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Vertical Barrier Models (VBM) are a family of imprecise probability models that generalise a 
number of well known distortion/neighbourhood models (such as the Pari-Mutuel Model, the 
Linear-Vacuous Model, and others) while still being relatively simple. Several of their properties 
were established in previous works; in this paper we explore, in a finite framework, further facets 
of these models: their interpretation as neighbourhood models, the structure of their credal set 
in terms of maximum number of its extreme points, the result of merging operations with VBMs, 
the properties of their mass function, the conditions for VBMs to be belief functions or maxitive 
measures and the approximation of other models by VBMs.

1. Introduction

In a context of imprecise information, a natural procedure for determining a robust model is to consider a neighbourhood around 
some precise probability measure 𝑃0. This neighbourhood can be obtained by choosing a distance between probability measures and 
the degree of robustness we want to take into account; alternatively, we may directly transform 𝑃0 by means of a suitable distorting 
function. Whichever the procedure, the imprecise probability model that is obtained is usually referred to as a distortion model. This 
type of model has the advantage of being generally computationally more tractable and easy to explain to non-experts.

Our focus in this paper is in one of such distortion models: the Vertical Barrier Model (VBM). It was introduced in [7] within the 
larger family of Nearly-linear (NL) models. NL models perform a linear affine transformation to 𝑃0; given 𝑎 ∈ℝ, 𝑏 > 0, they determine 
a lower probability given by 𝑃 (𝐴) = 𝑏𝑃0(𝐴) + 𝑎 whenever this value belongs to [0, 1], 𝑃 (𝐴) = 0 if 𝑏𝑃0(𝐴) + 𝑎 < 0 and 𝑃 (𝐴) = 1 if 
𝑏𝑃0(𝐴) +𝑎 > 1. Vertical Barrier Models add some constraints to parameters 𝑎, 𝑏. They are the most prominent subfamily of NL models, 
because (a) they are always (coherent and) 2-monotone, and (b) they include the Pari-Mutuel Model, the Linear-Vacuous Model and 
other remarkable distortion models as special cases [7]. As such, they provide a nice balance between generality and tractability.

In the past, a number of features of VBMs were investigated [7,25–27], in the frame of NL models: in particular, formulae for 
their natural extensions are given in [27], their being stable with conditioning (i.e. conditioning a VBM on an event 𝐵 returns a 
VBM) is assessed in [25] and their dilation properties are established in [25,26].

Our objective in this paper is to complement this picture by investigating further features of VBMs. In doing this, we also relate to 
previous work discussing these aspects for partly overlapping models in [18–20], and determine the extent to which the properties 
of these particular cases are generalised.

After recalling essential preliminary notions in Section 2, we investigate in Section 3 how VBMs may be viewed as neighbourhood 
models. For this, a distorting function 𝑑VBM is introduced in Section 3.1, demonstrating some of its properties and proving that the 
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lower probability of a VBM can be obtained as the lower envelope of a neighbourhood of 𝑃0, defined by means of 𝑑VBM. Section 3.2

shows that some relevant neighbourhood models, such as the Constant Odds Ratio model, are not included into VBMs. The structure 
of the credal set of a VBM is investigated in Section 4. The main result of this section achieves a strict bound on the maximum 
number of extreme points of the credal set. Section 5 explores the behaviour of VBMs under the merging procedures of disjunction, 
conjunction and convex mixture. Section 6 investigates the properties of the Möbius inverse of a VBM. Section 7 discusses special 
VBMs. In Section 7.1, necessary and/or sufficient conditions are sought for a VBM to be (or more precisely not to be) a belief function, 
while Section 7.2 characterises those VBMs that are maxitive (or minitive). Section 8 deals with VBMs on product spaces. Finally, 
Section 9 investigates the role of VBMs in inner and outer approximations of imprecise probabilities. Our concluding comments are 
given in Section 10.

A preliminary version of this paper was presented at ISIPTA 2023 [17]. The present paper includes the discussion of the Möbius 
inverse of the lower probability of a VBM, the analysis of the multivariate case, the study of inner and outer approximations with 
VBMs, as well as additional results and examples in the other sections.

2. The Vertical Barrier Model: basic properties

Consider an arbitrary possibility space Ω. Let ℙ(Ω) denote the set of all finitely additive probability measures defined on the 
power set (Ω). We shall use ⊆ to denote inclusion and ⊂ to denote strict inclusion between events.

Vertical Barrier Models are defined as follows [7]:

Definition 1. Consider 𝑃0 ∈ ℙ(Ω) and two parameters 𝑎, 𝑏 with 𝑎 ≤ 0, 𝑏 > 0 and 𝑎 + 𝑏 ∈ [0, 1]. The corresponding Vertical Barrier 
Model (VBM) is identified by (𝑃0, 𝑎, 𝑏); its lower probability 𝑃 is given by

𝑃 (𝐴) = max{𝑏𝑃0(𝐴) + 𝑎,0} ∀𝐴⊂Ω and 𝑃 (Ω) = 1. (1)

The above definition implies that 𝑃 (∅) = 0. Note that 𝑃0({𝜔}) is not required to be strictly positive for every 𝜔; in this paper, the 
positivity assumption shall only occasionally be imposed.

As mentioned in the Introduction, VBMs are part of the family of Nearly-linear models; other members of this family are obtained 
by varying the constraints on the parameters 𝑎, 𝑏. VBMs are superior to alternative NL uncertainty measures in that they always 
satisfy 2-monotonicity:

𝑃 (𝐴 ∪𝐵) + 𝑃 (𝐴 ∩𝐵) ≥ 𝑃 (𝐴) + 𝑃 (𝐵) ∀𝐴,𝐵 ⊆Ω;

as a consequence [32, Corollary 6.3], since also 𝑃 (∅) = 0, 𝑃 (Ω) = 1, VBMs are coherent. We will use (𝑃 ) to denote the credal set
associated with 𝑃 , given by

(𝑃 ) ∶= {𝑃 ∈ ℙ(Ω) ∣ 𝑃 (𝐴) ≥ 𝑃 (𝐴) ∀𝐴⊆Ω},

and 𝑃 for the conjugate upper probability, given by 𝑃 (𝐴) = 1 − 𝑃 (𝐴𝑐) for every 𝐴 ⊆ Ω. One way to define coherence of 𝑃 , 𝑃 is to 
require that 𝑃 (𝐴) =min𝑃∈(𝑃 ) 𝑃 (𝐴) and 𝑃 (𝐴) =max𝑃∈(𝑃 ) 𝑃 (𝐴) for every 𝐴 ⊆Ω [34].

Using conjugacy, the upper probability of a VBM can be computed as

𝑃 (𝐴) = min{𝑏𝑃0(𝐴) + 𝑐,1} ∀𝐴 ≠ ∅ and 𝑃 (∅) = 0, (2)

where

𝑐 = 1 − (𝑎+ 𝑏). (3)

Observe that 𝑏𝑃0(𝐴) + 𝑐 ≥ 0 for any event 𝐴.

As shown in [27], Vertical Barrier Models include as particular cases some of the most important distortion models in the 
literature:

∙ When 𝑎 < 0 and 𝑎 + 𝑏 = 1, they correspond to the Pari-Mutuel Model (PMM) [34], whose lower probability is often written as 
𝑃
𝑃𝑀𝑀

(𝐴) =max{(1 + 𝛿)𝑃0(𝐴) − 𝛿, 0}, with 𝛿 > 0, so that 𝑎 = −𝛿, 𝑏 = 1 + 𝛿.

∙ when 𝑎 = 0 and 𝑏 < 1, they boil down to Linear-Vacuous mixtures (LV) [13];

∙ finally, when 𝑏 = 1 and 𝑎 ∈ (−1, 0) they correspond to the Total Variation model (TV) [12].

A VBM can formalise a larger variety of real-world situations than any of its just recalled special cases. One way to see this is 
to think of the behavioural interpretation of an upper probability 𝑃 (𝐴) as an infimum selling price for 𝐴. Recall that a probability 
𝑃0(𝐴) is instead a fair price for either buying or selling 𝐴 [9]. Thus, from a seller’s perspective, 𝑃 (𝐴) should ensure a loading

𝑃 (𝐴) − 𝑃0(𝐴) ≥ 0 over the fair price 𝑃0(𝐴) for every 𝐴, to guarantee gain prospects in the long run.

With the PMM, the upper probability 𝑃𝑃𝑀𝑀 (𝐴) =min{(1 + 𝛿)𝑃0(𝐴), 1} returns a loading that tends to 0 as 𝑃0(𝐴) → 0. This may 
2

conflict with the seller’s need to cover some fixed costs independent of the value of 𝑃0. In such a case, the seller may want 𝑃 (𝐴) not 
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Fig. 1. (a) Upper probability of a VBM (bold line) and of a PMM (dotted line). (b) Upper probability of a LV (bold line) and of a TV (dotted line) model.

to be lower than the value 𝑐 > 0. This can be achieved with a VBM with 𝑐 > 0, and is represented in the (𝑃0, 𝑃 ) plane by the vertical 
barrier formed by the segment with endpoints 0 and 𝑐 in the 𝑃 axis, as seen in Fig. 1(a).

A vertical barrier may be set up also with a LV model, where 𝑃𝐿𝑉 (𝐴) = 𝑏𝑃0(𝐴) + (1 − 𝑏). Here 𝑐 = 1 − 𝑏 > 0, and the loading 
(1 − 𝑏)(1 − 𝑃0(𝐴)) is decreasing as 𝑃0 increases. Alternatively, the TV model ensures a constant loading of 𝑐 = −𝑎 > 0 as long as 
𝑃𝑇𝑉 (𝐴) < 1, as seen in Fig. 1 (b).

Note however that neither a LV nor a TV model is able to simultaneously guarantee both a vertical barrier and an increasing

loading (as long as 𝑃 < 1), while a VBM can do so if 𝑏 > 1, as in Fig. 1 (a).

A result established in [27, Section 3], relating a VBM with some of its special cases and that is relevant for the sequel, is that the 
lower (or upper) probability of any VBM can be expressed as a convex combination of a PMM and a vacuous probability. Specifically, 
denote by 𝑃 (the lower probability of) a VBM (𝑃0, 𝑎, 𝑏). If 𝑎 + 𝑏 > 0, it holds that

𝑃 (𝐴) = (𝑎+ 𝑏)𝑃
𝑃𝑀𝑀

(𝐴) + (1 − (𝑎+ 𝑏))𝑃
𝑉
(𝐴) ∀𝐴, (4)

where 𝑃
𝑃𝑀𝑀

is used to denote the PMM determined by 𝑃0, 𝛿 = − 𝑎

𝑎+𝑏 and 𝑃
𝑉

denotes the vacuous lower probability, given by 
𝑃
𝑉
(𝐴) = 0 for every 𝐴 ⊂Ω and 𝑃

𝑉
(Ω) = 1. On the other hand, when 𝑎 + 𝑏 = 0 the VBM 𝑃 is equal to 𝑃

𝑉
.

It is not difficult to establish that the converse also holds:

Lemma 1. Let 𝑃
𝑃𝑀𝑀

be the PMM associated with a probability measure 𝑃0 and 𝛿 > 0, and consider 𝛼 ∈ (0, 1). Then the convex mixture 
𝑃 ∶= (1 − 𝛼)𝑃

𝑃𝑀𝑀
+ 𝛼𝑃

𝑉
is a VBM.

Proof. Clearly, 𝑃 (Ω) = 1. For 𝐴 ≠Ω, we have

𝑃 (𝐴) = (1 − 𝛼)max{(1 + 𝛿)𝑃0(𝐴) − 𝛿,0} + 𝛼𝑃
𝑉
(𝐴) = max{(1 − 𝛼)(1 + 𝛿)𝑃0(𝐴) − (1 − 𝛼)𝛿,0},

which identifies a VBM (𝑃0, 𝑎, 𝑏) with 𝑎 = −(1 − 𝛼)𝛿 < 0, 𝑏 = (1 − 𝛼)(1 + 𝛿) > 0 and 𝑎 + 𝑏 = 1 − 𝛼 ∈ (0, 1). □

While the convex mixture of a PMM and a vacuous lower probability originates a VBM, a model that is more general than both, 
the convex mixture VBM-vacuous is still a VBM. Our next result makes this explicit:

Lemma 2. Let 𝑃 be the lower probability of a VBM (𝑃0, 𝑎, 𝑏) and consider 𝛼 ∈ (0, 1). Then the convex mixture 𝑃 ′ = 𝛼𝑃 + (1 − 𝛼)𝑃
𝑉

is the 
lower probability associated with the VBM (𝑃0, 𝛼𝑎, 𝛼𝑏). Moreover, 𝑃 ′(𝐴) ≤ 𝑃 (𝐴), and consequently 𝑃

′
(𝐴) ≥ 𝑃 (𝐴) for every 𝐴 ∈ (Ω).

Proof. Trivially 𝑃 ′(Ω) = 1. For every 𝐴 ≠Ω we have that

𝑃 ′(𝐴) = 𝛼𝑃 (𝐴) + (1 − 𝛼)𝑃
𝑉
(𝐴) = max{𝛼𝑏𝑃0(𝐴) + 𝛼𝑎,0}.

Thus, 𝑃 ′ is a VBM with 𝑎′ ∶= 𝛼𝑎 < 0, 𝑏′ ∶= 𝛼𝑏 > 0, 𝑎′ + 𝑏′ = 𝛼(𝑎 + 𝑏) < 1. Moreover,

𝑃 ′(𝐴) = 0⇔ 𝑃 (𝐴) = 0⇔ 𝑃0(𝐴) ≤ −𝑎′

𝑏′
= −𝑎

𝑏
;

when instead 𝑃 ′(𝐴) ⋅ 𝑃 (𝐴) > 0, it holds that 𝑃 ′(𝐴) = 𝛼𝑏𝑃0(𝐴) + 𝛼𝑎 = 𝛼𝑃 (𝐴) < 𝑃 (𝐴). We conclude that 𝑃 ′(𝐴) ≤ 𝑃 (𝐴) for every 
3

𝐴 ∈ (Ω). □
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Lemma 2 implies that imprecision increases in the mixture VBM (𝑃0, 𝑎′, 𝑏′) compared to the initial VBM: 𝑃
′
(𝐴) − 𝑃 ′(𝐴) ≥ 𝑃 (𝐴) −

𝑃 (𝐴) ∀𝐴 ∈ (Ω).
Lemmas 1 and 2 are relevant because, as we shall establish in Section 5 later on, a mixture of VBMs will not be a VBM in general; 

it is then interesting to know about the existence of some particular mixtures that remain within the VBM family.

While the features of VBMs discussed so far obtain whatever is the cardinality (also infinite) of the possibility space Ω, most of 
the properties of VBMs to be investigated next typically require a finite environment. Therefore, in the sequel, we shall assume that 
the possibility space Ω is finite.

In this paper, we shall pay special attention to a particular case of VBMs: those we shall call non-null. A VBM is non-null when 
𝑃 (𝐴) > 0 for every 𝐴 ≠ ∅. In that case,

𝑃 (𝐴) = 𝑏𝑃0(𝐴) + 𝑎 ∀𝐴 ≠ ∅,Ω, 𝑃 (∅) = 0, 𝑃 (Ω) = 1.

It also follows from the finitary assumption on Ω that non-null VBMs can be characterised by the condition

min
𝜔∈Ω

𝑃0({𝜔}) > −𝑎

𝑏
.

3. VBMs as neighbourhood models

Distortion models appear in the literature in two forms: either as a transformation of a probability measure by means of some 
function [2–4] or as lower envelopes of neighbourhoods of a probability measure [12,13,31]. A unified procedure was presented in 
[19], showing that the first type of models can be embedded into the second by considering the neighbourhood determined by a 
suitable premetric. In this section, we show how this can be done for VBMs.

3.1. Expression in terms of a distorting function

Given a distorting function 𝑑 ∶ ℙ(Ω) ×ℙ(Ω) → [0, ∞), a probability measure 𝑃0 ∈ ℙ(Ω) and 𝛿 > 0, we define the set

𝐵𝛿
𝑑
(𝑃0) = {𝑃 ∈ ℙ(Ω) ∣ 𝑑(𝑃 ,𝑃0) ≤ 𝛿},

and call it the distortion model on 𝑃0 associated with 𝑑, 𝛿.

In this section, we shall prove that the credal set (𝑃 ) of a VBM can be obtained as the distortion model associated with some 
distorting function. Since the LV and PMM were already dealt with in [19], here we shall consider parameters 𝑎 < 0 < 𝑏 such that 
𝑎 + 𝑏 < 1. Given such parameters, let us define the function 𝑑VBM(𝑎,𝑏)

on ℙ(Ω) ×ℙ(Ω) by

𝑑VBM(𝑎,𝑏)
(𝑃 ,𝑃0) = max

𝐴⊆Ω

𝑃0(𝐴) − 𝑃 (𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

. (5)

In order to alleviate the notation, we shall denote 𝑑VBM(𝑎,𝑏)
as 𝑑VBM in the sequel, because the properties we shall establish will hold 

irrespective of the 𝑎, 𝑏 that we fix.

Lemma 3. 𝑑VBM is well-defined and takes values in [0, +∞).

Proof. To see that 𝑑VBM is well-defined, observe that (1 − 𝑏)𝑃0(𝐴) − 𝑎 > 0 for every 𝐴 ⊆Ω:

• 𝑃0(𝐴) = 0 ⇒ (1 − 𝑏)𝑃0(𝐴) − 𝑎 = −𝑎 > 0;

• 𝑃0(𝐴) = 1 ⇒ (1 − 𝑏)𝑃0(𝐴) − 𝑎 = 1 − 𝑏 − 𝑎 > 0;

• 𝑃0(𝐴) ∈ (0, 1) ⇒ 0 < 𝑎(𝑃0(𝐴) − 1) = 𝑎𝑃0(𝐴) − 𝑎 < (1 − 𝑏)𝑃0(𝐴) − 𝑎;

on the other hand, 𝑑VBM(𝑃 , 𝑃0) ≥
𝑃0(∅)−𝑃 (∅)
(1−𝑏)𝑃0(∅)−𝑎

= 0 and moreover 𝑑VBM(𝑃 , 𝑃0) is bounded using that Ω is finite. □

Let us state some properties of 𝑑VBM:

Proposition 4. Let 𝑎 < 0, 𝑏 > 0 with 𝑎 + 𝑏 < 1 and let 𝑑VBM be given by Equation (5).

(a) 𝑑VBM(𝑃 , 𝑃0) = 0 ⇔ 𝑃 = 𝑃0. [definiteness]

(b) 𝑑VBM(𝛼𝑃1 + (1 − 𝛼)𝑃2, 𝑃0) ≤max{𝑑VBM(𝑃1, 𝑃0), 𝑑VBM(𝑃2, 𝑃0)} for every 𝛼 ∈ [0, 1]. [quasiconvexity]

(c) ∀𝑃0, 𝑃1, 𝑃2 ∈ ℙ(Ω), ∀𝜖 > 0, ∃𝛿 > 0 such that if ||𝑃1 − 𝑃2|| < 𝛿 then |𝑑VBM(𝑃1, 𝑃0) − 𝑑VBM(𝑃2, 𝑃0)| < 𝜖, where || ⋅ || is the supremum 
norm, given by ||𝑃1 − 𝑃2|| =max𝐴⊆Ω |𝑃1(𝐴) − 𝑃2(𝐴)|. [continuity]

Proof. (a) Trivially, 𝑃 = 𝑃0 implies that 𝑑VBM(𝑃 , 𝑃0) = 0. Conversely, the equality 𝑑VBM(𝑃 , 𝑃0) = 0 implies that 𝑃0(𝐴) ≤ 𝑃 (𝐴) ∀𝐴 ⊆
4

Ω, which, taking into account that Ω is finite, is equivalent to 𝑃0(𝐴) = 𝑃 (𝐴) ∀𝐴 ⊆Ω.
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(b) When 𝛼 ∈ {0, 1} the thesis is trivial. Let 𝛼 ∈ (0, 1). Observe that for any event 𝐴

𝑃0(𝐴) − (𝛼𝑃1(𝐴) + (1 − 𝛼)𝑃2(𝐴))
(1 − 𝑏)𝑃0(𝐴) − 𝑎

= 𝛼
𝑃0(𝐴) − 𝑃1(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

+ (1 − 𝛼)
𝑃0(𝐴) − 𝑃2(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

,

and this sum is bounded by the maximum of 
{

𝑃0(𝐴)−𝑃1(𝐴)
(1−𝑏)𝑃0(𝐴)−𝑎

,
𝑃0(𝐴)−𝑃2(𝐴)
(1−𝑏)𝑃0(𝐴)−𝑎

}
.

(c) Define 𝑚 = min𝐴⊆Ω{(1 − 𝑏)𝑃0(𝐴) − 𝑎}. It is shown in the proof of Lemma 3 that (1 − 𝑏)𝑃0(𝐴) − 𝑎 > 0 ∀𝐴. Therefore, it is 𝑚 > 0
by the finiteness of Ω. Fix now 𝜖 > 0 and take 𝛿 ∶=𝑚𝜖. Then

|𝑑VBM(𝑃1, 𝑃0) − 𝑑VBM(𝑃2, 𝑃0)|
=
||||max
𝐴⊆Ω

𝑃0(𝐴) − 𝑃1(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

−max
𝐴⊆Ω

𝑃0(𝐴) − 𝑃2(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

||||
=
||||max
𝐴⊆Ω

𝑃0(𝐴) − 𝑃1(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

+ min
𝐴⊆Ω

𝑃2(𝐴) − 𝑃0(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

||||
=
|||||max
𝐴⊆Ω

(
𝑃0(𝐴) − 𝑃1(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

+ min
𝐴⊆Ω

𝑃2(𝐴) − 𝑃0(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

)|||||
≤
|||||max
𝐴⊆Ω

(
𝑃0(𝐴) − 𝑃1(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

+
𝑃2(𝐴) − 𝑃0(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

)|||||
=
||||max
𝐴⊆Ω

𝑃2(𝐴) − 𝑃1(𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

||||
≤
||𝑃1 − 𝑃2||

𝑚
<
𝑚𝜖

𝑚
= 𝜖,

from which the thesis follows. □

Next, we prove that 𝑑VBM is indeed the distorting function associated with the VBMs. An alternative, more complex proof could 
be made using arguments similar to those in [19,20] together with Proposition 4.

Theorem 5. Let 𝑃 be a VBM associated with a probability measure 𝑃0 and with parameters 𝑎 < 0, 𝑏 > 0 such that 𝑎 + 𝑏 < 1. Then 
(𝑃 ) =𝐵1

𝑑VBM
(𝑃0).

Proof. Consider 𝑃 ∈ ℙ(Ω). Then 𝑃 ∈𝐵1
𝑑VBM

(𝑃0) iff

𝑑VBM(𝑃 ,𝑃0) ≤ 1⇔max
𝐴⊂Ω

𝑃0(𝐴) − 𝑃 (𝐴)
(1 − 𝑏)𝑃0(𝐴) − 𝑎

≤ 1⇔ 𝑃0(𝐴) − 𝑃 (𝐴) ≤ (1 − 𝑏)𝑃0(𝐴) − 𝑎 ∀𝐴⊂Ω⇔ 𝑃 (𝐴) ≥ 𝑏𝑃0(𝐴) + 𝑎 ∀𝐴⊂Ω.

Since 𝑃 (𝐴) ≥ 0 ∀𝐴 ⊆ Ω and 𝑃 (Ω) = 𝑃 (Ω) = 1, this is equivalent to 𝑃 (𝐴) ≥ 𝑃 (𝐴) ∀𝐴 ⊆ Ω, which in turn is equivalent to 𝑃 ∈
(𝑃 ). □

Remark 1. Observe that the radius 𝛿 of the neighbourhood above is always equal to 1, and seemingly does not depend on the 
parameters 𝑎, 𝑏; this is because 𝑎, 𝑏 are incorporated in the definition of 𝑑VBM.

If we consider a different value of 𝛿 > 0, following the same reasoning as in the proof of Theorem 5 we obtain that

𝑑VBM(𝑃 ,𝑃0) ≤ 𝛿⇔ 𝑃 (𝐴) ≥ (1 − 𝛿(1 − 𝑏))𝑃0(𝐴) + 𝑎𝛿 ∀𝐴⊂Ω.

Note however, that this does not imply that the associated ball agrees with the credal set of the VBM with parameters (𝑎𝛿, 1 −𝛿(1 −𝑏)), 
because we need in addition that these parameters satisfy the restrictions associated with a VBM; namely, it should be 𝑎𝛿 ≤ 0 <
1 − 𝛿(1 − 𝑏) and 𝑎𝛿 + 1 − 𝛿(1 − 𝑏) ∈ [0, 1]. It turns out that, if 𝑎 < 0 < 𝑏 and 𝑎 + 𝑏 < 1, as we are assuming in the statement of 
Theorem 5, these restrictions hold if and only if 0 < 𝛿 ≤ 1

1−(𝑎+𝑏) . ⧫

As we have said, VBMs include as particular cases the PMM, LV and TV distortion models. The distorting functions associated 
with these models were investigated in [19,20] for the particular case where 𝑃0({𝜔}) > 0 for every 𝜔. Let us study the connection 
between those functions and the function 𝑑VBM given in Equation (5) for arbitrary 𝑃0 and for 𝑎 < 0 < 𝑏 with 𝑎 + 𝑏 < 1. For this, 
extend Equation (5) to the case where 𝑎 = 0 or 𝑎 + 𝑏 = 1 and also by taking the maximum on those events 𝐴 where the denominator 
is different from zero, i.e., with

𝑃0(𝐴) − 𝑃 (𝐴)
5

𝑑VBM(𝑃 ,𝑃0) = max
𝐴∶(1−𝑏)𝑃0(𝐴)−𝑎≠0 (1 − 𝑏)𝑃0(𝐴) − 𝑎

. (6)
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• If 𝑎 + 𝑏 = 1 and 𝑃0({𝜔}) > 0 ∀𝜔, then (6) becomes

𝑑VBM(𝑃 ,𝑃0) = max
𝐴⊂Ω

𝑃0(𝐴) − 𝑃 (𝐴)
−𝑎(1 − 𝑃0(𝐴))

= max
𝐴⊂Ω

𝑃0(𝐴) − 𝑃 (𝐴)
𝛿(1 − 𝑃0(𝐴))

,

which corresponds to 𝑑PMM

𝛿
for 𝛿 = −𝑎 and 𝑑PMM the distorting function of a PMM in [19, Section 4.1].

• If 𝑎 = 0, 𝑏 < 1 and 𝑃0({𝜔}) > 0 ∀𝜔, then

𝑑VBM(𝑃 ,𝑃0) = max
∅≠𝐴⊆Ω

𝑃0(𝐴) − 𝑃 (𝐴)
(1 − 𝑏)𝑃0(𝐴)

which corresponds to 𝑑LV

𝛿
for 𝛿 = 1 − 𝑏 and 𝑑LV the distorting function of a LV in [19, Section 4.2].

• Finally, if 𝑎 < 0 and 𝑏 = 1, we obtain

𝑑VBM(𝑃 ,𝑃0) = max
𝐴⊂Ω

𝑃0(𝐴) − 𝑃 (𝐴)
−𝑎

,

that is a scalar transformation of the total variation distance 𝑑TV .

Taking into account these connections, it is not difficult to establish that 𝑑VBM is not symmetric nor it satisfies the triangle 
inequality in general: we simply need to refer to the counterexamples for 𝑑PMM in [19, Proposition 4.1 (b)].

3.2. Relationship with other distortion models

We have already mentioned that VBMs include as particular cases some of the most prominent distortion models considered in 
the literature [27]. In spite of this great generality, it is not hard to show that they do not include other important models, such 
as the Constant Odds Ratio (COR), Kolmogorov and 𝐿1-models discussed in [19,20].1 In the case of the 𝐿1-models, it suffices to 
observe that they do not satisfy the property of 2-monotonicity [20, Example 4.3] while VBMs do [7, Proposition 4.1]. To see that 
they do not include the COR or Kolmogorov models either,2 note that for every 𝐴, 𝐵 ⊂Ω such that 𝐴 ∩𝐵 = ∅, 𝐴 ∪𝐵 ≠Ω, if the lower 
probability 𝑃 associated with the VBM determined by (𝑃0, 𝑎, 𝑏) satisfies min{𝑃 (𝐴), 𝑃 (𝐵)} > 0, then by Equation (1)

𝑃 (𝐴 ∪𝐵) − 𝑃 (𝐴) − 𝑃 (𝐵) = 𝑏𝑃0(𝐴 ∪𝐵) + 𝑎− 𝑏𝑃0(𝐴) − 𝑎− 𝑏𝑃0(𝐵) − 𝑎 = −𝑎. (7)

This is the main idea behind the following counterexample:

Example 1. Consider Ω = {𝜔1, 𝜔2, 𝜔3}, 𝑃0 the probability measure associated with the mass function (0.5, 0.3, 0.2) and 𝛿 = 0.1. From 
[19, Example 6.1], the COR model it induces satisfies

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑃
𝐶𝑂𝑅

(𝐴) 0.4737 0.2784 0.1837 0.7826 0.6774 0.4737

Since

𝑃
𝐶𝑂𝑅

({𝜔1,𝜔2}) − 𝑃
𝐶𝑂𝑅

({𝜔1}) − 𝑃
𝐶𝑂𝑅

({𝜔2}) = 0.0305 ≠ 0.02 = 𝑃
𝐶𝑂𝑅

({𝜔1,𝜔3}) − 𝑃
𝐶𝑂𝑅

({𝜔1}) − 𝑃
𝐶𝑂𝑅

({𝜔3}),

we deduce from Equation (7) that 𝑃
𝐶𝑂𝑅

is not a VBM.

On the other hand, the Kolmogorov model induced by (𝑃0, 𝛿) is given by

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑃
𝐾
(𝐴) 0.4 0.1 0.1 0.7 0.5 0.4

Since

𝑃
𝐾
({𝜔1,𝜔2}) − 𝑃

𝐾
({𝜔1}) − 𝑃

𝐾
({𝜔2}) = 0.2 ≠ 0 = 𝑃

𝐾
({𝜔1,𝜔3}) − 𝑃

𝐾
({𝜔1}) − 𝑃

𝐾
({𝜔3}),

we deduce from Equation (7) that 𝑃
𝐾

is not a VBM either. ⧫

1 We refer to [19,20] for the expression of the lower probabilities of these models and a deeper account of their properties.
2 As remarked by a reviewer, it may be argued that the non-inclusion of COR models in the VBM family is immediate, since they are not determined in general by 
6

their restriction to events; what we show in our next example is that the lower probability they determine is not a VBM either.
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4. Structure of the credal set

One important feature of an imprecise probability model is the complexity of its associated credal set, in terms of the maximal 
number of extreme points. These not only determine the model by taking lower envelopes, but can also be used to ease the computa-

tions in some contexts, for instance when conditioning. For this reason, in this section we investigate the number of extreme points 
for VBMs.

Recall that given a credal set , an element 𝑃 ∈  is an extreme point when 𝑃 = 𝛼𝑃1 + (1 − 𝛼)𝑃2 for 𝛼 ∈ (0, 1), 𝑃1, 𝑃2 ∈ 

implies that 𝑃 = 𝑃1 = 𝑃2. Let 𝑒𝑥𝑡((𝑃 )) be the set of extreme points of (𝑃 ).
Recalling again that any VBM is 2-monotone, the extreme points of (𝑃 ) are determined by the permutations of Ω [11, Sec-

tion 3.3]. Denote by 𝑆𝑛 the permutations of {1, … , 𝑛}. Then, given 𝜎 ∈ 𝑆𝑛, we can define the probability measure 𝑃𝜎 by means of 
the equalities

𝑃𝜎({𝜔𝜎(1)}) = 𝑃 ({𝜔𝜎(1)}),

𝑃𝜎({𝜔𝜎(𝑗)}) = 𝑃 ({𝜔𝜎(1),… ,𝜔𝜎(𝑗)}) − 𝑃 ({𝜔𝜎(1),… ,𝜔𝜎(𝑗−1)}) ∀𝑗 = 2,… , 𝑛.

It holds that 𝑒𝑥𝑡((𝑃 )) = {𝑃𝜎 ∶ 𝜎 ∈ 𝑆𝑛}. This allows us to bound above the number of extreme points of (𝑃 ) by 𝑛!. As we 
shall show next, this bound can be tightened. For this, let us express 𝑃 as a convex combination of 𝑃𝑃𝑀𝑀 and the vacuous upper 
probability 𝑃𝑉 , that is given by

𝑃𝑉 (𝐴) = 1 ∀𝐴 ≠ ∅ and 𝑃𝑉 (∅) = 0;

from Equation (4) and conjugacy, it is

𝑃 = (1 − 𝛼)𝑃𝑃𝑀𝑀 + 𝛼𝑃𝑉 , with 𝛼 = 1 − (𝑎+ 𝑏). (8)

Using Equation (8), we can get more insight on the structure of 𝑃𝜎 , as follows: let 𝑗𝜎 = min{𝑖 ∶ 𝑃 ({𝜔𝜎(1), … , 𝜔𝜎(𝑖)}) = 1}. Note that 
𝑖 < 𝑗𝜎 implies that 𝑃𝑃𝑀𝑀 ({𝜔𝜎(1), … , 𝜔𝜎(𝑖)}) < 1. If 𝑗𝜎 ≥ 2, this produces

𝑃𝜎({𝜔𝜎(1)}) = (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎(1)}) + 𝛼 (9)

𝑃𝜎({𝜔𝜎(𝑖)}) = 𝑃 ({𝜔𝜎(1),… ,𝜔𝜎(𝑖)}) − 𝑃 ({𝜔𝜎(1),… ,𝜔𝜎(𝑖−1)})

= (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎(1),… ,𝜔𝜎(𝑖)}) + 𝛼 − (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎(1),… ,𝜔𝜎(𝑖−1)}) − 𝛼

= (1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎(𝑖)}) (for 𝑖 = 2,… , 𝑗𝜎 − 1) (10)

𝑃𝜎({𝜔𝜎(𝑗𝜎 )}) = 1 − ((1 − 𝛼)𝑃𝑃𝑀𝑀 ({𝜔𝜎(1),… ,𝜔𝜎(𝑗𝜎−1)}) + 𝛼)

= (1 − 𝛼)𝑃
𝑃𝑀𝑀

({𝜔𝜎(𝑗𝜎 ),… ,𝜔𝜎(𝑛)}) (11)

𝑃𝜎({𝜔𝜎(𝑗𝜎+1)}) =⋯ = 𝑃𝜎({𝜔𝜎(𝑛)}) = 0. (12)

This means that, when 𝑗𝜎 ≥ 2, the same extreme point shall be induced by (𝑗𝜎 − 2)!(𝑛 − 𝑗𝜎)! permutations: the ones with the same 
elements in the positions {2, … , 𝑗𝜎 −1} and in positions {𝑗𝜎 +1, … , 𝑛}. This shall help us in bounding the number of different extreme 
points, without having to perform their computation.

Denote now, for a real positive 𝑥, ⌊𝑥⌋ =max{𝑛 ∈ ℕ ∶ 𝑛 ≤ 𝑥}, ⌈𝑥⌉ =min{𝑛 ∈ ℕ ∶ 𝑛 ≥ 𝑥}.

Lemma 6. Given 𝑛, 𝑘 ∈ ℕ with 𝑛 ≥ 𝑘,

𝑘!(𝑛− 𝑘)! ≥
⌊
𝑛

2

⌋
!
⌈
𝑛

2

⌉
! (13)

As a consequence, for any 𝑗 ≥ 2, it holds that

(𝑗 − 2)!(𝑛− 𝑗)! ≥
⌊
𝑛

2
− 1

⌋
!
⌈
𝑛

2
− 1

⌉
!

Proof. Consider 
(𝑛
𝑘

)
for a fixed 𝑛. It is well-known that 

(𝑛
𝑘

)
≤
(𝑛
𝑛
2

)
if 𝑛 is even and 

(𝑛
𝑘

)
≤
( 𝑛
𝑛−1
2

)
=
( 𝑛
𝑛+1
2

)
if 𝑛 is odd. In the first case, 

we obtain

𝑛!
𝑘!(𝑛− 𝑘)!

≤
𝑛!(

𝑛

2

)
!
(
𝑛

2

)
!
,

7

from which Equation (13) follows. In the second, we obtain
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𝑛!
𝑘!(𝑛− 𝑘)!

≤
𝑛!(

𝑛−1
2

)
!
(
𝑛− 𝑛−1

2

)
!
= 𝑛!(

𝑛−1
2

)
!
(
𝑛+1
2

)
!
,

giving again (13).

Applying this equation to 𝑘 ∶= 𝑗 − 2 and 𝑛 ∶= 𝑛 − 2, it follows that

(𝑗 − 2)!(𝑛− 𝑗)! = (𝑗 − 2)!(𝑛− 2 − (𝑗 − 2))! ≥
⌊
𝑛− 2
2

⌋
!
⌈
𝑛− 2
2

⌉
! =

⌊
𝑛

2
− 1

⌋
!
⌈
𝑛

2
− 1

⌉
!. □

Proposition 7. Given a VBM 𝑃 on a space Ω of cardinality 𝑛, any vertex of the credal set (𝑃 ) is obtained from at least ⌊ 𝑛2 − 1⌋!⌈ 𝑛2 − 1⌉!
different permutations of Ω.

Proof. Consider a permutation 𝜎. When 𝑗𝜎 =min{𝑖 ∶ 𝑃 ({𝜔𝜎(1), … , 𝜔𝜎(𝑖)}) = 1} ≥ 2, there are (𝑗𝜎 −2)!(𝑛 − 𝑗𝜎)! different permutations 
that originate the same vertex, and by Lemma 6 this value is not smaller than ⌊ 𝑛2 − 1⌋!⌈ 𝑛2 − 1⌉!.

On the other hand, if 𝑗𝜎 = 1 and consequently 𝑃 ({𝜔𝜎(1)}) = 1, then all the permutations 𝜎′ satisfying 𝜎′(1) = 𝜎(1) produce the 
same extreme point, and there are

(𝑛− 1)! ≥
⌊
𝑛

2
− 1

⌋
!
⌈
𝑛

2
− 1

⌉
!

such permutations. □

This allows us to establish the main result in this section:

Theorem 8. Given a VBM 𝑃 on a space Ω of cardinality 𝑛, the maximum number of extreme points of (𝑃 ) is

𝑛!⌊ 𝑛2 − 1⌋!⌈ 𝑛2 − 1⌉! . (14)

Proof. That 𝑛!⌊ 𝑛2 −1⌋!⌈ 𝑛2 −1⌉! is an upper bound of the number of extreme points is a consequence of Proposition 7.

But since TV models are a particular case of VBM, the maximal number of extreme points must be at least as large as the maximal 
number of extreme points for TV models, that was established in [20, Proposition A.1] to be

𝑛!⌊ 𝑛2 − 1⌋!(𝑛− ⌊ 𝑛2⌋− 1)!
= 𝑛!⌊ 𝑛2 − 1⌋!⌈ 𝑛2 − 1⌉! .

The double inequality gives the result. □

We observe that the maximal number of extreme points in Equation (14) is strictly larger than the one for the other particular 
cases discussed in [19], namely:

• 𝑛 in the case of LV models;

•
𝑛!⌊ 𝑛2 ⌋⌊ 𝑛2 −1⌋!⌈ 𝑛2 +1⌉! in the case of the PMM.

In the case of non-null VBMs the upper bound (14) is notably lowered:

Proposition 9. Given a non-null VBM 𝑃 on a space Ω of cardinality 𝑛, the maximum number of extreme points of (𝑃 ) is 𝑛(𝑛 − 1).

Proof. By monotonicity of 𝑃 , we have that, ∀𝐴 ∈ (Ω), 𝐴 ≠ ∅, 𝐴 ≠ Ω, 𝑃 (𝐴) > 0 and therefore 𝑃 (𝐴) < 1. Hence, 𝑗𝜎 = 𝑛 for any 
permutation in the proof of Proposition 7, meaning that any vertex is originated by (𝑛 − 2)! different permutations. Thus, the bound 
(14) reduces to

𝑛!
(𝑛− 2)!

= 𝑛(𝑛− 1). □

We recall that the same bound 𝑛(𝑛 −1) applies to TV models too, when 𝑃 is strictly positive, as shown in [20, Proposition 2.5]. It 
is also interesting to remark that not only the tight bound on the number of extreme points is useful, but also the identities established 
in Equations (9)÷(12). To see an application in finance where this comes into play for the particular case of LV mixtures, we refer to 
[28].

5. Processing Vertical Barrier Models

Next we investigate the behaviour of the family of VBMs under a number of merging operations. By merging, we refer to the 
8

procedure where we aggregate belief models, defined on the same domain Ω, into a unique one. These models may arise as the 
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Fig. 2. Credal sets of the lower probabilities in Example 2 and their disjunction.

opinion of different experts or from several data sources, for instance. The problem of aggregating imprecise beliefs has been analysed 
from the axiomatic point of view by Walley in [33]. Other relevant works on this topic are [23,24].

In this paper, we shall focus on the three most fundamental merging procedures: those of disjunction, conjunction and convex 
mixture.

Definition 2. Given two credal sets 1, 2 on Ω, their disjunction is given by 1 ∪2.

If we interpret 1, 2 as the sets of probability measures that are considered acceptable by two different experts, the disjunction 
1 ∪2 considers those probability measures that are acceptable for at least one of them. This is illustrated in Fig. 2 on a space of 
cardinality three.

If we denote by 𝑃 1, 𝑃 2, 𝑃
∪ the lower probabilities obtained as lower envelopes of 1, 2 and 1 ∪2, respectively, it holds 

that

𝑃 ∪(𝐴) = min{𝑃 1(𝐴), 𝑃 2(𝐴)}∀𝐴⊆Ω.

The disjunction 1 ∪2 is not a convex set of probability measures in general; it is not difficult to show that 𝑃 ∪ is also the lower 
envelope of the convex hull 𝑐ℎ(1 ∪2).

It was shown in [10, Example 2] that the disjunction of two PMMs does not produce a PMM in general. The same example can 
be used to establish that the family of VBMs is not closed under disjunction. For this, we shall use that, given a VBM 𝑃 associated 
with (𝑃0, 𝑎, 𝑏), it is

𝑃 (𝐴) + 𝑃 (𝐴𝑐) = 𝑏+ 2𝑎 ∀𝐴⊂Ω such that 𝑃 (𝐴) > 0, 𝑃 (𝐴𝑐) > 0. (15)

Example 2. Let Ω = {𝜔1, 𝜔2, 𝜔3} and consider the probability measures 𝑃 1
0 , 𝑃

2
0 on (Ω) associated with (0.5, 0.3, 0.2) and 

(0.3, 0.5, 0.2), respectively. Let 𝑎1 = 𝑎2 = −0.1, 𝑏1 = 𝑏2 = 1.1 and denote by 𝑃 1, 𝑃 2 the VBMs determined by (𝑃 1
0 , 𝑎1, 𝑏1) and (𝑃 2

0 , 𝑎2, 𝑏2), 
respectively. Then 𝑃 1, 𝑃 2 and their disjunction 𝑃 ∪ are given in the following table:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑃 1(𝐴) 0.45 0.23 0.12 0.78 0.67 0.45

𝑃 2(𝐴) 0.23 0.45 0.12 0.78 0.45 0.67

𝑃 ∪(𝐴) 0.23 0.23 0.12 0.78 0.45 0.45

These sets are also graphically depicted in Fig. 2.

If 𝑃 ∪ were the lower probability associated with a VBM, and observing that 𝑃 ∪(𝐴) is strictly positive for every non-impossible 
event 𝐴, there should be a probability measure 𝑃0 on (Ω) and two parameters 𝑏 > 0, 𝑎 ≤ 0 such that 𝑃 ∪(𝐴) = 𝑏𝑃0(𝐴) + 𝑎 for every 
𝐴 ≠ ∅, Ω. But then applying Equation (15) it should be

0.68 = 𝑃 ∪({𝜔2}) + 𝑃 ∪({𝜔1,𝜔3}) = 𝑏+ 2𝑎 = 𝑃 ∪({𝜔3}) + 𝑃 ∪({𝜔1,𝜔2}) = 0.9,
9

a contradiction. Thus, 𝑃 ∪ does not belong to the family of VBMs. ⧫
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Fig. 3. Credal sets of the lower probabilities in Example 3 and their conjunction.

The second merging operation we analyse in this paper is that of conjunction:

Definition 3. Given two credal sets 1, 2 on Ω, their conjunction is given by 1 ∩2.

If we interpret 1, 2 as the sets of precise probabilities that are considered acceptable by two different experts, the conjunction 
1 ∩2 only considers those probability measures that are acceptable for both of them. The process is illustrated in Fig. 3.

Unlike disjunction, the process of conjunction always produces a convex (though possibly empty) credal set. Note that, if we 
denote by 𝑃 1, 𝑃 2, 𝑃

∩ the lower envelopes of 1, 2 and 1 ∩2, it will hold that

𝑃 ∩(𝐴) ≥max{𝑃 1(𝐴), 𝑃 2(𝐴)}∀𝐴⊆Ω,

with the inequality being possibly strict on some events. It also holds that (𝑃∩) =(𝑃 1) ∩(𝑃 2); 𝑃
∩ corresponds to the natural 

extension of max{𝑃 1, 𝑃 2} in the terminology of Walley [34]. This means that 𝑃 ∩ = max{𝑃 1, 𝑃 2} when the latter is a coherent lower 
probability.

It was shown in [10, Example 5] that the family of TV models is not closed under conjunction. Using that example, we can easily 
establish that the family of VBMs is not closed under conjunction either:

Example 3. Let Ω = {𝜔1, 𝜔2, 𝜔3} and consider the probability measures 𝑃 1
0 , 𝑃

2
0 on (Ω) associated with (0.41, 0.37, 0.22) and 

(0.37, 0.41, 0.22), respectively. Let 𝑏1 = 𝑏2 = 1, 𝑎1 = 𝑎2 = −0.12, and denote by 𝑃 1, 𝑃 2 the VBM models determined by (𝑃 1
0 , 𝑎1, 𝑏1)

and (𝑃 2
0 , 𝑎2, 𝑏2), respectively. To see that in this case the conjunction 𝑃 ∩ of 𝑃 1, 𝑃 2 coincides with max{𝑃 1, 𝑃 2}, it suffices to take 

into account that the latter is a coherent lower probability, since it is the lower envelope of the set of probability measures

{(0.29,0.37,0.34), (0.37,0.29,0.34), (0.49,0.41,0.1), (0.41,0.49,0.1)}.

Then 𝑃 1, 𝑃 2 and their conjunction 𝑃 ∩ are given in the following table:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑃 1(𝐴) 0.29 0.25 0.1 0.66 0.51 0.47

𝑃 2(𝐴) 0.25 0.29 0.1 0.66 0.47 0.51

𝑃 ∩(𝐴) 0.29 0.29 0.1 0.66 0.51 0.51

The associated credal sets are represented in Fig. 3.

Again, for 𝑃 ∩ to be the lower probability associated with a VBM, there should be a probability measure 𝑃0 on (Ω) and two 
parameters 𝑏 > 0, 𝑎 ≤ 0 such that 𝑃 ∩(𝐴) = 𝑏𝑃0(𝐴) + 𝑎 for every 𝐴 ≠ ∅, Ω. But this is impossible since we should have

0.8 = 𝑃 ∩({𝜔2}) + 𝑃 ∩({𝜔1,𝜔3}) = 𝑏+ 2𝑎 = 𝑃 ∩({𝜔3}) + 𝑃 ∩({𝜔1,𝜔2}) = 0.76,

where the second and third equalities follow from Equation (15). Thus, 𝑃 ∩ does not belong to the family of VBMs. ⧫
10

The third and last merging operation we consider in this paper is that of mixture:



International Journal of Approximate Reasoning 167 (2024) 109132E. Miranda, R. Pelessoni and P. Vicig

Definition 4. Let 1, 2 be two credal sets on Ω and consider 𝛼 ∈ (0, 1). Their mixture corresponds to the credal set 𝛼1 + (1 −
𝛼)2 ∶= {𝑃 ∶ ∃𝑃1 ∈1, 𝑃2 ∈2 such that 𝑃 = 𝛼𝑃1 + (1 − 𝛼)𝑃2}.

The process of mixture is illustrated in the following figure:

Mixture of credal sets

The mixture aggregation procedure is an intermediate solution between the disjunction and conjunction operations, and can be 
seen as giving a weight to the opinion of each expert. It is easy to see that the mixture 𝛼1 + (1 − 𝛼)2 produces a convex credal 
set. If we denote by 𝑃 1, 𝑃 2 and 𝑃

𝛼
the lower envelopes of the credal sets 1, 2 and of their mixture 𝛼1 + (1 − 𝛼)2, it holds 

that

𝑃
𝛼
= 𝛼𝑃 1 + (1 − 𝛼)𝑃 2.

That VBMs are not closed under conjunction or disjunction in general is somewhat intuitive, if we take into account that the larger 
family of 2-monotone models they are included in is not closed either; on the other hand, it is easy to see that the property of 
2-monotonicity is preserved under convex combinations. All of this leads us towards the intuition that VBMs may be closed under 
mixtures, or at least that they will be so much more often than they are with respect to conjunction and disjunction.

Consider thus two VBMs

𝑃
𝑖
(𝐴) = max{𝑏𝑖𝑃 𝑖

0(𝐴) + 𝑎𝑖,0}, ∀𝐴⊂Ω, 𝑃
𝑖
(Ω) = 1 (𝑖 = 1,2),

and their convex combination

𝑃
𝛼
(𝐴) = 𝛼𝑃 1(𝐴) + (1 − 𝛼)𝑃 2(𝐴), ∀𝐴⊆Ω and for some fixed 𝛼 ∈ (0,1).

As we shall see, 𝑃
𝛼

is not a VBM in general. In order to prove this, we give first the following supporting result:

Lemma 10. Assume that 𝑃
𝛼

is the VBM associated with (𝑃 𝛼
0 , 𝑎𝛼, 𝑏𝛼).

(a) If there are 𝐴, 𝐵 ⊂Ω such that 𝐴 ∩𝐵 = ∅, 𝐴 ∪𝐵 ⊂Ω, 𝑃
𝑖
(𝐴) > 0, 𝑃

𝑖
(𝐵) > 0 (𝑖 = 1, 2), then

𝑎𝛼 = 𝛼𝑎1 + (1 − 𝛼)𝑎2. (16)

(b) If there exists 𝐹 ⊂Ω such that 𝑃
𝑖
(𝐹 ) > 0, 𝑃

𝑖
(𝐹 𝑐) > 0 (𝑖 = 1, 2), then

𝑏𝛼 + 2𝑎𝛼 = 𝛼(𝑏1 + 2𝑎1) + (1 − 𝛼)(𝑏2 + 2𝑎2). (17)

Proof. (a) Firstly, note that given 𝐴, 𝐵 as in the statement, 𝑃
𝛼
(𝐴) > 0, 𝑃

𝛼
(𝐵) > 0. Hence, by applying Equation (7) to 𝑃

𝛼
, 𝑃 1, 𝑃 2, 

we get

−𝑎𝛼 = 𝑃
𝛼
(𝐴 ∪𝐵) − 𝑃

𝛼
(𝐴) − 𝑃

𝛼
(𝐵)

= 𝛼(𝑃 1(𝐴 ∪𝐵) − 𝑃 1(𝐴) − 𝑃 1(𝐵)) + (1 − 𝛼)(𝑃 2(𝐴 ∪𝐵) − 𝑃 2(𝐴) − 𝑃 2(𝐵)) = −𝛼𝑎1 − (1 − 𝛼)𝑎2,

from which the thesis follows.

(b) Note that 𝑃
𝛼
(𝐹 ) > 0, 𝑃

𝛼
(𝐹 𝑐) > 0. Hence, by applying Equation (15) to 𝑃

𝛼
, 𝑃 1, 𝑃 2, we get

𝑏𝛼 + 2𝑎𝛼 = 𝑃
𝛼
(𝐹 ) + 𝑃

𝛼
(𝐹 𝑐) = 𝛼(𝑃 1(𝐹 ) + 𝑃 1(𝐹

𝑐)) + (1 − 𝛼)(𝑃 2(𝐹 ) + 𝑃 2(𝐹
𝑐)) = 𝛼(𝑏1 + 2𝑎1) + (1 − 𝛼)(𝑏2 + 2𝑎2). □
11

Proposition 11. Under any of the following conditions, the mixture 𝑃
𝛼

is not a VBM no matter the value of 𝛼 ∈ (0, 1):
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(a) If the hypotheses of Lemma 10(a) hold and there are 𝐶, 𝐷 ⊂ Ω, such that 𝐶 ∩ 𝐷 = ∅, 𝐶 ∪ 𝐷 ⊂ Ω, 𝑃
𝑖
(𝐶) > 0 (𝑖 = 1, 2), 𝑃 1(𝐷) >

0, 𝑏2𝑃 2
0 (𝐷) + 𝑎2 < 0.

(b) If the hypotheses of Lemma 10(b) hold and there exists 𝐹 ⊂Ω such that 𝑃 1(𝐹 ) > 0, 𝑃 1(𝐹
𝑐) > 0, 𝑃 2(𝐹

𝑐) > 0 and 𝑏2𝑃 2
0 (𝐹 ) + 𝑎2 < 0.

Proof. We proceed by contradiction, assuming ex-absurdo that 𝑃
𝛼

is a VBM.

(a) Note that

𝑃 2(𝐶) = 𝑏2𝑃
2
0 (𝐶) + 𝑎2, 𝑃 2(𝐷) = 0, 𝑃 2(𝐶 ∪𝐷) = 𝑏2𝑃

2
0 (𝐶 ∪𝐷) + 𝑎2,

𝑃
𝛼
(𝐶) > 0, 𝑃

𝛼
(𝐷) = 𝛼𝑃 1(𝐷) > 0.

Applying Equation (7) to 𝑃
𝛼
, 𝑃 1, we get

−𝑎𝛼 = 𝑃
𝛼
(𝐶 ∪𝐷) − 𝑃

𝛼
(𝐶) − 𝑃

𝛼
(𝐷)

= 𝛼(𝑃 1(𝐶 ∪𝐷) − 𝑃 1(𝐶) − 𝑃 1(𝐷)) + (1 − 𝛼)(𝑃 2(𝐶 ∪𝐷) − 𝑃 2(𝐶))

= −𝛼𝑎1 + (1 − 𝛼)(𝑏2𝑃 2
0 (𝐶 ∪𝐷) + 𝑎2 − 𝑏2𝑃

2
0 (𝐶) − 𝑎2)

= −𝛼𝑎1 + (1 − 𝛼)𝑏2𝑃 2
0 (𝐷).

Since (16) holds by Lemma 10(𝑎), −(1 − 𝛼)𝑎2 = −𝑎𝛼 + 𝛼𝑎1 = (1 − 𝛼)𝑏2𝑃 2
0 (𝐷), whence 𝑏2𝑃 2

0 (𝐷) + 𝑎2 = 0, a contradiction.

(b) Note that

𝑃 2(𝐹 ) = 0, 𝑃 2(𝐹
𝑐) = 𝑏2𝑃

2
0 (𝐹

𝑐) + 𝑎2,

𝑃
𝛼
(𝐹 ) = 𝛼𝑃 1(𝐹 ) > 0, 𝑃

𝛼
(𝐹 𝑐) > 0.

Applying Equation (15) to 𝑃
𝛼
, 𝑃 1, we get

𝑏𝛼 + 2𝑎𝛼 = 𝑃
𝛼
(𝐹 ) + 𝑃

𝛼
(𝐹 𝑐)

= 𝛼(𝑃 1(𝐹 ) + 𝑃 1(𝐹
𝑐)) + (1 − 𝛼)𝑃 2(𝐹

𝑐)

= 𝛼(𝑏1 + 2𝑎1) + (1 − 𝛼)(𝑏2𝑃 2
0 (𝐹

𝑐) + 𝑎2).

Since (17) holds by Lemma 10(𝑏), we get

(1 − 𝛼)(𝑏2 + 2𝑎2) = (1 − 𝛼)(𝑏2𝑃 2
0 (𝐹

𝑐) + 𝑎2),

whence 𝑏2 + 2𝑎2 = 𝑏2 − 𝑏2𝑃
2
0 (𝐹 ) + 𝑎2, which is equivalent to 𝑏2𝑃 2

0 (𝐹 ) + 𝑎2 = 0, a contradiction. □

In spite of this result, part (a) of the next proposition establishes relatively general sufficient conditions for the mixture of two 
VBMs to be again a VBM:

Proposition 12. Let 𝑃 1, 𝑃 2 be the lower probabilities associated with two VBMs, and let 𝑖 ∶= {𝐴 ∈ (Ω) ∶ 𝑃
𝑖
(𝐴) = 0}.

(a) If either 𝑃 1 or 𝑃 2 is vacuous or if 1 =2, then for any 𝛼 ∈ (0, 1) the mixture

𝑃
𝛼
∶= 𝛼𝑃 1 + (1 − 𝛼)𝑃 2 (18)

is the lower probability of a VBM.

(b) Conversely, let 1 ≠ 2. If there exist three pairwise disjoint events 𝐴1, 𝐴2, 𝐵 such that 𝑃
𝑖
(𝐴1) > 0, 𝑃

𝑖
(𝐴2) > 0 for 𝑖 = 1, 2 and 

𝑃 1(𝐵) > 0, 𝑏2𝑃 2
0 (𝐵) + 𝑎2 < 0, then 𝑃

𝛼
is not a VBM.

Proof. (a) When either 𝑃 1 or 𝑃 2 is vacuous, the result is a consequence of Lemma 2. Otherwise, let us denote  ∶=1 =2. 
It follows from Definition 1 and Equation (18) that 𝑃

𝛼
(Ω) = 1. For any 𝐴 ∉ , 𝐴 ≠ Ω, it holds that 𝑃

𝑖
(𝐴) = 𝑏𝑖𝑃

𝑖
0(𝐴) + 𝑎𝑖 for 

𝑖 = 1, 2, whence

𝑃
𝛼
(𝐴) = 𝛼[𝑏1𝑃 1

0 (𝐴) + 𝑎1] + (1 − 𝛼)[𝑏2𝑃 2
0 (𝐴) + 𝑎2]

= (𝛼𝑏1𝑃 1
0 + (1 − 𝛼)𝑏2𝑃 2

0 )(𝐴) + [𝛼𝑎1 + (1 − 𝛼)𝑎2]

= (𝛼𝑏1 + (1 − 𝛼)𝑏2) ⋅
𝛼𝑏1𝑃

1
0 (𝐴) + (1 − 𝛼)𝑏2𝑃 2

0 (𝐴)
𝛼𝑏1 + (1 − 𝛼)𝑏2

+ [𝛼𝑎1 + (1 − 𝛼)𝑎2]

𝛼 𝛼 𝛼
12

∶= 𝑏 𝑃0 (𝐴) + 𝑎 ,
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where 𝑏𝛼 = 𝛼𝑏1 + (1 − 𝛼)𝑏2, 𝑎𝛼 = 𝛼𝑎1 + (1 − 𝛼)𝑎2 and

𝑃 𝛼
0 (𝐴) =

𝛼𝑏1𝑃
1
0 (𝐴) + (1 − 𝛼)𝑏2𝑃 2

0 (𝐴)
𝛼𝑏1 + (1 − 𝛼)𝑏2

.

On the other hand, if 𝐴 ∈ , then 𝑏𝑖𝑃 𝑖
0(𝐴) + 𝑎𝑖 ≤ 0 for 𝑖 = 1, 2 and from the above reasoning also 𝑏𝛼𝑃 𝛼

0 (𝐴) + 𝑎𝛼 ≤ 0.

This implies that 𝑃
𝛼

is the VBM (𝑃 𝛼
0 , 𝑎

𝛼, 𝑏𝛼), noting also that by construction 𝑏𝛼 > 0, 𝑎𝛼 ≤ 0, 𝑎𝛼 + 𝑏𝛼 ≤ 1 and 𝑃 𝛼
0 is a probability 

measure.

(b) Apply Proposition 11(a) with 𝐶 =𝐴1, 𝐷 =𝐵 (while 𝐴1, 𝐴2 have the role of 𝐴, 𝐵 in Lemma 10(a)). □

A relevant special case of Proposition 12(a) occurs when 1 = 2 = ∅, i.e., for non-null VBMs. This corresponds to the case 
where both experts believe that all non-impossible events have positive lower probability. Note that the subfamily of non-null VBMs 
is not closed under disjunction or conjunction, as Examples 2 and 3 show.

As for Proposition 12(b), it obtains in particular if we only know that there exists 𝐵 such that 𝑃 1(𝐵) > 0 > 𝑏2𝑃
2
0 (𝐵) +𝑎2 and there 

exist 𝜔1, 𝜔2 such that 𝑃
𝑖
({𝜔1}) > 0, 𝑃

𝑖
({𝜔2}) > 0, 𝑖 = 1, 2. In fact, it holds that 𝜔1, 𝜔2 ∉ 𝐵 (or else it would be 𝑃

𝑖
(𝐵) > 0 for 𝑖 = 1, 2). 

Therefore, 𝜔1, 𝜔2 can take the role of 𝐴1, 𝐴2 in Proposition 12(b).

Proposition 12(b) lets us establish that 𝑃
𝛼

is not a VBM in a number of common situations when 1 ≠2. Yet, there remain 
some essentially peculiar cases where Proposition 12 does not allow to conclude whether 𝑃

𝛼
is a VBM or not, as the following 

example shows:

Example 4. Let Ω = {𝜔1, 𝜔2, 𝜔3} and consider the probability measures 𝑃 1
0 , 𝑃

2
0 on (Ω) associated with (0.7, 0.1, 0.2) and 

(0.1, 0.7, 0.2), respectively. Let 𝑃 1, 𝑃 2 be the VBM models determined by (𝑃 1
0 , −0.7, 1) and (𝑃 2

0 , −0.7, 1), respectively. Then 𝑃 1, 𝑃 2
and their mixture 𝑃

𝛼
are given in the following table:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑃 1(𝐴) 0 0 0 0.1 0.2 0

𝑃 2(𝐴) 0 0 0 0.1 0 0.2

𝑃
𝛼
(𝐴) 0 0 0 0.1 0.2𝛼 0.2(1 − 𝛼)

We observe that none of 𝑃 1, 𝑃 2 is vacuous and also that

1 = {{𝜔1},{𝜔2},{𝜔3},{𝜔2,𝜔3}} ≠2 = {{𝜔1},{𝜔2},{𝜔3},{𝜔1,𝜔3}}.

Note also that the hypotheses of Proposition 12(b) do not apply either.

On the other hand, 𝑃
𝛼

corresponds to a TV model determined by the probability measure 
(
0.7
3 + 0.2𝛼, 0.73 + 0.2(1 − 𝛼), 13

)
and 

𝑎 = −1.7
3 , 𝑏 = 1, and as a consequence it is also a VBM. ⧫

6. Properties of the mass function of a VBM

In this section, we shall investigate the properties of the mass function of a VBM, also called the Möbius inverse of 𝑃 . It is given 
by [29]

𝑚𝑃 (𝐴) =
∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑃 (𝐵), (19)

and we shall simply denote the Möbius inverse by 𝑚 when there is no ambiguity about its associated lower probability.

We shall show that, in several common instances, more direct formulae are available for 𝑚(𝐴). Since by Equation (19) 𝑚({𝜔}) =
𝑃 ({𝜔}) for every 𝜔 ∈Ω, our focus will be on those events 𝐴 with |𝐴| > 1.

Let us define the function 𝑚∗ ∶ (Ω) →ℝ by

𝑚∗(𝐴) =
∑

∅≠𝐵⊆𝐴
(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎), 𝑚∗(∅) = 0. (20)

Lemma 13. For every 𝐴 ⊂Ω with |𝐴| > 1, it holds that 𝑚∗(𝐴) = (−1)|𝐴|+1𝑎.

Proof. By (20),

𝑚∗(𝐴) = 𝑏
∑

∅≠𝐵⊆𝐴
(−1)|𝐴⧵𝐵|𝑃0(𝐵) + 𝑎

∑
∅≠𝐵⊆𝐴

(−1)|𝐴⧵𝐵|.
13

Concerning the first term, it is
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∅≠𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑃0(𝐵) = ∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑃0(𝐵) =𝑚𝑃0
(𝐴) = 0,

since |𝐴| > 1 and the mass function 𝑚𝑃0
of a probability measure (here 𝑃0) may be non-zero on singletons only [29]. With respect to 

the second term,

𝑎
∑

∅≠𝐵⊆𝐴
(−1)|𝐴⧵𝐵| = 𝑎

(∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵| − (−1)|𝐴|
)

= (−1)|𝐴|+1𝑎,
using the equality 

∑
𝐵⊆𝐴(−1)|𝐴⧵𝐵| = 0. □

From this lemma we deduce the expression of the Möbius inverse for non-null VBMs, since in that case 𝑚(𝐴) = 𝑚∗(𝐴) for every 
𝐴:

Proposition 14. If 𝑃 is a non-null VBM, then 𝑚(𝐴) = (−1)|𝐴|+1𝑎 for every 𝐴 ≠Ω with |𝐴| > 1, and 𝑚(𝐴) = 𝑏𝑃0(𝐴) + 𝑎 if |𝐴| = 1.

While this gives us the mass function of a relevant subfamily of VBMs, if 𝑃 (𝐴) = 0 for some 𝐴 ≠ ∅ it may be useful to consider 
the following notion:

Definition 5. An event 𝑁 ⊂Ω is called a maximal null event with respect to 𝑃 if 𝑃 (𝑁) = 0 and 𝑃 (𝐶) > 0 for every 𝐶 ⊃𝑁 .

Given an event 𝐴 with |𝐴| > 1, there are three possible scenarios: (i) 𝐴 intersects no maximal null event, (ii) it intersects only 
one maximal null event or (iii) it intersects more than one maximal null event.

If 𝐴 intersects no maximal null event, then necessarily 𝑃 (𝐵) > 0 ∀𝐵 ⊆𝐴, 𝐵 ≠ ∅. Hence,

𝑚(𝐴) =
∑
𝐵⊆𝐴

(−1)|𝐴⧵𝐵|𝑃 (𝐵) = ∑
∅≠𝐵⊆𝐴

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎) =𝑚∗(𝐴) = (−1)|𝐴|+1𝑎,
using Equation (20), and applying Lemma 13 for the last equality.

In the second scenario 𝐴 intersects one maximal null event only. In that case, the Möbius inverse is given by the following 
proposition:

Proposition 15. For a given VBM 𝑃 , let 𝐴 ≠Ω be an event with |𝐴| > 1 such that 𝐴 intersects only one maximal null event 𝑁 .

(a) If |𝐴 ∩𝑁| ≥ 2 then 𝑚(𝐴) = 0.

(b) If |𝐴 ∩𝑁| = 1 then 𝑚(𝐴) = (−1)|𝐴|𝑏𝑃0(𝐴 ∩𝑁).

Proof. From Equation (19)

𝑚(𝐴) =
∑

∅≠𝐵⊆𝐴
(−1)|𝐴⧵𝐵|𝑃 (𝐵)

=
∑

∅≠𝐵⊆𝐴,𝐵⊈𝐴∩𝑁
(−1)|𝐴⧵𝐵|𝑃 (𝐵) + ∑

∅≠𝐵⊆𝐴∩𝑁
(−1)|𝐴⧵𝐵|𝑃 (𝐵)

=
∑

∅≠𝐵⊆𝐴,𝐵⊈𝐴∩𝑁
(−1)|𝐴⧵𝐵|𝑃 (𝐵)

=
∑

∅≠𝐵⊆𝐴,𝐵⊈𝐴∩𝑁
(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎)

=
∑

∅≠𝐵⊆𝐴
(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎) −

∑
∅≠𝐵⊆𝐴∩𝑁

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎)

= (−1)|𝐴|+1𝑎− ∑
∅≠𝐵⊆𝐴∩𝑁

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎); (21)

here, the fourth equality holds because if it were 𝑃 (𝐵) = 0 then 𝐵 would be included in a maximal null event, that would thus 
intersect 𝐴; but this means that the maximal null event must necessarily be 𝑁 , and then 𝐵 ⊆ 𝐴 ∩𝑁 , a contradiction. On the other 
hand, we are using Equation (20) and applying Lemma 13 for the last equality.

(a) Assume that |𝐴 ∩𝑁| ≥ 2. Given 𝐵 ⊆ 𝐴 ∩𝑁 , it is |𝐴 ⧵ 𝐵| = |𝐴 ⧵𝑁| + |(𝐴 ∩𝑁) ⧵ 𝐵|. Then in the last term of Equation (21) we 
obtain ∑

(−1)|𝐴⧵𝐵|(𝑏𝑃 (𝐵) + 𝑎) = (−1)|𝐴⧵𝑁| ∑
(−1)|(𝐴∩𝑁)⧵𝐵|(𝑏𝑃 (𝐵) + 𝑎)
14

∅≠𝐵⊆𝐴∩𝑁
0

∅≠𝐵⊆𝐴∩𝑁
0
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= (−1)|𝐴⧵𝑁|(−1)|𝐴∩𝑁|+1𝑎 = (−1)|𝐴|+1𝑎,
using Equation (20) and applying Lemma 13 for the one but last equality. From Equation (21), we conclude that 𝑚(𝐴) = 0.

(b) In this second case, it is∑
∅≠𝐵⊆𝐴∩𝑁

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎) = (−1)|𝐴|−1(𝑏𝑃0(𝐴 ∩𝑁) + 𝑎),

whence

𝑚(𝐴) = (−1)|𝐴|+1𝑎− (−1)|𝐴|−1𝑏𝑃0(𝐴 ∩𝑁) − (−1)|𝐴|−1𝑎
= ((−1)|𝐴|+1 − (−1)|𝐴|−1)𝑎+ (−1)|𝐴|𝑏𝑃0(𝐴 ∩𝑁)

= (−1)|𝐴|𝑏𝑃0(𝐴 ∩𝑁). □

In the third scenario 𝐴 intersects more than one maximal null event. To study this case we start with a preliminary lemma:

Lemma 16. If {𝑁1, … , 𝑁𝑚} is the set of maximal null events with respect to 𝑃 , it is 𝑃 (𝐴) > 0 for every 𝐴 satisfying 𝐴 ∩𝑁𝑐
𝑖
≠ ∅ for every 

𝑖 = 1, … , 𝑚.

Proof. To see this, assume ex-absurdo that 𝑃 (𝐴) = 0 for one such 𝐴. Then the class  = {𝐵 ∶ 𝐴 ⊆ 𝐵, 𝑃 (𝐵) = 0} is non-empty, 
and must have therefore a maximal element 𝐵∗ with respect to set inclusion. But this maximal element is by definition a maximal 
null-event, a contradiction with the assumption 𝐴 ∩ (𝐵∗)𝑐 ≠ ∅. □

Next we give the expression of 𝑚(𝐴) in the case the intersections of 𝐴 with the maximal null events are pairwise disjoint:

Proposition 17. Let 𝑁1, … , 𝑁𝑚 be the maximal null events that intersect 𝐴 ⊂Ω. Let us express

𝐴 ∩

(
𝑚⋃
𝑖=1

𝑁𝑖

)
=

𝑟⋃
𝑖=1

(𝐴 ∩𝑁𝑗𝑖
) ∪

𝑠⋃
𝑖=1

(𝐴 ∩𝑁𝑘𝑖
),

with |𝐴 ∩𝑁𝑗𝑖
| = 1 for 𝑖 = 1, … , 𝑟 and |𝐴 ∩𝑁𝑘𝑖

| ≥ 2 for 𝑖 = 1, … , 𝑠. Suppose that any two distinct events 𝐴 ∩𝑁𝑖 are disjoint. Then

𝑚(𝐴) = (−1)|𝐴|
[
(𝑟+ 𝑠− 1)𝑎+ 𝑏𝑃0

(
𝐴 ∩

𝑟⋃
𝑖=1

𝑁𝑗𝑖

)]
. (22)

Proof. From Equation (19),

𝑚(𝐴) =
∑

∅≠𝐵⊆𝐴
𝐵⊈𝐴∩𝑁𝑗𝑖

,𝑖=1,…,𝑟

𝐵⊈𝐴∩𝑁𝑘𝑖
,𝑖=1,…,𝑠

(−1)|𝐴⧵𝐵|𝑃 (𝐵) + 𝑟∑
𝑖=1

∑
𝐵⊆𝐴∩𝑁𝑗𝑖

(−1)|𝐴⧵𝐵|𝑃 (𝐵) + 𝑠∑
𝑖=1

∑
𝐵⊆𝐴∩𝑁𝑘𝑖

(−1)|𝐴⧵𝐵|𝑃 (𝐵)

=
∑

∅≠𝐵⊆𝐴
𝐵⊈𝐴∩𝑁𝑗𝑖

,𝑖=1,…,𝑟

𝐵⊈𝐴∩𝑁𝑘𝑖
,𝑖=1,…,𝑠

(−1)|𝐴⧵𝐵|𝑃 (𝐵)

=
∑

∅≠𝐵⊆𝐴
(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎) −

𝑟∑
𝑖=1

∑
∅≠𝐵⊆𝐴∩𝑁𝑗𝑖

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎) −
𝑠∑
𝑖=1

∑
∅≠𝐵⊆𝐴∩𝑁𝑘𝑖

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎), (23)

using Lemma 16 for the last equality.

Observe that 𝑟 + 𝑠 = 𝑚 ≥ 2. Assume next that 𝑟 ≥ 1; if 𝑟 = 0 then 𝑠 ≥ 1 and a similar reasoning can be made. Using Equation (20)

and Lemma 13 for the first term, and recalling the derivation of (b) and (a) in the proof of Proposition 15 for the second and third 
terms, respectively, the three terms in Equation (23) are equal to

(−1)|𝐴|+1𝑎− [(−1)|𝐴|−1 𝑟∑
𝑖=1

(𝑏𝑃0(𝐴 ∩𝑁𝑗𝑖
) + 𝑎) + (−1)|𝐴|+1𝑎 ⋅ 𝑠]

= (−1)|𝐴|+1𝑎− (−1)|𝐴|−1𝑏 𝑟∑
𝑖=1

𝑃0(𝐴 ∩𝑁𝑗𝑖
) − (−1)|𝐴|−1𝑎 ⋅ 𝑟− (−1)|𝐴|+1𝑎 ⋅ 𝑠

|𝐴|−1 |𝐴| 𝑟∑ |𝐴|

15

= −(−1) (𝑟− 1)𝑎+ (−1) 𝑏
𝑖=1

𝑃0(𝐴 ∩𝑁𝑗𝑖
) + (−1) 𝑎 ⋅ 𝑠
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= (−1)|𝐴|
[
(𝑟+ 𝑠− 1)𝑎+ 𝑏𝑃0(𝐴 ∩

(
𝑟⋃

𝑖=1
𝑁𝑗𝑖

)
)

]
.

This completes the proof. □

Proposition 17 applies in particular when the maximal null events are pairwise disjoint. In that case, it allows us to completely 
determine the mass function of 𝑃 . To see an example, suppose that for a given VBM 𝑃 is zero on all and only on all atomic events 
(whence 𝑎 < 0). Then Proposition 17 implies that we have 𝑟 = 𝑛, 𝑠 = 0, and Equation (22) gives ∀𝐴 ≠Ω, |𝐴| ≥ 2,

𝑚(𝐴) = (−1)|𝐴|[(𝑛− 1)𝑎+ 𝑏𝑃0(𝐴)] = (−1)|𝐴|[(𝑛− 2)𝑎+ (𝑎+ 𝑏𝑃0(𝐴))] = (−1)|𝐴|[(𝑛− 2)𝑎+ 𝑃 (𝐴)].

Therefore, for 𝑚(𝐴) to be non-negative, it should hold that (𝑛 − 2)𝑎 ≥ −𝑃 (𝐴) if |𝐴| is even and (𝑛 − 2)𝑎 ≤ −𝑃 (𝐴) if |𝐴| is odd, and 
this for every 𝐴 ≠Ω.

It is also possible to relax the assumptions of Proposition 17 to derive further formulae for 𝑚(𝐴). However, these become increas-

ingly complex and the advantage over the general formula (19) tends to fade. We give an idea of this through an example.

Example 5. Let 𝑚 = 3, 𝑟 = 1, 𝑠 = 2 in Proposition 17, and further |𝐴 ∩𝑁1| = 1 (hence |𝐴 ∩𝑁𝑖| ≥ 2 for 𝑖 = 2, 3). Then Equation (22)

gives 𝑚(𝐴) = (−1)|𝐴|(2𝑎 + 𝑏𝑃0(𝐴 ∩𝑁1)).
Now suppose instead that 𝐴 ∩𝑁2 ∩𝑁3 ≠ ∅. Proposition 17 no longer obtains, but we may modify Equation (23) in its proof 

adding the new term∑
∅≠𝐵⊆𝐴∩𝑁2∩𝑁3

(−1)|𝐴⧵𝐵|(𝑏𝑃0(𝐵) + 𝑎),

to take account of the terms subtracted twice when 𝐴 ∩ 𝑁2 ∩ 𝑁3 ≠ ∅. We can continue and obtain a variant of Equation (22), 
whose exact expression depends on whether |𝐴 ∩𝑁2 ∩𝑁3| = 1 or |𝐴 ∩𝑁2 ∩𝑁3| ≥ 2. In the former case, the added term is equal 
to (−1)|𝐴|−1(𝑏𝑃0(𝐴 ∩ 𝑁2 ∩ 𝑁3) + 𝑎), making the structure of 𝑚(𝐴) more complex. And the complexity may further increase in 
the general situations: with more than three maximal null events we may for instance have to take account of the cases where 
(𝐴 ∩𝑁𝑖 ∩𝑁𝑗 ) ∩ (𝐴 ∩𝑁𝑘 ∩𝑁ℎ) ≠ ∅ (𝑖, 𝑗, ℎ, 𝑘 all distinct). The complete solution would then require a sort of inclusion-exclusion 
mechanism, not simpler than Equation (19). ⧫

7. Connection with other families of imprecise probability models

Next, we investigate the connection between VBMs and other families of imprecise probability models.

As established in [7, Proposition 4.1], the lower probability 𝑃 of a VBM is always 2-monotone. However, not every 2-monotone 
lower probability is representable by a VBM; to see an example, note that, as established in [19, Section 6.2.1], the COR model on 
events determines a 2-monotone lower probability, and, as we have shown in Example 1, it is not a VBM in general. In this respect, 
note that any VBM should satisfy conditions (7) and (15), and these are not always satisfied by 2-monotone lower probabilities. In 
fact, in itself the property of 2-monotonicity is not dependent on the functional form of the transformation of 𝑃0 giving 𝑃 in a VBM. 
The simplest way to see this is to recall (see [32, p. 58] or [30, Proposition 6.9]) that any coherent lower probability on a three 
element space is 2-monotone, while not all of them are representable by a VBM.

Furthermore, there exist even lower probabilities obtained from a probability measure 𝑃0 by the same rule as VBMs, but with 
different constraints on the parameters 𝑎 and 𝑏, that may be (coherent and) 2-monotone. They are those Horizontal Barrier Models 
that satisfy some additional requirements, see [7, Section 5.2].

On the other hand, it was also characterised in [7, Proposition 7.3] under which conditions a VBM corresponds to a probability 
interval. In this section, we shall analyse under which conditions it corresponds to other particular cases of 2-monotone models: 
belief functions and minitive measures.

Recall that a lower probability 𝑃 is a belief function if and only if for every 𝑝 ∈ ℕ and every 𝐴1, … , 𝐴𝑝 ∈ (Ω),

𝑃

(
𝑝⋃
𝑖=1

𝐴𝑖

)
≥

∑
𝐽⊆{1,…,𝑝}

(−1)|𝐽 |−1𝑃
(⋂

𝑖∈𝐽
𝐴𝑖

)
.

Let an agent assign a VBM (𝑃0, 𝑎, 𝑏), with 𝑃0 defined on Ω.

7.1. Belief functions

We begin by giving a number of conditions that guarantee that the lower probability of a VBM is a belief function. A necessary 
and sufficient condition for this is that its mass function 𝑚 is non-negative. Hence, using the results in Section 6 we can immediately 
see that VBMs will not determine a belief function in general: indeed, given a non-null VBM 𝑃 on a possibility space of cardinality |Ω| ≥ 4, it follows from Proposition 14 that 𝑚(𝐴) = 𝑎 for every 𝐴 with |𝐴| = 3; this means that the only non-null VBMs that determine 
16

a belief function are the LV models associated with a strictly positive probability 𝑃0, for which 𝑎 = 0. On the other hand, if |Ω| = 3
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then we deduce from Proposition 14 that 𝑚(𝐴) ≥ 0 for |𝐴| = 1, 2 and 𝑚(Ω) = 1 − 𝑏, so a non-null VBM induces a belief function if and 
only if 𝑏 ≤ 1.3

In fact, any LV model determines a belief function, even when zero lower probabilities are involved. On the other hand, when 
𝑎 + 𝑏 = 0, it follows that 𝑃 is the vacuous lower probability, that is a belief function. Taking all this into account, in the remainder of 
this section we shall assume that 𝑎 + 𝑏 > 0 > 𝑎.

Recall from Equation (4) that any VBM 𝑃 satisfies 𝑃 (𝐴) = (𝑎 + 𝑏)𝑃
𝑃𝑀𝑀

(𝐴) for every 𝐴 ≠Ω, where 𝑃
𝑃𝑀𝑀

is the PMM associated 
with the probability measure 𝑃0 and the parameter 𝛿 = − 𝑎

𝑎+𝑏 . We shall refer to this 𝑃
𝑃𝑀𝑀

as the PMM associated with the VBM 𝑃 . 
From the correspondence between VBM and PMM, it is immediate to establish that:

Lemma 18.

(a) For every 𝐴 ⊆Ω, 𝑃 (𝐴) > 0 ⇔ 𝑃
𝑃𝑀𝑀

(𝐴) > 0, and for 𝐴 ≠Ω, 𝑚(𝐴) = (𝑎 + 𝑏)𝑚𝑃𝑀𝑀 (𝐴) ⋚ 0 ⇔𝑚𝑃𝑀𝑀 (𝐴) ⋚ 0.

(b) 𝑚(Ω) = 1 − (𝑎 + 𝑏)(1 −𝑚𝑃𝑀𝑀 (Ω)).
(c) 𝑚𝑃𝑀𝑀 (Ω) ≥ 0 ⇔𝑚(Ω) ≥ 1 − (𝑎 + 𝑏).

Proof. (a) Trivial.

(b) This is a consequence of the first statement together with the equality 1 =
∑

𝐵⊆Ω𝑚(𝐵) =𝑚(Ω) +
∑

𝐵⊂Ω𝑚(𝐵) =𝑚(Ω) + (𝑎 + 𝑏)(1 −
𝑚𝑃𝑀𝑀 (Ω)).

(c) The second statement together with 𝑎 + 𝑏 > 0 implies that 𝑚𝑃𝑀𝑀 (Ω) = 𝑚(Ω)−(1−(𝑎+𝑏))
𝑎+𝑏 , from which the result follows. □

In the next theorem (only) we suppose that 𝑃0({𝜔𝑖}) > 0 ∀𝑖. Further, and following [18], we define the non-vacuity index of 𝑃 by

𝑘 =min{|𝐴| ∶ 𝑃 (𝐴) > 0}.

We shall denote  𝑐 = {𝐴 ⊆ Ω ∶ 𝑃 (𝐴) > 0} and  𝑐
𝑃𝑀𝑀

= {𝐴 ⊆ Ω ∶ 𝑃
𝑃𝑀𝑀

(𝐴) > 0}, where 𝑃
𝑃𝑀𝑀

is the PMM associated with 𝑃 . 
Using this notion and the connection between VBM and PMM, we can give sufficient and necessary conditions for 𝑃 to be a belief 
function:

Theorem 19. Let 𝑃0({𝜔𝑖}) > 0 ∀𝑖.

(a) The following are sufficient conditions for the lower probability 𝑃 of a VBM to be a belief function:

(i) 𝑘 = 𝑛 − 1 and 
∑

𝜔∈Ω 𝑃 ({𝜔}𝑐) ≤ 1.

(ii) There exists a unique event 𝐵 such that |𝐵| = 𝑘 < 𝑛 − 1 and  𝑐 = {𝐴 ⊆Ω ∶𝐴 ⊇ 𝐵}.

(iii) There exists a unique event 𝐵 such that |𝐵| = 𝑘 − 1 < 𝑛 − 2, 𝑏𝑃0(𝐵) + 𝑎 = 0 and  𝑐 = {𝐴 ⊆Ω ∶𝐴 ⊃ 𝐵}.

(b) If 𝑚(Ω) ≥ 1 − (𝑎 + 𝑏) and 𝑃 is not vacuous, then it is necessary that one of (i)–(iii) holds for 𝑃 to be a belief function.

Proof. (a) Let us show that each of the conditions (i)–(iii) is sufficient for 𝑃 to be a belief function.

(i) In this case it is 𝑚(𝐴) = 0 for every 𝐴 with |𝐴| < 𝑛 − 1, 𝑚(𝐴) = 𝑃 (𝐴) for every 𝐴 with |𝐴| = 𝑛 − 1 and 𝑚(Ω) = 1 −∑
𝜔∈Ω𝑚({𝜔}𝑐) = 1 −

∑
𝜔∈Ω 𝑃 ({𝜔}𝑐) ≥ 0, so 𝑃 is a belief function.

(ii) Let 𝑃
𝑃𝑀𝑀

be the PMM associated with 𝑃 . It follows that 𝑃
𝑃𝑀𝑀

satisfies the conditions of [18, Proposition 8], whence 
𝑚𝑃𝑀𝑀 (𝐴) ≥ 0 for every 𝐴 and 𝑚𝑃𝑀𝑀 (Ω) = 0. Applying Lemma 18, we deduce that 𝑚(𝐴) ≥ 0 for every 𝐴 ≠Ω and 𝑚(Ω) =
1 − (𝑎 + 𝑏) ≥ 0.

(iii) The condition 𝑏𝑃0(𝐵) + 𝑎 = 0 is equivalent to the following condition in the associated PMM:

𝛿 = − 𝑎

𝑎+ 𝑏
=

𝑏𝑃0(𝐵)
−𝑏𝑃0(𝐵) + 𝑏

=
𝑃0(𝐵)

1 − 𝑃0(𝐵)
.

It follows that 𝑃
𝑃𝑀𝑀

satisfies the conditions in [18, Proposition 9], whence 𝑚𝑃𝑀𝑀 (𝐴) ≥ 0 for every 𝐴 and 𝑚𝑃𝑀𝑀 (Ω) = 0. 
Applying Lemma 18, we deduce again that 𝑚(𝐴) ≥ 0 for every 𝐴 ≠Ω and 𝑚(Ω) = 1 − (𝑎 + 𝑏) > 0.

(b) Assume next that 𝑃 is a non-vacuous belief function. This means that its non-vacuity index 𝑘 is strictly smaller than 𝑛. There are 
a number of possibilities:

∙ If 𝑘 = 𝑛 − 1, then 
∑

𝜔∈Ω 𝑃 ({𝜔}𝑐) =
∑

𝜔∈Ω𝑚({𝜔}𝑐) ≤ 1, taking into account that 
∑

𝐴⊆Ω𝑚(𝐴) = 1 and that 𝑚(𝐴) ≥ 0 for every 𝐴. 
Thus, condition (i) holds.

∙ Assume next that 𝑘 < 𝑛 − 1. Since 𝑃 is a belief function, we have that 𝑚𝑃𝑀𝑀 (𝐴) ≥ 0, ∀𝐴 ≠Ω, by Lemma 18 (a). Further, the 
assumption 𝑚(Ω) ≥ 1 − (𝑎 + 𝑏) implies that 𝑚𝑃𝑀𝑀 (Ω) ≥ 0 by Lemma 18 (c). Therefore, the following equivalence holds:

𝑃 is a belief function ⇔ 𝑃
𝑃𝑀𝑀

is.

But since the non-vacuity index 𝑘 is the same for the VBM 𝑃 and its associated PMM 𝑃
𝑃𝑀𝑀

, it follows from [18, Theorem 2]

that, if 𝑃
𝑃𝑀𝑀

is a belief function and 𝑘 < 𝑛 − 1, there are two alternatives. Either there exists a unique 𝐵 with |𝐵| = 𝑘 and 
17

3 Observe that when |Ω| = 2 any coherent lower probability, and in particular any VBM, non-null or not, is a belief function, and is a particular case of a LV model.
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such that  𝑐
𝑃𝑀𝑀

= {𝐴 ⊆ Ω ∶ 𝐴 ⊇ 𝐵} = 𝑐 , and we are in case (ii); or there is a unique 𝐵 with |𝐵| = 𝑘 − 1 and such that 
 𝑐

𝑃𝑀𝑀
= {𝐴 ⊆Ω ∶𝐴 ⊃ 𝐵} = 𝑐 . In this latter case, [18, Theorem 2] implies that 𝛿 = − 𝑎

𝑎+𝑏 =
𝑃0(𝐵)

1−𝑃0(𝐵)
, which is equivalent to 

𝑏𝑃0(𝐵) + 𝑎 = 0. Therefore, we are in case (iii). □

Note that the necessity part in this proposition depends on the assumption 𝑚(Ω) ≥ 1 − (𝑎 + 𝑏), which in turn is equivalent to 
𝑚𝑃𝑀𝑀 (Ω) ≥ 0. It is not difficult to find VBMs that are belief functions for which the associated PMM is not:

Example 6. Let Ω = {𝜔1, 𝜔2, 𝜔3, 𝜔4}, 𝑏 = 0.7, 𝑎 = −0.3 and 𝑃0 the probability measure determined by the mass function 
(0.24, 0.26, 0.25, 0.25). These assignments correspond to the VBM given by:

𝑃 ({𝜔𝑖}) = 0 ∀𝑖 = 1,… ,4, 𝑃 ({𝜔1,𝜔3}) = 𝑃 ({𝜔1,𝜔4}) = 0.043

𝑃 ({𝜔1,𝜔2}) = 𝑃 ({𝜔3,𝜔4}) = 0.05, 𝑃 ({𝜔2,𝜔3}) = 𝑃 ({𝜔2,𝜔4}) = 0.057

𝑃 ({𝜔1,𝜔2,𝜔3}) = 𝑃 ({𝜔1,𝜔2,𝜔4}) = 0.225

𝑃 ({𝜔1,𝜔3,𝜔4}) = 0.218, 𝑃 ({𝜔2,𝜔3,𝜔4}) = 0.232.

From these values we deduce that the mass function 𝑚 is given by:

𝑚({𝜔𝑖}) = 0 ∀𝑖 = 1,… ,4, 𝑚({𝜔𝑖,𝜔𝑗}) = 𝑃 ({𝜔𝑖,𝜔𝑗}) ≥ 0∀𝑖 ≠ 𝑗

𝑚({𝜔1,𝜔2,𝜔3}) =𝑚({𝜔1,𝜔2,𝜔4}) = 0.075

𝑚({𝜔1,𝜔3,𝜔4}) = 0.082, 𝑚({𝜔2,𝜔3,𝜔4}) = 0.068, 𝑚(Ω) = 0.4.

Thus, 𝑃 is a belief function. However, if we consider the associated PMM it is 𝑚𝑃𝑀𝑀 (Ω) = −0.5, meaning that the latter is not a 
belief function; and indeed we observe that none of the conditions (i)–(iii) holds. ⧫

In the case of cardinality three, it is not difficult to find a sufficient condition for a VBM to induce a belief function:

Proposition 20. Let Ω = {𝜔1, 𝜔2, 𝜔3} and consider a VBM on (Ω) associated with a probability measure 𝑃0 and two parameters 𝑎 < 0 < 𝑏

such that 𝑎 + 𝑏 > 0. Then 𝑃 is a belief function if 𝑏 ≤ 1.

Proof. We shall proceed by determining the mass function of 𝑃 in the different alternatives:

Case 1: 𝑃 ({𝜔𝑖}) > 0 for 𝑖 = 1, 2, 3. In that case, we get:

∙ 𝑚({𝜔𝑖}) = 𝑏𝑃0({𝜔𝑖}) + 𝑎 > 0 (𝑖 = 1, 2, 3).
∙ 𝑚({𝜔𝑖, 𝜔𝑗}) = −𝑎 ≥ 0 ∀𝑖 ≠ 𝑗.

∙ 𝑚(Ω) = 1 − 𝑏 ≥ 0 ⇔ 𝑏 ≤ 1.

Case 2: ∃! 𝜔𝑖 ∶ 𝑃 ({𝜔𝑖}) = 0. Assume w.l.o.g. 𝑖 = 1. Then the mass function of 𝑃 is:

∙ 𝑚({𝜔1}) = 0, 𝑚({𝜔𝑗}) = 𝑏𝑃0({𝜔𝑗}) + 𝑎 > 0 (𝑗 = 2, 3).
∙ 𝑚({𝜔1, 𝜔2}) =𝑚({𝜔1, 𝜔3}) = 𝑏𝑃0({𝜔1}), 𝑚({𝜔2, 𝜔3}) = −𝑎 ≥ 0.

∙ 𝑚(Ω) = 1 − (𝑏 + 𝑏𝑃0({𝜔1}) + 𝑎) ≥ 1 − 𝑏 ≥ 0 if 𝑏 ≤ 1.

Case 3: ∃! 𝜔𝑖 ∶ 𝑃 ({𝜔𝑖}) > 0. Assume w.l.o.g. 𝑖 = 3. Then the mass function of 𝑃 is:

∙ 𝑚({𝜔1}) = 0 =𝑚({𝜔2}), 𝑚({𝜔3}) = 𝑏𝑃0({𝜔3}) + 𝑎 > 0.

∙ 𝑚({𝜔1, 𝜔3}) = 𝑏𝑃0({𝜔1}), 𝑚({𝜔2, 𝜔3}) = 𝑏𝑃0({𝜔2}), 𝑚({𝜔1, 𝜔2}) = 𝑃 ({𝜔1, 𝜔2}) ≥ 0.

∙ 𝑚(Ω) = 1 − (𝑏 + 𝑎 + 𝑃 ({𝜔1, 𝜔2}) ≥ 1 − 𝑏 ≥ 0 if 𝑏 ≤ 1. The first inequality is immediate if 𝑃 ({𝜔1, 𝜔2}) = 0, otherwise 
1 − 𝑏 − 𝑎 − 𝑃 ({𝜔1, 𝜔2}) = 1 − 𝑏 − 𝑎 − 𝑏𝑃0({𝜔1}) − 𝑏𝑃0({𝜔2}) − 𝑎 ≥ 1 − 𝑏, because −𝑎 − 𝑏𝑃0({𝜔𝑖}) ≥ 0 for 𝑖 = 1, 2.

Case 4: Finally, if 𝑃 ({𝜔𝑖}) = 0 for 𝑖 = 1, 2, 3, we get:

∙ 𝑚({𝜔𝑖}) = 0 (𝑖 = 1, 2, 3).
∙ 𝑚({𝜔𝑖, 𝜔𝑗}) = 𝑃 ({𝜔𝑖, 𝜔𝑗}) ≥ 0 ∀𝑖 ≠ 𝑗.

∙ 𝑚(Ω) = 1 −
∑

𝑖≠𝑗 𝑃 ({𝜔𝑖, 𝜔𝑗}) ≥ 1 − 𝑏 ≥ 0 if 𝑏 ≤ 1. Here, the first inequality can be verified by considering all the possible 
cases, and reasoning analogously to case 3. □

To see that this sufficient condition is not necessary, observe that there are cases with cardinality 3 where the PMM, that is a 
particular case of VBM with 𝑎 + 𝑏 = 1, induces a belief function (see the comments after [10, Proposition 5]).

To investigate further the role of belief functions within VBMs, we give next a condition assuring that 𝑃 is not a belief function. 
The result can be intuitively regarded as a consequence of Proposition 14. Note that in the following proposition we allow 𝑃0 to take 
zero values.

Proposition 21. Let 𝑃 be a VBM on (Ω) such that 𝑃0 is an arbitrary probability (not necessarily strictly positive). If there exist 
18

𝐴1, 𝐴2, 𝐴3 ∈ (Ω) such that 𝐴𝑖 ∩𝐴𝑗 = ∅, ∀𝑖 ≠ 𝑗, 𝑃 (𝐴𝑖) > 0, 𝑖 = 1, 2, 3, 𝐴 =𝐴1 ∪𝐴2 ∪𝐴3 ≠Ω, then 𝑃 is not a belief function.
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Proof. Consider a partition Ω𝑐 coarser than Ω, such that 𝐴1, 𝐴2, 𝐴3 are atomic events of Ω𝑐 , and let 𝑃
𝑐

be the restriction of 𝑃 on 
(Ω𝑐) and 𝑚𝑐 its mass function.

Clearly, if 𝑃 is a belief function on (Ω) also 𝑃
𝑐

is on (Ω𝑐). Thus, we shall show that 𝑃
𝑐

is not a belief function to prove the 
thesis. Compute then

𝑚𝑐(𝐴1 ∪𝐴2 ∪𝐴3) = 𝑏𝑃0(𝐴1 ∪𝐴2 ∪𝐴3) + 𝑎

− (𝑏𝑃0(𝐴1 ∪𝐴2) + 𝑎+ 𝑏𝑃0(𝐴1 ∪𝐴3) + 𝑎+ 𝑏𝑃0(𝐴2 ∪𝐴3) + 𝑎)

+ 𝑏𝑃0(𝐴1) + 𝑎+ 𝑏𝑃0(𝐴2) + 𝑎+ 𝑏𝑃0(𝐴3) + 𝑎

= 𝑎 < 0

Hence, 𝑃
𝑐

is not a belief function. □

In terms of (𝑃0, 𝑎, 𝑏), the condition in this proposition implies that 𝑃0(𝐴𝑖) > − 𝑎

𝑏
for 𝑖 = 1, 2, 3, from which it follows that it can 

only hold when −3𝑎
𝑏
< 1. Proposition 21 also shows us that:

(a) the sufficient condition for belief functions 𝑏 ≤ 1 in Proposition 20 does not extend to cardinalities higher than 3.

(b) Belief functions are characterized when 𝑚(Ω) ≥ 1 − (𝑎 + 𝑏) in Theorem 19. When 𝑘 < 𝑛 − 1, the set  𝑐 = {𝐴 ∈ (Ω) ∶ 𝑃 (𝐴) > 0}
must be either (Theorem 19 (ii)) a filter generated by 𝐵 or (Theorem 19 (iii)) ‘nearly’, in the sense that 𝐵 does not belong to the 
filter.

When 𝑚(Ω) < 1 −(𝑎 + 𝑏), these constraints do not necessarily apply, as Example 6 shows. Yet, the path to obtain a belief function 
remains narrow: Proposition 21 requires (implicitly) that 𝑛 ≥ 4, but its other hypotheses are rather mild: it suffices that three 
disjoint, non-exhaustive events are given positive lower probability.

7.2. Maxitive measures

The lower probability 𝑃 of a VBM is minitive when

𝑃 (𝐴1 ∩𝐴2) = min{𝑃 (𝐴1), 𝑃 (𝐴2)} ∀𝐴1,𝐴2 ⊆Ω.

This is equivalent to determining when the conjugate upper probability 𝑃 of 𝑃 is maxitive, i.e., whether

𝑃 (𝐴1 ∪𝐴2) = max{𝑃 (𝐴1), 𝑃 (𝐴2)} ∀𝐴1,𝐴2 ⊆Ω;

we shall focus on this second condition in this section. Let us then consider the upper probability of the VBM determined by a 
probability measure 𝑃0 and two parameters 𝑏 > 0 and 𝑐 ∈ [0, 1] by means of Equations (2) and (3).

Proposition 22. Let 𝑃 be the upper probability of a VBM.

𝑃 maxitive ⇔ |{𝜔 ∶ 𝑃0({𝜔}) > 0, 𝑃 ({𝜔}) < 1}| ≤ 1.

Proof. Assume first of all that 𝑃0({𝜔}) > 0 for every 𝜔 ∈Ω, and let us establish that in that case

𝑃 maxitive ⇔ |{𝜔 ∶ 𝑃 ({𝜔}) < 1}| ≤ 1. (24)

(⇒) Let 𝑃 be maxitive and assume ex-absurdo the existence of different 𝜔1, 𝜔2 in Ω satisfying 𝑃 ({𝜔1}), 𝑃 ({𝜔2}) < 1. Then

max{𝑃 ({𝜔1}), 𝑃 ({𝜔2})} = max{𝑏𝑃0({𝜔1}) + 𝑐, 𝑏𝑃0({𝜔2}) + 𝑐} < 𝑏𝑃0({𝜔1,𝜔2}) + 𝑐,

taking into account that 𝑃0({𝜔1}), 𝑃0({𝜔2}) > 0 by assumption. Since on the other hand we also have that max{𝑃 ({𝜔1}, 𝑃 ({𝜔2})}
< 1, it follows that

max{𝑃 ({𝜔1}), 𝑃 ({𝜔2})} <min{𝑏𝑃0({𝜔1,𝜔2}) + 𝑐,1} = 𝑃 ({𝜔1,𝜔2}),

a contradiction with the maxitivity of 𝑃 .

(⇐) If 𝑃 (𝜔) = 1 for every 𝜔 ∈ Ω, then 𝑃 is the vacuous upper probability, that is maxitive. On the other hand, if there is a unique 
𝜔′ with 𝑃 ({𝜔′}) < 1, then it follows by monotonicity of 𝑃 that

𝑃 (𝐴) =

{
𝑃 ({𝜔}) if 𝐴 = {𝜔}
1 otherwise,
19

which is also maxitive.
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Consider next the general case. Let Ω∗ = {𝜔 ∈Ω ∶ 𝑃0({𝜔}) > 0} denote the support of 𝑃0. Then for any 𝐴 ⊂Ω, it holds that

𝑃 (𝐴) = min{𝑏𝑃0(𝐴) + 𝑐,1} = min{𝑏𝑃0(𝐴 ∩Ω∗) + 𝑐,1} = 𝑃 (𝐴 ∩Ω∗).

Let us define the upper probability 𝑃
∗
∶ (Ω∗) → [0, 1] by 𝑃

∗
(𝐴) = 𝑃 (𝐴). Note that 𝑃

∗
(Ω∗) = 𝑃 (Ω∗) =min{𝑏 + 𝑐, 1} =min{1 −𝑎, 1} =

1, and therefore 𝑃
∗

can be seen as a VBM on Ω∗, determined by the restriction of 𝑃0 and the parameters 𝑏, 𝑐. Now,

𝑃 maxitive ⇔ 𝑃 (𝐴1 ∪𝐴2) = max{𝑃 (𝐴1), 𝑃 (𝐴2)}∀𝐴1,𝐴2 ⊆Ω

⇔ 𝑃 (𝐴1 ∪𝐴2) = max{𝑃 (𝐴1), 𝑃 (𝐴2)}∀𝐴1,𝐴2 ⊂Ω

⇔ 𝑃 ((𝐴1 ∪𝐴2) ∩ Ω∗) = max{𝑃 (𝐴1 ∩ Ω∗), 𝑃 (𝐴2 ∩ Ω∗)}∀𝐴1,𝐴2 ⊂Ω

⇔ 𝑃
∗
(𝐵1 ∪𝐵2) = max{𝑃 (𝐵1), 𝑃 (𝐵2)}∀𝐵1,𝐵2 ⊆Ω∗

⇔ 𝑃
∗

maxitive

⇔ |{𝜔 ∈Ω∗ ∶ 𝑃
∗
({𝜔}) < 1}| ≤ 1

⇔ |{𝜔 ∈Ω∗ ∶ 𝑃 ({𝜔}) < 1}| ≤ 1,

where the one-but-last equivalence follows from Equation (24). □

Note that, by definition of the upper probability of a VBM, it holds that

𝑃 ({𝜔}) ∈ (0,1)⇔ 𝑃 ({𝜔}) ∈ (𝑐,1)⇔ 𝑏𝑃0({𝜔}) + 𝑐 < 1⇔ 𝑃0(𝜔) <
1 − 𝑐

𝑏
.

The limited relevance of maxitive measures within VBMs is patent from Proposition 22: when 𝑃0 is strictly positive on all non-

trivial events, a VBM is maxitive iff it is vacuous or nearly, i.e. with non-vacuous imprecise probability assessment on at most one 
event.

On the other hand, note that the condition in Proposition 22 is not equivalent to |{𝜔 ∈Ω ∶ 𝑃 ({𝜔}) < 1}| ≤ 1, as we can see in our 
next example:

Example 7. Let Ω = {𝜔1, 𝜔2, 𝜔3} and consider the VBM determined by the mass function 𝑃0 = (0.7, 0.3, 0) and the parameters 
𝑏 = 1, 𝑎 = −0.4. Applying Equation (2), its upper probability is given by:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑃 (𝐴) 1 0.7 0.4 1 1 0.7

Then 𝑃 is maxitive. However, {𝜔 ∶ 𝑃 ({𝜔}) < 1} = {𝜔2, 𝜔3}. ⧫

8. Marginalisation and independence

In this section, we investigate the behaviour of VBMs in a multivariate setting. A similar study for the particular cases of PMM or 
LV models was carried out in [10].

Our first analysis is on the procedure of marginalisation, by which we move from a coherent lower probability 𝑃 on a product 
space Ω ×Ω to its associated marginal models 𝑃 , 𝑃 , given by

𝑃 (𝐴) ∶= 𝑃 (𝐴 ×Ω ) ∀𝐴⊆Ω , 𝑃 (𝐵) ∶= 𝑃 (Ω ×𝐵) ∀𝐵 ⊆Ω .

It is not difficult to establish that the marginal models are still within the VBM family. Indeed, if 𝑃 is the VBM associated with 
(𝑃0, 𝑎, 𝑏), we obtain that

𝑃 (𝐴) ∶= 𝑃 (𝐴 ×Ω ) = max{𝑏𝑃0(𝐴 ×Ω ) + 𝑎,0} = max{𝑏𝑃
0 (𝐴) + 𝑎,0}

where 𝑃
0 denotes the Ω -marginal of 𝑃0. In other words, 𝑃 corresponds to the VBM determined by (𝑃

0 , 𝑎, 𝑏). A similar result can 
be established for 𝑃 .

Concerning independent products, in [10] two avenues were considered: the first consists in distorting two marginal probability 
measures 𝑃

0 , 𝑃
0 and then in considering the strong product 𝑃 ⊠ 𝑃 of the resulting lower probabilities 𝑃 , 𝑃 ; the second 

instead contemplates first the independent product 𝑃
0 × 𝑃

0 as a precise model on Ω × Ω and then distorts it suitably. It was 
already established in [10] that neither of these approaches is more precise than the other. What we shall establish next is that the 
20

strong product of two VBMs is not a VBM in general:
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Example 8. Consider the spaces Ω = {𝜔1, 𝜔2} and Ω = {𝜔′
1, 𝜔

′
2} and the probability measures 𝑃

0 , 𝑃
0 given by 𝑃

0 ({𝜔1}) =
0.3, 𝑃

0 ({𝜔2}) = 0.7, 𝑃
0 ({𝜔′

1}) = 0.5 = 𝑃
0 ({𝜔′

2}). Let 𝑃 , 𝑃 the LV models determined by 𝑃
0 , 𝑃

0 and 𝛿 = 0.1 (in the context of 
VBMs, by 𝑏 = 0.9 and 𝑎 = 0). It was shown in [10, Example 7] that

𝑃 ⊠𝑃 ({𝜔1} × {𝜔′
1}) = 𝑃 ⊠𝑃 ({𝜔1} × {𝜔′

2}) = 0.1215

and 𝑃 ({𝜔1}) = 0.27. If 𝑃 ⊠𝑃 were a VBM, it would follow applying Equation (7) with 𝐴 = {𝜔1} × {𝜔′
1} and 𝐵 = {𝜔1} × {𝜔′

2}
that −𝑎 = 0.27 − 0.1215 − 0.1215 = 0.027. On the other hand,

𝑃 ⊠𝑃 ({𝜔2} × {𝜔′
1}) = 𝑃 ⊠𝑃 ({𝜔2} × {𝜔′

2}) = 0.2835

and 𝑃 ({𝜔2}) = 0.63. If 𝑃 ⊠𝑃 were a VBM, then applying Equation (7) with 𝐴 = {𝜔2} × {𝜔′
1} and 𝐵 = {𝜔2} × {𝜔′

2} we should 
deduce that −𝑎 = 0.63 − 0.567 = 0.063. These two equations are incompatible, and as a consequence the strong product 𝑃 ⊠𝑃 is 
not a VBM. ⧫

Note that, even if in the example above we have focused on the strong product 𝑃 ⊠ 𝑃 of two VBMs 𝑃 , 𝑃 , the key in 
the example lies in the factorisation properties of this product, that are also satisfied by other products such as the independent or 
Kuznetsov; thus, the family of VBMs would not be closed under those procedures either. We refer to [6] for a more detailed analysis 
of independence within imprecise probabilities.

9. Inner and outer approximations with VBMs

Finally, we investigate how VBMs can be involved in the problem of approximating a coherent lower probability with another 
one.

9.1. Inner and outer approximations by VBMs

In this section we look at the problem of transforming a coherent lower probability 𝑃 into a VBM 𝑄 that is close to it with a 
minimal variation of imprecision with respect to the original model. We shall consider two possibilities: inner approximations, that 
correspond to the case where 𝑄 ≥ 𝑃 , and outer approximations, where 𝑄 ≤ 𝑃 .

A first approach would be to consider those approximations that are Pareto optimal in terms of dominance, in the sense that there 
is no other approximation that can be placed between 𝑄 and 𝑃 . In the case of inner approximations, this means that there is no other 
VBM 𝑄′ satisfying 𝑄 ⪈𝑄′ ≥ 𝑃 , while for outer approximations there should be no other VBM 𝑄′ satisfying 𝑄 ⪇𝑄′ ≤ 𝑃 . However, 
this criterion alone does not single out one approximation, as we shall see later on in this section. It does not even entail a minimum 
variation of imprecision for its admissible approximations: in fact, it does not specify what variation of imprecision should mean.

For this reason, and following the work in [16,21,22], we shall consider the approximation that is closest to the original model, 
and for this we need to fix a distance between lower probabilities. In this paper, we consider the distance employed by Baroni and 
Vicig in [1]:

𝑑BV(𝑃 ,𝑄) =
∑
𝐴⊆Ω

|𝑃 (𝐴) −𝑄(𝐴)|.
This distance aggregates the discrepancy between the lower probabilities of all non-trivial events. It can be viewed as the overall 
variation of imprecision when replacing 𝑃 with 𝑄. When 𝑄 is an inner approximation, it can be interpreted as a measure of the 
imprecision in 𝑃 that is removed when considering 𝑄, while if 𝑄 is an outer approximation of 𝑃 the value 𝑑BV(𝑃 , 𝑄) measures the 
extra imprecision that is incorporated in our model by using 𝑄. While this is not the only possible way of comparing two lower 
probabilities, it has the sensible property in our view of being a linear function of the discrepancies across all possible events.

The problem of outer approximating a coherent lower probability by a more tractable model was investigated in [16,21,22]. 
On the other hand, inner approximations were considered in [5,14,15]. We refer to those papers for motivation and additional 
discussion.

Concerning inner approximations, it is not difficult to characterise the optimal inner approximations in terms of the parameters 
𝑎, 𝑏 under some conditions:

Proposition 23. Let 𝑃 be a coherent lower probability on (Ω) satisfying 𝑃 (𝐴) > 0 for every 𝐴 ≠ ∅. Then a VBM 𝑄 determined by (𝑃0, 𝑎, 𝑏)
that inner approximates 𝑃 minimises 𝑑BV(𝑃 , 𝑄) if and only if it minimises 𝑏 + 2𝑎.

Proof. It suffices to observe that, if 𝑄 is an inner approximation of 𝑃 ,

𝑑BV(𝑃 ,𝑄) =
∑
𝐴⊆Ω

|𝑃 (𝐴) −𝑄(𝐴)| = ∑
𝐴⊆Ω

(𝑄(𝐴) − 𝑃 (𝐴)) = −
∑

∅≠𝐴⊂Ω
𝑃 (𝐴) +

∑
∅≠𝐴⊂Ω

(𝑏𝑃0(𝐴) + 𝑎)

= −
∑

𝑃 (𝐴) + 𝑏(2𝑛−1 − 1) + 𝑎(2𝑛 − 2) = −
∑

𝑃 (𝐴) + (2𝑛−1 − 1)(𝑏+ 2𝑎).
21

∅≠𝐴⊂Ω ∅≠𝐴⊂Ω
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Thus, 𝑑BV(𝑃 , 𝑄) is minimised if and only if 𝑏 + 2𝑎 is minimised. □

This proposition allows us to establish that the optimal inner approximation is not unique in general:

Example 9. Let Ω = {𝜔1, 𝜔2, 𝜔3} and let 𝑃 be the coherent lower probability given by:

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1 ,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3} Ω

𝑃 (𝐴) 0.15 0.2 0.2 0.5 0.5 0.45 1

𝑚𝑃 (𝐴) 0.15 0.2 0.2 0.15 0.15 0.05 0.1

To see that it is coherent, it suffices to observe that its mass function, given in the same table, is non-negative, and therefore that 𝑃
is a belief function.

Let 𝑄 be a VBM that is an inner approximation of 𝑃 . Since 𝑃 (𝐴) > 0, it must be 𝑄(𝐴) = 𝑏𝑃0(𝐴) + 𝑎 for some probability measure 
𝑃0 and parameters 𝑎 ≤ 0, 𝑏 > 0, 𝑎 + 𝑏 ∈ [0, 1]. Applying Equation (15), it must be

𝑄({𝜔2}) +𝑄({𝜔1,𝜔3}) = 𝑏+ 2𝑎 ≥ 0.7 = 𝑃 ({𝜔2}) + 𝑃 ({𝜔1,𝜔3}).

To see that this bound can be attained by more than one inner approximation, let 𝑄
1

be the VBM determined by the probability 
measure (0.3, 0.35, 0.35) and the parameters 𝑎 = −0.15, 𝑏 = 1, and let 𝑄

2
be the VBM determined by ( 13 , 

1
3 , 

1
3 ) and 𝑎 = −0.1, 𝑏 = 0.9. 

They are given by

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑄
1
(𝐴) 0.15 0.2 0.2 0.5 0.5 0.55

𝑄
2
(𝐴) 0.2 0.2 0.2 0.5 0.5 0.5

Applying Proposition 23, we conclude that both 𝑄
1
, 𝑄

2
are optimal inner approximations. ⧫

Remark 2. Observe that any inner approximation that minimises 𝑑BV(𝑃 , 𝑄) is also Pareto optimal, in the sense that there is no other 
VBM 𝑄′ such that 𝑃 ≤𝑄′ ⪇𝑄: if that were the case, it would ensue that 𝑑BV(𝑃 , 𝑄′) < 𝑑BV(𝑃 , 𝑄), a contradiction. Then Example 9

allows us to conclude also that there is no unique inner approximation with respect to Pareto dominance.

We can also use the example to show that there may be an infinite number of optimal inner approximations: for any 0 < 𝛼 < 1 the 
coherent lower probability 𝑄

𝛼
= 𝛼𝑄

1
+(1 −𝛼)𝑄

2
is a VBM by Proposition 12, it satisfies 𝑄

𝛼
≥ 𝑃 and 

∑
𝐴≠∅,Ω𝑄𝛼

(𝐴) =
∑

𝐴≠∅,Ω𝑄𝑖
(𝐴) =

2.1 for 𝑖 = 1, 2, so that 𝑑BV(𝑃 , 𝑄𝛼
) = 𝑑BV(𝑃 , 𝑄𝑖

) = 0.1. ⧫

We shift our attention now to outer approximations. It was established in [21, Propositions 7 and 8] that any coherent lower 
probability 𝑃 has a unique outer approximation in the family of PMM or LV models. As we shall see, this is not necessarily the case 
for VBMs.

With a similar reasoning to that of Proposition 23, we can characterise the outer approximations by non-null VBMs:

Proposition 24. Let 𝑃 be a coherent lower probability on (Ω) satisfying 𝑃 (𝐴) > 0 for every 𝐴 ≠ ∅. Then a non-null VBM 𝑄 determined 
by (𝑃0, 𝑎, 𝑏) that outer approximates 𝑃 minimises 𝑑BV(𝑃 , 𝑄) if and only if it maximises 𝑏 + 2𝑎.

Proof. The reasoning is similar to that of Proposition 23, observing that now we should minimise − 
∑

𝐴⊂Ω𝑄(𝐴) = −(2𝑛−1−1)(𝑏 +2𝑎), 
and that this is then equivalent to maximising 𝑏 + 2𝑎. □

Let us now establish that there may be more than one optimal outer approximation:

Example 10. Consider again the coherent lower probability 𝑃 of Example 9. Any non-null VBM 𝑄 that outer approximates 𝑃 will 
satisfy

𝑏+ 2𝑎 =𝑄({𝜔1}) +𝑄({𝜔2,𝜔3}) ≤ 𝑃 ({𝜔1}) + 𝑃 ({𝜔2,𝜔3}) = 0.6

from which

𝑑BV(𝑃 ,𝑄) ≥ 𝑃 ({𝜔2}) + 𝑃 ({𝜔1,𝜔3}) + 𝑃 ({𝜔3}) + 𝑃 ({𝜔1,𝜔2}) −𝑄({𝜔2}) −𝑄({𝜔1,𝜔3}) −𝑄({𝜔3}) −𝑄({𝜔1,𝜔2})
22

≥ 0.7 + 0.7 − 0.6 − 0.6 = 0.2.
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This distance is attained by more than one VBM: in particular, by 𝑄
1
, the TV model determined by the probability measure 

(0.35, 0.35, 0.3), 𝑎 =−0.2 and 𝑏 = 1, and by 𝑄
2
, the TV model determined by the probability measure (0.35, 0.3, 0.35), 𝑎 = −0.2, 𝑏 = 1. 

These are given by

𝐴 {𝜔1} {𝜔2} {𝜔3} {𝜔1,𝜔2} {𝜔1,𝜔3} {𝜔2,𝜔3}

𝑄
1
(𝐴) 0.15 0.15 0.1 0.5 0.45 0.45

𝑄
2
(𝐴) 0.15 0.1 0.15 0.45 0.5 0.45

Therefore, in this case there is no unique optimal outer approximation of 𝑃 in the subfamily of non-null VBMs. Let us establish that 
in this case we cannot find any closer outer approximation in the family of VBMs, i.e., that min{𝑑BV(𝑃 , 𝑄) ∶𝑄 is a VBM} = 0.2. To 
see that this is the case, let 𝑄 be a VBM that outer approximates 𝑃 . If 𝑄(𝐴) = 0 for some 𝐴 ≠ {𝜔1}, then

𝑑BV(𝑃 ,𝑄) ≥ 𝑃 (𝐴) −𝑄(𝐴) = 𝑃 (𝐴) ≥ 0.2.

On the other hand, if 𝑄({𝜔1}) = 0 and 𝑑BV(𝑃 , 𝑄) ≤ 0.2, then necessarily it must be 
∑

𝐵≠{𝜔1}(𝑃 (𝐵) −𝑄(𝐵)) ≤ 0.05. This implies

𝑄({𝜔1,𝜔2}) +𝑄({𝜔1,𝜔3}) +𝑄({𝜔2,𝜔3}) = 2𝑏+ 3𝑎 ≤ 𝑃 ({𝜔1,𝜔2}) + 𝑃 ({𝜔1,𝜔3}) + 𝑃 ({𝜔2,𝜔3}) = 1.45

Moreover, since

𝑃 ({𝜔1,𝜔2}) + 𝑃 ({𝜔1,𝜔3}) + 𝑃 ({𝜔2,𝜔3}) −𝑄({𝜔1,𝜔2}) −𝑄({𝜔1,𝜔3}) −𝑄({𝜔2,𝜔3}) ≤
∑

𝐵≠{𝜔1}
(𝑃 (𝐵) −𝑄(𝐵)) ≤ 0.05,

it follows that

𝑄({𝜔1,𝜔2}) +𝑄({𝜔1,𝜔3}) +𝑄({𝜔2,𝜔3}) ≥ 𝑃 ({𝜔1,𝜔2}) + 𝑃 ({𝜔1,𝜔3}) + 𝑃 ({𝜔2,𝜔3}) − 0.05 = 1.4.

Therefore, 2𝑏 + 3𝑎 ∈ [1.4, 1.45].
With a similar reasoning, we can conclude that

𝑄({𝜔2}) +𝑄({𝜔1,𝜔3}) = 𝑏+ 2𝑎 ∈ [0.65,0.7];

From 2𝑏 +3𝑎 ∈ [1.4, 1.45] and 𝑏 +2𝑎 ∈ [0.65, 0.7] it follows that 𝑏 + 𝑎 ∈ [0.7, 0.8], or equivalently, that 2𝑏 +2𝑎 ∈ [1.4, 1.6]; this, again 
together with 2𝑏 + 3𝑎 ∈ [1.4, 1.45], implies that 𝑎 ∈ [−0.15, 0]. Since

𝑄({𝜔1}) = 0⇒𝑏 ⋅ 𝑃0({𝜔1}) ≤ −𝑎 ≤ 0.15

0 <𝑄({𝜔2}) ≤ 𝑃 ({𝜔2})⇒𝑏 ⋅ 𝑃0({𝜔2}) ≤ 0.2 − 𝑎 ≤ 0.35

0 <𝑄({𝜔3}) ≤ 𝑃 ({𝜔3})⇒𝑏 ⋅ 𝑃0({𝜔3}) ≤ 0.2 − 𝑎 ≤ 0.35

it follows that 𝑏 ≤ 0.85, and since 𝑏 + 2𝑎 ∈ [0.65, 0.7] it ensues that 𝑎 ∈ [−0.1, 0]. With a similar reasoning,

𝑏 ⋅ 𝑃0({𝜔1}) ≤ −𝑎 ≤ 0.1

𝑏 ⋅ 𝑃0({𝜔2}) ≤ 0.2 − 𝑎 ≤ 0.3

𝑏 ⋅ 𝑃0({𝜔3}) ≤ 0.2 − 𝑎 ≤ 0.3,

whence 𝑏 ≤ 0.7. But 𝑏 + 𝑎 ∈ [0.7, 0.8] means that it should be 𝑎 = 0, 𝑏 = 0.7, whence

𝑄({𝜔1}) = min{𝑏𝑃0({𝜔1}),0} = 0⇒ 𝑃0({𝜔1}) = 0,

and then

0.7 = 𝑏 = 𝑏𝑃0({𝜔2}) + 𝑏𝑃0({𝜔3} =𝑄({𝜔2}) +𝑄({𝜔3}) ≤ 𝑃 ({𝜔2}) + 𝑃 ({𝜔3}) = 0.4,

a contradiction. We conclude that min{𝑑BV(𝑃 , 𝑄) ∶ 𝑄 is a VBM} = 0.2 and as a consequence that 𝑄
1
, 𝑄

2
are two different optimal 

inner approximations. This allows to prove that there are infinitely (actually uncountably) many optimal VBM outer approximations: 
it suffices to observe that for any 0 < 𝛼 < 1 𝑄

𝛼
= 𝛼𝑄

1
+ (1 − 𝛼)𝑄

2
is a VBM by Proposition 12, that 𝑄

𝛼
≤ 𝑃 and that 

∑
𝐴≠∅,Ω𝑄𝛼

(𝐴) =∑
𝐴≠∅,Ω𝑄𝑖

(𝐴) = 1.8 for 𝑖 = 1, 2, so that 𝑑BV(𝑃 , 𝑄𝛼
) = 𝑑BV(𝑃 , 𝑄𝑖

) = 0.2. ⧫

Remark 3. The comments at the end of the example above, as well as those in Remark 2, point out towards a more general result: if 
we consider two non-null VBMs 𝑄

1
, 𝑄

2
such that 𝑑BV(𝑃 , 𝑄1

) = 𝑑BV(𝑃 , 𝑄2
) = 𝜇, then for any 𝛼 ∈ (0, 1) the coherent lower probability 

𝑄
𝛼
= 𝛼𝑄

1
+ (1 − 𝛼)𝑄

2
shall also be a VBM by Proposition 12. Moreover, it shall satisfy 𝑑BV(𝑃 , 𝑄𝛼

) = 𝜇, being therefore an optimal 
23

inner (alternatively, outer) approximation of 𝑃 when both 𝑄
1
, 𝑄

2
are. ⧫
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The above example may lead us to believe that the optimal outer approximations of a non-null coherent lower probability in 
the family of VBMs are always non-null VBMs. However, it is possible to show that this is not the case in general. It does not seem 
easy to characterise in which cases the optimal outer approximations are non-null. Another pending issue would be looking for 
characterisations of the optimal inner and outer approximations by VBMs in terms of the parameters 𝑎, 𝑏 even when zero lower 
probabilities are involved.

On the other hand, and reasoning similarly to Remark 2, it follows that any outer approximation 𝑄 that minimises the distance 
with respect to 𝑃 will also be Pareto optimal, in that there will be no other lower probability 𝑄′ such that 𝑄 ⪇ 𝑄′ ≤ 𝑃 . As a 
consequence, Example 10 shows that the set of Pareto optimal outer approximations of a coherent lower probability in the family of 
VBMs may have more than one element.

These results may then lead us to look for procedures to single out a unique inner or outer approximation; following the ideas in 
[16], one option would be to consider those that minimise the quadratic distance, possibly after first focusing on those that minimise 
𝑑BV. Other strictly convex distances may also be of interest in this regard.

9.2. Outer approximations of VBMs

Unlike the preceding section, a VBM plays here the opposite role of being the imprecise probability model to be outer approx-

imated. In this section, we shall investigate its outer approximations by means of either a PMM or a LV model. In both cases, we 
specialise to VBMs general results for coherent lower probabilities, stated in [21] and giving explicit formulae for these approxima-

tions, that are also unique.

It has to be observed that performing such approximations does not operationally produce notable simplifications: the VBM is 
already a rather simple model itself. We are interested towards the PMM and LV approximations mainly because they let us explore 
from a new perspective how much a VBM differs from its special cases. This complements our previous investigations on this issue, 
starting from the behavioural interpretations discussed in Section 2.

Let 𝑃 be a VBM (𝑃0, 𝑎, 𝑏) on a space Ω with |Ω| = 𝑛 and let 𝑃 be its conjugate. Let us consider first the outer approximation of 
𝑃 by a PMM upper probability 𝑃𝑃𝑀𝑀 . Let us assume that for this approximation 𝑃 ({𝜔}) < 1 ∀𝜔 ∈ Ω. Applying the results in [21, 
Section 4.2] and recalling that by Equation (3) 𝑐 = 1 − (𝑎 + 𝑏) we obtain

(1 + 𝛿) =
∑
𝜔∈Ω

𝑃 ({𝜔}) = 𝑏+ 𝑛𝑐, 𝑃 𝑃𝑀𝑀
0 ({𝜔}) = 𝑃 ({𝜔})∑

𝜔∈Ω 𝑃 ({𝜔})
,

so that, for every 𝐴 ⊂Ω,

𝑃𝑃𝑀𝑀 (𝐴) = min{(1 + 𝛿)𝑃𝑃𝑀𝑀
0 (𝐴),1} = min

{∑
𝜔∈𝐴

𝑃 ({𝜔}),1

}
=min{𝑏𝑃0(𝐴) + |𝐴|𝑐,1} (25)

and 𝑃𝑃𝑀𝑀 (Ω) = 1.

To evaluate the quality of this approximation, we observe that the more the parameter 𝑐 differs from 0, the more the original 
VBM deviates from a PMM and the more its PMM outer approximation is ‘vague’, in the sense that it gives 𝑃𝑃𝑀𝑀 (𝐴) = 1 to a larger 
set of events 𝐴. This conclusion is supported by the following:

Proposition 25. Given the VBM (𝑃0, 𝑎, 𝑏), if 𝑎 + 𝑏 ≤ 1
2 then 𝑃𝑃𝑀𝑀 (𝐴) = 1 for every 𝐴 with |𝐴| ≥ 2.

Proof. From (25) we have that for every 𝐴 ≠Ω

𝑃𝑃𝑀𝑀 (𝐴) = 1⇔ |𝐴| ≥ 1 − 𝑏𝑃0(𝐴)
𝑐

=
1 − 𝑏𝑃0(𝐴)
1 − (𝑎+ 𝑏)

.

Suppose |𝐴| ≥ 2. Then the inequality above applies when it holds that 2 ≥ 1−𝑏𝑃0(𝐴)
1−(𝑎+𝑏) , or, equivalently, when 𝑃0(𝐴) ≥

2(𝑎+𝑏)−1
𝑏

. This 

holds automatically when 𝑎 + 𝑏 ≤ 1
2 since then 2(𝑎+𝑏)−1

𝑏
≤ 0. □

Note that the condition 𝑎 + 𝑏 ≤ 1
2 is not particularly restrictive. On the other hand, since 𝑃𝑃𝑀𝑀 ({𝜔}) = 𝑃 ({𝜔}) in any optimal 

PMM outer approximation [21, Section 4.2], the PMM in the hypotheses of Proposition 25 is the vaguest possible such optimal 
approximation.

Let us turn now to the LV approximation. As shown in [21, Section 4.3], this type of approximation is not feasible4 if ∑
𝜔∈Ω 𝑃 ({𝜔}) = 0, while being otherwise unique.

Let us suppose then that 
∑

𝜔∈Ω 𝑃 ({𝜔}) > 0. Applying [21, Proposition 8], and defining, for any 𝐴 ⊆Ω

𝐴+ = {𝜔 ∈𝐴 ∶ 𝑃 ({𝜔}) > 0},

4 Of course, there is always a feasible outer approximation if we consider the vacuous lower probability as a LV model; however, in [21] the focus is on non-trivial 
24

LV mixtures, i.e., in those where the weights of the linear and the vacuous model are both non-zero.
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the optimal outer approximation is given by

𝑃
𝐿𝑉

(𝐴) =
∑
𝜔∈𝐴

𝑃 ({𝜔}) =
∑
𝜔∈𝐴∗

𝑃 ({𝜔}) =
∑
𝜔∈𝐴+

(𝑏𝑃0({𝜔} + 𝑎) = 𝑏𝑃0(𝐴+) + 𝑎|𝐴+|, (26)

and 𝑃
𝐿𝑉

(Ω) = 1.

Let us evaluate this kind of outer approximation of 𝑃 . We observe what follows:

• Unlike PMM outer approximations, it is not possible that the LV approximation is ‘too vague’. In fact, it may be that 𝑃 (𝐴) > 0
and 𝑃

𝐿𝑉
(𝐴) = 0: by Equation (26) it is 𝑃

𝐿𝑉
(𝐴) = 0 iff 𝑃 ({𝜔}) = 0 for every 𝜔 ∈ 𝐴, which in turn is equivalent to 𝐴+ = ∅. Yet, 

and in contradistinction with Proposition 25, it cannot be that 𝑃
𝐿𝑉

(𝐴) = 0 for every 𝐴 with |𝐴| ≥ 2, because this would imply 
that 𝑃 ({𝜔}) = 0 for every 𝜔 and therefore that the LV approximation does not exist.

• A VBM is LV iff 𝑎 = 0, and the more 𝑎 deviates from 0, the less similar the VBM is from a LV model. What are the implications 
for the LV outer approximation? Take 𝐴 with 𝑃 (𝐴) > 0. The approximation error 𝑃 (𝐴) − 𝑃

𝐿𝑉
(𝐴) is bounded below as follows:

𝑃 (𝐴) − 𝑃
𝐿𝑉

(𝐴) = 𝑏𝑃0(𝐴) + 𝑎− 𝑏𝑃0(𝐴+) − 𝑎|𝐴+|
≥ 𝑏𝑃0(𝐴+) + 𝑎− 𝑏𝑃0(𝐴+) − 𝑎|𝐴+|
= −𝑎(|𝐴+|− 1) > 0.

Thus, the greater imprecision of the approximating 𝑃
𝐿𝑉

compared to 𝑃 increases with −𝑎 > 0 (and with |𝐴+| −1). Note however 
that a larger −𝑎 increases also, for given 𝑏 and 𝑃0, the number of 𝑃 -null events, which are obviously also 𝑃

𝐿𝑉
-null and therefore 

subject to no approximation error.

Summarising, we see that both outer approximations tend to perform better when the VBM is ‘close’ to a PMM or a LV model, 
respectively. In the opposite case, the (non-trivial) LV approximation may simply not exist while the PMM does if 𝑃 ({𝜔}) < 1 ∀𝜔 ∈Ω, 
but may be very vague.

10. Conclusions

Vertical Barrier Models have been originally introduced as distortion models, i.e. as functions of a given probability 𝑃0. We have 
seen in this paper how they can be interpreted as neighbourhood models, originated from a neighbourhood of 𝑃0 by means of a 
suitable distorting function. The complexity of the credal set of a VBM has been discussed in terms of the maximum number of its 
extreme points. Perhaps surprisingly, the bound we found is the same as for TV models, a proper subfamily of VBMs. Mixtures of 
VBMs are, under some conditions, still VBMs, while disjunction and conjunction operations do not retain this closure property. In 
the case of mixtures, a sufficient condition is the equality 1 =2. We make this assumption in Proposition 12(a) and it holds in 
particular if the two VBMs to be combined are non-null. More generally, the interpretation of the assumption is that the opinions of 
two experts may differ on all events but those given null lower probability, in order for the mixture to be a VBM again.

Several features of VBMs that are (or are not) belief functions have been detected. Although VBMs that are belief functions are 
certainly not the rule, there is anyway some more flexibility with respect to the already well known subcase of Pari-Mutuel Models. 
Nevertheless, a complete characterisation of belief functions within VBMs is still to be determined.

Tables 1 and 2 summarise some of our results and establish a comparison with the properties of the PMM, LV and TV models:

Table 1

Summary of some properties of VBMs.

Conj. Disj. Mixtures Belief?

PMM YES NO If non-null [18, Thm. 2] (⇔)

LV YES NO YES YES

TV NO NO If non-null NO

VBM NO NO Proposition 12(a) (sufficient) Theorem 19 (sufficient)

Non-null VBM NO NO YES Only if LV or |Ω| = 3, 𝑏 ≤ 1

Concerning the maximum number of extreme points of (𝑃 ) in terms of 𝑛 = |Ω|, the bounds are as in Table 2.

We provide a characterisation of the Möbius inverse of non-null VBMs in Proposition 14, as well as its expression in other cases 
of VBMs. In general, the technique we followed is advantageous over the standard formulae for computing the Möbius inverse as 
long as the structure of zero lower probability events remains simple.

With respect to the inner and outer approximations of coherent lower probabilities by means of VBMs, we can characterise the 
optimal inner and outer approximations in the subfamily of non-null VBMs, but not in general. Nevertheless, even in that case there 
25

is no unique solution, and we may have to consider the results discussed in [16] to choose between the different solutions.
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Table 2

Complexity of the credal set of a VBM.

Maximum number of extreme points of (𝑃 )

PMM
𝑛!⌊ 𝑛

2 ⌋⌊ 𝑛

2 −1⌋!⌈ 𝑛

2 +1⌉!
LV 𝑛

TV
𝑛!⌊ 𝑛

2 −1⌋!⌈ 𝑛

2 −1⌉!
VBM

𝑛!⌊ 𝑛

2
−1⌋!⌈ 𝑛

2
−1⌉!

Non-null VBM 𝑛(𝑛− 1)

It is also interesting to remark that, as we have established in Section 8, the family of VBMs is closed under marginalisation but 
not under independence. Similar results for some particular subfamilies were already established in [10].

Finally, explicit formulae for outer approximating a VBM by means of a PMM or a LV model are supplied. The related discussion 
highlights that VBMs cannot always be adequately approximated by these submodels of theirs. This fact, together with the reasoning 
on the behavioural interpretation of VBMs in Section 2, confirms that VBMs cannot be always replaced by their (more well known) 
submodels without losing something in terms of uncertainty representations. On the other hand, VBMs are not really much more 
complex than these submodels. This appears already from their expression and is confirmed by our results on their representation as 
neighbourhood models and on the cardinality of the extreme points of their credal sets.
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