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A B S T R A C T   

The use of manure in agricultural fields during the wet season can lead to environmental pollution by releasing 
nitrates into nearby water sources. To address this issue, authorities may impose closed periods during which 
manure application is prohibited. However, ensuring compliance with these regulations can be challenging, as it 
is difficult to monitor all fields in a country. To tackle this problem, a solution has been proposed that involves 
employing machine learning techniques in conjunction with satellite imagery to automatically identify freshly 
manured fields. This paper investigates the relationship and effectiveness of the Sentinel-2 satellite bands and 51 
frequently utilized multispectral indices in the context of precision agriculture, by exploring different feature 
selection methods. The proposed method achieves nearly 90% F1-Score and detects all test plots of the northern 
Spanish region, showing its potential for large-scale use in precision agriculture and environmental monitoring. 
This method incorporates temporal data, resulting in an 8% improvement in the detection F1-Score. Despite their 
lower spatial resolution, infrared bands have proven to be more effective than visible bands, enhancing the F1- 
Score by 4%. Furthermore, the use of over 80 features contributes to a 12% increase in the F1-Score compared to 
using fewer than 10 features. For further research and future studies, a dataset of recently manured plots, verified 
on-site, has been developed and made publicly available.   

1. Introduction 

Multispectral remote sensing (Colwell, 1966) is a powerful technol-
ogy that captures image data within specific wavelength ranges 
throughout the electromagnetic spectrum. This technology offers the 
unique capability to distinguish different features based on their spectral 
responses in various bands of the spectrum. The data collected from 
these bands can be utilized individually or combined to form multi-
spectral indices. These indices are constructed to enhance the contri-
bution of certain features while minimizing the influence of others, 
providing more precise information about specific phenomena such as 
vegetation conditions, soil type, and temperature (Curran, 1980). In this 
way it is possible to highlight different phenomena in the images that 
would normally be more difficult to observe, extending the capabilities 
of the bands. 

Multispectral indices exist for a wide variety of subjects. In partic-
ular, in this publication, multispectral indices of the precision agricul-
ture literature are studied. These indices are called vegetation indices 

and are used for a wide variety of tasks ranging from the detection of 
vegetation and its health, to the detection of specific substances such as 
nitrates or nitrogen. Looking at these applications, the possibility of 
detecting the spreading of manure on crops arises. This can be of great 
importance for environmental conservation as nitrates from manure, as 
well as other elements from supplements given to livestock (Brugger and 
Windisch, 2015), can reach into nearby water bodies contaminating 
them (Tzilivakis et al., 2021; Liu et al., 2018; Kleinman et al., 2020). 
This phenomenon is known as leaching and is accentuated in rainy 
seasons. For example, there are recent reports about the death of large 
quantities of fish due to the lack of oxygen caused by leaching 
contamination (Kirchman, 2022; Fahmy, 2022; Gillespie, 2022). For this 
reason, legislations are created to prohibit (Council of the European 
Union, 1991; Colwell, 2000) or regulate (Ironmonger, 2022; Bouma, 
2016) the use of manure as fertilizer during these periods. This is 
formally known as closed periods and can prevent environmental 
pollution (Tzilivakis et al., 2021). Closed periods may vary depending on 
the vulnerability of the terrain and other risks, such as the climate of that 
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particular region. A solution based on multispectral indices from satel-
lite data can enable monitoring and enforcement of the laws, as on site 
investigations are unfeasible given the scale. 

Precision agriculture using satellite imagery is a well-researched 
field. There is plenty of literature about crop classification (Orynbai-
kyzy et al., 2019; Pedrayes et al., 2021), or the health of crops (Mutanga 
et al., 2017; Shanmugapriya et al., 2019). However, no existing litera-
ture explores the detection of recent manure application in different 
types of fields using a wide range of satellite multispectral indices. Most 
of the literature related to fertilizer detection studies only a few multi-
spectral indices at a time, and uses aircraft imagery with much higher 
resolution (Yang et al., 2002; Qun’ou et al., 2021; Pereira et al., 2022). 
The problem is that aircraft imagery is expensive and cannot be used as a 
monitoring method. In the case of unmanned aerial vehicles (UAVs) 
such as drones, the cost of constantly monitoring large areas is not 
feasible. Both airplane and UAV imagery can provide high-resolution 
data and are useful for specific applications. However, they have limi-
tations in terms of coverage area, flight time, and susceptibility to 
weather conditions such as wind, which may make satellite data a more 
practical option for certain applications (Alvarez-Vanhard et al., 2021; 
Analytics, 2022). Satellite data can offer global coverage, long-term data 
time-series, and environmental monitoring at different resolutions 
(Earth, 2019). In addition, some satellites offer their imagery for free. In 
the works that use satellite imagery to study vegetation, Sentinel-2 is the 
most common option in recent years (Ma et al., 2010; Romanko, 2017; 
Zhu et al., 2021; Dodin et al., 2021). This is because its data is publicly 
available for free and has 13 multispectral bands with a revisit time of 
only 5 days. Its spatial resolution is not particularly high with 10 to 30 
meters; however, when compared to other satellites, it is among the best 
available options. 

Most literature on multispectral indices for detection of fertilizers 
using Sentinel-2 satellite imagery are about visualization in the images 
(Wang, 2009), or study the correlation of the bands and some multi-
spectral indices (Dodin et al., 2021). There is not extensive research on 
advanced machine learning classification for fertilizer detection and 
even less specifically for recent manure application. The literature 
agrees that the short-wave infrared bands and multispectral indices are 
the most representative for nitrates and nitrogen (Dodin et al., 2021; 
Romanko, 2017; Yang et al., 2002; Fu et al., 2021). There is some 
research for organic matter (Dodin et al., 2021; Wang, 2009) but this 
may include many different sources. 

Another relevant study is (Shea et al., 2022). Its focus is on detecting 
soil moisture on clear days and distinguishing between saturated and 
dry soil conditions in agricultural fields. This is achieved through the use 
of median images created from multiple images taken over a 60-day 
period to avoid cloud cover. For this reason, this method is not inten-
ded for monitoring manure application. Instead, its goal is to identify 
spray fields based on saturated soil conditions. To do so, only periods 
without rainfall are used to ensure that no moisture is present, which 
further limits its usefulness as a monitoring method. Various techniques 
are employed to remove bodies of water such as lakes and rivers from 
the analysis. The detection of water is then used to infer the presence of 
liquid manure in sprayfields. However, the objective is not to detect 
illegal use of manure; in fact, the researchers attempt to exclude illegal 
uses and assume that all detected uses are legal (e.g., by discarding fields 
with slopes greater than 10 degrees). The dataset used is not publicly 
available and consists of only 1000 pixels with imbalanced crop types. It 
includes data from Sentinel-1, normalized difference vegetation index 
(NDVI) and modified normalized difference water index (MNDWI) from 
Sentinel-2 bands, thermal infrared (TIR) bands from Landsat 8, terrain 
elevation, and distance to lakes (as sprayfields are typically located near 
water sources to reduce transportation costs). For this reason, the data 
collected are not from the same days and do not consider several rele-
vant multispectral indices. The reported recall and precision values are 
above 90%. However, it is unclear whether the separation of training 
and validation data is done at the plot or pixel level. Furthermore, the 

dataset was not constructed through on-site verification but rather 
through visual inspection and assumptions (e.g., removing pixels with 
more than 90% humidity). 

The most common classification methods using multispectral imag-
ery are: decision trees (Yang et al., 2002) such as random forest (Zhu 
et al., 2021; Shea et al., 2022), or customized artificial neural networks 
(Jaihuni et al., 2021; Fu et al., 2021). 

This topic may not be of interest to small companies or individuals, 
since in small regions it would not be necessary to use satellite imagery. 
Only a large entity such as a government of a region would be interested. 
On top of that, creating a sufficiently large dataset is time-consuming 
and costly because in situ investigations are necessary. This causes all 
the datasets in the literature to be private. For these reasons, and 
because it is a very specific topic, no public datasets containing satellite 
images of recently fertilized plots were found. In addition, most studies 
focus on a particular type of crop, such as wheat or maize. This may be 
because it is difficult to get a diverse dataset within the same region. 

Although the low spatial resolution issue cannot be addressed 
directly, the analysis can be improved by exploring image time series. 
This is especially relevant in scenarios where the crops plots are small 
(Ma et al., 2010; Zhu et al., 2021). (Dodin et al., 2021) proposes to use 
multiple images of the same region at different times to create a time 
series and potentially improve detection. However, this approach can 
increase the difficulty when creating a dataset because some days are 
covered by clouds. 

The objective of this paper is to find and evaluate the best set of 
multispectral indices for manure detection. As a result, it contributes to 
the reduction of the time and cost required to detect newly fertilized 
fields, which makes it possible to comply with closed-period laws. This 
study evaluates all Sentinel-2 bands as well as 51 of the most relevant 
multispectral indices in the literature for precision agriculture. Experi-
ments using advanced machine learning methods using different sets of 
features are carried out to evaluate the multispectral indices. To select 
the feature sets, several state of the art feature selection methods are 
used. To increase available data about soil changes, multiple images per 
plot in different dates are used which increases the number of features. A 
new dataset consisting of 30 freshly manured fields is developed to train 
and test the models. To find fitting crop fields and to confirm that 
manure was recently applied, on-site investigations were conducted. 
This dataset is publicly available for future research. 

This work represents a novel investigation into an aspect that has not 
previously been addressed in the literature, the evaluation of most 
relevant multispectral data for monitoring recent manure application 
using several feature selection and machine learning methods. The re-
sults of this study facilitates the detection of manure in fields, which can 
be further utilised in future research helping to ensure the enforcement 
of laws to reduce nitrate leaching in the environment. 

2. Proposed approach 

2.1. Methodology 

To develop the proposed solution, the required training and test data 
must first be collected, its features must be extracted and studied, and 
finally the detection models must be trained. This section describes both 
the model-training and the detection pipeline. 

2.1.1. Training pipeline 
Fig. 1 depicts the sequence of steps required for training a model. The 

imagery to train the model must first be acquired from the Sentinel-2 
satellite. On-site inspections are undertaken to pinpoint areas of inter-
est to acquire the images. A manually pixel labeling procedure is used to 
select pixels for the ground truth mask necessary for model training from 
these areas of interest. To achieve as much variety as possible, parts of 
the image where the plots are not fertilized are chosen as counterex-
amples. These images have been edited to eliminate any areas that are 
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not relevant to the study, such as areas that cannot be fertilized like 
highways, buildings, or forests. Land use data is gathered from an up to 
date national database to determine the areas of no interest. Due to their 
georeference, these pixels are automatically erased. The ground truth 
masks are prepared for use in the training procedure once this step is 
finished. 

Each pixel’s features are calculated and defined in order to prepare the 
data for training. The bands can be used to calculate multispectral indices. 
In this study, various feature-based techniques are assessed. The initial 
image taken prior to the application of manure is also taken into account 
to maximize the amount of information. This inclusion effectively doubles 
the number of features available for analysis and provides valuable 
temporal information. These features are used to train the models. To 
prevent having pixels from the training and test sets adjacent to one 
another, plots rather than pixels are used to split the dataset. By doing 
this, the likelihood of overfitting is reduced. 70% of the plots that are 
available are used for training. The remaining 30% plots are used to 
evaluate the models’ performance. Common machine learning techniques 
such as Naive Bayes (Berrar, 2018), Decision Trees (Quinlan, 1986), 
Discriminant Analysis (Klecka, 1980), Logistic Regression (Hosmer et al., 
2013), Support Vector Machines (Hearst et al., 1998), Nearest Neighbor 
(Cover and Peter, 1967), Kernels Approximation (Aizerman, 1964), 
Ensemble (Dietterich, 2000), and Neural Networks (Zupan, 1994) are 
evaluated into select the most effective method for the model training. 

2.1.2. Detection pipeline 
The pipeline necessary to implement the manure detection model is 

shown in Fig. 2. Obtaining the original image is a prerequisite, just as 
during training. In any case, it is always possible to use, in addition to 
the current image, an image from immediately before. This is because 
the system is intended for constant monitoring without the need to know 
the date of the manure. Regions that are not of interest, that is, regions 
having land uses unrelated to crops and fields, have been removed from 

this image. This data was taken from a current national land use data-
base. Features are computed and chosen using the remaining pixels. The 
generated feature image is loaded into the model to produce a binary 
mask indicating whether each associated pixel is part of a manure- 
applied plot. Morphological approaches are used for noise removal to 
visualize expected manure masks. These masks are frequently noisy 
because the detection is done pixel by pixel. This process is simply used 
for the final display and has no bearing on the metrics’ outcomes. Two 
methods are employed to remove mask noise (Serra, 1982): erosion, 
which reduces the size of the regions by erasing all floating pixels using a 
2 × 2 square structure, and dilation, which restores the regions’ original 
size and fills in any gaps. By removing stray pixels and filling in the 
areas, the final masks are enhanced. 

2.2. Image data acquisition 

There is no publicly available data in the literature that can be 
applied to this investigation. As a result, a dataset was created manually. 
Sentinel-2 is the satellite that was selected for the imagery due to its 
spectral range, geographic resolution, and, most importantly, its 5-day 
revisit time. Specifically, the Level-2A product was used, which pro-
vides imagery with atmospheric correction. 

To capitalize on the temporal information provided by Sentinel-2, it 
was chosen to use the image immediately before the application of 
manure, as well as the image immediately after. The difference between 
the two images might therefore provide substantial information about 
the soil and improve the results. This causes the number of features per 
pixel to be doubled. 

2.3. Ground truth generation 

Locating the target plot, creating its mask, removing irrelevant pixels 
such as roads or buildings, and then gathering counterexamples to 

Fig. 2. Pipeline for model detection.  

Fig. 1. Pipeline for model training.  
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properly train the models is required to generate a proper ground truth 
mask. 

2.3.1. Plot localization 
Once the plot has been identified, an on-site investigation is carried 

out to validate that it has recently been manured and to determine the 
real location of the manure in the field (see Fig. 3a). The plot is then 
labeled with the observed dimensions using Google Earth Engine, as 
seen in Fig. 3b. The Sentinel-2 georeferenced image is then utilized to 
construct the raster ground truth mask using the annotation, as illus-
trated in Fig. 4. 

2.3.2. Regions of no interest 
It is useful to delete pixels of no importance, such as highways, 

buildings, or bodies of water, to lessen the problem’s complexity. It is 
not important to take these places into account because they will not 
receive fertilization. A national land use database is used to complete 
this task reliably and automatically. Sentinel-2 provides a layer referred 
to as the ”Scene classification layer,” but it is insufficient for this 
investigation because it cannot discriminate between classes like ”For-
est” and ”Pastures.”. 

2.3.3. Counterexamples 
In order to train a classification model, it is crucial to have a coun-

terexample class in which to categorize any pixels that do not fall under 

the target class in addition to the data pertinent to the target class to be 
categorized. This implies that a classification requires the existence of at 
least two classes. The definition of this new class is “Others” class. 
“Manure application” class is the name given to the target class. 

The counterexample pixels are manually selected from the complete 
images. Image regions in which the areas are verified to be non-fertilized 
are chosen. This selection includes visually similar soil such as plowed 
lands. To give the counterexamples additional context, certain areas 
with trees, roads, and buildings are also included. It is helpful to provide 
a few instances of these regions even though land use masks have 
already been removed in order to prevent border regions or regions that 
have been erroneously labelled from being mistakenly placed in the 
”Manure application” class. 

2.4. Feature extraction 

The features that were utilized to create the dataset are described in 
this Section 51 of the most popular multispectral indices mentioned in 
the literature for precision agriculture, together with the 13 bands of the 
Sentinel-2 satellite, are used as features in this study. Each pixel includes 
64 features altogether. Section 2.4.1 goes into detail about the features 
that correspond to the Sentinel-2 bands, whereas Section 2.4.2 goes into 
detail about the features that reefer to the multispectral indices. 

Fig. 3. P-VG1 labelling example.  

Fig. 4. P-VG1 ground truth mask example.  
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2.4.1. Spectral bands 
The first 13 features for a given pixel are the 13 Sentinel-2 bands. The 

remaining features are determined using these 13 bands in various 
combinations. Two satellites designated Sentinel-2A and Sentinel-2B 
constitute the Sentinel-2 mission. The orbit of each satellite lasts 
roughly 10 days. The revisit time is halved since both satellites are at 
their greatest separation from one another. Therefore, it takes about 5 
days to get updated images of the same area. The wavelength, band-
width, and spatial resolution of each band for the Sentinel-2A and 
Sentinel-2B satellites are displayed in Table 1. Bands are interpolated 
using the Nearest Neighbor algorithm to the resolution of the band with 
the best spatial resolution, in this case 10 meters per pixel. The main 
visible (B02, B03 and B04) and near-infrared (B08) Sentinel-2 bands 
have a spatial resolution of 10 meters, while its red-edge (B05, B06 and 
B07), narrow near-infrared (Band 8A) and two shortwave infrared (B11 
and B12) bands have a 20-meter spatial resolution. The coastal aerosol 
(B01), water vapor (B09), and cirrus (B10) bands have a spatial reso-
lution of 60 meters. In the present study, bands B02, B03 and B04 are 
called ”visible bands”, and bands B05, B06, B07, B08, B08A, B11 and 
B12 are called ”IR bands”. 

While each band provides unique information, it’s crucial to 
acknowledge that not all bands are equally valuable for the specific task 
of manure detection. For example, bands B01 and B10 may not offer 
significant insights for the current study. The primary objective is to 
extract the maximum information from the available data. This study 
places emphasis on feature selection methods to identify the most 
relevant bands. For this reason, the approach follows a data-driven 
strategy, avoiding assumptions and maintaining scientific rigor by 
using all available bands. 

2.4.2. Multispectral indices 
The most prominent multispectral indices described in the literature 

for precision agriculture are reviewed to create as many significant 
features as possible. The formula for each multispectral index utilized in 
this investigation is described in the supplementary material. The works 
(Zhu et al., 2021; Sishodia et al., 2020; Shou et al., 2007; Romanko, 
2017; Ma et al., 2010; Fu et al., 2021; Dodin et al., 2021; Bagheri et al., 
2013; Sentinel-Hub, 2022) describe all the details regarding the multi-
spectral indices used in this study. 

2.4.3. Feature selection methods 
Using multiple multispectral indices usually improves accuracy over 

a single index as long as they are all correlated to the target (Diaz- 
Gonzalez et al., 2022). However,an excessive number of features can 
potentially have a negative impact on the accuracy of the classification 
model. This is because when more dimensions (features) are added, 
more data is needed to train the models. The increase in volume causes 
the data to become sparse, which is a phenomenon known as the “curse 
of dimensionality” (Karanam, 2021). Due to this reason and the 

potential redundancy of multiple features, various approaches for 
feature selection are evaluated.  

• Ward clustering algorithm (Ward and Joe, 1963): a method based on 
Euclidean distances to detect groups of features that are correlated. 
To help with visualization, a dendrogram is generated.  

• Boruta method (Kursa and Rudnicki, 2010): utilizes a Random Forest 
classifier to choose features that are relevant to the output variable. 
The significance of a feature is calculated using the increase in model 
prediction error after varying the values of the feature. These 
modified features are called shadow features. A feature is relevant 
when shuffling its values increases the model error, as the model 
relied on the feature.  

• Recursive Feature Elimination method (Guyon et al., 2002): uses the 
dataset to build a Decision Tree classifier employing the outcome 
variable. Then, evaluates the importance of the features and removes 
the least relevant feature. Once this step is done, the classifier is 
rebuilt and the process is repeated. This procedure is iterated until 
the desired number of features is reached.  

• Principal Component Analysis method (Wold et al., 1987): simplifies 
the complexity of high-dimensional sample spaces while preserving 
their information by projecting the dataset into a smaller number of 
orthogonal dimensions, known as components, that retain the higher 
variance of the original data. This method belongs to the unsuper-
vised learning as it does not use the outcome variable.  

• Optimal Biomarker method (OB) (Tong et al., 2018): the first stage of 
the OB method involves selecting features based on their correlation 
and p-value. The number of features to keep is chosen manually at 
this stage. The second stage involves training a model and evaluating 
its performance using every possible combination of features. Any 
feature that does not improve performance at this stage is removed. 
To produce a statistically sound model, this second stage must be 
repeated N times.  

• Optimal Biomarker Simplified method (OBS): the computational 
capacity of the OB method increases exponentially with the number 
of features. For this reason, it is not feasible to obtain a set of features 
much larger than 10. This simplified method uses only the first stage 
of the OB method to obtain the desired number of features greatly 
reducing its complexity. 

In addition to the feature sets derived by the aforementioned 
methods, all Sentinel-2 bands, only the visible bands (B02, B03, and 
B04), only the IR bands (B05, B06, B07 B08, B8A, B09, B10, B11, and 
B12), all of the multispectral indices, as well as the subtraction between 
the features of both images, are individually proposed for evaluation in 
order to compare the significance of the different bands and multi-
spectral indices. 

Table 1 
Central wavelength, bandwidth and spatial resolution of the Sentinel-2 bands. S2A is Sentinel-2A, and S2B is Sentinel-2B.  

Band Central Wavelength (nm) Bandwidth (nm) Spatial resolution (m)  
S2A - S2B S2A - S2B  

B01 Coastal aerosol 442.7–442.2 21–21 60 
B02 Blue 492.4–492.1 66–66 10 
B03 Green 559.8–559.0 36–36 10 
B04 Red 664.6–664.9 31–31 10 
B05 Vegetation Red Edge (VRE) 704.1–703.8 15–16 20 
B06 VRE 740.5–739.1 15–15 20 
B07 VRE 782.8–779.7 20–20 20 
B08 Near-Infrarred (NIR) 832.8–832.9 106–106 10 
B8A Narrow NIR 864.7–864.0 21–22 20 
B09 Water vapour 945.1–943.2 20–21 60 
B10 Short-Wave Infrarred (SWIR) Cirrus 1,373.5–1,376.9 31–30 60 
B11 SWIR 1,613.7–1,610.4 91–94 20 
B12 SWIR 2,202.4–2,185.7 1.75–1.85 20  
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2.5. Performance evaluation metrics 

Multiple metrics are computed to evaluate the performance of the 
models and facilitate the comparison of results obtained from different 
strategies (Fernandez-Moral et al., 2018). The notions of true positive 
(TP), false positive (FP), true negative (TN), and false negative (FN) are 
the foundation of all metrics. TP stands for the quantity of correctly 
classified pixels. FP pixels are those that are categorized as the target 
class even though they belong to a different class. TN pixels are those 
that are legitimately not assigned to the target class. FN stands for pixels 
that were erroneously attributed to a different class. 

One of the most popular metrics for expressing a model’s perfor-
mance in a single value is Accuracy. It is determined by dividing the 
overall number of pixels that were correctly classified by the overall 
number of pixels, as indicated in Eq. (1). If the amount of pixels in each 
class is too disproportionally distributed, this metric may be deceptive. 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Recall is determined by dividing the correctly categorized pixels from 
the ground truth pixels that belong to the target class, as illustrated in 
Eq. (2). 

Recall =
TP

TP + FN
(2)  

Precision is calculated by dividing the number of successfully classified 
pixels by the total number of detected pixels, as indicated in Eq. (3). 

Precision =
TP

TP + FP
(3)  

When Precision is low and Recall is high, it implies that there is a ten-
dency to overclassify pixels from the target class. In contrast, when 
Recall is low and Precision is high, only pixels with a high degree of 
confidence will be classified as belonging to the target class. The F1- 
Score is a commonly used metric in image segmentation, as it evaluates 
both Precision and Recall at the same time. It is determined by 
combining Precision and Recall, as shown in Eq. (4). The Mean F1-Score 
is obtained by computing the Mean Precision and Mean Recall. Mean 
Precision and Mean Recall are calculated by averaging the Precision and 
Recall of both classes. 

F1 − Score =
2x PrecisionxRecall
Precision + Recall

(4)  

3. Results and discussions 

3.1. Dataset generation 

The data gathering process involved visiting a total of 38 distinct 
plots. However, 8 of these plots were excluded from the study due to 
their small size, the absence of a precise date of manure spreading, or the 
presence of excessive cloud cover in the captured images during that 
period. To enable reproducibility, the entire dataset, including the 
analysis of each visited plot and the development of its ground truth, is 
publicly accessible 1. 

This region is known for its cool and damp climate due to the in-
fluence of the Atlantic Ocean. Winters are mild and rainy while summers 
are cool and cloudy. Rainfall is abundant resulting in a green landscape. 
For this dataset, there are no other plot types besides pasture lands and 
maize. This is because these are the most common in this region of 
northern Spain. The manure utilized in this study is a blend of liquid and 
solid cow manure, applied uniformly with the assistance of a manure 

spreader. The region of interest of the plots has an area of about 1,700 
square meters, however, the plots are significantly smaller. This area 
includes all inspected plots as well as a few nearby manure-free areas. In 
this region, land use generally fall into one of the following categories:  

• Tall grass. The color of this kind of pasture is a vibrant green.  
• Freshly mown. The color of this kind of pasture is often yellowish 

green.  
• Sowed/Plowed lands. The hue of this kind of pasture is brown. This 

type of land can be visually indistinguishable from manure 
application.  

• Maize fields: Dark shadow lines and a dark green color characterize 
this kind of crop.  

• Grazing lands. Similar to other varieties of pasture, this one is brown 
in hue. The livestock in the plot is responsible for its color and can be 
visually hard to distinguish from manure application.  

• Woods. The color of this kind of pasture is dark green. Usually, it is 
composed of a large number of trees.  

• Remnant habitat/Bushland. The hues of this kind of pasture range 
from a deeper green to brown. It is composed of a variety of wild 
grasses.  

• Manure application: It can be used in recently mowed or seeded/ 
plowed fields. The tint of the land shifts to a deeper hue. Due to the 
way it was dispersed, it is frequently found as circular marks. 

In this work, 30 plots are investigated in total. Each plot’s identifier, 
manure application date, and area is displayed in Table 2 for each plot. 

The total dataset is composed of 225.94 hectares, of which 31.48 

Table 2 
Estimated date of manure application, coverage area and coordinates for every 
plot in the dataset.  

Plot Date (d/M) Area (ha) Coordinates (Long./Lat.) 

P- BLD 26/05 0.89 − 4.201, 43.397 
P- BLLT1 16/05 2.12 − 4.084, 43.430 
P- BLLT2 26/05 0.33 − 4.084, 43.431 
P- CRDN 24/02 0.65 8.658, 45.859 
P- CBRCS1 26/05 0.67 − 4.200, 43.389 
P- CBRCS2 26/05 0.64 − 4.204, 43.387 
P- CLGT 16/05 1.72 − 4.109, 43.398 
P- CLMBRS 26/05 0.43 − 4.544, 43.380 
P- CMNTR 16/05 0.26 − 4.147, 43.400 
P- DR 21/03 0.25 − 4.142, 43.396 
P- FNFR 16/05 1.01 -4.265,43.388 
P- LLT 03/05 0.96 -4.151,43.400 
P- LNDRS1 16/05 0.32 − 4.251, 43.388 
P- LNDRS2 16/05 0.54 − 4.250, 43.388 
P- LNDRS3 16/05 0.85 − 4.249, 43.387 
P- LNDRS4 16/05 0.91 − 4.246, 43.387 
P- MT 04/05 1.99 − 4.153, 43.398 
P- NMS 10/02 0.55 − 4.149, 43.400 
P- QNTLS2 16/05 0.85 − 5.584, 43.545 
P- SNTLLN 17/03 1.42 − 4.117,43.393 
P- SNVCNT1 16/05 0.67 − 4.404, 43.393 
P- SNVCNT2 16/05 2.92 − 4.400, 43.394 
P- STBN 04/05 1.13 − 4.136, 43.396 
P- TGL2 16/05 1.23 − 4.070, 43.427 
P- TNNS1 26/05 1.95 − 4.187, 43.399 
P- TNNS2 26/05 1.58 − 4.191, 43.398 
P- VG1 09/04 1.22 − 5.486, 43.469 
P- VG2 13/04 0.49 − 5.480, 43.469 
P- VLDMR 07/02 1.75 − 4.156, 43.405 
P- VNS 23/04 1.66 − 4.150, 43.404  

Table 3 
Hectares of manure application and others in the dataset.  

Class Train Test Total 

Manure application 22.28 9.20 31.48 
Others 158.51 36.95 195.46  1 https://doi.org/10.17632/fbvvvf55kp.1 
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hectares are classified as ”Manure application” and 195.46 hectares are 
classified as ”Others” which serves as a counterexample. A pixel is equal 
to 0.01 hectares (10 square meters). To avoid the training and test sets 
having adjacent pixels, plots rather than pixels are used to split the 
dataset. This lessens the chance of overfitting. 70% of the available 
plots, 21 of the 30 plots, are used for training, totaling 180.79 hectares 
(158.51 hectares for the ”Others” class and 22.28 hectares for the target 
”Manure application” class). The remaining 30% of the plots, or 9 of the 
30, are used to assess the models’ performance, totaling 46.15 hectares 

(9.20 hectares for the target class and 36.95 hectares for the ”Others 
class”). This information is summarized in Table 3. 

Pixels of no interest in terms of land usage are removed using the 
Geographic Information System of Agricultural Land (SIGPAC) data-
base. Access to this database is free, and it is constantly updated. Only 
Spanish land use data is accessible, but this does not limit the use of this 
method because equivalent databases are available in other European 
Union nations. 

There are 30 classes total in SIGPAC. 18 of these classes are deemed 
relevant, while 12 are not. Table 4 displays classes of no interest in gray. 
(see Table 5). 

For the class “Others” the choice of counterexamples is made 
manually. Only pixels that can be confidently proven not to have been 
fertilized by on-site inspections of surrounding plots are chosen because 
not all feasible locations of each image could be validated. Additionally, 
only a portion of the image’s potential pixels are chosen in order to 
prevent a severe class imbalance. The dataset contains 195.46 hectares 
in total of ”Other” class counterexamples. 36.95 hectares are used for 
testing, and 158.51 ha are used for training. 

3.2. Time series analysis 

After manure application, grass grows back quickly, as shown in the 
example of P-VG1 from Fig. 5. This suggests that the visibility of the 
manure in the field greatly depends on the time the image is acquired 
after the manure application. When clouds hide the plot and the image is 
acquired long after the manure application, the discrepancy in values 
from the image before and the image after manure application could be 
diminished, greatly limiting the capability for detection. 

It is important to highlight that the presence of freshly mown grass is 
a common occurrence just before the application of manure, as seen in P- 
SNVNT2 in Fig. 6. The first image shows the state of the plot two images 
preceding manure application, with a dark green color. The second 
image shows freshly mown grass, with a light green color, taken just 
before manure application. The third and final image shows the plot 
after manure application, with a dark brown color. This pattern can be 
found in many of the analyzed plots. However, this stage can only be 
seen for a few days. Some plots with the exact same pattern do not 
include this image because the satellite’s revisit time is approximately 5 
days. Therefore, in this study, the image immediately prior to manure 
application is used regardless of whether it is from recently cut grass or 
not. 

3.2.1. Spectral band correlation with manured plots 
In this section, the variability in intensity of the 13 Sentinel-2 bands 

during the time progression before and after the application of the 
manure is analyzed. Fig. 7 shows all band intensities for each of the 
plots. Intensity is calculated as the median of all the pixels in the plot of 
interest using the ground truth mask. A red area is added to the charts to 
indicate the period in which the plot was manured. 

From Fig. 7 it can be determined that bands B06, B07, B08, B8A, and 
B09 are highly correlated to the manure in the plot. In all of the plots, 
their intensity value plummets from around 0.60 to about 0.40. The 
primary influencers affecting the intensity of the infrared (IR) bands 
appear to be the variations in heat and humidity associated with the 
application of manure. Then, as the grass starts to grow back and the 
manure is absorbed, the values of these bands start to recover. 

3.2.2. Band visualization 
Bands B06, B07, B08, B8A, and B09 produce the most notable dif-

ference in intensity when manure is applied. For this reason, to observe 
the most correlated bands they are displayed as images zoomed in the 
region of the plot (see Fig. 8) for the nearest days before and after 
manure application. This figure shows that a visual difference is 
appreciable. 

Table 4 
SIGPAC classes. Excluded classes are marked in gray.  

Class Description Group 

CF Citrus-Fruit Association Permanent crops 
CS Citrus-Fruit Peel Association Permanent crops 
CV Citrus-Vineyard Association Permanent crops 
FF Association Fruit Trees-Fruit Trees Of Peel Permanent crops 
OC Olive-Citrus Permanent crops 
CI Citrus Permanent crops 
FY Fruit Trees Permanent crops 
FS Dried Fruits Permanent crops 
FL Nuts and Olives Permanent crops 
FV Nuts and Vineyard Permanent crops 
OV Olive grove Permanent crops 
OF Olive grove - Fruit trees Permanent crops 
VI Vineyard Permanent crops 
VF Vineyard - Fruit Tree Permanent crops 
VO Vineyard - Olive grove Permanent crops 
TA Arable Land Farmland 
TH Orchard Farmland 
IV Greenhouses and crops under plastic Farmland 
PS Pastureland Pastures 
PR Shrub Grass Pastures 
PA Pasture with Trees Pastures 
FO Forest Forest 
AG Watercourses and Water Surfaces Non-agricultural area 
ED Buildings Non-agricultural area 
EP Landscape element Non-agricultural area 
IM Unproductive Non-agricultural area 
CA Roads Non-agricultural area 
ZU Urban Zone Non-agricultural area 
ZV Censored Area Missing data 
ZC Not included Missing data  

Table 5 
Description of all feature sets for experimentation.  

Feature Set Description 

A-13-S2 Sentinel-2 bands after manure application. 
BA-26-S2 Sentinel-2 bands after and before manure application. 
BA-6-RGB Visible bands after and before manure application. 
BA-16-IR Infrared (IR) bands after and before manure application. 
A-51-MI All calculated multispectral indices after manure application. 
BA-102-MI All calculated multispectral indices after and before manure 

application. 
A-64 All features after manure application. 
BA-128 All features from after and before manure application. 
A-7-W 7 manually selected features using Ward clustering after manure 

application. 
BA-14-W 7 features from A-7-W and their equivalent from before manure 

application. 
BA-95%- 

PCA 
PCA components capturing 95% variability from all features. 

BA-45-PCA 45 PCA components from all features (over 99% variability). 
BA-90-RFE 90 features selected using Recursive Feature Elimination using all 

features. 
BA-10-OB 10 selected features using Optimal Biomarker using all features. 
BA-80-OBS 80 selected features using simplified Optimal Biomarker using all 

features. 
BA-64-D Difference of features between after manure application and before. 
BA-8-EOMI EOMI features (EOMI1, EOMI2, EOMI3, and EOMI4) extracted using 

all features.  
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3.2.3. Multispectral indices correlation 
In this section, the results of the 51 multispectral indices during the 

time progression before and after the application of the manure is 
analyzed. There are too many values to be represented in a line graph, 
thus, to represent their intensity a heatmap with all 51 multispectral 
indices for each plot is shown in Fig. 9. Values are normalized per row 
(the range [min, max] is mapped to [0, 1]). In the X axis, the first image 
after manure application is identified as image 0. Images before or after 
manure application are labeled as negative or positive, respectively. A 
vertical dotted red line is drawn at the start of the manure application 

day to facilitate visualization. In Fig. 9, the intensity of most multi-
spectral indices is close to 0 the day of manure application, and then, as 
time passes, the values increase. Furthermore, the rest of the indices 
appear to be reversed (inversely correlated), with values close to 
0 before manure application, and close to 1 when manure is applied. 
Only a few of the multispectral indices seem to be uncorrelated to 
manure application. Therefore, the considered indices seem to provide 
valuable information about the existence manure in the plots. 

Fig. 5. Manure application time series of plot P-VG1.  

Fig. 6. Time series of the plot P-SNVCNT2. This example shows mown grass before manure application.  

O.D. Pedrayes et al.                                                                                                                                                                                                                            



Ecological Indicators 158 (2024) 111550

9

3.3. Feature correlation study 

In this section, a study about the correlation of all the features is 
performed to analyze feature redundancy. Features consist of the 13 
Sentinel-2 bands, as well as the 51 multispectral indices. For each pixel, 
there are a number of samples corresponding to the acquired images 
before and after manure application. To study the correlation between 
all features, the pairwise Pearson’s linearity correlation coefficient is 
calculated for all possible combination of features (see Fig. 10). This 
correlation is calculated with Eq. (5). 

r =
n
∑

xiyi −
∑

xi −
∑

yi
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑
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i − (

∑
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√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑

y2
i − (

∑
yi)

2
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Fig. 10 shows that the majority of features are highly correlated with 
at least a few other features. It is reasonable to expect that closely sit-
uated bands exhibit strong correlations, as do similar indices. Formulas 
for each multispectral index can be found in the supplementary material. 
TSAVI is the only feature that is not correlated to any other feature. 

The TSAVI index, expressed as (0.421 * (B08 − 0.421 * B04 − 0.824))
(B04+ 0.421 * (B08 − 0.824) + 0.114 * (1 + 0.421)2)

, 

utilizes band B04 (Red with 10 meters of spatial resolution) and band 

B08 (NIR with 10 meters of spatial resolution), introduces a factor which 
typically set to 0.421. This factor introduces a significant distinction 
compared to other indices. 

The correlation between the first 13 bands is studied next. The first 
five bands are correlated with each other (B01, B02, B03, B04, and B05). 
Bands B06, B07, B08, B8A, and B09 are heavily correlated. Finally, B10 
and B11 are also correlated. B12 is the one with weaker correlation to 
the rest. 

A correlation greater than 0.80 in absolute value indicates data 
redundancy. To determine the uniqueness of the features, the number of 
features with a correlation equal to or greater than 0.80 is counted. In 
this way, the percentage of the total number of features in which the 
index is highly correlated can be obtained. This means that a feature 
with a high ratio, for example with a value of 0.6, is highly correlated to 
60% of all other features. From this information, a bar graph is shown in 
Fig. 11. The following features are highly correlated to less than 10% of 
all features: B01, B02, B03, B05, B10, B12, EOMI2, EOMI4, BNR2, CI2, 
CI3, NBRI, NDR2, NDR3, TSAVI, CARI1, CARI2, CVI. However, they 
could still be highly correlated with each other. 

Fig. 7. Intensity time series of the bands for P-CLGT, P-FNFR, P-LNDRS1, P-SNVCNT2, P-TGL2, and P-VG1.  

O.D. Pedrayes et al.                                                                                                                                                                                                                            



Ecological Indicators 158 (2024) 111550

10

Fig. 8. Visual differences before and after manure application in bands RGB, B06, B07, B08, B8A, and B09.  
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3.4. Results of the feature selection methods 

In this section different feature selection methods are applied to the 
dataset. The objective is to select a set of features without redundant or 
irrelevant elements.  

• Ward: this method is used to group the features in clusters. The 
dendrogram from Fig. 12 shows that the 64 features can be reduced 
to 7 groups. A feature from each group is selected. The 7 manually 
selected features and the reason for their selection are shown below:  
1. NBRI: More commonly used in agriculture than the rest.  
2. B04: Has the most spatial resolution and does not require further 

calculations.  
3. B03: Has the most spatial resolution and does not require further 

calculations.  
4. NDVI: More commonly used in agriculture than the rest.  
5. EOMI4: Specific for exogenous organic manure identification.  

6. TSAVI: Single feature in cluster. 
7. EOMI2: Uses B11 and B04 bands (B04 has more spatial resolu-

tion). 
Fig. 13 shows that there is little to no correlation between the 

selected features (NBRI, B04, B03, NDVI, EOMI4, TSAVI, and 
EOMI2). This means that there are no redundant features as they 
show different information. This does not mean that they are 
more suitable for manure detection (relevant), but that they are 
not redundant.  

• Boruta: this method considers that all features are important and 
does not discard any of them. This method does not reduce the 
number of features to be used therefore, the results are obviously the 
same as when using all the data (A-64 and BA-128).  

• Recursive Feature Elimination (RFE): this method is used to 
evaluate the selection of 5, 10, 20, 30, 40, 60, 80, 90, 100, 110, and 
120 features, out of a total of 128 features (using the 64 from the 
image before the manure application and the 64 from the image after 

Fig. 9. Intensity for all multispectral indices before and after manure application.  
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manure application as separate features). It is found that the best 
experiment uses 90 features (BA-90-RFE). Increasing the number of 
features causes the F1-Score of the model to decrease (see Fig. 14). 
Only the best experiment is documented. 

• Principal Component Analysis: this method is used for dimen-
sionality reduction. All 128 features are used (64 from the image 
from before, and 64 from the image after manure application). The 
experiment which uses PCA as a detection model with a 95% vari-
ance is called BA-95%-PCA. This experiment uses 2 transformed 
features to achieve this variance. Another experiment called BA-45- 
PCA is documented. This experiment uses 45 transformed features 
resulting in 99.999994% variance. The number of transformed fea-
tures was selected as the one that provides the best results out of 
multiple experiments using 20, 30, 35, 40, 45 and 50 transformed 
features. 

• Optimal Biomarker (OB): this method is used to find the best fea-
tures from the set of 64 features of the images after manure appli-
cation. From these features two experiments are carried out: A-10- 
OB, which uses the features with only the image after manure 
application; and A-20-OB, which utilizes these features for the image 
from before and after manure application. The features found are: 
B02, B05, B10, B11, B12, EOMI4, BNR2, NBRI, NDRE2, NDRE3. 

In addition, the 10 best features are found considering the two 
days as separate features (before and after manure application). A 
total of 10 features out of 128 were obtained. The experiment that 
uses these features is called BA-10-OB. The features found are: B12 
(before), MCARI (before), NBRI (before), B12 (after), CTVI (after), 
NBRI (after), GLI (after), B04 (after), B11 (after), B10 (after).  

• Optimal Biomarker Simplified (OBS): this method is used to 
evaluate the selection of 5, 10, 20, 30, 40, 60, 80, 90, 100, 110, and 

Fig. 10. Correlation study for all multispectral indices.  
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120 features, out of a total of 128 features (using the 64 from the 
image before the manure application and the 64 from the image after 
manure application as separate features). The best experiment uses 
80 features (BA-80-OBS) as can be seen in Fig. 14. When going from 

80 to 90 features its F1-Score decreases significantly. Even if the 
number of features continues to increase, the model remains 
constant. 

Fig. 11. Percentage of features each feature is correlated to. A red dotted line is drawn at 10%.  

Fig. 12. Clustering of every feature. Seven groups are formed.  
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3.5. Summary of experiments 

The experiments involved the generation of multiple feature sets 
through various feature selection methods. Each selected classification 
method was trained and evaluated using these feature sets. This 
approach enabled the comparison of different feature sets and facilitated 
the determination of the optimal set. To uniquely identify each feature 
set, they were assigned identifiers such as ”A-13-S2”. 

The identifiers consist of a combination of letters and numbers. The 
first part of the identifier represents the source or type of data used in the 
feature set. For example, “A” represents ”After manure application” or 
“BA” represents “Before and After”. The number in the middle indicates 
the number of features included in the set. For instance, “13” signifies 13 
features. The last part of the identifier denotes additional information 

about the feature set, such as the type of data or method used. For 
example, “S2” represents Sentinel-2 bands, “RGB” represents the visible 
bands, “IR” represents infrared bands, “MI” represents multispectral 
indices, “PCA” represents Principal Component Analysis, “RFE” repre-
sents Recursive Feature Elimination, “OB” represents Optimal 
Biomarker, “OBS” represents simplified Optimal Biomarker, “D” repre-
sents subtraction, and ”EOMI” represents specific EOMI features. By 
combining these elements, the identifiers provide a concise represen-
tation of the feature set’s characteristics and composition. 

The best model for each feature set is displayed in Table 6. The train 
set is used to train all models, while the test set is used to compute all 
metrics. 

This study provides evidence that the application of manure in 
agricultural fields can be accurately detected using satellite remote 

Fig. 13. Detailed correlation graph for the selected features.  
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sensing techniques, yielding excellent results. The feature sets BA-102- 
MI, BA-90-RFE, and BA-80-OB show very similar results. The best 
models have a Mean F1-Score of 93.4%. However, these results were 
achieved using a dataset of a particular type of crop. With a larger and 
more varied dataset conclusions could change. 

It was observed that using the features from the images taken prior to 
and following the application of manure produced superior models than 
those experiments that used features from only one image. For instance, 
while retaining the same Mean Precision, the Mean Recall of BA-128 is 
nearly 8% superior to that of A-64. This enhancement is true for all 
experiments of type “BA” against “A.”. 

In general, the more features the better results. The Ward clustering 
feature selection method (A-7-W and BA-14-W) shows results about 
5–7% lower than when using all features. However, the Recursive 
Feature Elimination method (BA-90-RFE), the Optimal Biomarker 
Simplified method (BA-80-OBS), and using every multispectral index 
without the Sentinel-2 bands (BA-102-MI), all achieve better results than 
using all features (BA-128). Using more features than necessary can 
cause the models to be harder to train and produce worse detections. 
This problem is known as the ”curse of dimensionality”. 

The results obtained from BA-RGB indicate that good performance 
can be achieved by using only the visible bands of both images (before 
and after manure application), possibly due to their spatial resolution of 
10 meters per pixel. However, the results obtained from BA-IR out-
performed those of BA-RGB by approximately 4%, even though the IR 
bands have a lower spatial resolution of 20 meters per pixel. These 
findings suggest that the data from the IR wavelengths play a critical role 
in accurately detecting manure application. If all the IR bands have 10- 
meter spatial resolution as the visible B02, B03 and B04 bands, it is 
expected that even better results would be achieved. Additionally, the 
wavelength range of the IR bands is between 700 nm and 2200 nm. 
Extending this range to collect more information, by introducing new 
bands with increased wavelengths, may further improve the results. 

BA-64-D performs better than A-64, this is because it contains more 
information since its features include data from both images. In this case 
BA-128 is still a superior model. This means that the subtraction of both 
features does not keep enough information. 

BA-95%-PCA obtained much lower results than the rest of the feature 
sets. This is due to the fact that it does not manage to keep much in-
formation in its 2 components. In this sense BA-45-PCA, which contains 
45 components instead of 2, obtains much better results. However, the 
full set of 128 features is used to calculate these 45 components. When 
comparing its results with BA-128, a slight improvement is observed, 

Fig. 14. F1-Score per number of features in RFE and OBS.  

Table 6 
Results for each feature set experiment. Arranged in ascending order by F1-Score.  

Feature set Best classifier Overall accuracy (%) Recall (%) Precision (%) F1-Score (%) 

BA-95%-PCA Nearest Neighbor Classifiers 80.2 50.2 90.1 64.5 
BA-8-EOMI Decision Tree 88.9 77.6 85.4 81.3 
A-7-W Naïve Bayes Classifiers 88.8 82.4 82.5 82.4 
BA-6-RGB Neural Network Classifiers 90.6 82.3 86.9 84.6 
BA-10-OB Ensemble Classifiers 90.9 79.7 90.5 84.7 
BA-14-W Support Vector Machines 90.8 81.4 88.2 84.7 
A-10-OB Discriminant Analysis 90.5 84.3 85.5 84.9 
A-13-S2 Support Vector Machines 91.5 79.9 92.9 85.9 
BA-20-OB Support Vector Machines 92.0 83.8 90.1 86.8 
A-64 Ensemble Classifiers 92.7 82.2 94.8 88.1 
A-51-MI Support Vector Machines 92.8 83.9 93.0 88.2 
BA-16-IR Support Vector Machines 93.1 86.3 91.2 88.7 
BA-26-S2 Discriminant Analysis 93.5 84.4 95.1 89.4 
BA-64-D Discriminant Analysis 94.0 86.8 94.1 90.3 
BA-128 Discriminant Analysis 95.1 90.7 93.5 92,1 
BA-45-PCA Discriminant Analysis 95.2 89.3 95.4 92.3 
BA-102-MI Discriminant Analysis 95.9 91.6 95.2 93.4 
BA-80-OBS Discriminant Analysis 95.9 91.3 95.6 93.4 
BA-90-RFE Discriminant Analysis 95.9 91.0 96.0 93.4  

Table 7 
Results for the BA-102-MI experiment per classification method. Arranged in ascending order by F1-Score.  

Classifier Overall accuracy (%) Recall (%) Precision (%) F1-Score (%) 

Kernels Approximation Classifiers 85.2 67.1 81.4 73.6 
Nearest Neighbor Classifiers 87.1 77.1 80.5 78.7 
Decision Tree 88.1 76.9 83.3 80.0 
Naïve Bayes Classifiers 85.1 87.9 77.9 82.6 
Logistic Regression Classifiers 90.4 91.1 83.8 87.3 
Support Vector Machines 93.3 83.6 95.5 89.1 
Neural Network Classifiers 94.6 90.6 92.3 91.4 
Ensemble Classifiers 94.9 88.4 95.3 91.7 
Discriminant Analysis 95.9 91.6 95.2 93.4  
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although it does not justify the use of PCA because other feature sets 
such as BA-102-MI outperform this method. 

A-10-OB achieves similar results to other methods with a comparable 
number of features such as A-13-S2 or A-7-W. The same occurs with BA- 

20-OB, which obtains better results than BA-14-W but worse than BA- 
26-S2 or BA-16-IR. It is interesting to note that BA-10-OB, which ob-
tains 10 features out of 128 from both images separately, obtains similar 
results as A-10-OB which obtains 10 features out of 64 from a single 
image. However, BA-80-OBS is the method that obtains the best models 
with the least number of features. 

BA-8-EOMI is used to compare the multispectral indices from (Dodin 
et al., 2021), since these are the closest indices in the literature to 
manure detection. The results of this feature set are similar to experi-
ments with a comparable number of features. This demonstrates that the 

Table 8 
Class-specific results for Discriminant Analysis of the BA-102-MI feature set.  

Class Recall Precision F1-Score (%) 

Manure application 84.5 94.2 89.1 
Others 98.7 96.2 97.4  

Fig. 15. Model detections in the test set.  
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use of multiple multispectral indices is superior to any single index in the 
current literature. 

According to the results, Discriminant Analysis emerges as the clas-
sification method that consistently achieves the highest accuracy, 
particularly when a large number of features are utilized. On the other 
hand, Support Vector Machines generally perform better when the 
feature set is relatively smaller. 

3.5.1. Experiment with the best result 
The BA-102-MI set of features was selected as the one with the best 

results. Although its results are similar to those obtained by BA-90-RFE 
and BA-80-OBS, its metrics are slightly more balanced. In this section, 
the results of this best experiment are shown in detail. Table 7 shows the 
results for each classification method. The findings indicate that the 
Discriminant Analysis classification method outperforms all others, with 
a Mean F1-Score exceeding the second best approach, Ensemble Classi-
fiers, by nearly 2%. 

Fig. 16. Classification for different days after manure application of plot P-VG1.  

Fig. 17. Monitoring simulation of plot P-VG1.  
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Table 8 shows the details of the best classification method. This table 
provides a breakdown of Precision, Recall, and F1-Score for both the 
”Others” class and the ”Manure application” class. It is worth noting that 
due to the higher number of samples in the ”Others” class, the classes are 
unbalanced. Therefore, it is more appropriate to focus on the F1-Score 
for the ”Manure application” class, as it considers both Precision and 
Recall. The F1-Score for the ”Manure application” class is 89.1%, which 
implies that this model is proficient in identifying fields where manure 
has been applied on a per pixel basis. 

The visual representation of manure detection in the test set is shown 
in Fig. 15. The left column displays the ground truth locations, while the 
right column represents the corresponding detection masks. The first 
row corresponds to the P-CLGT plot, followed by the second row con-
taining P-LNDRS1, P-LNDRS2, P-LNDRS3, and P-LNDRS4. The third row 
showcases P-LLT and P-MT, and finally, the fourth row displays the 
detections for P-DR. The newly fertilized plots are almost perfectly 
detected, with few to no pixels that were incorrectly categorised. Only a 
little area outside the ground truth is wrongly categorized as the 
”Manure application” class. This occurs in most of the images. Outside of 
the groundtruth, there are some areas that are unknown and cannot be 
used to assess the effectiveness of the detection. This is merely a rep-
resentation of the detection of the test plot images. 

3.6. Time series experimentation 

3.6.1. Maximum number of days after manure application 
To study the maximum number of days after manure application in 

which the plots can still be detected, a visual detection of plot P-VG1 at 
different dates is used. To achieve the greatest results, the best experi-
ment model (BA-102-C) is used. In all detections the same image from 
before manure application is maintained. Fig. 16 shows the progression 
of the detection as time passes. The second and third images after 
manure application are still detected successfully, however, the rest of 
the images are not detected. This shows that after approximately 10 days 
after manure application, this method is not able to detect manure in the 
plots. 

To check the robustness of the approach, the best model (BA-102-C) 
is evaluated using an image after the one used during the test. In this 
way, the image before the application of the manure is kept the same, 
and the image after application is exchanged for the next one. Thus, an 
additional 5 to 10 days are usually added to the images showing the 
application of manure. 

3.6.2. Monitoring simulation 
In this section, the P-VG1 plot is used to study the behaviour of the 

classification model as the time sequence progresses. The idea of this 
experiment is that an image and its immediate subsequent image are 
used to find recently manured fields. The objective is to simulate a real 
monitoring scenario. It is expected that it will only be able to detect 
manure correctly at the time when the first image is from before manure 
application and the subsequent one is from just after manure 
application. 

Fig. 17 shows possible image pairs in the time sequence. It can be 
seen that the plot is only completely found when the before and after 
images are right before and after manure application. The rest of the 
cases do not detect manure in the plot, or only find a small part of it. 

4. Conclusion 

This research assesses the effectiveness of widely used multispectral 
indices in precision agriculture and their connection to manure appli-
cation, employing diverse feature selection methods. The aim is to 
identify potential legal infringements and mitigate leaching contami-
nation resulting from manure application during periods of intense 

rainfall. This study fills a research gap, as limited literature exists on this 
subject. The findings demonstrate the remarkable accuracy achieved in 
detecting freshly manured fields by utilizing a combination of multiple 
multispectral indices. 

Sentinel-2 is the best public option for multispectral satellite imagery 
given its revisit time and spatial resolution. However, its spatial reso-
lution is not great, where each pixel is either 10, 20 or 60 meters. To 
improve the analysis and detection of manured lands, image time series 
are used. The more relevant information is provided, the better the 
resulting model. Collecting multiple images in a sequence can be a 
difficult task because clouds can cover the plots. It has been found that 
using an image before manure application and another image immedi-
ately after can produce reliable models. Thus, minimizing the number of 
images needed to produce good results. The maximum time to acquire 
images after manure application has been found to be about 10 days. 
After 10 days, the plots tend to be visually indistinguishable as the rain 
begins to fall, the grass starts to grow, and the manure begins to 
decompose. Models are not able to detect residual manure. This time 
interval was calculated using images from spring, when grass grows 
most rapidly. 

A total of 31.48 hectares of freshly manured pastureland plots were 
collected to train and test the models. Plots are located in northern Spain 
and were manually validated by on-site investigations. The features 
extracted from these images consist of the Sentinel-2 bands and the 
calculated multispectral indices. After analysis, it is observed that most 
of the features are observed to be highly correlated with the application 
of manure. To determine whether the features are redundant or add 
sufficient information, a feature selection study is performed. The 
experimentation carried out in this paper shows that a higher number of 
features is beneficial for the models up to a certain point. The Optimal 
Biomarker Simplified feature selection method shows that the minimum 
number of features for maximum model accuracy is 80. Using 90 fea-
tures from the Recursive Feature Elimination method, as well as all the 
102 multispectral indices without the 26 bands provides similar results. 
When more features are added, the model stars to decrease in accuracy. 
This could be caused by the known problem of the “curse of dimen-
sionality”. In the same manner, when less features are used, the models 
do not have enough data to achieve high accuracy. Infrared bands are 
able to differentiate manure application in fields with more accuracy 
than the visible bands even though they have half the resolution. 
However, bands alone cannot achieve accuracy levels as high as multi-
spectral indices. Multispectral indices are essential to train a good 
model, but it has been found that no particular multispectral index to 
detect manure exists, multiple indices must be used for high accuracy. 
Thus, the optimal number of features is found to be between 80 and 102 
out of the total 128 proposed. 
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