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Abstract—The electrical distribution system is undergoing
a transformation from centralized to distributed generation,
particularly in rural areas with limited grid access. This change
is supported by advancements in key technologies, including
distributed resources, renewable generators, electricity storage
systems, and power electronic converters which enable the
efficient and reliable integration of all energy systems within
the nanogrid. Given the importance of the DC/DC converter in a
nanogrid and the increasing requirements, optimizing its design
is essential for improving the nanogrid’s overall performance.

This paper proposes an optimization method for a bidirectional
boost converter that optimizes cost and efficiency as a function of
switching frequency, current ripple, and other parameters. The
optimization is performed using a genetic algorithm widely used
in power electronics design optimization problems. Analytical
models for cost and power losses are used to solve the optimiza-
tion. Several solutions to the optimization problem are presented,
dependent on the weight of the objective function, which can be
customized to suit the user’s preferences.

Index Terms—nanogrid, optimization, genetic algorithm, boost
converter, modeling

I. INTRODUCTION

The electrical distribution system has shifted from cen-
tralized to distributed generation, benefiting rural areas with
limited grid access. This paradigm involves the implemen-
tation of microgrids and nanogrids, which are autonomous
electrical sub-networks that can function in isolated mode
from the main grid [1]–[5]. Key technologies for this shift
include the development of distributed resources, renewable
generators like wind and solar, electricity storage systems,
and power electronic converters (PEC). These PEC enable
effective, reliable, and efficient interconnection of all the
energy systems within the nanogrid.

Various power converter topologies and algorithms for
nanogrids are proposed in the literature, with a focus on
hardware and control [5]. However, the critical role of the
PEC in the nanogrid system and the rising demand for these
PEC open a field of research that seeks to optimize the design
of these converters to ensure satisfactory performance, based
on different objective functions (efficiency, cost, performance,
size, etc.) [6]–[11]. For instance, in some designs, weight and
cost may be critical, whereas, in others, efficiency can be
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Fig. 1: Nanogrid system architecture

left unconstrained within a reasonable range. On the other
hand, efficiency and cost are efficiency and cost are more
important other applications. These objectives can be stated in
terms of a multi-objective function with weighting values or a
constrained optimization with one attribute optimized subject
to a constraint on another [12]. In nanogrid applications, the
primary attention is directed toward maximizing efficiency and
minimizing costs while balancing conflicting objectives.

Generally, solar PV and battery storage, both of which are
DC, are the most prevalent nanogrid constituents. DC/DC
converter is the gateway that connects them either to the DC
link or to the DC/AC converter and then to the AC link. Fig.1
represents the Nanogrid system architecture. Therefore, it is a
critical device of the nanogrid system, and ensuring its best
performance by optimizing the design will improve the total
performance of the nanogrid system.

The first steps in optimization problems are to specify the
design objectives and operating conditions, after that, create
the models for the objective functions, and finally, choose the
right optimization tool to solve the problem. The final goal of
the research is to optimize the design of a DC/DC converter
for nanogrid applications, by creating a global optimization
tool that translates all the objective functions into a common
framework. Therefore, the final output of the optimization
tool will be in a single unit, which is the economical unit
(cost in euros C). This cost is not only the cost related to
design, manufacturing, commissioning, and operation costs
(efficiency, tariff, etc.), but also the ones related to size, weight,
operating lifetime, and, in general, any relevant operation
parameter. However, in this article, the first approach of the
work is presented which is optimizing the efficiency and the
cost of a DC/DC converter in a nanogrid application, and for
future work, other objectives will be added such as reliability,
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size, and weight. Note that at this stage of the work, the
optimization is done at the rated power of the converter, later
on, the optimization algorithm will be extended to include the
mission profile.

Power converter design optimization is complex because the
design of a converter involves many factors such as topol-
ogy design, parameter selection, semiconductor and inductor
modeling, and power loss calculation. As a result, designing
power converters requires a lot of computational work and
resources. However, Artificial Intelligence (AI) techniques
have lately become the most potent and advanced frontier in
power electronics, and they are expected to have a significant
impact on the upcoming generation of power electronics [13].

In section II, an overview of the applications of AI is dis-
cussed. Section III, the multi-objective optimization procedure
is explained. In section IV, the design specifications, and the
design constraints are presented. Descriptive models of the
components used in this topology are given in section V.
Finally, the optimal design of the converter is presented in
section VI.

II. OVERVIEW OF AI APPLICATION IN POWER
ELECTRONICS

AI can be defined as the ability of the machine to operate
intelligently and independently, which is capable of humanlike
learning and reasoning. Power electronics control is a leading
research area for AI implementation in power electronics,
while design and maintenance applications have been increas-
ing since 2007. AI functions in power electronics include data
exploration, classification, regression, and optimization, with
optimization and regression being the primary tasks [7], [13]–
[15].

AI techniques in power electronics are sorted into an expert
system, fuzzy logic, metaheuristic methods, and machine
learning [13], [15]. Among these, metaheuristic methods are
popular for optimization functions as they provide a gen-
eral, scalable solution that requires less specialized expertise.
Metaheuristic methods can be categorized into trajectory-
based (such as the tabu search method [16] or the simulated
annealing method [17]), and population-based techniques.
Population-based methods like genetic algorithms(GA) [18],
particle swarm optimization (PSO) [12], [19] and ant colony
optimization (ACO) algorithm [20] are more efficient than
trajectory-based methods in terms of convergence speed and
capacity for global searching, making them suitable for large-
scale optimization projects. The most commonly used meta-
heuristic techniques in power electronics optimization are
genetic algorithm and particle swarm optimization, chosen
based on the application.

The design specifications for a power converter may be
in continuous space or discrete space, resulting in a mixed-
integer optimization problem. Continuous design parameters
include switching frequency, current ripple, and voltage rip-
ple, while discrete design parameters include transistors and
inductor design. In this research, GA is chosen over PSO and
ACO to solve the optimization problem. This is because GA
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excels at nonlinear and mixed-integer optimization, has a fast
convergence rate, and is capable of handling multi-objective
optimization problems [21]. While PSO is suitable for contin-
uous optimization and ACO for discrete optimization. Further-
more, GA continues to evolve and has an improved variant,
the nondominated sorting GA II (NSGA II) [6], [22]–[24],
specifically for multi-objective optimization tasks.

To solve the multi-objective optimization design for the
boost converter, GA is used as a population-based method,
where each individual in the population represents a distinct
design through a ”gene string” that symbolizes the possible
value of variable parameters determining the converter design
[6], [18]. The structure of the GA is shown in Fig. 2.

Nevertheless, in future work, machine learning techniques
can be joined with GA for better and faster optimization
results, similar to what has been applied in [21] where they
used machine learning to build data-driven models and GA
to optimize the converter, as well in [7] they have merged
machine learning techniques with PSO for optimization.

III. OPTIMIZATION PROCEDURE

A wide variety of power electronic converters topologies
has been proposed for nanogrid application. This paper begins
by selecting a DC/DC bidirectional boost topology where the
work can be extended to any other topology. However, the
novelty of this work is creating an optimization tool that will
be able to optimize many objective functions and translate the
output to one common framework which is an economical
unit (C), it makes it better and easier to evaluate and compare
between the solutions. This tool will give the user the freedom
to weigh the objective functions depending on his preference.



The tool will be able to give the user commercial components
needed for his design.

As previously stated, converter design has major concerns
such as efficiency, size, weight, cost, and reliability [8],
[11]. These quantities are affected by multiple design and
operation parameters, such as the choice of power and control
components (power semiconductors, reactive elements design)
and subsystems (digital controller, gate drivers, sensors and
signal conditioning sub-circuits, etc.), the control parameters
(switching frequency, design of dynamic control parameters,
etc.), the load and demand profiles (mission profile, environ-
mental conditions, etc.) [25], [26], and so on.

To improve performance, multiple design objectives are
considered together, requiring multi-objective optimization.
Such optimization problems involve conflicting design objec-
tives where improving one lead to the decrease of another.
Pareto-front optimal solutions, rather than a unique global so-
lution, are obtained as none of the objectives can be improved
without affecting others [6], [27], [28].

To solve a multi-objective optimization problem, various
methods can be used resulting in an infinite number of
Pareto optimal solutions. User preferences are often taken
into account to obtain a single suitable solution. A priori
articulation of preferences involves stating preferences before
the optimization algorithm runs, while a posteriori articulation
occurs after the algorithm runs, selecting a solution from the
Pareto optimal set. The weighted sum method is commonly
used, as it converts multiple objectives into a single scalar
function by summing up all weighted objective functions [27].
This approach provides multiple solution points by varying the
weights consistently and allows the user to evaluate the best
solution by seeing the effect of changing the weight of the
objective functions on the total cost.

The output of the optimization problem is the total cost of
the system which is divided as follows; manufacturing cost and
cost associated with operation cost which includes efficiency
of the system (power losses of the system), and in the future,
the work will be extended to include the cost associated to the
size and weight and the reliability (lifetime and maintenance).

The total cost objective function is solved using the
weighted sum method, which means that the objective function
F (−→x ) is to minimize:

F (−→x ) = w1F1(
−→x ) + w2F2(

−→x ) + ...wnFn(
−→x )

where
w1 + w2 + ...+ wn = 1

and it is the weight of each objective chosen by the user
depending on his preference and n is the number of the
objectives, and −→x is the vector of all the variables taken into
account.

IV. THE DESIGN SPECIFICATION

The first step of the design process is to determine all
of the design specifications. The boost power rate is chosen
to be 2 kW, considering that it is the gateway between

the battery storage system and the DC/AC inverter, intended
for residential applications. The boost will operate in CCM.
Moreover, two switches are used instead of a diode and a
switch to make it bidirectional. The operating specifications
and the design constraints can be found in Table Table I.

A significant consideration in the design of power electronic
converters is switching frequency, which also affects overall
energy loss and, consequently, the size of the energy storage
components, the demands for thermal management thus the
total cost of the converter, so it will be the first design
parameter to optimize. Besides that, there are other degrees of
freedom considered in this work such as the inductor current
ripple, the switches’ technology, and some inductor design
parameters such as the wire diameter and the number of turns,
material, and size of the core. This work in this article is a
first approach, while the final algorithm of the research will
include more degrees of freedom. Such as including the control
parameters of the converter. For instance, the bandwidth of
the control loops. They can affect the losses and therefore
efficiency. Furthermore, they affect the actions/stresses, and
therefore the reliability. Which is very important to be consid-
ered for the final goal of the research. These parameters can
be adjusted in real-time, so it adds some degree of freedom
in the design/maintenance of the converter [26].

TABLE I: Design Specifications

Operating Specifications

Topology Bi-directional Boost
Po 2 kW
Vin 100 V
Vo 450 V
∆Vo 1%

Design Constraints

Parameter Lower Boundary Upper Boundary

fsw kHz 50 200
∆IL|pp p.u. 5% 50%
Dwire mm 0.1 2
Nturn 2 100%

Switch Technology GaN SiC Si

Core Material 3C81, 3C90, 3C91 3C92, 3C93
3C94, 3C95, 3C96, 3C97, 3F3, 3F5

Core Size ETD29, ETD34, ETD39, ETD44
ETD49, ETD54, ETD59

Despite the wide range of converter topologies, there are
three major classes of power components in a converter:
magnetics (inductors and/or transformers), capacitors, and
semiconductor switches. Taking the degrees of freedom into
account, an optimization based on cost and power loss models
of these converter components is established, to identify the
optimum converter design. The cost and power loss models
for each of these components are detailed in the following
section.

V. MODELING APPROACH

In this section, the modeling of the cost of the main com-
ponents and their power loss is explained in detail. The cost



model is divided into several cost functions to model the cost
of each individual component of the converter. However, for
some components, the cost value is assumed to be a discrete
value while for others the cost is found by a continuous
function. In the end, the cost function is the summation of
the cost model of every individual component, as below:

Fcost(
−→x ) =Fswitches(

−→x ) + Fdrivers(
−→x )

+ Fcap(
−→x ) + Finductor(

−→x )
(1)

Furthermore, the power losses in the converter affect its
total cost not only its performance. To present the effect of the
power losses on the total cost, the total power losses will also
be modeled for each component. After that, the total power
calculated will be multiplied by the foreseen tariff operation
during the expected operating lifetime of the converter. The
power losses can be converted to currency and this amount will
be added to the manufacturing cost of the converter. Therefore,
it is easier to compare what role the efficiency of the converter
has on the total cost of the converter. The power losses in the
converter are caused mainly by the switches and the passive
components such as the capacitor and the inductor. The total
power loss function is as follows:

FPlosses(
−→x ) = Fswitches(

−→x )+Fcap(
−→x )+Finductor(

−→x ) (2)

A. Semiconductor Transistor

A space of commercial MOSFET transistors of each tech-
nology (GaN, SiC, Si) was created to form an initial database,
and the essential information was extracted from their data
sheets to create the cost and power models.

1) Cost model: the cost of the switches depends on the
technology of the semiconductor as well as the voltage and
current ratings of the switch. In this initial stage of the work,
the voltage rating is fixed for all of the switches at 800V to
be high enough to handle the boost voltage rating, so that, the
switches are divided into 2 categories: first one depends on the
technology, and then the current ratings. Then, the average cost
of all the transistors for the selected technology and current
rate was measured, and for each category, check Table II. So
as observed from the table a fixed value of cost is given to
each category and the cost model of the semiconductors, in
this case, is a discrete value. To simplify and understand the
problem, we will stick to these 3 technologies of transistors,
but the methodology and the algorithm can be valid for more.

TABLE II: Average cost of switches in C

Switch Technology Current Rate
30 - 40 A 40 - 50 A 50 - 60 A

GaN 16.89 20.93 33.07
SiC 14.91 16.59 20.79
Si 8.09 8.0700 13.60

2) Power loss model: Power losses caused by switches are
a significant concern in converters, especially when working at
high frequencies [29], [30]. Switching losses and conduction

losses are the two components of power loss in semicon-
ductors. Switching losses are determined by various factors
such as input current, switching frequency, DC voltage, gate
voltage, gate resistance, temperature, and current ripple. Mean-
while, conduction losses are calculated based on switching
current and the semiconductor’s Rdson, which is itself affected
by temperature.

Initial data on GaN, SiC, and Si commercial transistor
technologies were collected, including data from datasheets
on switching losses (Eon & Eoff ) and the Rdson at various
temperature ranges. In cases where datasheets did not provide
the necessary information, LTspice simulations were used to
extract the required data, if the spice model was not provided
the switching energy of these devices is assumed to follow
the same trend of other devices from the same technology and
current rate category. For the Si MOSFETs, Esw is assumed to
be constant against the temperature , as there was no available
data on the subject. Using MATLAB, a first-order function was
developed to model the switching losses vs temperature and a
similar function was developed for Rdson vs the temperature.
Using these functions, the total power loss caused by switches
can be calculated as:

Pcn(temp, Irms) = I2rmsRdson(temp) (3)

Irms = ILavg

√
D (4)

Psw(temp, fsw) = (Eon(temp) + Eoff (temp)) ∗ fsw (5)

Ptot(temp) = Psw(temp) + Pcn(temp) (6)

B. Capacitor

The output capacitor value in a boost converter is calculated
using Eq. 7, where C is the capacitor value, Io, is the average
output current, ∆Vo is the voltage ripple, D is the duty cycle
and fsw is the frequency.

C =
(IoD)

(∆Vofsw)
(7)

Creating the models of the capacitor was done in sev-
eral steps, firstly, calculate the value of the capacitor un-
der different frequencies using Eq. 7, was calculated at
50kHz, 100kHz, 150kHz, and 200kHz, and keeping the
rest of the values fixed. The values of the capacitor will
be 15µF, 7.5µF, 5µF and 3.6µF respectively. After that, 5
commercial film capacitors were chosen for each value from
different manufacturers, these capacitors have the same DC
voltage rating (800V), so the peak voltage of the converter
does not exceed their rated DC voltage. The information saved
in the database was the cost per unit, the volume of the
capacitor, and the ESR value.

Film capacitors have a high current capability, and low ESR
and ESL. They were chosen because the required capacitor
values are not large and they are used for filtering. In future
work, mixing different technologies can be considered to see
how this can improve the cost, the losses, and the volume of
the system.
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Fig. 3: Capacitor cost function

1) Cost model: the cost model for the capacitors differs
from the switches one as capacitors have a continuous cost
function due to the various interacting variables such as
frequency, voltage, current, ripple values, and the number and
type of capacitors used in combination. The value of capacitors
is directly dependent on frequency, making it a function
of frequency. To determine the cost, grouped commercial
capacitors were analyzed and average cost was calculated for
each group. A linear function was then created between the
capacitor cost and its value, and it can be noted as frequency
increases, the value and cost of the capacitor decreases. The
approximated linear cost function of the capacitor Vs its value
is shown below in Fig. 3.

2) Power loss model: The power losses in a capacitor are
calculated as follows.

Pcap = I2c|rms ∗ ESR|rms (8)

where ESR is the equivalent series resistance of the capacitor,
and Ic|rms is the RMS capacitor current. The RMS capacitor
current is calculated based on the converter topology, thus for
a boost converter, the expression is as follows.

Ic|rms = ILavg ∗

√√√√(D +
∆IL| rms

2

12

)
(1−D) (9)

The ESR, in turn, depends on the capacitive reactance, and the
dissipation factor, DF, also called the tangent of the loss angle
tanδ. But this value was not provided in some datasheets.
Therefore, from observing the data sheets of capacitors, it
seems that the ESR of a capacitor decreases when the value
of the capacitor increases. The losses from the capacitors can
be expressed as a function of their value, which is a function
of the frequency voltage ripple and, output voltage and duty
cycle, but since now, only the frequency is considered as a
degree of freedom, then the ESR will be affected by changing
the frequency. As well, the capacitor loss is a function of the
current ripple which is considered as a degree of freedom too.

To check those parallel combinations might be a better
solution for the converter, a function of Cparallel = CTotal/N ,
and N will be a degree of freedom for the optimizer to find.
Then the cost will be calculated by the cost of Cparallel ∗N ,
and the losses will be ESR(Cparallel)/N ∗ I2rms. It might
increase the cost and the volume but losses will be reduced.

C. Inductor

By defining the boost converter’s operation parameters, such
as the switching frequency range, and the current waveform
(average and ripple range), the corresponding inductance
ranges can be calculated, which are calculated by

L =
VinD

Ipp|HF fsw
(10)

Where L is the inductor value, Vin is the boost input voltage,
D is the duty cycle, and fsw is the switching frequency. Ipp|HF

is the current high-frequency ripple, and it is calculated as
follows

Ipp|HF = ILavg ∗∆IL|pp (11)

where IL|pp is the p.u. current ripple and ILavg is the
average current value. Depending on the converter topology,
the HF and LF current components can be calculated as
a function of the current ripple. Specifically for a boost
converter, more details about current measurement can be
found in [31], [32]

1) Cost model: Inductors’ hardware cost is more compli-
cated than the capacitor and it can be divided into three parts:
design cost, material cost, and manufacturing cost. Material
cost depends on the power density, windings (round, Litz,
plate, planar) and heat transfer/ airflow/ fans, and frequency:
which affects materials cost by decreasing if frequency in-
creases. manufacturing cost depends on the type of winding
and the number of samples. This part of the work is still in
progress.

2) Power loss model: Power loss in an inductor is divided
mainly into copper losses, both Low Frequency (LF) and High
Frequency (HF) components, and core losses. Each of the
latter loss components is discussed in detail in this section.

Core Losses
The power losses in a magnetic core are a function of several

parameters, such as the switching frequency, current ripple,
magnetic core material, core size, and winding number of
turns, Pcore(fsw,∆Ipp|HF ,Material, Size,N). For the ana-
lytical approach, hereby in context, the well-known empirical
equation, known as the standard Steinmetz Equation (SE) [33],
is used:

Pcore = c ∗ fx
sw ∗ (Bac|HF )

y ∗ Ve (12)

where c, x, and y are the Steinmetz coefficients which are a
function of the core material and the switching frequency. Ve

is the core volume, Bac|HF is the AC magnetic flux density,
more details can be found in [33]–[35].

Copper Losses
The copper losses are a function of several parameters,

such as the current ripple, core size, wire diameter, and wind-
ing number of turns, Pcopper(∆Ipp|HF , Size,Diameter,N).
Copper losses are divided into LF (or DC component) and
HF (or AC component) losses. The low-frequency losses are
calculated using the DC winding resistance, while the high-
frequency losses (represent skin and proximity effects) are
calculated using Dowell’s formulae and procedure. Detailed



derivation can be found in [36], [37]. However, the final
equation will be

Pcopper =
(
I2rms|LF + I2Lavg

)
Rdc +

(
I2rms|HF

)
Rac (13)

So the total power losses of an inductor are the sum of the
copper and core losses.

PLtot
= Pcopper + Pcore (14)

D. Drivers

The drivers’ cost model is not straightforward because there
are many technologies. To simplify it in this stage, a specific
driving method was used and the cost of the drivers is taken as
a function of switch technology. To simplify this part and to
reduce the cost the bootstrapping drivers were chosen at this
point. So, a set of drivers were collected for each technology
besides the diodes and the capacitors that can be used. After
choosing the specific technology of transistor, the cost function
will check and take the average cost of the drivers that work
with that technology. As shown in Table III. However, the
power losses caused by drivers are not considered at this stage,
as they can be neglected when compared to the rest of the
converter’s main components.

TABLE III: Drivers Database
Driver Transistors Price
NCP51820AMNTWG GaN Si 3.03
1EDB9275FXUMA1 GaN Si SiC 2.06
IR2110STRPBF Si 3.78
2ED2104S06F SiC Si 1.41
1EDN6550BXTSA1 GaN SiC 1.34

VI. OPTIMIZATION RESULTS

In this section, some test results are presented. The tests
are done for switches with the highest current rate, and three
different cases are presented. Note that the chromosome of
the genetic algorithm has 8 genes which are: 1. the current
ripple 2. the switching frequency 3. the number of turns for
the inductor wire 4. the diameter of the inductor wire 5. the
core material of the inductor 6. the core size of the inductor
7. the semiconductor 8. number of capacitors in parallel.

A. Case One

In this case, the cost function has higher importance to opti-
mize than the losses, but as well the losses are still considered
in the optimization. The weight for the cost function is 0.9, and
0.1 for the power losses. The results are shown in Table IV.

B. Case Two

In this case, the power loss function has higher importance
to optimize than the cost. The weight for the cost function is
0.1, and 0.9 for the power losses. The results are shown in
Table V.

TABLE IV: Case One
Chromosome

∆IL|pp 16%
fsw 135 kHz
Nturn 60
Dwire 1.5mm
Core Material 3F5
Core size ETD49
Switch Tech SiC - UF3C065040T3S
Ncap 1

Solutions
Psw 40.94 W
PInd 27.69 W
PCap 0.79 W
C 5.6 µF
L 180 µH
Driver 1EDN6550BXTSA1
Switch Cost 28.18 C
Driver Cost 1.34 C
Capacitor Cost 3.38 C

TABLE V: Case Two
Chromosome

∆IL|pp 31%
fsw 50 kHz
Nturn 44
Dwire 2mm
Core Material 3F5
Core size ETD59
Switch Tech GaN - LMG3422R030RQZT
Ncap 4

Solutions
Psw 5.68 W
PInd 18.92 W
PCap 0.22 W
C 15 µF
L 232 µH
Driver 1EDN6550BXTSA1
Switch Cost 44 C
Driver Cost 1.34 C
Capacitor Cost 10.9 C

TABLE VI: Case Three
Chromosome

∆IL|pp 31%
fsw 55 kHz
Nturn 56
Dwire 17.5mm
Core Material 3F5
Core size ETD54
Switch Tech SiC - UF3C065040T3S
Ncap 2

Solutions
Psw 16.94 W
PInd 21,86 W
PCap 0.37 W
C 13.9 µF
L 228 µH
Driver 1EDN6550BXTSA1
Switch Cost 28.18 C
Driver Cost 1.34 C
Capacitor Cost 7.67 C

C. Case Three

In this case, both functions are equal in importance and the
weight for both is 0.5. The results are shown in Table VI.

Upon comparison of the three cases, it is evident that the



first case prioritized selecting components with minimum cost
over minimizing power losses. The frequency was chosen to
be higher to reduce capacitor cost, with only one capacitor
being used. The program opted for a switch type with low cost
and low power losses. In contrast, the second case placed a
higher importance on minimizing power losses, selecting GaN
as the switch with the lowest power losses, albeit with a higher
cost. The frequency was set at 50 kHz to minimize switching
losses, and four capacitors were used in parallel to reduce
capacitor losses. Additionally, the inductor losses were lower
in the second case than in the first. The third case represents a
design that falls between the first two, check Table VI. Once
an optimal design is obtained, it is essential to verify it by
conducting simulations and creating a hardware prototype.

VII. CONCLUSION

This paper proposes a multi-objective optimization algo-
rithm that optimizes the cost and power losses to improve
the efficiency of dc-dc converters. The algorithm is applied to
find the optimal designs of bidirectional boost converters that
are connected to the battery and DC/AC inverter in nanogrids.
Analytical models of converter components, including induc-
tors, capacitors, and semiconductors, are used to provide the
basis for optimization. The genetic algorithm is used due to
its ability to solve mixed-integer and nonlinear optimization
problems. The weighted sum method is applied to obtain a
single solution that allows users to indicate their preferences.
Three different cases with varying weights demonstrate the
algorithm’s ability to provide solutions based on the objective
function’s weight. Future work will include more objective
functions such as reliability, weight, and size of the converter,
and a multi-objective optimization that includes a mission
profile. This paper is the first step towards creating a global
optimization tool that translates all objective functions into
a common framework, which will require considering more
degrees of freedom..
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