
Information Sciences 654 (2024) 119842

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Computable aggregations of random variables

Juan Baz a, Irene Díaz b,∗, Luis Garmendia c, Daniel Gómez d, Luis Magdalena e,
Susana Montes a

a Department of Statistics, Operational Research and Didactic of Mathematics, University of Oviedo, Calle Federico García Lorca 18, Oviedo, 33007,
Spain
b Department of Computer Science, University of Oviedo, Campus de Viesques, Gijón, 33004, Spain
c Department of Computer Science, Complutense University of Madrid, Madrid, Spain
d Departamento de Estadística y Ciencia de los Datos, Universidad Complutense de Madrid, Madrid, Spain
e E.T.S. Ingenieros Informáticos, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, Madrid, 28660, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Aggregation functions

Computable aggregations

Aggregation of random variables

Probability theory

Aggregation theory is devoted to the fusing of several values into a unique output that summarizes
the given information. Typically, the aggregation process is formalized in terms of an increasing
mathematical function that maps the input values to the result, fulfilling some boundary
conditions. However, this formalization can be too restrictive for some scenarios. In some cases,
the inputs can be seen as observations of random variables, the aggregation result being also a
random variable. In others, the aggregation process can be identified as a program that performs
the aggregation rather than a mathematical function. In this direction, the concepts of aggregation
of random variables and computable aggregation have been defined in the literature. This paper
is devoted to the definition of computable aggregation of random variables, which are computer
programs, not functions, that aggregate random variables, not numbers. Special attention is
given to different possible alternatives to modelize random variables and monotonicity. The
implementation of some examples is also provided.

1. Introduction

Aggregation theory is a central topic of study in soft computing. The idea behind aggregation theory is to summarize the in-

formation of several elements or inputs to a fused output element. Classically, these processes have been modelized by means of
aggregation functions [7], which are increasing functions that fulfill some boundary conditions. This concept was initially defined
for numbers on the unit interval, then for real numbers, and subsequently for bounded lattices.

In many cases, the aggregation functions are applied over empirical measurements associated to the quantities of interest. In this
way, it is quite reasonable to consider the input and output of the aggregation as random variables, which is the typical assumption
in Statistics [20]. In this direction, the aggregation of random variables was introduced in [1], extending the monotonicity and the
boundary conditions in terms of stochastic orders.

Computable aggregations were first considered in [16], replacing the mathematical function with a computer program that
performs the aggregation. This approach is relevant because it allows one to modelize aggregation processes that cannot be expressed

* Corresponding author.

E-mail addresses: bazjuan@uniovi.es (J. Baz), sirene@uniovi.es (I. Díaz), lgarmend@fdi.ucm.es (L. Garmendia), dagomez@estad.ucm.es (D. Gómez),
Available online 7 November 2023
0020-0255/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

luis.magdalena@upm.es (L. Magdalena), montes@uniovi.es (S. Montes).

https://doi.org/10.1016/j.ins.2023.119842

Received 6 July 2023; Received in revised form 2 October 2023; Accepted 30 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:bazjuan@uniovi.es
mailto:sirene@uniovi.es
mailto:lgarmend@fdi.ucm.es
mailto:dagomez@estad.ucm.es
mailto:luis.magdalena@upm.es
mailto:montes@uniovi.es
https://doi.org/10.1016/j.ins.2023.119842
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.119842&domain=pdf
https://doi.org/10.1016/j.ins.2023.119842
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

by means of a mathematical function (see [14]), and consequently providing a more general concept of aggregation. In addition, it
permits the study of computational properties that are directly related with the implementation of such programs.

The aim of this paper is to merge both concepts in order to define computable aggregations of random variables. Given an Abstract
Data Type (ADT) associated with random variables, we aim to have programs that take several objects of the considered ADT and
return an object of the same ADT, fulfilling the monotonicity and boundary conditions related to aggregations of random variables.

This approach can be specially useful in the field of computational statistics. Let us give two examples in this regard. Firstly,
real-time estimation is a part of Statistics that deals with the estimation of a quantity when we are adding new observations to
the dataset, see [19,21]. In this field, both probabilistic and computational properties (mainly the recursivity) are important. Many
internal aggregation functions can be used to estimate location parameters, see [2] for an example. In this direction, computable
aggregations of random variables allow to study the recursivity (see [12]) and also to work with probability properties, thus they are
relevant in the context of real-time estimation. Secondly, M-estimators are functions of random variables that are defined in terms of
a minimization problem [5]. This type of problems are related with penalty-based aggregations [4]. There are cases in which do not
exist a closed expression of the functions, thus a numerical computation should be performed in order to obtain the result.

The conjunction of these two concepts (computable aggregations and aggregation of random variables) is not straightforward.
On the one hand, aggregation of random variables is always linked to a fixed probability space, which is, in most of the cases, not
countable. In addition, the definition of aggregation of random variables is not very restrictive, allowing randomness also in the
aggregation process or the application of functions which are not directly related with the observations of the random variables such
as the expected value. On the other hand, computable aggregations, since they are computer programs, cannot handle to work with
infinite structures. At most, infinite structures can be approximated by finite ones. Even in the finite case, the storage space should
be considered. In addition, the concept of computable aggregation considers the aggregated elements to be separated objects of the
same ADT, while in aggregation of random variables, there is a common structure, the probability space, that allows dependence
between them.

In order to overcome these problems, it is necessary to study the type of random variables, how they are related and modeled
and the aggregation of random variables of interest. In particular, a first approach considering induced aggregations of independent
discrete random variables, working with its distribution functions, is presented. This approach will be the basis for more general
frameworks.

It is important to emphasize that the examples proposed in this article have been presented in the Python programming language,
but any other programming language could have been used since all considerations are valid for any programming language.

The remainder of the paper is structured as follows. In Section 2, different concepts about aggregation that appear in the literature
are presented. We devote Section 3 to the study of the modelization of the random variables, and its benefits and drawbacks for our
purposes. Section 4 is focused on the definition of computable aggregations of random variables. We end with the conclusions and
final remarks in Section 5.

2. Preliminary notions about aggregation

In our search for a definition of computable aggregation of random variables, we devote this section to introducing the main
concepts regarding classical aggregation functions, aggregation of random variables, and computable aggregation.

2.1. Aggregation functions

Aggregation functions are functions that receive several values in a real interval and return a new value in the same interval,
fulfilling some boundary properties and monotonicity. They are relevant in several areas such as decision theory [15,26], fusion of
predictions [18,23] or image analysis, and are the basis of fuzzy set theory [27]. Classically, only the unit interval was considered:

Definition 1. [7] An aggregation function is a function 𝐴 ∶ [0, 1]𝑛 → [0, 1] satisfying:

• It is non-decreasing (in each variable).

• 𝐴(0, … , 0) = 0 and 𝐴(1, … , 1) = 1

However, the concept of aggregation function can be extended to any real interval, bounded or not, as follows:

Definition 2. [7] Let 𝐼 be an interval in the real line ℝ. An aggregation function is a function 𝐴 ∶ 𝐼𝑛 → 𝐼 satisfying:

• It is non decreasing (in each variable).

• The following boundary conditions are met:

inf
�⃗�∈𝐼𝑛

𝐴(�⃗�) = inf 𝐼, sup
�⃗�∈𝐼𝑛

𝐴(�⃗�) = sup𝐼

The case of 𝐼 = ℝ is especially relevant when considering random data, since many classical random variables have unbounded
2

support, for instance, the Gaussian distribution [20].

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

2.2. Aggregation of random variables

Aggregation functions are usually used to fuse data [9]. Following the usual approach in Statistics, these data can be modeled
using random variables. In this direction, the concept of aggregation of random variables was defined in [1], extending the boundary
conditions and the monotonicity using stochastic orders. Before explaining this type of aggregation, let us recall the basic notions
about probability spaces, random variables, and related functions.

Definition 3. [20] Let Ω be the sample space set and Σ ⊆ ℙ(Ω) a set of subsets of Ω. Σ is said to be a sigma-algebra if the following
conditions are fulfilled:

1. Ω ∈ Σ
2. If 𝐵 ∈ Σ, 𝐵 ∈ Σ
3. If 𝐵1, 𝐵2, ⋯ ∈ Σ, then

(
∪∞
𝑖=1𝐵𝑖

)
∈ Σ

A function 𝑃 ∶ Σ → [0, 1] is said to be a probability measure if it satisfies the following properties:

1. 𝑃 (𝐵) ≥ 0 for any 𝐵 ∈ Σ
2. 𝑃 (Ω) = 1
3. If 𝐵1, 𝐵2, … is a disjoint sequence of measurable sets, then:

𝑃
(
∪∞
𝑖=1𝐵𝑖

)
=

∞∑
𝑖=1

𝑃
(
𝐵𝑖

)

The trio (Ω, Σ, 𝑃) is known as a probability space.

A random variable is a measurable function from a probability space to the real numbers, i.e., the preimage of any Borel set of
ℝ belongs to Σ (see [20]). Let us now introduce the cumulative distribution, density, and probability mass functions of a random
variable.

Definition 4. [20] Given a random variable 𝑋:

• Its cumulative distribution function is defined as 𝐹 (𝑡) = 𝑃 (𝑤 ∈Ω | 𝑋(𝑤) ≤ 𝑡).
• If 𝐹 (𝑡) is absolutely continuous, 𝑋 is said to be a continuous random variable and its density function is defined as 𝑓 (𝑡) = 𝑑𝐹 (𝑡)

𝑑𝑡
.

• If 𝐹 (𝑡) is a piecewise constant function, 𝑋 is said to be a discrete random variable and its probability mass function is defined as
𝑃𝑋 (𝑡) = 𝑃 (𝑤 ∈Ω | 𝑋(𝑤) = 𝑡)

The monotonicity condition should be redefined in order to handle random variables. In this direction, stochastic orders, partial
orders defined over the equivalence classes of random variables with the same distribution function [22], are the usual approach to
order random variables. The most common stochastic order is the Stochastic Dominance [22], defined as 𝑋 ≤𝐹𝑆𝐷 𝑌 ⟺ 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡)
for any 𝑡 ∈ ℝ. For random vectors, finite collections of random variables, the most usual stochastic order is the Strong Stochastic
Dominance or usual stochastic order ≤𝑆𝑆𝐷 (see [11,22]), which compares probabilities over upper sets. It is equivalent to the
Stochastic Dominance when working with univariate random vectors. Let us now introduce the concept of aggregation of random
variables.

Definition 5. [1] Let (Ω, Σ, 𝑃) be a probability space and let 𝐼 be a real interval. Then, 𝐿𝑛
𝐼
(Ω) is defined as the set of random vectors

from (Ω, Σ, 𝑃) with support in 𝐼𝑛, that is, 𝐿𝑛
𝐼
(Ω) =

{
�⃗� ∶ Ω→ 𝐼𝑛 | �⃗� is measurable

}
.

Definition 6. [1] Let (Ω, Σ, 𝑃) be a probability space and 𝐼 be a real non-empty interval. An aggregation function of random variables
(with respect to the Strong Stochastic Dominance) is a function 𝐴 ∶ 𝐿𝑛

𝐼
(Ω) →𝐿𝐼 (Ω) satisfying:

• For any �⃗�, 𝑌 ∈𝐿𝑛
𝐼
(Ω) such that �⃗� ≤𝑆𝑆𝐷 𝑌 , 𝐴(�⃗�) ≤𝐹𝑆𝐷 𝐴(𝑌) (non decreasing).

• The following boundary conditions are met:

inf
�⃗�∈𝐿𝑛

𝐼
(Ω)

𝐴(�⃗�) = inf 𝐿𝐼 (Ω), sup
�⃗�∈𝐿𝑛

𝐼
(Ω)

𝐴(�⃗�) = sup𝐿𝐼 (Ω)

The Strong Stochastic Dominance can be changed to any stochastic order if necessary. It has been proved in [1] that this order
allows the composition of usual aggregation functions and random vectors to be aggregations of random variables. This type of
3

aggregation of random variables is known as induced as the following proposition states.

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

Proposition 1. [1] Let 𝐼 be a real interval, and let �̂� ∶ 𝐼𝑛 → 𝐼 be a measurable aggregation function. Consider the function 𝐴 ∶ 𝐿𝑛
𝐼
(Ω) →

𝐿𝐼 (Ω) such that for any random vector �⃗� ∈ 𝐿𝑛
𝐼
(Ω), it holds 𝐴(�⃗�) = �̂�◦�⃗�. Then, 𝐴 is an aggregation function of random variables with

respect to the Strong Stochastic Dominance.

The function 𝐴 is referred to as the aggregation function of random variables induced by �̂�.

In general, more complex and less intuitive aggregations of random variables can be considered, for instance, those that are
defined by considering a mixture of the distributions of the aggregated variables. Nevertheless, we will focus only on the case of
induced aggregation of random variables, since they are the most simple case and the one that is usually considered in data analysis.
As an example, in statistics the mean, median, maximum, and minimum are widely used [20], as well as OWA operators [25] as
particular cases of L-statistics [8].

Remark 1. Note that the definition proposed in [1] interprets the process of aggregation of random variables as a function that trans-

forms a multidimensional random variable, �⃗�, into a one-dimensional variable, 𝐴(�⃗�). Under this assumption, the aggregation process
allows us to aggregate (among other things) 𝑛 random variables that have dependency among them. Therefore, the components of
�⃗� should be necessarily defined in the same probability space.

However, it is important to mention that this general idea of aggregation does not match the approach of the classical theory of
aggregation operators (also applies for computable aggregations). Classical aggregation considers aggregation as a process in which
we aggregate a vector of 𝑛 objects into another object of the same nature, that is, an aggregation should be a function of 𝑛 random
variables 𝐴(𝑋1, … , 𝑋𝑛) instead of a function that takes a 𝑛-dimensional random variable as input.

Notice that the distribution of �⃗� cannot be determined univocally by the distribution of its components 𝑋1, … , 𝑋𝑛 [17] because it
is necessary the underlying structure of the probability space. However, if the random variables are defined in different probability
spaces, then the dependence structure does not exist. If we follow the idea of classical aggregation, the inputs could be not related
objects of the same type, that is, independent random variables. In this case, a common probability space can be considered as the
Cartesian product of the initial probability spaces [3].

The independence framework also allows us to work directly with the marginals, which will be important in Section 3. In addition,
the assumption of independence is quite common when working with data, inherited from the independence of measurements [20].
Taking into account the latter considerations, in this paper we will focus on the case of independent random variables.

2.3. Computable aggregations

According to Definitions 1 and 2 (and Remark 1), aggregation functions are basically mappings that transform 𝑛 objects defined
in a certain space ([0, 1], 𝐼 , ℝ, or even 𝐿𝐼 (Ω)) into a single object in that same space.

These definitions would restrict us to only work with aggregation processes that can be expressed in terms of a (deterministic)
function, not allowing for example those aggregation processes involving sampling components. In addition, even if our aggregation
process is defined as a function, in the end it will almost surely be implemented on a computer. This implementation will not
change the output of the aggregation process (which should correspond to that of the mapping), but will modify the process itself,
conditioning questions as important as its complexity. These two situations show how important could be to consider the aggregation
process from a different point of view, the one provided by Computable aggregations.

As said before, computable aggregations were first considered in [16], replacing the mapping with a computer program perform-

ing the aggregation.

Definition 7. [16] (Computable aggregation). Let 𝐿 < 𝑇 > be a non-empty and finite list of 𝑛 elements with type 𝑇 . A computable
aggregation is a program 𝑃 that transform the list 𝐿 < 𝑇 > into an element of 𝑇 .

This approach solves the first question mentioned above by also implementing aggregation processes that cannot be expressed by
means of a mathematical function (see [14]). Moreover, being the aggregation process directly a program, that is, an implementation
of the process, studying the computational properties simply involves analyzing the program.

In summary, the main idea is to go beyond the pure input-output relation and analyze the process as a whole where implementa-

tion also matters.

It is important to notice that the previous definition does not mention monotonicity or boundary conditions, so could be closer
to that of fusion functions understood as a method to get an output of the same nature of the considered inputs without further
restrictions. The reason for this is that these properties are closely related to the structure and properties of 𝑇 , and consequently
could only be analyzed within the specific space.

In the present paper, 𝑇 will be an abstract data type representing a random variable, and consequently the concepts of mono-

tonicity and boundary conditions should be adapted to that framework.

3. Different alternatives to represent random variables

As it was introduced in Definition 7, one of the main requirement for a program to be a computable aggregation is that the type of
4

elements of the input list must be the same as the type of output of the program. There are several ways to model a random variable

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

in a computational environment, and its choice will be particularly relevant in the definition of computable aggregation of random
variables. In this section, we explore three different alternatives.

In any case, before delving into the developed representations for random variables, it must be noted that computable aggregators
are formally defined as programs that simulate the aggregation process of a list of objects to produce another object of the same
nature. Taking into account that we are dealing with programs that have to be executed to generate the aggregation, we have the
classical limitations that present programs when we try to represent mathematical concepts that cannot be formally defined in the
context of a computer or a program. Specifically, we refer to two concepts widely used in mathematics: the concept of infinity and
the concept of continuity. From a computational standpoint, both concepts cannot be represented exactly, and taking into account
this, we will begin in this paper with the discrete and finite random variables case, whose representation can be made reliably.

Of course we can have programs that “model” continuous random variables as a normal or an exponential or also we can have
programs that try to model the concept of infinity, but obviously, these representations are made always from a discrete and finite
point of view, so this is the reason why we are going to start with the discrete and finite case.

3.1. Representation based on its definition

The very first way to represent a random variable on a computer is with a function that implements the mathematically measur-

able function from a probability space to the real numbers. In particular, we need to have a fixed probability space (Ω, Σ, 𝑃) stored
on our computer and then a computer function (𝑋) that maps any value of Ω to ℝ that satisfies the measurability property. In order
to illustrate this type of computational object, let us give an example concerning Bernoulli’s random variable with 𝑝 = 0.4.

Example 1. The ADT describing a random variable by its formal definition (above), and an instance of Bernoulli random
variable, with 𝑝 = 0.4, in accordance with this ADT (below).

1 #t y p e s

2 from typing import Set , Dic t

3

4 Omega = set [s t r]

5 Sigma = set [set [s t r]]

6 Prob = dict [Sigma , f loa t]

7 X = dict [Omega , f loa t]

8 RV_pure = [Omega , Sigma , Prob , X]

1 p=0.4

2 omega = { ’ heads ’ , ’ t a i l s ’ }

3 sigma = {{} ,{ ’ heads ’ } ,{ ’ t a i l s ’ } ,{ ’ heads ’ , ’ t a i l s ’ }}

4 prob = {{} :0 ,{ ’ heads ’ } : p , { ’ t a i l s ’ }:1−p , { ’ heads ’ , ’ t a i l s ’ } :1}

5 x = {{ ’ heads ’ } :1 , { ’ t a i l s ’ } :0}

6 rv _pure _x = [omega , sigma , prob , x]

This is the most faithful representation of a random variable for implementing the function itself, but it entails several problems.
The first is that the measurability condition is not easy to check in a computer program. This can be solved by considering Σ as the
parts of Ω, (Ω), but it can lead to a 𝜎-algebra with a large number of elements. Furthermore, it is not clear how to model an usual
probability space as the unit interval with the Borel 𝜎-algebra and the Lebesgue measure.

3.2. Representation based on its distribution

The second alternative is to represent the random variable by means of the implementation of its cumulative distribution, density,
or probability mass functions. This makes sense for a wide collection of applications in which we are only interested in the distribution
of the random variable, but not in the underlying structure of a measurable function from a probability space to the real numbers.
In addition, it is quite simpler than in the previous case.

Between the two alternatives, the use of distribution functions allows us to have a common structure for continuous and discrete
random variables. On the other hand, the density function and the probability mass function are, in some cases, easy to handle.
For discrete random variables, it is quite easy to move from the distribution function and the probability mass function, but for
continuous random variables, it is necessary to perform a numeric differentiation or integration [20]. Let us give an example of the
same random variable as in the previous subsection implemented using its distribution function and its probability mass function.

Example 2. ADT to model a discrete finite random variable by its mass function.

1 #t y p e s

2 from typing import L i s t , Dic t

3

4 Domain = l i s t [f loa t]

5 Mass_ funct ion = dict [Domain , f loa t]
5

6 RV_mass = [Domain , Mass_ funct ion]

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

Example 3. A Bernoulli random variable with 𝑝 = 0.4 by its mass function definition.

1 # The domain can be ob ta i n ed x . v a l u e s ()

2 p=0.4

3 domain = [0 ,1]

4 mass_ funct ion = {1:p , 0:1−p}

5 rv_mass = [domain , mass_ funct ion]

Example 4. ADT to model a random variable by its distribution function.

1 #t y p e s

2 from typing import Ca l l ab l e

3

4 RV_d i s t r i bu t i on _ f unc t i on = Ca l l ab l e [f loat , f loa t]

Example 5. A Bernoulli random variable with 𝑝 = 0.4 by its distribution function.

1 def r v _ d i s t r i b u t i o n _ f u n c t i o n (x : f loa t) −> f loa t :

2 y = 0

3 i f 0 <= x < 1:

4 y = 0.4

5 e l i f x > 1:

6 y = 1

7 return y

8

9 # v i s u a l i z i n g

10 import matp lo t l ib . pyplot as p l t

11 import numpy as np

12 x l ine =np . l in space (−1 , 2)

13 y l ine = np . array ([r v _ d i s t r i b u t i o n _ f u n c t i o n (x i) for x i in x l ine])

14 p l t . p lo t (x l ine , y l ine)

The main drawback of this representation is that we are further to the initial concept of random variable; in fact, there exist
different random variables with the same distribution function. Another problem is that the possible dependence between some
random variables cannot be considered just by specifying their distribution functions.

3.3. Representation based on its simulation

The last alternative is to identify the random variable with a generator of pseudo-random numbers. This case is the farthest from
the initial concept of a random variable. We do not have the implementation of the random variable, not even of its cumulative
distribution, density or probability mass functions, we have just a way to obtain realizations of the aforementioned random variable.

However, in some cases, this approach suffices for applied purposes. In particular, a simulation can be a good approximation
of the behavior of a good number of random systems [6,10]. Furthermore, the distribution of a combination of random variables
is generally not easy to compute explicitly. We want to remark that the distribution function of the associated random variable is
assured to be able to be approximated by realizations of the generator by the convergence of the empirical distribution function [24].
We end this section by providing an example analogous to Examples 1 and 4 but with this modelization. (See Fig. 1.)

Example 6. ADT to model a random variable by its simulation.

1 #t y p e s

2 from typing import Ca l l ab l e

3

4 RV_empirical = Ca l l ab l e [None , f loa t]

5 # no t e t h a t t h e f l o a t i s i n a g i v e n domain Dx

Example 7. A Bernoulli random variable with 𝑝 = 0.4 example by its empirical simulation.

1 import random

2 p = 0.4

3 def rv _ empi r i ca l _be rn () −> int :

4 i f random . random () < p :

5 return 0

6 return 1
6

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

Fig. 1. Distribution function in Example 7.

3.4. Discussion about the representation for computable aggregations of random variables

In the definition of computable aggregation of random variables, how we represent the random variables is crucial. Subsequently,
a discussion on the viability of the latter three alternatives is provided.

The first alternative is representing the random variable by its definition. This approach has the benefit of implementing the
random variable as its mathematical definition. Furthermore, the dependence between the input random variables of the input of
the aggregation can be taken into account. Finally, usual aggregation functions are easily implemented with this modelization, we
just need to apply them element by element in the sample space. On the other hand, the number of elements in the 𝜎-algebra can
increase exponentially with the number of elements in the sample space. Therefore, storing the sample space, the 𝜎-algebra and
the probability measure can be unaffordable for sample spaces with large cardinality in terms of memory. Moreover, the case of
continuous probability spaces seems intractable. In conclusion, although the representation of random variables by their definition
possesses good properties, we have currently set aside this approach, at least for the moment.

Another alternative is to represent the random variables by a generator of pseudo-random numbers. It has some advantages,
such as low memory requirement and an easy way to implement computable aggregation. However, we would want to impose a
monotonicity condition to the computable aggregation of random variables, and there is no natural manner to define orders between
generators of pseudo-random numbers. A possible approach may be to execute the generators a certain number of times and then
use statistical criteria to order them, but the conclusion may change between realizations, thus the resultant order will be non-

deterministic. In conclusion, this approach seems interesting, but a proper way to order generators of pseudo-random numbers must
be firstly established.

In our view, the representation by its distribution appears to be the most suitable option to consider when defining a computable
aggregation of random variables. It avoids the memory problems that the first representation has, and the stochastic orders can
be used to define the monotonicity. The main drawback is that, in general, the distribution of an aggregation function given the
distribution of the inputs is not easy to compute. Another issue is the impossibility of introducing the dependence between the
random variables in the input of the computable aggregation.

4. Computable aggregations of random variables

This section focuses on the definition of computable aggregations of random variables. Taking into account previous considera-

tions and with the aim of formally defining a computable aggregation of random variables, we will focus on the representation of a
random variable 𝑋 based on its distribution function 𝐹𝑋 or its density function 𝑓𝑋 .

Let us observe that, for each of these two cases, we are going to use different Abstract Data Types (ADT) (denoted as 𝑋𝐹

and 𝑋𝑓) that correspond, respectively, to the use of distribution functions and density/mass to represent a random variable 𝑋. In
conclusion, a computable aggregation of random variables is a computable aggregation in which the considered ADT is one between
the distribution or density/mass function.

4.1. Monotonicity and boundary conditions

As said before, Definition 7 does not mention monotonicity or boundary conditions since these properties are closely related to
the structure and properties of 𝑇 , and consequently they could only be analyzed within the specific space. In the present paper, once
defined 𝑇 as 𝐿𝐼 (Ω), the concepts of monotonicity and boundary conditions will be adapted to this framework.

In order to study the monotonicity of a computable aggregation 𝑃 , it is very important to distinguish between deterministic and
non deterministic computable aggregations (see for more details [14]). Due to the reasons previously mentioned, in this paper we
will focus on the deterministic case. Consequently, given a list 𝑙 ∈< 𝑇 = 𝐿𝐼 (Ω) > of random variables, 𝑙 = (𝑋1, … , 𝑋𝑛), the output of
7

the computable aggregation applied to 𝑙, 𝑃 (𝑙), will always produce the same random variable as result (i.e., the aggregated value

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

does not change for different executions of the program 𝑃). Taking into account this and Propositions 1 and 3 in [14], it is possible
to find a function 𝐴 ∶𝐿𝐼 (Ω) ×… ×𝐿𝐼 (Ω) ⟶ 𝐿𝐼 (Ω), such that for any list of random variables 𝑙, 𝑃 (𝑙) = 𝑃 (𝑋1, … , 𝑋𝑛) =𝐴(𝑋1, … , 𝑋𝑛),
so monotonicity and boundary conditions can be directly translated to the monotonicity studied in [1] for the case of independent
random variables.

4.2. Implementing the computable aggregation

Once monotonicity and boundary conditions have been defined for computable aggregations of random variables, in this section
we provide the algorithm framework to adapt the aggregation of random variables defined in [1] to the context of computable
aggregators. We want to remark that, as a consequence of Proposition 1, the monotonicity and boundary conditions are hold for all
the here-presented computable aggregations for random variables.

Given an aggregation function 𝐴𝑔 ∶ 𝑅𝑛 ⟶ 𝑅 and a list of random variables 𝑋1, … , 𝑋𝑛, it is necessary to design a program that
from a list of ADT

{
𝑋

𝑓

1 ,… ,𝑋
𝑓
𝑛

}
produces as output an Abstract Data Type 𝑋𝑓

𝐴𝑔
that corresponds to the random variable 𝑋𝐴𝑔 . By

𝑋𝐴𝑔 we are denoting the random variable associated with the process of aggregating the random variables 𝑋1, … , 𝑋𝑛 by means of
the 𝐴𝑔 function.

It is important to note that formally, the function 𝐴𝑔 is a function that goes from 𝑅𝑛 ⟶𝑅, so if 𝑋1, … , 𝑋𝑛 are random variables
with 𝑋𝑖 ∶ Ω ⟶𝑅 the formula 𝐴𝑔(𝑋1, … , 𝑋𝑛) is not formally defined (or should be understood as an abuse of notation).

Assuming that all random variables come from the same probability space Ω, it is possible to define the random variable 𝑋𝐴𝑔 as
a function 𝑋𝐴𝑔 ∶ Ω𝑛 ⟶𝑅, where 𝑋𝐴𝑔(𝜔1… , 𝜔𝑛) =𝐴𝑔(𝑋1(𝜔1), … , 𝑋𝑛(𝜔𝑛)). From now on, we will assume this notation.

Example 8. Taking into account previous considerations, the random variable 𝑋𝐴𝑔 associated with the aggregation function 𝐴𝑔(𝑢, 𝑣) =
(𝑢 + 𝑣)∕2 for the Bernoulli random variables 𝑋1, 𝑋2 defined in Ω = {𝑐, 𝑥} as 𝑋1(𝑐) = 𝑋2(𝑐) = 1 and 𝑋1(𝑥) = 𝑋2(𝑥) = 0, and with
𝑃 (𝑋1 = 1) = 𝑝1, 𝑃 (𝑋2 = 1) = 𝑝2 could be denoted as

𝑋𝐴𝑔 ==𝐴𝑔(𝑋1,𝑋2) = (𝑋1 +𝑋2)∕2

formally defined as 𝑋𝐴𝑔 ∶ Ω2 ⟶𝑅:

𝑋𝐴𝑔(𝑐, 𝑐) = (𝑋1(𝑐) +𝑋2(𝑐))∕2 = 1,

𝑋𝐴𝑔(𝑐, 𝑥) = (𝑋1(𝑐) +𝑋2(𝑥))∕2 = 0.5,

𝑋𝐴𝑔(𝑥, 𝑐) = (𝑋1(𝑥) +𝑋2(𝑐))∕2 = 0.5,

𝑋𝐴𝑔(𝑥,𝑥) = (𝑋1(𝑥) +𝑋2(𝑥))∕2 = 0.

So, the support of this random variable is 𝐷𝑋𝐴𝑔
= {0, 0.5, 1} and the mass function can be computed assuming the independence

among 𝑋1 and 𝑋2 as follows:

𝑓𝑋𝐴𝑔
(0) = 𝑃 (𝑋1 = 0,𝑋2 = 0) = 𝑃 (𝑋1 = 0)𝑃 (𝑋2 = 0) = (1 − 𝑝1)(1 − 𝑝2),

𝑓𝑋𝐴𝑔
(0.5) = 𝑃 (𝑋1 = 1,𝑋2 = 0) + 𝑃 (𝑋1 = 0,𝑋2 = 1) = 𝑝1(1 − 𝑝2) + (1 − 𝑝1)𝑝2 𝑎𝑛𝑑

𝑓𝑋𝐴𝑔
(1) = 𝑃 (𝑋1 = 1,𝑋2 = 1) = 𝑝1𝑝2.

From this example we can observe two things that should be noted: The first is that, given a set of random variables 𝑋1, … , 𝑋𝑛 with
the same support 𝐷𝑥, the support of the random aggregated variable 𝐷𝑋𝐴𝑔

could be different (in this case, we go from 𝐷𝑥 = {0, 1} to
𝐷𝑋𝐴𝑔

= {0, 0.5, 1}). For idempotent aggregations, it is assured that if 𝐷𝑥 ⊆ [𝑎, 𝑏] for a real interval [𝑎, 𝑏], then 𝐷𝑋𝐴𝑔
⊆ [𝑎, 𝑏]. The second

one is that, from a computational point of view, the aggregation function defined for the aggregation of some 𝑛 particular random
variables only needs to be defined from 𝐷𝑛

𝑥 to 𝑅 (instead of a general function from 𝑅𝑛 to 𝑅). This fact, is especially relevant from a
computational point of view and especially interesting in the case of discrete random variables, since the aggregation function could
be implemented in an efficient way (not necessarily as an explicit function) as, for example, with a dictionary.

Once all of these considerations have been made, the problem of defining a computable aggregation of random variables is
equivalent to the following two problems:

• Given the density/mass functions 𝑓1, … , 𝑓𝑛 that correspond to the random variables 𝑋1, … , 𝑋𝑛 and given 𝐴𝑔 ∶𝐷𝑛
𝑥 ⟶ 𝑅 aggre-

gation function, we have to design an algorithmic procedure or program that builds the density/mass function 𝑓𝐴𝑔 associated
with the random variable 𝑋𝐴𝑔 .

• Given the distribution functions 𝐹1, … , 𝐹𝑛 that correspond to the random variables 𝑋1, … , 𝑋𝑛 and given 𝐴𝑔 ∶𝐷𝑛
𝑥 ⟶𝑅 aggrega-

tion function, we have to design an algorithmic procedure or program that builds the distribution function 𝐹𝑋𝐴𝑔
associated to

𝑋𝐴𝑔 .

Example 9. Let 𝑋1, 𝑋2 be two Bernoulli variables with probability 𝑝1 and 𝑝2 respectively. And let 𝐴𝑔1 ∶𝐷 = {0, 1}2 ⊂ 𝑅2 ⟶ 𝑅 be
the average aggregator, i.e. 𝐴𝑔1(𝑥1, 𝑥2) =

(𝑥1+𝑥2)
2 and let 𝐴𝑔2 ∶𝐷 = {0, 1}2 ⊂ 𝑅2 ⟶ 𝑅 be the maximum aggregator, i.e. 𝐴𝑔2(𝑥1, 𝑥2) =
8

𝑚𝑎𝑥{ 𝑥1, 𝑥2}.

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

Since 𝐴𝑔1(0, 0) = 0; 𝐴𝑔1(1, 0) = 0.5, 𝐴𝑔1(0, 1) = 0.5, 𝐴𝑔1(1, 1) = 1, it is easy to see that the support of 𝑋𝐴𝑔1
is {0, 0.5, 1} and the mass

function can be described as follows:

• 𝑓𝑋𝐴𝑔1
(0) = 𝑓𝑋1

(0)𝑓𝑋2
(0) = (1 − 𝑝1)(1 − 𝑝2).

• 𝑓𝑋𝐴𝑔1
(0.5) = 𝑓𝑋1

(0)𝑓𝑋2
(1) + 𝑓𝑋1

(1)𝑓𝑋2
(0) = (1 − 𝑝1)(𝑝2) + (𝑝1)(1 − 𝑝2).

• 𝑓𝑋𝐴𝑔1
(1) = 𝑓𝑋1

(1)𝑓𝑋2
(1) = 𝑝1𝑝2.

Since 𝐴𝑔2(0, 0) = 0; 𝐴𝑔2(1, 0) = 1, 𝐴𝑔2(0, 1) = 1, 𝐴𝑔2(1, 1) = 1, it is easy to see that the support of 𝑋𝐴𝑔2
is now {0, 1} and the mass

function can be described as follows:

• 𝑓𝑋𝐴𝑔2
(0) = 𝑓𝑋1

(0)𝑓𝑋2
(0) = (1 − 𝑝1)(1 − 𝑝2).

• 𝑓𝑋𝐴𝑔2
(1) = 𝑓𝑋1

(0)𝑓𝑋2
(1) + 𝑓𝑋1

(1)𝑓𝑋2
(0) + 𝑓𝑋1

(1)𝑓𝑋2
(1) = 1 − (1 − 𝑝1)(1 − 𝑝2).

Let us first formalize the aggregation of 𝑛 random variables and then analyze it from an algorithmic point of view, defining a
procedure to deal with the computable aggregation in the discrete case. Notice that, in this case, the composition of any aggregation
function and the random variables is always a measurable function, thus a (discrete) random variable.

Definition 8. Let 𝑋1, … , 𝑋𝑛 be 𝑛 discrete random variables with support 𝐷𝑥 and described in terms of their mass functions (
𝑋

𝑓

1 ,… ,𝑋
𝑓
𝑛

)
, let 𝐴𝑔 be an aggregation function 𝐴𝑔 ∶𝐷𝑛

𝑥 ⟶𝑅, and let 𝑈 be the set of aggregated values (𝑈 = {𝑢 ∈𝑅 ∣ ∃(𝑥1, … , 𝑥𝑛) ∈
𝐷𝑛

𝑥 with 𝐴𝑔(𝑥1, … , 𝑥𝑛) = 𝑢}). We compute the aggregated variable 𝑋𝐴𝑔 described in terms of its mass function as:

𝑓𝑋𝐴𝑔
∶𝑈 ⟶ [0,1]

with

𝑓𝑋𝐴𝑔
(𝑢) =

∑
(𝑥1 ,…,𝑥𝑛) ∕ 𝐴𝑔(𝑥1 ,…,𝑥𝑛)=𝑢

𝑛∏
𝑘=1

𝑓𝑋𝑘
(𝑥𝑘).

From an algorithmic point of view this function can be computed in different ways, and it is quite important to notice that in this
discrete case, the set of aggregated values (𝑈) may not be known in advance, and may differ from 𝐷𝑥 .

A first option for this algorithm is the following one.

Algorithm 1 (Aggregate through mass functions).

Input: A list of ADT
(
𝑋

𝑓

1 ,… ,𝑋
𝑓
𝑛

)
and the aggregation function (𝐴𝑔).

Step 1: Obtain 𝑈 from 𝐷𝑥 and 𝐴𝑔 (𝐷𝑥 should be equal for all variables but we can generalize this considering different domains.).

• Initialize 𝑈 as empty,

• For each 𝑥1 in 𝐷𝑥, for each 𝑥2 in 𝐷𝑥, . . . , for each 𝑥𝑛 in 𝐷𝑥 do:

Compute the aggregated value for the corresponding input (𝑢 = 𝐴𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)), and if the obtained value (𝑢) was not in 𝑈
then add it to 𝑈 (𝑈 ∶=𝑈 + {𝑢}).

Step 2: Compute 𝑓𝑋𝐴𝑔
for each 𝑢 in 𝑈 .

• For each 𝑢 in 𝑈 do:

– Initialize 𝑓𝑋𝐴𝑔
(𝑢) ∶= 0

– For each 𝑥1 in 𝐷𝑥, for each 𝑥2 in 𝐷𝑥, . . . , for each 𝑥𝑛 in 𝐷𝑥 do: if 𝐴𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑢 then 𝑓𝑋𝐴𝑔
(𝑢) ∶= 𝑓𝑋𝐴𝑔

(𝑢) +∏𝑛
𝑘=1 𝑓𝑋𝑘

(𝑥𝑘).

Output: An Abstract Data Type 𝑋𝑓

𝐴𝑔
representing the aggregated random variable by means of a mass function 𝑓𝑋𝐴𝑔

∶𝑈 ⟶ [0, 1].

Example 10. Code to implement aggregation through mass functions, Algorithm 1.

1 #t y p e s

2 from typing import *
3

4 Omega = set [s t r]

5 RV = dict [Omega , f loa t]

6 RV_domain = l i s t [f loa t]

7 RV_mass_function = dict [f loat , f loa t]

8 # no t e t h a t t h e d i c t . keys () i s a g i v e n RV_domain

9

10 Agg = Ca l l ab l e [l i s t [f loa t] , f loa t]
9

11 AggRV = Cal l ab l e [l i s t [RV] ,RV]

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

12

13 def agg (l i s t : l i s t [f loa t]) −> f loa t :

14 val = 0

15 # t h e agg code

16 return val

17

18 # RV Computable Ag g r e ga t i on based on agg f u n c t i o n

19

20 import i t e r t o o l s

21

22 def aggRV(r v L i s t : l i s t [RV_mass_function]) −> RV_mass_function :

23 # Computing t h e c a r t e s i a n p roduc t o f t h e rv domains

24 key sL i s t = []

25 for keys in r v L i s t :

26 key sL i s t . append (keys)

27 # The c a r t . prod . o f t h e rv domains i s i t e r t o o l s . p roduc t (* k e y s L i s t)

28

29 # Step 1 . Computing t h e a g g r e g a t e d RV domain

30 domain = []

31 for dom in i t e r t o o l s . product (* key sL i s t) :

32 i f agg (dom) not in domain :

33 domain . append (agg (dom))

34 print (" Domain i s " + s t r (l i s t (domain)))

35

36 # Step 2 . Computing t h e a g g r e g a t e d RV mass f u n c t i o n

37 rvAgg = {}

38 for i in domain :

39 sum = 0

40 for dom in i t e r t o o l s . product (* key sL i s t) :

41 i f agg (dom) == i :

42 prod = 1

43 for index in range (len (dom)) :

44 prod *= r v L i s t [index][dom[index]]

45 sum += prod

46 rvAgg [i] = sum

47 return rvAgg

It is clear that with this approach, we have to go through 𝐷𝑛
𝑥 as many times as |𝑈 | + 1. The first to obtain 𝑈 , plus one for each

element in 𝑈 . The following examples show the program to obtain the computable aggregation of different random variables using
max, min or mean aggregation functions.

Example 11. A computable aggregation based on the max, min and mean aggregation functions of three Bernoulli random
variables.

1 # Some agg c a l l a b l e f u n c t i o n s

2

3 def max (l i s t) :

4 m = 0

5 for i in l i s t :

6 i f i > m:

7 m = i

8 return m

9

10 def min (l i s t) :

11 m = 10000

12 for i in l i s t :

13 i f i < m:

14 m = i

15 return m

16

17 def avg (l i s t) :

18 m = 0

19 for i in l i s t :

20 m += i

21 return m/ len (l i s t)

22

23 # p r i n t i n g f u n c t i o n s

24

25 def printRV (rv) :

26 for i in rv . keys () :
10

27 print (round (i , 2) , ’−>’ , round (rv [i] ,2))

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

28

29 def pr in tRVLi s t (r v L i s t) :

30 for rv in r v L i s t :

31 printRV (rv)

32 print ()

1 # Execu t i n g a computab le a g g r e g a t i o n o f a l i s t o f t h r e e b e r n o u l l i s w i th s e v e r a l agg

2

3 rvBe rnu i l l i _mas s _ f unc t i on1 = {0:1/2 , 1:1/2}

4 rvBe rnu i l l i _mas s _ f unc t i on2 = {0 :0 .4 , 1 :0 .6}

5 rvBe rnu i l l i _mas s _ f unc t i on3 = {0 :0 .7 , 1 :0 .3}

6

7 r v L i s t = [rvBe rnu i l l i _mas s _ f unc t i on1 \

8 , r vBe rnu i l l i _mas s _ f unc t i on2 \

9 , r vBe rnu i l l i _mas s _ f unc t i on3]

10

11 print (’ \nRandom var i ab l e s ’)

12 pr in tRVLi s t (r v L i s t)

13 print (’Random var iab l e Min ’)

14 agg = min

15 printRV (aggRV(r v L i s t))

16 print (’ \nRandom var iab l e Arithmetc Mean ’)

17 agg = avg

18 printRV (aggRV(r v L i s t))

19 print (’ \nRandom var iab l e Max ’)

20 agg = max

21 printRV (aggRV(r v L i s t))

22

23 ’ ’ ’

24 The ou tpu t i s :

25

26 Random v a r i a b l e s

27 0 −> 0.5

28 1 −> 0.5

29

30 0 −> 0.4

31 1 −> 0.6

32

33 0 −> 0.7

34 1 −> 0.3

35

36 Random v a r i a b l e Min

37 Domain i s [0 , 1]

38 0 −> 0.91

39 1 −> 0.09

40

41 Random v a r i a b l e Ar i t hme t c Mean

42 Domain i s [0 .0 , 0.3333333333333333 , 0.6666666666666666 , 1 .0]

43 0.0 −> 0.14

44 0.33 −> 0.41

45 0.67 −> 0.36

46 1.0 −> 0.09

47

48 Random v a r i a b l e Max

49 Domain i s [0 , 1]

50 0 −> 0.14

51 1 −> 0.86

Example 12. Execution of three different computable aggregation based on Min, Max and Average for a list of 𝑛 equal
Random Variables with 𝐷𝑥 = {1, … , 6}

1 # Example a g g r e g a t i n g 3 rv Dice

2

3 n = 3

4 omega = set ([’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’])

5 rvDice = { ’1 ’ : 1 , ’ 2 ’ : 2 , ’ 3 ’ : 3 , ’ 4 ’ : 4 , ’ 5 ’ : 5 , ’ 6 ’ :6}

6 rvDice _mass _ funct ion = {1:1/6 , 2:1/6 , 3:1/6 , 4:1/6 , 5:1/6 , 6:1/6}

7

8 from random import random

9 r v L i s t = []

10 for i in range (n) :
11

11 r v L i s t . append (rvDice _mass _ funct ion)

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

12

13 print (’ \nRandom var i ab l e s ’)

14 printRV (rvDice _mass _ funct ion)

15 print ()

16 print (’Random var iab l e Min ’)

17 agg = min

18 printRV (aggRV(r v L i s t))

19 print (’ \nRandom var iab l e Arithmetc Mean ’)

20 agg = avg

21 printRV (aggRV(r v L i s t))

22 print (’ \nRandom var iab l e Max ’)

23 agg = max

24 printRV (aggRV(r v L i s t))

25

26 ’ ’ ’

27 The ou tpu t i s :

28

29 Random v a r i a b l e s

30 1 −> 0.17

31 2 −> 0.17

32 3 −> 0.17

33 4 −> 0.17

34 5 −> 0.17

35 6 −> 0.17

36

37 Random v a r i a b l e Min

38 Domain i s [1 , 2 , 3 , 4 , 5 , 6]

39 1 −> 0.42

40 2 −> 0.28

41 3 −> 0.17

42 4 −> 0.09

43 5 −> 0.03

44 6 −> 0.0

45

46 Random v a r i a b l e Ar i t hme t c Average

47 Domain i s [1 .0 , 1.3333333333333333 , 1.6666666666666667 , 2 .0 ,

48 2.3333333333333335 , 2.6666666666666665 , 3 .0 ,

49 3.3333333333333335 , 3.6666666666666665 , 4 .0 ,

50 4.333333333333333 , 4.666666666666667 , 5 .0 ,

51 5.333333333333333 , 5.666666666666667 , 6 .0]

52 1.0 −> 0.0

53 1.33 −> 0.01

54 1.67 −> 0.03

55 2.0 −> 0.05

56 2.33 −> 0.07

57 2.67 −> 0.1

58 3.0 −> 0.12

59 3.33 −> 0.12

60 3.67 −> 0.12

61 4.0 −> 0.12

62 4.33 −> 0.1

63 4.67 −> 0.07

64 5.0 −> 0.05

65 5.33 −> 0.03

66 5.67 −> 0.01

67 6.0 −> 0.0

68

69 Random v a r i a b l e Max

70 Domain i s [1 , 2 , 3 , 4 , 5 , 6]

71 1 −> 0.0

72 2 −> 0.03

73 3 −> 0.09

74 4 −> 0.17

75 5 −> 0.28

76 6 −> 0.42

77 ’ ’ ’

Let us consider now an alternative algorithm where Step 2 is completed in a single process for all elements in 𝑈 .

Algorithm 2 (Aggregate through mass functions, option 2).()
12

Input: A list of ADT 𝑋
𝑓

1 ,… ,𝑋
𝑓
𝑛 and the aggregation function (𝐴𝑔).

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

Step 1: Obtain 𝑈 from 𝐷𝑥 and 𝐴𝑔.

• Initialize 𝑈 as empty,

• For each 𝑥1 in 𝐷𝑥, for each 𝑥2 in 𝐷𝑥, . . . , for each 𝑥𝑛 in 𝐷𝑥 do: Compute the aggregated value for the corresponding input
(𝑢 =𝐴𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)), and if the obtained value (𝑢) was not in 𝑈 then add it to 𝑈 (𝑈 ∶=𝑈 + {𝑢}).

• Initialize 𝑓𝑋𝐴𝑔
. For each 𝑢 in 𝑈 do 𝑓𝑋𝐴𝑔

(𝑢) ∶= 0.

Step 2: Compute 𝑓𝑋𝐴𝑔
in a single process for every 𝑢 in 𝑈 .

For each 𝑥1 in 𝐷𝑥, for each 𝑥2 in 𝐷𝑥, . . . , for each 𝑥𝑛 in 𝐷𝑥 do:

• Assign 𝑢 ∶=𝐴𝑔(𝑥1, 𝑥2, … , 𝑥𝑛).
• Update the mass function for 𝑢: 𝑓𝑋𝐴𝑔

(𝑢) ∶= 𝑓𝑋𝐴𝑔
(𝑢) +∏𝑛

𝑘=1 𝑓𝑋𝑘
(𝑥𝑘).

Output: An Abstract Data Type 𝑋𝑓

𝐴𝑔
representing the aggregated random variable by means of a mass function 𝑓𝑋𝐴𝑔

∶𝑈 ⟶ [0, 1].

Example 13 (Implementation of Algorithm 2.). This algorithm walks along the cartesian product of the supports of the input random
variables twice: Once to compute the aggregated random variable support and another one to compute their probabilities. For this
new interpretation, we can simply replace in the previous code the definition of aggRV with the following one:

1 agg = min #a s s i n g any a g g r e g a t i o n op e r a t o r

2 import i t e r t o o l s

3 def aggRV(r v L i s t : l i s t [RV_mass_function]) −> RV_mass_function :

4 # Computing a l i s t o f rv domains

5 key sL i s t = []

6 for keys in r v L i s t :

7 key sL i s t . append (keys)

8

9 # Computing t h e a g g r e g a t e d rv domain

10 domain =[]

11 for dom in i t e r t o o l s . product (* key sL i s t) :

12 i f agg (dom) not in domain :

13 domain . append (agg (dom))

14 print (" Domain i s " + s t r (l i s t (domain)))

15

16 # Computing t h e a g g r e g a t e d rv mass f u n c t i o n

17 rvAgg= {}

18 for dom in i t e r t o o l s . product (* key sL i s t) :

19 prod = 1

20 ag = agg (dom)

21 for index in range (len (dom)) :

22 prod *= r v L i s t [index][dom[index]]

23 i f ag in rvAgg . keys () :

24 rvAgg [ag] += prod

25 else :

26 rvAgg [ag] = prod

27 return rvAgg

And finally we can even reduce the whole process to a single step where 𝑈 is updated while discovering it.

Algorithm 3 (Aggregate through mass functions, option 3).

Input: A list of ADT
(
𝑋

𝑓

1 ,… ,𝑋
𝑓
𝑛

)
and the aggregation function (𝐴𝑔).

Step 1: Obtain 𝑓𝑋𝐴𝑔
from 𝐷𝑥, [𝑋𝑓

1 , … , 𝑋𝑓
𝑛], and 𝐴𝑔.

• Initialize 𝑈 as empty.

• For each 𝑥1 in 𝐷𝑥, for each 𝑥2 in 𝐷𝑥, . . . , for each 𝑥𝑛 in 𝐷𝑥 do:

– Compute the aggregated value for the corresponding input (𝑢 ∶=𝐴𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)).
– If the obtained value (𝑢) was not in 𝑈 then add it to 𝑈 (𝑈 ∶= 𝑈 + {𝑢}) and initialize its mass function by doing 𝑓𝑋𝐴𝑔

(𝑢) ∶=∏𝑛
𝑘=1 𝑓𝑋𝑘

(𝑥𝑘); else update the mass function as 𝑓𝑋𝐴𝑔
(𝑢) ∶= 𝑓𝑋𝐴𝑔

(𝑢) +∏𝑛
𝑘=1 𝑓𝑋𝑘

(𝑥𝑘).

Output: An Abstract Data Type 𝑋𝑓

𝐴𝑔
representing the aggregated random variable by means of a mass function 𝑓𝑋𝐴𝑔

∶𝑈 ⟶ [0, 1].

Example 14 (Implementation of Algorithm 3). This algorithm walks along the cartesian product of the supports of the input random
variables just once to compute the aggregated random variable support keys and at the same time setting or adding to finally compute
13

their probabilities.

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

1 def aggRV(r v L i s t : l i s t [RV_mass_function]) −> RV_mass_function :

2 # Computing a l i s t o f rv domains

3 key sL i s t = []

4 for keys in r v L i s t :

5 key sL i s t . append (keys)

6 rvAgg= {}

7 # Computing t h e a g g r e g a t e d rvAgg mass f u n c t i o n

8 for dom in i t e r t o o l s . product (* key sL i s t) :

9 prod = 1

10 ag = agg (dom)

11 for index in range (len (dom)) :

12 prod *= r v L i s t [index][dom[index]]

13 i f ag in rvAgg . keys () :

14 rvAgg [ag] += prod

15 else :

16 rvAgg [ag] = prod

17 return rvAgg

We end this section by remarking that for the particular cases of the maximum and minimum, the aggregation can be easily
implemented by considering the well-known relationship between the distribution functions. In particular, if 𝐹1, … , 𝐹𝑛 are the distri-

bution functions of the independent random variables 𝑋1, … , 𝑋𝑛 and 𝐹max and 𝐹min are the distribution functions of their maximum
and minimum, one has that:

𝐹max =
𝑛∏
𝑖=1

𝐹𝑖, 𝐹min = 1 −
𝑛∏
𝑖=1

(1 − 𝐹𝑖)

5. Conclusion and final remarks

In this work, the concept of computable aggregation is extended to the case of random variables. Computable aggregations were
initially introduced to aggregate real numbers by replacing the mathematical function defining the aggregation, with a program that
performs the aggregation process [16]. There are different reasons for justifying this extension. First of all, it is possible to deal with
more complex and realistic aggregation process that cannot be represented by means of mathematical functions. Second, modeling
an aggregation process by means of its implementation allows us to explore some computational properties not directly related to
the aggregation itself but to its implementation (recursivity, complexity, parallelization, etc.) [12,13].

The extension to random variables represents an important challenge from both applications and computational points of view,
since the modeling/representation of a random variable as the input of a program is not a trivial process. The importance of aggre-

gation processes over random variables was introduced with the idea of modeling at least those situations in which the information
to be aggregated is obtained as a measurement process over a sample population. In the classical approach, the aggregation function
can be seen as a function that, given a vector/set of random variables [1], returns a random variable as the result of the aggregation
process. In order to extend the concept of computable aggregation to this case, we propose four scenarios and representations: ag-

gregate random variables based on their density functions, their distribution functions, their simulation functions, or the concept of
random variable itself.

Focusing on the case of representation by mass functions of discrete random variables, we have proposed three different algo-

rithms that make it possible to formalize a computable aggregation of random variables in the discrete case in a general way.

It is important to emphasize that one of the advantages provided by this new approach is that it allows us to explore different
properties associated with aggregation processes that could not be easily explored from a functional definition of the aggregation
process. In this regard, one of the most relevant properties is that related to algorithmic complexity associated with computational
aggregators from all aspects: temporal complexity (commonly known as algorithmic complexity, referring to the computational time
of the algorithm/procedure), memory complexity, and spatial complexity (storage).

The first of these, enabling the classification of computational aggregators according to their complexity, in the same line as the
aggregation procedures were formalized based on their algorithmic complexity, addresses one of the most significant aspects within
what is known as “green algorithms”, which is the ability to classify algorithms based on their complexity so that we can distinguish
between “sustainable” and non-sustainable algorithms. For example, among the four proposed modeling approaches for random
variables (based on their density functions, distribution functions, simulation functions, or the concept of the random variable itself),
it is clear that the last one presents some computational issues in terms of information storage and consequently, very likely, in
terms of algorithmic complexity. Similarly, the three algorithms presented can be arranged to obtain the density/mass function of
the aggregated variable from the mass functions of the variables to be aggregated.

We want to remark two relevant points about the usage of the Phyton programming language. On one hand, the advantage of
representing the mass functions by means of dictionaries instead of functions for the discrete case, which improves the efficiency
and the calculation of the inverses; on the other hand, and although Phyton is an untyped programming language, random variables
have been represented as lists or sets of typed variables, defining the aggregation process as a program that takes a list of a specific
abstract data type and produces as output an object of the same type. In this way, the computable aggregation process represents the
14

same “spirit” of classical aggregation process that takes a list of elements for generating an element of the same class of the input list.

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

It is also important to mention that we have studied in a first approach, the simplest case: discrete random independent variables
and induced aggregations of random variables, in which the mass function of the aggregated random variable can be obtained as the
sum of the product which is an operation that can be easily implemented in any programming language. Additionally, the boundary
and monotonicity conditions with respect to the Strong Stochastic Dominance are assured to be fulfilled by Proposition 1.

How to extend the problem to the continuous case is a question that deserves to be explored in a future since it could be done in an
approximated way (integrals can be approximated from a computational point of view by sums) or if the program that we are using
allows us to deal with symbolic programming or integrals could be done directly. In addition, if needed, the dependence between
random variables could be introduced by means of copulas [17]. In any case, the theory and implementation of these extensions will
be adaptations of the here-proposed concepts and methods.

CRediT authorship contribution statement

Juan Baz: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review
& editing. Irene Díaz: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration,
Writing – review & editing. Luis Garmendia: Conceptualization, Formal analysis, Investigation, Methodology, Resources, Soft-

ware, Validation, Writing – review & editing. Daniel Gómez: Conceptualization, Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Writing – original draft, Writing – review & editing. Luis Magdalena: Conceptualization, For-

mal analysis, Funding acquisition, Investigation, Methodology, Project administration, Writing – review & editing. Susana Montes:

Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

J. Baz is partially supported by Programa Severo Ochoa of Principality of Asturias (BP21042). L. Garmendia and D. Gómez are
supported by Government of Spain (grant PID2021-122905NB-C21). L. Magdalena is supported by Government of Spain (grants
PID2020-112502RB-C41 and PID2021-122905NB-C22), and Comunidad de Madrid (Convenio Plurianual con la UPM en la lınea
de actuación Programa de Excelencia para el Profesorado Universitario). J. Baz, S. Montes and I. Díaz are been supported by the
Ministry of Science and Innovation (PDI2022-139886NB-l00).

References

[1] J. Baz, I. Díaz, S. Montes, The choice of an appropriate stochastic order to aggregate random variables, in: Building Bridges Between Soft and Statistical
Methodologies for Data Science, Springer, 2022, pp. 40–47.

[2] J. Baz, D. García-Zamora, I. Díaz, S. Montes, L. Martínez, Flexible-dimensional EVR-OWA as mean estimator for symmetric distributions, in: International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer, 2022, pp. 11–24.

[3] V.I. Bogachev, Measure Theory, vol. 1, Springer Science & Business Media, 2007.

[4] T. Calvo, G. Beliakov, Aggregation functions based on penalties, Fuzzy Sets Syst. 161 (10) (2010) 1420–1436.

[5] D. De Menezes, D.M. Prata, A.R. Secchi, J.C. Pinto, A review on robust m-estimators for regression analysis, Comput. Chem. Eng. 147 (2021) 107254.

[6] B. Ermentrout, A. Mahajan, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students, Appl. Mech. Rev. 56 (4)
(2003) B53.

[7] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, vol. 127, Cambridge University Press, 2009.

[8] J. Hosking, 8 l-estimation, in: Handbook of Statistics, vol. 17, 1998, pp. 215–235.

[9] S. James, An Introduction to Data Analysis Using Aggregation Functions in R, Springer, 2016.

[10] A. Joseph, Markov Chain Monte Carlo Methods in Quantum Field Theories: A Modern Primer, Springer Nature, 2020.

[11] M. Kopa, B. Petrová, Strong and weak multivariate first-order stochastic dominance, Available at SSRN 3144058, 2018.

[12] L. Magdalena, L. Garmendia, D. Gómez, R.G. del Campo, J.T. Rodríguez, J. Montero, Types of recursive computable aggregations, in: 2019 IEEE International
Conference on Fuzzy Systems, FUZZ-IEEE, IEEE, 2019, pp. 1–6.

[13] L. Magdalena, L. Garmendia, D. Gómez, J. Montero, Hierarchical computable aggregations, in: 2022 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE,
IEEE, 2022, pp. 1–8.

[14] L. Magdalena, D. Gómez, L. Garmendia, J. Montero, Analysing monotonicity in non-deterministic computable aggregations: the probabilistic case, Inf. Sci. 583
(2022) 288–305.

[15] W.R.W. Mohd, L. Abdullah, Aggregation methods in group decision making: a decade survey, Informatica 41 (1) (2017).

[16] J. Montero, R. González-del Campo, L. Garmendia, D. Gómez, J.T. Rodríguez, Computable aggregations, Inf. Sci. 460 (2018) 439–449.

[17] R.B. Nelsen, An Introduction to Copulas, Springer Science & Business Media, 2007.

[18] M.K. Nungesser, L.A. Joyce, A.D. McGuire, Effects of spatial aggregation on predictions of forest climate change response, Clim. Res. 11 (2) (1999) 109–124.

[19] C. Piao, Z. Li, S. Lu, Z. Jin, C. Cho, Analysis of real-time estimation method based on hidden Markov models for battery system states of health, J. Power Electron.
15

16 (1) (2016) 217–226.

http://refhub.elsevier.com/S0020-0255(23)01427-5/bibA79C76F55E46EF765AA3CC91E9437784s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibA79C76F55E46EF765AA3CC91E9437784s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib062F32D212CFD7F736AC0F489AD9EDB6s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib062F32D212CFD7F736AC0F489AD9EDB6s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib09150A0BA74EB735B312E6865E364402s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibB081B8ED12771DA6305DF54E604A4D76s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibF29C5D41C9D57A6A30B914838897B503s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib67D0480172BAF91634626D5BB27744F5s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib67D0480172BAF91634626D5BB27744F5s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib6118FDFCF5185254E25BB7FB336DFADAs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib9F493CBA07B6071EE8F066BF2D9FD7BCs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib14DFBD87FADD1B0BA2F80E1333EA236Ds1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibB07C558DE82F71F3E9B55FA6A38F65CEs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibE2B3402A5AEAD31DBEF15690BDF2F7A9s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibDA265A869C8DB032354D4BBB18C2AED7s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibDA265A869C8DB032354D4BBB18C2AED7s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib8B880E98158F38D73B4D2F9AFAF92E77s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib8B880E98158F38D73B4D2F9AFAF92E77s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibF6DAF8D55774BA206AE8A97CAA8283FFs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibF6DAF8D55774BA206AE8A97CAA8283FFs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib9AF9F996BF08E3867E51042E258D91DBs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibF30A03BCB643DB3D0C6EA10A1DBD671Ds1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibB52DA194D23B6BE391E3C5ED8CB8B2C5s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib42DF2C4515B4D3631DAEECEDDCA67912s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibD92C265563F39D989AEB32E8E3C9C97Cs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibD92C265563F39D989AEB32E8E3C9C97Cs1

Information Sciences 654 (2024) 119842J. Baz, I. Díaz, L. Garmendia et al.

[20] V.K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1976.

[21] R. Roughan, D. Veitch, P. Abry, Real-time estimation of the parameters of long-range dependence, IEEE/ACM Trans. Netw. 8 (4) (2000) 467–478.

[22] M. Shaked, J.G. Shanthikumar, Stochastic Orders, Springer, 2007.

[23] D. Shanmugam, D. Blalock, G. Balakrishnan, J. Guttag, Better aggregation in test-time augmentation, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 1214–1223.

[24] G.R. Shorack, J.A. Wellner, Empirical Processes with Applications to Statistics, SIAM, 2009.

[25] R.R. Yager, Families of OWA operators, Fuzzy Sets Syst. 59 (2) (1993) 125–148.

[26] A. Zahedi Khameneh, A. Kilicman, Some construction methods of aggregation operators in decision-making problems: an overview, Symmetry 12 (5) (2020)
694.
16

[27] H.-J. Zimmermann, Fuzzy set theory, Wiley Interdiscip. Rev.: Comput. Stat. 2 (3) (2010) 317–332.

http://refhub.elsevier.com/S0020-0255(23)01427-5/bibC035741C3A520B9AA9E4FD42BB292E5Bs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib802F03A766B30EEBAB91AD81CCE35553s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib060882DD4FF63BF4B140AE4AA78F1FA3s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib76642FD0F0C246E4A7A4A6133A5C692Fs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib76642FD0F0C246E4A7A4A6133A5C692Fs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bibD27FE148F5D2EAD258A999E74723527Cs1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib720F8EE9AC3ACDFD8BE65A01233E27B6s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib884FC8CBA00D26FE2D8A029610A5C327s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib884FC8CBA00D26FE2D8A029610A5C327s1
http://refhub.elsevier.com/S0020-0255(23)01427-5/bib9D132BD638551F3DE13398330CBA4D2Bs1

	Computable aggregations of random variables
	1 Introduction
	2 Preliminary notions about aggregation
	2.1 Aggregation functions
	2.2 Aggregation of random variables
	2.3 Computable aggregations

	3 Different alternatives to represent random variables
	3.1 Representation based on its definition
	3.2 Representation based on its distribution
	3.3 Representation based on its simulation
	3.4 Discussion about the representation for computable aggregations of random variables

	4 Computable aggregations of random variables
	4.1 Monotonicity and boundary conditions
	4.2 Implementing the computable aggregation

	5 Conclusion and final remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

