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Introduction 
 
The study of spatial patterns of genetic variation is useful to infer evolutionary 
processes (Cavalli-Sforza et al., 1993). However, appropriate techniques for spatial 
analysis are scarce; they usually highlight the existence of nonrandom patterns of 
genetic variation but do not provide information on the source and direction of the 
evolutionary processes we are interested in assessing.  
 
Yet again, the techniques available for visualizing genetic variables on physical maps 
are limited and are based on the simple interpolation of the genetic information between 
two given locations (Menozzi et al., 1978). Interpolation can be a robust tool, since we 
can always obtain a vector connecting two distant places when genetic information from 
areas located between them is not available, and has consequently been widely used 
(Cavalli-Sforza et al., 1993; Beja-Pereira et al., 2002; Hanotte et al., 2002).  
 
However, we may be interested in assessing geographical patterns of genetic variation 
taking into account the fact that not each and every one of the alleles carried by a 
population may be found at a single geographical coordinate. Individuals are usually 
more or less uniformly distributed in an area and the genetic variability we may find in 
an area around a geographic point will in fact be formed by the presence of individuals 
from different populations. In addition, if the variable to be mapped at two neighboring 
geographic points has similar values (despite the allelic frequencies of the population 
being different), the interpolation between them will tend to be constant. 
 
Another problem is the selection of the genetic variables to be projected. Menozzi et al. 
(1978) proposed the use of principal component analysis to obtain (at least) one new 
synthetic variable summarizing most of the available genetic information. This 
technique has a number of limitations: genetic information may be partially lost in the 
computation of the factors and the number of components we can obtain will depend on 
the data set. However, its major limitation is that the computed synthetic variables are 
not directly informative and must be interpreted. Of course, each component provides a 
different picture on the same geographic map. Clearly, the procedure will be more 
useful if a large amount of the information can be summarized using only a few 
variables that need not be interpreted. Recent papers (see Widmer and Lexer, 2001) 
have highlighted the need to assess both the observable frequencies of marker alleles 
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(i.e. Nei’s gene diversity; Nei, 1987) and the distribution of the alleles (i.e. allelic 
richness; Hurlbert, 1971) in order to ascertain how populations evolve. 
 
In this presentation we propose the use of a single approach to assess the geographical 
patterns of gene variation from multilocus information. Our aim is helping the major 
drawback shared by the previously available methodologies: the assumption that all the 
samples obtained for a given population come from a predetermined location (Wasser et 
al., 2004). We advocate summarizing multilocus genetic information in just two clearly 
defined and easily interpretable parameters that will allow us to estimate gene flow 
patterns, taking into account both the highly stochastic nature of gene variation 
(diversity) and the distribution of rare alleles, as an estimation of the uniqueness of the 
populations. The model we have in mind takes into consideration that the sampled 
populations can have a particular geographical spreading and its individuals can be 
sampled in any location in the distribution area of the population to which belong. In 
consequence we advocate for the assessment of the genetic variation associated with 
each geographical point on our map to infer evolutionary patterns rather than that 
associated with a previously defined population. The methodology described below has 
been implemented in the program GeoGen, which can be freely downloaded from the 
World Wide Web at http://www.aic.uniovi.es/GeoGen/. 
 
Materials and Methods 
 
Throughout this work we will manage two concepts: a) population, which is here a 
whole of sampled individuals sharing historical, geographical or genetic characteristics 
that is described by 3 main attributes: size, distribution area (with center in a point 
called node following Menozzi et al., 1978) and a set of allelic frequencies; and b) 
deme, which is here the whole individuals (or better the whole set of alleles) belonging 
to any ‘real’ population located in an area around a given geographical point in a map 
here notated as (x,y). In other words, here population is the input from which we will try 
to infer the allelic distribution in a geographical map and demes are the ‘working 
populations’ from which we will compute the genetic variables associated to each 
geographical point. We will start from actual information at a population level (using at 
least the 3 attributes listed above) to compute the most likely distribution of the alleles 
represented in our population’s set in an area around each point (x,y) in our map 
(deme). We will compute various genetic variables on each deme and, finally, the 
computed genetic variables will be graphically represented onto the map to allow visual 
inspection of possible patterns of variation. 
 
Our methodology assumes that genetic information is only available at a population 
level and that we do not know the exact location at which individuals belonging to each 
population have been sampled. However, we can estimate the most probable 
distribution of the individuals of a population in a given area. To do so, we will need the 
following parameters: a) a node (main geographical location for a given sampled 
population); b) a radius from the node to define an area in which we can expect to find 
individuals belonging to a given population; c) an arbitrary definition as to the way in 
which the individuals are distributed in the area assigned to their population (basically 
assuming the same density of individuals throughout the area or a uniform loss of 
density from the data point to the periphery of the distribution); and d) an estimate of 
the actual population sizes. A number of individuals like that of the size of the 
population are distributed in the area around each node. Typically, we can expect a non-
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uniform distribution of the genotypes in the area of population spread. In such a 
situation, our methodology assumes that the density of individuals decreases with the 
distance to the node: the more distant the geographical point, the lower the probability 
of finding an individual belonging to the population. 
 
Being available the information above for each population we will first determine the 
number of individuals of each population that might be found in an area surrounding (x, 
y) and that hence have some influence on the genetic variation at this point (see please 
Figure 1). All the individuals belonging to any population that can be found in the area 
fitted around (x, y) will form the deme affecting genetic variation at this point. To 
implement this step, we need a radius (rd) that defines the deme’s area, which is the area 
of influence of each geographical point (x, y). Then, the number of individuals 
belonging to the population s that are likely to be present in the deme’s area can be 
computed from the proportion of individuals of the population present in a circle of 

centre (x, y) and radius rd as 
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C(x, y) ∩C(s) is the intersection between the circle of radius rd with centre in (x, y) and 
the circle of radius rs with centre in the node ps; Ds is the density function of population; 
and int stands for the function that computes the integer part of a real number. The 
whole individuals belonging to any population located in the circle of radius rd and 
centre in (x,y) is the deme associated to this geographical point on which we will 
compute the genetic variables to be represented onto a map. 
 
Further, to compute the genetic variables associated to the point (x, y) we have to read 
the individuals of each population forming the deme as sets of alleles taking into 
account the available allelic frequencies for each population. To discuss this point, let us 
fix a population s and a locus l with alleles in {1, …, ml}. A first attempt would be to 
consider that we have in C(x, y) ∩C(s) each of the alleles present in the population s, 
and that the number of such alleles would be proportional to the number N(x,y,s) of 
individual of s around (x, y). However, this is not a realistic assumption, since rare 
alleles are not likely to be present if N(x,y,s) is small. Therefore, we opt to distribute the 
twice N(x,y,s) alleles according to their relative frequency in the population s. So, given 
a pair (a1,a2) of different alleles on the locus l and assuming the independence of their 
apparition in each individual, we will simply have: )f)f)( 2121 al,s,al,s,ls,|a,a ((Pr ∗=  
 
Genetic variables to be mapped 
 
Once we known the allelic frequencies associated to each point in map we will compute 
two genetic measures computed following the methodology proposed by Shannon 
(1948): a) diversity D(H) which is defined as the entropy associated with the probability 
distributions of the allelic frequencies in a set of loci; and b) uniqueness (U) which is 
defined as the entropy associated with the probability distribution of an allele across loci 
and populations. The Shannon’s formula defines the entropy H of the variable X is 
defined by 
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where pi is the probability associated with a certain value of a random variable X. Since 
allelic frequencies at a given locus represent a probability distribution with associated 
entropy, diversity (D(H)) would simply be the average entropy associated with 
multilocus genotype information; the more polymorphic and the more uniform the 
alleles are distributed in the sampled loci, the higher the value of associated entropy will 
be. 
 
On the other hand, we use Shannon’s formula to assess genetic uniqueness (U). In terms 
of entropy, the rarity of a given allele can be assessed with respect to the population in 
which it is found and across the entire set of sampled populations. The idea is that rare 
alleles (those present in one or just a few populations in low frequency) produce higher 
U values than those uniformly distributed across populations. Across populations, we 
have a discrete distribution for each allele a on loci l in each population s. However, the 
rare alleles will yield values of entropy (H(l,a)) near 0, while the highest values will be 
reached by those alleles uniformly spread in all populations, with values near log2 of the 
number of populations (N). Since we are interested in emphasizing the rarity of the 
alleles, we have to invert the computed values of entropy in order to obtain a first 
approach to the uniqueness (U) of a given allele across populations. Thus, we define 

),()(log),( 2 alHNalw −=  and then we use w(l,a) to weight the absolute frequency 
(n) found for the allele a on locus l for the individuals belonging to the population s in 
the deme’s area around (x, y), and finally, we define 
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which is a good approach to our requirements; the less frequent and the less smoothly 
distributed allele across populations, the higher the value of associated U will be. 
 
Data sets 
 
The methodology is demonstrated by applying it to: a) two microsatellite data sets for 
livestock populations of the ovine (unpublished) and bovine (Beja-Pereira et al., 2003; 
Jordana et al., 2003) species; and b) a published microsatellite data set for Eurasian otter 
(Lutra lutra) in Scotland (Dallas et al., 1999; 2002).  
 
The first one livestock dataset genetically describes the rare Xalda sheep breed 
(including less than 600 live individuals) located only in Asturias (Northern Spain) 
(Goyache et al., 2003). For this study, 160 individuals were genotyped for a previously 
published set of 14 microsatellites (Álvarez et al., 2004; 2005). These 160 individuals 
can be classified in 14 different herds (population sample size ranging from 4 to 33). 
Allelic frequencies, population sizes and geographical locations for the described 
dataset are given as example data with the program GeoGen. 
 
The second one livestock dataset consists of a total of 749 unrelated individuals from 10 
Spanish and 5 Portuguese cattle breeds that were genotyped for 16 microsatellites in an 
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extensive study of genetic diversity in the local bovine populations of the Iberian 
Peninsula (Beja-Pereira et al., 2003; Jordana et al., 2003). Patterns of genetic variation 
for this dataset were recently assessed using Principal Component Analysis and 
interpolation (Beja-Pereira et al., 2003), thus being useful to distinguish some 
interesting differences between methodologies. 
 
Both datasets are valuable tests for our method, as the amount of differentiation between 
populations was fairly wide (observed pairwise FST values ranging between 0 and 0.186 
for the ovine dataset and from 0.032 to 0.148 for the bovine dataset - Jordana et al., 
2003). In the ovine dataset, geographical distances between the populations all occur in 
a limited area. In the bovine dataset, however, some populations are fairly close to one 
another, with no obvious physical barriers to gene flow between them (e.g. those settled 
in the Cantabrian Range), while others are separated by large geographical distances 
and management systems (e.g. the three Southern Iberian breeds included in the dataset 
and those breeds settled in the Pyrenean Mountains).These samples allow us to 
determine the effect of differences in genetic differentiation on our method’s ability to 
obtain reliable geographical patterns of gene variation when this is more likely to be the 
result of different selection forces combined with genetic drift. 
 
The Scottish otter dataset has been used as a useful test bench for our method, as the 
genetic differentiation between geographical populations is not dependent on human 
management. This natural population has been extensively characterized (Dallas et al., 
1999, 2002) showing a strong, unexpected pattern of isolation by distance in the 
continuous otter population on the mainland, mainly affecting southern versus northern 
populations. Significant differences in genetic composition were found among groups of 
otters in areas between which no obvious barriers to movement exist. 
 
Results and Discussion 
 
The projections of diversity and uniqueness for the Xalda datasets using both our 
methodology and interpolation are shown in Figure 2. We can only clearly detect a 
gradient from west to east for both diversity (D) and uniqueness (U)  using our new 
methodology, thus leading us to consider the western Xalda populations as the most 
important for the breed, what is consistent with the history of the recovery of the breed 
(Álvarez Sevilla et al., 1982; Álvarez Sevilla et al., 2003). The spot identified for 
uniqueness in the easternmost area of distribution of the Xalda population is more likely 
to be the result of finding a contact zone in which some rare alleles that are non-
uniformly distributed in the populations of the area would be ideally represented. 
 
On the other hand, the maps built from the bovine dataset (Figure 3) can be assessed 
taking into account the previous work by Beja-Pereira et al. (2003). These authors 
identified two main principal components respectively explaining 16 and 12% of the 
total genetic variation in the dataset. Synthetic maps constructed interpolating the 
factors (Menozzi et al., 1978) clearly distinguish four Northern Iberian breeds from the 
others (first factor) and gave an east–west gradient of genetic variation (second factor) 
that was tentatively explained by the authors as consistent with the model of demic 
diffusion of agriculture suggested by Cavalli-Sforza et al. (1993). Although the 
interpolation of diversity (D) and uniqueness (U) do not give plots consistent with those 
provided by Beja-Pereira et al. (2003), our methodology is useful in explaining that the 
first factor of these authors is a variable combining both diversity (D) and uniqueness 
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(U). The Northern Iberian area identified as a hot spot of variability by Beja-Pereira et 
al. (2003) includes the breeds in which we detected the highest diversity and 
uniqueness. In contrast with our methodology, interpolation does not give images that 
are consistent with those previously reported by Beja-Pereira et al. (2003). The analysis 
of this dataset highlights the importance of using well-defined and easily interpretable 
variables to ascertain geographical patterns of gene variation. 
 
Projections of diversity (D) and uniqueness (U) for the Scottish otter dataset using both 
our methodology and interpolation are shown in Figure 4. When diversity is projected 
using our methodology, we can identify three spots of variability, the main one based on 
the Tayside population and two less important ones for the Inverness and Strathclyde 
populations. In addition, there seems to be continuity in diversity in the eastern 
population with its centre in Tayside and extremes in the Dee River and the Borders 
population. When interpolation is used, however, only one centre of variability can be 
found (Tayside), spreading mostly in a northerly direction and showing non-consistent 
geographical continuity with the Inverness population. When uniqueness is projected, 
both our methodology and interpolation identify two hot spots associated with the 
Tayside and Dumfries populations. With our methodology, however, the uniqueness of 
the population of eastern Scotland seems to have similar patterns of variation as 
diversity.  
 
The two livestock datasets analysed here show that our methodology is useful to 
identify patterns of genetic variation resulting mainly from genetic drift (genetic 
isolation in many small herds characteristics of the Northern Iberian 
Peninsula).Moreover, the maps obtained using our methodology do not need 
interpretation and we know their meaning exactly. Thus, our methodology can be 
compared with principal component analysis in detecting patterns of gene variation but 
is unquestionably more useful in detecting geographic areas acting as reservoirs of 
diversity and which are probably important targets for conservation purposes. On the 
other hand, the analysis of the Scottish otter dataset shows that our methodology may be 
of interest for population management and conservation purposes. As regards both 
diversity and uniqueness, up to three different programs should be implemented: one 
including the northernmost Scotland populations with its centre in Tayside in which 
dispersal should be facilitated; a second affecting the southernmost otter populations, in 
which maintaining the present levels of diversity and uniqueness should be the main 
goal; and finally, a conservation program for the autonomous Inverness otter 
population.  
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Figure 1: This figure illustrates the assumptions of our methodology. Given three 
populations (pop1, pop2 and pop3) with known distribution the areas Cpop1, Cpop2 
and Cpop3 with centre in, respectively, node1, node2 and node3 and characterized by 
different allelic frequencies we can know how many individuals from each population 
are in an area around a given geographical point in our map (C(x,y); in dark) and 
convert this deme in a set of alleles to compute genetic variables associated to the 
coordinates (x,y). 
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Figure 2: Projection of a microsatellite dataset corresponding to 160 individuals of the 
rare Xalda sheep breed of Asturias distributed in 14 different herds (sample size ranging 
from 4 to 33). The variables projected are diversity (D) (Figures 1a and 1b) and 
uniqueness (U) (Figures 1c and 1d) using both the methodology presented here (Figures 
1a and 1c) and interpolation (Figures 1b and 1d). Names of the populations are 
presented in the figures. 
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Figure 3: Projection of a microsatellite dataset corresponding to 749 unrelated 
individuals from 10 Spanish and 5 Portuguese cattle breeds (sample size ranging from 
49 to 50). The variables projected are diversity (D) (Figures 2a and 2b) and uniqueness 
(U) (Figures 2c and 2d) using both the methodology presented here (Figures 2a and 2c) 
and interpolation (Figures 2b and 2d). Nodes of the sampled populations are represented 
in the figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Projection of a microsatellite dataset corresponding to 213 individuals 
belonging to 9 Scottish populations of Eurasian otter (Lutra lutra) (sample size ranging 
from 12 to 47). The variables projected are diversity (D) (Figures 3a and 3b) and 
uniqueness (U) (Figures 3c and 3d) using both the methodology presented here (Figures 
3a and 3c) and interpolation (Figures 3b and 3d). Abbreviations correspond to the 
following geographical populations: ARG (Argyll), BOR (Borders), DEE (Dee River), 
DON (River Don), DUM (Dumfries), GAL (Galloway), INV (Inverness), STR 
(Strathclyde) and TAY (Tayside).  
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