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Machine learning has proven to be a powerful tool for knowledge extraction from large data sets 
across different domains. Data quality and results interpretability are essential when applying 
machine learning to inform decision-making processes. This is especially true for clustering 
methods, which are frequently employed for extracting knowledge from large data sets, due to 
their unsupervised nature. Although there are significant recent developments in explainable 
artificial intelligence (XAI) applied to unsupervised problems, they focus primarily on cluster 
interpretability and often overlook data quality challenges. Moreover, these developments are 
typically designed to use specific clustering algorithms, limiting their adaptability to incorporate 
alternative techniques. We propose a novel and comprehensive four-step sequential framework 
for explainable cluster analysis on high-dimensional mixed-type data to address these limitations. 
The framework encompasses data preprocessing, dimensionality reduction, clustering, and 
classification to ensure robust and explainable results. The proposed methodology has also been 
implemented in an open-source Python package called Clust-learn, designed to be accessible and 
customizable for researchers and practitioners. The framework has been validated by applying a 
case study focusing on large-scale assessments in education, effectively illustrating the strength 
and usefulness of the methodology in extracting and synthesizing knowledge from complex real-

world data.

1. Introduction

Extracting information and knowledge from large data sets has been a hot topic in academia and industry for the past decade. This 
interest is explained by the explosion of data availability and low-cost computing, which in turn have made big data and machine 
learning (ML) ubiquitous in fields as different as engineering and social sciences because of their potential to support better and 
faster decision-making [1], [2]. However, the results from statistical and ML models are only as good as the data they are trained on 
and their ease of interpretation.

Although data quality is essential for obtaining robust and reliable results, real-world data is often incomplete, noisy, or incon-

sistent [3]. Therefore, data preprocessing is crucial before performing any analytical study. In addition, the results obtained from 
ML models should be easy to interpret so that knowledge can be easily extracted from them and decision-making processes can be 
improved. This is why explainable artificial intelligence (XAI) has gained momentum in the last few years [4], [5].

Among the various ML techniques suitable for knowledge discovery, clustering methods are widely used when working with 
large volumes of data [1]. Clustering is a fundamental task in data mining that groups observations according to their similarities, 
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synthesizing the information in the data and thus making it more accessible. Nonetheless, clustering results also depend on the data 
quality, and their interpretability can be particularly challenging due to the unsupervised nature of the problem [1], [6].

While XAI is more commonly applied to supervised ML, critical recent developments have emerged in its application to unsuper-

vised problems. These developments often involve converting the clustering problem into a classification task by utilizing the labels 
previously obtained in the clustering process [7]. Decision trees are commonly used to interpret clusters by extracting the decision 
rules that predict cluster labels. For example, in [8], authors propose a model of explainable k-means and k-median based on decision 
trees with 𝑘 leaves, shedding some light on the influence of parameters like the dimension of the data or the number of outliers on 
the computational complexity of explainable clustering. Similarly, [6] presents an improved tree-based method with a clustering 
technique based on a mechanism that constructs multiple decision trees, known as eUD3.5. This approach considers both separation 
and compactness when evaluating a feature split.

Alternatively, a novel strategy proposed in [7] introduces an explanation mechanism based on multidimensional bounding boxes. 
This method allows for representing clusters with arbitrary shapes and combines local and global explanations. The authors of [9]

introduce EXPLAIN-IT, a methodology that uses an innovative XAI approach to comprehend the factors contributing to specific 
decisions made by supervised learning models. Support vector machines (SVM) are used as classifiers for unsupervised ML, and lime 
[9] is employed for explainability. Six different supervised algorithms are compared in [10] to classify cluster labels, obtaining the 
best predictive performance for ensemble algorithms.

Most of the methods above primarily focus on the explainability task and are designed to work with particular clustering 
and classification algorithms. Moreover, data preprocessing is outside their scope, and challenges such as outlier detection, high-

dimensionality, or handling mixed-type data are not explicitly addressed. However, data preprocessing is essential before running 
any cluster analysis [3].

This work aims to present a comprehensive methodological framework for conducting explainable cluster analysis, which effec-

tively addresses the data quality and explainability challenges described above for large and high-dimensional mixed-type data. This 
framework serves as a guide for researchers and practitioners, offering an end-to-end sequential workflow consisting of four main 
steps:

• Data preprocessing to ensure the quality of the data.

• Dimensionality reduction to help interpretability by reducing the number of variables to a manageable level for human compre-

hension [11] and to avoid the curse of dimensionality.

• Clustering to group observations into similar groups and extract relevant patterns.

• Classification of the previously computed clusters to facilitate cluster explainability and classify future observations.

For decades, these four topics have been extensively studied; however, to the best of our knowledge, there is currently a lack of 
a comprehensive and guided framework covering all of them, allowing for combined quantitative and qualitative data and with a 
focus on explainability. Instead, specialized methods addressing specific tasks within the proposed framework can be found.

1.1. Novelty and contributions

The main contributions of this work are summarized as follows:

• We introduce a novel framework for explainable cluster analysis, addressing existing challenges related to data quality, explain-

ability, large datasets, and mixed-type data using an end-to-end methodology.

• We implement this methodology in an open-source Python package, Clust-learn, for broad accessibility to researchers and 
practitioners.

• We validate the methodology through a holistic application to a real-world large-scale assessment database in the field of 
education.

Additionally, each of the four components of the methodology has specific contributions:

• We design a novel data imputation method that effectively handles mixed-type data, leverages strong variable relationships, and 
addresses high-dimensionality.

• We enhance existing dimensionality reduction frameworks for mixed-type data by applying regularization, which facilitates 
interpretability.

• We build a flexible process for comparing multiple clustering algorithms, acknowledging the absence of a universal algorithm 
and enabling optimal algorithm selection.

• We create a pipeline for classification that includes feature selection, hyperparameter optimization, and local and global feature 
importances using XAI methods and cross-validation. The pipeline also supports multiple tree-based classification algorithms.

2. Methodology overview

This section provides an overview of the methodology, which consists of four components: data preprocessing, dimensionality 
2

reduction, clustering, and classification. These components are designed to be used sequentially to ensure robust and explainable 
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Fig. 1. Clust-learn package layout.

results. However, they can also be employed independently to suit different use cases. Sections 3 through 6 describe the background 
and methods used in each of the four components, together with their implementation and customization options in the Python 
package Clust-learn.

The data preprocessing component covers missing data imputation and outlier detection. To address missing data, we propose a 
method that first identifies strongly related variable pairs for one-to-one model-based imputation. Subsequently, we employ graph 
theory to identify clusters of variables with strong relationships, allowing us to perform imputation within each cluster to mitigate 
the challenges caused by high-dimensionality. Missing values are imputed using linear regression and hot deck imputation. As for 
outlier detection, we use the Isolation Forest algorithm [12], which is well-suited for identifying multivariate outliers.

A different approach is employed for numerical and categorical variables for dimensionality reduction, followed by their sub-

sequent integration. Sparse principal component analysis (SPCA) is applied to numerical variables to leverage sparse connections 
with the original variables, thus facilitating interpretability. Categorical variables, on the other hand, are treated using multiple 
correspondence analysis (MCA).

The clustering component enables the comparison of multiple clustering algorithms by using different validity metrics and the 
elbow method to identify the optimal number of clusters.

In the classification component, a pipeline is employed, starting with a random train-test split, followed by feature selection and 
hyperparameter optimization using cross-validation. Lastly, a classification model is trained and evaluated. This pipeline supports a 
wide range of algorithms and performance metrics.

The proposed methodology is implemented in the Python package Clust-learn, which encapsulates complex methodological proce-

dures using methods and functions that are easy to use. It is organized into four modules, one for each component of the methodology:

data_preprocessing, dimensionality_reduction, clustering, and classifier. Clust-learn is implemented in Python 
because it has been the most popular programming language in 2022 and 2023, with a steady upward trend since 2018, according 
to the TIOBE index [13].

Fig. 1 shows the package layout with the functionalities covered by each module, the techniques used, the explainability strategies 
available, and the main functions and class methods implementing these techniques and explainability strategies. The package also 
offers a rich set of tabular and graphical descriptive statistics to help interpretability in each step of the methodology.

The key contributions of Clust-learn lie in its emphasis on unsupervised learning, a strong focus on data quality and interpretabil-

ity, and a guided approach for users. Compared to automated machine learning (AutoML) [14] packages such as tpot [15] and 
auto-sklearn [16], which facilitate the comparison of a plethora of supervised models through a systematic approach to model se-

lection, Clust-learn distinguishes itself by incorporating data preprocessing and unsupervised learning, and by being structured to 
prioritize interpretability. Python packages focused on data preprocessing, such as pandas-profiling [17] and missingno [18], tend 
to treat numerical and categorical variables separately and do not fully leverage their relationships. PyCaret [19], a Python package 
3

with a broader scope compared to the previous ones, serves as an open-source, low-code Python library designed to make ML more 
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accessible to a broader audience. PyCaret offers rich functionality for data preprocessing, both supervised and unsupervised learning, 
and time series analysis. Clust-learn, on the other hand, distinguishes itself for prioritizing the interpretability of results and provid-

ing a guided framework for explainable cluster analysis. It offers a more targeted set of techniques compared to PyCaret. Finally, 
SHAP (SHapely Additive exPlanations) is the state-of-the-art method for explainability of ML models [20] and it is incorporated in 
Clust-learn through the Python package shap [21].

3. Data preprocessing

The proposed methodology follows the framework introduced in [3] for data preprocessing, which identifies five main tasks to 
be performed before running any cluster analysis: handling missing values, outlier detection, dimensionality reduction, data scaling, 
and mixed-type data handling. In our methodology, the data preprocessing module in this section covers tasks 1 and 2. Task 3 is 
handled in a separate module in Section 4 due to its relevance. Tasks 4 and 5 are considered at different stages throughout the 
methodology.

3.1. Imputation of missing values

The presence of missing values is common in scientific and research studies, and their imputation is essential when working with 
real-world data as missing information can significantly influence the results obtained [22], [23]. There are multiple imputation 
methods in the literature, and their suitability depends on the types of variables and the type and amount of missing values [22]. 
We propose a method that combines data deletion, model-based one-to-one imputation, k-nearest neighbors (KNN), and hot deck 
imputation (see Fig. 2).

Hot deck imputation is one of the most widely used methods for data imputation [22]. For each observation with some missing 
value (recipient), it identifies a set of observations with a value informed for the corresponding variable (donors) and imputes a value 
based on those of the donors. This method has numerous versions depending on the donor selection technique and the criterion for 
selecting the value to be imputed [22]. In our methodology, we use hot deck imputation in two of the steps with two different donor 
selection techniques, as described below.

In the first step of the data imputation method, we remove all variables with a percentage of missing values above a predefined 
threshold. Next, in the second step, we use model-based imputation for strongly related pairs of variables. The relationship between 
pairs of variables is measured using Pearson’s correlation coefficient for numerical variables, partial 𝑒𝑡𝑎 squared, 𝜂2

𝑝
, for mixed-type 

variables, and mutual information for categorical pairs. A pair of variables is considered to be strongly related if the corresponding 
metric score is above a predefined threshold. If a variable has a strong relationship with more than one variable, the pair that allows 
the largest imputations is selected.

Once these pairs of dependent (𝑌 , variable with missing values) and independent variable (𝑋, variable used as predictor) are 
calculated, we impute values differentiating three cases:

Case 1. If variables 𝑋 and 𝑌 are numerical, linear regression is used. The regressor is fitted using all observations with known values 
for both variables.

Case 2. If both variables are categorical, we use hot deck imputation. For every recipient (observation with a missing value for 𝑌
and known 𝑋 = 𝑥𝑖), the value to be imputed is selected at random from the discrete empirical distribution given by

𝑃 (𝑌 = 𝑦𝑗 |𝑋 = 𝑥𝑖) = 𝑓𝑥𝑖
(𝑦𝑗 ), (1)

where 𝑓𝑥𝑖 (𝑦𝑗 ) is the relative frequency of 𝑦𝑗 when 𝑋 = 𝑥𝑖.

Case 3. For mixed-type variables, the numerical one is discretized into quantiles and both variables are treated as categorical (see 
Case 2).

The third step consists of removing all records with a percentage of variables with missing values above a predefined threshold. 
This step aims to ensure that in step four, the recipient and donors are sufficiently similar when using KNN and that a large number 
of missing values does not dominate the relationship.

Finally, the remaining missing values are imputed in the fourth step using the hot deck method with KNN to search for donors. 
In particular, we use scikit-learn’s KNNImputer algorithm [24], [25] that allows for custom distance metrics and value selection 
criteria. For distance computation, we use the Euclidean distance with missing values proposed in [26] given by

𝑑(𝑥, 𝑦) =
√√√√𝑤

∑
𝑖∈𝐼

𝑥𝑖,𝑦𝑖≠𝑛𝑎𝑛

(𝑥𝑖 − 𝑦𝑖)2, (2)

where 𝐼 is the set of variable indices and 𝑤 = |𝐼||{𝑖∈𝐼∶𝑥𝑖,𝑦𝑖≠𝑛𝑎𝑛}| .
The value 𝑘 in KNN is configurable, but using a value greater than 1 is generally recommended, as it usually ensures a better 

quality of the imputation [22]. In addition, all variables are normalized to the 0-1 range to avoid dominance driven by scale 
4

differences. Among the nearest neighbors, a value is selected at random, giving the same probability to all neighbors.
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Fig. 2. Data imputation methodology.

The curse of dimensionality affects the Euclidean distance since the relative distance between the farthest and the nearest point 
converges to zero as the number of dimensions increases [27]. This problem also extends to the Euclidean distance with missing 
values, given its reliance on the standard Euclidean distance (see Eq. (2)). To overcome this drawback, different alternatives can 
be found in the literature, such as those proposed in [22], [23]. Based on these studies, our methodology uses mutual information 
scores between pairs of variables to identify clusters of variables with similar behavior and impute values within each cluster, 
thus reducing dimensionality. The clusters of variables are computed using graph theory. In particular, variables are modeled as 
the graph nodes (𝑉 ) and the pairs of variables with a mutual information score above a predefined threshold as edges (𝐸). The 
connected components of the undirected graph 𝐺 = (𝑉 , 𝐸) constitute the clusters. Only clusters with a minimum number of elements 
are considered.

Observations with a percentage of missing values within a cluster above a predefined threshold are discarded from this imputation 
to avoid recipient-donor similarities based on very few variables. For these cases and for other variables that do not belong to any 
5

cluster, missing values are imputed considering all the variables of the study together.
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It is important to note that the KNNImputer algorithm imputes values in the order of the given data. Before the fourth step, a 
random shuffle is performed to avoid possible biases caused by the original order of the data.

3.2. Outlier detection

For outlier detection, we use the scikit-learn’s implementation of the Isolation Forest algorithm (iForest) [12], a multivariate 
anomaly detection algorithm consisting of an ensemble of iTrees, binary trees where both variables and splits are randomly selected 
for data partitioning. This algorithm is well suited for high-dimensional and mixed-type data [12].

Due to their susceptibility to isolation, outliers are isolated closer to the tree’s root node. This is the key feature of the algorithm 
for identifying outliers. The algorithm implementation has two other sources of randomness: the selection of samples with optional 
bootstrapping and the selection of features for each iTree.

3.3. Data preprocessing with Clust-learn

The data_preprocessing module is organized into a set of functions. Its key functionalities are data imputation and outlier 
detection. The former is performed by means of the function

impute_missing_values(df, num_vars, cat_vars, num_pair_kws = None,
mixed_pair_kws = None, cat_pair_kws = None, graph_thres = 0.05,
k = 8, max_missing_thres = 0.33)

that implements all steps in the proposed method for a given data set (df) with numerical (num_vars) and categorical variables 
(cat_vars). Some customization parameters are allowed, such as the arguments to pass to compute imputation pairs for one-to-one 
model-based imputation (num_pair_kws, mixed_pair_kws, and cat_pair_kws), the threshold for determining whether two 
variables are connected when computing variable clusters (graph_thres), the number of neighbors for KNN (k), and the maximum 
proportion of missing values per observation allowed at step 3 of the imputation method (max_missing_thres). In addition to 
these parameters, separate functions are provided for each step of the data imputation methodology should the user want to tailor it 
further.

Outliers are identified and removed using the function remove_outliers(df, variables, iforest_kws = None) that 
allows iForest customization through iforest_kws for a selection of variables (variables).

In addition to the prior functions, the module provides the function missing_values_heatmap() for visualizing the presence 
of missing values on a heat map (Fig. 3a), and the function

plot_imputation_distribution_assessment(df_prior, df_posterior,
imputed_vars, sample_frac = 1.0, prior_kws = None,
posterior_kws = None, output_path = None, savefig_kws = None)

for visualizing a comparison between the kernel distribution of a set of variables (imputed_vars) before and after imputation 
through kernel density estimation plots (Fig. 3b).

4. Dimensionality reduction

For dimensionality reduction, a procedure based on factor analysis of mixed data (FAMD) [28] and multiple factor analysis (MFA) 
[28] is applied. In particular, numerical and categorical variables are treated separately, as proposed in [28], and the results are later 
combined in a single table.

For numerical variables, we use SPCA, a principal component analysis (PCA) variant where each extracted component is a linear 
combination of a reduced number of original variables, facilitating explainability. We use scikit-learn’s implementation, which is 
based on the one proposed in [29] wherein the problem is formulated as a PCA with L1 regularization on the components

min
𝑈∈ℝ𝑚×𝑟
𝑉 ∈ℝn×r

1
2
‖𝑋 −𝑈𝑉 ⊤‖2

𝐹
+ 𝜆‖𝑉 ‖1,1

subject to ‖𝑈𝑘‖2 ≤ 1,∀𝑘 = 1,… , 𝑟,

(3)

where 𝑋 ∈ ℝ𝑚×𝑛 is the matrix with 𝑚 observations and 𝑛 original variables, 𝑈 ∈ ℝ𝑚×𝑟 is the transformed matrix with 𝑟 derived 
variables, 𝑉 ∈ℝ𝑛×𝑟 is the coefficient matrix, and 𝜆 is the regularization parameter. ‖ ⋅‖𝐹 and ‖ ⋅‖1,1 are the entry-wise matrix norms 
for 𝑝 = 2, 𝑞 = 1 (the so-called Frobenius norm) and 𝑝 = 1, 𝑞 = 1, respectively, where

‖𝐴‖𝑝,𝑞 = ⎛⎜ 𝑛∑(
𝑚∑||𝑎𝑖𝑗 ||𝑝)

𝑞

𝑝 ⎞⎟
1
𝑞

. (4)
6

⎜⎝𝑗=1 𝑖=1
| | ⎟⎠
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Fig. 3. Selection of tabular and graphical descriptive statistics for data preprocessing and dimensionality reduction modules available in Clust-learn.

The original variables are standardized (centered and divided by their standard deviation) before applying SPCA to avoid any 
dominance driven by scale differences.

For categorical variables, we use MCA, a variant of correspondence analysis (CA) for multiple categorical variables. In particular, 
the method implemented in [30] is used as described below.

Let 𝑛 be the number of categorical variables and 𝑝𝑗 the number of categories of variable 𝑗, with 𝑗 ∈ {1, … , 𝑛} and 
∑𝑛

𝑗=1 𝑝𝑗 = 𝑝. 
Let 𝑚 be the number of observations and 𝑋 the 𝑚 × 𝑝 correspondence matrix of relative frequencies. Let us denote 𝑣𝑟 and 𝑣𝑐 as the 
vectors of row and column totals, respectively, and 𝐷𝑣𝑟

= diag(𝑣𝑟) and 𝐷𝑣𝑐
= diag(𝑣𝑐). The following singular value decomposition 

(SVD) factorization provides the factor scores

𝐷
−1
2
𝑣𝑟

(
𝑋 − 𝑣𝑟𝑣

⊤
𝑐

)
𝐷

−1
2
𝑣𝑐

=𝑈Σ𝑉 ⊤, (5)

where Σ is the diagonal matrix of the singular values and Λ = Σ2 the matrix of eigenvalues.

The contribution of column 𝑙 to the extracted factor 𝑘 is obtained as

𝑤𝑙𝑘 =
𝑓 2
𝑙𝑘

𝜆𝑘
; 𝑙, 𝑘 = 1,… , 𝑝, (6)

where 𝐹 = (𝑓𝑙𝑘)𝑙𝑘 =𝐷
−1
2
𝑣𝑐

𝑉 Σ.

The one-hot encoding applied to obtain the correspondence matrix distorts the original dimension of the data, which causes total 
inertia to be artificially inflated. Therefore, the inertia explained by the first extracted factors is underestimated. For eigenvalue 
correction, the Benzecri [31] formula is applied, wherein the corrected eigenvalues are defined as

�̄�𝑘 =
⎧⎪⎨⎪⎩
[(

𝑛

𝑛−1

)(
𝜆𝑘 −

1
𝑛

)]2
if 𝜆𝑘 >

1
𝑛

0 if 𝜆𝑘 ≤
1
𝑛

. (7)

Total inertia is then replaced for the alternative definition proposed by Greenacre [32]

̄ = 𝑛

𝑛− 1

(
𝑝∑

𝑘=1
𝜆2
𝑘
− 𝑝− 𝑛

𝑛2

)
, (8)

and, therefore, the percentage of inertia explained by the factor 𝑘 is calculated as

�̄�𝑘

̄
, for all 𝑘 = 1,… , 𝑝. (9)

The optimal number of components to be extracted from numerical and categorical variables is calculated using the elbow method 
7

on the cumulative explained variance and inertia. The elbow method has proven to be powerful because it is easy to understand 
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and assess through visualization [33]. We use the method proposed and implemented in [34]. The basis of this algorithm lies in 
the concept of curvature of a continuous function. Since the cumulative explained variance and inertia are discrete functions, a 
smoothing spline is first applied to obtain a continuous function that preserves the shape of the original data. Secondly, the data are 
normalized, and a new curve (𝑥, 𝑦 − 𝑥) is calculated. The local maxima of the latter curve are the candidate elbow points. Finally, a 
threshold based on the difference of consecutive 𝑥-values is used for identifying the elbow points. For a thorough description of the 
algorithm, see [34].

To explain the extracted components, a threshold is set on Pearson’s correlation coefficient to determine the original numerical 
variables explained by each principal component. Similarly, a threshold is set on the partial 𝑒𝑡𝑎 square for categorical variables to 
determine the original variables explained by each derived variable.

4.1. Dimensionality reduction with Clust-learn

All the functionality of the dimensionality_reduction module is encapsulated in the DimensionalityReduction class so 
that the original data, the instances of the models used, and any other relevant information is self-maintained and always accessible. 
Table A1 shows the class parameters and attributes. It is instantiated as follows

dr = DimensionalityReduction(df, num_vars = None,
cat_vars = None, num_algorithm =’pca’, cat_algorithm =’mca’,
num_kwargs = None, cat_kwargs = None)

Users must enter the list of numerical (num_vars) and categorical variables (cat_vars) along with the technique applied to 
each subset (num_algorithm and cat_algorithm, respectively). For now, PCA and SPCA are supported for numerical variables 
and MCA for categorical variables.

Dimensionality reduction is performed using the class method

dr.transform(n_components, min_explained_variance_ratio = 0.5)

This method implements the proposed methodology, transforming the original data into a lower dimensional space handling 
numerical, categorical, and mixed-type data. The user can set either the number of components to be extracted (n_components), 
the minimum variance to be explained by them (min_explained_variance_ratio), or they can set both parameters to None
if they would like to obtain the optimal number of components using the elbow method on the cumulative explained variance and 
inertia.

The class also provides a set of methods to explain the extracted components. The methods

dr.{num,cat}_main_contributors(thres, n_contributors = None,
dim_idx = None, component_description = None,
col_description = None, output_path = None)

obtain the original numerical (num) or categorical (cat) variables explained by the extracted component dim_idx (if set to None, 
this is computed for all extracted components). The number of explained original variables can be controlled using the parameter

thres that sets a threshold on Pearson’s correlation coefficient or partial 𝑒𝑡𝑎 squared, respectively, or by simply setting the number 
through n_contributors. In the latter case, the method returns the n_contributors original variables most strongly related to 
the component dim_idx.

The method

dr.cat_main_contributors_stats(thres = 0.14,
n_contributors = None, dim_idx = None, output_path = None)

computes for every original categorical variable’s value, the mean and standard deviation of the extracted components with a partial 
𝑒𝑡𝑎 square above thres (Fig. 3e). If the user wants to obtain these statistics for a number of extracted components with the highest 
𝑒𝑡𝑎 square, they can do so through the parameter n_contributors.

For visualizations, the methods

dr.plot_{num,cat}_explained_variance(thres, plots =’all’,
output_path = None, savefig_kws = None)

plot the explained variance curve for numerical (Fig. 3c) and categorical variables, respectively. The available plots under the 
parameter plots are cumulative, ratio, and normalized. Any subset from these may be selected.
8

The class method
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dr.plot_num_main_contributors(thres = 0.5, n_contributors = 5,
dim_idx = None, output_path = None, savefig_kws = None)

generates a bar plot showing the Pearson correlation coefficient of the extracted dim_idx component with the most correlated 
original numerical variables (Fig. 3d). The number of original variables to be displayed can be controlled using the parameter thres
to set a minimum on the absolute value of the correlation coefficient, or by simply setting a number using n_contributors.

For categorical variables, the class method

dr.plot_cat_main_contributor_distribution(thres = 0.14,
n_contributors = None, dim_idx = None, output_path = None,
savefig_kws = None)

plots for every value of each original categorical variable, a kernel density estimation plot of the extracted components that have 
a partial 𝑒𝑡𝑎 square above a predefined threshold (thres) (see Fig. 3f). If the user wants to obtain these plots for a number of 
components with the highest 𝑒𝑡𝑎 square, they can do so through the parameter n_contributors.

5. Clustering

Cluster analysis substantially depends on the particular field of study, and it has been consistently proved that no universal 
clustering approach exists [35]. In recent years, numerous novel clustering algorithms have been proposed and implemented, em-

phasizing the need for enhanced, flexible, and efficient methods to accommodate different data types and fields of study [1]. To 
address this requirement, our methodology is designed to accept any clustering algorithm that adheres to the scikit-learn standards. 
The proposed approach enables us to compare multiple algorithms based on a selection of cluster validity metrics, thus allowing us 
to identify the optimal technique. These metrics are presented later in this same section.

As the default choice, we employ k-means [36] with k-means++ [37] for centroid initialization, given its wide adoption [1], 
thereby ensuring that our methodology remains accessible to a broad community, particularly for beginners.

For data other than the components extracted from dimensionality reduction, variable normalization is performed to ensure that 
no priority is given to any of them due to differences in scale. This option can be attractive when the clustering method selected 
already deals with high-dimensionality and the previous step of the methodology can be skipped.

Finding the relevant number of clusters is a fundamental problem in clustering [1]. The elbow method [34] applied to one of the 
four unsupervised validity metrics available in scikit-learn is used to find this number. Note these are the same metrics we use for 
best clustering algorithm selection.

Hereafter, we denote 𝑛 as the number of observations, 𝑋 = {𝑥𝑖}𝑖=1,…,𝑛 as the observations, 𝑞 as the number of clusters, 𝑐𝑘 as the 
centroid of cluster 𝑘, 𝑛𝑘 as the number of observations of cluster 𝑘, and 𝑋𝑘 as the observations in cluster 𝑘, with 𝑘 in {1, … , 𝑞}.

Within cluster sum of squares (WSS). Also known as the sum of squared distances, WSS (10) measures the sum of the square 
distances of every observation to its corresponding cluster.

𝑊𝑆𝑆 =
𝑞∑

𝑘=1

∑
𝑥𝑖∈𝑋𝑘

(𝑥𝑖 − 𝑐𝑘)2 (10)

Davies-Bouldin index. This index compares the mean intra-cluster distance of any pair of clusters to the distance between their 
centroids [38]. It is calculated using Equation (11).

𝐷𝐵 = 1
𝑞

𝑞∑
𝑘=1

max
𝑘≠𝑙

{
𝛿𝑘 + 𝛿𝑙

𝑑𝑘𝑙

}
(11)

where

• 𝛿𝑘 =
1
𝑛𝑘

∑
𝑥𝑖∈𝑋𝑘

𝑑(𝑥𝑖, 𝑐𝑘) is the mean intra-cluster distance, and

• 𝑑𝑘𝑙 = 𝑑(𝑐𝑘, 𝑐𝑙) is the distance between the cluster centroids.

The lower the Davies-Bouldin index, the better the clustering, being zero the minimum possible value.

Silhouette index. The silhouette index [39] in Equation (12) compares, for every observation, the average distance to the other 
elements of the same cluster with the minimum mean distance to all observations in each cluster.

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 = 1
𝑛

𝑛∑
𝑖=1

𝑠𝑖 (12)

where

• 𝑠𝑖 =
𝑏𝑖−𝑎𝑖

max{𝑎𝑖,𝑏𝑖}
,

• 𝑎𝑖 =
1

𝑛𝑘0−1
∑

𝑗≠𝑖;𝑥𝑗∈𝑋𝑘0
𝑑(𝑥𝑖, 𝑥𝑗 ) with 𝑘0 such that 𝑥𝑖 ∈𝑋𝑘0

, is the mean distance between of one observation to all other 
9

observations in the same cluster, and
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• 𝑏𝑖 = min
𝑘1≠𝑘0

{
1

𝑛𝑘1

∑
𝑥𝑗∈𝑋𝑘1

𝑑(𝑥𝑖, 𝑥𝑗 )
}

is the smallest mean distance to all elements in each of the other clusters.

The silhouette index can take values between -1 and 1, where 1 is the best possible value.

Calinski and Harabasz index. This index (13) compares the cluster centroid closeness to the mean intra-cluster distance [40].

𝐶𝐻 =
𝑡𝑟(𝐵𝑞)
𝑡𝑟(𝑊𝑞)

⋅
𝑛− 𝑞

𝑞 − 1
(13)

where

• 𝑡𝑟(⋅) is the trace of a matrix function,

• 𝐵𝑞 =
∑𝑞

𝑘=1 𝑛𝑘(𝑐𝑘 − �̄�)(𝑐𝑘 − �̄�)⊤ with �̄� = 1
𝑛

∑𝑛

𝑖=1 𝑥𝑖 is the inter-cluster dispersion matrix, and

• 𝑊𝑞 =
∑𝑞

𝑘=1
∑

𝑥𝑖∈𝑋𝑘
(𝑥𝑖 − 𝑐𝑘)(𝑥𝑖 − 𝑐𝑘)⊤ is the intra-cluster matrix.

Under Calinski and Harabasz index, the best clustering is that which maximizes its value.

The last and most important step in cluster analysis is understanding the results to extract knowledge from the data and label the 
clusters for further practical use [6]. This goes beyond assessing the validity of the obtained clusters and requires putting the results 
into the context of the study. Therefore, a good presentation of the clustering output is essential for interpretability [1]. We propose 
using tabular and graphical descriptive statistics using internal and external variables, i.e., variables that were and were not used to 
compute the clusters. The complete list of available tables and visualizations and their corresponding description, can be found in 
Section 5.1.

5.1. Clustering with Clust-learn

The Clustering class encapsulates this module’s functionality and stores the data, the instances of the algorithms used, and 
other relevant information so it is always accessible. See Table A2 for detailed information on class parameters and attributes. The 
class is instantiated as follows

cl = Clustering(df, algorithms = kmeans, normalize = False)

The methodology presented for clustering is implemented via the class method

cl.compute_clusters(n_clusters = None, metric =’inertia’,
max_clusters = 10, prefix = None)

which returns an array of labels, one for each observation. If more than one algorithm is passed in the class constructor, they are 
compared using the metric passed (metric) and the best performing one is selected. The number of clusters to be calculated can be 
selected manually or optimized using the elbow method with the parameter n_clusters.

In addition to the computation of clusters, the Clustering class provides a set of methods to help interpret clusters through 
summary tables and visualizations. The class method

cl.describe_clusters(df_ext = None, variables = None,
cluster_filter = None, statistics = [‘mean’,’median’,’std’],
output_path = None)

describes clusters in terms of internal variables (those used for clustering) or external continuous variables (df_ext). The vari-
ables and cluster_filter parameters allow the user to select a subset of variables or clusters from which to obtain the 
descriptive statistics passed to the parameter statistics.

For external categorical variables, frequency distribution tables can be computed through the class method

cl.describe_clusters_cat(cat_array, cat_name, order = None,
normalize = False, use_weights=False, output_path = None)

To help identify which variables most strongly characterize each cluster, the class method

cl.compare_cluster_means_to_global_means(df_original = None,
output_path = None)

computes the relative difference between intra-cluster means and global means. The parameter df_original allows the user to 
compute these differences using the original variables in case clusters are computed on a lower dimensional space. For a heat map 
10

visualization of this analysis (see Fig. 4c), use the class method
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Fig. 4. Selection of tabular and graphical descriptive statistics for the clustering module available in Clust-learn.

cl.plot_cluster_means_to_global_means_comparison(
use_weights = False, df_original = None, xlabel = None,
ylabel = None, levels = [-0.5, -0.3, -0.1, 0.1, 0.3, 0.5],
use_weights = False, df_original = None, xlabel = None,
output_path = None, savefig_kws = None)

Other available visualizations include: count plots per cluster through plot_clustercount() (Fig. 4a); a comparison of the 
distribution of internal or external continuous variables by cluster through a composite visualization of violin plots, box plots and 
point density plots with the method plot_distribution_by_cluster() (Fig. 4d); a comparison of the distribution of categorical 
variables with normalized stacked bar plots using plot_cat_distribution_by_cluster() (Fig. 4f); and 2-dimensional scatter 
plots and kernel density estimation plots for detailed cluster analyses through the visualization of pairs of internal variables by cluster 
using plot_clusters_2D() (Fig. 4e).

The user can also run cluster validation analyses based on the selected performance metric. In particular, they can compare differ-

ent clustering algorithms and evaluate the selection of the optimal number of clusters with the class methods plot_score_compa-
rison() and plot_optimal_components_normalized() (Fig. 4b), respectively.

Finally, analysis of variance (ANOVA) and chi squared tests are available through the class methods anova_tests() and

chi2_test() to test the independence of clusters and numerical and categorical variables, respectively.

6. Classifier

The classification module has two objectives in the proposed methodology: to support a better understanding of the clusters 
calculated in the previous module and to allow future classification of new observations that were not part of the original study. In 
addition, this module can be used independently to classify other labeled data.

The module supports mixed-type data and binary and multiclass classification. For explainability, we rely on feature selection, 
essential when working with high-dimensional data [41], and Tree SHAP values [42].

SHAP [21] is an additive feature attribution method that calculates the unique combination of predictor contributions for every 
model output. These contributions are the so-called SHAP values. They are the approximate Shapley values [43], a concept from game 
theory, computed using weighted linear regression [21]. SHAP values represent the importance of each feature in each prediction. 
In addition to these local importances, a model’s global feature importances can be obtained by averaging the absolute value of 
the local SHAP values. SHAP is a model-agnostic method with a novel version, Tree SHAP [42], designed to work efficiently with 
tree-based models and provide exact solutions. Since all the models used throughout the methodology are tree-based, we selected 
this last version.

We follow four main steps for building a classification model:

Step 1. Data is randomly split into train and test subsets. Steps 2 and 3, and model training in step 4 are run using only the train 
11

split.
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Step 2. Feature selection is performed in three steps. The first two steps remove highly related features that add redundant in-

formation. The relationship between variables is measured using Pearson’s correlation coefficient, partial 𝑒𝑡𝑎 square, and 
mutual information, as it is done consistently throughout the methodology, depending on the types of variables. First, if 
some features are to be kept because of their relevance to the study, all other features with a strong relationship to the 
former are removed. Secondly, a random forest classifier [44] is iteratively trained. At each iteration, the feature with the 
highest SHAP value not previously visited is selected and all other highly related features are removed. The last step runs 
recursive feature elimination with cross-validation (RFECV) [45] as implemented by scikit-learn.

Step 3. Hyperparameter optimization is performed through exhaustive grid search with cross-validation for the selected hyper-

paramters.

Step 4. Model training, evaluation, and interpretation. By default, we use xgboost [46] with the area under the curve (AUC) as 
performance metric for model fitting. For a complete model evaluation, we use the confusion matrix, accuracy, precision, 
recall, f-1 score metric, and the receiver operating characteristic (ROC) curve in addition to the AUC. We rely on SHAP 
values for results interpretability for local and global importances.

By default, we use scikit-learn’s implementation of random forests for feature selection because it is one of the most successful 
algorithms in machine learning and it has shown impressive performance with default hyperparameters [47], and xgboost for the 
final classification model because it is among the top performers in Kaggle competitions [47]. Hyperparameter tuning is applied on 
xgboost because its performance can improve significantly with the appropriate ones [47]. The methodology is adaptable and allows 
any tree-based classification algorithm.

6.1. Classification with Clust-learn

The functionality of the classifier module is encapsulated in the Classifier class, which is also responsible for storing the 
original data, the instances of the models used, and any other relevant information. See Table A3 for detailed information on class 
parameters and attributes. The class is instantiated as follows

classifier = Classifier(df, predictor_cols, target,
num_cols = None, cat_cols = None)

The methodology for classification presented above is implemented via the method

classifier.train_model(model = None, feature_selection = True,
features_to_keep = [], feature_selection_model = None,
hyperparameter_tuning = False, param_grid = None,
train_size = 0.8)

By default, xgboost is used for the classifier (model) and random forests for feature selection (feature_selection_model); 
however, any other tree-based classification algorithm that implements the fit, predict, and set_params methods can be used. 
Feature selection is optional and can be disabled through the feature_selection argument. To force one feature to get selected, it 
must be set via features_to_keep. The default train-test split size is 80-20, but this can be changed with train_size. To enable 
hyperparameter optimization with cross-validation, use the boolean argument hyperparameter_tuning, and param_grid to set 
the parameter grid.

The Classifier class also provides tabular and graphical methods for explainability and performance assessment. For the for-

mer, the method feature_importances() computes feature importance as the combined average of the absolute values of the 
SHAP values for all classes. A bar plot visualization of these importances can be generated with the method plot_shap_impor-
tances() (Fig. 5a).

To visualize feature importances for a specific class and understand how different predictor values affect the classification of 
observations to that particular class (Fig. 5b), use

classifier.plot_shap_importances_beeswarm(class_id, n_top = 10,
output_path = None, savefig_kws = None)

The goodness-of-fit of the classification model can be evaluated through the multi-class confusion matrix and the scikit-learn 
classification report. For the former, use the method

classifier.confusion_matrix(test = True, sum_stats = True,
output_path = None)

Use the argument test to compute the confusion matrix on the test or training set, and sum_stats to add precision, recall, and 
12

global accuracy to the matrix. For a visualization of the confusion matrix, use the method plot_confusion_matrix() (Fig. 5d).
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Fig. 5. Selection of tabular and graphical descriptive statistics for the classification module available in Clust-learn.

A classification report containing intraclass precision, recall, and f1-score metrics, along with the global accuracy, macro aver-

age, and weighted average of the three intraclass metrics, can be generated with the method classification_report(). For 
visualizing the receiver operating characteristic (ROC) curves by class, use the method plot_roc_curves() (Fig. 5e).

Finally, hyperparameter optimization can be assessed with a report containing the average and standard deviation performance 
of the cross-validation runs for every hyperparameter combination. This report is generated with the class method hyperparame-
ter_tuning_metrics() (Fig. 5c).

7. Case study

The proposed methodology has undergone a detailed empirical study using a real-world database, enabling the validation of the 
methodological framework. In particular, we performed an end-to-end analysis of student data collected for the OECD’s Programme 
for International Student Assessment (PISA). Specifically, we used a sample of 5,000 students randomly selected from the 35,943 
Spanish students who took the PISA 2018 survey [48]. A total of 80 variables were selected from the different survey questionnaires 
(see Table B1). We selected a combination of numerical and categorical variables to illustrate how the methodology handles mixed-

type data.

We started by performing data preprocessing. The data set contained a 12.01% rate of missing values, distributed unevenly across 
variables, ranging from as low as 0% to as high as 38.44%. We ran missing value imputation using the default options, obtaining 
ten pairs of variables for model-based one-to-one imputation, three clusters of variables for lower-dimension hot deck imputation 
(see Fig. 6), and the remainder of missing values were imputed using hot deck with all variables. After this process, we retained 
4,556 observations, removing 444 where more than 1/3 of their variables’ values were missing. Additionally, as part of the data 
preprocessing, we removed outliers using the default options, retaining 4,241 observations for the remainder of our analysis.

Once the data was preprocessed, we proceeded to apply dimensionality reduction. We used SPCA for numerical variables and 
MCA for categorical variables (default option) and selected the optimal number of components according to the elbow method. We 
obtained 13 extracted components from numerical variables that explained 42.6% of their total variance and one from categorical 
variables that explained 95.7% of their adjusted total inertia. As a result, we effectively reduced the original pool of 80 variables to 
14 derived variables (see Table 1). Their names were established by considering the original numerical variables that presented a 
correlation larger than 0.5 in absolute value with the derived ones (see Table C1) and the original categorical variables with a partial 
𝑒𝑡𝑎 squared greater than 0.14 (see Table C2).

Using the set of 14 newly derived variables, we conducted cluster analysis. We compared the performance of k-means, agglom-

erative clustering, and Gaussian mixture models using WSS as validity metric. We also determined the optimal number of clusters 
within the range of 1 to 21 using this same metric, obtaining that the optimal combination was k-means for 𝑘 = 6 (see Fig. 7) with 
clusters of size 878 (20.70%), 633 (14.93%), 631 (14.88%), 817 (19.26%), 543 (12.80%), and 739 (17.43%).

We provide an initial description of the clusters by examining the average values of each derived variable used in the clustering 
process, comparing the internal cluster mean to the global mean. Since the derived variables were standardized with mean 0 and 
13

varying variances due to the dimensionality reduction process, we focus on comparing these means without further normalization 



Information Sciences 663 (2024) 120282M. Alvarez-Garcia, R. Ibar-Alonso and M. Arenas-Parra

Fig. 6. Clusters of variables obtained for imputing missing values. These clusters correspond to the connected components of an undirected graph, where variables 
serve as nodes, and edges represent pairs of variables with a mutual information score above some threshold.

Table 1

Variables derived from the dimensionality reduction process.

Name

1 Students’ perception of teacher engagement

2 Student home resource advantage

3 Economic, social and cultural status

4 Psychological well-being

5 Work mastery and parents’ emotional support

6 Global cultural attitudes

7 Reading confidence and competence

8 ICT empowerment

9 Financial confidence and competence

10 ICT use for learning

11 Meta-cognition and discriminating school climate

12 School changes

13 Learning time

14 Repetition and immigration index

(see Fig. 8). The first cluster (cluster with label 0) is characterized by a significantly high economic, social, and cultural status (1.60), 
home resource advantage (-0.84), and meta-cognition (0.78), compared to all students. Note that some of the derived variables 
14

correlate negatively with the original ones; this is why the first cluster is considered to have a high home resource advantage with 



Information Sciences 663 (2024) 120282M. Alvarez-Garcia, R. Ibar-Alonso and M. Arenas-Parra

Fig. 7. Comparison of cluster performance depending on 𝑘 (a) and computation of the optimal 𝑘 (b).

Fig. 8. Heat map of the cluster internal means where global means are 0 for all variables.

an intracluster mean of -0.84 (see correlation detail in Table C1). Students in the second cluster have, on average, a low perception 
of teacher engagement (-1.98), low psychological well-being (1.17), and a high reading confidence and competence (-1.11).

The third cluster deviates positively from all students considered for the study in all indices that reflect an advantage for aca-

demic achievement. These students have high home resource advantage (-1.70), economic, social, and cultural status (1.51), reading 
confidence and competence (-1.25), work mastery and parents’ emotional support (1.23), ICT empowerment (1.15), global cultural 
attitudes (1.12), perception of teacher engagement (1.02), financial confidence and competence (0.84), and psychological well-being 
(-0.78). The fourth cluster (cluster with label 3) is characterized by a low economic, social, and cultural status (-1.46), high per-

ception of teacher engagement (1.37), high work mastery and parents’ emotional support (0.94), and high global cultural attitudes 
(0.78).

Students in the fifth cluster have, on average, high use of ICT for learning (-1.63), low meta-cognition and high discriminating 
school climate (-1.54), low global cultural attitudes (-1.37), and low work mastery and parents’ emotional support (-1.02). Lastly, the 
sixth cluster stands in contrast to the third one as it shows negative deviations across various indices that measure the advantage for 
academic achievement. These students have low economic, social, and cultural status (-1.65), home resource advantage (1.61), read-

ing confidence and competence (1.07), work mastery and parents’ emotional support (-0.98), financial confidence and competence 
(-0.92), global cultural attitudes (-0.85), and ICT use for learning (0.81).

To provide further insights into the obtained clusters, we trained a classification model using the original variables as predictors 
and the cluster labels as the target variable. This was accomplished by constructing a four-step pipeline consisting of:

• Train-test random split: The data was divided into a training set (80%) and a testing set (20%).

• Feature selection using the default methodology options. The original variable ESCS (index of economic, social and cultural 
status) was set to be kept in the feature selection process because of its relevance in education achievement [49].

• Hyperparameter optimization was performed through exhaustive grid search with cross-validation with different values for the 
15

number of estimators (30 and 60), 𝑒𝑡𝑎 (0.15 and 0.25) and maximum tree depth (3, 5, and 7).
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Fig. 9. Confusion matrix for the testing set.

Table 2

SHAP values of the top five predictors.

Variable name SHAP importance

ESCS 0.850021

HOMEPOS 0.238159

SCREADCOMP 0.146157

STIMREAD 0.144455

AWACOM 0.126995

• A final classification model was trained using the features and hyperparameters from previous steps. We used the xgboost 
algorithm and AUC as the performance metric.

By applying this pipeline, a subset of 73 variables was selected from the original set of 80. The optimal hyperparameter config-

uration was achieved with 60 estimators, an 𝑒𝑡𝑎 of 0.25, and a maximum tree depth of 3. This configuration yielded an AUC larger 
than 0.97 for all clusters. In addition, a global accuracy of 0.8269 was achieved with precision values ranging from 0.7746 for cluster 
1 to 0.8692 for cluster 2, and recall values ranging from 0.6636 for cluster 4 to 0.8792 for cluster 3 (see Fig. 9) – all these metric 
values were measured on the testing set.

A key result derived from this pipeline is the identification of the variables exhibiting the highest predictive power for classifying 
students. These were ESCS (economic, social, and cultural status), HOMEPOS (home possessions), SCREADCOMP (self-concept of 
reading), STIMREAD (teacher’s stimulation of reading engagement perceived by student), and AWACOM (awareness of intercultural 
communication) as shown in Table 2.

Lastly, we extracted local SHAP values to understand which variables best characterized each cluster. This valuable information 
was used to assign meaningful cluster names within the educational context of our case study (see Table 3). These names were 
derived from analyzing the top five variables with the highest predictive power within each cluster and considering the effect that 
different values of these variables have on the SHAP values (Fig. 10).

This last analysis complements the previous comparison between intracluster means and global means by identifying the variables 
that characterize each cluster and determining which variables effectively differentiate between different clusters. Local SHAP values 
help us understand the features that make each cluster unique. For instance, cluster 0 is characterized by having higher levels of 
meta-cognition and a lower prevalence of a discriminating school climate compared to the overall student sample. However, these 
characteristics do not contribute significantly to the differentiation of this cluster from others (see Fig. 10a). On the contrary, the 
variable with the third highest predictive power for cluster 5 is the student’s information about careers (INFOCAR) (see Fig. 10f), 
16

which shows a low correlation with the derived variables used for clustering.
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Table 3

Cluster names.

Cluster label Name

1 Advantaged tech-dependent students

2 Students with low teacher engagement

3 Advantaged global achievers

4 Resilient students

5 Students in a discriminating school climate

6 Disadvantaged students

Fig. 10. Local SHAP values summary for all clusters.

8. Conclusion

This paper proposes an integral methodology for explainable cluster analysis that addresses the challenges of data quality and 
results interpretability. The framework consists of four components applied sequentially, ensuring high-quality and explainable 
results. Often overlooked in existing methodologies, the data preprocessing component introduces a novel data imputation method 
for high-dimensional mixed-type data. By leveraging strong relationships between variables and graph theory, clusters of variables are 
identified for lower-dimensional imputation. The dimensionality reduction component enhances existing methods with regularization 
17

techniques, improving the interpretability of derived variables. The clustering component integrates multiple clustering algorithms, 
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addressing a significant gap in existing explainable cluster analysis methods, often limiting the choice to a single algorithm. The 
final component is a pipeline for classification models to enhance cluster interpretability with feature selection and SHAP values, 
supporting multiple tree-based algorithms.

The proposed methodology has been implemented in the open-source Python package Clust-learn, which is designed to be user-

friendly and customizable, thus ensuring accessibility across various domains. The package emphasizes visualizations, aiding in the 
interpretation of results.

We empirically evaluated the proposed methodology using a large-scale assessment database in the field of education that com-

bined numerical and categorical variables with a significant rate of missing values. We used SPCA and MCA for dimensionality 
reduction, obtaining 14 derived variables that capture various aspects of students’ environmental conditions. Clustering analysis 
(k-means, agglomerative clustering, and Gaussian mixture models) revealed the best performance for k-means with six clusters. Intr-

acluster means were compared against global means, and an xgboost classifier was trained to identify the most predictive variables 
for each cluster. This allowed for the interpretation and naming of the clusters, providing meaningful insights into the characteristics 
of students in each cluster.

Future work will focus on expanding the capabilities of the framework. This includes extending support for a broader range of 
algorithms for dimensionality reduction. Incorporating geospatial data analysis with regional clustering and specialized imputation 
techniques leveraging spatial relationships is also planned. Additionally, weighted clustering will be implemented to handle scenarios 
where observations have different weights.
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Appendix A. Clust-learn class parameters and attributes

Table A1

DimensionalityReduction class parameters and attributes.

Parameter Type Description

df pandas.DataFrame Data table containing the data with the original variables.

num_vars string or array-like Numerical variable name(s).

cat_vars string or array-like Categorical variable name(s).

num_algorithm string Algorithm to be used for dimensionality reduction of numerical variables. By 
default, PCA is used. SPCA is also supported.

cat_algorithm string Algorithm to be used for dimensionality reduction of categorical variables. By 
default, MCA. For now, only MCA is supported.

num_kwargs dictionary Additional keyword arguments to pass to the model used for numerical 
variables.

cat_kwargs dictionary Additional keyword arguments to pass to the model used for categorical 
variables.
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Table A1 (continued)

Attribute Type Description

n_components_ int Final number of extracted components.

min_explained _variance_ratio_ float Minimum explained variance ratio. By default, 0.5.

num_trans_ pandas.DataFrame Extracted components from numerical variables.

cat_trans_ pandas.DataFrame Extracted components from categorical variables.

num_components_ list List of names assigned to the extracted components from numerical variables.

cat_components_ list List of names assigned to the extracted components from categorical 
variables.

pca_ sklearn .decomposition.PCA PCA instance used to speed up some computations and for comparison 
purposes.

Table A2

Clustering class parameters and attributes.

Parameter Type Description

df pandas.DataFrame Data frame containing the data to be clustered.

algorithms instance or list of instances Algorithm instances to be used for clustering. They must implement the fit and set_params

methods.

normalize bool Whether to apply data normalization for fair comparisons between variables. In case 
dimensionality reduction is applied beforehand, normalization should not be applied.

Attribute Type Description

dimensions_ list List of columns of the input data frame.

instances_ dictionary Pairs of algorithm name and its instance.

metric_ string The cluster validation metric to be used: [‘inertia’, ‘davies_bouldin_score’,

‘silhouette_score’, ‘calinski_harabasz_score’].

optimal_config_ tuple Tuple with the optimal configuration for clustering containing the algorithm name, number of 
clusters, and value of the validation metric.

scores_ dictionary Pairs of algorithm name and a list of values of the chosen validation metric for a cluster range.

Table A3

Classifier class parameters and attributes.

Parameter Type Description

df pandas.DataFrame Data frame containing the data.

predictor_cols list of string List of columns to use as predictors.

target numpy.array or list Values of the target variable.

num_cols list List of numerical columns from predictor_cols.

cat_cols list List of categorical columns from predictor_cols.

Attribute Type Description

filtered_features_ list List of columns of the input data frame.

model_ Instance of

TransformerMixin and

BaseEstimator from

sklearn.base

Trained classifier.

X_train_ numpy.array Train split of predictors.

X_test_ numpy.array Test split of predictors.

y_train_ numpy.array Train split of target.

y_test_ numpy.array Test split of target.

grid_result_ sklearn.model_selec-

tion

.GridSearchCV

Instance of fitted estimator for hyperparameter tuning.

Appendix B. Variables used in the case study

Table B1

Variables used in the case study.

Variable name Type Description

ADAPTIVITY Num Adaptation of instruction (WLE)

AGE Num Age

ATTIMM Num Student’s attitudes towards immigrants (WLE)

ATTLNACT Num Attitude towards school: learning activities (WLE)

AUTICT Num Perceived autonomy related to ICT use (WLE)

AWACOM Num Awareness of intercultural communication (WLE)
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Table B1 (continued)

Variable name Type Description

BEINGBULLIED Num Student’s experience of being bullied (WLE)

BELONG Num Subjective well-being: Sense of belonging to school (WLE)

BFMJ2 Num ISEI of father

BMMJ1 Num ISEI of mother

BODYIMA Num Body image (WLE)

BSMJ Num Students expected occupational status (SEI)

CHANGE Num Number of changes in educational biography (Sum)

COGFLEX Num Cognitive flexibility/adaptability (WLE)

COMPETE Num Competitiveness (WLE)

COMPICT Num Perceived ICT competence (WLE)

CULTPOSS Num Cultural possessions at home (WLE)

DIRINS Num Teacher-directed instruction (WLE)

DISCLIMA Num Disciplinary climate in test language lessons (WLE)

DISCRIM Num Discriminating school climate (WLE)

DURECEC Num Duration in early childhood education and care

EMOSUPS Num Parents’ emotional support perceived by student (WLE)

ENTUSE Num ICT use outside of school (leisure) (WLE)

ESCS Num Index of economic, social and cultural status

EUDMO Num Eudaemonia: meaning in life (WLE)

FCFMLRTY Num Familiarity with concepts of finance (Sum)

FLCONFIN Num Confidence about financial matters (WLE)

FLCONICT Num Confidence about financial matters using digital devices (WLE)

FLFAMILY Num Parental involvement in matters of Financial Literacy (WLE)

FLSCHOOL Num Financial education in school lessons (WLE)

GCAWARE Num Student’s awareness of global issues (WLE)

GCSELFEFF Num Self-efficacy regarding global issues (WLE)

GFOFAIL Num General fear of failure (WLE)

GLOBMIND Num Global-mindedness (WLE)

HEDRES Num Home educational resources (WLE)

HISEI Num Index highest parental occupational status

HOMEPOS Num Home possessions (WLE)

HOMESCH Num Use of ICT outside of school (for school work activities) (WLE)

ICTCLASS Num Subject-related ICT use during lessons (WLE)

ICTHOME Num ICT available at home

ICTOUTSIDE Num Subject-related ICT use outside of lessons (WLE)

ICTRES Num ICT resources (WLE)

ICTSCH Num ICT available at school

IMMIG Cat Index Immigration status

INFOCAR Num Information about careers (WLE)

INFOJOB1 Num Information about the labor market provided by the school (WLE)

INFOJOB2 Num Information about the labor market provided outside of school (WLE)

INTCULT Num Student’s interest in learning about other cultures (WLE)

INTICT Num Interest in ICT (WLE)

JOYREAD Num Joy/Like reading (WLE)

LMINS Num Learning time (minutes per week) - test language

MASTGOAL Num Mastery goal orientation (WLE)

METASPAM Num Meta-cognition: assess credibility

METASUM Num Meta-cognition: summarizing

MMINS Num Learning time (minutes per week) - Mathematics

PAREDINT Num Index highest parental education (international years of schooling scale)

PERCOMP Num Perception of competitiveness at school (WLE)

PERCOOP Num Perception of cooperation at school (WLE)

PERFEED Num Perceived feedback (WLE)

PERSPECT Num Perspective-taking (WLE)

REPEAT Cat Grade Repetition

RESILIENCE Num Resilience (WLE)

RESPECT Num Respect for people from other cultures (WLE)

SCCHANGE Num Number of school changes

SCREADCOMP Num Self-concept of reading: Perception of competence (WLE)

SCREADDIFF Num Self-concept of reading: Perception of difficulty (WLE)

SMINS Num Learning time (minutes per week) - <science>

SOCONPA Num Social Connections: Parents (WLE)

SOIAICT Num ICT as a topic in social interaction (WLE)

ST004D01T Cat Student (Standardized) Gender

STIMREAD Num Teacher’s stimulation of reading engagement perceived by student (WLE)

STUBMI Num Body mass index of student

SWBP Num Subjective well-being: Positive affect (WLE)

TEACHINT Num Perceived teacher’s interest (WLE)

TEACHSUP Num Teacher support in test language lessons (WLE)
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Table B1 (continued)

Variable name Type Description

TMINS Num Learning time (minutes per week) - in total

UNDREM Num Meta-cognition: understanding and remembering

USESCH Num Use of ICT at school in general (WLE)

WEALTH Num Family wealth (WLE)

WORKMAST Num Work mastery (WLE)

Appendix C. Dimensionality reduction derived variables

Table C1

Principal components extracted from numerical variables and the original variables with a 
correlation larger than 0.5 in absolute value.

Name Original variable 𝜌

1 Students’ perception of teacher engagement TEACHSUP 0.7761

ADAPTIVITY 0.7694

STIMREAD 0.7564

DIRINS 0.7514

TEACHINT 0.7427

PERFEED 0.6616

2 Student home resource advantage HOMEPOS -0.9469

ICTRES -0.8636

WEALTH -0.8553

ESCS -0.6562

ICTHOME -0.6505

HEDRES -0.5922

CULTPOSS -0.5480

3 Economic, social and cultural status HISEI 0.9419

ESCS 0.9196

BMMJ1 0.8337

BFMJ2 0.8018

PAREDINT 0.7224

4 Psychological well-being BODYIMA -0.6302

RESILIENCE -0.6025

GFOFAIL 0.5983

SWBP -0.5889

BELONG -0.5124

5 Work mastery and parents’ emotional support MASTGOAL 0.6489

WORKMAST 0.6473

EMOSUPS 0.5797

ATTLNACT 0.5496

6 Global cultural attitudes INTCULT 0.6878

RESPECT 0.6494

PERSPECT 0.6398

GLOBMIND 0.5835

ATTIMM 0.5688

7 Reading confidence and competence SCREADCOMP -0.7712

SCREADDIFF 0.6611

JOYREAD -0.6125

GCSELFEFF -0.5297

8 ICT empowerment AUTICT 0.7729

COMPICT 0.7634

INTICT 0.6395

SOIAICT 0.5883

9 Financial confidence and competence FCFMLRTY 0.6761

FLSCHOOL 0.6735

FLCONFIN 0.5731

FLCONICT 0.5583

10 ICT use for learning USESCH -0.7028

HOMESCH -0.6327

ICTOUTSIDE -0.6080

ICTCLASS -0.5706

11 Meta-cognition and discriminating school climate METASUM 0.5732

DISCRIM -0.5638

12 School changes SCCHANGE 0.9482

CHANGE 0.9480

13 Learning time MMINS 0.8516

LMINS 0.8305
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Table C2

Components extracted from categorical variables and the original variables 
with a 𝜂2

𝑝
larger than 0.14.

Name Original variable 𝜂2
𝑝

14 Repetition and immigration index REPEAT 0.6150

IMMIG 0.5717
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