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ABSTRACT: Extended reduction of [Mo2Cp2(μ-Cl)(μ-PtBu2)(NO)2] (1) with Na(Hg) in acetonitrile (MeCN) at room
temperature resulted in an unprecedented full cleavage of the C�N bond of a coordinated MeCN molecule to yield the vinylidene
derivative Na[Mo2Cp2(μ-PtBu2)(μ-CCH2)(NO)2], which upon protonation with (NH4)PF6 gave the ethylidyne complex
[Mo2Cp2(μ-PtBu2)(μ-CMe)(NO)2] [Mo1−Mo2 = 2.9218(2) Å] in a selective and reversible way. Controlled reduction of 1 at 273
K yielded instead, after protonation, the 30-electron acetamidinate complex [Mo2Cp2(μ-PtBu2)(μ-κN:κN′-HNCMeNH)(μ-
NO)]PF6 [Mo1−Mo2 = 2.603(2) Å], in a process thought to stem from the paramagnetic MeCN-bridged intermediate [Mo2Cp2(μ-
PtBu2)(μ-NCMe)(NO)2], followed by a complex sequence of elementary steps including cleavage of the N�O bond of a nitrosyl
ligand.

There have been for some time investigations on the
chemistry of binuclear transition-metal complexes bearing

different types of unsaturation (coordinative, electronic, or
both) on the hypothesis that these are molecules able to
induce activation and cleavage of the strong N�O bond of
nitric oxide at a dimetal site.1−4 These are processes of
academic interest in the context of the rich chemistry of
nitrosyl complexes5 and also because nitric oxide is an
important air pollutant requiring catalytic, metal-mediated
abatement, a process that involves degradation of the nitric
oxide molecule while interacting with one or more metal
atoms.6

Recently, we reported the synthesis of the Na+ salt of the
unsaturated anion [W2Cp2(μ-PPh2)(NO)2]− upon reduction
of [W2Cp2(μ-I)(μ-PPh2)(NO)2] with Na(Hg) in acetonitrile
(MeCN).7 This 32-electron complex, as well as the
corresponding hydride derivative [W2Cp2(μ-H)(μ-PPh2)-
(NO)2], was a highly reactive species, allowing the synthesis
of a large diversity of derivatives,7,8 but no N−O bond cleavage
processes were observed in any of the corresponding reactions,
so we turned to inspect the chemistry of related dimolybde-
num complexes. First we found that reduction reactions of
[Mo2Cp2(μ-Cl)(μ-PPh2)(NO)2] were of poor selectivity and
failed to yield the desired unsaturated species. Then we
decided to investigate the reduction reactions of the analogous
PtBu2 complex [Mo2Cp2(μ-Cl)(μ-PtBu2)(NO)2] (1) with the
expectation that the bulky tBu groups might provide additional
steric protection (hence, enhanced stability) to the targeted
unsaturated anion [Mo2Cp2(μ-PtBu2)(NO)2]− and the corre-
sponding hydride derivative. As shown below, these reactions
failed to yield the soughtafter complexes but instead unveiled
the operation of unexpected processes taking place under mild
conditions, including cleavage of the N�O bond of a nitrosyl
ligand and N−C coupling to eventually yield an acetamidinate

ligand, and cleavage of the C�N bond of a MeCN ligand to
give vinylidene and then ethylidyne ligands. While all of these
processes are themselves unusual, we note that previous
examples of cleavage of the C�N bond of nitriles by reactive
metal complexes mostly led to nitride and/or carbyne
derivatives.9 However, examples of the generation of a
vinylidene group from MeCN are restricted, to our knowledge,
to the recently reported reaction of laser-ablated B atoms with
MeCN on a solid neon matrix under full arc irradiation.10

Compound 1 was prepared following the method previously
developed for the ditungsten analogue [W2Cp2(μ-I)(μ-PPh2)-
(NO)2].

7 To this purpose, the known dicarbonyl complex
[Mo2Cp2(μ-Cl)(μ-PtBu2)(CO)2]11 was first reacted with NO
(5% in Ar, 1 atm) in a tetrahydrofuran (THF) solution at 233
K to give the monocarbonyl intermediate [Mo2Cp2Cl(μ-
PtBu2)(CO)(NO)2] (not isolated),

12 which was then refluxed
in toluene to give 1 in 63% yield (Scheme 1). Spectroscopic
data for this product (see the Supporting Information, SI) were
comparable to those of the mentioned ditungsten complex,
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Scheme 1. Synthesis of Compound 1
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except for the expected changes associated with the replace-
ments W/Mo and Ph/tBu.
Reduction reactions of 1 were particularly sensitive to

experimental conditions such as the solvent, reducing reagent,
temperature, and reaction time. Reactions with Na(Hg) in
THF were of poor selectivity and were not further explored. In
contrast, analogous reactions in MeCN proved to be more
selective, although they were far from yielding the targeted
anion [Mo2Cp2(μ-PtBu2)(NO)2]−. Actually, reaction of 1 with
Na(Hg) in MeCN at room temperature for 40 min yielded the
Na+ salt of the anionic vinylidene complex [Mo2Cp2(μ-
PtBu2)(μ-CCH2)(NO)2]− (2-Na) as a major product, which
upon reaction with (NH4)PF6 yielded the ethylidyne derivative
[Mo2Cp2(μ-PtBu2)(μ-CMe)(NO)2] (3) selectively (Scheme
2). The latter process could be reversed upon reaction of 3

with a strong base such as 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU), which yielded the salt (DBUH)[Mo2Cp2(μ-PtBu2)(μ-
CCH2)(NO)2] (2-DBUH) selectively.
The structure of 3 (Figure 1) is comparable to that of the

benzylidyne dicarbonyl complex [Mo2Cp2(μ-PCy2)(μ-CPh)-

(CO)2],
13 although its electron-precise nature accounts for its

much longer intermetallic distance [2.9218(2) vs 2.666(1) Å],
while higher Mo−P lengths and puckering of the central
MPMC ring in 3 (P−Mo−Mo−C = 148.5°) can be attributed
to the larger steric demands of the PtBu2 bridge.

11 The deep-

purple color of 3 is unexpected for a 34-electron complex.
According to a time-dependent density functional theory
(DFT) calculation, this color would originate in a main visible
absorption at ca. 510 nm (expt 540 nm in a CH2Cl2 solution)
due to transits to the lowest unoccupied molecular orbital
(LUMO) from the highest occupied molecular orbital
(HOMO) and other closely placed frontier molecular orbitals
(Figures S18−S20). The low HOMO−LUMO gap of 2.08 eV,
in turn, might be related to the strong deshielding of the
bridging carbyne carbon in 3,14 which gives rise to a 13C NMR
resonance at 487.8 ppm, a chemical shift among the highest
reported for diamagnetic complexes [cf. 490.2 ppm for
[Fe2Cp2(μ-CH)(μ-CO)(CO)2](PF6)].15
The presence in 2 of a vinylidene ligand bridging the dimetal

center through the carbenic C atom is indicated by a strongly
deshielded resonance at 275.5 ppm in its 13C NMR spectrum
and by NMR resonances in the aromatic region indicative of
uncoordinated CH2 groups (δC = 124.2 ppm; δH = 6.88 ppm),
all of them comparable to the corresponding resonances in the
related ruthenium complexes [Ru2Cp2(μ-CCH2)(μ-CO)-
(CO)2]

16 and [Ru2Cp*2(μ-CCH2)(μ-NPh)].17 We note that
the latter complexes were also protonated at their CH2 groups
to give the corresponding ethylidyne derivatives. The proposed
structure for 2 is also in agreement with DFT calculations for
this anion (see the SI), which rendered an optimized structure
with the CCH2 ligand symmetrically bridging the metal atoms
through its carbenic carbon (Mo−C ca. 2.10 Å).
To ascertain the origin of the bridging C2 ligands present in

complexes 2 and 3, we carried out the reduction reaction of 1
using MeCN-d3 as the solvent, to find that the final carbyne
ligand had the expected deuteration degree (3-d2). In contrast,
no deuteration was observed when the reduction and
protonation steps were performed in MeCN and MeCN-d3,
respectively. All of this proves that the C2 ligands in 2 and 3
have their origin in the solvent, which has been denitrogenated
along the reduction reaction. It is likely that a MeCN molecule
binds the dimetal center following the release of chloride
caused by the first electron transfer to give a paramagnetic
intermediate [Mo2Cp2(μ-PtBu2)(μ-NCMe)(NO)2] (A) un-
detectable by NMR spectroscopy. Further reduction of this
radical should give a detectable diamagnetic MeCN complex
[Mo2Cp2(μ-PtBu2)(μ-NCMe)(NO)2]− (B), but the latter
seems to undergo somehow a fast release of N and H atoms
to give the vinylidene ligand found in 2 because no
intermediates are detected when monitoring the formation of
2 by 31P NMR spectroscopy. According to DFT calculations,
the most likely structures for intermediates A and B would bear
bridging rather than terminalMeCN ligands (Scheme 3). In the
case of radical A, two almost isoergonic isomers A1 and A2
were found, with coordination modes that we might describe
as μ-κN:κN and μ-κC:η2, respectively (see the SI). In the case
of anion B, the μ-κC:κN coordination mode is preferred over
the other alternatives. All of these are coordination modes not
identified structurally for nitrile ligands so far. We also note
that the spin densities in isomers A1 and A2 are mainly located
respectively at the C and N atoms of the MeCN ligand (see
the SI), a circumstance favoring atom-abstraction reactions at
any of these two sites (see later). Interestingly, the strong C�
N triple bond of MeCN is significantly weakened as a result of
the bridging coordination in all of these intermediate species,
with computed C−N distances of 1.225 Å (A1), 1.289 Å (A2),
and 1.275 Å (B), the latter two being slightly above the
reference figure of ca. 1.26 Å for C�N double bonds18 and

Scheme 2. Reduction of Compound 1 in MeCNa

aCounterions are Na+ or (DBUH)+ for 2, PF6− for 4, and NH4+.
bReduction at room temperature for 40 min. cReduction at 273 K for
15 min.

Figure 1. ORTEP diagram (30% probability) of compound 3, with
tBu groups (except their C1 atoms) and H atoms omitted. Selected
bond lengths (Å): Mo1−Mo2 = 2.9218(2); Mo1−P1 = 2.4837(4);
Mo1−C1 = 1.997(2); Mo1−N1 = 1.797(2).
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well above the value computed for free MeCN (1.165 Å).
Further studies are now in progress to check whether these
bridging coordination modes are relevant to facilitate the H-
shift that would prepare the MeCN molecule to undergo the
C−N bond cleavage that eventually renders the vinylidene
group. It is interesting to note that the C�N bond cleavage
observed in the reaction of B atoms with MeCN also involves a
H-shift, eventually yielding linear HBNBCCH2 molecules.

10

The reduction of 1 gave a very different output when it was
performed at 273 K for a shorter reaction time of about 15 min
before the protonation step with (NH4)PF6. At this stage, the
IR spectrum of the solution displays a new strong N−O stretch
at 1567 cm−1, only 8 cm−1 below that of 1, which is consistent
with the presence of a neutral species such as radical A (cf.
1566 cm−1 for 3). Under these conditions, the major product
formed after protonation was the PF6− salt of the
acetamidinate complex [Mo2Cp2(μ-PtBu2)(μ-κN:κN′-
HNCMeNH)(μ-NO)]+ (4-PF6), along with small amounts
of 3 and other unidentified species (Scheme 2). When
performed in MeCN-d3, the reaction described above yielded
[Mo2Cp2(μ-PtBu2)(μ-κN:κN′-HNCCD3ND)(μ-NO)]PF6 (4-
PF6-d4), indicating that one of the NH H atoms stems from
the solvent. When performed in 98% 15N-enriched acetonitrile
(MeCN*), the above reaction yielded [Mo2Cp2(μ-PtBu2)(μ-
κN:κN′-HNCMeN*H)(μ-NO)]PF6, as determined by 1H
NMR (Figure S28), indicating that only one of the NH N
atoms stems from the solvent (Scheme 3). Complex 4 was
more conveniently purified after anion exchange with Na-
(BAr4) to give the corresponding BAr4− salt (4-BAr4; see the
SI). Noticeably, the latter salt was also obtained (along with
other, yet uncharacterized, species) when using [H(OEt2)2]-
(BAr4) instead of (NH4)PF6 in the protonation step following
the low-temperature reduction of 1. All of the above leave the
nitrosyl ligands as the only possible source of the second N
atom of the amidinate ligand present in the cation 4.
Crystals of 4-PF6 were of poor quality for diffraction

purposes but still allowed for an unambiguous determination
of the structure of the cation 4, with two MoCp fragments
symmetrically bridged by PtBu2, NO, and acetamidinate

ligands (Figure S1). This structure actually is comparable to
that of the isoelectronic benzoate complex [Mo2Cp2(μ-
PCy2)(μ-κO:κO′-O2CPh)(μ-CPh)](BAr4).19 Both of the
above cations are 30-electron complexes for which a triple
intermetallic bond must be proposed according to the 18-
electron rule, which is consistent with the short intermetallic
distance of 2.604(2) Å for 4-PF6, only marginally longer than
the one in the benzoate complex [2.576(1) Å], a difference
likely due to the higher steric demands of the PtBu2 ligand (vs
PCy2). Spectroscopic indication for the presence of an
acetamidinate ligand in 4-PF6 is given by the observation of
1H NMR resonances at 2.27 ppm (3H, Me) and 9.43 ppm (br,
2H, NH); the NH groups also give rise to a stretch in the IR
spectrum (Nujol mull) at 3366 cm−1, while the N−O stretch
of the bridging nitrosyl appears at 1518 cm−1.
The fact that the formation of 4 is maximized when

performing the reduction step of 1 at lower temperatures and
shorter reaction times suggests that 4 stems from radical A
(possibly isomer A2) formed after the first electron transfer
(Scheme 3). Then a complex sequence of events, such as
protonation (perhaps at a nitrosyl ligand),2 H-atom abstraction
(likely at the N atom of the MeCN molecule to give an
iminoacyl ligand), O-transfer (with unknown destination), and
N−C reductive coupling between nitrene (NH) and iminoacyl
(HN�CMe) ligands,9a is likely in operation to build the
amidinate ligand present in 4, but the exact sequence of these
elementary steps is unknown to date. Further experiments
using other nitriles and reducing reagents are now underway to
gain complementary information concerning the transforma-
tions described above and to evaluate their scope.
In summary, we have shown that several unusual trans-

formations take place at the dimetal site of nitrosyl complex 1
upon reduction with Na(Hg) in MeCN under mild conditions.
Two-electron reduction promotes an unprecedented full
cleavage of the strong C�N bond of a bridging MeCN
molecule at room temperature to render an anionic vinylidene
complex, which upon protonation yields the corresponding
ethylidyne derivative in a selective and reversible way. In
contrast, one-electron reduction of 1 and subsequent
protonation trigger a complex sequence of steps including
cleavage of the strong N�O bond of a nitrosyl ligand and a
nitrene/iminoacyl coupling to eventually build a bridging
acetamidinate ligand. Further experiments are now underway
to gain more insight into these transformations taking place
under such mild conditions.
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