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Abstract
Quantum abstract detecting systems (QADS) provide a common framework to address
detection problems in quantum computers. A particular QADS family, that of com-
binatorial QADS, has been proved to be useful for decision problems on eigenvalues
or phase estimation methods. In this paper, we consider functional QADS, which not
only have interesting theoretical properties (intrinsic detection ability, relation to the
QFT), but also yield improved decision and phase estimation methods, as compared to
combinatorial QADS. A first insight into the comparison with other phase estimation
methods also shows promising results.

Keywords Quantum abstract detecting systems · Combinatorial QADS · Functional
QADS · Geometric QADS · Quantum Fourier transformation · Quantum phase
estimation

1 Introduction

One of the tasks where quantum computers outperform classical computers is the
search of marked elements in unsorted lists, thanks to Grover’s algorithm [1]. Quan-
tum abstract detecting systems (QADS) [2] provide a general quantum computing
framework to address detection problems, and so they generalize Grover and various
other quantum algorithms (Deutsch–Jozsa algorithm [3], the quantum abstract search
[4] and several quantum walks [5–8]). QADS also allow us to combine them in order
to improve their accuracy. In addition, this paradigm has potential applications when-
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ever the existence of a marked element must be found, for example, checking the
commutativity of finite dimensional algebras [9]. A similar approach was explored for
the detection of undesired measurements in a circuit [10].

The family of combinatorial QADS [11], which control one prefixed QADS with
some extra qubits, is particularly interesting. They can not only be used in the original
detecting setting, but also in some other practical problems, such as a decision algo-
rithm for an eigenvalue of a unitary matrix or, most importantly, phase estimation by
the Hadamard test. Namely, the latter approximates an eigenvalue of a given unitary
matrix. A well-known method to do this is the quantum phase estimation algorithm
[12], but the Hadamard test achieves it in a simpler way but with less precision, and it
can be generalized with combinatorial QADS.

In this work, we introduce functional QADS, which extend the family of combina-
torial QADS. Theoretically, they have some interesting properties. First, they have a
δ-detecting time if it is based on a QADS that has one. Also, the QFT operation can
be reinterpreted as a product of Hadamard gates and geometric QADS (a particular
type of functional QADS).

On the other hand, we will consider the previous combinatorial QADS-based algo-
rithms for functional QADS, aiming to improve the probabilities of error or the
efficiency. We will find that combinatorial QADS are outperformed in both aspects.
Optimality of functional QADS will be shown for the decision algorithm (the rest of
the methods are based on it). In addition, a whole new phase estimation algorithm is
going to be presented, based on a specific type of functional QADS, which will show
a much more efficient and accurate performance than the generalized Hadamard test.
Its circuit is similar to that of the quantum phase estimation (QPE) one, but avoiding
the use of the QFT, which has an expensive implementation.

In summary, the practical problems that are going to be addressed are:

1. Decision on eigenvalues: given a unitary matrixU , an eigenvector |ϕ0〉 with eigen-
value eiβ and an angle α, decide whether β = α. The study of this problem will
establish the theoretical basis for the following problems.

2. Decision on an interval: given a unitary matrix U , an eigenvector |ϕ0〉 with eigen-
value eiβ and an interval [α − δ, α + δ], decide whether β ∈ [α − δ, α + δ].

3. Phase estimation problem with a confidence interval: given a unitary matrix U
and an eigenvector |ϕ0〉 with eigenvalue eiβ , find a confidence interval for β. In
particular, the following algorithms will be developed and compared:

• Dichotomy search (for a given error in the estimation)
• Generalized Hadamard test (for a given level of confidence; only for combina-
torial QADS)

• δ-approximation algorithm (for a given error in the estimation)

After the introduction of the δ-approximation algorithm, we will show some con-
siderations about it that illustrate its potential. This includes comparing it with the
QPE and other similar phase estimation methods, showing a promising performance
in terms of reducing the number of qubits and operations. In addition, it offers the
possibility of improving an estimation given by any other method. Also, we address
how an error in the preparation of the initial state evolves in the decision algorithm.

123



Functional quantum abstract... Page 3 of 44 82

This paper is divided in 6 sections. Section2 contains the basic definitions and
results used in our study. Section3 will introduce m-functional QADS and their basic
properties, paying special attention to geometric QADS. The practical applications
and description of the proposed phase estimation method will be addressed in Sect. 4.
Some first insights into the comparison with other phase estimation methods and the
propagation of errors will be explored Sect. 5. Finally, a summary of the conclusions
will be given in Sect. 6.

2 Preliminaries

We will summarize the basic results about QADS needed in our study of functional
QADS. A QADS is a procedure meant to detect the existence of marked elements in
a given set. This is achieved by an operator that fixes an initial state when the element
is marked. Grover’s algorithm is an example of QADS.

Hence, we define a QADS Q as any (classical deterministic) algorithm that takes,
from a set of inputsM, a boolean function (given by a circuit) f : {0, 1}k −→ {0, 1}
and outputs a unitary transformationU = U f on a Hilbert spaceH whose dimension
only depends on k, together with a state |ϕ0〉 ∈ H (that only depends on k too) such
that

{x ∈ {0, 1}k | f (x) = 1} = ∅ ⇒ U f |ϕ0〉 = |ϕ0〉.

From this definition, a detection scheme was introduced in [2, Main algorithm] for
deciding whether the received function f is different from 0 or not, that is, if there
exists a marked element in a given set. Namely, the initial state |ϕ0〉 and the detecting
operator U from Q on the input f are precomputed; later, t is uniformly chosen
from {0, 1, . . . , T }, for a fixed value T , and Ut |ϕ0〉 is measured on an orthonormal
basis containing |ϕ0〉. If the result is |ϕ0〉, the decision f ≡ 0 is made; otherwise
f �≡ 0.
The performance of a QADS in this algorithm is studied through the concept of

δ-detecting time, that characterizes the probability of error of the detecting scheme
when f �≡ 0 (when f ≡ 0, the detection scheme never fails). If (|ϕ0〉,U = U f )

denotes the output of a QADS on input f ∈ M, then for a given 0 < δ ≤ 1, a function
T : N −→ N is a δ-(quantum) detecting time for the QADS, if for all nonzero f ∈ M
of input size k

T (k)∑

t=0

∣
∣〈ϕ0|Ut |ϕ0〉

∣
∣2

T (k) + 1
≤ 1 − δ.

Theorem [2, Main theorem] The detection scheme of the main algorithm always pro-
vides a correct output on input zero (i.e., when no marked elements do exist), and so
the probability of error is fully attributed to nonzero inputs. Namely, such a probability
is equal to
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Fig. 1 Combinatorial QADS circuit

T (k)∑

t=0

∣
∣〈ϕ0|Ut |ϕ0〉

∣
∣2

T (k) + 1
.

δ-detecting times allow to bound the probability of error of the detection scheme.

For example, Grover’s algorithm has a
√
2−1
4
√
2
-detecting time, of order O(

√
2k).

Subsequently, m-combinatorial QADS were introduced in [11], which are based
on a fixed QADS, adding m extra qubits to it in order to control the application of its
detecting operatorU f . If |ϕ0〉 is its initial state and m is a positive integer, then the m-
combinatorial QADS obtained from Q is the QADS whose initial state is |0〉⊗m |ϕ0〉,
and whose detecting operator is given by

C(m,U f ) := (H⊗m ⊗ I )cmU f ...c1U f (H
⊗m ⊗ I ),

where ciU f is the operator U f controlled by the i-th qubit of the first register. Its
circuit is shown in Fig. 1.

The final state of the circuit is given in the next result.

Proposition [11, Proposition 2]The amplitude of the stateC(m,U f )|0〉⊗m |ϕ0〉 related
to the basis state |0〉⊗m |ϕ0〉 is

1

2m

m∑

k=0

(
m

k

)

〈ϕ0|Uk |ϕ0〉.

Apart from the intended detecting nature of QADS, combinatorial QADS have
other applications, among them (see [11]):
Decision on eigenvalues Let U be a unitary matrix, and let |ϕ0〉 be a state under the
promise thatU |ϕ0〉 = eiβ |ϕ0〉. Then, for a given α, we want to decide whether α = β.
The problem can be solved by implementingC(m, V ), where V = e−iαU . If the result
of a final measure is |0〉⊗m |ϕ0〉 (the initial state), we conclude β = α. Otherwise, we
conclude β �= α.
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Fig. 2 Functional QADS circuit

Theorem [11, Theorem 3] The decision on eigenvalues algorithm is always correct
when it outputs NO. So, the probability of error is fully attributed to a YES answer.
Namely, such a probability is equal to

cos2m
(

β − α

2

)

.

In this paper, we will study the behaviour of this algorithm for functional QADS,
and find the optimal ones.
Dichotomy search.With the previous notation, a small interval containing β ∈ [0, π ]
is to be found. The interval [0, π ] is split into two halves, finding the one half where
β is more likely to be. The repetition of this process as many times as desired yields
the desired small interval.

In this paper, we will take a closer look to this algorithm under the paradigm of
functional QADS.
m-Hadamard test It is the generalization of the Hadamard test, a phase estimation
algorithm that approximates the angle β ∈ [0, π ], under the previous notation. It

takes advantage from the fact that the formula cos2m
(

β
2

)
is easily invertible. So, n

independent measurements of the final state of the m−combinatorial QADS gives
β ≈ arccos(2 m

√
p̂n −1), where p̂n is the proportion of |0〉⊗m |ϕ0〉 states obtained from

the decision algorithms. It has been concluded thatm = 1 provides the most balanced
version of this method for an unknown β, in the sense that increasingm would improve
the accuracy when β ≈ 0 but make it worse when β ≈ π .

In this paper, these last two algorithms will be considered from functional QADS
in order to deal with phase estimation.

3 m-Functional QADS definition and first results

In this section, we provide the formal definition ofm-functional QADS, which extends
the idea of combinatorial QADS introduced in [11]. The m-functional QADS are
built from another QADS, by a control of the original detecting operator U f by a
superposition of qubits and by a function g as shown in Fig. 2.

Definition 1 If U f is the detecting operator of a QADS Q, |ϕ0〉 its initial state, m
is a positive integer and g : N −→ Q a function (where 0 ∈ N), we define the
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m-functional QADS obtained from Q as the QADS with initial state |0〉⊗m |ϕ0〉 and
detecting operator

F(m,U f , g) := (H⊗m ⊗ I )cmU
g(m−1)
f ...c1U

g(0)
f (H⊗m ⊗ I ),

where ciU f is the unitary operator that applies U f to the second register if the i-th
qubit of the first register is |1〉, and applies the identity if that qubit is |0〉 (i.e., it
is the operator U f controlled by the i-th qubit of the first register). The size of an
m-functional QADS is defined as the number of times that U f is applied, that is,
G = ∑m−1

n=0 g(n).

We let g output rational numbers in order to allow powers and roots of QADS. The
m-combinatorial QADS are a particular case of m-functional QADS when g(n) = 1,
so C(m,U f ) = F(m,U f , 1).

Before getting into the application of functional QADS considered in this paper,
which is phase estimation, it is reasonable to study the basic properties of functional
QADS, as well as their performance for the original QADS purpose. We first confirm
that m-functional QADS are indeed QADS and, then, we also consider under which
algorithmic operations, of those in the algorithmic closure of a QADS, (collected in
Table 1, as taken from [2]), the familiy of m−functional QADS is closed. Proofs of
these facts, and several others along the paper can be found in 1.

Proposition 1 Every m-functional QADS is indeed a QADS.

Proposition 2 • Extension, inversion, powers and roots of m-functional QADS are
also m-functional QADS.

• The product of m-functional QADS built from the same original QADS is also an
m-functional QADS.

• The product of m-functional QADS built from different original QADS is also an
m-functional QADS, as long as they share the initial state and the function g, and
the detecting operators involved commute with each other.

The next result provides the amplitude of the initial state at the end of the circuit.
This will be a key element in order to calculate the probability of error of the detection
algorithm, and of the practical applications developed later in the paper. Observe that
when g = 1, we recover the result for m-combinatorial QADS given in [11].

Theorem 1 Given an m-functional QADS, the amplitude of the state F(m,U f , g)
|0〉⊗m |ϕ0〉 associated to the basis state |0〉⊗m |ϕ0〉 is

1

2m

2m−1∑

x=0

〈ϕ0|UB
f |ϕ0〉,

where B = ∑m−1
i=0 xi g(i) and x = x0 + 2x1 + ... + 2m−1xm−1 with xi ∈ {0, 1},∀i =

0, ...,m − 1.
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One of the situations in which this amplitude is needed is when determining δ-
detecting functions. For a QADS, the existence of a δ-detecting function, implies the
ability of bounding the probability of error of their main detection algorithm. Thus,
it is a key feature for a QADS to be used in detection problems providing an error
bound. As stated by the following result, under certain conditions, if a fixed QADS
has a δT -detecting time, then any m-functional QADS has its own δS-detecting time.

Theorem 2 Let m > 0, M = 2m and G = ∑m−1
i=0 g(i) for a given function g. If

T : N → N is a δT -detecting time such that 1 − δT < 1/M, and T (k) > M − 1,

then any m-functional QADS of size G ≤ MT (k)
T (k)+1−M will have S(k) =

⌊
T (k)
G

⌋
as a

δS-detecting time, where δS = 1 − M(1 − δT ).

It is worth pointing out that MT (k)
T (k)+1−M ≥ MT (k)

T (k) = 2m , so in order to guarantee the
existence of a δ−detecting time, it is enough to ensure that its size is at most 2m .

We are going to focus on three types of functional QADS, which we will introduce
now, mainly because of their behaviour on the decision algorithm. Recall that the
performance of the practical algorithms later developed in the paper are strongly
based on it.
Combinatorial QADS: gc(n) = 1

If we consider the function gc to be constant and equal to 1, then we obtain the
already studied m-combinatorial QADS. They are the simplest and easiest to work
with, and they provide an analytically invertible probability of a positive outcome
(which provides the approximation of the eigenvalue’s angle β, as stated above).
Linear QADS: gl(n) = n + 1

m−functional QADSwith gl(n) = n+1 will be calledm-linear QADS. They have
a predictable behaviour and are usually a better option over the combinatorial QADS
for certain problems. It is the best functional QADS among those whose probability
of a positive outcome for the decision algorithm is always decreasing with respect to
|β − α| in [0, π ]. This is a desirable property in several situations.
Geometric QADS: gg(n) = 2n

m−geometric QADS are m−functional QADS with gg(n) = 2n , which have
proven to be the best choice for all the studied applications, as its performance on
the decision algorithm is optimal. We will also prove that the Quantum Fourier Trans-
formation can be nearly completely explained in terms of a product of geometric
QADS.

3.1 Geometric QADS

We will dedicate this subsection to geometric QADS (i.e., gg(n) = 2n), due to their
overall superior performance for the practical applications seen in the next section.
Figure3 shows its circuit.

From the perspective of implementation, it is worth pointing out that, whenU f is a

rotation, the corresponding power U 2i
f is also a rotation (with different angle), so the

geometric QADS does not require the application of an exponential number of gates.
If U f is not a rotation, then, for most practical applications, the fact that the number
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H • . . . H

H • . . . H
...

. . .
...

H . . . • H

|ϕ0〉 Uf U2
f

. . . U2m−1

f

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

|0〉⊗m

Fig. 3 Geometric QADS circuit

Fig. 4 QFT circuit

of qubits needed to obtain an accuracy δ increases logarithmically on δ counteracts
the exponential increasing of applications of U f .

For geometric QADS, Theorem 1 can be directly rewritten in the following way.

Corollary 1 In the case of an m-geometric QADS, the amplitude of the state
F(m,U f , gg)|0〉⊗m |ϕ0〉 related to the basis state |0〉⊗m |ϕ0〉 is

1

2m

2m−1∑

x=0

〈ϕ0|Ux
f |ϕ0〉.

This formula will be especially useful in the computation of later probabilities of
error, since it yields expressions involving a geometric sum (hence the name given to
the QADS).

In addition, let us show that the quantum Fourier transformation circuit can be
described by the composition of a series of geometric QADS. If we denote

UROT k =
(
1 0

0 e
2π i
2k

)

,

then the circuit implementing QFT |x1x2...xn〉 is like the one in Fig. 4. Because
UROT 2

k = UROT k−1 and, consequently,UROT 2p
k = UROT k−p, we can describe

the QFT circuit in the way shown in Fig. 5.
Observe the appearance of a sequence of partial geometric QADS (withm decreas-

ing) plus an initial application of a H⊗n gate. This is because the UROT k gates
commute with each other. Hence, this proves that
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Fig. 5 QFT circuit as a sequence of geometric QADS

QFTn =
(
F(0,UROT 1, gg) ⊗ I⊗n−1

) (
F(1,UROT 2, gg) ⊗ I⊗n−2

)

. . .
(
F(n − 1,UROT n, gg)

)
H⊗n . (1)

In addition, since the inversion of a geometric QADS is also a geometric QADS, we
can obtain an analogous formula for QFT †

n . This connection illustrates the generality
of QADS, and could be helpful for including the QFT gate in the framework and,
therefore, in the circuits. This way, algorithms such as the QPE [12, page 224] could
be studied through a new perspective and compared to the phase estimation method
introduced in the following section.

4 Functional QADS: practical applications

In this section, we consider functional QADS in the context of the phase estimation
problem.We aim at an approximation of the phase of an eigenvalue of a unitary matrix
U , along with a confidence interval of desired length. Our proposed algorithm solving
this problem is based on a chain of several simpler algorithms that will be detailed first.
We will begin with an algorithm for a decision problem on eigenvalues and, based on
it, we construct a decision algorithm on intervals. An improvement to the latter leads
us to the final phase estimation method: the δ-approximation algorithm.

4.1 Decision on eigenvalues

In this problem, we are given a unitary matrix U , a state |ϕ0〉, under the promise that
U |ϕ0〉 = eiβ |ϕ0〉 for an unknown real number β. Then, for a given α ∈ R, we shall use
a functional QADS-based decision algorithm (DA) that checks whether β = α. Since
all of the following algorithms are based on this one, it is worth studying it deeply. In
this setting, we will see that geometric QADS are the best choice. The algorithm is
the following.

Algorithm 1 Decision on eigenvalues for an m-functional QADS (DA)

Given an m-functional QADS, a state |ϕ0〉, a unitary matrix U such that U |ϕ0〉 = eiβ |ϕ0〉 and an angle α:
1: Implement F(m, V , g) based on the matrix V = e−iαU , and apply it to the initial state |0〉⊗m |ϕ0〉.
2: Measure the final state on any orthonormal basis containing |0〉⊗m |ϕ0〉.
3: If the result is |0〉⊗m |ϕ0〉, output ‘YES’. If the result is any other state different from |0〉⊗m |ϕ0〉, output

‘NO’.
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Based on this procedure, we can prove a formula for the probability of stating that
α = β. The proofs of the results of this section can be found in 2.

Theorem 3 Under the promise that U |ϕ0〉 = eiβ |ϕ0〉, given an angle α and any
m-functional QADS for U, the probability of a positive outcome from the decision
algorithm is

DA(m, g, β − α) :=
m−1∏

n=0

cos2
(

g(n)
β − α

2

)

.

This theorem, when g = 1, yields the analogous result in the case of combinatorial
QADS [11, Theorem3].Moreover, the following particular result for geometricQADS
can be obtained too.

Theorem 4 Under the promise that U |ϕ0〉 = eiβ |ϕ0〉, given an angle α and an
m-geometric QADS for U, the probability of a positive outcome from the decision
algorithm when β �= α is

DA(m, gg, β − α) = 1 − cos(2m(β − α))

22m(1 − cos(β − α))
.

As a consequence, we have:

Corollary 2 In the previous conditions, DA(m, gg,
2kπ
2m ) = 0, for any k ∈ {1, ..., 2m −

1}.
The probabilities of stating that α = β of the DA for a fixed m = 5 can be seen

in Fig. 6. We observe how both the linear and the geometric clearly outperform the
combinatorial QADS, being the geometric the best choice, especially when β and
α are close to each other. However, it could be argued that both the linear and the
geometric QADS have greater sizes than the combinatorial one. So, despite their
better probabilities, the corresponding circuits are not as efficient. To address this,
we study the performance of the different functional QADS when a size G is fixed,
allowing m to vary from one family to another.

For a fixed mc, in the combinatorial QADS, U is applied mc times; for a certain

mg , in the geometric QADS,U is applied
∑mg−1

n=0 2n = 1−2mg

1−2 = 2mg − 1 times; for a

certainml , in the linear QADS,U is applied
∑ml−1

n=0 (n+1) = ml (ml+1)
2 times. Hence,

if we fix a size G, then we useU as much asmc = G,mg = log2(G+1), andml such
thatm2

l +ml −2G ≤ 0. Obviously, some of them have to be rounded sometimes. The
new graph, for a fixed size of 31 operations (mc = 31, mg = 5, and ml rounded to
7), can be checked in Fig. 7. Although the combinatorial and linear QADS have better
performances, the geometric QADS are still best, specially for close values of β and
α. Moreover, they use significantly less qubits.

However, the probability is not always lower. We shall prove that, for a fixedm and
in average, the probability of a positive outcome for the geometric QADS is always
smaller than for any other functional QADS. To do this, it should be noticed that,
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Fig. 6 Probability of a positive outcome from the decision algorithm for the combinatorial, linear and
geometric QADS and a fixed m = 5

Fig. 7 Probability of a positive outcome from the decision algorithm for the combinatorial, linear and
geometric QADS and a fixed size of 31 operations

in the DA setting, only functional QADS with a natural valued function g are worth
considering. Negative numbers can be ruled out, since the cosines of DA(m, g, β −α)

are not affected by a change of sign. Also, since it is desirable that the formula is equal
to 1 when |β−α| = 2π , we need that g(n) is always an integer number. Consequently,
we introduce the following definitions.
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Definition 2 We say that a natural valued function g : N −→ N is DA-optimal for a
fixed m = m0 if, for any other natural valued function h : N −→ N,

∫ π

0
DA(m0, g, t) dt ≤

∫ π

0
DA(m0, h, t) dt .

An m0-functional QADS is DA-optimal for a fixed m = m0, if its associated
function g : N −→ N is DA-optimal for a fixed m = m0.

Definition 3 Let G0 > 0 be a natural number, g : N −→ N a natural function such

that
∑mg−1

n=0 g(n) = G0 for somemg > 0.We say g is DA-optimal for a fixedG = G0

if for any other natural valued function h : N −→ N such that
∑mh−1

n=0 h(n) = G0 (for
some mh > 0),

∫ π

0
DA(mg, g, t) dt ≤

∫ π

0
DA(mh, h, t) dt .

An m-functional QADS of size G0 is DA-optimal, if its associated function g :
N −→ N is DA-optimal for a fixed G = G0.

Observe that the integrals are defined on the interval [0, π ], instead of [0, 2π ],
because DA(m, g, t) is symmetrical with respect to t = π , when g is natural valued.
In this setting, we can prove the following result related to the optimality for a fixed
m.

Theorem 5 The m-geometric QADS is DA-optimal for any fixed m. Moreover, among
those m-functional QADS which are DA-optimal for m, m-geometric QADS have the
smallest size.

Notice that this result captures the average performance of the geometric QADS,
and so there might be some functional QADS (for instance, g(n) = (n + 1)2), which
may have a better behaviour for particular values of |β −α|. However, the knowledge
of zeros of DA(m, gg, t) makes geometric QADS easier to handle, and so they will
be used henceforth.

On the other hand, the DA-optimality for a fixed size will be studied numerically.
Since there are only m-geometric QADS of sizes G = 2m − 1, we introduce the
concept of G-shortened geometric QADS for any other size.

Definition 4 For a given natural G > 0, we define the G-shortened geometric QADS
as an m-functional QADS where m = �log2(G + 1)�, g(n) = 2n when n �= m − 1
and g(m − 1) = G − (2m−1 − 1).

For example, the shortened geometric QADS for G = 18 would feature m = 5
and g([0, 4]) = {1, 2, 4, 8, 3}. Shortened geometric QADS are the closest functional
QADS to a geometric QADS, for a given size (if G = 2m − 1 for some m, shortened
geometric QADS arem-geometric QADS).Many times, especially whenG ≈ 2m−1,
they are DA-optimal for G or close to optimality. For instance, shortened geometric
QADS are DA-optimal for every G from 1 to 19, except for G = 12 (in this case,
optimality is achieved by a functional QADS with g([0, 4]) = {1, 1, 1, 3, 6}).
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Fig. 8 Probability of error of the decision on an interval algorithm for the combinatorial, linear and geometric
QADS for a fixed m = 5, sample size of 1000, and δ = 0.01

4.2 Decision on an interval

The DA can be transformed in order to check whether the eigenvalue β belongs to a
given interval [α − δ, α + δ], i.e., α would approximate β up to an error of δ. The
idea behind this algorithm is to take a decision based on Pδ := DA(m, g, δ) and
the estimation of DA(m, g, β − α) by a series of independent runs of the functional-
based DA, Pα . These probabilities can be estimated by the proportion of times that
the QADS algorithm gave the initial state as the outcome. If the approximation Pα is
greater than Pδ , it will be assumed that the distance between α and β is lower than
δ, and so β ∈ [α − δ, α + δ]. The details on the design rationale of this and the
following algorithms, their actual implementations and performances, can be found in
2. Figures8 and 9 show the performance of the studied functional QADS. Once again,
the geometric QADS is the most efficient, as it inherits its behaviour from the DA.

4.3 Interval correction (IC)

Since the probability of error of the previous algorithm is 0.5 when β is on one of the
endpoints of the interval, an improvement can be made. Its improved version, called
IC, will be the base of the δ-approximation algorithm. When Pα ≈ Pδ , we will test
which endpoint β is closer to. Suppose, for instance, that β is close to the α + δ

endpoint. Then, it will be assumed that [α, α + 2δ] (an interval of the same length)
contains β.

The details on the implementation and computation of the error probabilities can
be found in 2. Figure10 shows the behaviour of different functional QADS, giving the
geometric QADS the best performance. On the other hand, the differences between
the two versions of the algorithm can be seen in Figs. 11, 12 and 13. In all cases, δ has
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Fig. 9 Probability of error of the decision on an interval algorithm for the combinatorial, linear and geometric
QADS for a fixed G = 31, sample size of 1000 and δ = 0.01

Fig. 10 Probability of error of the IC for the combinatorial, linear and geometric QADS for a fixed G = 31,
sample size of 1000, δ = 0.01, and optimal d1, d2

been taken equal to 0.01, the sample size is 1000, the fixed number of operations is
31, and the reference probabilities have been optimally chosen. As we can observe,
the improvement is remarkable overall. However, the chance of obtaining Pα ≈ Pδ ,
but deciding the incorrect endpoint afterwards, might make the IC less accurate for
low values of |β − α|.

4.4 ı-Approximation algorithm

The final algorithmprovides an approximation of the angleβ, with a certain given error
δ, and it works for any β ∈ [0, 2π ] (an advantage over some other versions based on
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Fig. 11 Comparison of the probability of error of the decision on an interval and IC algorithms for the
combinatorial QADS of size G = 31, sample size of 1000, δ = 0.01 and optimal d1, d2

Fig. 12 Comparison of the probability of error of the decision on an interval and IC algorithms for the
linear QADS of size G = 31, sample size of 1000, δ = 0.01, and optimal d1, d2

combinatorial QADS). The algorithm is as follows: An initial choice δ0 >> δ is taken,
for instance, δ0 = 102δ. For different approximations α0 ∈ [0, 2π ] of the angle β, the
IC is run until the decision β ∈ [α0 − δ0, α0 + δ0] is taken for a certain α0. In the next
step of the algorithm, δ1 = δ0

10 , α1 = α0 initially and we run the IC until it decides that
β ∈ [α1 − δ1, α1 + δ1] for a certain α1. In the last step of the algorithm, δ2 = δ1

10 = δ

and α2 is chosen analogously until the IC decides that β ∈ [α2 − δ2, α2 + δ2] for a
certain α2.

An important detail to notice is that this algorithm starts by approximating β with
low precision with the Hadamard test (which will be discussed soon, in Sect. 5.1)
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Fig. 13 Comparison of the probability of error of the decision on an interval and IC algorithms for the
geometric QADS of size G = 31, sample size of 1000, δ = 0.01, and optimal d1, d2

before checking intervals with the IC. A more detailed account of this algorithm is
given in 2. However, any other phase estimation method can be applied for that first
approximation. This means that the δ-approximation algorithm may offer the possi-
bility of improving the estimation of any phase estimation method without investing
a lot of qubits or measurements, as we will see in the next section.

Wewill stick to theHadamard test in this article due to its direct relation to functional
QADS, but more variations will be explored in the future.

With respect to the asymptotic behaviour, it was run for values of δ between 1/26

and 1/214 in order to observe how its maximum number of ancilla qubits, size and
depth evolve for p = 1/δ. The maximumm used for p = 2k was k+2, suggesting its
O(log2 4p) behaviour. The evolution of the size and depth can be observed in Fig. 14,
concluding that the size evolves similarly to O(p log2(log p)), whereas the depth
(assuming that powers ofU are efficiently implementable) showed a similar behaviour
to O(log3 p). Particularly for the size, a clear stepped behaviour is observed, where
changes of step coincide with the need of a new ancilla qubit.

However, there are some parameters in this algorithm that are yet to be optimized, so
this asymptotic behaviour is just illustrative. Its theoretical behaviour will be explored
in future works.

5 Other relevant considerations about the ı-approximation
algorithm

5.1 Comparison with other functional QADS-basedmethods

Anatural starting point for comparing the δ-approximation algorithmwould be against
other phase estimation methods that were previously studied for combinatorial QADS
[11] which provide confidence intervals. We will introduce two of them first.
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Fig. 14 Asymptotic behaviour of the size and depth of the δ-approximation method. The constants selected
so that the three functions were equal for the first dot (p = 26). We also assume all repetitions of QADS to
be done sequentially

Confidence interval for the m-Hadamard test The m-Hadamard test was introduced
in [11]. With the same notation as above, its aim is an approximation of β. Next, we
compute a confidence interval for the angle β based on combinatorial QADS. In this
test, we made n independent repetitions of a combinatorial QADS experiment for the
matrix U , and approximate β using the fact that the probability of obtaining |ϕ0〉 at
the end of the experiment is

p = cos2m
β

2
=

(
1 + cosβ

2

)m

.

Eachexperiment follows aBernoulli distribution, sowecan apply theknownexpres-
sion for a confidence interval for n repetitions of a Bernoulli experiment, with a preset
level of confidence a and an unknown standard deviation. Here, ta/2 represents a num-
ber such that P(T < −ta/2) = a/2, where T follows a Student’s t-distribution with
n − 1 degrees of freedom (see [13], chapter 11.4).

a = P

(

X − ta/2
Ŝ√
n

< p < X + ta/2
Ŝ√
n

)

= P

(

X − ta/2
Ŝ√
n

<

(
1 + cosβ

2

)m

< X + ta/2
Ŝ√
n

)

=

= P

⎛

⎝2
m

√

X − ta/2
Ŝ√
n

− 1 < cosβ < 2
m

√

X + ta/2
Ŝ√
n

− 1

⎞

⎠ =
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Fig. 15 100 confidence intervals from the Hadamard test (m = 1), for random β and a sample of size 1500

= P

⎛

⎝arccos

⎛

⎝2
m

√

X + ta/2
Ŝ√
n

− 1

⎞

⎠ < β < arccos

⎛

⎝2
m

√

X − ta/2
Ŝ√
n

− 1

⎞

⎠

⎞

⎠

Therefore, the confidence interval for β with a level of confidence a is

⎡

⎣arccos

⎛

⎝2
m

√

X + ta/2
Ŝ√
n

− 1

⎞

⎠ , arccos

⎛

⎝2
m

√

X − ta/2
Ŝ√
n

− 1

⎞

⎠

⎤

⎦

The study on combinatorial QADS showed that the original Hadamard test, with
m = 1, was the most balanced option when β is unknown. An example of this
experiment for n = 1500 repetitions of the QADS, a = 0.05, m = 1 and random
values of β can be seen in Fig. 15, along with the average length of the intervals.
Observe that this confidence interval methodology requires that β ∈ [0, π ], although
it can be adapted for greater values of β with the approach addressed in 4.4.
Dichotomy searchThe dichotomy search assumes that β is in the interval [0, π ], which
will be split into two halves. The values of DA(m, g, β − α), for α = 0 and α = π ,
will be approximated by a computation of multiple DA on each endpoint, and then
obtaining the proportion of positive outcomes. A decision is then taken (β ∈ [0, π

2 ] or
β ∈ [π

2 , π ]), and the process is repeated as many times as desired. The performance of
the method benefits from bigger differences in the probabilities at the endpoints. So,
in order for the geometric QADS to work, we require DA(m, gg, t) to be decreasing
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Fig. 16 Difference in the probability of a positive outcome at the two endpoints of the interval in the fourth
step of the dichotomy search for the combinatorial, linear and geometric QADS and a fixed m = 5

in the current interval. Therefore, for the n-th step of the algorithm, when the interval
length is π/2n , we should pick mg such that

2π

2mg
≥ π

2n
⇔ 2n+1 ≥ 2mg ⇔ mg ≤ n + 1.

With this choice, the performances of the three types of functional QADS under
study, for the fourth step of the algorithm, and for fixedm = 5 andG = 31, are plotted
in Figs. 16 and 17, respectively. As before, it can be checked that geometric QADS
are the family with better performance.
Comparing the three functional QADS-based methods. In Fig. 18, we can see the
comparison between the dichotomy search, Hadamard test and δ-approximation algo-
rithm, where the latter clearly outperforms the other two for a choice of δ = 0.01 and
approximately 18,000 uses of the matrixU . For the dichotomy search, we considered
the number of iterations needed to end up with an interval of length ≈ 2δ; for the
Hadamard test, we fixed a = 0.05.

5.2 Comparison with QPEmethod

Since phase estimation is the main problem addressed, it is reasonable to, at least, have
a first glance at a comparison between δ-approximation algorithm and the other well-
known phase estimation algorithms, mainly, the QPE, whose circuit can be checked
in Fig. 19.

We can observe that the circuit is exactly like the one of geometric QADS, with
the exception of the final inverse of the QFT gate. We already saw in Fig. 4 how the
UROTk gates are applied in the QFT. The QPE circuit with t qubits would apply U
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Fig. 17 Difference in the probability of a positive outcome at the two endpoints of the interval in the fourth
step of the dichotomy search for the combinatorial, linear and geometric QADS and a fixed G = 31

Fig. 18 Comparison of 1000 confidence intervals of the dichotomy search, Hadamard test and δ-
approximation algorithm, respectively

2t − 1 times, and some UROTk (t − 1)t/2 times, ∀k = 1, . . . , t . That makes a total
of 2t − 1 + (t − 1)t/2.

Despite applying controlled gates (U gates plus UROT gates) O(t2) more times,
we know that QPE estimates the phase in a single run, whereas the δ-approximation
algorithm needs many repetitions of geometric QADS. However, on the other hand,
the accuracy of the δ-approximation algorithm is higher for the same number of qubits.
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Fig. 19 QPE circuit

Thus, amore fair comparisonwould take into account the number of controlled gates of
both algorithms when we fix a certain accuracy. Sometimes, the exponential powers
of U are efficiently implementable, in the sense that there is no need to apply U
exponentially many times, so this comparison would address rest of the situations.

The number of qubits needed in the QPE to obtain a certain accuracy is known
[12, page 224]. In order to approximate β to an accuracy of 2−n with a probability of
success of at least 1 − ε, we should take

t = n +
⌈

log2

(

2 + 1

2ε

)⌉

Therefore, let us fix, for example, n = 7 and run 10,000 times the δ-approximation
algorithm for δ = 2−n = 1/128 to obtain a numeric approximation of its probability
of error, which would represent ε. The result is shown in Fig. 20. The error obtained
is ε = 19/10000, so

t = 7 +
⌈

log2

(

2 + 5000

19

)⌉

= 7 + �8, 0507� = 16.

Without the rounding, the result of t is usually around 15, so we will stick to
that more generous number. Then the QPE circuit applies controlled gates 215 − 1 +
14 × 15/2 = 32782 times, significantly higher than the average 20316.98 of the δ-
approximation algorithm. In addition, the latter uses half the qubits (four for the first
iteration, eight for the second). Therefore, the advantage is clear when there are no
efficient implementations of exponential powers of U .

In the case that they were efficiently implementable, still, we know that the depth of
a circuit is one of the greatest concerns when avoiding errors. The longer the circuit,
the more error we will get. The possibility of beating the accuracy of QPE in NISQ
(noisy intermediate-scale quantum) devices, especially when using a lot of qubits,
with a simpler and shorter algorithm was pointed out, for example, in [14–18]. In that
sense, the idea to estimate the phase through a short circuit, even if run multiple times,
can be preferable under certain situations in order to avoid these imprecisions. Also,
the reduction of qubits alleviates this further.

It is true that, by the use of semiclassical Fourier transform (Fig. 21), the preparation
of qubits can be delayed and the measurements can be applied earlier, using just two
qubits simultaneously and reducing the time they are involved. However, besides the
fact that these actions do not decrease the number of operations and can be taken in

123



Functional quantum abstract... Page 23 of 44 82

Fig. 20 10,000 confidence intervals of the δ-approximation algorithm for δ = 1/128

Fig. 21 The QPE circuit with a semiclassical QTF†. Figure taken from [19]

the δ-approximation algorithm too, there is no way of reducing the involvement of
the qubits associated to |ϕ0〉 and U , so the circuit length would have a negative effect
anyway.

Finding a theoretical distribution for this algorithm, in order to compare it more
generally and independently from numeric approximations, deserves a deeper study.

5.3 Comparison with other methods

Optimal states. An alternative approach to the QPE is introduced in [19], where the
optimal states and measurement basis for phase estimation are presented, along with
an error distribution. For any N ∈ N, the optimal state is given by the formula:
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Table 2 Number of trials out of
100,000 with
|β − α| ≤ 1/(2l × 3). Table
taken from [20]

Number of iterative stages, l

Ntot 6 7 8 9

20 99,792 99,729 99,747 99,712

30 99,993 99,987 99,982 99,978

40 99,999 100,000 99,998 99,999

50 100,000 100,000 99,999 100,000

|ψopt 〉 =
√

2

N + 2

N∑

n=0

sin

(
π(n + 1)

N + 2

)

|n〉.

The optimal measurement POVM (positive operator-valued measure) has elements
(N + 1)/2π |φ̂〉〈φ̂|dφ, where

|φ̂〉 = 1√
N + 1

N∑

n=0

einφ̂ |n〉,

and allows us to obtain an error distribution of

1

π(N + 2)

(
cos((φ̂ − φ)(1 + N/2)) sin(π/(2 + N ))

cos(π/(2 + N )) − cos(φ̂ − φ)

)2

.

In this situation, the system would need at least N = 1675 to achieve an error
below 1/128 with probability 19/10000. This would mean that m > 10, compared
to the m = 8 of the δ-approximation algorithm. Besides, the measurements have to
be approximated with adaptive measurements and, as pointed out before, the depth of
the circuit will cause increasing noise and, therefore, a higher chance of ruining the
results.
Iterative phase estimation [20]. Another interesting way of estimating a phase is the
iterative phase estimation, where the number of measurements needed is decreased
substantially. The author provides Table 2 for presenting the results, depending on the
number of iterations, l, and the number of measurements in each of them, Ntot .

By inputting δ = 1/(2l ×3) into the δ-approximation algorithm, we found that, for
the four different values of l considered in the table, it succeeds between 99,810 and
99,880 intervals, which clearly indicates that, at least, 30 measurements per iteration
would be needed for the iterative method to beat it.

Sticking to the case l = 7, that wouldmean 210measurements, while our algorithm
performs around 6155 measurements. Even though the difference is huge, 6016 of
those are invested in the initial Hadamard test to approximate β, and only 139 in the
rest. Still, those 139 measurements reduce the error from 1/10 to 1/(27 × 3). This
emphasizes the fact that the second part of the δ-approximation algorithm shows great
potential to improve a previous estimation obtained by any method.
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Table 3 Asymptotic behaviour of theKitaev’smethod, faster phase estimation and δ-approximationmethod
depending on mm the number of powers of U used

Width Depth Size

Kitaev’s O(m logm) O(m logm) O(m logm)

Faster Phase Estimation O(m log∗ m) O(m log∗ m) O(m log∗ m)

δ-Approximation O(m) O(m3) O(m3)

Kitaev’s method [21] and Faster Phase Estimation [22]. Finally, we compare the δ-
approximation method with the Kitaev’s method and Faster Phase Estimation method
asymptotically. In [22, Table I] we can check the asymptotic evolution in width, depth
and size of these two methods depending on m, the number of powers of U used,
assuming it is efficiently implementable and using a sequential circuit.

In the case of the δ-approximation method, the width would clearly be O(m). We
already saw that the depth, in this case, seems similar to O(log3 p), where p is the
accuracy, and evolves exponentially asm increases. That wouldmean an O(m3) depth.
The size is equivalent to the depth when U is efficiently implementable.

The comparison between the three methods can be checked in Table 3. The δ-
approximation algorithm offers an advantage in width, and even though it seems to
lose the race in terms of depth and size, we should keep in mind that, not only its
theoretical asymptotic behaviour is yet unknown, but its efficiency depends on some
parameters that are yet to be optimized, so the approximation in Fig. 14 is based on a
particular case.

5.4 Inexact states

Another reasonable concern is the algorithm’s behaviour when not every component
is exact. How an error in the preparation of the eigenvector evolves through the DA
circuit is summarized in the following result.

Theorem 6 In the DA for geometric QADS, suppose |ϕ0〉 is the exact eigenvector of U,
with eigenvalue eiβ , that we are interested in, but the initial inexact state |ψ〉 satisfies
|〈ϕ0|ψ〉|2 = 1 − δ. If D̃A(m, gg, |ψ〉,U , α) is the new probability of error of the DA
initialized in |ψ〉, then:
• If DA(m, gg, β − α) ≤ D̃A(m, gg, |ψ〉,U , α), then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ < δ2. (2)

• If DA(m, gg, β − α) > D̃A(m, gg, |ψ〉,U , α), then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ < 4(δ − δ2). (3)

In 3, the theorem is proven and a further study of bound (3) is done, which shows
that a more realistic bound would be 3.428δ − 3.093δ2. However, from Lemma 2 (in
3) we can see that, if λk are the eigenvalues of U , with λ0 = β, then ∀k > 0,
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• if λk = β, then
∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ = 0;

• if λk = β ±π/(2m −1), then
∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣might

rise to 3.428δ − 3.093δ2;
• ifλk = β±π/2m−1, then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ ≤ 2δ−δ2.

As we can see, the greatest error is caused when all eigenvalues fall under the
second case, and, if we are aware of this situation, it can be avoided completely by just
using one less qubit. Also, we are working with the difference between two functions,
so even in that worst-case scenario, the bound would be approached in a very small
range of values of α, and usually for α ≈ β, when the algorithms have almost perfect
accuracy, so the error would have a less worrying effect. Finally, since this is an error
on DA(m, gg, β −α), which is a probability function, a different probability does not
imply a different outcome; there is still the chance of getting the correct result anyway
and, therefore, the error would have no consequences.

Nevertheless, it is obvious that a deeper study on this propagation for the IC and
beyond is necessary and will be addressed in future works, as well as considering other
types of errors.

6 Conclusions and future work

In this work, we deepen the study of the QADS framework introduced in [2], and
extended in [11]. QADS, beyond their original detection purpose, have proven to be
also useful in some practical applications related to phase estimation of eigenvalues
of a unitary matrix.

We have introduced the new family of functional QADS, and studied basic prop-
erties, such as the amplitude of the initial state at the end of the circuit, or finding
conditions for them to have a δ-detecting time. In addition, the class of geometric
QADS has been shown to be especially suitable for applications, and the explanation
of the Quantum Fourier Transformation. For instance, geometric QADS are optimal
for the decision algorithm on an eigenvalue of a unitary matrix for a fixed number of
qubits and for a fixed number of 2n − 1 operations.

In future works, we want to explore more applications of functional QADS, and
study variations of those here introduced. For instance, a change on the initial or
final Hadamard gates by other rotations like QFT, which would lead to other known
algorithms like the Quantum Phase Estimation.

Also, the δ-approximation algorithm deserves a more thorough study in future
works. There are still some possible improvements to be made, as well as optimizing
the selection of certain variables that affect its accuracy and size, such as the factor
that separates every δi from δi+1 or the number of operations invested in finding α0.
Using the algorithm as a way of improving the accuracy of any given phase estimation
method is also worth studying. Although it shows competitive results when only short
circuits can be executed, a theoretical distribution for this algorithm would be really
helpful for comparisons with other phase estimation methods and for studying the
propagation of errors in the circuit, and will be explored in future works.
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Appendix A: Proofs

A.1.: Results in Sect. 3.

Proposition 1 Every m-functional QADS is indeed a QADS.

Proof If f ≡ 0, we have U f |ϕ0〉 = |ϕ0〉, so the controlled U f have no effect on the
initial state. As the Hadamard gates cancel out, the initial state is always fixed when
f ≡ 0. ��
Proposition 2 • Extension, inversion, powers and roots of m-functional QADS are

also m-functional QADS.
• The product of m-functional QADS built from the same original QADS is also an
m-functional QADS.

• The product of m-functional QADS built from different original QADS is also an
m-functional QADS, as long as they share the initial state and the function g, and
the detecting operators involved commute with each other.

Proof Extension and inversion are trivial to verify. Powers are easily verified: a func-
tional QADS to the k-th power is equivalent to setting gp(n) = k · g(n); analogously
for roots with gr (n) = g(n)/k.

In the case of the product of two m-functional QADS built from the same original
QADS, if g1 and g2 are the functions of the m-functional QADS, the resulting g
function would be g(n) = g1(n) + g2(n).
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For products ofm-functional QADS built from different original QADS, the result-
ing m-functional QADS would feature the operator U f V f , and the same function g.
Notice that we need tomake sure that both matrices commute, so that we can commute
the controlled gates and transform Ug(n)

f · V g(n)
f into (U f V f )

g(n). ��

Theorem 1 Givenanm-functionalQADS, theamplitudeof the state F(m,U f , g)|0〉⊗m |ϕ0〉
associated to the basis state |0〉⊗m |ϕ0〉 is

1

2m

2m−1∑

x=0

〈ϕ0|UB
f |ϕ0〉,

where B = ∑m−1
i=0 xi g(i) and x = x0 + 2x1 + ... + 2m−1xm−1 with xi ∈ {0, 1},∀i =

0, ...,m − 1.

Proof The circuit first applies H⊗m to the initial state:

|0〉⊗m |ϕ0〉 −→ 1√
2m

2m−1∑

x=0

|x〉|ϕ0〉

Afterwards, the sequence of controlled U f are applied. In order to check the
behaviour of every qubit independently, we decompose x in its binary expansion:
x = x0 + 2x1 + ...+ 2m−1xm−1 with xi ∈ {0, 1},∀i = 0, ...,m − 1. For each x ,U f is
going to be applied g(i) times only if xi = 1. Consequently,U f is going to be applied
B = ∑m−1

i=0 xi g(i) times.

1√
2m

2m−1∑

x=0

|x〉|ϕ0〉 −→ 1√
2m

2m−1∑

x=0

|x〉UB
f |ϕ0〉

Now, the amplitude related to the basis state |0〉⊗m |ϕ0〉 is:

〈ϕ0|〈0|⊗m(H⊗m ⊗ I )

⎛

⎝ 1√
2m

2m−1∑

x=0

|x〉UB
f |ϕ0〉

⎞

⎠

=
⎛

⎝ 1√
2m

2m−1∑

y=0

〈ϕ0|〈y|
⎞

⎠

⎛

⎝ 1√
2m

2m−1∑

x=0

|x〉UB
f |ϕ0〉

⎞

⎠ =

= 1

2m

2m−1∑

x=0

〈ϕ0|UB
f |ϕ0〉.

��
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Theorem 2 Let m > 0, M = 2m and G = ∑m−1
i=0 g(i) for a given function g. If

T : N → N is a δT -detecting time such that 1 − δT < 1/M, and T (k) > M − 1,

then any m-functional QADS of size G ≤ MT (k)
T (k)+1−M will have S(k) =

⌊
T (k)
G

⌋
as a

δS-detecting time, where δS = 1 − M(1 − δT ).

Proof If Uc denotes the detecting operator of the functional QADS, and U f is the
detecting operator of the QADS it is based on,

S(k)∑

s=0

∣
∣〈ψ0|Us

c |ψ0〉
∣
∣2

S(k) + 1
=

S(k)∑

s=0

∣
∣
∣
∣
1

M

M−1∑

x=0
〈ϕ0|UsB

f |ϕ0〉
∣
∣
∣
∣

2

S(k) + 1
.

The numerator can be simplified by the following inequality.

∣
∣
∣
∣
∣

M∑

i=1

xi

∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣

M∑

i=1

xi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

M∑

i=1

xi

∣
∣
∣
∣
∣
≤

(
M∑

i=1

|xi |
)(

M∑

i=1

|xi |
)

=
(

M∑

i=1

|xi |
)2

≤ M
M∑

i=1

|xi |2

The last inequality follows from 0 ≤ (a − b)2 ⇒ 2ab ≤ a2 + b2.

S(k)∑

s=0

∣
∣
∣
∣

M−1∑

x=0
〈ϕ0|UsB

f |ϕ0〉
∣
∣
∣
∣

2

M2(S(k) + 1)
≤

S(k)∑

s=0

M−1∑

x=0

∣
∣
∣〈ϕ0|UsB

f |ϕ0〉
∣
∣
∣
2

M(S(k) + 1)
=

M−1∑

x=0

�T (k)/G�∑

s=0

∣
∣
∣〈ϕ0|UsB

f |ϕ0〉
∣
∣
∣
2

M
(⌊

T (k)
G

⌋
+ 1

)

For a fixed x ,

m−1∑

i=0

xi g(i) ≤ G ⇒ s
m−1∑

i=0

xi g(i) ≤ S(k) · G ≤ T (k),

and since no powers are repeated, the summation from 0 to T (k) only adds positive
terms to the numerator, so

M−1∑

x=0

�T (k)/G�∑

s=0

∣
∣
∣〈ϕ0|UsB

f |ϕ0〉
∣
∣
∣
2

M
(⌊

T (k)
G

⌋
+ 1

) ≤
M−1∑

x=0

T (k)∑

t=0

∣
∣
∣〈ϕ0|Ut

f |ϕ0〉
∣
∣
∣
2

M
(⌊

T (k)
G

⌋
+ 1

) .

For the denominator, it is enough if we notice that

M

(
T (k)

G
+ 1

)

≥ T (k) + 1 ⇔ T (k)

G
≥ T (k) + 1

M
− 1 ⇔ G ≤ MT (k)

T (k) + 1 − M
.
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Therefore, the hypothesis of the theorem allow us to conclude

M−1∑

x=0

T (k)∑

t=0

∣
∣
∣〈ϕ0|Ut

f |ϕ0〉
∣
∣
∣
2

M
(⌊

T (k)
G

⌋
+ 1

) ≤
M−1∑

x=0

T (k)∑

t=0

∣
∣
∣〈ϕ0|Ut

f |ϕ0〉
∣
∣
∣
2

T (k) + 1
≤

M−1∑

x=0

(1 − δT ) = M(1 − δT ) ≤ 1.

Finally, from 1 − δS = M(1 − δT ), we get δS = 1 − M(1 − δT ). ��

A.2.: Results in Sect. 4.

Theorem 3 Under the promise that U |ϕ0〉 = eiβ |ϕ0〉, given an angle α and any
m-functional QADS for U, the probability of a positive outcome from the decision
algorithm when β �= α is

DA(m, g, β − α) :=
m−1∏

n=0

cos2
(

g(n)
β − α

2

)

.

Proof Let V be a unitary matrix such that V |ϕ0〉 = e−iαU |ϕ0〉 = ei(β−α)|ϕ0〉. If we
denote θ = β − α, we have the following probability of a positive outcome.

∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

x=0

〈ϕ0|V B |ϕ0〉
∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

x=0

eiθ
∑

x j g( j)

∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣

1

2m

2m−1−1∑

x=0

(
eiθ

∑
x j g( j) + eiθ

∑
(2m−1−x) j g( j)

)
∣
∣
∣
∣
∣
∣

2

.

We will now use the following property.

eia + eib = cos a + cos b + i(sin a + sin b) = 2 cos

(
a + b

2

)

cos

(
a − b

2

)

+2i sin

(
a + b

2

)

cos

(
a − b

2

)

= 2 cos

(
a − b

2

)

ei
a+b
2 .

In our particular case, a + b = [∑
x j g( j) + ∑

(2m − 1 − x) j g( j)
]
θ .

Since, x and 2m − 1 − x have complementary binary digits, we get
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[∑
x j g( j) + ∑

(2m − 1 − x) j g( j)
]
θ = ∑

g( j)θ , and so

∣
∣
∣
∣
∣
∣

1

2m

2m−1−1∑

x=0

(
eiθ

∑
x j g( j) + eiθ

∑
(2m−1−x) j g( j)

)
∣
∣
∣
∣
∣
∣

2

=

=
∣
∣
∣
∣
∣
∣

1

2m
eiθ

∑
g( j)

2m−1−1∑

x=0

2 cos

(∑
x j g( j) − ∑

(2m − 1 − x) j g( j)

2
θ

)
∣
∣
∣
∣
∣
∣

2

=

=
∣
∣
∣
∣
∣
∣

1

2m−1

2m−1−1∑

x=0

cos

(∑
x j g( j) − ∑

(2m − 1 − x) j g( j)

2
θ

)
∣
∣
∣
∣
∣
∣

2

. (A.1)

Next, we simplify the sum with the same procedure. We will use that 2m − 1 −
(2m−1 − 1 − x) = 2m − 2m−1 + x = 2 · 2m−1 − 2m−1 + x = 2m−1 + x . Hence,

2m−2−1∑

x=0

[

cos

(∑
x j g( j) − ∑

(2m − 1 − x) j g( j)

2
θ

)

+ cos

(∑
(2m−1 − 1 − x) j g( j) − ∑

(2m−1 + x) j g( j)

2
θ

)]

=
2m−2−1∑

x=0

2 cos

(∑
x j g( j) + ∑

(2m−1 − 1 − x) j g( j) − [∑
(2m − 1 − x) j g( j) + ∑

(2m−1 + x) j g( j)
]

4
θ

)

·

· cos
(∑

x j g( j) + ∑
(2m−1 + x) j g( j) − [∑

(2m − 1 − x) j g( j) + ∑
(2m−1 − 1 − x) j g( j)

]

4
θ

)

We focus on the first cosine. For
∑

x j g( j)+∑
(2m−1 − 1− x) j g( j), their binary

components are complementary except for the (m−1)-th, which is 0 for both (they are
lower than 2m−1). This means that

∑
x j g( j) +∑

(2m−1 − 1− x) j g( j) = ∑
g( j) −

g(m − 1). For
∑

(2m − 1− x) j g( j) + ∑
(2m−1 + x) j g( j), their binary components

are complementary except for the (m−1)-th, which is 1 for both (they are greater than
2m−1). Therefore,

∑
(2m −1− x) j g( j)+∑

(2m−1 + x) j g( j) = ∑
g( j)+ g(m−1).

Hence, the first cosine is

cos

(∑
g( j) − g(m − 1) − [∑

g( j) + g(m − 1)
]

4
θ

)

= cos

(

g(m − 1)
θ

2

)

.

Now we focus on the second cosine. For
∑

x j g( j) + ∑
(2m−1 + x) j g( j), they

share every binary component except for the (m−1)-th. This implies that
∑

x j g( j)+∑
(2m−1+x) j g( j) = 2

∑
x j g( j)−g(m−1). For

∑
(2m −1−x) j g( j)+∑

(2m−1−
1 − x) j g( j), they share every binary component except for the (m − 1)-th. Hence,∑

(2m−1−x) j g( j)+∑
(2m−1−1−x) j g( j) = 2

∑
(2m−1−1−x) j g( j)−g(m−1).
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Therefore, the second cosine is

cos

(
2
∑

x j g( j) − g(m − 1) − [
2
∑

(2m−1 − 1 − x) j g( j) − g(m − 1)
]

4
θ

)

=

= cos

(∑
x j g( j) − ∑

(2m−1 − 1 − x) j g( j)

2
θ

)

.

Consequently, the whole sum is

2 cos

(

g(m − 1)
θ

2

) 2m−2−1∑

x=0

cos

(∑
x j g( j) − ∑

(2m−1 − 1 − x) j g( j)

2
θ

)

.

The same process can be repeated with the remaining terms. After other m − 2
times, we are left with

2m−1
m−1∏

n=1

cos

(

g(n)
θ

2

) 0∑

x=0

cos

(∑
x j g( j) − ∑

(2 − 1 − x) j g( j)

2
θ

)

=

= 2m−1
m−1∏

n=1

cos

(

g(n)
θ

2

)

cos

(−g(0)

2
θ

)

= 2m−1
m−1∏

n=0

cos

(

g(n)
θ

2

)

.

We only have to update the result in (A.1) to get the final formula

∣
∣
∣
∣
∣

1

2m−1 2
m−1

m−1∏

n=0

cos

(

g(n)
θ

2

)∣
∣
∣
∣
∣

2

=
m−1∏

n=0

cos2
(

g(n)
β − α

2

)

.

��
Theorem 4 Under the promise that U |ϕ0〉 = eiβ |ϕ0〉 and given α and an m-geometric
QADS for U, the probability of a positive outcome from the decision algorithm when
β �= α is

DA(m, gg, β − α) = 1 − cos(2m(β − α))

22m(1 − cos(β − α))
.

Proof The initial probability of a positive outcome (using Corollary 1) for θ = β − α

is the geometric series

∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

x=0

eiθx

∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣

1 − eiθ2
m

2m(1 − eiθ )

∣
∣
∣
∣
∣

2

.

Now, we apply the following property.
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∣
∣
∣1 − eiγ

∣
∣
∣
2 = |1 − cos γ − i sin γ |2 = (1 − cos γ )2 + sin2 γ = 2 − 2 cos γ

= 2(1 − cos γ ).

The result is

∣
∣1 − eiθ2

m ∣
∣2

22m
∣
∣1 − eiθ

∣
∣2

= 1 − cos(2m(β − α))

22m(1 − cos(β − α)).

��
In order to prove the DA-optimality of the m-geometric QADS for a fixed m, we

introduce two auxiliary results.

Lemma 1

a∏

n=0

cos tn = 1

2a

2a−1∑

x=0

cos
a∑

n=0

(−1)xn tn,

where x = x0 + 2x1 + ... + 2axa with xi ∈ {0, 1},∀i = 0, ..., a.

Proof We will prove this result by induction on a. For a = 0, the formula is trivial:
cos t0 = cos(−1)0t0. Now, we assume

a−1∏

n=0

cos tn = 1

2a−1

2a−1−1∑

x=0

cos
a−1∑

n=0

(−1)xn tn

Then,

a∏

n=0

cos tn = cos ta

a−1∏

n=0

cos tn = 1

2a−1

2a−1−1∑

x=0

cos ta cos
a−1∑

n=0

(−1)xn tn =

= 1

2a

2a−1−1∑

x=0

cos

(

ta +
a−1∑

n=0

(−1)xn tn

)

+ cos

(

ta −
a−1∑

n=0

(−1)xn tn

)

.

Now, we notice that x < 2a−1 so xa−1 = 0, and if xi is the complementary of xi ,
then

a−1∑

n=0

−(−1)xn =
a−1∑

n=0

(−1)xn =
a−1∑

n=0

(−1)(2
a−1−x)n .

Applying this to the previous formula, we obtain
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1

2a

2a−1−1∑

x=0

cos
a∑

n=0

(−1)xn tn + cos
a∑

n=0

(−1)(2
a−1−x)n tn .

And since x represents all the numbers from 0 to 2a−1−1, and 2a−1−x represents
all the numbers from 2a−1 to 2a − 1, it leads us to:

a∏

n=0

cos tn = 1

2a

2a−1∑

x=0

cos
a∑

n=0

(−1)xn tn .

��
Notice that x < 2a implies xa = 0. Now, we can prove the second auxiliary result.

Proposition 3 Given a natural function g : N −→ N,

∫ π

0
DA(m, g, t) dt = π

2m
+

m∑

i=1

ciπ

2m−1+i
,

where ci is the number of equations of the form g(n1)± g(n2)± . . .± g(ni ) = 0, with
n1 < n2 < . . . < ni < m, that g satisfies.

Proof

∫ π

0
DA(m, g, t) dt =

∫ π

0

m−1∏

n=0

cos2
(

g(n)
t

2

)

dt = 1

2m

∫ π

0

m−1∏

n=0

(1 + cos g(n)t) dt =

= π

2m
+ 1

2m

m∑

i=1

Mi∑

j=1

∫ π

0

i∏

k=1

cos g(ni, j,k)t dt,

where Mi = (m
i

)
, and each ni, j,k represents the k-th element of the j-th subset of

{0, 1, . . . ,m−1} of size i (there are Mi different subsets of size i). Now, we can apply
Lemma 1:

π

2m
+

m∑

i=1

1

2m−1+i

Mi∑

j=1

2i−1−1∑

x=0

∫ π

0
cos

i∑

k=1

(−1)xk−1g(ni, j,k)t dt .

Since g(n) ∈ N, the integrals of the cosines from 0 to π will be 0 always, except
when

∑i
k=1(−1)xk−1g(ni, j,k) = 0. Then, the cosines would be equal to 1, and the
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value of the integral equal to π . Without loss of generality, we can assume that the
coefficient of the first g(n1) in each equation is 1, and therefore, for each i ,

{
i∑

k=1

(−1)xk−1g(ni, j,k) = 0

∣
∣
∣
∣
∣

j ∈ [1, Mi ], x ∈ [0, 2i−1 − 1]
}

=

= {g(n1) ± g(n2) ± . . . ± g(ni ) = 0, such that n1 < n2 < . . . < ni < m},

which can be straightforwardly proved by double inclusion. Finally,

π

2m
+

m∑

i=1

1

2m−1+i

Mi∑

j=1

2i−1−1∑

x=0

∫ π

0
cos

i∑

k=1

(−1)xk−1g(ni, j,k)t dt = π

2m
+

m∑

i=1

ciπ

2m−1+i
,

where ci is the number of equations of the form g(n1) ± g(n2) ± . . . ± g(ni ) = 0,
with n1 < n2 < . . . < ni < m, that g satisfies. ��

We are now ready to prove the final theorem.

Theorem 5 The m-geometric QADS is DA-optimal for any fixed m. Moreover, among
those m-functional QADS which are DA-optimal for m, m-geometric QADS have the
smallest size.

Proof Using Proposition 3, the optimality is almost immediate just by noticing that,
in the case of an m-geometric QADS, ci = 0, ∀i .

If we try to build a DA-optimal algorithm with the smallest possible size, we start
by g(0) = 1. We cannot set g(0) = 0, since that would imply c1 > 0. Now, g(1) must
be different in order to avoid that g(0)− g(1) = 0, so the smallest choice is g(1) = 2.
In order to avoid that g(0) + g(1) − g(2) = 0, we must take g(2) = 4. If we keep the
process going, we obtain the m-geometric QADS. ��

A.3.: Results in Sect. 5.

In order to prove Theorem 6, we will start by a useful lemma.

Lemma 2 Under the conditions of Theorem 6, for θk = λk − α and ψk = ψk =
|〈ϕk |ψ〉|2,

D̃A(m, g, |ψ〉,U , α) =
∣
∣
∣
∣
∣
∣

2d−1∑

k=0

eiθk
∑

g( j)
√
DA(m, g, θk)ψk

∣
∣
∣
∣
∣
∣

2

.

Proof We will apply V = e−iαU = ∑2d−1
k=0 e−iθk |ϕk〉〈ϕk | in the circuit so, again, the

probability of a positive outcome is
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∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

x=0

〈ψ |V B |ψ〉
∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣

1

2m

2m−1∑

x=0

2d−1∑

k=0

〈ψ |
(
eiθk B |ϕk〉〈ϕk |

)
|ψ〉

∣
∣
∣
∣
∣
∣

2

=
∣
∣
∣
∣
∣
∣

1

2m

2d−1∑

k=0

⎛

⎝
2m−1∑

x=0

eiθk
∑

x j g( j)

⎞

⎠ψk

∣
∣
∣
∣
∣
∣

2

.

The rest of the proof is easily deduced by repeating the exact same process of
Theorem 3 but without ever applying | · |2. ��
Theorem 6 In the DA for geometric QADS, suppose |ϕ0〉 is the exact eigenvector of U,
with eigenvalue eiβ , that we are interested in, but the initial inexact state |ψ〉 satisfies
|〈ϕ0|ψ〉|2 = 1 − δ. If D̃A(m, gg, |ψ〉,U , α) is the new probability of error of the DA
initialized in |ψ〉, then:
• If DA(m, gg, β − α) ≤ D̃A(m, gg, |ψ〉,U , α), then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ < δ2. (A.2)

• If DA(m, gg, β − α) > D̃A(m, gg, |ψ〉,U , α), then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ < 4(δ − δ2). (A.3)

Proof We are assuming 〈ϕ0|ψ〉2 = ψ0 = 1− δ, and we know that
∑

ψk = 1, so this
is a summary of the available information.

ψ0 = 1 − δ, (A.4)
2d−1∑

k=1

ψk = δ, (A.5)

2d−1∑

k=1

ψ2
k ≤ δ2, (A.6)

0 ≤ DA(m, g, t) ≤ 1. (A.7)

The next step is to apply Lemma 2 for geometric QADS. For case 1, we proceed
as follows.

D̃A(m, gg, |ψ〉,U , α) =
∣
∣
∣
∣
∣
∣

2d−1∑

k=0

eiθk (2
m−1)

√
DA(m, gg, θk)ψk

∣
∣
∣
∣
∣
∣

2

≤

≤
2d−1∑

k=0

∣
∣
∣eiθk (2

m−1)
√
DA(m, gg, θk)

∣
∣
∣
2
ψ2
k =

2d−1∑

k=0

DA(m, gg, θk)ψ
2
k (A.8)
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Now, if DA(m, gg, β − α) ≤ D̃A(m, gg, |ψ〉,U , α), then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣

= D̃A(m, gg, |ψ〉,U , α) − DA(m, gg, β − α) ≤

≤
2d−1∑

k=0

DA(m, gg, θk)ψ
2
k − DA(m, gg, β − α)

=
2d−1∑

k=1

DA(m, gg, θk)ψ
2
k − DA(m, gg, β − α)(1 − ψ2

0 ).

Applying A.6 and A.7, we obtain

2d−1∑

k=1

DA(m, gg, θk)ψ
2
k − DA(m, gg, β − α)(1 − ψ2

0 )≤
2d−1∑

k=1

ψ2
k − 0(1 − ψ2

0 )≤δ2.

(A.9)

However, since in (A.8) the equality is only reached when λi = λ j ,∀i, j , but in
(A.9) the equality is only reached when either λk = β + 2qπ/2m �= β, for all k �= 0;
or λk = β − 2qπ/2m �= β, for all k �= 0 and for some q ∈ {1, . . . , 2m − 1}, both
conditions cannot be met simultaneously. Therefore,

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ < δ2.

For the second bound, D̃A(m, gg, |ψ〉,U , α) is going to appear with a negative
sign, so we have to obtain a lower bound. We start by rewriting it.

D̃A(m, gg, |ψ〉,U , α) =
∣
∣
∣
∣
∣
∣

2d−1∑

k=0

(

eiθk (2
m−1)

m−1∏

n=0

cos θk2
n−1

)

ψk

∣
∣
∣
∣
∣
∣

2

=

=
∣
∣
∣
∣
∣
∣
ei(β−α)(2m−1)

√
DA(m, gg, β − α)ψ0 +

2d−1∑

k=1

eiθk (2
m−1)

√
DA(m, gg, θk)ψk

∣
∣
∣
∣
∣
∣

2

.

Our objective is to make this value as low as possible in order to find the error of the
worst case. We already have a vector, ei(β−α)(2m−1), that we cannot adjust, ‘pushing’
towards one direction. So, under the natural assumption of δ < 1/2, our best shot
for decreasing the vector length is to make every other vector ‘pull’ in the opposite
direction. That is, for all k,

(λk − α)(2m − 1) = (β − α)(2m − 1) ± π ⇔ λk = β ± π

2m − 1
. (A.10)
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Also, we substitute the associated coefficients by 1, their highest possible value.
Then, by virtue of (A.4) and (A.5), we obtain

∣
∣
∣
∣
∣
∣
ei(β−α)(2m−1)

√
DA(m, gg, β − α)ψ0 +

2d−1∑

k=1

eiθk (2
m−1)

√
DA(m, gg, θk)ψk

∣
∣
∣
∣
∣
∣

2

≥

≥
∣
∣
∣
∣
∣
∣
ei(β−α)(2m−1)

√
DA(m, gg, β − α)ψ0 − ei(β−α)(2m−1)

2d−1∑

k=1

ψk

∣
∣
∣
∣
∣
∣

2

=

=
(√

DA(m, gg, β − α)(1 − δ) − δ
)2

.

Notice that both terms of the subtraction have turned into positive real numbers.
Now, if DA(m, gg, β − α) > D̃A(m, gg, |ψ〉,U , α). Then

∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣

= DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α) ≤
≤ DA(m, gg, β − α) −

(√
DA(m, gg, β − α)(1 − δ) − δ

)2
=

= DA(m, gg, β − α) − DA(m, gg, β − α)(1 − 2δ + δ2)

+2(δ − δ2)

√
DA(m, gg, β − α) − δ2 =

= 2
(
DA(m, gg, β − α) +

√
DA(m, gg, β − α)

)
δ −

(√
DA(m, gg, β − α) + 1

)2
δ2.

If we define f (x) = 2(x + √
x)δ − (

√
x + 1)2δ2, then f ′(x) = 0 if and only if

2δ
√
x + δ − δ2

√
x − δ2 = 0 ⇔ (2 − δ)

√
x = δ − 1 ⇔ √

x = δ − 1

2 − δ
< 0 #

This means that the maximum of this expression is found in one of the endpoints.
In this case, for DA(m, gg, β − α) = 1. Therefore,

2
(
DA(m, gg, β − α) +

√
DA(m, gg, β − α)

)
δ

−
(√

DA(m, gg, β − α) + 1
)2

δ2 ≤ 4(δ − δ2).

However, we deduced this bound by assuming that DA(m, gg, β − α) =
DA(m, gg, λk − α) = 1, which is only possible if β = α = λk . But, if that was the
case, then from the equation in Lemma 2 it is easy to see that D̃A(m, gg, |ψ〉,U , α) =
DA(m, gg, β − α) and the error would be 0. Thus, the bound is never reached and
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∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ < 4(δ − δ2).

��
In order to study the second bound further, let us come back to (A.10). But now, the

option that makes DA
(
m, gg, β − α ± π

2m−1

)
greater for each α will be called λ(α).

Then we obtain

∣
∣
∣
∣
∣
∣
ei(β−α)(2m−1)

√
DA(m, gg, β − α)ψ0 +

2d−1∑

k=1

eiθk (2
m−1)

√
DA(m, gg, θk)ψk

∣
∣
∣
∣
∣
∣

2

≥

≥
(√

DA(m, gg, β − α)(1 − δ) −
√
DA(m, gg, λ(α) − α)δ

)2
.

And, following the same procedure,

2
∣
∣DA(m, gg, β − α) − D̃A(m, gg, |ψ〉,U , α)

∣
∣ ≤

2 ≤ 2
(
DA(m, gg, β − α) +

√
DA(m, gg, β − α)DA(m, gg, λ(α) − α)

)
δ −

2 −
(√

DA(m, gg, β − α) +
√
DA(m, gg, λ(α) − α)

)2
δ2.

A numerical study shows that the maximum of this expression is reached really
close to β − α = π/2m+2. Then, from Theorem 4 we can deduce that

lim
m→∞DA

(
m, gg,

π

2m+2

)
= 16(2 − √

2)

π2 ,

lim
m→∞DA

(

m, gg,
π

2m+2 − π
2m−1

)

= 16(2 + √
2)

9π2 .

Also, the limit is approached from below. This means that the bound for this point
would be approximately 3.428δ − 3.093δ2.

Appendix B: Design rationale of the practical applications

B.1.: Decision on an interval

In order to calculate the probability of error of this algorithm, notice that the DA
follows a Bernoulli distribution. Therefore, the distribution of its expected value Pα

can be approximated by a normal distribution:
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Fig. 22 Probability of error of the decision on an interval algorithm for the combinatorial, linear and
geometric QADS for a fixed G = 31, sample size of 1000 and δ = 0.2

Xn − μ

σ/
√
n

= Xn − p√
p(1 − p)/n

−−−→
n→∞ N (0, 1).

Using this approximation, we compute the probability of error of the whole algo-
rithm for any β − α, as shown in Figs. 8 and 9.

Sometimes, when m is not suitably chosen depending on δ, the geometric
QADS may develop unacceptable probabilities of error. This is due to the fact that
DA(m, gg, t), as shown in Fig. 7, is not decreasing on every point, and Pδ might be
greater than Pα , despite β being in [α−δ, α+δ]. An example of this behaviour can be
seen in Fig. 22. A simple solution is the use of linear QADS whenever the necessary
conditions for the geometric QADS towork correctly cannot be verifiedwith certainty.
In this direction, notice that the geometric QADS gives 0 in every point of the form
2π/2m , and Pδ should be greater than the probability on the first peak, which is near

|β − α| = 2π

2m
+ 2π

2m+1 = 3π

2m

So, finding the greatest m such that Pδ is well greater than this probability, would
provide the smallest error probability for the geometric QADS.

B.2.: Interval correction (IC)

In this algorithm, the case Pα ≈ Pδ is treated differently, assuming that β is near one
of the endpoints of the interval. Such an endpoint is found by selecting a geometric
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QADS, and a proper mg such that

2π

2mg
≈ 2δ ⇔ mg ≈ log2

(π

δ

)
.

With this choice the probability of a positive outcome on the correct endpoint is
near 1, and the probability of a negative outcome on the incorrect endpoint is near
0, so the right endpoint will be probably found with just one DA. Anyway, the DA
can be repeated on both endpoints for extra confidence. This procedure considerably
improves the probability of error, while adding two extra runs of a DA. With this
new approach, we will consider two reference probabilities. Let us take d1 < δ and
d2 > δ. We will apply the previous strategy whenever Pα falls between both reference
probabilities: Pd1 := DA(m, g, d1) and Pd2 := DA(m, g, d2). The selection of d1 and
d2 (which may yield remarkable differences) will be discussed later, as the closer they
are, the bigger the probability of error around |β − α| = δ. We can proceed now to
calculate the probability of error for the three possible cases.
Case 1: |β − α| ≤ δ. The probability of error will have two independent components.
First, when Pα ≤ Pd2 , because then the algorithm would discard the interval. As we
already noticed,

Pα −−−→
n→∞ N

(

p,

√
p(1 − p)

n

)

,

being p = DA(m, g, β − α). Second, when Pd2 ≤ Pα ≤ Pd1 , and the change of
interval leaves β outside. This happens when the geometric QADS-based DA gives
the wrong answer on both endpoints of the interval. Because of Theorem 4, the error
probabilities at the endpoints would be

1 − 1 − cos(2m(δ − |β − α|))
22m(1 − cos(δ − |β − α|) and

1 − cos(2m(δ + |β − α|))
22m(1 − cos(δ + |β − α|)) .

The total probability of error in this case is

P(Pα ≤ Pd2) + P(Pd2 < Pα ≤ Pd1) ·
(

1 − 1 − cos(2m(δ − |β − α|))
22m(1 − cos(δ − |β − α|))

)

· 1 − cos(2m(δ + |β − α|))
22m(1 − cos(δ + |β − α|))

Case 2: δ < |β − α| ≤ 2δ. The probability of error in this case is analogous to the
Case 1, except for the first error probability. Here, Pα > Pd1 would yield a wrong
acceptance of the given interval.

P(Pα > Pd1) + P(Pd2 < Pα ≤ Pd1) ·
(

1 − 1 − cos(2m(δ − |β − α|))
22m(1 − cos(δ − |β − α|))

)
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· 1 − cos(2m(δ + |β − α|))
22m(1 − cos(δ + |β − α|))

Case 3: 2δ < |β − α|. Here, if Pd2 ≤ Pα ≤ Pd1 , no matter which is the new interval,
it will not contain β anymore. Therefore, the probability of error is just P(Pα > Pd2).

Finally, let us discuss the best choice of d1 and d2 in order tominimize themaximum
of the error probability. Let us write d1 = cδ, where c ∈ (0, 1), and take Pd2 =
2Pδ − Pd1 . This choice ensures the existence of the limit of the previously discussed
probability of error when t → δ, so that the function is continuous on t = δ. In other
words, it ensures that P(Pα > Pd1) = P(Pα ≤ Pd2) when |β − α| = δ, correctly
linking cases 1 and 2.

Now, c will be adjusted up to two decimals. Notice that, for c = 1, the maximum
probability of error occurs at t = δ, and it decreases with smaller values of c. So, we
just have to find the greatest c such that this maximum is not at t = δ. All of this
setting does not depend on β and hence can be prepared classically. As above, the
geometric QADS will yield wrong outputs when δ and m are not correctly chosen.

B.3.: ı-Approximation algorithm

The algorithm consists of two parts: finding the first [α0 − δ0, α0 + δ0], and checking
intervals of decreasing length until one of the form [α − δ, α + δ] is found. Let us give
the details of both.
Selecting the initial interval. It is desirable to get α0 close to β at the beginning. To
do this, any phase estimation method can be used, but we will stick to the Hadamard
test due to its direct relation with functional QADS. We run it with m = 1, and h0
repetitions of the DA.However, if β > π , the Hadamard test will actually approximate
−β. So, once a first approximation α0 is obtained, a decision between α0 and −α0
should be taken, by an application of a geometric QADS, just like was made in the IC
for a choice between α − δ and α + δ. In this case:

mg ≈ log2

(
π

α0

)

, if α0 ≤ π

2
;

mg ≈ log2

(
π

π − α0

)

, if α0 >
π

2
.

We can also set a maximum formg since, in case α0 is really close to 0 or π (and so
to −α0, too), it is not worth investing a lot of qubits and operations to choose between
them.

For δ0, we must decide how many intervals we want to split the domain into, n0,
on each of the iterations of the algorithm, and select δ0 = nt−1

0 δ, where t represents
the number of iterations of the algorithm. Moreover, t is chosen so that the length of
the initial interval is approximately, 2π/n0:
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2δ0 = 2 · nt−1
0 δ ≈ 2π

n0
⇔ t ≈ logn0

(π

δ

)
.

All of them’s, δ0’s and c’s that are going to be used in each iteration of the algorithm
are computed classically at the beginning.
Evolving the selected interval. Now that we have the initial [α0 − δ0, α0 + δ0], we
repeatedly apply the IC n times to it. We will use geometric QADS with m, Pd1 and
Pd2 adjusted as established before, as this minimizes the probability of error for the
algorithm.

Since we assume that α0 is a nice approximation of β, if the IC outputs a negative
result, we keep trying intervals surrounding α0. For example, suppose αi = 0 and δi =
1. If i = 0, the algorithm would check [−1, 1], [0, 2], [−2, 0], [1, 3], [−3,−1], . . .;
if i �= 0, it would check [−1, 1], [1, 3], [−3,−1], [3, 5], [−5,−3], . . .. In general,
in the first iteration, after z negative results, we check the interval [A − δ0, A + δ0],
where

A = α0 + z + 1

2
δ0, if z odd;

A = α0 − z

2
δ0, if z even.

For the rest of iterations,

A = αi + (z + 1)δi , if zodd;
A = αi − zδi , if z even.

The more thorough search in the first iteration successfully avoids: (1) missing
the correct interval, and (2) giving a positive outcome on a wrong interval. Solutions
to both problems usually imply a huge number of extra operations. Another way of
dealing with (2), is to set a maximum number of failed IC on each iteration so that, if
reached, we backtrack to the previous iteration.

Once an IC decides β ∈ [A − δi , A + δi ] (maybe after a correction), we update
δi+1 = δi/n0, αi+1 = A, and proceed to the next iteration.

The choice of h0, n0 and n can affect the probability of error and the number of oper-
ations, so we can combine them as desired. We established n = 30 and, for δ ≈ 0.01,
taking h0 around 6000 and n0 around 15 seemed to be the most balanced approach.
Of course, the whole algorithm might not be fully optimal and more improvements
might be possible.
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