A quired	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}			
This	nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	·36(c)(3)(a)	<u>6,4</u>	16,64		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary										
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status							
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate							

WRC 537													
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed	
Load case 1	16,82	-139,7	40,8	139,7	40,8	139,7	40,8	1.163,158	3.609,796	1.012,842	1.804,898	No	
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No	
Load case 1 (Pr Reversed)	16,82	139,7	40,8	139,7	40,8	139,7	40,8	1.121,537	3.609,796	998,499	1.804,898	No	
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No	

Calculations for internal pressure 16,82 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P}{S + E}$

$$rac{P \cdot R_n}{S_n \cdot E - 0,\! 6 \cdot P}$$

$$= \frac{16,8163\cdot25,4}{1.380\cdot1-0,6\cdot16,8163}$$

= 0,31 mm

Required thickness tr from UG-37(a)

$$\mathbf{t}_{\mathbf{r}} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$\mathbf{16.8163} \cdot 900$$

$$= \frac{13,0100 \cdot 000}{1.180 \cdot 1 - 0,6 \cdot 16,8163}$$

= 12,94 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,\!8163\!\cdot\!\!25,\!4}{1.380\cdot 1-0,\!6\cdot 16,\!8163} \hspace{0.1cm}+1,\!6$
	=	1,91 mm
$t_{a\mathrm{UG-22}}$	=	2,71 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}} , t_{a\mathrm{UG-22}} ight]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,\!8163\cdot 900}{1.180\cdot 1-0,\!6\cdot 16,\!8163}+1,\!6$
	=	14,54 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max{[14,54, 3,1]}$
	=	14,54 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min [6,4, 14,54]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads							
Radial load, P _r	-139,7 kg _f						
Circumferential moment, M _c	40,8 kg _f -m						
Circumferential shear, V _c	139,7 kg _f						
Longitudinal moment, M _L	40,8 kg _f -m						
Longitudinal shear, V _L	139,7 kg _f						
Torsion moment, M _t	40,8 kg _f -m						
Internal pressure, P	16,82 bar						
Mean shell radius, R _m	909,7 mm						
Local shell thickness, T	19,4 mm						
Design factor	3						

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = rac{R_m}{T} = rac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 991,539 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= \frac{I \cdot P \cdot R_i}{2 \cdot T} = 495,805 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.163,16 \, \log_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \log_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.012,\!84~$ kg $_f/$ cm 2

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

Stresses at the nozzle OD per WRC Bulletin 537												
Figure	Y		Au	Al	Bu	BI	Cu	Cl	Du	D		
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101		
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0		
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614		
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0		
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023		
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594		
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0		
1B-1	$rac{M_{\phi}}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0		
	Pressure stress*		991,539	991,539	991,539	991,539	795,523	795,523	795,523	795,523		
Tota	al circumferential stre	ss	907,382	1.061,776	1.162,736	862,948	650,621	948,581	1.047,855	563,44		
Primary me	mbrane circumferent	ial stress*	984,579	984,579	1.012,842	1.012,842	799,601	799,601	805,647	805,647		
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0		
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171		
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738	0	0	0	0		
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786		
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64		
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108		
4B*	$rac{N_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0		
2B-1	$rac{M_x}{M_L ~/~(R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0		
	Pressure stress*		397,797	397,797	397,797	397,797	495,805	495,805	495,805	495,805		
Тс	otal longitudinal stress	5	259,995	542,91	645,277	171,408	420,014	576,658	657,511	357,722		
Primary n	nembrane longitudina	l stress*	401,453	401,453	408,343	408,343	498,336	498,336	507,616	507,616		
	Shear from M _t		20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459		
	Circ shear from $\mathbf{V}_{\mathbf{c}}$		5,695	5,695	-5,695	-5,695	0	0	0	0		
	Long shear from V_L		0	0	0	0	-5,695	-5,695	5,695	5,695		
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154		
Com	nbined stress (P _L +P _b +	Q)	908,436	1.063,112	1.163,158	863,229	651,535	949,144	1.049,613	566,744		
* denotes	primary stress.											

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,82 \cdot 1,02 \cdot 25,4}{2 \cdot 15,04} - \frac{-139,7}{\pi \cdot \left(40,44 \cdot 2 - 25,4 \cdot 2\right)} \cdot 100 + \frac{57.698,1 \cdot 40,44}{1.772.985} \cdot 100 \\ &= 150,568 \text{ kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,466 \ \text{kg}_f/\text{cm}^2 \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,934 \ \text{kg}_f/\text{cm}^2 \end{split}$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 16,466 + 66,934 = 83,399 ~~{\rm kg}_{\,f}/{\rm cm}^{\,2}$

UG-45: The total combined shear stress (83,399 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG	UG-45 S	ummary (mm)								
	The nozz	le passes UG-45								
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}			
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	<u>3,1</u>	16,64		

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 trn = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Nozzle (E2)

ASME Section VIII Division 1, 2021 Edition Metric							
	-11 21 1						
Note: round inside edges per UG-76(c)							
Location and	Orientation						
Located on	Shell V1						
Orientation	330°						
Nozzle center line offset to datum line	950 mm						
End of nozzle to shell center	1.125 mm						
Passes through a Category A joint	No						
Nozz	le						
Access opening	No						
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)						
Inside diameter, new	50,8 mm						
Nominal wall thickness	16,64 mm						
Corrosion inner	0 mm						
Corrosion outer	1,6 mm						
Projection available outside vessel, Lpr	181,65 mm						
Projection available outside vessel to flange face, Lf	204 mm						
Local vessel minimum thickness	21 mm						
Liquid static head included	0 bar						
Wel	ds						
Inner fillet, Leg ₄₁	11 mm						
Nozzle to vessel groove weld	21 mm						
Radiog	aphy						
Longitudinal seam	Seamless No RT						
Longitudinal seam	Seamless No R I						

ASME B16.5-20	017 Flange					
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N					
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)					
Blind included	No					
Rated MDMT	-104°C					
Liquid static head	0 bar					
Consider External Loads on Flange MAWP Rating	Yes					
MAWP reduction due to external loads	21,25 bar					
MAWP rating	45,97 bar @ 121°C					
MAP rating	51,1 bar @ 7°C					
Hydrotest rating	77 bar @ 7°C					
PWHT performed	Yes					
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes					
Impact Tested	No					
MAWP Reduction Due	to External Loads					
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar					
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139.7}{\pi \cdot 77.9^{\ 2}} / 1.02 \cdot 100 =$	2,87 bar					
$MAWP_{reduction} ~=~ \max{[P_m + P_r, 0]} = ~\max{[18, 38 + 2, 87, 0]} =$	21,25 bar					
Table UG-44-1 Moment Factor, $F_M =$	0,5					
$\begin{split} MAWP &= \min \left[MAWP, MAWP \cdot (1+F_M) - MAWP_{reduction} \right] - P_s \\ &= \min \left[45,\!97,\!45,\!97 \cdot (1+0,\!5) - 21,\!25 \right] - 0 = \end{split}$	45,97 bar					
Gaske	et					
Туре	ASME B16.20 Spiral-Wound					
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler					
Factor, m	3					
Seating Stress, y	703,07 kg _f /cm ²					
Thickness, T	4,5 mm					
Inner Diameter	69,9 mm					
Outer Diameter	85,9 mm					
Notes (1) Flange is impact tested per material specification to -46°C. Stress ratio = 0,3112 \leq 0,35, MDMT per UCS-66(b)(3) = -105°C. Bolts rated MDMT per Fig UCS-66 note (c) = -104°C						
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory					
(3) UG-44(b): The bolt material shall have an allowable stress equal to or greater than SA-193 B8 Cl. 2 at the specified bolt size and temperature.						

UCS-66 Material Toughness Requirements						
LWN rated MDMT per UCS-66(c)(1) =	-104°C					
Material is exempt from impact testing at the Design MDMT of -15°C.						

Reinforcement Calculations for Chamber MAWP

UG	UG-37 Area Calculation Summary (cm ²)								
For P = 16,78 bar @ 121 °C								le passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}	
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)								

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

	WRC 537											
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-139,7	40,8	139,7	40,8	139,7	40,8	1.160,979	3.609,796	1.010,663	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No
Load case 1 (Pr Reversed)	16,78	139,7	40,8	139,7	40,8	139,7	40,8	1.119,357	3.609,796	996,32	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot P$$

16.7791.25.4

$$= \frac{10,110120,1}{1.380 \cdot 1 - 0,6 \cdot 16,7791}$$

= 0,31 mm

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{16,7791 \cdot 900}{16,7791 \cdot 900}$$

$$1.180\cdot 1 - 0.6\cdot 16,\!7791$$

= 12,91 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 25,4}{1.380\cdot 1-0,6\cdot 16,7791} + 1,6$
	=	1,91 mm
$t_{a\mathrm{UG-}22}$	=	2,71 mm
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 900}{1.180\cdot 1 - 0,6\cdot 16,7791} + 1,6$
	=	14,51 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [14,51, 3,1]$
	=	14,51 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min [6,4, 14,51]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads							
Radial load, P _r	-139,7 kg _f						
Circumferential moment, M _c	40,8 kg _f -m						
Circumferential shear, V _c	139,7 kg _f						
Longitudinal moment, M _L	40,8 kg _f -m						
Longitudinal shear, V _L	139,7 kg _f						
Torsion moment, M _t	40,8 kg _f -m						
Internal pressure, P	16,78 bar						
Mean shell radius, R _m	909,7 mm						
Local shell thickness, T	19,4 mm						
Design factor	3						

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 989,36 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= rac{I \cdot P \cdot R_i}{2 \cdot T} = 494,68 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.160,98 \, \mathrm{kg}_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \mathrm{kg}_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.010,66~~{
m kg}_{f}/{
m cm}^{2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stresse	s at the	nozzle O	D per WR	RC Bulleti	n 537			
Figure	Y		A _u	A	Bu	BI	Cu	CI	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.1 in}/\hspace{0.1 in} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L ~~/~(R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0
	Pressure stress*		989,36	989,36	989,36	989,36	793,766	793,766	793,766	793,766
Tota	al circumferential stre	ss	905,202	1.059,596	1.160,557	860,768	648,863	946,824	1.046,097	561,682
Primary me	mbrane circumferent	ial stress*	982,399	982,399	1.010,663	1.010,663	797,843	797,843	803,89	803,89
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738	0	0	0	0
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108
4B*	$rac{N_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0
	Pressure stress*		396,883	396,883	396,883	396,883	494,68	494,68	494,68	494,68
Тс	otal longitudinal stress	5	259,081	541,996	644,363	170,494	418,889	575,533	656,386	356,597
Primary n	nembrane longitudina	l stress*	400,539	400,539	407,429	407,429	497,211	497,211	506,491	506,491
	Shear from M _t		20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459
	Circ shear from V_c		5,695	5,695	-5,695	-5,695	0	0	0	0
	Long shear from V _L		0	0	0	0	-5,695	-5,695	5,695	5,695
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154
Com	nbined stress (P _L +P _b +	Q)	906,257	1.060,932	1.160,979	861,049	649,777	947,386	1.047,855	564,987
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 25,4}{2 \cdot 15,04} - \frac{-139,7}{\pi \cdot \left(40,44 \cdot 2 - 25,4 \cdot 2\right)} \cdot 100 + \frac{57.698,1 \cdot 40,44}{1.772.985} \cdot 100 \\ &= 150,536 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,466 \ \text{kg}_f/\text{cm}^2 \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,934 \ \text{kg}_f/\text{cm}^2 \end{split}$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 16,466 + 66,934 = 83,399 ~~{\rm kg}_{\,f}/{\rm cm}^{\,2}$

UG-45: The total combined shear stress (83,399 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)								UG-45 Summary (mm)		
For Pe = 1 bar @ 23 °C								le passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}		
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							16,64		

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 trn = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Nozzle (F1)

ASME Section VIII Division 1, 2021 Edition Metric						
	←11 ↓ ↓ ²¹ ↑					
Note: round inside edges per UG-76(c)						
	d Orientation					
Located on	Shell V1					
Orientation	295°					
Nozzle center line offset to datum line	950 mm					
End of nozzle to shell center	1.125 mm					
Passes through a Category A joint	No					
No	zzle					
Access opening	No					
Material specification	SA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalized)					
Inside diameter, new	50,8 mm					
Nominal wall thickness	16,64 mm					
Corrosion inner	0 mm					
Corrosion outer	1,6 mm					
Projection available outside vessel, Lpr	181,65 mm					
Projection available outside vessel to flange face, L	f 204 mm					
Local vessel minimum thickness	21 mm					
Liquid static head included	0 bar					
We	lds					
Inner fillet, Leg ₄₁	11 mm					
Nozzle to vessel groove weld	21 mm					
Radio	graphy					
Longitudinal seam	Seamless No RT					

ASME B16.5-20	017 Flange					
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N					
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)					
Blind included	No					
Rated MDMT	-104°C					
Liquid static head	0 bar					
Consider External Loads on Flange MAWP Rating	Yes					
MAWP reduction due to external loads	21,25 bar					
MAWP rating	45,97 bar @ 121°C					
MAP rating	51,1 bar @ 7°C					
Hydrotest rating	77 bar @ 7°C					
PWHT performed	Yes					
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes					
Impact Tested	No					
MAWP Reduction Due	to External Loads					
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar					
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139.7}{\pi \cdot 77.9^{\ 2}} / 1.02 \cdot 100 =$	2,87 bar					
$MAWP_{reduction} ~=~ \max{[P_m + P_r, 0]} = ~\max{[18, 38 + 2, 87, 0]} =$	21,25 bar					
Table UG-44-1 Moment Factor, $F_M =$	0,5					
$\begin{split} MAWP &= \min \left[MAWP, MAWP \cdot (1+F_M) - MAWP_{reduction} \right] - P_s \\ &= \min \left[45,\!97,\!45,\!97 \cdot (1+0,\!5) - 21,\!25 \right] - 0 = \end{split}$	45,97 bar					
Gaske	et					
Туре	ASME B16.20 Spiral-Wound					
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler					
Factor, m	3					
Seating Stress, y	703,07 kg _f /cm ²					
Thickness, T	4,5 mm					
Inner Diameter	69,9 mm					
Outer Diameter	85,9 mm					
Notes (1) Flange is impact tested per material specification to -46°C. Stress ratio = 0,3112 \leq 0,35, MDMT per UCS-66(b)(3) = -105°C. Bolts rated MDMT per Fig UCS-66 note (c) = -104°C						
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory					
(3) UG-44(b): The bolt material shall have an allowable stress equal to or greater than SA-193 B8 Cl. 2 at the specified bolt size and temperature.						

UCS-66 Material Toughness Requirements					
LWN rated MDMT per UCS-66(c)(1) =	-104°C				
Material is exempt from impact testing at the Design MDMT of -15°C.					

Reinforcement Calculations for Chamber MAWP

UG-37 Area Calculation Summary (cm ²)								ummary (mm)
For P = 16,78 bar @ 121 °C							The nozz	le passes UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a							16,64

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate				

	WRC 537											
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-139,7	40,8	139,7	40,8	139,7	40,8	1.160,979	3.609,796	1.010,663	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No
Load case 1 (Pr Reversed)	16,78	139,7	40,8	139,7	40,8	139,7	40,8	1.119,357	3.609,796	996,32	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot P$$

16.7791.25.4

$$= \frac{10,110120,1}{1.380 \cdot 1 - 0,6 \cdot 16,7791}$$

= 0,31 mm

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{16,7791 \cdot 900}{16,7791 \cdot 900}$$

$$1.180\cdot 1 - 0.6\cdot 16,\!7791$$

= 12,91 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 25,4}{1.380\cdot 1-0,6\cdot 16,7791} + 1,6$
	=	1,91 mm
$t_{a\mathrm{UG-}22}$	=	2,71 mm
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 900}{1.180\cdot 1 - 0,6\cdot 16,7791} + 1,6$
	=	14,51 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [14,51, 3,1]$
	=	14,51 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min [6,4, 14,51]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads							
Radial load, P _r	-139,7 kg _f						
Circumferential moment, M _c	40,8 kg _f -m						
Circumferential shear, V _c	139,7 kg _f						
Longitudinal moment, M _L	40,8 kg _f -m						
Longitudinal shear, V _L	139,7 kg _f						
Torsion moment, M _t	40,8 kg _f -m						
Internal pressure, P	16,78 bar						
Mean shell radius, R _m	909,7 mm						
Local shell thickness, T	19,4 mm						
Design factor	3						

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 989,36 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= rac{I \cdot P \cdot R_i}{2 \cdot T} = 494,68 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.160,98 \, \mathrm{kg}_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \mathrm{kg}_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.010,66~~{
m kg}_{f}/{
m cm}^{2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stresse	s at the	nozzle O	D per WR	RC Bulleti	n 537			
Figure	Y		A _u	A	Bu	BI	Cu	CI	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L ~~/~(R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0
	Pressure stress*		989,36	989,36	989,36	989,36	793,766	793,766	793,766	793,766
Tota	al circumferential stre	ss	905,202	1.059,596	1.160,557	860,768	648,863	946,824	1.046,097	561,682
Primary me	mbrane circumferent	ial stress*	982,399	982,399	1.010,663	1.010,663	797,843	797,843	803,89	803,89
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738	0	0	0	0
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108
4B*	$rac{N_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0
	Pressure stress*		396,883	396,883	396,883	396,883	494,68	494,68	494,68	494,68
Тс	otal longitudinal stress	5	259,081	541,996	644,363	170,494	418,889	575,533	656,386	356,597
Primary n	nembrane longitudina	l stress*	400,539	400,539	407,429	407,429	497,211	497,211	506,491	506,491
	Shear from M _t		20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459
	Circ shear from V_c		5,695	5,695	-5,695	-5,695	0	0	0	0
	Long shear from V _L		0	0	0	0	-5,695	-5,695	5,695	5,695
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154
Com	nbined stress (P _L +P _b +	Q)	906,257	1.060,932	1.160,979	861,049	649,777	947,386	1.047,855	564,987
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 25,4}{2 \cdot 15,04} - \frac{-139,7}{\pi \cdot \left(40,44 \cdot 2 - 25,4 \cdot 2\right)} \cdot 100 + \frac{57.699,7 \cdot 40,44}{1.772.985} \cdot 100 \\ &= 150,54 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\sigma_{shear} = \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,465 \text{ kg}_f/\text{cm}^2$$
$$\sigma_{\text{torsion}} = \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,936 \text{ kg}_f/\text{cm}^2$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 16,465 + 66,936 = 83,401 \ \ {\rm kg}_{f}/{\rm cm}^{2}$

UG-45: The total combined shear stress (83,401 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)								ummary (mm)	
For Pe = 1 bar @ 23 °C							The nozz	le passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a							16,64	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate				

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 trn = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Nozzle (F2)

ASME Section VIII Division 1, 2021 Edition Metric						
	←11 ↓ 2 ¹ ↑					
Note: round inside edges per UG-76(c)						
Location an	l Orientation					
Located on	Shell V1					
Orientation	225°					
Nozzle center line offset to datum line	950 mm					
End of nozzle to shell center	1.125 mm					
Passes through a Category A joint	No					
No	zle					
Access opening	No					
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)					
Inside diameter, new	50,8 mm					
Nominal wall thickness	16,64 mm					
Corrosion inner	0 mm					
Corrosion outer	1,6 mm					
Projection available outside vessel, Lpr	181,65 mm					
Projection available outside vessel to flange face, L	f 204 mm					
Local vessel minimum thickness	21 mm					
Liquid static head included	0 bar					
We	lds					
Inner fillet, Leg ₄₁	11 mm					
Nozzle to vessel groove weld	21 mm					
	graphy					
Longitudinal seam	Seamless No RT					

ASME B16.5-2017 Flange								
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N							
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)							
Blind included	No							
Rated MDMT	-104°C							
Liquid static head	0 bar							
Consider External Loads on Flange MAWP Rating	Yes							
MAWP reduction due to external loads	21,25 bar							
MAWP rating	45,97 bar @ 121°C							
MAP rating	51,1 bar @ 7°C							
Hydrotest rating	77 bar @ 7°C							
PWHT performed	Yes							
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes							
Impact Tested	No							
MAWP Reduction Due	to External Loads							
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar							
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139.7}{\pi \cdot 77.9^{\ 2}} / 1.02 \cdot 100 =$	2,87 bar							
$MAWP_{reduction} ~=~ \max{[P_m + P_r, 0]} = ~\max{[18, 38 + 2, 87, 0]} =$	21,25 bar							
Table UG-44-1 Moment Factor, $F_M =$	0,5							
$\begin{split} MAWP &= \min \left[MAWP, MAWP \cdot (1+F_M) - MAWP_{reduction} \right] - P_s \\ &= \min \left[45,\!97,\!45,\!97 \cdot (1+0,\!5) - 21,\!25 \right] - 0 = \end{split}$	^{\$} 45,97 bar							
Gaske	et set set set set set set set set set s							
Туре	ASME B16.20 Spiral-Wound							
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler							
Factor, m	3							
Seating Stress, y	703,07 kg _f /cm ²							
Thickness, T	4,5 mm							
Inner Diameter	69,9 mm							
Outer Diameter	85,9 mm							
Notes(1) Flange is impact tested per material specification to -46°C.Stress ratio = 0,3112 \leq 0,35, MDMT per UCS-66(b)(3) = -105°C.Bolts rated MDMT per Fig UCS-66 note (c) = -104°C	3							
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory							
(3) UG-44(b): The bolt material shall have an allowable stress equal to temperature.	or greater than SA-193 B8 Cl. 2 at the specified bolt size and							

UCS-66 Material Toughness Requirements									
LWN rated MDMT per UCS-66(c)(1) =	-104°C								
Material is exempt from impact testing at the Design MDMT of -15°C.									

Reinforcement Calculations for Chamber MAWP

	UG-37 Area Calculation Summary (cm ²)								UG-45 Summary (mm)		
	For P = 16,78 bar @ 121 °C								le passes UG-45		
	A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}		
Т	This nozzle is exempt from area calculations per UG-36(c)(3)(a)								16,64		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate						

WRC 537												
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-139,7	40,8	139,7	40,8	139,7	40,8	1.160,979	3.609,796	1.010,663	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No
Load case 1 (Pr Reversed)	16,78	139,7	40,8	139,7	40,8	139,7	40,8	1.119,357	3.609,796	996,32	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot P$$

16.7791.25.4

$$= \frac{10,110120,1}{1.380 \cdot 1 - 0,6 \cdot 16,7791}$$

= 0,31 mm

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{16,7791 \cdot 900}{16,7791 \cdot 900}$$

$$1.180\cdot 1 - 0.6\cdot 16,\!7791$$

= 12,91 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 25,4}{1.380\cdot 1-0,6\cdot 16,7791} + 1,6$
	=	1,91 mm
$t_{a\mathrm{UG-}22}$	=	2,71 mm
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 900}{1.180\cdot 1 - 0,6\cdot 16,7791} + 1,6$
	=	14,51 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [14,51, 3,1]$
	=	14,51 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min [6,4, 14,51]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads	
Radial load, P _r	-139,7 kg _f
Circumferential moment, M _c	40,8 kg _f -m
Circumferential shear, V _c	139,7 kg _f
Longitudinal moment, M _L	40,8 kg _f -m
Longitudinal shear, V _L	139,7 kg _f
Torsion moment, M _t	40,8 kg _f -m
Internal pressure, P	16,78 bar
Mean shell radius, R _m	909,7 mm
Local shell thickness, T	19,4 mm
Design factor	3

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 989,36 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= rac{I \cdot P \cdot R_i}{2 \cdot T} = 494,68 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.160,98 \, \mathrm{kg}_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \mathrm{kg}_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.010,66~~{
m kg}_{f}/{
m cm}^{2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

Stresses at the nozzle OD per WRC Bulletin 537										
Figure	Y		A _u	A	Bu	BI	Cu	CI	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L ~~/~(R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0
	Pressure stress*		989,36	989,36	989,36	989,36	793,766	793,766	793,766	793,766
Tota	al circumferential stre	ss	905,202	1.059,596	1.160,557	860,768	648,863	946,824	1.046,097	561,682
Primary me	mbrane circumferent	ial stress*	982,399	982,399	1.010,663	1.010,663	797,843	797,843	803,89	803,89
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738 0		0	0	0
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108
4B*	$rac{N_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0
	Pressure stress*		396,883	396,883	396,883	396,883	494,68	494,68	494,68	494,68
Тс	otal longitudinal stress	5	259,081	541,996	644,363	170,494	418,889	575,533	656,386	356,597
Primary n	nembrane longitudina	l stress*	400,539	400,539	407,429	407,429	497,211	497,211	506,491	506,491
	Shear from M _t		20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459
	Circ shear from V_c		5,695	5,695	-5,695	-5,695	0	0	0	0
Long shear from V _L			0	0	0	0	-5,695	-5,695	5,695	5,695
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154
Com	nbined stress (P _L +P _b +	Q)	906,257	1.060,932	1.160,979	861,049	649,777	947,386	1.047,855	564,987
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 25,4}{2 \cdot 15,04} - \frac{-139,7}{\pi \cdot \left(40,44 \cdot 2 - 25,4 \cdot 2\right)} \cdot 100 + \frac{57.698,1 \cdot 40,44}{1.772.985} \cdot 100 \\ &= 150,536 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,466 \ \text{kg}_f/\text{cm}^2 \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,934 \ \text{kg}_f/\text{cm}^2 \end{split}$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 16,466 + 66,934 = 83,399 ~~{\rm kg}_{\,f}/{\rm cm}^{\,2}$

UG-45: The total combined shear stress (83,399 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)								UG-45 Summary (mm)		
For Pe = 1 bar @ 23 °C							The nozzle passes UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}		
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	<u>3,1</u>	16,64		

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate						

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2, 5 \cdot (t - C), 2, 5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 trn = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Nozzle	(G)
--------	-----

ASME Section VIII Division 1, 2021 Edition Metric								
	n 1, 2021 Edition Metric							
	-11							
Note: round inside edges per UG-76(c)								
Location and	Orientation							
Located on	Shell V1							
Orientation	135°							
Nozzle center line offset to datum line	200 mm							
End of nozzle to shell center	1.125 mm							
Passes through a Category A joint	No							
Noz	zle							
Access opening	No							
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)							
Inside diameter, new	50,8 mm							
Nominal wall thickness	13,46 mm							
Corrosion inner	0 mm							
Corrosion outer	1,6 mm							
Projection available outside vessel, Lpr	184,95 mm							
Projection available outside vessel to flange face, Lf	204 mm							
Local vessel minimum thickness	21 mm							
Liquid static head included	0,03 bar							
Wel	ds							
Inner fillet, Leg ₄₁	11 mm							
Nozzle to vessel groove weld	21 mm							
Radiog	raphy							
Longitudinal seam	Seamless No RT							
-	1							

ASME B16.5-20	17 Flange
Description	NPS 2 Class 150 LWN A350 LF2 Cl.1 N
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)
Blind included	No
Rated MDMT	-53,7°C
Liquid static head	0,03 bar
Consider External Loads on Flange MAWP Rating	Yes
MAWP reduction due to external loads	21,25 bar
MAWP rating	16,9 bar @ 121°C
MAP rating	19,6 bar @ 7°C
Hydrotest rating	30 bar @ 7°C
PWHT performed	Yes
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes
Impact Tested	No
MAWP Reduction Due	to External Loads
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139,7}{\pi \cdot 77,9^{\ 2}} \ /1,02 \cdot 100 =$	2,87 bar
$MAWP_{reduction} \;=\; \max \; [P_m + P_r, 0] = \; \max \; [18,\!38 + 2,\!87,\!0] =$	21,25 bar
Table UG-44-1 Moment Factor, $F_M =$	1,2
$MAWP = \min [MAWP, MAWP \cdot (1 + F_M) - MAWP_{reduction}] - P_s$ = min [16,9,16,9 \cdot (1 + 1,2) - 21,25] - 0,03 =	15,9 bar
Gaske	t
Туре	ASME B16.20 Spiral-Wound
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler
Factor, m	3
Seating Stress, y	703,07 kg _f /cm ²
Thickness, T	4,5 mm
Inner Diameter	69,9 mm
Outer Diameter	85,9 mm
Notes (1) Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 7,7°C applied (ratio = 0,8623). Bolts rated MDMT per Fig UCS-66 note (c) = -104°C	3
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory
(3) UG-44(b): The bolt material shall have an allowable stress equal to temperature.	or greater than SA-193 B8 Cl. 2 at the specified bolt size and

UCS-66 Material Toughness Requirements								
LWN rated MDMT per UCS-66(c)(1) =	-53,7°C							
LWN rated MDMT per UCS-66(c)(1) =-53,7°CMaterial is exempt from impact testing at the Design MDMT of -15°C.								

Reinforcement Calculations for Chamber MAWP

UG	UG-37 Area Calculation Summary (cm ²)							
For P = 15,93 bar @ 121 °C					The nozz	le passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	<u>6,4</u>	13,46

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description Required weld throat size (mm)		Actual weld throat size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate						

WRC 537												
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	15,93	-139,7	40,8	139,7	40,8	139,7	40,8	1.231,497	3.609,796	1.067,681	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	279,4	3.609,796	21,022	1.804,898	No
Load case 1 (Pr Reversed)	15,93	139,7	40,8	139,7	40,8	139,7	40,8	1.190,508	3.609,796	1.053,339	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-278,626	3.609,796	-21,022	1.804,898	No

Calculations for internal pressure 15,93 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [50,8, 25,4+(13,46-1,6)+(21-1,6)]
- = 56,66 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2,5 \cdot (21 1,6), 2,5 \cdot (13,46 1,6) + 0\right]$
- = 29,65 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S \cdot E - 0.6}$

$$rac{T\cdot n_n}{S_n\cdot E-0,\!6\cdot P}$$

$$= \frac{15,9324\cdot25,4}{1.380\cdot1-0,6\cdot15,9324}$$

= 0,29 mm

Required thickness tr from UG-37(a)

$$\mathbf{t}_{\mathbf{r}} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$= \frac{15,9324 \cdot 900}{1.180 \cdot 1 - 0.6 \cdot 15,9324}$$

= 12,25 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{15,\!9324\!\cdot\!25,\!4}{1.380\cdot1-0,\!6\cdot15,\!9324} + 1,\!6$
	=	1,89 mm
$t_{a\mathrm{UG-22}}$	=	2,84 mm
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$
	=	$\max[1,\!89, 2,\!84]$
	=	2,84 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{15{,}9324\cdot 900}{1{.}180\cdot 1-0{,}6\cdot 15{,}9324}+1{,}6$
	=	13,85 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} ight]$
	=	$\max [13,\!85, 3,\!1]$
	=	13,85 mm
t_b	=	$\min \; [t_{b3} , \; \; t_{b1}]$
	=	$\min \ [6,4, \ 13,85]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,84, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 13,46 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads									
Radial load, P _r	-139,7 kg _f								
Circumferential moment, M _c	40,8 kg _f -m								
Circumferential shear, V _c	139,7 kg _f								
Longitudinal moment, M _L	40,8 kg _f -m								
Longitudinal shear, V _L	139,7 kg _f								
Torsion moment, M _t	40,8 kg _f -m								
Internal pressure, P	15,93 bar								
Mean shell radius, R _m	909,7 mm								
Local shell thickness, T	19,4 mm								
Design factor	3								

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 37,26}{909,7} = 0.0358$$

Pressure stress intensity factor, I = 1,3888 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 1.046,66 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= \frac{I \cdot P \cdot R_i}{2 \cdot T} = 523,365 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.231.5 \, \text{ kg}_f/\text{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609.8 \, \text{ kg}_f/\text{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.067{,}68~~{\rm kg}_{f}/{\rm cm}^{-2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

Stresses at the nozzle OD per WRC Bulletin 537										
Figure	Y		A _u	A	Bu	Bl	Cu	Cl	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0998	0	0	0	0	7,171	7,171	7,171	7,171
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0709	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2174	0	0	0	0	48,441	-48,441	48,441	-48,441
2C-1	$rac{M_{\phi}}{P}$	0,1709	38,036	-38,036	38,036	-38,036	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4136	0	0	0	0	-2,953	-2,953	2,953	2,953
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-212,257	212,257	212,257	-212,257
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	1,9568	-13,85	-13,85	13,85	13,85	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L ~~/~(R_m \cdot eta)}$	0,0628	-125,217	125,217	125,217	-125,217	0	0	0	0
	Pressure stress*		1.046,66	1.046,66	1.046,66	1.046,66	753,691	753,691	753,691	753,691
Tot	al circumferential stre	ss	952,8	1.127,161	1.230,934	904,429	594,094	921,724	1.024,513	503,117
Primary me	mbrane circumferent	ial stress*	1.039,981	1.039,981	1.067,681	1.067,681	757,909	757,909	763,815	763,815
3C*	$rac{N_x}{P \ / \ R_m}$	9,0998	7,171	7,171	7,171	7,171	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0709	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2227	49,566	-49,566	49,566	-49,566	0	0	0	0
2C	$\frac{M_x}{P}$	0,1677	0	0	0	0	37,333	-37,333	37,333	-37,333
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,6345	0	0	0	0	-4,5	-4,5	4,5	4,5
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0623	0	0	0	0	-124,232	124,232	124,232	-124,232
4B*	$rac{N_x}{M_L} /\left(R_m^2\cdoteta ight)$	0,4806	-3,375	-3,375	3,375	3,375	0	0	0	0
2B-1	$rac{M_x}{M_L ~/~(R_m \cdot eta)}$	0,1047	-208,812	208,812	208,812	-208,812	0	0	0	0
	Pressure stress*		376,845	376,845	376,845	376,845	523,365	523,365	523,365	523,365
<u> </u>	otal longitudinal stress		221,397	539,887	645,769	129,013	439,137	612,936	696,601	373,471
Primary n	nembrane longitudina	l stress*	380,642	380,642	387,391	387,391	526,037	526,037	535,036	535,036
Shear from M _t			24,115	24,115	24,115	24,115	24,115	24,115	24,115	24,115
Circ shear from V _c		6,117	6,117	-6,117	-6,117	0	0	0	0	
	Long shear from V _L		0	0	0	0	-6,117	-6,117	6,117	6,117
	Total Shear stress		30,232	30,232	17,999	17,999	17,999	17,999	30,232	30,232
Con	nbined stress (P _L +P _b +	Q)	954,065	1.128,708	1.231,497	904,851	596,133	922,779	1.027,255	509,796
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot (R_o^2 - R_i^2)} + \frac{M \cdot R_o}{I} \\ &= \frac{15,\!93 \cdot 1,\!02 \cdot 25,\!4}{2 \cdot 11,\!86} - \frac{-139,\!7}{\pi \cdot (37,\!26^2 - 25,\!4^2)} \cdot 100 + \frac{57.699,\!7\cdot\!37,\!26}{1.187.160} \cdot 100 \\ &= 204,\!482 \ \mathrm{kg}_f/\mathrm{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\sigma_{shear} = \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 11,86} \cdot 100 = 20,873 \text{ kg}_f/\text{cm}^2$$

$$\sigma_{\text{torsion}} = \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 11,86} \cdot 100000 = 84,852 \text{ kg}_f/\text{cm}^2$$

 $\sigma_{\rm total}=\sigma_{\rm shear}+\sigma_{\rm torsion}=20{,}873+84{,}852=105{,}725~$ kg $_f/{\rm cm}^2$

UG-45: The total combined shear stress (105,725 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407, 208 = 985, 046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)								UG-45 Summary (mm)		
	For Pe =	For Pe = 1 bar @ 23 °C The nozzle passes U					le passes UG-45			
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}		
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	<u>3,1</u>	13,46		

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary									
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate						

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (13,46 1,6) + (21 1,6)]$
- = 56,66 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (13.46 1.6) + 0 \right]$
- = 29,65 mm

Nozzle required thickness per UG-28 t_{rn} = 0,37 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 11,86 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0,7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0,7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,97 mm

 $t_{a\mathrm{UG-22}}$ = 2,64 mm

t_a	=	$\max\ [t_{a\mathrm{UG-28}},\ t_{a\mathrm{UG-22}}]$
	=	$\max [1,\!97, 2,\!64]$
	=	2,64 mm
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 900}{1.180\cdot 1 - 0.6\cdot 1} + 1.6$
	=	2,36 mm
t_{b2}	=	$\max \ [t_{b2}, \ t_{b\rm UG16}]$
	=	$\max [2,36, 3,1]$
	=	3,1 mm
t_b	=	$\min \; [t_{t3}, \; t_{t2}]$
	=	$\min [6,4, 3,1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[2,64, 3,1]$
	=	<u>3,1</u> mm

Available nozzle wall thickness new, t_n = 13,46 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,82}{77,72} = 2,6352$$
$$\frac{D_o}{t} = \frac{77,72}{0,37} = 211,7836$$

From table G: A = 0,000159

From table CS-2 Metric: $B = 161,9607 \text{ kg/cm}^2(158,83 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 158,83}{3 \cdot (77,72/0,37)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!37 + 1,\!6 = 1,\!97 \text{ mm}$

Nozzle (K1)

ASME Section VIII Division 1, 2021 Edition Metric								
	-11 21 T							
Note: round inside edges per UG-76(c)								
Location and	Orientation							
Located on	Shell V1							
Orientation	315°							
Nozzle center line offset to datum line	200 mm							
End of nozzle to shell center	1.125 mm							
Passes through a Category A joint	No							
Nozz	le							
Access opening	No							
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)							
Inside diameter, new	50,8 mm							
Nominal wall thickness	16,64 mm							
Corrosion inner	0 mm							
Corrosion outer	1,6 mm							
Projection available outside vessel, Lpr	181,65 mm							
Projection available outside vessel to flange face, Lf	204 mm							
Local vessel minimum thickness	21 mm							
Liquid static head included	0,03 bar							
Wel	ds							
Inner fillet, Leg ₄₁	11 mm							
Nozzle to vessel groove weld	21 mm							
Radiog	aphy							
Longitudinal seam	Seamless No RT							

ASME B16.5-20	17 Flange
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)
Blind included	No
Rated MDMT	-104°C
Liquid static head	0,03 bar
Consider External Loads on Flange MAWP Rating	Yes
MAWP reduction due to external loads	21,25 bar
MAWP rating	45,97 bar @ 121°C
MAP rating	51,1 bar @ 7°C
Hydrotest rating	77 bar @ 7°C
PWHT performed	Yes
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes
Impact Tested	No
MAWP Reduction Due	to External Loads
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139.7}{\pi \cdot 77.9^{\ 2}} / 1.02 \cdot 100 =$	2,87 bar
$MAWP_{reduction} \; = \; \max \; [P_m + P_r, 0] = \; \max \; [18,\!38 + 2,\!87,\!0] =$	21,25 bar
Table UG-44-1 Moment Factor, $F_M =$	0,5
$MAWP = \min [MAWP, MAWP \cdot (1 + F_M) - MAWP_{reduction}] - P_s$ = min [45,97,45,97 \cdot (1 + 0,5) - 21,25] - 0,03 =	45,94 bar
Gaske	et set set set set set set set set set s
Туре	ASME B16.20 Spiral-Wound
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler
Factor, m	3
Seating Stress, y	703,07 kg _f /cm ²
Thickness, T	4,5 mm
Inner Diameter	69,9 mm
Outer Diameter	85,9 mm
Notes(1) Flange is impact tested per material specification to -46°C.Stress ratio = 0,3117 \leq 0,35, MDMT per UCS-66(b)(3) = -105°C.Bolts rated MDMT per Fig UCS-66 note (c) = -104°C	3
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory
(3) UG-44(b): The bolt material shall have an allowable stress equal to temperature.	or greater than SA-193 B8 Cl. 2 at the specified bolt size and

UCS-66 Material Toughness Requirements							
LWN rated MDMT per UCS-66(c)(1) =	-104°C						
Material is exempt from impact testing at the Design MDMT of -15°C.							

Reinforcement Calculations for Chamber MAWP

	UG-37 Area Calculation Summary (cm ²)								UG-45 Summary (mm)		
		For P = 16,8	31 bar	@ 121	°C	The nozz	le passes UG-45				
	A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}		
Г	his nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	-36(c)(3)(a)	<u>6,4</u>	16,64		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate						

WRC 537												
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,81	-139,7	40,8	139,7	40,8	139,7	40,8	1.162,877	3.609,796	1.012,561	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No
Load case 1 (Pr Reversed)	16,81	139,7	40,8	139,7	40,8	139,7	40,8	1.121,255	3.609,796	998,218	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No

Calculations for internal pressure 16,81 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6}$

$${S}_n \cdot E - 0,\! 6 \cdot P$$

$$= \frac{16,8114\cdot25,4}{1.380\cdot1-0,6\cdot16,8114}$$

= 0,31 mm

Required thickness tr from UG-37(a)

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{16,8114 \cdot 900}{100}$$

$$= \frac{1.180 \cdot 1 - 0.6 \cdot 16,8114}{1.180 \cdot 1 - 0.6 \cdot 16,8114}$$

= 12,93 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16{,}8114{\cdot}25{,}4}{1{.}380{\cdot}1{-}0{,}6{\cdot}16{,}8114} + 1{,}6$
	=	1,91 mm
$t_{a{ m UG-}22}$	=	2,71 mm
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16{,}8114\cdot 900}{1.180\cdot 1-0{,}6\cdot 16{,}8114}+1{,}6$
	=	14,53 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [14,53, 3,1]$
	=	14,53 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min [6,4, 14,53]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads					
Radial load, P _r	-139,7 kg _f				
Circumferential moment, M _c	40,8 kg _f -m				
Circumferential shear, V _c	139,7 kg _f				
Longitudinal moment, M _L	40,8 kg _f -m				
Longitudinal shear, V _L	139,7 kg _f				
Torsion moment, M _t	40,8 kg _f -m				
Internal pressure, P	16,81 bar				
Mean shell radius, R _m	909,7 mm				
Local shell thickness, T	19,4 mm				
Design factor	3				

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 991,258 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= \frac{I \cdot P \cdot R_i}{2 \cdot T} = 495{,}594 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.162,88 \, \mathrm{kg}_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \mathrm{kg}_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.012{,}56~~{
m kg}_{f}/{
m cm}^{2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stresse	s at the	nozzle O	D per WR	RC Bulleti	n 537			
Figure	Y		Au	Al	Bu	BI	Cu	Cl	Du	D
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594
3B*	$rac{N_{\phi}}{M_L}~/~\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0
	Pressure stress*		991,258	991,258	991,258	991,258	795,312	795,312	795,312	795,312
Tota	al circumferential stre	ss	907,1	1.061,494	1.162,455	862,666	650,41	948,371	1.047,644	563,229
Primary me	mbrane circumferent	ial stress*	984,297	984,297	1.012,561	1.012,561	799,39	799,39	805,437	805,437
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738	0	0	0	0
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64
2A	$rac{M_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108
4B*	$rac{N_x}{M_L}$ / $\left(R_m^2\cdoteta ight)$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0
	Pressure stress*		397,656	397,656	397,656	397,656	495,594	495,594	495,594	495,594
	otal longitudinal stress		259,855	542,77	645,137	171,268	419,803	576,447	657,3	357,511
Primary n	nembrane longitudina	l stress*	401,312	401,312	408,202	408,202	498,125	498,125	507,405	507,405
Shear from M _t			20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459
Circ shear from V _c			5,695	5,695	-5,695	-5,695	0	0	0	0
Long shear from V _L			0	0	0	0	-5,695	-5,695	5,695	5,695
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154
Com	nbined stress (P _L +P _b +	Q)	908,155	1.062,83	1.162,877	862,948	651,324	948,933	1.049,402	566,533
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,\!81 \cdot 1,\!02 \cdot 25,\!4}{2 \cdot 15,\!04} - \frac{-139,\!7}{\pi \cdot \left(40,\!44^2 - 25,\!4^2\right)} \cdot 100 + \frac{57.698,\!1 \cdot 40,\!44}{1.772.985} \cdot 100 \\ &= 150,\!564 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\sigma_{shear} = \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,466 \text{ kg}_f/\text{cm}^2$$
$$\sigma_{\text{torsion}} = \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,934 \text{ kg}_f/\text{cm}^2$$

 $\sigma_{\rm total}=\sigma_{\rm shear}+\sigma_{\rm torsion}=16,466+66,934=83,399~~{\rm kg}_{f}/{\rm cm}^{-2}$

UG-45: The total combined shear stress (83,399 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)						UG-45 S	ummary (mm)	
	For Pe = 1 bar @ 23 °C					The nozz	le passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a					-36(c)(3)(a)	<u>3,1</u>	16,64

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate				

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2, 5 \cdot (t - C), 2, 5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 trn = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Nozzle (K2)

ASME Section VIII Divisio	n 1, 2021 Edition Metric				
Note: round inside edges per UG-76(c)					
Location and	Orientation				
Located on	Shell V1				
Orientation	315°				
Nozzle center line offset to datum line	950 mm				
End of nozzle to shell center	1.125 mm				
Passes through a Category A joint	No				
Nozz	le				
Access opening	No				
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)				
Inside diameter, new	50,8 mm				
Nominal wall thickness	13,46 mm				
Corrosion inner	0 mm				
Corrosion outer	1,6 mm				
Projection available outside vessel, Lpr	184,95 mm				
Projection available outside vessel to flange face, Lf	204 mm				
Local vessel minimum thickness	21 mm				
Liquid static head included	0 bar				
Wel	ds				
Inner fillet, Leg ₄₁	11 mm				
Nozzle to vessel groove weld	21 mm				
Radiography					
Longitudinal seam	Seamless No RT				
Longitudinai seam	Seamless No K I				

ASME B16.5-20	17 Flange
Description	NPS 2 Class 150 LWN A350 LF2 Cl.1 N
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)
Blind included	No
Rated MDMT	-53,8°C
Liquid static head	0 bar
Consider External Loads on Flange MAWP Rating	Yes
MAWP reduction due to external loads	21,25 bar
MAWP rating	16,9 bar @ 121°C
MAP rating	19,6 bar @ 7°C
Hydrotest rating	30 bar @ 7°C
PWHT performed	Yes
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes
Impact Tested	No
MAWP Reduction Due	to External Loads
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139.7}{\pi \cdot 77.9^{\ 2}} / 1.02 \cdot 100 =$	2,87 bar
$MAWP_{reduction} \;=\; \max \; [P_m + P_r, 0] = \; \max \; [18,\!38 + 2,\!87,\!0] =$	21,25 bar
Table UG-44-1 Moment Factor, $F_M =$	1,2
$\begin{split} MAWP &= \min \left[MAWP, MAWP \cdot (1+F_M) - MAWP_{reduction} \right] - P_s \\ &= \min \left[16, 9, 16, 9 \cdot (1+1, 2) - 21, 25 \right] - 0 = \end{split}$	15,93 bar
Gaske	it .
Туре	ASME B16.20 Spiral-Wound
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler
Factor, m	3
Seating Stress, y	703,07 kg _f /cm ²
Thickness, T	4,5 mm
Inner Diameter	69,9 mm
Outer Diameter	85,9 mm
Notes (1) Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 7,8°C applied (ratio = 0,8607). Bolts rated MDMT per Fig UCS-66 note (c) = -104°C	3
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory
(3) UG-44(b): The bolt material shall have an allowable stress equal to temperature.	or greater than SA-193 B8 Cl. 2 at the specified bolt size and

UCS-66 Material Toughness Requirements						
LWN rated MDMT per UCS-66(c)(1) = -53,8°C						
Material is exempt from impact testing at the Design MDMT of -15°C.						

Reinforcement Calculations for Chamber MAWP

UG-37 Area Calculation Summary (cm ²)						UG-45 S	ummary (mm)	
	For P = 15,93 bar @ 121 °C					The nozz	le passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a					-36(c)(3)(a)	<u>6,4</u>	13,46

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate				

WRC 537												
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	15,93	-139,7	40,8	139,7	40,8	139,7	40,8	1.231,497	3.609,796	1.067,681	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	279,33	3.609,796	21,022	1.804,898	No
Load case 1 (Pr Reversed)	15,93	139,7	40,8	139,7	40,8	139,7	40,8	1.190,508	3.609,796	1.053,339	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-278,626	3.609,796	-21,022	1.804,898	No

Calculations for internal pressure 15,93 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [50,8, 25,4+(13,46-1,6)+(21-1,6)]
- = 56,66 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (13.46 1.6) + 0 \right]$
- = 29,65 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot P$$

15.932.25.4

$$= \frac{10,002\,20,4}{1.380\cdot 1 - 0,6\cdot 15,932}$$

= 0,29 mm

Required thickness t_r from UG-37(a)

$$t_{\rm r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$= \frac{15,932 \cdot 900}{1.180 \cdot 1 - 0.6 \cdot 15,932}$$

= 12,25 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0, 6 \cdot P} + \text{Corrosion}$
	=	$\frac{15,\!932.25,\!4}{1.380\cdot 1-0,\!6\cdot 15,\!932} \hspace{0.1 cm} +1,\!6$
	=	1,89 mm
$t_{a\mathrm{UG-22}}$	=	2,84 mm
t_a	=	$\max \; [t_{a { m UG-} 27} , \; t_{a { m UG-} 22}]$
	=	$\max[1,\!89, 2,\!84]$
	=	2,84 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{15,\!932\cdot 900}{1.180\cdot 1-0,\!6\cdot 15,\!932}+1,\!6$
	=	13,85 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max[13,85, 3,1]$
	=	13,85 mm
t_b	=	$\min \; [t_{b3}, \; t_{b1}]$
	=	$\min [6,4, 13,85]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,84, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 13,46 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads						
Radial load, P _r	-139,7 kg _f					
Circumferential moment, M _c	40,8 kg _f -m					
Circumferential shear, V _c	139,7 kg _f					
Longitudinal moment, M _L	40,8 kg _f -m					
Longitudinal shear, V _L	139,7 kg _f					
Torsion moment, M _t	40,8 kg _f -m					
Internal pressure, P	15,93 bar					
Mean shell radius, R _m	909,7 mm					
Local shell thickness, T	19,4 mm					
Design factor	3					

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 37,26}{909,7} = 0.0358$$

Pressure stress intensity factor, I = 1,3888 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 1.046,66 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= \frac{I \cdot P \cdot R_i}{2 \cdot T} = 523,365 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.231.5 \, \text{ kg}_f/\text{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609.8 \, \text{ kg}_f/\text{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.067{,}68~~{\rm kg}_{f}/{\rm cm}^{-2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stresse	es at the i	nozzle Ol	D per WR	C Bulletii	n 537			
Figure	Y		A _u	A	Bu	Bl	Cu	Cl	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0998	0	0	0	0	7,171	7,171	7,171	7,171
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0709	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2174	0	0	0	0	48,441	-48,441	48,441	-48,441
2C-1	$rac{M_{\phi}}{P}$	0,1709	38,036	-38,036	38,036	-38,036	0	0	0	0
3A*	$rac{N_{\phi}}{M_c} ~/~(R_m^2\cdoteta)$	0,4136	0	0	0	0	-2,953	-2,953	2,953	2,953
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-212,186	212,186	212,186	-212,186
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	1,9568	-13,85	-13,85	13,85	13,85	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0628	-125,217	125,217	125,217	-125,217	0	0	0	0
	Pressure stress*		1.046,66	1.046,66	1.046,66	1.046,66	753,691	753,691	753,691	753,691
Tot	Total circumferential stress		952,8	1.127,161	1.230,934	904,429	594,164	921,654	1.024,443	503,187
Primary me	mbrane circumferent	ial stress*	1.039,981	1.039,981	1.067,681	1.067,681	757,909	757,909	763,815	763,815
3C*	$rac{N_x}{P \ / \ R_m}$	9,0998	7,171	7,171	7,171	7,171	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0709	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2227	49,566	-49,566	49,566	-49,566	0	0	0	0
2C	$\frac{M_x}{P}$	0,1677	0	0	0	0	37,333	-37,333	37,333	-37,333
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,6345	0	0	0	0	-4,5	-4,5	4,5	4,5
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0623	0	0	0	0	-124,232	124,232	124,232	-124,232
4B*	$rac{N_x}{M_L}$ / $\left(R_m^2\cdoteta ight)$	0,4806	-3,375	-3,375	3,375	3,375	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1047	-208,812	208,812	208,812	-208,812	0	0	0	0
	Pressure stress*			376,845	376,845	376,845	523,365	523,365	523,365	523,365
Total longitudinal stress			221,397	539,887	645,769	129,013	439,137	612,936	696,601	373,471
Primary membrane longitudinal stress*			380,642	380,642	387,391	387,391	526,037	526,037	535,036	535,036
Shear from M _t			24,115	24,115	24,115	24,115	24,115	24,115	24,115	24,115
Circ shear from V _c			6,117	6,117	-6,117	-6,117	0	0	0	0
Long shear from V _L			0	0	0	0	-6,117	-6,117	6,117	6,117
	Total Shear stress			30,232	17,999	17,999	17,999	17,999	30,232	30,232
Con	nbined stress (P _L +P _b +	Q)	954,065	1.128,708	1.231,497	904,851	596,203	922,709	1.027,185	509,866
* denotes primary stress.										

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{15,93 \cdot 1,02 \cdot 25,4}{2 \cdot 11,86} - \frac{-139,7}{\pi \cdot \left(37,26\ ^2 - 25,4\ ^2\right)} \cdot 100 + \frac{57.698,1 \cdot 37,26}{1.187.160} \cdot 100 \\ &= 204,476 \ \mathrm{kg}_{f}/\mathrm{cm}^{-2} \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 11,86} \cdot 100 = 20,873 \ \text{kg}_f/\text{cm}^2 \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 11,86} \cdot 100000 = 84,85 \ \text{kg}_f/\text{cm}^2 \end{split}$$

 $\sigma_{\rm total}=\sigma_{\rm shear}+\sigma_{\rm torsion}=20{,}873+84{,}85=105{,}722~$ kg $_f/{\rm cm}^2$

UG-45: The total combined shear stress (105,722 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407, 208 = 985, 046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)							UG-45 Summary (mm)		
For Pe = 1 bar @ 23 °C							The nozzle passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}	
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							13,46	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate				

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max [50,8, 25,4 + (13,46 1,6) + (21 1,6)]$
- = 56,66 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (13.46 1.6) + 0 \right]$
- = 29,65 mm

Nozzle required thickness per UG-28 t_{rn} = 0,37 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 11,86 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0,7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0,7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,97 mm

 $t_{a\mathrm{UG-22}}$ = 2,64 mm

t_a	=	$\max\ [t_{a\mathrm{UG-28}},\ t_{a\mathrm{UG-22}}]$
	=	$\max [1,\!97, 2,\!64]$
	=	2,64 mm
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 900}{1.180\cdot 1 - 0.6\cdot 1} + 1.6$
	=	2,36 mm
t_{b2}	=	$\max \ [t_{b2}, \ t_{b\rm UG16}]$
	=	$\max [2,36, 3,1]$
	=	3,1 mm
t_b	=	$\min \; [t_{t3}, \; t_{t2}]$
	=	$\min [6,4, 3,1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[2,64, 3,1]$
	=	<u>3,1</u> mm

Available nozzle wall thickness new, t_n = 13,46 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,82}{77,72} = 2,6352$$
$$\frac{D_o}{t} = \frac{77,72}{0,37} = 211,7836$$

From table G: A = 0,000159

From table CS-2 Metric: $B = 161,9607 \text{ kg/cm}^2(158,83 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 158,83}{3 \cdot (77,72/0,37)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!37 + 1,\!6 = 1,\!97 \text{ mm}$

Nozzle (L1)
----------	-----

Note: round inside edges per UG-76(c) Location and Orientation Located on Shell V1 Orientation 195° Nozzle center line offset to datum line 224 mm End of nozzle to shell center 1.125 mm Passes through a Category A joint No Access opening No	ASME Section VIII Division 1, 2021 Edition Metric									
Note: round inside edges per UG-76(c) Location and Orientation Located on Shell V1 Orientation 195° Nozzle center line offset to datum line 224 mm End of nozzle to shell center 1.125 mm Passes through a Category A joint No Material specification Inside diameter, new Nominal wall thickness 16,64 mm Corrosion inner 0 mm Corrosion outer 1,65 mm Projection available outside vessel, Lpr 18,65 mm Projection available outside vessel to flange face, Lf 204 mm Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Use to vessel groove weld 21 mm	ASME Section VIII DIVISIO									
Location and OrientationLocated onShell V1Orientation195°Nozzle center line offset to datum line224 mmEnd of nozzle to shell center1.125 mmPasses through a Category A jointNoNozzleNoAccess openingNoMaterial specificationSA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalizedInside diameter, new50.8 mmNominal wall thickness16.64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181.65 mmProjection available outside vessel to flange face, Lf 0.03 bar204 mmLiquid static head included0,03 barWeldsInner fillet, Leg ₄₁ 11 mmNozzle to vessel groove weld21 mm										
Located onShell V1Orientation195°Nozzle center line offset to datum line224 mmEnd of nozzle to shell center1.125 mmPasses through a Category A jointNoNozzleNoAccess openingNoMaterial specificationSA-350 LF2 Cl 1 (II-D Metric p. 20, ln. 36) (normalizedInside diameter, new50,8 mmNominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLiquid static head included0,03 barVeltettettettettettettettettettettettette	Note: round inside edges per UG-76(c)									
Orientation195°Nozzle center line offset to datum line224 mmEnd of nozzle to shell center1.125 mmPasses through a Category A jointNoMozzleAccess openingAccess openingNoMaterial specificationSA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalizedInside diameter, new50,8 mmNominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel to flange face, Lf204 mmLiquid static head included0,03 barUnderstand11 mmNozzle to vessel groove weld21 mm	Location and	Orientation								
Nozzle center line offset to datum line224 mmEnd of nozzle to shell center1.125 mmPasses through a Category A jointNoNozzleAccess openingNoMaterial specificationSA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalizedInside diameter, new50,8 mmNominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLocal vessel minimum thickness21 mmLiquid static head included0,03 barWelter11 mmNozzle to vessel groove weld21 mm	Located on	Shell V1								
End of nozzle to shell center 1.125 mm Passes through a Category A joint No Nozzle Access opening No Material specification SA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalized 50,8 mm Inside diameter, new 50,8 mm Nominal wall thickness 16,64 mm Corrosion inner 0 mm Corrosion outer 1,6 mm Projection available outside vessel, Lpr 181,65 mm Projection available outside vessel to flange face, Lf 204 mm Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Welds Inner fillet, Leg ₄₁ 11 mm Nozzle to vessel groove weld 21 mm	Orientation	195°								
Passes through a Category A joint No Nozzie No Access opening No Material specification SA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalized 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Nozzle center line offset to datum line	224 mm								
Nozzle Access opening No Material specification SA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalized 50,8 mm Inside diameter, new 50,8 mm Nominal wall thickness 16,64 mm Corrosion inner 0 mm Corrosion outer 1,6 mm Projection available outside vessel, Lpr 181,65 mm Projection available outside vessel to flange face, Lf 204 mm Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Welest Inner fillet, Leg ₄₁ 11 mm Nozzle to vessel groove weld 21 mm	End of nozzle to shell center	1.125 mm								
Access openingNoMaterial specificationSA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalizedInside diameter, new50,8 mmNominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLocal vessel minimum thickness21 mmLiquid static head included0,03 barWeltVeltInner fillet, Leg ₄₁ 11 mmNozzle to vessel groove weld21 mm	Passes through a Category A joint	No								
Material specificationSA-350 LF2 Cl 1 (II-D Metric p. 20, In. 36) (normalizedInside diameter, new50,8 mmNominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLocal vessel minimum thickness21 mmLiquid static head included0,03 barWeltettInner fillet, Leg ₄₁ 11 mmNozzle to vessel groove weld21 mm	Noz	zle								
Inside diameter, new50,8 mmNominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLocal vessel minimum thickness21 mmLiquid static head included0,03 barWeldetterInner fillet, Leg ₄₁ 11 mmNozzle to vessel groove weld21 mm	Access opening	No								
Nominal wall thickness16,64 mmCorrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLocal vessel minimum thickness21 mmLiquid static head included0,03 barWel/JInner fillet, Leg ₄₁ 11 mmNozzle to vessel groove weld21 mm	Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)								
Corrosion inner0 mmCorrosion outer1,6 mmProjection available outside vessel, Lpr181,65 mmProjection available outside vessel to flange face, Lf204 mmLocal vessel minimum thickness21 mmLiquid static head included0,03 barWel/JultInner fillet, Leg ₄₁ 11 mmNozzle to vessel groove weld21 mm	Inside diameter, new	50,8 mm								
Corrosion outer 1,6 mm Projection available outside vessel, Lpr 181,65 mm Projection available outside vessel to flange face, Lf 204 mm Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Wel/Jest Inner fillet, Leg ₄₁ 11 mm Nozzle to vessel groove weld 21 mm	Nominal wall thickness	16,64 mm								
Projection available outside vessel, Lpr 181,65 mm Projection available outside vessel to flange face, Lf 204 mm Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Welds Inner fillet, Leg ₄₁ Nozzle to vessel groove weld 21 mm	Corrosion inner	0 mm								
Projection available outside vessel to flange face, Lf 204 mm Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Wel/Jester State Inner fillet, Leg ₄₁ Nozzle to vessel groove weld 21 mm	Corrosion outer	1,6 mm								
Local vessel minimum thickness 21 mm Liquid static head included 0,03 bar Welds Inner fillet, Leg ₄₁ Nozzle to vessel groove weld 21 mm	Projection available outside vessel, Lpr	181,65 mm								
Liquid static head included 0,03 bar Weldstate Inner fillet, Leg ₄₁ Nozzle to vessel groove weld 21 mm	Projection available outside vessel to flange face, Lf	204 mm								
Welds Inner fillet, Leg ₄₁ 11 mm Nozzle to vessel groove weld 21 mm	Local vessel minimum thickness	21 mm								
Inner fillet, Leg ₄₁ 11 mm Nozzle to vessel groove weld 21 mm	Liquid static head included	0,03 bar								
Nozzle to vessel groove weld 21 mm	Wel	ds								
	Inner fillet, Leg ₄₁	11 mm								
Radiography	Nozzle to vessel groove weld	21 mm								
	Radiog	raphy								
Longitudinal seam Seamless No RT										

ASME B16.5-20	17 Flange					
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N					
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)					
Blind included	No					
Rated MDMT	-104°C					
Liquid static head	0,03 bar					
Consider External Loads on Flange MAWP Rating	Yes					
MAWP reduction due to external loads	21,25 bar					
MAWP rating	45,97 bar @ 121°C					
MAP rating	51,1 bar @ 7°C					
Hydrotest rating	77 bar @ 7°C					
PWHT performed	Yes					
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes					
Impact Tested	No					
MAWP Reduction Due	to External Loads					
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 77,9^{-3}} / 1,\!02 \cdot 100 =$	18,38 bar					
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139.7}{\pi \cdot 77.9^{\ 2}} / 1.02 \cdot 100 =$	2,87 bar					
$MAWP_{reduction} \; = \; \max \; [P_m + P_r, 0] = \; \max \; [18,\!38 + 2,\!87,\!0] =$	21,25 bar					
Table UG-44-1 Moment Factor, $F_M =$	0,5					
$MAWP = \min [MAWP, MAWP \cdot (1 + F_M) - MAWP_{reduction}] - P_s$ = min [45,97,45,97 \cdot (1 + 0,5) - 21,25] - 0,03 =	45,94 bar					
Gaske	et set set set set set set set set set s					
Туре	ASME B16.20 Spiral-Wound					
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler					
Factor, m	3					
Seating Stress, y	703,07 kg _f /cm ²					
Thickness, T	4,5 mm					
Inner Diameter	69,9 mm					
Outer Diameter 85,9 mm						
Notes(1) Flange is impact tested per material specification to -46°C.Stress ratio = 0,3117 \leq 0,35, MDMT per UCS-66(b)(3) = -105°C.Bolts rated MDMT per Fig UCS-66 note (c) = -104°C	3					
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appe Appendix O.	endix S) shall comply with ASME PCC-1, Nonmandatory					
(3) UG-44(b): The bolt material shall have an allowable stress equal to temperature.	or greater than SA-193 B8 Cl. 2 at the specified bolt size and					

UCS-66 Material Toughness Requirements							
LWN rated MDMT per UCS-66(c)(1) =	-104°C						
Material is exempt from impact testing at the Design MDMT of -15°C.							

Reinforcement Calculations for Chamber MAWP

	UG	UG-45 Summary (mm)								
	For P = 16,81 bar @ 121 °C								le passes UG-45	
	A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req} t _{min}		
Г	This nozzle is exempt from area calculations per UG-36(c)(3)(a)						<u>6,4</u>	16,64		

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary									
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status						
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate						

	WRC 537											
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,81	-139,7	40,8	139,7	40,8	139,7	40,8	1.162,666	3.609,796	1.012,35	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No
Load case 1 (Pr Reversed)	16,81	139,7	40,8	139,7	40,8	139,7	40,8	1.121,044	3.609,796	998,007	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No

Calculations for internal pressure 16,81 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{\rm rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot P$$

16,8091.25,4

$$= \frac{10,000120,4}{1.380 \cdot 1 - 0,6 \cdot 16,8091}$$

= 0,31 mm

Required thickness t_r from UG-37(a)

$$\mathbf{t}_{\mathsf{r}} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$

$$= \frac{16,8091 \cdot 900}{1.180 \cdot 1 - 0,6 \cdot 16,8091}$$

= 12,93 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0, 6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,\!8091\!\cdot\!\!25,\!4}{1.380\cdot1-0,\!6\cdot16,\!8091} + 1,\!6$
	=	1,91 mm
$t_{a\mathrm{UG-22}}$	=	2,71 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}}, \; t_{a\mathrm{UG-22}} ight]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,\!8091\cdot 900}{1.180\cdot 1-0,\!6\cdot 16,\!8091}+1,\!6$
	=	14,53 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [14,53, 3,1]$
	=	14,53 mm
t_b	=	$\min \; [t_{b3}, \; t_{b1}]$
	=	$\min [6,4, 14,53]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads							
Radial load, P _r	-139,7 kg _f						
Circumferential moment, M _c	40,8 kg _f -m						
Circumferential shear, V _c	139,7 kg _f						
Longitudinal moment, M _L	40,8 kg _f -m						
Longitudinal shear, V _L	139,7 kg _f						
Torsion moment, M _t	40,8 kg _f -m						
Internal pressure, P	16,81 bar						
Mean shell radius, R _m	909,7 mm						
Local shell thickness, T	19,4 mm						
Design factor	3						

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 991,047 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= \frac{I \cdot P \cdot R_i}{2 \cdot T} = 495{,}523 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.162,67 \, \text{ kg}_f/\text{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \text{ kg}_f/\text{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.012{,}35~~{\rm kg}_{f}/{\rm cm}^{2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stresse	s at the i	nozzle OI	D per WR	C Bullet	in 537			
Figure	Y		A _u	A	Bu	BI	Cu	Cl	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0
	Pressure stress*		991,047	991,047	991,047	991,047	795,172	795,172	795,172	795,172
Tota	al circumferential stre	ss	906,889	1.061,284	1.162,244	862,455	650,269	948,23	1.047,503	563,088
Primary me	mbrane circumferent	ial stress*	984,086	984,086	1.012,35	1.012,35	799,25	799,25	805,296	805,296
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738	0	0	0	0
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64
2A	$rac{M_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108
4B*	$rac{N_x}{M_L}$ / $ig(R_m^2\cdotetaig)$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0
	Pressure stress*		397,586	397,586	397,586	397,586	495,523	495,523	495,523	495,523
Тс	otal longitudinal stress	5	259,784	542,699	645,066	171,197	419,733	576,376	657,229	357,441
Primary n	nembrane longitudina	l stress*	401,242	401,242	408,132	408,132	498,054	498,054	507,335	507,335
	Shear from M _t		20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459
Circ shear from V _c			5,695	5,695	-5,695	-5,695	0	0	0	0
	Long shear from V _L	0	0	0	0	-5,695	-5,695	5,695	5,695	
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154
Com	nbined stress (P _L +P _b +	Q)	907,944	1.062,619	1.162,666	862,737	651,183	948,792	1.049,261	566,393
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,\!81 \cdot 1,\!02 \cdot 25,\!4}{2 \cdot 15,\!04} - \frac{-139,\!7}{\pi \cdot \left(40,\!44^2 - 25,\!4^2\right)} \cdot 100 + \frac{57.698,\!1 \cdot 40,\!44}{1.772.985} \cdot 100 \\ &= 150,\!562 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,466 \ \text{kg}_f/\text{cm}^2 \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,934 \ \text{kg}_f/\text{cm}^2 \end{split}$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 16,466 + 66,934 = 83,399 ~~{\rm kg}_{\,f}/{\rm cm}^{\,2}$

UG-45: The total combined shear stress (83,399 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG	UG-45 Summary (mm)								
For Pe = 1 bar @ 23 °C								The nozzle passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}	
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							16,64	

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- $= \max [50,8, 25,4 + (16,64 1,6) + (21 1,6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2, 5 \cdot (t - C), 2, 5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 t_{rn} = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Nozzle	(L2)
--------	------

ASME Section VIII Division 1, 2021 Edition Metric									
ASIME Section VIII DIVISIO									
Note: round inside edges per UG-76(c)									
Location and	Orientation								
Located on	Shell V1								
Orientation	195°								
Nozzle center line offset to datum line	950 mm								
End of nozzle to shell center	1.125 mm								
Passes through a Category A joint	No								
Nozz	zle								
Access opening	No								
Material specification	SA-350 LF2 CI 1 (II-D Metric p. 20, In. 36) (normalized)								
Inside diameter, new	50,8 mm								
Nominal wall thickness	16,64 mm								
Corrosion inner	0 mm								
Corrosion outer	1,6 mm								
Projection available outside vessel, Lpr	181,65 mm								
Projection available outside vessel to flange face, Lf	204 mm								
Local vessel minimum thickness	21 mm								
Liquid static head included	0 bar								
Wel	ds								
Inner fillet, Leg ₄₁	11 mm								
Nozzle to vessel groove weld	21 mm								
Radiog	raphy								
Longitudinal seam	Seamless No RT								
	1								

ASME B16.5-2017 Flange								
Description	NPS 2 Class 300 LWN A350 LF2 Cl.1 N							
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)							
Blind included	No							
Rated MDMT	-99,3°C							
Liquid static head	0 bar							
Consider External Loads on Flange MAWP Rating	Yes							
MAWP reduction due to external loads	27,32 bar							
MAWP rating	45,97 bar @ 121°C							
MAP rating	51,1 bar @ 7°C							
Hydrotest rating	77 bar @ 7°C							
PWHT performed	Yes							
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes							
Impact Tested	No							
MAWP Reduction Due to Exte	rnal Loads							
$P_m = rac{16 \cdot M}{\pi \cdot G^3} = rac{16 \cdot 17,4 \cdot 1000}{\pi \cdot 71,37 \ ^3} / 1,02 \cdot 100 =$	23,89 bar							
$P_r = rac{-4 \cdot W}{\pi \cdot G^2} = rac{-4 \cdot -139,7}{\pi \cdot 71,37^{-2}} / 1,02 \cdot 100 =$	3,42 bar							
$MAWP_{reduction} = \max \left[P_m + P_r, 0 ight] = \max \left[23,\!89 + 3,\!42,\!0 ight] =$	27,32 bar							
Table UG-44-1 Moment Factor, $F_M =$	0,5							
$egin{aligned} MAWP &= \min \left[MAWP, MAWP \cdot (1+F_M) - MAWP_{reduction} ight] - P_s \ &= \min \left[45, 97, 45, 97 \cdot (1+0,5) - 27, 32 ight] - 0 = \end{aligned}$	41,64 bar							
Notes								
(1) Flange is impact tested per material specification to -46°C. UCS-66(i) reduction of 53,3°C applied (ratio = 0,3959). Bolts rated MDMT per Fig UCS-66 note (c) = -104°C								
(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appendix S) Appendix O.	(2) UG-44(b): The actual assembly bolt load (see Nonmandatory Appendix S) shall comply with ASME PCC-1, Nonmandatory Appendix O.							
(3) UG-44(b): The bolt material shall have an allowable stress equal to or greater than SA-193 B8 Cl. 2 at the specified bolt size and temperature.								

UCS-66 Material Toughness Requirements							
LWN rated MDMT per UCS-66(c)(1) =	-99,3°C						
Material is exempt from impact testing at the Design MDMT of -15°C.							

Reinforcement Calculations for Chamber MAWP

UG	UG-45 Summary (mm)								
For P = 16,78 bar @ 121 °C								The nozzle passes UG-45	
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}	
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							16,64	

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate					

	WRC 537											
Load Case	P (bar)	P _r (kg _f)	M _c (kg _f -m)	V _c (kg _f)	M _L (kg _f -m)	V _L (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,78	-139,7	40,8	139,7	40,8	139,7	40,8	1.160,979	3.609,796	1.010,663	1.804,898	No
Load case 1 (Hot Shut Down)	0	-139,7	40,8	139,7	40,8	139,7	40,8	259,362	3.609,796	21,303	1.804,898	No
Load case 1 (Pr Reversed)	16,78	139,7	40,8	139,7	40,8	139,7	40,8	1.119,357	3.609,796	996,32	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	139,7	40,8	139,7	40,8	139,7	40,8	-255,566	3.609,796	-21,303	1.804,898	No

Calculations for internal pressure 16,78 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

 L_{R} = max $[d, R_n + (t_n - C_n) + (t - C)]$

- $= \max \left[50.8, \ 25.4 + (16.64 1.6) + (21 1.6) \right]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P}$

$$S_n \cdot E = 0,0 \cdot P$$

16.7791.25.4

$$= \frac{10,110120,1}{1.380 \cdot 1 - 0,6 \cdot 16,7791}$$

= 0,31 mm

Required thickness tr from UG-37(a)

$$t_{r} = \frac{P \cdot R}{S \cdot E - 0.6 \cdot P}$$
$$= \frac{16,7791 \cdot 900}{16,7791 \cdot 900}$$

$$1.180\cdot 1 - 0.6\cdot 16,\!7791$$

= 12,91 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a\mathrm{UG-27}}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 25,4}{1.380\cdot 1-0,6\cdot 16,7791} + 1,6$
	=	1,91 mm
$t_{a\mathrm{UG-}22}$	=	2,71 mm
t_a	=	$\max \left[t_{a\mathrm{UG-27}} , t_{a\mathrm{UG-22}} ight]$
	=	$\max[1,91, 2,71]$
	=	2,71 mm
t _{b1}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,7791\cdot 900}{1.180\cdot 1 - 0,6\cdot 16,7791} + 1,6$
	=	14,51 mm
t_{b1}	=	$\max \ [t_{b1}, \ t_{b\mathrm{UG16}}]$
	=	$\max [14,51, 3,1]$
	=	14,51 mm
t_b	=	$\min \ [t_{b3} , \ t_{b1}]$
	=	$\min [6,4, 14,51]$
	=	6,4 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max [2,71, 6,4]$
	=	<u>6,4</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads						
Radial load, P _r	-139,7 kg _f					
Circumferential moment, M _c	40,8 kg _f -m					
Circumferential shear, V _c	139,7 kg _f					
Longitudinal moment, M _L	40,8 kg _f -m					
Longitudinal shear, V _L	139,7 kg _f					
Torsion moment, M _t	40,8 kg _f -m					
Internal pressure, P	16,78 bar					
Mean shell radius, R _m	909,7 mm					
Local shell thickness, T	19,4 mm					
Design factor	3					

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{R_m}{T} = \frac{909,7}{19,4} = 46,8922$$

$$\beta = \frac{0.875 \cdot r_o}{R_m} = \frac{0.875 \cdot 40.44}{909.7} = 0.0389$$

Pressure stress intensity factor, I = 1,2464 (derived from Division 2 Part 4.5)

Local circumferential pressure stress $= \frac{I \cdot P \cdot R_i}{T} = 989,36 \, \mathrm{kg}_f/\mathrm{cm}^2$

Local longitudinal pressure stress $= rac{I \cdot P \cdot R_i}{2 \cdot T} = 494,68 \, \mathrm{kg}_f/\mathrm{cm}^2$

Maximum combined stress $(P_L + P_b + Q) = 1.160,98 \, \mathrm{kg}_f/\mathrm{cm}^2$ Allowable combined stress $(P_L + P_b + Q) = \pm 3 \cdot S = \pm 3.609,8 \, \mathrm{kg}_f/\mathrm{cm}^2$

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress $(P_L) = 1.010,66~~{
m kg}_{f}/{
m cm}^{2}$

Allowable local primary membrane stress (P_L) = \pm 1,5 \cdot S = \pm 1.804,9 $\, \mathrm{kg}_{\,f}/\mathrm{cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stresse	s at the	nozzle O	D per WR	RC Bulleti	n 537			
Figure	Y		A _u	A	Bu	BI	Cu	CI	Du	DI
3C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0035	0	0	0	0	7,101	7,101	7,101	7,101
4C*	$rac{N_{\phi}}{P \ / \ R_m}$	9,0286	7,171	7,171	7,171	7,171	0	0	0	0
1C	$rac{M_{\phi}}{P}$	0,2092	0	0	0	0	46,614	-46,614	46,614	-46,614
2C-1	$rac{M_{\phi}}{P}$	0,1632	36,349	-36,349	36,349	-36,349	0	0	0	0
3A*	$rac{N_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,4576	0	0	0	0	-3,023	-3,023	3,023	3,023
1A	$rac{M_{\phi}}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1064	0	0	0	0	-195,594	195,594	195,594	-195,594
3B*	$rac{N_{\phi}}{M_L}$ / $\left(R_m^2\cdoteta ight)$	2,1599	-14,132	-14,132	14,132	14,132	0	0	0	0
1B-1	$rac{M_{\phi}}{M_L ~~/~(R_m \cdot eta)}$	0,0618	-113,546	113,546	113,546	-113,546	0	0	0	0
	Pressure stress*		989,36	989,36	989,36	989,36	793,766	793,766	793,766	793,766
Tota	al circumferential stre	ss	905,202	1.059,596	1.160,557	860,768	648,863	946,824	1.046,097	561,682
Primary me	mbrane circumferent	ial stress*	982,399	982,399	1.010,663	1.010,663	797,843	797,843	803,89	803,89
3C*	$rac{N_x}{P \ / \ R_m}$	9,0035	7,101	7,101	7,101	7,101	0	0	0	0
4C*	$rac{N_x}{P \ / \ R_m}$	9,0286	0	0	0	0	7,171	7,171	7,171	7,171
1C-1	$\frac{M_x}{P}$	0,2145	47,738	-47,738	47,738	-47,738	-47,738 0		0	0
2C	$\frac{M_x}{P}$	0,1608	0	0	0	0	35,786	-35,786	35,786	-35,786
4A*	$rac{N_x}{M_c \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,7155	0	0	0	0	-4,64	-4,64	4,64	4,64
2A	$rac{M_x}{M_c \ / \ (R_m \cdot eta)}$	0,0621	0	0	0	0	-114,108	114,108	114,108	-114,108
4B*	$rac{N_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m^2 \cdot eta)}$	0,5274	-3,445	-3,445	3,445	3,445	0	0	0	0
2B-1	$rac{M_x}{M_L \hspace{0.2cm}/\hspace{0.2cm} (R_m \cdot eta)}$	0,1029	-189,196	189,196	189,196	-189,196	0	0	0	0
	Pressure stress*		396,883	396,883	396,883	396,883	494,68	494,68	494,68	494,68
Тс	otal longitudinal stress	5	259,081	541,996	644,363	170,494	418,889	575,533	656,386	356,597
Primary n	nembrane longitudina	l stress*	400,539	400,539	407,429	407,429	497,211	497,211	506,491	506,491
	Shear from M _t		20,459	20,459	20,459	20,459	20,459	20,459	20,459	20,459
	Circ shear from V_c		5,695	5,695	-5,695	-5,695	0	0	0	0
	Long shear from V _L		0	0	0	0	-5,695	-5,695	5,695	5,695
	Total Shear stress		26,154	26,154	14,764	14,764	14,764	14,764	26,154	26,154
Com	nbined stress (P _L +P _b +	Q)	906,257	1.060,932	1.160,979	861,049	649,777	947,386	1.047,855	564,987
* denotes	primary stress.									

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot \left(R_o^2 - R_i^2\right)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,78 \cdot 1,02 \cdot 25,4}{2 \cdot 15,04} - \frac{-139,7}{\pi \cdot \left(40,44 \cdot 2 - 25,4 \cdot 2\right)} \cdot 100 + \frac{57.698,1 \cdot 40,44}{1.772.985} \cdot 100 \\ &= 150,536 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.407,208 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\begin{split} \sigma_{shear} &= \frac{\sqrt{V_L^2 + V_c^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{139,7^2 + 139,7^2}}{\pi \cdot 25,4 \cdot 15,04} \cdot 100 = 16,466 \ \text{kg}_f/\text{cm}^2 \\ \sigma_{\text{torsion}} &= \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{40,8}{2 \cdot \pi \cdot 25,4^2 \cdot 15,04} \cdot 100000 = 66,934 \ \text{kg}_f/\text{cm}^2 \end{split}$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 16,466 + 66,934 = 83,399 ~~{\rm kg}_{\,f}/{\rm cm}^{\,2}$

UG-45: The total combined shear stress (83,399 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.407,208 = 985,046 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)								UG-45 Summary (mm)		
For Pe = 1 bar @ 23 °C								The nozzle passes UG-45		
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}		
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							16,64		

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary					
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status		
Nozzle to shell fillet (Leg ₄₁)	<u>6</u>	6,1 (corroded)	weld size is adequate		

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [50.8, 25.4 + (16.64 1.6) + (21 1.6)]$
- = 59,84 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H}$$
 = min $[2,5 \cdot (t-C), 2,5 \cdot (t_n - C_n) + t_e]$

- $= \min \left[2.5 \cdot (21 1.6), 2.5 \cdot (16.64 1.6) + 0 \right]$
- = 37,59 mm

Nozzle required thickness per UG-28 t_{rn} = 0,38 mm

From UG-37(d)(1) required thickness $t_r = 6,17 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 15,04 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0.7 \cdot t_{\min}] = \underline{6} \text{ mm}$ $t_{c(actual)} = 0.7 \cdot \text{Leg} = 0.7 \cdot 8,71 = 6,1 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 1,98 mm

 $t_{a\mathrm{UG-22}}$ = 2,48 mm

t_a	=	$\max \; [t_{a { m UG-28}} , \; t_{a { m UG-22}}]$
	=	\max [1,98, 2,48]
	=	2,48 mm
t _{b2}	=	$\frac{P \cdot R}{S \cdot E - 0.6 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 900}{1.180\cdot 1 - 0.6\cdot 1} + 1.6$
	=	2,36 mm
t_{b2}	=	$\max \ [t_{b2}, \ t_{b\rm UG16}]$
	=	$\max [2,36, 3,1]$
	=	3,1 mm
t_b	=	$\min \ [t_{t33} , \ t_{tb2}]$
	=	$\min [6,4, 3,1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	\max [2,48, 3,1]
	=	<u>3,1</u> mm

Available nozzle wall thickness new, t_n = 16,64 mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{204,96}{84,07} = 2,4379$$
$$\frac{D_o}{t} = \frac{84,07}{0,38} = 219,2887$$

From table G: A = 0,000164

From table CS-2 Metric: $B = 167,7082 \text{ kg/cm}^2(164,47 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 164,47}{3 \cdot (84,07/0,38)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0,\!38 + 1,\!6 = 1,\!98 \text{ mm}$

Straight Flange on Bottom Head

ASME Section VIII Division 1, 2021 Edition Metric						
Com	ponent	Cylinder				
Mat	terial	SA-516 60 (II-D Metric p. 16, In. 3)				
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP		
Yes (-46°C)	Yes	Yes	Yes	No		
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Inte	ernal	15,5	121	-15		
Ext	ernal	1	-13			
		Static Liqu	uid Head			
Con	dition	P _s (bar)	H _s (mm)	SG		
Ope	rating	0,05	505	0,999		
Test ho	orizontal	0,19	1.923,2	1		
Test	vertical	0,25	2.550	1		
		Dimens	sions			
Inner D	Diameter	1.800 mm				
Le	ngth	50 mm				
Nominal	Thickness		24 mm			
Corrosion	Correction Inner		0 mm			
Contrasion	Outer		1,6 mm	nm		
		Weight and	Capacity			
		W	eight (kg)	Capacity (liters)		
N	ew		126,39			
Cor	roded		126,39			
		Insulation	n\Lining			
		Thickness (mm)	Density (kg/m ³)	Weight (kg)		
Lii	Lining		8.000	0		
Insulation		80	100	0		
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)		
	Insulation Supports		0 0 0			
	Radiography					
Longitud	linal seam	Full UW-11(a) Type 1				
Top Circum	erential seam	n Full UW-11(a) Type 1				

Results Summary				
Governing condition	Internal pressure			
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm			
Design thickness due to internal pressure (t)	<u>13,56 mm</u>			
Design thickness due to external pressure (t_e)	<u>7,79 mm</u>			
Design thickness due to combined loadings + corrosion	<u>6,48 mm</u>			
Maximum allowable working pressure (MAWP)	<u>28,89 bar</u>			
Maximum allowable pressure (MAP)	<u>30,97 bar</u>			
Maximum allowable external pressure (MAEP)	<u>15,58 bar</u>			
Rated MDMT	-73,2 °C			

UCS-66 Material Toughness Requirements				
Material impact test temperature per UG-84 =	-46°C			
$t_r = rac{15,95 \cdot 900}{1.180 \cdot 1 - 0,6 \cdot 15,95} =$	12,26 mm			
${ m Stressratio} = rac{t_r \cdot E^*}{t_n - c} = rac{12,26 \cdot 1}{24 - 1,6} =$	0,5475			
$\text{Stress ratio longitudinal} = \frac{266,909 \cdot 1}{1.203,265 \cdot 1} =$	0,2218			
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	27,2°C			
$MDMT = \max \left[T_{impact} - T_R, -105 ight] = \max \left[-46 - 27, 2, -105 ight] =$	-73,2°C			
Design MDMT of -15°C is acceptable.				

Design thickness, (at 121 °C) UG-27(c)(1)

$$t = \frac{P \cdot R}{S \cdot E - 0.60 \cdot P} + \text{Corrosion} = \frac{15,55 \cdot 900}{1.180 \cdot 1.00 - 0.60 \cdot 15,55} + 1.6 = \underline{13,56} \text{ mm}$$

Maximum allowable working pressure, (at 121 °C) UG-27(c)(1)

$$P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} - P_s = \frac{1.180 \cdot 1.00 \cdot 22.4}{900 + 0.60 \cdot 22.4} - 0.05 = \underline{28.89} \text{ bar}$$

Maximum allowable pressure, (at 7 °C) UG-27(c)(1)

 $P = \frac{S \cdot E \cdot t}{R + 0.60 \cdot t} = \frac{1.180 \cdot 1.00 \cdot 24}{900 + 0.60 \cdot 24} = \frac{30.97}{30.97}$ bar

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2.100}{1.848} = 1,1364$$
$$\frac{D_o}{t} = \frac{1.848}{6,19} = 298,7497$$

From table G: A = 0,000224

From table CS-2 Metric: $B = 228,4802 \text{ kg/cm}^2(224,06 \text{ bar})$

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 224,06}{3 \cdot (1.848/6,19)} = 1$$
 bar

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 6,19 + 1,6 = 7.79 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{2.100}{1.848} = 1,1364$$
$$\frac{D_o}{t} = \frac{1.848}{22,4} = 82,5007$$

From table G: A = 0,001581

From table CS-2 Metric: $B = 983,2359 \text{ kg/cm}^2(964,2233 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 964, 22}{3 \cdot (1.848/22, 4)} = \underline{15, 58} \text{ bar}$$

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(rac{50 \cdot t}{R_f}
ight) \cdot \left(1 - rac{R_f}{R_o}
ight) = \left(rac{50 \cdot 24}{912}
ight) \cdot \left(1 - rac{912}{ ext{infinity}}
ight) = 1,3158\%$$

The extreme fiber elongation does not exceed 5%.

Thickness Required Due to Pressure + External Loads									
Condition	Allowable Stress Before UG-23 Stress Increase (kg/cm ²)		Temperature		Load	Pressure	Req'd Thk Due to	Req'd Thk Due to Compression (mm)	
	s _t	S _c	(°C)	C (mm)		P (bar)	Tension (mm)	Compression (mm)	
Operating, Hot & Corroded	1.203,3	<u>1.143,5</u>	121	1.6	Wind	<u>71,3</u>	<u>4,88</u>	<u>4,79</u>	
	1.203,3	1.143,5	121	1,0	Seismic	<u>71,32</u>	<u>4,88</u>	<u>4,8</u>	
Operating, Hot & New	1.203,3	1.153,1	121	0	Wind	<u>76,45</u>	<u>4,88</u>	<u>4,79</u>	
Operating, not a new	1.203,3	<u>1.100,1</u>	121		Seismic	<u>76,46</u>	<u>4,87</u>	<u>4,8</u>	
Hot Shut Down, Corroded	1.203,3 <u>1.143,5</u>	1 1/3 5	121	1,6	Wind	0	<u>0,04</u>	<u>0,13</u>	
The Shat Down, Conoded		<u>1.143,5</u>	121		Seismic	0	<u>0,04</u>	<u>0,12</u>	
Hot Shut Down, New	Hot Shut Down, New 1.203,3 1.153,1	1 153 1	<u>1.153,1</u> 121		Wind	0	<u>0,04</u>	<u>0,13</u>	
	1.203,3	<u>1.100,1</u>			Seismic	0	<u>0,04</u>	<u>0,13</u>	
Empty, Corroded	oded 1.203,3 1.143,5 20	1,6 W	Wind	0	<u>0,04</u>	<u>0,13</u>			
Linpty, conoded	1.203,3	<u>1.143,5</u> 20		1,0	Seismic	0	<u>0,04</u>	<u>0,12</u>	
Empty, New	1.203,3	1.153,1	20	0	Wind	0	<u>0,04</u>	<u>0,13</u>	
	1.203,3	<u>1.100,1</u>	20	Ū	Seismic	0	<u>0,04</u>	<u>0,12</u>	
Vacuum	Yacuum 1.203,3 <u>1.143,5</u> 23	1 202 2 1 142 5 22 1	1.6	Wind	<u>67,26</u>	<u>0,37</u>	<u>0,46</u>		
vacuum		1.143,5	23	1,0	Seismic	<u>67,28</u>	<u>0,38</u>	<u>0,46</u>	
Hot Shut Down, Corroded, Weight &		1.6	Wind	0	<u>0,08</u>	<u>0,12</u>			
Eccentric Moments Only		1.200,0	1.143,5	121 1,0	121		Seismic	0	<u>0</u>

Allowable Compressive Stress, Hot and Corroded- $S_{\mbox{cHC}}$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{924/22,4} = 0,003030$$
$$B = 1.143,5 \text{ kg/cm}^2$$
$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$

 $S_{cHC} = \min(B,S) = 1.143,5 \text{ kg/cm}^2$

Allowable Compressive Stress, Hot and New- $S_{\mbox{cHN}}$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{924/24} = 0.003247$$
$$B = 1.153.1 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$
$$S_{cHN} = \min (B,S) = \underline{1.153,1 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Cold and New- $\rm S_{\rm cCN}$, (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{924/24} = 0.003247$$

$$B = 1.153.1 \text{ kg/cm}^2$$

$$S = \frac{1.203.3}{1.00} = 1.203.3 \text{ kg/cm}^2$$

$$S_{cCN} = \min (B,S) = \underline{1.153.1 \text{ kg/cm}^2}$$

Allowable Compressive Stress, Cold and Corroded- $S_{cCC},$ (table CS-2 Metric)

$$A = \frac{0.125}{R_o/t} = \frac{0.125}{924/22.4} = 0.003030$$
$$B = 1.143.5 \text{ kg/cm}^2$$

$$S = \frac{1.203,3}{1,00} = 1.203,3 \text{ kg/cm}^2$$

$$S_{cC} = \min(B,S) = 1.143.5 \text{ kg/cm}^2$$

Allowable Compressive Stress, Vacuum and Corroded- $S_{\mbox{cVC}}$ (table CS-2 Metric)

$$A = \frac{0,125}{R_o/t} = \frac{0,125}{924/22,4} = 0,003030$$

$$B = 1.143,5 \text{ kg/cm}^2$$

$$S = {1.203,3 \over 1,00} = 1.203,3 \, {
m kg/cm^2}$$

 $S_{cVC} = \min(B,S) = 1.143.5 \text{ kg/cm}^2$

Operating, Hot & Corroded, Wind, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15,5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15,5|} \\ &= 4,92 \ {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{1.658,3}{\pi \cdot 911,2^2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0,04 \ {\rm mm} \\ t_{\rm w} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{6.445,8}{2 \cdot \pi \cdot 911,2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0,08 \ {\rm mm} \\ t_t &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.88 \ {\rm mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0,04 + (0,08) - (4.92)| \\ &= 4.79 \ {\rm mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (22.4 - 0.04 + (0.08))}{900 - 0.40 \cdot (22.4 - 0.04 + (0.08))}$$

= <u>71,3</u> bar

Operating, Hot & New, Wind, Bottom Seam

$$\begin{split} t_{\rm p} &= \frac{P \cdot R}{2 \cdot S_t \cdot K_s \cdot E_c + 0.40 \cdot |P|} \qquad ({\rm Pressure}) \\ &= \frac{15,5 \cdot 900}{2 \cdot 1.180 \cdot 1,20 \cdot 1,00 + 0,40 \cdot |15,5|} \\ &= 4,92 \, {\rm mm} \\ t_{\rm m} &= \frac{M}{\pi \cdot R_m^2 \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm bending}) \\ &= \frac{1.661,4}{\pi \cdot 912^2 \cdot 1.180 \cdot 1,20 \cdot 1,00} \cdot 98066.5 \\ &= 0,04 \, {\rm mm} \\ t_{\rm W} &= \frac{W}{2 \cdot \pi \cdot R_m \cdot S_t \cdot K_s \cdot E_c} \cdot {\rm MetricFactor} \qquad ({\rm Weight}) \\ &= \frac{6.626,7}{2 \cdot \pi \cdot 912 \cdot 1.180 \cdot 1,20 \cdot 1,00} \cdot 98.0665 \\ &= 0,08 \, {\rm mm} \\ t_t &= t_p + t_m - t_w \qquad (total required, tensile) \\ &= 4,92 + 0,04 - (0,08) \\ &= 4,88 \, {\rm mm} \\ t_c &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0,04 + (0,08) - (4,92)| \\ &= 4.79 \, {\rm mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (24 - 0.04 + (0.08))}{900 - 0.40 \cdot (24 - 0.04 + (0.08))}$$

= 76,45 bar

Hot Shut Down, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.658, 3}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.445, 8}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,05 - (0,08)| \\ &= 0,04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \end{split}$$

= <u>0,13 mm</u>

Hot Shut Down, New, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.661, 4}{\pi \cdot 912^{2} \cdot 1.130, 85 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.626, 7}{2 \cdot \pi \cdot 912 \cdot 1.130, 85 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 05 - (0, 08)| \\ &= 0,04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \\ &= 0,13 \text{ mm} \end{split}$$

Empty, Corroded, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.658, 3}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.445, 8}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,05 - (0,08)| \\ &= 0,04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \end{split}$$

= <u>0,13 mm</u>

Empty, New, Wind, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.661, 4}{\pi \cdot 912^{2} \cdot 1.130, 85 \cdot 1, 20} \cdot 98066.5 \\ &= 0,05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.626, 7}{2 \cdot \pi \cdot 912 \cdot 1.130, 85 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 05 - (0, 08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,05 + (0,08) - (0) \\ &= 0,13 \text{ mm} \end{split}$$

Vacuum, Wind, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-1 \cdot 900}{2 \cdot 1.121,37 \cdot 1.20 + 0.40 \cdot |1|} \\ &= -0.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= \frac{1.658,3}{\pi \cdot 911,2^{-2} \cdot 1.121,37 \cdot 1,20} \cdot 98066.5 \\ &= 0.05 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{6.445,8}{2 \cdot \pi \cdot 911,2 \cdot 1.121,37 \cdot 1,20} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (\text{total, net compressive}) \\ &= |-0.33 + 0.05 - (0.08)| \\ &= 0.37 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (\text{total required, compressive}) \\ &= 0.05 + (0.08) - (-0.33) \\ &= 0.46 \text{ mm} \\ \end{split}$$

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 1.121.37 \cdot 1.20 \cdot (22.4 - 0.05 - 0.08)}{900 - 0.40 \cdot (22.4 - 0.05 - 0.08)}$$
$$= \frac{67.26}{20} \text{ bar}$$

Hot Shut Down, Corroded, Weight & Eccentric Moments Only, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{593}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 00} \cdot 98066.5 \\ &= 0,02 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.445, 8}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 00} \cdot 98.0665 \\ &= 0, 1 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0, 02 - (0, 1)| \\ &= 0.08 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0, 02 + (0, 1) - (0) \end{split}$$

= <u>0,12 mm</u>

Operating, Hot & Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (Pressure) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (bending) \\ &= \frac{1.474.3}{\pi \cdot 911.2^{-2} \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (Weight) \\ &= \frac{6.445.8}{2 \cdot \pi \cdot 911.2 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (total required, tensile) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.88 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (total, net tensile) \\ &= |0.04 + (0.08) - (4.92)| \\ &= 4.8 \text{ mm} \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (22.4 - 0.04 + (0.08))}{900 - 0.40 \cdot (22.4 - 0.04 + (0.08))}$$
$$= \frac{71.32}{2} \text{ bar}$$

Operating, Hot & New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{t} \cdot K_{s} \cdot E_{c} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{15.5 \cdot 900}{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 + 0.40 \cdot |15.5|} \\ &= 4.92 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= \frac{1.501}{\pi \cdot 912^{2} \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{t} \cdot K_{s} \cdot E_{c}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{6.626, 7}{2 \cdot \pi \cdot 912 \cdot 1.180 \cdot 1.20 \cdot 1.00} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= t_{p} + t_{m} - t_{w} \qquad (\text{total required, tensile}) \\ &= 4.92 + 0.04 - (0.08) \\ &= 4.87 \text{ mm} \\ t_{c} &= |t_{mc} + t_{wc} - t_{pc}| \qquad (\text{total, net tensile}) \\ &= |0.04 + (0.08) - (4.92)| \end{split}$$

Maximum allowable working pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_t \cdot K_s \cdot E_c \cdot (t - t_m + t_w)}{R - 0.40 \cdot (t - t_m + t_w)}$$
$$= \frac{2 \cdot 1.180 \cdot 1.20 \cdot 1.00 \cdot (24 - 0.04 + (0.08))}{900 - 0.40 \cdot (24 - 0.04 + (0.08))}$$
$$= 76.46 \text{ bar}$$

Hot Shut Down, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.474, 3}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.445, 8}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \end{split}$$

= <u>0,12 mm</u>

Hot Shut Down, New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.501}{\pi \cdot 912^{2} \cdot 1.130,85 \cdot 1,20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.626,7}{2 \cdot \pi \cdot 912 \cdot 1.130,85 \cdot 1,20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \\ &= 0,13 \text{ mm} \end{split}$$

Empty, Corroded, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.376, 2}{\pi \cdot 911, 2^{-2} \cdot 1.121, 37 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{W} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.445, 8}{2 \cdot \pi \cdot 911, 2 \cdot 1.121, 37 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \end{split}$$

= <u>0,12 mm</u>

Empty, New, Seismic, Bottom Seam

$$\begin{split} t_{p} &= 0 \text{ mm} & (\text{Pressure}) \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{bending}) \\ &= \frac{1.403, 9}{\pi \cdot 912^{2} \cdot 1.130, 85 \cdot 1, 20} \cdot 98066.5 \\ &= 0,04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} & (\text{Weight}) \\ &= \frac{6.626, 7}{2 \cdot \pi \cdot 912 \cdot 1.130, 85 \cdot 1, 20} \cdot 98.0665 \\ &= 0,08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| & (\text{total, net compressive}) \\ &= |0 + 0,04 - (0,08)| \\ &= 0.04 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} & (\text{total required, compressive}) \\ &= 0,04 + (0,08) - (0) \\ &= 0.12 \text{ mm} \end{split}$$

Vacuum, Seismic, Bottom Seam

$$\begin{split} t_{p} &= \frac{P \cdot R}{2 \cdot S_{c} \cdot K_{s} + 0.40 \cdot |P|} \qquad (\text{Pressure}) \\ &= \frac{-1 \cdot 900}{2 \cdot 1.121,37 \cdot 1.20 + 0.40 \cdot |1|} \\ &= -0.33 \text{ mm} \\ t_{m} &= \frac{M}{\pi \cdot R_{m}^{2} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{bending}) \\ &= \frac{1.474,3}{\pi \cdot 911,2^{2} \cdot 1.121,37 \cdot 1.20} \cdot 98066.5 \\ &= 0.04 \text{ mm} \\ t_{w} &= \frac{W}{2 \cdot \pi \cdot R_{m} \cdot S_{c} \cdot K_{s}} \cdot \text{MetricFactor} \qquad (\text{Weight}) \\ &= \frac{6.445,8}{2 \cdot \pi \cdot 911,2 \cdot 1.121,37 \cdot 1.20} \cdot 98.0665 \\ &= 0.08 \text{ mm} \\ t_{t} &= |t_{p} + t_{m} - t_{w}| \qquad (\text{total, net compressive}) \\ &= |-0.33 + 0.04 - (0.08)| \\ &= 0.38 \text{ mm} \\ t_{c} &= t_{mc} + t_{wc} - t_{pc} \qquad (\text{total required, compressive}) \\ &= 0.04 + (0.08) - (-0.33) \\ &= 0.46 \text{ mm} \end{split}$$

Maximum Allowable External Pressure, Longitudinal Stress

$$P = \frac{2 \cdot S_c \cdot K_s \cdot (t - t_{mc} - t_{wc})}{R - 0.40 \cdot (t - t_{mc} - t_{wc})}$$
$$= \frac{2 \cdot 1.121,37 \cdot 1.20 \cdot (22.4 - 0.04 - 0.08)}{900 - 0.40 \cdot (22.4 - 0.04 - 0.08)}$$
$$= \frac{67.28}{200} \text{ bar}$$

Bottom Head

		ASME Section VIII Division 1, 2021 Edition Metric					
Comp		Ellipsoidal Head					
	erial	SA-	516 60 (II-D Metric p. 16,	ln. 3)			
Attached To		Shell V1					
Impact Tested	Normalized	Fine Grain Practice	Maximize MDMT/ No MAWP				
Yes (-46°C)	Yes	Yes	Yes	No			
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)			
Inte	rnal	15,5	_15				
Exte	ernal	1	-15				
		Static Lic	luid Head				
Cond	lition	P _s (bar)	H _s (mm)	SG			
Oper	ating	0,09	955	0,999			
Test ho	rizontal	0,19	1.923,2	1			
Test v	ertical	0,29	3.000	1			
		Dimer	isions				
Inner D	iameter	1.800 mm					
Head	Ratio	2					
Minimum	Thickness	24 mm					
Corrosion	Inner	0 mm					
Conosion	Outer		1,6 mm				
Lengt	th L _{sf}		50 mm				
Nominal Th	nickness t _{s f}		24 mm				
		Weight an	d Capacity				
		We	ight (kg) ¹	Capacity (liters) ¹			
Ne	ew		879,66				
Corre	oded	725,15 879,66					
Insulation\Lining							
		Thickness (mm)	Density (kg/m ³)	Weight (kg)			
Lining		3	8.000	87,87			
Insulation		80	100	34,62			
		Spacing(mm)	Individual Weight (kg)	Total Weight (kg)			
Insulation Supports		0	0				
		Radio	graphy				
Category	/ A joints	Full UW-11(a) Type 1					
Head to s	hell seam	Full UW-11(a) Type 1					

¹ includes straight flange

Results Summary	/
Governing condition	internal pressure
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm
Design thickness due to internal pressure (t)	<u>13,51</u> mm
Design thickness due to external pressure (t_e)	<u>6,19</u> mm
Maximum allowable working pressure (MAWP)	<u>29,2</u> bar
Maximum allowable pressure (MAP)	<u>31,38</u> bar
Maximum allowable external pressure (MAEP)	<u>13,66</u> bar
Rated MDMT	-73,4°C

UCS-66 Material Toughness Requirements							
Material impact test temperature per UG-84 =	-46°C						
$t_r = \frac{15,99 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0,2 \cdot 15,99} =$	12,22 mm						
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{12,22 \cdot 1}{24 - 1,6} =$	0,5453						
UCS-66(i) reduction in MDMT, T _R from Fig UCS-66.1M =	27,4°C						
$MDMT = \max [T_{impact} - T_R, -105] = \max [-46 - 27, 4, -105] =$	-73,4°C						
Design MDMT of -15°C is acceptable.							

Design thickness for internal pressure, (Corroded at 121 °C) UG-32(c)(1)

$$t = \frac{P \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion} = \frac{15,59 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0.2 \cdot 15,59} + 1.6 = \underline{13.51} \text{ mm}$$

Maximum allowable working pressure, (Corroded at 121 °C) UG-32(c)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 1.180 \cdot 1 \cdot 22.4}{1.800 + 0.2 \cdot 22.4} - 0.09 = \underline{29.2} \text{ bar}$$

Maximum allowable pressure, (New at 7 °C) UG-32(c)(1)

$$P = \frac{2 \cdot S \cdot E \cdot t}{D + 0.2 \cdot t} - P_s = \frac{2 \cdot 1.180 \cdot 1 \cdot 24}{1.800 + 0.2 \cdot 24} - 0 = \frac{31.38}{31.38} \text{ bar}$$

Design thickness for external pressure, (Corroded at 23 °C) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0,8772 \cdot 1.848 = 1.621,09 \text{ mm}$

$$A = \frac{0,125}{R_o \ / \ t} = \frac{0,125}{1.621,09 \ / \ 4,59} = 0,000354$$

From Table CS-2 Metric: B = $360,063 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = \frac{B}{R_o \ / \ t} = \frac{353,1012}{1.621,09 \ / \ 4,59} = 1$$
 bar

t = 4,59 mm+Corrosion = 4,59 mm + 1,6 mm = 6,19 mm

The head external pressure design thickness (t_e) is <u>6,19</u> mm.

Maximum Allowable External Pressure, (Corroded at 23 °C) UG-33(d)

Equivalent outside spherical radius $R_o = K_o \cdot D_o = 0,8772 \cdot 1.848 = 1.621,09 \text{ mm}$

$$A = rac{0,125}{R_o \ / \ t} = rac{0,125}{1.621,09 \ / \ 22,4} = 0,001727$$

From Table CS-2 Metric: B = $1.007,9818 \text{ kg}_{\text{f}}/\text{cm}^2$

$$P_a = \frac{B}{R_o \ / \ t} = \frac{988,4924}{1.621,09 \ / \ 22,4} = 13,6587$$
bar

The maximum allowable external pressure (MAEP) is 13.66 bar.

% Extreme fiber elongation - UCS-79(d)

$$EFE = \left(\frac{75 \cdot t}{R_f}\right) \cdot \left(1 - \frac{R_f}{R_o}\right) = \left(\frac{75 \cdot 24}{318}\right) \cdot \left(1 - \frac{318}{\text{infinity}}\right) = 5,6604\%$$

Nozzle (D)
----------	----

ASME Section	VIII Division 1, 2021 Edition Metric
	24 7 7
Note: round inside edges per UG-76(c)	
Lo	cation and Orientation
Located on	Bottom Head
Orientation	0°
End of nozzle to datum line	-650 mm
Calculated as hillside	No
Distance to head center, R	0 mm
Passes through a Category A joint	No
	Nozzle
Description	NPS 2 Sch 80 (XS) DN 50
Access opening	No
Material specification	SA-333 6 Wld & smls pipe (II-D Metric p. 16, In. 19) (normalized)
Inside diameter, new	49,25 mm
Pipe minimum wall thickness	5,54 mm
Corrosion inner	0 mm
Corrosion outer	1,6 mm
Projection available outside vessel, Lpr	176,25 mm
Local vessel minimum thickness	24 mm
Liquid static head included	0,11 bar
	Welds
Inner fillet, Leg ₄₁	8 mm
Nozzle to vessel groove weld	24 mm
	Radiography
Longitudinal seam	Seamless No RT
Circumferential seam	Full UW-11(a) Type 1

UCS-66 Material Toughness Requirements Nozzle							
Governing thickness, t _g =	5,54 mm						
Impact test exempt per UCS-66(d) (NPS 4 or smaller pipe) =	-105°C						
Material is exempt from impact testing at the Design MDMT	of -15°C.						

Reinforcement Calculations for Chamber MAWP

UG	UG-45 Sun	nmary (mm)						
	The nozzle p	basses UG-45						
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	This nozzle is exempt from area calculations per UG-36(c)(3)(a)							5,54

UG-41 Weld Failure Path Analysis Summary

The nozzle is exempt from weld strength calculations per UW-15(b)(2)

UW-16 Weld Sizing Summary								
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status					
Nozzle to shell fillet (Leg ₄₁)	<u>2,76</u>	4 (corroded)	weld size is adequate					

WRC 537												
Load Case	P (bar)	P _r (kg _f)	M ₁ (kg _f -m)	V ₂ (kg _f)	M ₂ (kg _f -m)	V ₁ (kg _f)	M _t (kg _f -m)	Max Comb Stress (kg _f /cm ²)	Allow Comb Stress (kg _f /cm ²)	Max Local Primary Stress (kg _f /cm ²)	Allow Local Primary Stress (kg _f /cm ²)	Over stressed
Load case 1	16,89	-106,05	54,8	150	0	0	38,7	1.585,563	3.609,796	1.172,298	1.804,898	No
Load case 1 (Hot Shut Down)	0	-106,05	54,8	150	0	0	38,7	435,411	3.609,796	22,147	1.804,898	No
Load case 1 (Pr Reversed)	16,89	106,05	54,8	150	0	0	38,7	1.570,657	3.609,796	1.168,361	1.804,898	No
Load case 1 (Pr Reversed) (Hot Shut Down)	0	106,05	54,8	150	0	0	38,7	-435,411	3.609,796	-22,147	1.804,898	No

Calculations for internal pressure 16,89 bar @ 121 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = max [49,25, 24,63 + (5,54 1,6) + (24 1,6)]
- = 50,96 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2, 5 \cdot (t - C), 2, 5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2.5 \cdot (24 1.6), 2.5 \cdot (5.54 1.6) + 0 \right]$
- = 9,84 mm

Nozzle required thickness per UG-27(c)(1)

 $t_{rn} = \frac{P \cdot}{S_n \cdot E}$

$$rac{P \cdot R_n}{S_n \cdot E - 0,\! 6 \cdot P}$$

$$= \frac{16,8898 \cdot 24,63}{1.180 \cdot 1 - 0,6 \cdot 16,8898}$$

= 0,36 mm

Required thickness t_r from UG-37(a)(c)

$$\mathbf{t}_{\mathsf{r}} = \frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0, 2 \cdot P}$$

$$= \frac{16,8898 \cdot 0,9 \cdot 1.800}{2 \cdot 1.180 \cdot 1 - 0,2 \cdot 16,8898}$$

= 11,61 mm

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

$t_{a{ m UG-}27}$	=	$\frac{P \cdot R_n}{S_n \cdot E - 0, 6 \cdot P} + \text{Corrosion}$
	=	$\frac{16,\!8921\!\cdot\!\!24,\!63}{1.180\cdot1-0.6\cdot16,\!8921} + 1,\!6$
	=	1,96 mm
$t_{a\mathrm{UG-22}}$	=	3,84 mm
t_a	=	$\max\left[t_{a\mathrm{UG-27}},\;t_{a\mathrm{UG-22}} ight]$
	=	$\max[1,96, 3,84]$
	=	3,84 mm
t _{b1}	=	$\frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion}$
	=	$\frac{16,\!8898\cdot\!0,\!9\cdot\!1.800}{2\cdot\!1.180\cdot\!1-0,\!2\cdot\!16,\!8898}+1,\!6$
	=	13,21 mm
t_{b1}	=	$\max \left[t_{b1}, \ t_{b\mathrm{UG16}} \right]$
	=	\max [13,21, 3,1]
	=	13,21 mm
t_b	=	$\min [t_{b3} , \ t_{b1}]$
	=	$\min \ [5,\!02, \ \ 13,\!21]$
	=	5,02 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3,84, 5,02]$
	=	<u>5,02</u> mm

Available nozzle wall thickness new, t_n = 5,54 mm

The nozzle neck thickness is adequate.

WRC 537 Load case 1

Applied Loads							
Radial load, P _r	-106,05 kg _f						
Circumferential moment, M ₁	54,8 kg _f -m						
Circumferential shear, V ₂	150 kg _f						
Longitudinal moment, M ₂	0 kg _f -m						
Longitudinal shear, V ₁	0 kg _f						
Torsion moment, M _t	38,7 kg _f -m						
Internal pressure, P	16,89 bar						
Mean dish radius, R _m	1.639,3 mm						
Local head thickness, T	22,4 mm						
Design factor	3						

Maximum stresses due to the applied loads at the nozzle OD (includes pressure)

$$\gamma = \frac{r_m}{t} = \frac{26,59}{3,94} = 6,7548$$

$$\rho = \frac{T}{t} = \frac{22,4}{3,94} = 5,6896$$

$$U = \frac{r_o}{\sqrt{R_m \cdot T}} = \frac{28,56}{\sqrt{1.639,3 \cdot 22,4}} = 0,149$$

	WRC 537 Nondimensional Coefficients										
$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$											
γ = 5		S	6P-4			SM	-4				
$\dot{\rho} = 4$	M _x	My	N _x	Ny	M _x	My	N _x	Ny			
а	0,1955	0,7443	2,537	0,1606	-3,9242	12,6132	-0,9607	-6,9959			
b	355,6102	7,533	1.071,7354	22,9473	-68,5346	29,9988	-43,2509	114,214			
С	21,1677	-2,6223	127,4587	10,3372	228,2976	-129,5801	-7,5852	81,2222			
d	1.539,5199	-7,6574	2.112,6475	-190,1285	9.214,6671	-214,241	8,1123	-726,9062			
е	-9,9855	9,5634	-131,0041	-76,2413	341,9835	558,1185	5,3251	-296,5262			
f	356,7674	64,1716	-8.161,6149	517,979	12.323,9	595,3023	11,1703	1.724,0898			
g	0	-5,6615	-54,494	186,8225	-372,3161	-319,0507	0	427,4096			
h	0	62,296	7.160,3101	-483,8102	0	2.813,0991	0	-1.948,4552			
i	0	0	102,0928	-102,4669	0	0	0	-195,9934			
j	0	0	-1.577,3732	408,8865	0	0	0	1.040,0273			
Y	0,035	0,2492	0,1005	0,3381	0,1544	1,1406	0,3774	-0,0238			
Note:	ρ is outside t	the bound	ds. ρ = 4 used	d.							

	WRC 537 Nondimensional Coefficients											
$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$												
γ = 15		SP-7	,			SI	VI-7					
ρ = 4	M _x	My	N _x	Ny	M _x	My	N _x	Ny				
а	0,1225	1,1858	0,152	0,2586	81.160,67	54,8627	-7,2531E+09	-2.889,5632				
b	10,2618	30,9469	6,4077	2,6992	2.773.928	313,4235	2,0933E+11	44.457,77				
С	0,0628	0,7386	-0,2621	2,1956	11.224,63	-805,6348	2,2821E+11	31.259,89				
d	2,5604	-22,7834	-20,1141	10,0386	-888.508,9	-5.199,714	6,2796E+12	-175.466,5				
е	-9,8501E-04	0,8686	0,1324	0,3281	-4.806,5269	2.622,0799	1,5072E+12	-81.861,2				
f	7,9918	86,4361	30,2989	-5,923	3.917.797	23.612,83	3,0942E+13	299.387,2				
g	0	-0,3301	0,2529	-0,3719	0	4.442,2399	1,7691E+11	85.306,95				
h	0	0	-12,616	4,2863	0	-21.199,17	3,2234E+12	-247.881,6				
i	0	0	-0,0853	0	0	-1.946,6481	0	-22.718,26				
j	0	0	1,8294	0	0	79.566,95	0	113.956,5				
Y	0,0505	0,2437	0,0728	0,3682	0,2035	1,1743	0,2853	0,0615				

	WRC 537 Nondimensional Coefficients											
	$Y=rac{a+c\cdot U+e\cdot U^2+g\cdot U^3+i\cdot U^4}{1+b\cdot U+d\cdot U^2+f\cdot U^3+h\cdot U^4+j\cdot U^5}$											
γ = 15		SP	-8			SM	-8					
ρ́ = 10	M _x	My	N _x	Ny	M _x	My	N _x	Ny				
а	0,0089	0,7951	0,0353	0,3592	0,4473	5,8265	-4,7165	-0,0349				
b	5,0204	9,416	-2,6917	5,4358	78,6107	2,5265	-597,0121	-2,3803				
с	0,0154	-1,7189	-0,1634	3,4207	-8,384	-112,5814	161,5182	1,8888				
d	5,3485	-15,6863	-0,3186	-8,1149	-1.801,6236	-368,7197	18.269,05	6,6619				
е	0,0058	1,4218	0,3444	-8,9147	7,5876	81,5976	927,0814	-3,4378				
f	8,4286	9,5447	7,5748	4,7756	1.641,4093	-166,4983	-9.902,5503	-8,1245				
g	0	-0,4031	-0,4108	11,36	-2,1272	0	387,6637	1,9493				
h	0	0	-8,8672	9,0287	-813,4468	0	675,9853	3,3625				
i	0	0	0,2287	-4,7215	0	0	-69,6238	-0,3143				
j	0	0	3,9087	0	0	0	2.942,6661	0				
Y	0,006	0,2728	0,0283	0,428	0,0288	1,2413	0,1443	0,2299				

Pressure stress intensity factor, I = 1,8376 (derived from Division 2 Part 4.5)

Local pressure stress = $\frac{I \cdot P \cdot R_i}{2 \cdot T} = 1.150,152 \text{ kg}_f/\text{cm}^2$

Maximum combined stress $(P_L+P_b+Q)=1.585{,}56~~{
m kg}_f/{
m cm}^2$

Allowable combined stress $(P_L+P_b+Q)=\pm 3\cdot S=\pm 3.609$,8 kg $_{f}$ /cm 2

The maximum combined stress $(P_L + P_b + Q)$ is within allowable limits.

Maximum local primary membrane stress ($P_L) =$ 1.172,3 $\,$ kg $_f/{\rm cm}^2$

Allowable local primary membrane stress ($P_L)=\,\pm\,1{,}5\cdot S=\,\pm\,1{.}804{,}9\;\,\,{\rm kg}_{\,f}/{\rm cm}^{\,2}$

The maximum local primary membrane stress (PL) is within allowable limits.

		Stre	esses at t	he nozzle	OD per \	WRC Bul	letin 537			
Figure	Y		A _u	A	Bu	Bl	Cu	CI	Du	DI
SP-1 to 10*	$\frac{N_x \cdot T}{P}$	0,0934	1,969	1,969	1,969	1,969	1,969	1,969	1,969	1,969
SP-1 to 10	$\frac{M_x}{P}$	0,0355	4,5	-4,5	4,5	-4,5	4,5	-4,5	4,5	-4,5
SM-1 to 10*	$\frac{N_x \cdot T \cdot \sqrt{R_m \cdot T}}{M_1}$	0,3543	0	0	0	0	-20,178	-20,178	20,178	20,178
SM-1 to 10	$\frac{M_x\cdot\sqrt{R_m\cdot T}}{M_1}$	0,1544	0	0	0	0	-52,801	52,801	52,801	-52,801
SM-1 to 10*	$\frac{N_x \cdot T \cdot \sqrt{R_m \cdot T}}{M_2}$	0,3543	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_x\cdot\sqrt{R_m\cdot T}}{M_2}$	0,1544	0	0	0	0	0	0	0	0
Р	ressure stress*	1	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152
	Total O _x stress		1.156,62	1.147,62	1.156,62	1.147,62	1.083,641	1.180,243	1.229,598	1.114,998
Mer	nbrane O _x stress*		1.152,12	1.152,12	1.152,12	1.152,12	1.131,942	1.131,942	1.172,298	1.172,298
SP-1 to 10*	$\frac{N_y \cdot T}{P}$	0,3463	7,312	7,312	7,312	7,312	7,312	7,312	7,312	7,312
SP-1 to 10	$\frac{M_y}{P}$	0,2497	31,638	-31,638	31,638	-31,638	31,638	-31,638	31,638	-31,638
SM-1 to 10*	$\frac{N_y \cdot T \cdot \sqrt{R_m \cdot T}}{M_1}$	-0,0005	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_y \cdot \sqrt{R_m \cdot T}}{M_1}$	1,1498	0	0	0	0	-393,227	393,227	393,227	-393,227
SM-1 to 10*	$\frac{N_y \cdot T \cdot \sqrt{R_m \cdot T}}{M_2}$	-0,0005	0	0	0	0	0	0	0	0
SM-1 to 10	$\frac{M_y \cdot \sqrt{R_m \cdot T}}{M_2}$	1,1498	0	0	0	0	0	0	0	0
P	ressure stress*		1.150,152	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152	1.150,152
	Total O _y stress		1.189,102	1.125,825	1.189,102	1.125,825	795,875	1.519,052	1.582,328	732,599
Mer	mbrane O _y stress*		1.157,463	1.157,463	1.157,463	1.157,463	1.157,463	1.157,463	1.157,463	1.157,463
Shear from M _t			33,747	33,747	33,747	33,747	33,747	33,747	33,747	33,747
Shear from V ₁			0	0	0	0	0	0	0	0
Shear from V ₂			7,453	7,453	-7,453	-7,453	0	0	0	0
Total Shear stress			41,2	41,2	26,295	26,295	33,747	33,747	33,747	33,747
с	ombined stress (P _L +P _b +Q)		1.217,154	1.179,329	1.203,796	1.165,197	1.087,578	1.522,357	1.585,563	1.117,951
(1) * denot (2) The no	es primary stre zzle is analyzed	ss. I as a h	ollow atta	chment.						

Longitudinal stress in the nozzle wall due to internal pressure + external loads

$$\begin{split} \sigma_{n(Pm)} &= \frac{P \cdot R_i}{2 \cdot t_n} - \frac{P_r}{\pi \cdot (R_o^2 - R_i^2)} + \frac{M \cdot R_o}{I} \\ &= \frac{16,\!89 \cdot 1,\!02 \cdot 24,\!63}{2 \cdot 3,\!94} - \frac{-106,\!05}{\pi \cdot (28,\!56^{-2} - 24,\!63^{-2})} \cdot 100 + \frac{54.799,\!3\cdot\!28,\!56}{233.899,\!6} \cdot 100 \\ &= 739,\!16 \ \text{kg}_f/\text{cm}^2 \end{split}$$

The average primary stress P_m (see Division 2 5.6.a.1) across the nozzle wall due to internal pressure + external loads is acceptable (\leq S = 1.203,265 kg_f/cm²)

Shear stress in the nozzle wall due to external loads

$$\sigma_{shear} = \frac{\sqrt{V_1^2 + V_2^2}}{\pi \cdot R_i \cdot t_n} \cdot 100 = \frac{\sqrt{0^2 + 150^2}}{\pi \cdot 24,63 \cdot 3,94} \cdot 100 = 49,249 \ \text{ kg}_f/\text{cm}^2$$

$$\sigma_{\text{torsion}} = \frac{M_t}{2 \cdot \pi \cdot R_i^2 \cdot t_n} \cdot 100000 = \frac{38,7}{2 \cdot \pi \cdot 24,63^2 \cdot 3,94} \cdot 100000 = 258,318 \text{ kg}_f/\text{cm}^2$$

 $\sigma_{\rm total} = \sigma_{\rm shear} + \sigma_{\rm torsion} = 49,249 + 258,318 = 307,567 \, {\rm kg}_{\rm f}/{\rm cm}^2$

UG-45: The total combined shear stress (307,567 kg_f/cm²) \leq allowable $\left(0.7 \cdot S_n = 0.7 \cdot 1.203,265 = 842,286 \text{ kg}_f/\text{cm}^2\right)$

Reinforcement Calculations for External Pressure

UG-37 Area Calculation Summary (cm ²)						UG-45 Summary (mm)		
	For Pe = 1 bar @ 23 °C						The nozzle p	basses UG-45
A required	A available	A ₁	A ₂	A ₃	A ₅	A welds	t _{req}	t _{min}
This nozzle is	exempt from are	ea cal	culatio	ons pe	er UG-	·36(c)(3)(a)	<u>3,64</u>	5,54

UG-41 Weld Failure Path Analysis Summary

Weld strength calculations are not required for external pressure

UW-16 Weld Sizing Summary							
Weld description	Required weld throat size (mm)	Actual weld throat size (mm)	Status				
Nozzle to shell fillet (Leg ₄₁)	<u>2,76</u>	4 (corroded)	weld size is adequate				

Calculations for external pressure 1 bar @ 23 °C

Parallel Limit of reinforcement per UG-40

$$L_{R}$$
 = max $[d, R_{n} + (t_{n} - C_{n}) + (t - C)]$

- = $\max [49,25, 24,63 + (5,54 1,6) + (24 1,6)]$
- = 50,96 mm

Outer Normal Limit of reinforcement per UG-40

$$L_{H} = \min [2.5 \cdot (t - C), 2.5 \cdot (t_n - C_n) + t_e]$$

- $= \min \left[2,5 \cdot (24 1,6), 2,5 \cdot (5,54 1,6) + 0 \right]$
- = 9,84 mm

Nozzle required thickness per UG-28 t_{rn} = 0,52 mm

From UG-37(d)(1) required thickness $t_r = 4,59 \text{ mm}$

This opening does not require reinforcement per UG-36(c)(3)(a)

UW-16(c) Weld Check

Fillet weld: $t_{\min} = \min [19mm, t_n, t] = 3,94 \text{ mm}$ $t_{c(\min)} = \min [6 \text{ mm}, 0,7 \cdot t_{\min}] = 2.76 \text{ mm}$ $t_{c(actual)} = 0,7 \cdot \text{Leg} = 0.7 \cdot 5,71 = 4 \text{ mm}$

The fillet weld size is satisfactory.

Weld strength calculations are not required for this detail which conforms to Fig. UW-16.1, sketch (c-e).

UG-45 Nozzle Neck Thickness Check

 $t_{a\mathrm{UG-28}}$ = 2,12 mm

 $t_{a\mathrm{UG-22}}$ = 3,64 mm

	=	$\max[2,12, 3,64]$
	=	3,64 mm
t _{b2}	=	$\frac{P \cdot K_1 \cdot D}{2 \cdot S \cdot E - 0.2 \cdot P} + \text{Corrosion}$
	=	$\frac{1\cdot 0{,}9\cdot 1{.}800}{2\cdot 1{.}180\cdot 1-0{,}2\cdot 1}+1{,}6$
	=	2,29 mm
t_{b2}	=	$\max \ [t_{b2}, \ t_{b\mathrm{UG16}}]$
	=	$\max[2,29, 3,1]$
	=	3,1 mm
t_b	=	$\min \ [t_{b3}, \ t_{b2}]$
	=	$\min [5,\!02, 3,\!1]$
	=	3,1 mm
$t_{ m UG-45}$	=	$\max \ [t_a, \ t_b]$
	=	$\max[3,\!64, 3,\!1]$
	=	<u>3,64</u> mm

 t_a

=

 $\max\left[t_{a\mathrm{UG-28}},\;t_{a\mathrm{UG-22}}
ight]$

Available nozzle wall thickness new, $t_n = 5,54$ mm

The nozzle neck thickness is adequate.

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{1.309,45}{60,33} = 21,7065$$
$$\frac{D_o}{t} = \frac{60,33}{0,52} = 115,3648$$

From table G: A = 0,000087

From table CS-2 Metric: B = 88,226 kg/cm² (86,52 bar)

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 86,52}{3 \cdot (60,33/0,52)} = 1 \;\; {
m bar}$$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0{,}52 + 1{,}6 = 2{,}12 \text{ mm}$

B16.9 Elbow D

ASME Section VIII Division 1, 2021 Edition Metric						
Com	ponent	ASME B16.9 Elbow				
т	ype	Long Radius 90-deg				
	terial	SA-420	WPL6 (II-D Metric p.	. 16, ln. 26)		
Pipe NPS a	and Schedule	N	PS 2 Sch 80 (XS) DI	N 50		
Attac	hed To		Nozzle (D)			
Impact Tested	Normalized	Fine Grain Practice	PWHT	Maximize MDMT/ No MAWP		
No	Yes	Yes	Yes	No		
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Int	ernal	15,5	121	-15		
Ext	ernal	1	23	-10		
		Static Liquid	Head			
Con	dition	P _s (bar)	H _s (mm)	SG		
Оре	rating	0,12	1.255,83	0,999		
Test h	orizontal	0,1	1.050,83	1		
Test	vertical	0,32 3.300,83		1		
		Dimensior	IS			
Outer	Diameter	60,33 mm				
Nominal	Thickness	5,54 mm				
Minimum	Thickness ¹		4,85 mm			
Center-	to-End, A		76 mm			
Corrosion	Inner		0 mm			
CONOSION	Outer	1,6 mm				
		Weight and Ca	pacity			
		Weig	ht (kg)	Capacity (liters)		
N	lew	0	,89	0,18		
Cor	roded	0	,62	0,18		
		Lining				
		Thickness (mm)	Density (kg/m ³)	Weight (kg)		
Li	ning	3	8.000	0		
		Radiograp	hy			
Longitu	dinal seam	Full UW-11(a) Type 1				
Left Circum	ferential seam	Full UW-11(a) Type 1				
Right Circun	nferential seam	Full UW-11(a) Type 1				

 $\frac{1}{1}$ minimum thickness = nominal thickness times pipe tolerance factor of 0,875.

Results Summary					
Governing condition	UG-16				
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm				
Design thickness due to internal pressure (t)	<u>2 mm</u>				
Design thickness due to external pressure (t_e)	<u>2,12 mm</u>				
Maximum allowable working pressure (MAWP)	<u>132,53 bar</u>				
Maximum allowable pressure (MAP)	<u>202,56 bar</u>				
Maximum allowable external pressure (MAEP)	<u>81,5 bar</u>				
Rated MDMT	-105 °C				

UCS-66 Material Toughness Requirements				
Impact test temperature per material specification =	-45°C			
$t_r = {16,02\cdot 30,16\over 1.180\cdot 1 + 0,4\cdot 16,02} =$	0,41 mm			
$ ext{Stress ratio} = rac{t_r \cdot E^*}{t_n - c} = rac{0.41 \cdot 1}{4.85 - 1.6} =$	0,1255			
Stress ratio ≤ 0,35, MDMT per UCS-66(b)(3) =	-105°C			
$egin{array}{llllllllllllllllllllllllllllllllllll$	-105°C			
Material is exempt from impact testing at the Design MDMT of -15°C.				

Design thickness, (at 121 °C) Appendix 1-1

$$t = \frac{P \cdot R_o}{S \cdot E + 0.40 \cdot P} + \text{Corrosion} = \frac{15.62 \cdot 30.16}{1.180 \cdot 1.00 + 0.40 \cdot 15.62} + 1.6 = 2 \text{ mm}$$

Maximum allowable working pressure, (at 121 °C) Appendix 1-1

 $P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} - P_s = \frac{1.180 \cdot 1.00 \cdot (5.54 \cdot 0.875 - 1.6)}{30.16 - 0.40 \cdot (5.54 \cdot 0.875 - 1.6)} - 0.12 = \underline{132.53} \text{ bar}$

Maximum allowable pressure, (at 7 °C) Appendix 1-1

 $P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} = \frac{1.180 \cdot 1.00 \cdot (5.54 \cdot 0.875)}{30.16 - 0.40 \cdot (5.54 \cdot 0.875)} = \underline{202.56} \text{ bar}$

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{1.309,45}{60,33} = 21,7065$$
$$\frac{D_o}{t} = \frac{60,33}{0,52} = 115,3648$$

From table G: A = 0,000087

From table CS-2 Metric: $B = 88,226 \text{ kg/cm}^2(86,52 \text{ bar})$

 $P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 86,52}{3 \cdot (60,33/0,52)} = 1 \ \, {\rm bar}$

Design thickness for external pressure $P_a = 1$ bar

 $t_a = t + \text{Corrosion} = 0.52 + 1.6 = 2.12 \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{1.309,45}{60,33} = 21,7065$$
$$\frac{D_o}{t} = \frac{60,33}{5,54 \cdot 0,875 - 1,6} = 18,5910$$

From table G: A = 0,003380

From table CS-2 Metric: B = 1.158,8304 kg/cm²(1.136,4223 bar)

$$P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 1.136, 42}{3 \cdot (60, 33/(5, 54 \cdot 0.875 - 1.6))} = rac{81.5}{81.5} ext{ bar}$$

Nozzle Pipe (D)

ASME Section VIII Division 1, 2021 Edition Metric						
Com	ponent	Nozzle Pipe				
	terial	SA-333 6 WId & smls pipe (II-D Metric p. 16, In. 19)				
Pipe NPS a	and Schedule		PS 2 Sch 80 (XS) DI			
Attac	hed To		B16.9 Elbow D			
Impact Tested	Normalized	Fine Grain Practice	РѠҤТ	Maximize MDMT/ No MAWP		
No	Yes	Yes	Yes	No		
		Design Pressure (bar)	Design Temperature (°C)	Design MDMT (°C)		
Int	ernal	15,5	121	-15		
Ext	ternal	1	23	-10		
		Static Liquid	Head			
Cor	dition	P _s (bar)	H _s (mm)	SG		
Оре	erating	0,12	1.255,83	0,999		
Test h	orizontal	0,09	950	1		
Test	vertical	0,32	3.300,83	1		
		Dimension	IS			
Outer	Diameter	60,33 mm				
Le	ength	950 mm				
Pipe Minim	um Thickness	5,54 mm				
Corrosion	Inner		0 mm			
	Outer		1,6 mm			
		Weight and Ca				
	-	Weig	Capacity (liters)			
	lew 		,09	1,4		
Cor	roded	ļ	1,9	1,4		
		Lining				
		Thickness (mm)	Density (kg/m ³)	Weight (kg)		
Li	Lining		8.000	0		
		Radiograp	-			
	dinal seam	Seamless No RT				
	ferential seam	Full UW-11(a) Type 1				
Right Circumferential seam Full UW-11(a) Type 1						

ASME B16.5-2017 Flange					
Description	NPS 2 Class 150 WN A350 LF2 Cl.1 N				
Bolt Material	SA-320 L7 Bolt <= 65 (II-D Metric p. 410, In. 33)				
Blind included	No				
Rated MDMT	-56,2°C				
Liquid static head	0,12 bar				
MAWP rating	16,9 bar @ 121°C				
MAP rating	19,6 bar @ 7°C				
Hydrotest rating	30 bar @ 7°C				
PWHT performed	Yes				
Produced to Fine Grain Practice and Supplied in Heat Treated Condition	Yes				
Impact Tested	No				
Circumferential joint radiography	Full UW-11(a) Type 1				
	Gasket				
Туре	ASME B16.20 Spiral-Wound				
Description	Spiral-wound Stainless, Monel, or nickel-base alloy windings with filler				
Factor, m	3				
Seating Stress, y	703,07 kg _f /cm ²				
Thickness, T	4,5 mm				
Inner Diameter	69,9 mm				
Outer Diameter	85,9 mm				
Notes					
(1) Flange is impact tested per material specification to -46° C. UCS-66(i) reduction of 10,2°C applied (ratio = 0,8175).					

Bolts rated MDMT per Fig UCS-66 note (c) = -104° C

Results Summary	/
Governing condition	UG-16
Minimum thickness per UG-16	1,5 mm + 1,6 mm = 3,1 mm
Design thickness due to internal pressure (t)	<u>2 mm</u>
Design thickness due to external pressure (t_e)	<u>2,12 mm</u>
Maximum allowable working pressure (MAWP)	<u>162,38 bar</u>
Maximum allowable pressure (MAP)	<u>233,79 bar</u>
Maximum allowable external pressure (MAEP)	<u>103,05 bar</u>
Rated MDMT	-105 °C

UCS-66 Material Toughness Requirements					
Impact test exempt per UCS-66(d) (NPS 4 or smaller pipe) =	-105°C				
Material is exempt from impact testing at the Design MDMT o	f -15°C.				

Design thickness, (at 121 °C) Appendix 1-1

$$t = \frac{P \cdot R_o}{S \cdot E + 0.40 \cdot P} + \text{Corrosion} = \frac{15,62 \cdot 30,16}{1.180 \cdot 1.00 + 0.40 \cdot 15,62} + 1.6 = \underline{2} \text{ mm}$$

Maximum allowable working pressure, (at 121 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} - P_s = \frac{1.180 \cdot 1.00 \cdot 3.94}{30.16 - 0.40 \cdot 3.94} - 0.12 = \underline{162.38} \text{ bar}$$

Maximum allowable pressure, (at 7 °C) Appendix 1-1

$$P = \frac{S \cdot E \cdot t}{R_o - 0.40 \cdot t} = \frac{1.180 \cdot 1.00 \cdot 5.54}{30.16 - 0.40 \cdot 5.54} = \frac{233.79}{233.79} \text{ bar}$$

External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{1.309,45}{60,33} = 21,7065$$
$$\frac{D_o}{t} = \frac{60,33}{0,52} = 115,3648$$

From table G: A = 0,000087

From table CS-2 Metric: $B = 88,226 \text{ kg/cm}^2(86,52 \text{ bar})$

$$P_a = \frac{4 \cdot B}{3 \cdot (D_o/t)} = \frac{4 \cdot 86,52}{3 \cdot (60,33/0,52)} = 1 \text{ bar}$$

Design thickness for external pressure P_a = 1 bar

 $t_a = t + \text{Corrosion} = 0,52 + 1,6 = \underline{2,12} \text{ mm}$

Maximum Allowable External Pressure, (Corroded & at 23 °C) UG-28(c)

$$\frac{L}{D_o} = \frac{1.309,45}{60,33} = 21,7065$$
$$\frac{D_o}{t} = \frac{60,33}{3,94} = 15,3226$$

From table G: A = 0,004791

From table CS-2 Metric: $B = 1.207,5615 \text{ kg/cm}^2 (1.184,2111 \text{ bar})$

 $P_a = rac{4 \cdot B}{3 \cdot (D_o/t)} = rac{4 \cdot 1.184, 21}{3 \cdot (60, 33/3, 94)} = rac{103.05}{103.05} ext{ bar}$

Support Skirt

ASME Section VIII Division 1, 2021 Edition Metric					
Component	Support Skirt				
Skirt is Attached		Bottom Head			
Skirt Attachment	Skirt Attachment Offset			p seam	
				16, ln. 3)	
Material	Impact Tested ¹	Normalized	Fine Grain Practice		
		No	Yes	Yes	
	Design	Temperatu	re		
Internal			121°C		
External		121°C			
	Dir	nensions			
Inner Diameter	Inner Diameter Top				
	Bottom	1.814 mm			
Length (includes base rin	g thickness)	1.070 mm			
Nominal Thickn	ess	10 mm			
Corrosion	Inner	1,6 mm			
Corrosion	Outer	0 mm			
	١	Veight			
New		471,29 kg			
Corroded		395,54 kg			
	Insula	ation\Lining			
		Thickness	Density	Weight	
Lining		18,3 mm	1.000	110,46 kg	
Insulation		18,3 mm	1.000	113,95 kg	
	Spacing	Individual Weight	Total Weight		
Insulation Supports	0 mm	0 mm 0 kg 0 kg			
Joint Efficiency					
Тор	0,55				
Bottom			0,7		

¹Impact testing requirements are not checked for supports

Skirt design thickness, largest of the following + corrosion = $\frac{1.9}{1.9}$ mm

The governing condition is due to wind, compressive stress at the base, operating & corroded.

The skirt thickness of 10 mm is adequate.

Results Summary											
Loading	Condition	Tensile or Compressive Side	Governing Skirt Location	Temperature (°C)	Allowable Stress (kg _f /cm ²)	Calculated Stress/E (kg _f /cm ²)	Required thickness (mm)				
Wind	operating, corroded	Tensile	top	121	898,2	-11,55	<u>0,11</u>				
		Compressive	bottom	121	090,2	31,6	<u>0,3</u>				
	operating, new	Tensile	top	121	943,22	-10,1	<u>0,11</u>				
		Compressive	bottom	121	340,22	27,14	<u>0,29</u>				
	empty, corroded	Tensile	top	7	898,2	-7,29	<u>0,07</u>				
		Compressive	bottom	1		27,34	<u>0,26</u>				
	empty, new	Tensile	top	7	943,22	-6,52	<u>0,07</u>				
		Compressive	bottom	1	940,22	23,56	<u>0,25</u>				
	test, corroded	Tensile	bottom	om 7	898,2	-21,88	<u>0,2</u>				
		Compressive	Dottom			31,32	<u>0,29</u>				
	test, new	Tensile	bottom	7	943,22	-18,93	<u>0,2</u>				
		Compressive				26,9	<u>0,29</u>				
	vacuum, corroded	Tensile	top	121	898,2	-11,55	<u>0,11</u>				
		Compressive	bottom	121	000,2	31,6	<u>0,3</u>				
	operating, corroded	Tensile	top	121	898,2	-12,43	<u>0,12</u>				
		Compressive	bottom	121	090,2	30,49	<u>0,29</u>				
	operating, new	Tensile	top	121	943,22	-10,75	<u>0,11</u>				
		Compressive	bottom	121	940,22	26,35	<u>0,28</u>				
Seismic	empty, corroded	Tensile	top	7	898,2	-8,65	<u>0,08</u>				
		Compressive	bottom	, 		25,17	<u>0,24</u>				
	empty, new	Tensile	top	7	943,22	-7,57	<u>0,08</u>				
		Compressive	bottom	, 	340,22	21,88	<u>0,23</u>				
	vacuum, corroded	Tensile	top	121	898.2	-12,43	<u>0,12</u>				
		Compressive	bottom		030,2	30,49	<u>0,29</u>				

Loading due to wind, operating & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.372}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,0938 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.714,2}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \frac{0.11}{\pi \cdot 1.$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.372}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0,3} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.714,2}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,25 \text{ mm}$$

Loading due to wind, operating & new

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{10.344,88}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.375,1}{\pi \cdot 1.824^{-2} \cdot \frac{943,224}{100} \cdot 1} = 0,095 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{9.555,38}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.717,3}{\pi \cdot 1.824^{-2} \cdot \frac{943,224}{100} \cdot 1} = \underline{0,11} \text{ mm}$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{10.344,88}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.375,1}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = \underline{0.29} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{9.555,38}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e^3 \cdot 1.717,3}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = 0.25 \text{ mm}$$

Loading due to wind, empty & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{7.975,37}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.372}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,0539 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{7.268,23}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.714,2}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0.0682} \text{ mm}$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{7.975,37}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.372}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0.26} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{7.268,23}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.714,2}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,21 \text{ mm}$$

Loading due to wind, empty & new

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{8.292,67}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.375,1}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = 0,0571 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{7.503,16}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.717,3}{\pi \cdot 1.824^{-2} \cdot \frac{943,224}{100} \cdot 1} = \underline{0.0691} \text{ mm}$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{8.292,67}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.375,1}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = \underline{0.25} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{7.503,16}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.717,3}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = 0,21 \text{ mm}$$

Loading due to wind, test & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{12.814,37}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.037,8}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0.2} \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{12.107,24}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 873,3}{\pi \cdot 1.825,6^2 \cdot \frac{898,203}{100} \cdot 1} = 0,2 \text{ mm}$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{12.814.37}{\pi \cdot 1.825.6 \cdot \frac{898.203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.037.8}{\pi \cdot 1.825.6 \cdot \frac{2}{3} \cdot \frac{898.203}{100} \cdot 1} = 0.29 \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{12.107,24}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 873,3}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,27 \text{ mm}$$

Loading due to wind, test & new

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{13.131,02}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e^3 \cdot 1.040,8}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = \underline{0,2} \quad \text{mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{12.341,51}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 876,4}{\pi \cdot 1.824 \cdot 2 \cdot \frac{943,224}{100} \cdot 1} = 0,19 \text{ mm}$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{13.131,02}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.040,8}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = \underline{0.29} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{12.341,51}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 876,4}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = 0,26 \text{ mm}$$

Loading due to wind, vacuum & corroded

Windward side (tensile)

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.372}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,0938 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.714,2}{\pi \cdot 1.825,6^2 \cdot \frac{898,203}{100} \cdot 1} = \underline{0.11} \text{ mm}$$

Leeward side (compressive)

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.372}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0.3} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.714,2}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,25 \text{ mm}$$

Loading due to seismic, operating & corroded

Tensile side

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.127,6}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,1 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.520,9}{\pi \cdot 1.825,6^2 \cdot \frac{898,203}{100} \cdot 1} = \underline{0.12} \text{ mm}$$

Compressive side

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.127,6}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \frac{0,29}{\pi \cdot 1.825,6$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.520,9}{\pi \cdot 1.825,6 \cdot \frac{2}{100} \cdot 1} = 0.25 \text{ mm}$$

Loading due to seismic, operating & new

Tensile side

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{10.344,88}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.169,3}{\pi \cdot 1.824^{-2} \cdot \frac{943,224}{100} \cdot 1} = 0,1 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{9.555,38}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.548,7}{\pi \cdot 1.824^{-2} \cdot \frac{943,224}{100} \cdot 1} = \underline{0.11} \text{ mm}$$

Compressive side

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{10.344,88}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e^3 \cdot 2.169,3}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = \underline{0.28} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{9.555,38}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.548,7}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = 0,24 \text{ mm}$$

Loading due to seismic, empty & corroded

Tensile side

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{7.975,37}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.893,3}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,0743 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{7.268,23}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.415,6}{\pi \cdot 1.825,6^2 \cdot \frac{898,203}{100} \cdot 1} = \underline{0.0809} \text{ mm}$$

Compressive side

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{7.975,37}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.893,3}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0.24} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{7.268,23}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.415,6}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,2 \text{ mm}$$

Loading due to seismic, empty & new

Tensile side

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{8.292,67}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.936,1}{\pi \cdot 1.824 \cdot 2 \cdot \frac{943,224}{100} \cdot 1} = 0,0749 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{7.503,16}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.444,6}{\pi \cdot 1.824^{-2} \cdot \frac{943,224}{100} \cdot 1} = \underline{0.0802} \text{ mm}$$

Compressive side

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{8.292,67}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.936,1}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = \underline{0.23} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{7.503,16}{\pi \cdot 1.824 \cdot \frac{943,224}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.444,6}{\pi \cdot 1.824^2 \cdot \frac{943,224}{100} \cdot 1} = 0,2 \text{ mm}$$

Loading due to seismic, vacuum & corroded

Tensile side

Required thickness, tensile stress at base:

$$t = -\frac{W}{\pi \cdot D \cdot S_t \cdot E} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_t \cdot E} = -\frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.127,6}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,1 \text{ mm}$$

Required thickness, tensile stress at the top:

$$t = -\frac{W_t}{\pi \cdot D_t \cdot S_t \cdot E} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_t \cdot E} = -\frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.520,9}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0,12} \text{ mm}$$

Compressive side

Required thickness, compressive stress at base:

$$t = \frac{W}{\pi \cdot D \cdot S_c \cdot E_c} + \frac{4 \cdot M}{\pi \cdot D^2 \cdot S_c \cdot E_c} = \frac{10.027,72}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 2.127,6}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = \underline{0.29} \text{ mm}$$

Required thickness, compressive stress at the top:

$$t = \frac{W_t}{\pi \cdot D_t \cdot S_c \cdot E_c} + \frac{4 \cdot M_t}{\pi \cdot D_t^2 \cdot S_c \cdot E_c} = \frac{9.320,59}{\pi \cdot 1.825,6 \cdot \frac{898,203}{100} \cdot 1} + \frac{4 \cdot 1e3 \cdot 1.520,9}{\pi \cdot 1.825,6^{-2} \cdot \frac{898,203}{100} \cdot 1} = 0,25 \text{ mm}$$

Skirt Base Ring

Inputs						
Base configuration	single base plate					
Base plate material	SA-516 Gr60					
Base plate allowable stress, S _p	1.203,265 kg _f /cm ²					
Foundation compressive strength	116,569 kg _f /cm ²					
Concrete ultimate 28-day strength	210,921 kg _f /cm ²					
Bolt circle, BC	1.934 mm					
Base plate inner diameter, D _i	1.754 mm					
Base plate outer diameter, D _o	2.014 mm					
Base plate thickness, t _b	20 mm					
Gusset separation, w	125 mm					
Gusset height, h	200 mm					
Gusset thickness, t _g	13 mm					
Anchor Bolts						
Material						
Allowable stress, S _b	1.055 kg _f /cm ²					
Bolt size and type	M24 x 3					
Number of bolts, N	4					
Corrosion allowance (applied to root radius)	0 mm					
Anchor bolt clearance	12 mm					
Bolt root area (corroded), A _b	3,13 cm ²					
Diameter of anchor bolt holes, d _b	36 mm					
Initial bolt preload	0% (0 kg _f /cm ²)					
Bolt at 0°	No					

Results Summary										
Load	Vessel condition	Base V (kg _f)	Base M (kg _f -m)	W (kg)	Required bolt area (cm ²)	t _r Base (mm)	Foundation bearing stress (kg _f /cm ²)			
Wind	operating, corroded	652,9	2.372	10.155,2	<u>0</u>	<u>6,3</u>	<u>2,0232</u>			
Wind	operating, new	652,9	2.375,1	10.472,3	<u>0</u>	<u>6,37</u>	<u>2,0655</u>			
Wind	empty, corroded	652,9	2.372	8.102,8	<u>0</u>	<u>5,87</u>	<u>1,7551</u>			
Wind	empty, new	652,9	2.375,1	8.420,1	<u>0</u>	<u>5,94</u>	<u>1,7974</u>			
Wind	test, corroded	163,2	1.037,8	12.941,8	<u>0</u>	<u>6,26</u>	<u>1,9956</u>			
Wind	test, new	163,2	1.040,8	13.258,5	<u>0</u>	<u>6,32</u>	<u>2,0379</u>			
Wind	vacuum, corroded	652,9	2.372	10.155,2	<u>0</u>	<u>6,3</u>	<u>2,0232</u>			
Seismic	operating, corroded	599,2	2.127,6	10.155,2	<u>0</u>	<u>6,19</u>	<u>1,9515</u>			
Seismic	operating, new	617,9	2.169,3	10.472,3	<u>0</u>	<u>6,27</u>	<u>2,0051</u>			
Seismic	empty, corroded	478,1	1.893,3	8.102,8	<u>0</u>	<u>5,63</u>	<u>1,6145</u>			
Seismic	empty, new	496,8	1.936,1	8.420,1	<u>0</u>	<u>5,72</u>	<u>1,6685</u>			
Seismic	vacuum, corroded	599,2	2.127,6	10.155,2	<u>0</u>	<u>6,19</u>	<u>1,9515</u>			

Anchor bolt load (operating, corroded + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-10.155,18}{4} + \frac{4 \cdot 2.372}{4 \cdot 1,934} = -1.312,32 \text{ kg}_f$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, corroded + Wind)

$$A_{c} = \frac{\pi \cdot (D_{o}^{2} - D_{i}^{2})}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot (201, 4^{2} - 175, 4^{2})}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653, 6737 \text{ cm}^{2}$$

$$I_{c} = \frac{\pi \cdot (D_{o}^{4} - D_{i}^{4})}{64} = \frac{\pi \cdot (201, 4^{4} - 175, 4^{4})}{64} = 3,4301 \text{E} + 07 \text{ cm}^{4}$$

$$N_{c} = \frac{M_{c} \cdot (D_{o}^{4} - D_{i}^{4})}{64} = \frac{M_{c} \cdot (D_{o}^{4} - 175, 4^{4})}{64} = 3,4301 \text{E} + 07 \text{ cm}^{4}$$

 $f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{10.155,18}{7.653,6737} + \frac{10 \cdot \frac{2.372}{2} \cdot 2.014}{3,4301\text{E}+07} = \frac{2.023}{2} \text{ kg}_f/\text{cm}^2$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Wind)

From Brownell & Young, Table 10.3:, $\frac{l}{b} = 0,0658$

$$M_x = 0.01 \cdot 0{,}0015 \cdot 2{,}023 \cdot 1{.}367{,}96^{-2} = 58{,}3 \, \, {
m kgf}$$

 $M_y = 0.01 \cdot -0.4858 \cdot 2.023 \cdot 90^2 = -79.6 \; {
m kg_f}$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 79{,}61}{1.203{,}265}} = \underline{6.3} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, corroded + Wind)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\text{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \text{kg}_f/\text{cm}^2$$

As $S_r \leq 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (operating, new + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-10.472,34}{4} + \frac{4 \cdot 2.375,1}{4 \cdot 1,934} = -1.390,03 \text{ kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, new + Wind)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653,6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201, 4\ ^4 - 175, 4\ ^4
ight)}{64} = 3,4301 ext{E+07} \ ext{ cm}^4$$

$$f_{c} = \frac{N \cdot A_{b} \cdot \text{Preload}}{A_{c}} + \frac{W}{A_{c}} + \frac{\frac{M}{2} \cdot D_{o}}{I_{c}} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{10.472,34}{7.653,6737} + \frac{10 \cdot \frac{2.375,1}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{2,066} \text{ kg}_{f}/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (operating, new + Wind)

From Brownell & Young, Table 10.3:, $\frac{l}{b} = 0,0658$

$$M_x = 0.01 \cdot 0,0015 \cdot 2,066 \cdot 1.367,96^{-2} = 59,5 \, \mathrm{kg_f}$$

$$M_y = 0.01 \cdot -0.4858 \cdot 2.066 \cdot 90^2 = -81.3 \ {
m kg}{
m f}$$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 81,28}{1.203,265}} = \underline{6.37} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, new + Wind)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_f$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = rac{1.5 \cdot F \cdot b}{{
m gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = rac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 ~~{
m kg}_f/{
m cm}^2$$

As $S_r \le 1.804,898 \text{ kg}/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, corroded + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-8.102,83}{4} + \frac{4 \cdot 2.372}{4 \cdot 1,934} = -799,23 \text{ kg}_{\text{F}}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, corroded + Wind)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653, 6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201, 4\ ^4 - 175, 4\ ^4
ight)}{64} = 3,4301\mathrm{E}{+}07~\mathrm{cm}^4$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{8.102,83}{7.653,6737} + \frac{10 \cdot \frac{2.372}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1,755} \text{ kg}_f/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Wind)

From Brownell & Young, Table 10.3:,
$$\frac{l}{b}$$
 = 0,0658

$$M_x = 0.01 \cdot 0.0015 \cdot 1.755 \cdot 1.367,96^{-2} = 50,6 \, \, {
m kg_f}$$

$$M_y = 0.01 \cdot -0.4858 \cdot 1.755 \cdot 90^2 = -69.1 \text{ kg}_{\mathsf{f}}$$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 69,06}{1.203,265}} = \frac{5.87}{5.87} \text{ mm}$$

Base plate bolt load (Jawad & Farr eq. 12.13, empty, corroded + Wind)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_f$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\text{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \text{kg}_f/\text{cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, new + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-8.420,13}{4} + \frac{4 \cdot 2.375,1}{4 \cdot 1,934} = -876,98 \ \ \mathrm{kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, new + Wind)

$$A_c = rac{\pi \cdot \left(D_o^2 - D_i^2
ight)}{4} - rac{N \cdot \pi \cdot d_b^2}{4} = rac{\pi \cdot \left(201, 4^2 - 175, 4^2
ight)}{4} - rac{4 \cdot \pi \cdot 3, 6^2}{4} = 7.653,6737 ~~\mathrm{cm}^2$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201, 4\ ^4 - 175, 4\ ^4
ight)}{64} = 3,4301\mathrm{E}{+}07~~\mathrm{cm}^{\,4}$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{8.420,13}{7.653,6737} + \frac{10 \cdot \frac{2.375,1}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1,797} \text{ kg}_f/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (empty, new + Wind)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

$$M_x = 0.01 \cdot 0{,}0015 \cdot 1{,}797 \cdot 1{.}367{,}96^{-2} = 51{,}8~{
m kg}_{
m f}$$

 $M_y = 0.01 \cdot -0.4858 \cdot 1.797 \cdot 90^2 = -70.7 \; {
m kg_f}$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 70,73}{1.203,265}} = \frac{5.94}{5.94} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, empty, new + Wind)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = rac{1.5 \cdot F \cdot b}{{
m gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = rac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 ~~{
m kg}_f/{
m cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (test, corroded + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-12.941,83}{4} + \frac{4 \cdot 1.037,8}{4 \cdot 1.934} = -2.698,87 \text{ kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (test, corroded + Wind)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653,6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201,4\ ^4 - 175,4\ ^4
ight)}{64} = 3,4301\mathrm{E}{+}07~~\mathrm{cm}^4$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{12.941,83}{7.653,6737} + \frac{10 \cdot \frac{1.037,8}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1,996} \ \text{ kg}_f/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (test, corroded + Wind)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

$$M_x = 0.01 \cdot 0,0015 \cdot 1,996 \cdot 1.367,96^{-2} = 57,5 \, \mathrm{kg}_{\mathrm{f}}$$

$$M_y = 0.01 \cdot -0.4858 \cdot 1.996 \cdot 90^2 = -78.5 \text{ kg}_{f}$$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 78,52}{1.203,265}} = \underline{6.26} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, test, corroded + Wind)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\mathrm{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \mathrm{kg}_f/\mathrm{cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (test, new + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-13.258,48}{4} + \frac{4 \cdot 1.040,8}{4 \cdot 1.934} = -2.776,45 \text{ kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (test, new + Wind)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653, 6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201,4\ ^4 - 175,4\ ^4
ight)}{64} = 3,4301\mathrm{E}{+}07~\mathrm{cm}^4$$

 $f_{c} = \frac{N \cdot A_{b} \cdot \text{Preload}}{A_{c}} + \frac{W}{A_{c}} + \frac{\frac{M}{2} \cdot D_{o}}{I_{c}} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{13.258,48}{7.653,6737} + \frac{10 \cdot \frac{1.040,8}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{2.038} \text{ kg}_{f}/\text{cm}^{2}$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (test, new + Wind)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

$$M_x = 0.01 \cdot 0,0015 \cdot 2,038 \cdot 1.367,96^{-2} = 58,7 \text{ kg}_{f}$$

 $M_y = 0.01 \cdot -0.4858 \cdot 2.038 \cdot 90^2 = -80.2 \ {
m kg_f}$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 80,19}{1.203,265}} = \underline{6.32} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, test, new + Wind)

Bolt load =
$$A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_f$$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = rac{1.5 \cdot F \cdot b}{{
m gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = rac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \ {
m kg}_f/{
m cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (vacuum, corroded + Wind)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-10.155,18}{4} + \frac{4 \cdot 2.372}{4 \cdot 1,934} = -1.312,32 \text{ kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (vacuum, corroded + Wind)

$$A_{c} = \frac{\pi \cdot (D_{o}^{2} - D_{i}^{2})}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot (201, 4^{2} - 175, 4^{2})}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653, 6737 \text{ cm}^{2}$$
$$I_{c} = \frac{\pi \cdot (D_{o}^{4} - D_{i}^{4})}{64} = \frac{\pi \cdot (201, 4^{4} - 175, 4^{4})}{64} = 3,4301\text{E} + 07 \text{ cm}^{4}$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{10.155,18}{7.653,6737} + \frac{10 \cdot \frac{2.372}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{2.023} \text{ kg}_f/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (vacuum, corroded + Wind)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

 $M_x = 0.01 \cdot 0{,}0015 \cdot 2{,}023 \cdot 1.367{,}96^{-2} = 58{,}3 \, \, \mathrm{kg_f}$

 $M_y = 0.01 \cdot -0.4858 \cdot 2.023 \cdot 90^2 = -79.6 \ {
m kgf}$

$$t_r = \sqrt{rac{6 \cdot M_{\max}}{S_p}} = \sqrt{rac{100 \cdot 6 \cdot 79,61}{1.203,265}} = rac{6.3}{6.3} \ \mathrm{mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, vacuum, corroded + Wind)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\mathrm{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \mathrm{kg}_f / \mathrm{cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (operating, corroded + Seismic)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-10.155,18}{4} + \frac{4 \cdot 2.127,6}{4 \cdot 1,934} = -1.438,68 \text{ kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, corroded + Seismic)

$$A_{c} = \frac{\pi \cdot (D_{o}^{2} - D_{i}^{2})}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot (201, 4^{2} - 175, 4^{2})}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653,6737 \text{ cm}^{2}$$
$$I_{c} = \frac{\pi \cdot (D_{o}^{4} - D_{i}^{4})}{64} = \frac{\pi \cdot (201, 4^{4} - 175, 4^{4})}{64} = 3,4301\text{E}+07 \text{ cm}^{4}$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{10.155,18}{7.653,6737} + \frac{10 \cdot \frac{2.127,6}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1,951} \text{ kg}_f/\text{cm}^2$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (operating, corroded + Seismic)

From Brownell & Young, Table 10.3:, $\frac{l}{b} = 0,0658$ $M_x = 0.01 \cdot 0,0015 \cdot 1,951 \cdot 1.367,96^{-2} = 56,2 \text{ kg}_{\text{f}}$ $M_y = 0.01 \cdot -0,4858 \cdot 1,951 \cdot 90^2 = -76,8 \text{ kg}_{\text{f}}$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 76,79}{1.203,265}} = \frac{6,19}{6,19} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, corroded + Seismic)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_f$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\text{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \text{ kg}_f/\text{cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (operating, new + Seismic)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-10.472,34}{4} + \frac{4 \cdot 2.169,3}{4 \cdot 1,934} = -1.496,45 \ \mathrm{kg}_{\,f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (operating, new + Seismic)

$$A_{c} = \frac{\pi \cdot (D_{c}^{2} - D_{i}^{2})}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot (201, 4^{2} - 175, 4^{2})}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653,6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot (D_o^4 - D_i^4)}{64} = rac{\pi \cdot (201, 4^{\,4} - 175, 4^{\,4})}{64} = 3,4301 \mathrm{E}{+}07 \ \mathrm{cm}^{\,4}$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{10.472,34}{7.653,6737} + \frac{10 \cdot \frac{2.169,3}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{2,005} \text{ kg}_f/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (operating, new + Seismic)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

 $M_x = 0.01 \cdot 0{,}0015 \cdot 2{,}005 \cdot 1{.}367{,}96^{-2} = 57{,}8 \, \, {
m kgf}$

 $M_y = 0.01 \cdot -0.4858 \cdot 2.005 \cdot 90^2 = -78.9 \ {
m kg_f}$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 78,9}{1.203,265}} = \frac{6,27}{6} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, operating, new + Seismic)

Bolt load =
$$A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = rac{1.5 \cdot F \cdot b}{{
m gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = rac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 ~~{
m kg}_f/{
m cm}^2$$

As $S_r \le 1.804,898 \text{ kg}/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, corroded + Seismic)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-8.102,83}{4} + \frac{4 \cdot 1.893,3}{4 \cdot 1,934} = -1.046,77 \text{ kg}_{3}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, corroded + Seismic)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653,6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201,4\ ^4 - 175,4\ ^4
ight)}{64} = 3,4301\mathrm{E}{+}07~\mathrm{cm}^4$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{8.102,83}{7.653,6737} + \frac{10 \cdot \frac{1.893,3}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1.615} \text{ kg}_f/\text{cm}^2$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (empty, corroded + Seismic)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

$$M_x = 0.01 \cdot 0,0015 \cdot 1,615 \cdot 1.367,96^{-2} = 46,5 \text{ kg}_{10}$$

$$M_y = 0.01 \cdot -0.4858 \cdot 1.615 \cdot 90^2 = -63.5 \text{ kg}_{f}$$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 63,53}{1.203,265}} = \frac{5,63}{5.63} \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, empty, corroded + Seismic)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\mathrm{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \mathrm{kg}_f/\mathrm{cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (empty, new + Seismic)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-8.420,13}{4} + \frac{4 \cdot 1.936,1}{4 \cdot 1.934} = -1.103,95 \text{ kg}_{J}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (empty, new + Seismic)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653, 6737 \text{ cm}^{2}$$

$$I_c = rac{\pi \cdot \left(D_o^4 - D_i^4
ight)}{64} = rac{\pi \cdot \left(201,4\ ^4 - 175,4\ ^4
ight)}{64} = 3,4301\mathrm{E}{+}07~\mathrm{cm}^4$$

 $f_{c} = \frac{N \cdot A_{b} \cdot \text{Preload}}{A_{c}} + \frac{W}{A_{c}} + \frac{\frac{M}{2} \cdot D_{o}}{I_{c}} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{8.420,13}{7.653,6737} + \frac{10 \cdot \frac{1.936,1}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1.669} \text{ kg}_{f}/\text{cm}^{2}$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (empty, new + Seismic)

From Brownell & Young, Table 10.3:, $\frac{l}{h} = 0,0658$

$$M_x = 0.01 \cdot 0,0015 \cdot 1,669 \cdot 1.367,96^{-2} = 48,1 \ {
m kgf}$$

$$M_y = 0.01 \cdot -0.4858 \cdot 1.669 \cdot 90^2 = -65.7 \text{ kg}_{f}$$

$$t_r = \sqrt{\frac{6 \cdot M_{\max}}{S_p}} = \sqrt{\frac{100 \cdot 6 \cdot 65,66}{1.203,265}} = 5.72 \text{ mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, empty, new + Seismic)

Bolt load =
$$A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_f$$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = rac{1.5 \cdot F \cdot b}{{
m gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = rac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \ {
m kg}_f/{
m cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Anchor bolt load (vacuum, corroded + Seismic)

$$P = \frac{-W}{N} + \frac{4 \cdot M}{N \cdot BC} = \frac{-10.155,18}{4} + \frac{4 \cdot 2.127,6}{4 \cdot 1,934} = -1.438,68 \text{ kg}_{f}$$

The anchor bolts are satisfactory (no net uplift on anchor bolt)

Foundation bearing stress (vacuum, corroded + Seismic)

$$A_{c} = \frac{\pi \cdot \left(D_{o}^{2} - D_{i}^{2}\right)}{4} - \frac{N \cdot \pi \cdot d_{b}^{2}}{4} = \frac{\pi \cdot \left(201, 4^{2} - 175, 4^{2}\right)}{4} - \frac{4 \cdot \pi \cdot 3, 6^{2}}{4} = 7.653,6737 \text{ cm}^{2}$$
$$I_{c} = \frac{\pi \cdot \left(D_{o}^{4} - D_{i}^{4}\right)}{64} = \frac{\pi \cdot \left(201, 4^{4} - 175, 4^{4}\right)}{64} = 3,4301\text{E}+07 \text{ cm}^{4}$$

$$f_c = \frac{N \cdot A_b \cdot \text{Preload}}{A_c} + \frac{W}{A_c} + \frac{\frac{M}{2} \cdot D_o}{I_c} = \frac{4 \cdot 3,1275 \cdot 0}{7.653,6737} + \frac{10.155,18}{7.653,6737} + \frac{10 \cdot \frac{2.127,6}{2} \cdot 2.014}{3,4301\text{E}+07} = \underline{1,951} \text{ kg}_f/\text{cm}^{-2}$$

As $f_c \le 116,569 \text{ kg}_f/\text{cm}^2$ the base plate width is satisfactory.

Base plate required thickness (vacuum, corroded + Seismic)

From Brownell & Young, Table 10.3:, $\frac{l}{b} = 0,0658$

 $M_x = 0.01 \cdot 0{,}0015 \cdot 1{,}951 \cdot 1{.}367{,}96^{-2} = 56{,}2 \, \, \mathrm{kg_f}$

$$M_y = 0.01 \cdot -0.4858 \cdot 1.951 \cdot 90^2 = -76.8 \text{ kg}_{f}$$

$$t_r = \sqrt{rac{6 \cdot M_{
m max}}{S_p}} = \sqrt{rac{100 \cdot 6 \cdot 76,79}{1.203,265}} = rac{6.19}{6.19} {
m mm}$$

The base plate thickness is satisfactory.

Base plate bolt load (Jawad & Farr eq. 12.13, vacuum, corroded + Seismic)

Bolt load = $A_b \cdot f_s = 3,1275 \cdot 0 = 0 \text{ kg}_{f}$

$$t_r = \left(3.91 \cdot \frac{F}{S_y \cdot \left(\frac{2 \cdot b}{w} + \frac{w}{2 \cdot l} - d_b \cdot \left(\frac{2}{w} + \frac{1}{2 \cdot l}\right)\right)}\right)^{-0.5} = \left(3.91 \cdot 100 \cdot \frac{0}{2.202 \cdot \left(\frac{2 \cdot 90}{125} + \frac{125}{2 \cdot 50} - 36 \cdot \left(\frac{2}{125} + \frac{1}{2 \cdot 50}\right)\right)}\right)^{-0.5} = 0 \text{ mm}$$

The base plate thickness is satisfactory.

Check skirt for gusset reaction (Jawad & Farr eq. 12.14)

$$S_r = \frac{1.5 \cdot F \cdot b}{\text{gussets} \cdot \pi \cdot t_{sk}^2 \cdot h} = \frac{1.5 \cdot 100 \cdot 0 \cdot 90}{2 \cdot \pi \cdot 8.4^2 \cdot 200} = 0 \ \text{kg}_f/\text{cm}^2$$

As $S_r \le 1.804,898 \text{ kg}_f/\text{cm}^2$ the skirt thickness is adequate to resist the gusset reaction.

Skirt opening (SA1)

ASME Section VIII Division 1, 2021 Edition Metric				
Compone	nt	Skirt Opening		
Descriptio	Description		Skirt opening	
Drawing Ma	ark	SA1		
Sleeve Mate	erial	SA-516 60 (II-D Metric p. 16, In. 3)		
	Location	and Orientation		
Attached	to	Support Skirt		
Orientatio	n		radial	
Offset, L			650 mm	
Angle, θ			45°	
Distance,	r		1.037 mm	
Through a Catego	ry B Joint		No	
	Dir	nensions		
Inside Diam	eter	580 mm	100	
Nominal Wall Thickness		10 mm	100	
Skirt Thickness		10 mm		
Leg ₄₁		6 mm		
Leg ₄₃		6 mm	10	
External Projection A	vailable, L _{pr1}	120 mm		
Internal Projecti	on, L _{pr2}	100 mm		
Corrosion	Inner	0 mm		
	Outer	1,6 mm		

Skirt Opening Reinforcement Summary							
		Required Thickness t _r (mm)	A _T (cm ²)	A _r (cm²)	Ratio	Status	
	Wind	Tensile	0	32,951	0	N/A	OK
Operating Hot & Corroded	VVIIIG	Compressive	0,27	<u>32,4376</u>	<u>1,5549</u>	20,862	OK
operating not a conoded	Seismic	Tensile	0	32,951	0	N/A	OK
	Celsinic	Compressive	0,26	<u>32,455</u>	<u>1,5022</u>	21,6046	OK
	Wind	Tensile	0	43,308	0	N/A	OK
Operating Hot & New		Compressive	0,26	<u>42,7594</u>	<u>1,5117</u>	28,2852	OK
Operating not a New	Seismic	Tensile	0	43,308	0	N/A	OK
	Seisinic	Compressive	0,25	<u>42,775</u>	<u>1,4686</u>	29,1262	OK
Empty Cold & Corroded	Wind	Tensile	0	32,951	0	N/A	OK
		Compressive	0,23	<u>32,5139</u>	<u>1,3238</u>	24,5612	OK
	Seismic	Tensile	0	32,951	0	N/A	OK
		Compressive	0,21	<u>32,544</u>	<u>1,2327</u>	26,4009	OK
	Wind	Tensile	0	43,308	0	N/A	OK
Empty Cold & New		Compressive	0,22	<u>42,8393</u>	<u>1,2915</u>	33,1702	OK
	Seismic	Tensile	0	43,308	0	N/A	OK
	Seisinic	Compressive	0,21	<u>42,8682</u>	<u>1,212</u>	35,3707	OK
Field Test Corr	Wind	Tensile	0	32,951	0	N/A	OK
Field Test Coll	vvinu	Compressive	0,28	<u>32,4183</u>	<u>1,6134</u>	20,0931	OK
Field Test New	Wind	Tensile	0	43,308	0	N/A	OK
	VVIIG	Compressive	0,27	<u>42,7392</u>	<u>1,5672</u>	27,2704	OK
	Wind	Tensile	0	32,951	0	N/A	OK
External Pressure Hot & Corroded	VVIIG	Compressive	0,27	<u>32,4376</u>	<u>1,5549</u>	20,862	OK
External Pressure Hot & Corroded	Seismic	Tensile	0	32,951	0	N/A	OK
	Celsinic	Compressive	0,26	<u>32,455</u>	<u>1,5022</u>	21,6046	OK

Note: Skirt required thickness of zero on tensile side indicates load is compressive.

Skirt Opening Reinforcement Calculations					
Operating Hot & Corroded Wind Compressive					
$f_{r1} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$A_1 = rac{2 \cdot 87,36 \cdot (1 \cdot 8,4 - 0,27)}{100} =$	14,2085 cm ²				
$A_2 = 2 \cdot (57,76 - 0,27) \cdot 8,4 \cdot rac{1}{100} =$	9,6579 cm ²				
$A_3 = 2 \cdot 49{,}36 \cdot 8{,}4 \cdot rac{1}{100} =$	8,2918 cm ²				
$A_{41}=3,74\ ^2\cdot {1\over 100}=$	0,1397 cm ²				
$A_{43}=3{,}74~^2\cdotrac{1}{100}=$	0,1397 cm ²				
$A_T = 14,\!2085 + 9,\!6579 + 8,\!2918 + 0,\!1397 + 0,\!1397 =$	<u>32,4376 cm²</u>				
$A_r = rac{580 \cdot 0.27 + 2 \cdot 8.4 \cdot 0.27 \cdot (1-1)}{100} =$	<u>1,5549 cm²</u>				
$A_T=32,\!4376cm^2\geq A_r=1,\!5549cm^2$					

Operating Hot & New Wind Compressive				
$egin{array}{lll} f_{r1} = & \min \left[rac{1.203,27}{1.203,27}, 1 ight] = & \end{array}$	1			
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1			
$A_1 = rac{2 \cdot 95,\!24 \cdot (1 \cdot 10 - 0,\!26)}{100} =$	18,5509 cm ²			
$A_2 = 2 \cdot (63,\!85-0,\!26) \cdot 10 \cdot rac{1}{100} =$	12,7182 cm ²			
$A_3 = 2 \cdot 53,\!85 \cdot 10 \cdot \frac{1}{100} =$	10,7703 cm ²			
$A_{41} = 6^2 \cdot rac{1}{100} =$	0,36 cm ²			
$A_{43} = 6^2 \cdot rac{1}{100} =$	0,36 cm ²			
$A_T = 18,\!5509 + 12,\!7182 + 10,\!7703 + 0,\!36 + 0,\!36 =$	<u>42,7594 cm²</u>			
$A_r = rac{580 \cdot 0.26 + 2 \cdot 10 \cdot 0.26 \cdot (1-1)}{100} =$	<u>1,5117 cm²</u>			
$A_T = 42,7594 cm^2 \geq A_r = 1,5117 cm^2$				
Empty Cold & Corroded Wind Compres	ssive			
$egin{array}{lll} f_{r1} = & \min \left[rac{1.203,27}{1.203,27}, 1 ight] = & \end{array}$	1			
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1			
$A_1 = rac{2 \cdot 87, 36 \cdot (1 \cdot 8, 4 - 0, 23)}{100} =$	14,2781 cm ²			
$A_2 = 2 \cdot (57,76 - 0,23) \cdot 8,4 \cdot \frac{1}{100} =$	9,6646 cm ²			
$A_3 = 2 \cdot 49,36 \cdot 8,4 \cdot \frac{1}{100} =$	8,2918 cm ²			
$A_{41}=3{,}74~^2\cdotrac{1}{100}=$	0,1397 cm ²			
$A_{43} = 3,74$ $^2 \cdot \frac{1}{100} =$	0,1397 cm ²			
$A_T = 14,2781 + 9,6646 + 8,2918 + 0,1397 + 0,1397 =$	<u>32,5139 cm²</u>			
$A_r = rac{580 \cdot 0.23 + 2 \cdot 8.4 \cdot 0.23 \cdot (1-1)}{100} =$	<u>1,3238 cm²</u>			
$A_T=32{,}5139cm^2\geq A_r=1{,}3238cm^2$				
Empty Cold & New Wind Compressive				
$egin{array}{llllllllllllllllllllllllllllllllllll$	1			
$egin{array}{llllllllllllllllllllllllllllllllllll$	1			
$A_1 = rac{2 \cdot 95,\!24 \cdot (1 \cdot 10 - 0,\!22)}{100} =$	18,6232 cm ²			

$A_2 = 2 \cdot (63,\!85 - 0,\!22) \cdot 10 \cdot \frac{1}{100} =$	12,7258 cm ²
$\boxed{A_3 = 2 \cdot 53,\!85 \cdot 10 \cdot \frac{1}{100}} =$	10,7703 cm ²
$A_{41} = 6^2 \cdot rac{1}{100} =$	0,36 cm ²
$A_{43}=6^2\cdot rac{1}{100}=$	0,36 cm ²
$\boxed{A_T = 18,\!6232 + 12,\!7258 + 10,\!7703 + 0,\!36 + 0,\!36 = }$	<u>42,8393 cm²</u>
$A_r = rac{580 \cdot 0,22 + 2 \cdot 10 \cdot 0,22 \cdot (1-1)}{100} =$	<u>1,2915 cm²</u>
$A_T = 42,\!8393 cm^2 \ge A_r = 1,\!2915 cm^2$	
Field Test Corr Wind Compressive)
$f_{r1} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1
$A_1 = rac{2 \cdot 87,36 \cdot (1 \cdot 8,4 - 0,28)}{100} =$	14,1909 cm ²
$\boxed{A_2 = 2 \cdot (57,\!76 - 0,\!28) \cdot 8,\!4 \cdot \frac{1}{100}} =$	9,6563 cm ²
$A_3 = 2 \cdot 49{,}36 \cdot 8{,}4 \cdot rac{1}{100} =$	8,2918 cm ²
$A_{41} = 3,74 \ ^2 \cdot rac{1}{100} =$	0,1397 cm ²
$A_{43}=3{,}74~^2\cdotrac{1}{100}=$	0,1397 cm ²
$A_T = 14,\!1909 + 9,\!6563 + 8,\!2918 + 0,\!1397 + 0,\!1397 =$	<u>32,4183 cm²</u>
$A_r = rac{580 \cdot 0.28 + 2 \cdot 8.4 \cdot 0.28 \cdot (1-1)}{100} =$	<u>1,6134 cm²</u>
$A_T=32{,}4183cm^2\geq A_r=1{,}6134cm^2$	
Field Test New Wind Compressive	e
$f_{r1} = \min \left[rac{1.203,27}{1.203,27}, 1 ight] =$	1
$f_{r2} = \min\left[\frac{1.203,27}{1.203,27},1\right] =$	1
$A_1 = rac{2 \cdot 95,\! 24 \cdot (1 \cdot 10 - 0,\! 27)}{100} =$	18,5326 cm ²
$A_2 = 2 \cdot (63,\!85-0,\!27) \cdot 10 \cdot rac{1}{100} =$	12,7163 cm ²
$A_3 = 2 \cdot 53,\!85 \cdot 10 \cdot \frac{1}{100} =$	10,7703 cm ²
$A_{41} = 6^2 \cdot rac{1}{100} =$	0,36 cm ²
$egin{array}{c} A_{43} = 6^2 \cdot rac{1}{100} = \end{array}$	0,36 cm ²

$A_T = 18,5326 + 12,7163 + 10,7703 + 0,36 + 0,36 =$	<u>42,7392 cm²</u>
$A_r = rac{580 \cdot 0,\!27 + 2 \cdot 10 \cdot 0,\!27 \cdot (1-1)}{100} =$	<u>1,5672 cm²</u>
$A_T = 42{,}7392cm^2 \geq A_r = 1{,}5672cm^2$	•
External Pressure Hot & Corroded Wind Co	ompressive
$f_{r1} = \min \left[rac{1.203,27}{1.203,27}, 1 ight] =$	1
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1
$A_1 = rac{2 \cdot 87,36 \cdot (1 \cdot 8,4 - 0,27)}{100} =$	14,2085 cm ²
$A_2 = 2 \cdot (57,\!76-0,\!27) \cdot 8,\!4 \cdot rac{1}{100} =$	9,6579 cm ²
$A_3 = 2 \cdot 49,\!36 \cdot 8,\!4 \cdot rac{1}{100} =$	8,2918 cm ²
$A_{41} = 3{,}74 \ ^2 \cdot rac{1}{100} =$	0,1397 cm ²
$A_{43}=3{,}74\ ^2\cdot {1\over 100}=$	0,1397 cm ²
$A_T = 14,2085 + 9,6579 + 8,2918 + 0,1397 + 0,1397 =$	<u>32,4376 cm²</u>
$A_r = rac{580 \cdot 0,\!27 + 2 \cdot 8,\!4 \cdot 0,\!27 \cdot (1-1)}{100} =$	<u>1,5549 cm²</u>
$A_T=32{,}4376cm^2\geq A_r=1{,}5549cm^2$	
Operating Hot & Corroded Seismic Com	pressive
$f_{r1} = \min \left[rac{1.203,27}{1.203,27}, 1 ight] =$	1
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1
$A_1 = rac{2 \cdot 87,36 \cdot (1 \cdot 8,4 - 0,26)}{100} =$	14,2244 cm ²
$A_2 = 2 \cdot (57,76 - 0,26) \cdot 8,4 \cdot rac{1}{100} =$	9,6595 cm ²
$A_3 = 2 \cdot 49,\!36 \cdot 8,\!4 \cdot rac{1}{100} =$	8,2918 cm ²
$A_{41} = 3,74 \ ^2 \cdot rac{1}{100} =$	0,1397 cm ²
$A_{43}=3{,}74\ ^2\cdot {1\over 100}=$	0,1397 cm ²
$A_T = 14,2244 + 9,6595 + 8,2918 + 0,1397 + 0,1397 =$	<u>32,455 cm²</u>
$A_r = rac{580 \cdot 0,26 + 2 \cdot 8,4 \cdot 0,26 \cdot (1-1)}{100} =$	<u>1,5022 cm²</u>
$A_T=32{,}455cm^2\geq A_r=1{,}5022cm^2$	

$igg _{r_1} = \min \left[rac{1.203,27}{1.203,27}, 1 ight] =$	1				
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$\boxed{A_1 = \frac{2 \cdot 95,\! 24 \cdot (1 \cdot 10 - 0,\! 25)}{100}} =$	18,565 cm ²				
$A_2 = 2 \cdot (63,\!85 - 0,\!25) \cdot 10 \cdot rac{1}{100} =$	12,7197 cm ²				
$A_3 = 2 \cdot 53,\!85 \cdot 10 \cdot rac{1}{100} =$	10,7703 cm ²				
$A_{41} = 6^2 \cdot rac{1}{100} =$	0,36 cm ²				
$A_{43}=6^2\cdot {1\over 100}=$	0,36 cm ²				
$A_T = 18,565 + 12,7197 + 10,7703 + 0,36 + 0,36 =$	<u>42,775 cm²</u>				
$A_r = rac{580 \cdot 0,25 + 2 \cdot 10 \cdot 0,25 \cdot (1-1)}{100} =$	<u>1.4686 cm²</u>				
$A_T = 42,\!775 cm^2 \ge A_r = 1,\!4686 cm^2$					
Empty Cold & Corroded Seismic Compr	essive				
$f_{r1} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$\boxed{A_1 = \frac{2 \cdot 87,\!36 \cdot (1 \cdot 8,\!4 - 0,\!21)}{100}} =$	14,3056 cm ²				
$A_2 = 2 \cdot (57,76 - 0,21) \cdot 8,4 \cdot rac{1}{100} =$	9,6673 cm ²				
$A_3 = 2 \cdot 49,36 \cdot 8,4 \cdot rac{1}{100} =$	8,2918 cm ²				
$A_{41} = 3{,}74 \ ^2 \cdot rac{1}{100} =$	0,1397 cm ²				
$A_{43}=3{,}74~^2\cdotrac{1}{100}=$	0,1397 cm ²				
$A_T = 14,\!3056 + 9,\!6673 + 8,\!2918 + 0,\!1397 + 0,\!1397 =$	<u>32,544 cm²</u>				
$A_r = rac{580 \cdot 0,\! 21 + 2 \cdot 8,\! 4 \cdot 0,\! 21 \cdot (1-1)}{100} =$	<u>1,2327 cm²</u>				
$A_T=32{,}544cm^2\geq A_r=1{,}2327cm^2$					
Empty Cold & New Seismic Compressive					
$f_{r1} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1				
$A_1 = rac{2 \cdot 95,\!24 \cdot (1 \cdot 10 - 0,\!21)}{100} =$	18,6493 cm ²				

$A_2 = 2 \cdot (63,\!85 - 0,\!21) \cdot 10 \cdot rac{1}{100} =$	12,7285 cm ²
$A_3 = 2 \cdot 53,\!85 \cdot 10 \cdot rac{1}{100} =$	10,7703 cm ²
$A_{41}=6^2\cdot rac{1}{100}=$	0,36 cm ²
$egin{array}{c} A_{43} = 6^2 \cdot rac{1}{100} = \end{array}$	0,36 cm ²
$m{A_T} = 18,\!6493 + 12,\!7285 + 10,\!7703 + 0,\!36 + 0,\!36 =$	<u>42,8682 cm²</u>
$A_r = rac{580 \cdot 0,21 + 2 \cdot 10 \cdot 0,21 \cdot (1-1)}{100} =$	<u>1,212 cm²</u>
$A_T = 42{,}8682cm^2 \geq A_r = 1{,}212cm^2$	
External Pressure Hot & Corroded Seismic C	ompressive
$egin{array}{lll} f_{r1} = & \min \left[rac{1.203,27}{1.203,27}, 1 ight] = & \end{array}$	1
$f_{r2} = \min\left[rac{1.203,27}{1.203,27},1 ight] =$	1
$A_1 = rac{2 \cdot 87,36 \cdot (1 \cdot 8,4 - 0,26)}{100} =$	14,2244 cm ²
$A_2 = 2 \cdot (57,76 - 0,26) \cdot 8,4 \cdot rac{1}{100} =$	9,6595 cm ²
$A_3 = 2 \cdot 49{,}36 \cdot 8{,}4 \cdot rac{1}{100} =$	8,2918 cm ²
$A_{41}=3{,}74~^2\cdotrac{1}{100}=$	0,1397 cm ²
$A_{43}=3,74\ ^2\cdot rac{1}{100}=$	0,1397 cm ²
$m{A}_T = 14,\!2244 + 9,\!6595 + 8,\!2918 + 0,\!1397 + 0,\!1397 =$	<u>32,455 cm²</u>
$\boxed{A_r = \frac{580 \cdot 0.26 + 2 \cdot 8.4 \cdot 0.26 \cdot (1-1)}{100}} =$	<u>1,5022 cm²</u>
$A_T = 32{,}455cm^2 \geq A_r = 1{,}5022cm^2$	

Seismic Code

Building Code: User-defined					
Base Shear Multiplier		0,0590			
Portion at Top		0,0700			
Vertical Accelerations C	onsidered	No			
Hazardous, toxic, or exp	losive contents	No			
Ve	essel Characteristics				
Heigh	t	11,2992 ft (3,44 m)			
	Operating, Corroded				
Weight Empty, Corroded		17.830 lb (8.088 kg)			
	Vacuum, Corroded				
Period	of Vibration Calcul	ation			
	Operating, Corroded	0,019 sec (f = 52,2 Hz)			
Fundamental Period, T	Empty, Corroded	0,019 sec (f = 53,6 Hz)			
	Vacuum, Corroded	0,019 sec (f = 52,3 Hz)			

The fundamental period of vibration T (above) is calculated using the Rayleigh method of approximation

$$T = 2 \cdot \pi \cdot \sqrt{rac{\sum \left(W_i \cdot y_i^2
ight)}{g \cdot \sum \left(W_i \cdot y_i
ight)}},$$
 where

 W_i is the weight of the ith lumped mass, and y_i is its deflection when the system is treated as a cantilever beam.

Seismic Shear Reports:

Operating, Corroded Empty, Corroded Vacuum, Corroded

Base Shear Calculations

Seismic Shear Report: Operating, Corroded						
Component	Elevation of Bottom above Base (mm)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Seismic Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	
Top Head	2.920	2.006.191,0	*	320,5	150	
Shell V1	1.220	2.006.191,0	0,0459	532,6	1.446,2	
Bottom Head (top)	1.070	2.006.191,0	*	551,3	1.527,6	
Support Skirt	0	2.006.191,0	0,02383	599,2	2.127,6	
*Moment of Inertia I varies over the length of the component						

Seismic Shear Report: Empty, Corroded					
Component	Elevation of Bottom above Base (mm)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Seismic Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)
Top Head	2.920	2.063.397,1	*	288,2	134,8
Shell V1	1.220	2.063.397,1	0,0459	442,2	1.352,9
Bottom Head (top)	1.070	2.063.397,1	*	449	1.419,8
Support Skirt	0	2.063.397,1	0,02383	478,1	1.893,3
*Moment of Inertia I varies over the length of the component					

Seismic Shear Report: Vacuum, Corroded					
Component	Elevation of Bottom above Base (mm)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Seismic Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)
Top Head	2.920	2.061.255,7	*	320,5	150
Shell V1	1.220	2.061.255,7	0,0459	532,6	1.446,2
Bottom Head (top)	1.070	2.061.255,7	*	551,3	1.527,6
Support Skirt	0	2.006.191,0	0,02383	599,2	2.127,6
*Moment of Inertia I varies over the length of the component					

Base Shear Calculations

Operating, Corroded Empty, Corroded Vacuum, Corroded

Base Shear Calculations: Operating, Corroded

 $V = \text{Base Shear Multiplier} \cdot W = 0,0590 \cdot 22.355,1406 = 1.318,95 \text{ lb}(598,27 \text{ kg})$

Base Shear Calculations: Empty, Corroded

 $V = \text{Base Shear Multiplier} \cdot W = 0,0590 \cdot 17.830,4785 = 1.052,00 \ \ \text{lb}(477,18 \ \text{kg})$

Base Shear Calculations: Vacuum, Corroded

 $V = \text{Base Shear Multiplier} \cdot W = 0,0590 \cdot 22.355,1406 = 1.318,95 \ \text{ lb}(598,27 \ \text{ kg})$

Wind Code

Building Code: User Defined				
Elevation of base above grad	0,98 ft (0,30 m)			
Increase effective outer dian	neter by	1,51 ft (0,46 m)		
Wind Force Coefficient, Cf		0,4700		
Hazardous, toxic, or explosiv	ve contents	No		
Ve	ssel Characteristics			
Height	i, h	11,2992 ft (3,4440 m)		
	Operating, Corroded	6,0675 ft (1,8494 m)		
Effective Width	Empty, Corroded	6,0675 ft (1,8494 m)		
	Hydrotest, New, Field	5,9985 ft (1,8283 m)		
	Hydrotest, Corroded, Field	6,0675 ft (1,8494 m)		
	Operating, Corroded	52,2177 Hz		
Fundamental Frequency, n ₁	Empty, Corroded	53,5642 Hz		
	Hydrotest, New, Field	49,5162 Hz		
	Hydrotest, Corroded, Field	49,7230 Hz		
	Operating, Corroded	0,0286		
Damning coofficient B	Empty, Corroded	0,0238		
Damping coefficient, β	Hydrotest, New, Field	0,0288		
	Hydrotest, Corroded, Field	0,0288		

Wind Deflection Reports:

Operating, Corroded Empty, Corroded Vacuum, Corroded Hydrotest, New, field Hydrotest, Corroded, field

Wind Pressure Table

	Wind Deflection Report: Operating, Corroded							
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	2.920	2,31	2.006.191,0	*	362,3	404,5	206	0,02
Shell V1	1.220	2,46	2.006.191,0	0,04589	362,3	565,2	1.619,9	0,01
Bottom Head (top)	1.070	2,47	2.006.191,0	*	362,3	576,6	1.714,2	0
Support Skirt	0	2,33	2.006.191,0	0,02007	362,3	652,9	2.372	0
	*Moment of Inertia I varies over the length of the component							

Wind Deflection Report: Empty, Corroded								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	2.920	2,31	2.063.397,1	*	362,3	404,5	206	0,02
Shell V1	1.220	2,46	2.063.397,1	0,04589	362,3	565,2	1.619,9	0,01
Bottom Head (top)	1.070	2,47	2.063.397,1	*	362,3	576,6	1.714,2	0
Support Skirt	0	2,33	2.063.397,1	0,02007	362,3	652,9	2.372	0
	*Moment of Inertia I varies over the length of the component							

	Wind Deflection Report: Vacuum, Corroded							
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	2.920	2,31	2.061.255,7	*	362,3	404,5	206	0,02
Shell V1	1.220	2,46	2.061.255,7	0,04589	362,3	565,2	1.619,9	0,01
Bottom Head (top)	1.070	2,47	2.061.255,7	*	362,3	576,6	1.714,2	0
Support Skirt	0	2,33	2.006.191,0	0,02007	362,3	652,9	2.372	0
	*Moment of Inertia I varies over the length of the component							

Wind Deflection Report: Field Hydrotest, New								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	2.920	2,31	2.072.676,5	*	90,6	101,1	53,3	0,01
Shell V1	1.220	2,46	2.072.676,5	0,0498	90,6	141,3	852,8	0,01
Bottom Head (top)	1.070	2,47	2.072.676,5	*	90,6	144,2	876,4	0
Support Skirt	0	2,33	2.072.676,5	0,02383	90,6	163,2	1.040,8	0
*Moment of Inertia I varies over the length of the component								

Wind Deflection Report: Field Hydrotest, Corroded								
Component	Elevation of Bottom above Base (mm)	Effective OD (m)	Elastic Modulus E (kg/cm²)	Inertia I (m ⁴)	Platform Wind Shear at Bottom (kg _f)	Total Wind Shear at Bottom (kg _f)	Bending Moment at Bottom (kg _f -m)	Deflection at Top (mm)
Top Head	2.920	2,31	2.072.676,5	*	90,6	101,1	53	0,01
Shell V1	1.220	2,46	2.072.676,5	0,04589	90,6	141,3	849,7	0,01
Bottom Head (top)	1.070	2,47	2.072.676,5	*	90,6	144,2	873,3	0
Support Skirt	0	2,33	2.072.676,5	0,02007	90,6	163,2	1.037,8	0
	*Moment of Inertia I varies over the length of the component							

Wind Pressure (WP) table

Wind Force Coefficient, Cf: 0,4700

Design Wind Pressures					
To Height Z (m)	Wind Pressure (bar)	Adjusted by Cf (bar)			
2,00	0,0065	0,0030			
5,00	0,0086	0,0040			
Design Wind Force determined from: F = Pressure * Af , where Af is the projected area.					

DEMISTER

ASME Section VIII Division 1, 2021 Edition Metric					
Inputs	Inputs				
Load Orientation	Vertical Load				
Elevation Above Datum	900 mm				
Direction Angle	0,00 deg				
Distance from Center of Vessel	0 mm				
Magnitude of Force	250 kg				
Loading Conditions					
Present When Operating	Yes				
Included in Vessel Lift Weight	Yes				
Present When Vessel is Empty	Yes				
Present During Test	Yes				

EXTRA WEIGHT

ASME Section VIII Division 1, 2021 Edition Metric			
Inputs			
Load Orientation	Vertical Load		
Elevation Above Datum	900 mm		
Direction Angle	0,00 deg		
Distance from Center of Vessel	0 mm		
Magnitude of Force	274 kg		
Loading Conditions			
Present When Operating	Yes		
Included in Vessel Lift Weight	Yes		
Present When Vessel is Empty	Yes		
Present During Test	Yes		

EXTRA WEIGHT PARA LIFTING

ASME Section VIII Division 1, 2021 Edition Metric				
Inputs				
Load Orientation	Vertical Load			
Elevation Above Datum	900 mm			
Direction Angle	0,00 deg			
Distance from Center of Vessel	0 mm			
Magnitude of Force	595 kg			
Loading Conditions				
Present When Operating	No			
Included in Vessel Lift Weight	Yes			
Present When Vessel is Empty	No			
Present During Test	No			

Extra weight para igualar pesos

ASME Section VIII Division 1, 2021 Edition Metric				
Inputs				
Load Orientation	Vertical Load			
Elevation Above Datum	600 mm			
Direction Angle	0,00 deg			
Distance from Center of Vessel	0 mm			
Magnitude of Force	52,3 kg			
Loading Conditions				
Present When Operating	Yes			
Included in Vessel Lift Weight	Yes			
Present When Vessel is Empty	Yes			
Present During Test	Yes			

Platform clips weight

ASME Section VIII Division 1, 2021 Edition Metric				
Inputs				
Load Orientation	Vertical Load			
Elevation Above Datum	900 mm			
Direction Angle	0,00 deg			
Distance from Center of Vessel	0 mm			
Magnitude of Force	50 kg			
Loading Conditions				
Present When Operating	Yes			
Included in Vessel Lift Weight	Yes			
Present When Vessel is Empty	Yes			
Present During Test	Yes			

Shell Insulation ring

ASME Section VIII Division 1, 2021 Edition Metric		
Inputs		
Load Orientation	Vertical Load	
Elevation Above Datum	1.200 mm	
Direction Angle	0,00 deg	
Distance from Center of Vessel	0 mm	
Magnitude of Force	53 kg	
Loading Conditions		
Present When Operating	Yes	
Included in Vessel Lift Weight	Yes	
Present When Vessel is Empty	Yes	
Present During Test	Yes	

Skirt insulation ring

ASME Section VIII Division 1, 2021 Edition Metric		
Inputs		
Load Orientation	Vertical Load	
Elevation Above Datum	-600 mm	
Direction Angle	0,00 deg	
Distance from Center of Vessel	0 mm	
Magnitude of Force	53 kg	
Loading Conditions		
Present When Operating	Yes	
Included in Vessel Lift Weight	Yes	
Present When Vessel is Empty	Yes	
Present During Test	Yes	

TRUNNION EXTRA WEIGHT

ASME Section VIII Division 1, 2021 Edition Metric		
Inputs		
Load Orientation	Vertical Load	
Elevation Above Datum	1.540 mm	
Direction Angle	0,00 deg	
Distance from Center of Vessel	0 mm	
Magnitude of Force	38,1 kg	
Loading Conditions		
Present When Operating	Yes	
Included in Vessel Lift Weight	Yes	
Present When Vessel is Empty	Yes	
Present During Test	Yes	

Tailing Lugs weight

ASME Section VIII Division 1, 2021 Edition Metric		
Inputs		
Load Orientation	Vertical Load	
Elevation Above Datum	1.800 mm	
Direction Angle	0,00 deg	
Distance from Center of Vessel	0 mm	
Magnitude of Force	50 kg	
Loading Conditions		
Present When Operating	Yes	
Included in Vessel Lift Weight	Yes	
Present When Vessel is Empty	Yes	
Present During Test	Yes	

Top head platform snow load

ASME Section VIII Division 1, 2021 Edition Metric		
Inputs		
Load Orientation	Vertical Load	
Elevation Above Datum	2.286 mm	
Direction Angle	0,00 deg	
Distance from Center of Vessel	0 mm	
Magnitude of Force	1.274 kg	
Loading Conditions		
Present When Operating	Yes	
Included in Vessel Lift Weight	No	
Present When Vessel is Empty	Yes	
Present During Test	No	