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Abstract 

Count data models are specifically designed to deal with those cases where the dependent 

variable is an integer non-negative variable, taking a small number of (low) values, which 

is the usual situation when the variable to be explained represents the number of times a 

particular event occurs. This chapter presents an overview of the specific features of the 

count data models most commonly used in the economic literature, paying special 

attention to how the zeros are generated. An empirical illustration from the sports 

economics literature is also provided. Using data from the Spanish Survey of Sporting 

Habits (2020), individual diversification of sports activity, measured by the number of 

sports practised during a year, is studied. The empirical analysis has been implemented 

using Stata software. It takes into account the specific features of the dependent variable 

by estimating different count data models, starting with the standard versions used in the 

microeconometric literature (Poisson and Negative Binomial models) and extending 

these basic models by considering different specifications in terms of how the zeros are 

generated. Finally, specific attention is devoted to the interpretation of the estimated 

coefficients and the calculation of the marginal effects. 
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1. Introduction 

Count data models are a type of discrete choice models characterized by the fact that the 

dependent variable is the count of the number of events that have occurred in a given 

interval. Examples of count variables are the number of visits to a doctor (Pohlmeier and 

Ulrich 1995), the number of inpatient stays in a hospital (Geil 1997), the number of goals 

scored in a football game (Inan 2021), the number of cultural events attended in a certain 

period (Muñiz et al. 2014), the number of trips (Jang 2005), the number of patents applied 

for by a firm (Hausman et al. 1984) or the number of mergers and acquisitions made 

(Agrawal and Sensarma 2007). In all cases, the outcome only takes integer and non-

negative values. Moreover, it usually takes a small number of values, including zero, and 

its distribution is right-skewed. 

The statistical analysis of count variables goes back a long way in time. Cameron 

and Trivedi (2014) point out that the Poisson distribution, which is the simplest 

distribution that takes into account the specific characteristics of the count variables, was 

first proposed in 1837 by Siméon Denis Poisson, but there is an open debate about 

whether it was Abraham de Moivre who first referred to that distribution. Some 

applications were already made in the 19th century, while the negative binomial 

distribution was derived in the 1920s. However, the development of more advanced 

specifications and the generalization of the use of these models in econometrics occurred 

mainly in the second half of the 20th century.  

Several surveys, chapters and books about count data models have been published 

in recent decades (e.g. Cameron and Trivedi 1986 2014; Winkelmann 2008; Hilbe 2014; 

Dupuy 2018; Tang et al. 2023). The objective of this chapter is to present the main 

specifications applied in economic analysis when using cross-section data,1 focusing on 

how the zeros are modelled, given that in most economic studies the outcome takes the 

value zero for a significant proportion of the sample. Depending on the reasons for 

observing a zero, some models may be more suitable than others. 

In particular, this review starts with the simplest specifications, the Poisson and the 

Negative Binomial distributions. These specifications do not deal with the excess of zeros 

problem, so the zero-inflated versions of the Poisson and the Negative Binomial are 

                                                           
1 A discussion of the issues associated with the estimation of panel data models for count data can be found 

in Cameron and Trivedi (2005, 2022) and Sun and Zhao (2013). 
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explained. Then, an alternative specification that has also been applied in the literature is 

introduced, the hurdle model, highlighting the main differences in the specification of 

zeros between this model and the zero-inflated version. Finally, ordered models –intended 

for ordered qualitative outcomes- are proposed as an option that could also be used for 

count variables. 

Additionally, the implementation of the models is illustrated with an empirical 

example from sports economics. Specifically, individual sports participation is studied, 

measured by the number of sports the individual has practised during the previous year. 

This variable can be related to one of the four dimensions of the FITT principles 

(frequency, intensity, time and type) defined by Rhodes et al. (2017): the type dimension. 

In previous studies, this dimension has been analysed in terms of the type of sport 

practised (García et al. 2016), but in this chapter a quantitative element (the number of 

sports) is taken into account. This dependent variable has the features of a count variable 

(integer, non-negative and with a narrow range of variation). In the empirical application, 

the basic versions of count data models used in the microeconometric literature (Poisson 

and Negative Binomial models) are estimated, as well as the different specifications 

proposed for dealing with the excess of zeros problem, which is a controversial topic in 

the sports economics literature. The empirical results are discussed emphasizing the 

differences between the models, the interpretation of the coefficients and the relevance of 

making use of the calculation of the marginal effects in these non-linear models. The 

database used in the empirical analysis is the 2020 Spanish Survey of Sporting Habits, 

which is the most important source of information about the sports habits of the Spanish 

population. 

The rest of the chapter is organized as follows. In the next section the different types 

of count data models are presented, paying special attention to the features of 

overdispersion and excess of zeros. Section 3 presents an overview of the economic 

literature on sports participation with a specific reference to the analysis of diversification. 

In the fourth section the data set and the definition of the variables used in the empirical 

application are described. In section 5 the empirical results of the estimation of different 

models of the number of sports practised are reported, discussing both the selection of the 

most appropriate model and the interpretation of the effects of the different explanatory 

variables. Section 6 concludes. 
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2. Econometric analysis of count data models 

As mentioned above, the specific features of a count variable can be summarized by 

indicating that it is a nonnegative discrete (integer) variable and it usually takes a small 

number of low values including zero. The simplest distribution which accounts for these 

specific features is the Poisson distribution, whose probability mass function is given by: 

          (1) 

where the subindex i refers to the ith individual and  is the only parameter associated 

with this distribution and it represents both the expected value and the variance. 

Consequently, the only way to introduce explanatory variables (X) in this count data 

model is to make dependent on these variables. The usual parameterization is: 

          (2) 

This model is estimated by maximum likelihood and the log of the likelihood 

function (ln L) in the case of using a random sample (N observations) is: 

          (3) 

As happens when using these parametric approximations, the Poisson distribution 

imposes a specific pattern for the corresponding probability mass function. In particular, 

the ratio between the probabilities of occurrence of two consecutive values is given by: 

          (4) 

Notice that the value of  determines the mode of the distribution. For instance, for 

 between 0 and 1 the pattern is decreasing and the mode is zero. In general, for  between 

K and K+1, the mode will be K and the pattern of the probabilities is first increasing with 

y, up to K, and then tending to zero at a fast rate. 

The most relevant feature of the Poisson distribution is the equality of the expected 

value and the variance, known as the equidispersion property. In principle, this is a very 

restrictive property from an econometric point of view and it is not usually representative 

of the features of the count variables in most of the empirical applications. One way of 

dealing with the limitation of the Poisson model of not being appropriate for situations 
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where there is overdispersion (i.e. the variance is greater than the expected value) in the 

count variable, a common feature of count data variables in economic models2, is to look 

for a more flexible distribution in terms of the number of parameters that characterize it. 

The most used candidate is the Negative Binomial distribution, which can be defined 

straightforwardly or which can be motivated as a kind of extension of the Poisson 

distribution, highlighting the connection between the two models. 

Suppose the parameter  (now called * to use the same notations as in the 

econometric computer package Stata) in the Poisson model is now dependent on observed 

heterogeneity (X) but also on unobserved heterogeneity by means of a random variable 

() such that: 

          (5) 

Assuming that  has a Gamma distribution3 with parameters 1/ and , which means 

that E()=1 and var()=, the marginal density of y is obtained by integrating out the 

random variable :  

          (6) 

which corresponds to the Negative Binomial distribution, whose expected value and 

variance are: 

          (7) 

Notice that the equidispersion property of the Poisson model does not hold insofar 

as is different from zero and the Poisson model is a particular case of the Negative 

Binomial model ( = 0). 

Depending on whether the parameter  is assumed to be constant ( using Stata 

notation) or the variance is assumed to be proportional to the expected value, i.e. = /i, 

which means var(yi) = i (1+), two alternative versions of the Negative Binomial model 

                                                           
2 Underdispersion is not as usual, although some examples can be found in the empirical literature, e.g. 

Lord et al. (2010). Hilbe (2014) presents the generalized Poisson model, which is an extension of the basic 

version that includes a dispersion or scale parameter allowing for underdispersion. 
3 Some other distributions, like the log-normal or the inverse-Gaussian distribution, can be used as an 

alternative to the Gamma distribution, but simulated maximum likelihood methods are required. 
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are considered in the empirical literature: type 2 (NB2) and type 1 (NB1), respectively. 

The most used model is the NB2, also known as the mean dispersion model, whereas the 

NB1 model is also referred to as the constant dispersion model. Testing for equidispersion 

(the Poisson model) reduces to testing whether  or  are equal to zero depending on the 

type of Negative Binomial model you are using. This is done in Stata using a likelihood 

ratio test. 

This model is estimated by maximum likelihood and the log likelihood function of 

the NB2 model in the case of using a random sample is: 

 

                  (8) 

These Poisson and Negative Binomial models are the count data counterparts of the 

Tobit model in the context of the limited dependent variable models. They deal with 

modelling a non-negative variable that takes the value zero for a significant proportion of 

observations by using the same model to explain whether the dependent variable is zero 

or not, and the positive values. They only differ in the kind of distribution of the 

dependent variable because of the integer values associated with a count variable. 

In fact, one of the empirical issues associated with count variables is that the 

proportion of observations with a zero value for the dependent variable is greater than 

that which can be modelled assuming a Poisson or a Negative Binomial distribution, 

according to the structure of the probabilities implied by the corresponding probability 

mass functions. This is usually known in the literature as an excess of zeros problem. The 

usual way of dealing with this problem in the count data literature is to use the zero-

inflated versions of the standard Poisson and Negative Binomial models. These are 

models that allow for the possibility of the zeros being generated by two processes: one 

generating zeros corresponding to potential non-participants and the second one allowing 

for some zeros being associated with optimal solutions (corner solutions in the Tobit 

terminology). Consequently, not only the excess of zeros, but also the limitation of the 

standard models, which use just one model to deal with the explanation of the zeros and 

the positive values of y, are taken into account. 
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The zero-inflated models include two equations. The first one is a binary discrete 

choice model fitting the probability of not being a potential participant (Di=1), in which 

the dependent variable (D) is not observed, usually called the inflate equation. The second 

equation fits the number of times a particular event occurs for those who are potential 

participants, including the possibility of zero occurrences, by using a standard count data 

model. The two equations are assumed to be independent. This specification replicates 

the double-hurdle model with independent errors used in the limited dependent variable 

literature. 

Consequently, the probability of observing a zero is equal to the probability of not 

being a potential participant (Pi) plus the probability of observing a zero (F(0)) when 

being a potential participant: 

          (9) 

where the probability of not being a potential participant Pi is: 

          (10) 

where F* is the cumulative distribution function of a logistic (Logit model) or a 

standardized normal distribution (Probit model), Z is the vector of explanatory variables 

of the potential non-participation equation and δ is the vector of parameters. Notice that 

D is defined in the same way as in Stata in order to facilitate the interpretation of the 

results of the inflate equation. 

The probability of observing a positive value of y is given by the probability of 

being a potential participant times the probability of y taking the positive value which is 

observed (Yi), according to the probability mass function F of the corresponding standard 

model (Poisson or Negative Binomial) of the second equation, i.e.: 

          (11) 

where the explanatory variables (X) of the second equation are introduced in the standard 

count data model through the parameter . 

Consequently, the log of the likelihood function for these zero-inflated models is: 

          (12) 
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where =0 in the zero-inflated Poisson model. 

Notice that each of the standard count data models is a particular case of the 

corresponding zero-inflated version, when the probability of being a potential participant 

is one for all the individuals. The comparison between the standard and the zero-inflated 

versions can be made using any of the usual information criteria (Akaike, Bayesian) but, 

according to Wilson (2015), the use of the Vuong’s test for non-nested models is not 

appropriate in this case. 

In terms of how the zeros are generated, an alternative specification is the so-called 

hurdle model, which considers that all of them can be associated with being a non-

potential participant, but not as an optimal zero. This model can be interpreted as the 

count data version of the two-part model. Two equations are considered for this particular 

model. The first one corresponds to a binary discrete choice model for explaining whether 

the count variable is positive or zero, which is observed. The second equation corresponds 

to a count data model where the distribution of the count variable is truncated at zero 

because it only applies to individuals for whom the number of times of occurrence of the 

particular event is positive.4 

Consequently, the probability of observing a zero, i.e. not being a participant, is 

given by: 

          (13) 

where F* is the cumulative distribution function of a logistic (Logit model) or a 

standardized normal distribution (Probit model), D* is a dummy variable equal to 1 if the 

individual participates (yi >0) and Z is the vector of explanatory variables of the 

participation equation. 

And the probability of observing a certain positive value of y is: 

          (14) 

where the standard distribution F is truncated at zero and the explanatory variables (X) of 

the second equation are introduced in the standard count data model through the 

parameter . 

                                                           
4 See Feng (2021) and Green (2021) for a comparison of zero-inflated and hurdle models. 
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 The log likelihood function of this hurdle version is: 

          (15) 

where =0 in the hurdle Poisson model. 

Notice that this likelihood function can be maximized by estimating separately the 

discrete choice model for D* and the truncated count data model for the observations with 

a positive value of the dependent variable (y). Additionally, it is worth mentioning that 

the hurdle model is not a particular case of the corresponding zero-inflated version 

because a truncated model, and not a standard version, is estimated for those observations 

with a positive value for the number of times of occurrence of a particular event. 

As an alternative to the usual count data models, ordered models (McCullagh 1980) 

could also be considered. Although they are intended for situations in which the 

dependent variable is a qualitative variable whose categories can be ordered according to 

the characteristic which is measured, they could be used for count variables where, to 

some extent, the interest is in explaining the probability of occurrence of a particular event 

and the values of the count variable can be considered as ordered.  

The basic idea behind this model is that there is a latent variable (y*), which is not 

observed by the econometrician, which measures the intensity of occurrence of a 

particular event. What is observed is a discrete indicator, which approximates the level of 

this intensity, i.e. the number of times a particular event occurs - the observed (count) 

variable.  

The structure of the ordered model is as follows: 

          (16) 

 

where i is the error term, whose distribution determines whether a Logit (logistic) or a 

Probit (standardized normal) is considered and j are the cut points defining the intervals 

associated with the different values of the dependent variable (y) and are parameters to 
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The probability of y taking a particular value j is: 

          (17) 

where F is the cumulative distribution function corresponding to the error term. This is 

the contribution to the likelihood function of each observation in the sample. 

The ordered model has the advantage of being more flexible in fitting these 

probabilities than the models mentioned previously, since there is no specific pattern for 

them, as happens in the case of the standard count data models. As with the previous 

specifications, the ordered model can be estimated through a single equation, treating zero 

as an additional category, but there is also a hurdle version, which separates the decisions 

to participate and the number of sports to perform, and a zero-inflated version as in the 

case of count data models (Harris and Zhao 2007). 

 

3. Sports participation and its diversification 

There is plenty of scientific evidence about the beneficial effects of regular physical 

activity on health (Rhodes et al. 2017). However, sedentary lifestyles have become a 

major problem in developed countries, to the extent that the World Health Organization 

has developed the Global Action Plan on Physical Activity 2018-2030, which sets the 

goal of reducing physical inactivity by 10% by 2025 and 15% by 2030. This plan connects 

with the 2030 Sustainable Development Goals (SDGs), an initiative promoted by the 

United Nations to boost economic growth taking into account environmental, economic 

and social sustainability. 

There is an extensive economics literature on the determinants of individual sports 

practice. A survey of the main theoretical approaches, the correlates of sports 

participation and its effect on health, well-being, social capital and labour market 

outcomes has been done by Cabane and Lechner (2015). The literature review reveals 

that there is considerable heterogeneity in the definition of the variable under study. In 

fact, as Rhodes et al. (2017) indicate, physical activity has multiple dimensions: 

frequency, intensity, time and type (FITT principles). Most economic studies about the 

correlates of physical activity analyse participation, time and/or frequency of practice. 

The intensity of practice has been less studied in the literature and, regarding type, many 
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researchers add any type of sport or physical activity whereas others examine specific 

sports, groups of sports with common characteristics, or physical activity done in different 

domains of daily life (leisure, work, commuting, etc.).  

One of the characteristics of the variables that measure sports practice is that a high 

percentage of people do not play sports, so it becomes necessary to model the zeros in the 

dependent variable. The lack of participation may be due to different reasons: preferences, 

time or monetary constraints, or infrequency of practice, i.e. when the period of time 

considered in the survey is not long enough to capture sports practice. The reasons for 

observing zeros may determine the econometric specification.  

This chapter focuses on the type dimension of sports, measured by the number of 

sports the individual has practised in the previous year. The correlates of individual 

diversification of the sports activity are studied by estimating count data models to take 

into account the specific features of the dependent variable (integer, non-negative and 

with a narrow range of variation). 

The individual diversification of sports activity -also called multipractice or 

omnivorousness- has hardly been analysed in the sports economics literature, but it has 

received more attention in the sociology and sport science fields. In some cases, 

diversification is studied to contribute to the debate about which is the best way to attain 

elite sport performance: either to specialize in one sport at early ages or to sample 

different sports as a child and specialize a little later (Bridge and Toms 2013). Other 

researchers analyse differences in diversification between countries (Lefèvre et al. 2021) 

or between social classes (Lefèvre and Ohl 2012). Although globalization could lead to 

the homogenization of tastes and behaviours, diversification in sports may vary between 

different countries with a different socio-cultural environment or it may be a way to 

differentiate oneself from others in lower social positions. In this regard, the question is 

whether higher social classes have a more omnivorous behaviour in their sporting 

activities than lower classes have, as some authors have found in the study of cultural 

demand. In particular, Lefèvre and Ohl (2012), using French data, obtain that, although it 

is frequent for people to practise more than one sport, higher social groups tend to be 

more omnivorous than the rest. Regarding differences between countries, on the one hand, 

Lefèvre et al. (2021) find that Japanese are less likely to do sports than the French and 

those who participate are more likely to be single-sport practitioners. On the other hand, 
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Lefèvre et al. (2020) compare France and Spain, and conclude that there are similarities 

in the factors associated with the number of sports practised: males, younger people, more 

educated people and those with sporty fathers tend to have a greater portfolio size. 

Regarding the econometric methodology, count data models have already been 

applied in the literature on sports participation.5 This is the case of Dawson and 

Downward (2011), who estimate different count data specifications for the UK (Poisson, 

Negative Binomial –NB-, Zero-inflated Poisson –ZIP- and Zero-Inflated Negative 

Binomial –ZINB-) to study the number of hours and the number of days of sports 

participation. According to their results, the ZINB specification is the most suitable model 

for their data. Muñiz et al. (2014) and García et al. (2016) also estimate ZINB models to 

analyse the number of times that Spanish individuals play different types of sports. 

Anokye et al. (2012) opt for the Negative Binomial to model the number of days of sports 

practice in the previous four weeks by participants at a British university. Oliveira-

Brochado et al. (2017) specify a two-part model –specifically a Negative Binomial hurdle 

model- to study participation and frequency (number of days per week) of sport by 

Portuguese people and, more recently, García and Suárez (2021, 2023) also estimated 

two-part models for the number of days per week allocated to sports by Mexicans, where 

the frequency of practice by participants is modelled through truncated Poisson and 

Negative Binomial models.6 Previous papers, by Slymen et al. (2006) and Lee at al. 

(2016), used zero-inflated models for the number of days per week practising physical 

activity by Hispanic females in San Diego (USA) and by patients with Parkinson’s disease 

in South Korea, respectively. In a similar context of analysis of diversification, Lefèvre 

et al. (2020) apply a Negative Binomial hurdle model to analyse the number of sports 

practised by French and Spanish individuals.  

 

4. Data  

The empirical analysis uses the most recent edition of the Spanish Survey of Sporting 

Habits, corresponding to 2020. This survey is conducted every five years and the last 

                                                           
5 See Downward and Muñiz (2019) for a brief review of the econometric approaches used in the analysis 

of sports participation, where count data models are included. 
6 In García and Suárez (2020) a model for the number of days per week of sports practice is estimated using 

a version of the ordered model where the cut-points are known and a lognormal distribution is specified 

because their model is a kind of two-part model. 
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edition has been carried out by the Spanish Ministry of Culture and Sports together with 

the Higher Sports Council. The information was collected between September 2020 and 

January 2021. At that time, the lockdown due to the COVID-19 pandemic had already 

ended a few months earlier.  

The survey is aimed at people aged 15 or over and gathers information about 

sporting habits of the Spanish population, not only about their sports practice but also 

about attendance at sports events, sports equipment available at home, interest in sports 

information, relationship with sports organizations, etc. 

According to the data provided by the survey, around 60% of Spaniards have played 

sports in the previous year and, among those who did sports, the vast majority (92%) 

practised it at least once a week. Regarding the number of sports done by participants 

(variable ndep in the Stata commands reported in the next section), and focusing on the 

sample selected for the empirical analysis (where those respondents who are incapacitated 

for work or who state that they have practised more than 30 sports in the previous year 

are dropped),7 Figure 1 shows that most of them do one or two activities. In fact, it is 

more frequent to practise two activities (26% of participants) than one (24%). The same 

occurs in France but not in Japan, where single-practitioners predominate (Lefèvre et al. 

2021). Moreover, less than 15% of the individuals who play sports do more than five 

activities. Thus, the distribution of the dependent variable is right-skewed and it is 

concentrated in a small range of values. 

<< INSERT FIGURE 1 HERE >> 

The most practised sports by participants are, in order of importance: light 

gymnastics, cycling, intense gymnastics, mountaineering or hiking, athletics (running, 

walking, etc.) and bodybuilding. All these sports, except bodybuilding, also occupy the 

first positions among single-practitioners, although the ranking changes somewhat. 

However, the classification for those who play two sports is almost identical to the general 

ranking. 

As for the most frequent combinations of sports, and focusing on those who practise 

two activities, the most common pattern is to combine light gymnastics with 

                                                           
7 Firstly, people who are incapacitated for work may not be able to play sports. Secondly, it is quite 

implausible to have played more than 30 sports. These restrictions reduce the sample size by around 1.6%. 
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mountaineering or hiking, intense gymnastics, athletics, cycling or other sports not 

explicitly mentioned in the questionnaire. 

The explanatory variables used in the empirical exercise of the next section are as 

follows (in square brackets the name of these variables in the Stata commands reported 

in the next section): 

- Gender: male, female [sexo] 

- Age: five age groups (younger than 25, 25-34, 35-44, 45-54, older than 54) [g_edad] 

- Education: less than primary school, primary school, secondary school level 1, 

secondary school level 2, university degree [estud_new] 

- Employment status: worker, unemployed, retired, student, housework, other 

situation [sitlab] 

- Marital status: single, married, other situation [sitpers_new] 

- Health status: very good, good, fair, bad, very bad [estfis] 

- Parents practising sport: yes, no [pract_padres] 

- Nationality: Spanish, double nationality, foreigner [nac] 

- Municipality: provincial capital, more than 50,000 inhabitants, fewer than 50,000 

inhabitants [tram_munic] 

Table 1 shows some descriptive statistics of these variables. Males, young people 

and persons with secondary or university education are more likely to do sports. The same 

can be said of students, single persons, people in very good health and those whose 

parents have played sports. Finally, it is interesting to note that the diversity of practice 

differs between sporty people depending on their sociodemographic characteristics. This 

information is included in Table 1. The figures show that the average number of activities 

is higher among males, young people, individuals with higher education level, students, 

single, and people in very good health. 

<< INSERT TABLE 1 HERE >> 

 

5. Results 

The estimates of the different models discussed in the methodology section, applied to 

the number of sports practised by people in Spain, are reported in Tables 3 and 4. First, 

the fit and the appropriateness of the different specifications are discussed, and then the 
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comments on the interpretation of the coefficients and the calculation of the marginal 

effects of the explanatory variables on the dependent variable follow. 

 The empirical analysis has been done using Stata software. Table 2 shows the 

commands and the syntax used to estimate each of the models. More details about how to 

use Stata to estimate and analyse the different count data models discussed in this chapter can be 

found in Cameron and Trivedi (2022). The estimation of these models is also possible using other 

major statistical software packages. Friendly and Meyer (2015) provide procedures to estimate 

different count data models in R, whereas Hilbe (2014) shows the codes for running these models 

in R, SAS and Stata. Other software packages such as SPSS or LIMDEP include procedures to 

estimate count data models too.   

<< INSERT TABLE 2 HERE >> 

<< INSERT TABLE 3 HERE >> 

<< INSERT TABLE 4 HERE >> 

5.1. Comparison of the different models 

The descriptive analysis of the dependent variable provides relevant information about 

the appropriateness of the standard models. As indicated in Figure 1, the sample mean of 

the number of sports (1.92) is clearly smaller than the sample variance (6.76), which 

means that this variable has overdispersion and, consequently, the fit of the standard 

Poisson model should be worse than that of the Negative Binomial model.8 In fact, the 

values of the log likelihood function reported in Table 3 confirm that the fit of the 

Negative Binomial Type 2 model (henceforth Negative Binomial) is much better. This 

evidence is corroborated by the fact that the estimate of the overdispersion parameter () 

is significantly different from zero, rejecting the Poisson specification. 

In order to highlight the differences between models, it is useful to look at the 

adjusted probabilities for each value of the number of sports variable across models. The 

mean values of these adjusted probabilities and the corresponding relative frequencies in 

the sample are reported in Table 5. It is evident that the standard Poisson model is not 

able to reproduce the proportion of observations corresponding to individuals not 

                                                           
8 Results for the Negative Binomial Type 1 model are not reported here since it is hardly used in the 

empirical economic literature and the results point in the same direction as those of the Type 2 version. 
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practising sports (22.58% versus 38.85% in the sample), whereas the Negative Binomial 

model captures this proportion better. In the case of the Poisson model, the average 

probability of practising one sport is higher than that of not practising sports, and then it 

follows a decreasing pattern as the number increases. This is an expected result since the 

sample mean of the number of sports, which is an estimate of the parameter of the 

Poisson distribution - is below 2 and, according to the result in expression (3), the mode 

should be 1, as happens in the adjusted probabilities of the Poisson model. Notice also 

that the Negative Binomial model is not able to replicate the observed pattern of the 

relative frequency (higher for y=2 than for y=1 and y=3) because of the particular features 

of this distribution. 

<< INSERT TABLE 5 HERE >> 

The zero-inflated versions of the standard models are designed to capture the 

potential problem of excess of zeros and/or the fact that the reason behind observing a 

zero could be either being a non-potential participant or an optimal choice by a potential 

participant. In Table 4, the estimated zero-inflated versions of the Poisson and the 

Negative Binomial models are reported. There is a substantial improvement in the value 

of the log likelihood model in the case of the zero-inflated Poisson model when compared 

to the standard version, as a consequence of the bad performance of the latter in estimating 

the probability of not practising sport. The zero-inflated version of the Negative Binomial 

model also has a higher value of the log likelihood compared to its standard version, and 

it is also preferred to the zero-inflated Poisson version because the overdispersion 

parameter  is significantly different from zero.  

As mentioned in the methodology section, strictly speaking, the Vuong’s test cannot 

be used to check the appropriateness of the standard versions versus the zero-inflated 

versions, but the change in the log likelihood values for both the Poisson and the Negative 

Binomial versions is so important that the zero-inflated versions are clearly preferred in 

terms of any of the usual information criteria. In fact, as it can be seen in Table 4, the 

second equation of the zero-inflated models (number of sports) does not include health 

status as an explanatory factor. This is because, when using the same set of variables in 

both equations, there were some problems with the estimation of the parameters, and their 

standard errors, of the health status variables and this kind of exclusion restriction was 

used to obtain convergence. 
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The adjusted probabilities reported in Table 5 show that the zero-inflated versions 

are able to replicate the proportion of individuals who do not play sports. Moreover, the 

zero-inflated Poisson model reproduces the pattern of the relative frequencies associated 

with practising one, two and three sports better than the Negative Binomial model does, 

but it clearly underestimates the frequencies for one and two, and overestimates those 

corresponding to values between three and six, and then the estimated probabilities tend 

to zero more rapidly than the observed frequencies. In the case of the zero-inflated 

Negative Binomial model, the adjusted probabilities decrease with the number of sports 

practised from the start, not capturing the pattern of the relative frequencies in the sample 

for values one, two and three, but fitting quite well frequencies above three and the 

proportion of individuals practising one, two or three sports (42.52% in the sample and 

40.38% estimated by the Negative Binomial model, compared to the 37.83% estimated 

by the Poisson model). 

As discussed in the methodology section, an alternative specification is the hurdle 

count data model, a two-part model in which all zeros come from potential non-

participants and the second equation (number of sports) is estimated by using a truncated 

(at zero) distribution for the count variable. The estimates of the hurdle versions of the 

Poisson and the Negative Binomial model are reported in Table 4 using the same 

specification as for the zero-inflated versions, i.e. excluding health status in the second 

equation. Comparing the results shown in Table 4, the estimated coefficients differ 

between the hurdle and the zero-inflated models. This is because the first hurdle has a 

different definition depending on whether the zero-inflated or the hurdle version is 

considered, i.e. depending on how the zeros are generated. But the overall value of the 

log likelihood function is almost exactly the same for both versions of either the Poisson 

(-9493) or the Negative Binomial model (-9020), although it is marginally better for the 

hurdle models. This happens for this particular empirical exercise, but it cannot be 

generalized. In fact, when simplifying the specification by reducing the explanatory 

variables of the second equation, the difference between the two log likelihood values is 

more significant in favour of the hurdle model.  

The main point about the above result is that, although the two models seem to have 

similar explanatory power, they provide a different interpretation about how the zeros are 

generated and, consequently, the decision about which model to choose has to be based 

on whether the characteristics of the data set (the period of reference associated with the 
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question about the number of sports practised) can be related to one or two potential 

sources of zeros. In this particular case, the question refers to the number of sports 

practised during a year and zeros should be better associated with potential non-

participants than with optimal choices made by people who are willing to practise sports. 

Notice that the similar performance of the zero-inflated and the hurdle models translates 

into almost exactly the same estimates for the probabilities of practising a given number 

of sports, according to the values reported in Table 5. 

It is also relevant to remember that the hurdle model is not nested into the 

corresponding zero-inflated version. This is because the second equation requires a 

distribution of a positive random variable for the dependent variable, the truncated (at 

zero) Poisson or Negative Binomial, whereas being nested would require assuming the 

unrestricted standard versions of these distributions. In the case in which this “nested” 

model is estimated, the log likelihood of the hurdle Negative Binomial model is -9442, 

smaller than that of the zero-inflated model. 

Finally, as mentioned above, the estimation of a count data model can be performed 

by using ordered discrete choice models. They have the advantage over the previous count 

data models that they do not impose any restriction on the adjusted probabilities 

associated with the values of the dependent variable. As is reported in Table 3, the 

standard ordered Logit model has a significantly better fit than the standard Poisson and 

Negative Binomial models. This is also the case when considering the estimates of the 

hurdle version of the ordered model, whose estimates are shown in the last column of 

Table 4. It should be mentioned that the dependent variable has been redefined in the case 

of those observations for which the number of sports is greater than 20 (four of them) 

(variable ndep_o in the Stata commands for the ordered models). The last category of the 

dependent variable in the ordered models corresponds to the case in which the number of 

sports is equal to or greater than 20. If this redefinition is not applied, the log likelihood 

increases to -8958, still greater than that of the count data models. This flexibility of the 

ordered model becomes evident when looking at the adjusted probabilities in Table 5. In 

the case of the ordered hurdle model, they reproduce almost exactly the relative 

frequencies in the sample and, in particular, the specific profile of the probabilities 

associated with practising one, two and three sports. 
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5.2. Interpretation of the coefficients and the marginal effects 

Table 3 reports the coefficients of the explanatory variables for the standard models, 

corresponding to the elements of vector  in (2) or (5). According to the parameterization 

for the count data models, a positive coefficient implies a positive effect of the 

corresponding variable on the expected value of the number of sports, as in the case of 

the ordered model in terms of the latent variable y* in (16). 

In this regard, females have a lower expected value of the number of practised 

sports compared to males because of the negative sign of the coefficient of this dummy. 

In the case of age, an interpretation of each individual coefficient can be made, 

concluding, for instance, that those who are in the age group 35-44 play a lower expected 

number of sports than those younger than 25 (the reference category). But also an overall 

interpretation of the pattern of the age coefficients can be made, since the categories are 

ordered. Thus, age has a negative effect on the expected number of sports, not because 

the coefficients are negative but because the pattern they follow is decreasing. This also 

applies to the health status variable, whose categories are also ordered: the worse the 

health status the lower the expected value of the number of sports. Regarding other 

variables, education has a positive effect on the expected value of the dependent variable, 

as happens for those who live in small municipalities and those whose parents practise 

sport. Those who are not single are expected to practise fewer sports, as it is the case of 

those who are not Spanish. Finally, people who are either unemployed, retired or doing 

housework have a lower expected number of sports compared to those who are working 

–the reference category-, whereas those who are students or are in the default category 

have a higher expected value. 

We can also make an interpretation of the size of the effect of a unit change in each 

explanatory variable because, given expressions (2) and (5) for the count data models, 

increasing the k-th explanatory variable by one unit will multiply the expected number of 

sports by exp(k), which, for “small” values of k, means that the expected number of 

sports will increase by (k x100)%.9 This means that in the Poisson model females have 

an expected value of the number of sports exp(-0.277) times that of males with the same 

characteristics (or exp(-0.294) for the Negative Binomial model), i.e. the expected value 

                                                           
9 Notice that by taking logs in (2) and (5), we end up with an expression similar to the log-linear version of 

the regression model and the interpretation is the same as mentioned above. 
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is 24.2% lower for females than for males. In the case of age, the coefficient for the group 

25-34 implies that the expected value for the number of sports is 8.8% lower than that of 

people younger than 25 (this is a “good” approximation insofar as exp(-0.088) is 0.916). 

Notice that the marginal effects, interpreted as the absolute change in the expected 

value of the dependent variable, are different for each individual because of the non-

linearity of expressions (2) or (5), as becomes evident from the following expression, 

which corresponds to the effect of a continuous variable.10 

         (18) 

In the case of qualitative variables, such as all those used in this exercise, the 

marginal effects are calculated as the change in the expected value of y when the dummy 

defined for each specific category changes from 0 to 1, i.e. when there is a change from 

the reference category to that associated with the dummy. In the first rows of Table 6 the 

average of the marginal effects of gender and health status on the expected value of the 

number of sports for all individuals in the sample are reported.11 They look relatively 

similar for both the Poisson and the Negative Binomial model, despite having different 

explanatory power, but the difference is more significant in the case of fair health status 

because of the greater difference in the size of the coefficients in the two models. In the 

case of the ordered Logit model, the marginal effects are calculated by using the adjusted 

value of the expected number of sports obtained as the sum of the products of the adjusted 

probabilities times the different values of the number of sports. 

<< INSERT TABLE 6 HERE >> 

But, as mentioned in the methodology section, the analysis of the effects of the 

covariates on the probabilities associated with the different values of y is as important as, 

or even more important, than studying the marginal effects on the expected value of y. In 

fact, this is the aspect where differences between models are more evident. Table 6 offers 

information on the marginal effects of gender and health status on the probabilities of 

practising zero to four sports. Differences between the Poisson and the Negative Binomial 

                                                           
10 There are several ways of reporting marginal effects. They can also be expressed as elasticities or semi-

elasticities depending on the features of the explanatory variable. Stata allows for the possibility of choosing 

how the marginal effects are calculated. 
11 In some papers marginal effects are evaluated at the mean values of the explanatory variables. 

Consequently, when writing up the results of empirical research, it is important to make clear how the 

marginal effects are calculated. 
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model can be clearly appreciated, as well as differences with respect to the ordered Logit 

model. 

Turning now to the zero-inflated and hurdle models, whose estimates are reported 

in Table 4, it is worth remembering that both are two-equation models but they differ in 

the role of the first equation: to explain whether or not the individual is a potential sports 

practitioner (zero-inflated model) or just whether the individual practises sport or not 

(hurdle model). This feature has to be taken into account when interpreting the results of 

the Logit models corresponding to this first stage. Additionally, the estimates of the first 

equation in the double-hurdle model (Inflate) correspond to defining the depending 

variable of the binary discrete choice model as equal to 1 if the individual is a potential 

non-participant and zero otherwise, as is done in the output produced by Stata. Regarding 

the interpretation of the estimated coefficients in the second equation, it must be done in 

terms of the effect of the corresponding variable on the expected number of sports for 

potential practitioners in the zero-inflated models, and conditional on being a practitioner 

in the hurdle model, proceeding as it was done when discussing the effects for the 

standard models. 

Although this is not necessarily the case in all the empirical applications, in this 

particular exercise the coefficients of each explanatory variable have the same sign in 

both equations of all the versions of the zero-inflated and hurdle models, i.e. a variable 

which has a positive effect (positive coefficient) on the expected number of sports also 

has a positive effect on the probability of being a potential practitioner in the zero-inflated 

model (negative coefficient of the inflate equation) and on the probability of practising 

sport in the hurdle model. But the significance of those effects differs. For instance, the 

coefficients capturing the effect of the individual employment status are in most cases 

significant in the second equation (number of sports) of the zero-inflated model but not 

in the inflate equation, which is also the case to some extent for the hurdle equation. By 

contrast, the effect of education on the unconditional expectation of the number of sports 

works mainly through the probability of being a sports practitioner in the different 

versions of the hurdle model. The existence of different patterns depending on the 

equation considered is relevant in terms of the policies to be implemented to promote 

sports participation, depending on whether the aim is just to increase the number of sports 

practitioners or the diversification of this participation, measured in this example by the 
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number of sports practised. Notice that this differentiated pattern cannot be captured by 

the standard versions of the different models. 

Table 6 reports the average of the marginal effects of gender and health status for 

these two-equation models on the unconditional probabilities and the unconditional 

expected number of sports for all the individuals in the sample. In the case of the zero-

inflated count data models the unconditional expectation of y is: 

           (19) 

where Pi is defined as in (10). 

Similar to expression (18), the marginal effects on the unconditional expectation of 

the dependent variable for the zero-inflated count data models of the vectors Xi and Zi are 

given by the following expressions: 

         (20) 

         (21) 

where F* is defined in (10). When a variable is included in both Xi and Zi, its marginal 

effect is the sum of the expressions (20) and (21). 

In the case of the hurdle count data models the unconditional expectation of y is: 

           (22) 

where Pi is defined as in (13). 

The marginal effects on the unconditional expectation of the dependent variable for 

the hurdle count data models of the vectors Xi and Zi are given by the following 

expressions: 

         (23) 

         (24) 
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Notice that the marginal effect of those variables which are included in both Xi and Zi is 

the sum of the expressions (23) and (24). 

It is worth pointing out that, although the marginal effects on the expected value of 

y are very similar across models, a substantial difference is observed between the standard 

and the two-equation versions when considering the marginal effect on the unconditional 

probabilities, in particular, on the probability of not being a sports practitioner (y = 0). 

For instance, having a fair health status increases this probability by approximately 18 

percentage points compared to having a very good health status in the two-equation 

models, and by around 7 percentage points in the standard count data models. Focusing 

on the two-equation models, there are some differences between the Poisson versions and 

the rest when looking at the probabilities of practising one sport or more than two sports, 

as a consequence of the equidispersion restriction associated with this model.  

Finally, notice that the hurdle version of the ordered model, which has the best fit 

because of its flexibility, produces marginal effects that are quite similar to those of the 

Negative Binomial version of the hurdle model, which is the preferred specification 

among the typical count data models. In addition, although the fit is almost the same, the 

marginal effects of the Negative Binomial version of the hurdle model differ with respect 

to those of the zero-inflated model, probably as a consequence of the different 

assumptions about how the zeros are generated. 

 

6. Concluding remarks 

In this chapter a review of the most commonly used count data models when using cross-

section data is presented. The dependent variable is characterized as an integer non-

negative variable, which takes a small number of (low) values, usually with a variance 

greater than the expected value (overdispersion) and with a relatively large proportion of 

zeros (excess of zeros). Particular attention is devoted to the specification of the different 

models used in the empirical literature in terms of how the zeros, which are observed, 

have been generated. In this regard, the zero-inflated versions of the standard models are 

discussed, and the ordered models are presented as an alternative way of estimating these 

models in which the dependent variable represents the number of times something 

happens (e.g. the number of visits to the doctor). 
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All the methodological issues are illustrated by means of an empirical application 

to the analysis of diversification in sports practice, i.e. how many different sports are 

practised by individuals. This specific feature of sports participation has received little 

attention in the sports economics literature. 

Both the hurdle and the zero-inflated versions of the Negative Binomial model are 

performing much better than the standard Poisson and Negative Binomial models. In this 

particular exercise, taking into account the characteristic of the survey used in the 

empirical analysis, the hurdle model seems to be more adequate. 

It is worth emphasizing the importance of the analysis of the marginal effects of the 

different explanatory variables in these models, given their non-linearity. This is an issue 

that usually does not receive too much attention in empirical work. In particular, when 

dealing with count data models, attention should be paid, not only to the marginal effects 

on the expected value of the dependent variable, but also to the marginal effects on the 

probabilities associated with the values the dependent variable can take. Most of the 

differences in the performance of the alternative models are more evident when analysing 

the adjusted probabilities, since the distributional and the specification assumptions have 

more impact on the structure of the adjusted probabilities than in the expected value. 

Finally, it is also relevant to mention some recent developments related to new 

models which have proposed to deal with the overdispersion (e.g. Altun 2019; Cahoy et 

al. 2021; Sellers and Premeaux 2021) and new proposals for clustered count data (e.g. 

Altinisk 2022). 
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Figure 1: Histogram of the number of sports practised 

 

Note: The values have been calculated using the corresponding weight factors. 
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Table 1: Descriptive statistics 

 

Variables  

 

% 

Sports 

participants  

(%) 

Average number 

of sports by 

participant 

Gender     

  Male   48.49 65.52 3.450 

  Female 51.51 54.01 2.969 

Age    

  <25  11.96 79.78 4.392 

  25-34 13.18 75.44 3.678 

  35-44 17.77 70.71 3.324 

  45-54 18.88 62.62 3.065 

  >54 38.22 41.13 2.273 

Education     

  Less than primary school  2.35 19.15 2.019 

  Primary school 12.63 31.84 2.233 

  Secondary school level 1 23.76 52.55 3.064 

  Secondary school level 2 28.02 64.77 3.433 

  University degree 33.25 73.65 3.339 

Employment status    

   Worker  48.84 68.42 3.356 

   Unemployed 11.73 57.77 2.883 

   Retired 23.56 36.95 2.062 

   Student 9.55 81.01 4.454 

   Housework 4.58 39.16 2.224 

   Other employment situation 1.75 66.48 3.547 

Marital status    

   Single  36.81 64.51 3.518 

   Married 58.69 56.98 2.995 

   Other 4.50 53.33 3.537 

Health status    

   Very  good  24.86 75.51 3.563 

   Good 51.59 62.04 3.125 

   Fair 18.12 39.39 2.965 

   Bad 4.16 31.93 2.667 

   Very bad 1.28 27.43 1.757 

Parents practising sport     

   No  70.65 54.29 2.808 

   Yes 29.35 72.34 3.980 

Nationality    

    Spanish  91.00 59.63 3.203 

   Double nationality 3.27 59.90 3.707 

   Foreigner 5.72 58.82 3.309 

Municipality     

   Provincial capital   32.83 58.52 3.323 

   > 50,000 inhabitants 20.92 60.08 3.057 

   < 50.000 inhabitants 46.25 60.12 3.234 

Note: The values have been calculated using the corresponding weights.  
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Table 2: Stata commands 

Poisson:    

poisson ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis i.pract_padres_new  i.nac ///  

i.tram_munic   

 

Negative Binomial: 

nbreg ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis i.pract_padres_new  i.nac ///  

i.tram_munic   

 

Zero-Inflated Poisson: 

zip ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.pract_padres_new  i.nac ///  

i.tram_munic, inflate( i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis /// 

i.pract_padres_new  i.nac i.tram_munic   

 

Zero-Inflated Negative Binomial: 

zinb ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.pract_padres_new  i.nac ///  

i.tram_munic, inflate( i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis /// 

i.pract_padres_new  i.nac i.tram_munic 

 

Poisson hurdle model: 

logit practica i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis i.pract_padres_new  i.nac ///  

i.tram_munic   

tpoisson ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.pract_padres_new  i.nac ///  

i.tram_munic   

tnbreg ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.pract_padres_new  i.nac ///  

i.tram_munic   

 

Negative-Binomial hurdle model: 

logit practica i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis i.pract_padres_new  i.nac ///  

i.tram_munic   

tnbreg ndep i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.pract_padres_new  i.nac ///  

i.tram_munic   

 

Ordered logit: 

ologit ndep_o i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis i.pract_padres_new  i.nac ///  

i.tram_munic   

 

Hurdle version of the ordered logit: 

logit practica i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.estfis i.pract_padres_new  i.nac ///  

i.tram_munic   

ologit ndep_o i.sexo i.g_edad i.estud_new i.sitlab  i.sitpers_new i.pract_padres_new  i.nac ///  

i.tram_munic if ndep>0 

 

Note: The variable practica in the logit and in the Zero-Inflated models is a dummy variable 

equal to one when ndep>0 and equal to zero when ndep=0. 
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Table 3: Standard models 

 
Poisson NegBin 

Ordered 

Logit1 

Gender (Ref.: Male)    

  Female -0.277*** -0.294*** -0.414*** 

Age (Ref.: < 25)    

  25-34 -0.088** -0.116 -0.124 

  35-44 -0.219*** -0.249*** -0.269* 

  45-54 -0.343*** -0.381*** -0.545*** 

  >54 -0.631*** -0.673*** -0.915*** 

Education (Ref.: Less than primary)    

  Primary school 0.355** 0.328* 0.311 

  Secondary school level 1 0.660*** 0.642*** 0.609** 

  Secondary school level 2 0.875*** 0.892*** 0.989*** 

  University degree 1.046*** 1.083*** 1.395*** 

Employment status (Ref.: Worker)    

  Unemployed -0.162*** -0.147*** -0.239*** 

  Retired -0.342*** -0.315*** -0.405*** 

  Student 0.172*** 0.188** 0.443*** 

  Housework -0.322*** -0.290*** -0.336** 

  Other employment situation 0.162** 0.200* 0.201 

Marital status (Ref.: Single)    

  Married -0.008 0.006 -0.000 

  Other -0.103** -0.136 -0.217 

Health status (Ref.: Very good)    

  Good -0.074*** -0.091** -0.217*** 

  Fair -0.248*** -0.314*** -0.642*** 

  Bad -0.528*** -0.601*** -0.927*** 

  Very bad -0.834*** -0.774*** -0.995*** 

Parents practising sport (Ref.: No)    

  Yes 0.343*** 0.344*** 0.597*** 

Nationality (Ref.: Spanish)    

  Double nationality -0.020 0.036 -0.180 

  Foreigner -0.067 -0.084 -0.237** 

Municipality (Ref.: Provincial capital)    

  > 50,000 inhabitants -0.043 -0.020 -0.021 

  < 50.000 inhabitants 0.046** 0.072* 0.152*** 

Constant 0.299* 0.312  

  0.766***  

    

Observations 5,151 5,151 5,151 

log L -10449 -9152 -8981 

Notes: 1 The cut point estimates of the ordered Logit model are not reported. 

*** p<0.01, ** p<0.05, * p<0.10 
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Tabla 4: Zero-inflated and hurdle (two-part) models 

 Zero-inflated Hurdle (two-part) 

 Poisson NegBin Tr. Poisson Tr. NegBin Ordered1 Logit2 

 Number Inflate Number Inflate Number Number Number 1st hurdle 

Gender (Ref.: Male)         

  Female -0.160*** 0.435*** -0.219*** 0.378*** -0.158*** -0.187*** -0.207*** -0.472*** 

Age (Ref.: < 25)         

  25-34 -0.048 0.196 -0.055 0.330 -0.047 -0.059 -0.062 -0.199 

  35-44 -0.161*** 0.295 -0.188** 0.336 -0.159*** -0.187** -0.197 -0.347* 

  45-54 -0.233*** 0.513** -0.257*** 0.748* -0.232*** -0.273*** -0.434** -0.569*** 

  >54 -0.442*** 0.738*** -0.499*** 0.970** -0.441*** -0.516*** -0.797*** -0.886*** 

Education (Ref.: Less than primary)         

  Primary school 0.128 -0.288 0.180 -0.204 0.128 0.119 -0.076 0.340 

  Secondary school level 1 0.293 -0.535 0.356 -0.453 0.289 0.292 0.110 0.653** 

  Secondary school level 2 0.389* -0.915*** 0.485* -0.934* 0.385* 0.423 0.378 1.033*** 

  University degree 0.448** -1.448*** 0.571** -1.711*** 0.442** 0.491* 0.561 1.530*** 

Employment status (Ref.: Worker)         

  Unemployed -0.128*** 0.139 -0.127** 0.200 -0.128*** -0.133** -0.224** -0.188* 

  Retired -0.242*** 0.189 -0.227*** 0.265 -0.257*** -0.272*** -0.468*** -0.291*** 

  Student 0.153*** -0.144 0.164** -0.185 0.153*** 0.175** 0.478*** 0.192 

  Housework -0.211** 0.118 -0.230* 0.110 -0.208** -0.225* -0.394* -0.227 

  Other employment situation 0.141** -0.028 0.137 -0.117 0.142** 0.183 0.237 0.089 

Marital status (Ref.: Single)         

  Married -0.007 0.001 -0.020 -0.073 -0.008 -0.006 0.017 -0.004 

  Other -0.073 0.249 -0.070 0.404 -0.068 -0.078 -0.081 -0.269* 

Health status (Ref.: Very good)         

  Good  0.411***  0.779***    -0.346*** 

  Fair  1.037***  1.634***    -0.908*** 

  Bad  1.296***  1.964***    -1.141*** 

  Very bad  1.208***  1.671***    -1.055*** 
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 Zero-inflated Hurdle (two-part) 

 Poisson NegBin Tr. Poisson Tr. NegBin Ordered1 Logit2 

 Number Inflate Number Inflate Number Number Number 1st hurdle 

Parents practicing sport (Ref.: No)         

  Yes 0.237*** -0.446*** 0.282*** -0.426*** 0.236*** 0.263*** 0.491*** 0.521*** 

Nationality (Ref.: Spanish)         

  Double nationality 0.093 0.348* 0.157 0.675** 0.087 0.141 0.153 -0.253 

  Foreigner 0.040 0.376** 0.029 0.601** 0.035 0.025 -0.029 -0.305** 

Municipality (Ref.: Provincial capital)         

  > 50,000 inhabitants -0.088*** -0.189* -0.105** -0.428** -0.085*** -0.090* -0.196** 0.105 

  < 50.000 inhabitants -0.011 -0.252*** -0.003 -0.383*** -0.011 -0.009 0.053 0.213*** 

Constant 0.946*** -0.857** 0.751*** -1.901*** 0.950*** 0.814***  0.571* 

   0.416***  0,422***   

         

Observations 5,151 5,151 5,151 5,151 3,150 3,150 3,150 5,151 

log L3 -9494 -9020 -9493 -9019 -8947  

Notes: 1 The cut point estimates of the ordered Logit model are not reported. 

 2 The Logit model of the first hurdle is the same for all the different versions of the hurdle model. 

 3 The log likelihood of the Logit model in the two-part hurdle models is included in the value which appears in the second equation 

*** p<0.01, ** p<0.05, * p<0.10 
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Table 5: Average of the adjusted probabilities for different values of y and the adjusted expected value of y 

Prob. Sample Poisson NegBin 
Ordered 

Logit 

Zero-infl. 

Poisson 

Zero-infl. 

NegBin 

Hurdle 

Poisson 

Hurdle 

NegBin 

Hurdle  

Ord. Logit 

0 0.3885 0.2258 0.3593 0.3859 0.3886 0.3890 0.3885 0.3885 0.3885 

1 0.1452 0.2562 0.2258 0.1437 0.1129 0.1686 0.1136 0.1696 0.1436 

2 0.1633 0.2007 0.1388 0.1628 0.1388 0.1363 0.1388 0.1363 0.1611 

3 0.1167 0.1356 0.0879 0.1179 0.1266 0.0989 0.1263 0.0986 0.1172 

4 0.0660 0.0835 0.0573 0.0674 0.0954 0.0684 0.0952 0.0682 0.0673 

5 0.0379 0.0479 0.0384 0.0387 0.0626 0.0462 0.0626 0.0461 0.0388 

6 0.0239 0.0258 0.0262 0.0243 0.0370 0.0309 0.0370 0.0309 0.0244 

7 0.0184 0.0131 0.0182 0.0187 0.0200 0.0205 0.0200 0.0206 0.0188 

8 0.0109 0.0064 0.0129 0.0110 0.0100 0.0137 0.0100 0.0137 0.0110 

9 0.0080 0.0029 0.0092 0.0080 0.0047 0.0091 0.0047 0.0091 0.0080 

10 0.0052 0.0013 0.0066 0.0053 0.0020 0.0061 0.0021 0.0061 0.0053 

11 0.0037 0.0005 0.0048 0.0037 0.0008 0.0040 0.0009 0.0041 0.0037 

12 0.0035 0.0002 0.0036 0.0035 0.0003 0.0027 0.0003 0.0027 0.0035 

13 0.0021 0.0001 0.0026 0.0021 0.0001 0.0018 0.0001 0.0018 0.0021 

14 0.0012 0.0000 0.0020 0.0012 0.0000 0.0012 0.0000 0.0012 0.0012 

15 0.0014 0.0000 0.0015 0.0014 0.0000 0.0008 0.0000 0.0008 0.0014 

16 0.0016 0.0000 0.0011 0.0016 0.0000 0.0006 0.0000 0.0006 0.0016 

17 0.0008 0.0000 0.0008 0.0008 0.0000 0.0004 0.0000 0.0004 0.0008 

18 0.0002 0.0000 0.0006 0.0002 0.0000 0.0003 0.0000 0.0003 0.0002 

19 0.0004 0.0000 0.0005 0.0004 0.0000 0.0002 0.0000 0.0002 0.0004 

20 0.0002 0.0000 0.0004 0.0014 0.0000 0.0001 0.0000 0.0001 0.0014 
          

E(y) 1.9851 1.9851 2.0003 2.0010 1.9847 1.9860 1.9842 1.9855 2.0010 
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Table 6: Marginal effects1 of gender and health status (fair vs very good) on the probability of n and the expected value 

 Poisson NegBin 
Ordered 

Logit 

Zero infl. 

Poisson 

Zero infl. 

NegBin 

Hurdle 

Poisson 

Hurdle 

NegBin 

Truncated 

Ord. Logit 

Gender: female vs male     

Pr(0) 0.0715 0.0666 0.0804 0.0916 0.0768 0.0925 0.0925 0.0925 

Pr(1) 0.0406 0.0153 0.0041 0.0089 0.0092 0.0084 -0.0010 -0.0063 

Pr(2) 0.0010 -0.0043 -0.0102 -0.0028 -0.0046 -0.0032 -0.0104 -0.0184 

Pr(3) -0.0209 -0.0103 -0.0185 -0.0152 -0.0115 -0.0154 -0.0141 -0.0202 

Pr(4) -0.0268 -0.0112 -0.0156 -0.0212 -0.0134 -0.0212 -0.0141 -0.0145 
         

E(y) -0.5462 -0.5829 -0.4472 -0.5259 -0.5408 -0.5258 -0.5386 -0.4149 

         

Health status: fair vs very good     

Pr(0) 0.0658 0.0725 0.1289 0.1836 0.1792 0.1857 0.1857 0.1857 

Pr(1) 0.0366 0.0161 0.0049 -0.0433 -0.0604 -0.0447 -0.0607 -0.0540 

Pr(2) -0.0017 -0.0058 -0.0193 -0.0468 -0.0435 -0.0478 -0.0445 -0.0517 

Pr(3) -0.0213 -0.0121 -0.0309 -0.0377 -0.0283 -0.0381 -0.0295 -0.0330 

Pr(4) -0.0251 -0.0127 -0.0246 -0.0253 -0.0177 -0.0253 -0.0188 -0.0175 
         

E(y) -0.4735 -0.5950 -0.6795 -0.5321 -0.4996 -0.5319 -0.5312 -0.5408 

Note: 1 Average marginal effects for all the individuals in the sample 

 

 


