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Abstract 

 

        The relations between self-diffusion and viscosity for compressed liquids and gases have 

been reviewed, and a new equation for correlating viscosities over wide ranges of temperature 

and pressure is proposed. This formula is inspired by the Lennard-Jones Chain model of Yu 

and Gao for self-diffusion, and represents the viscosities of 15 compounds (1046 data points) 

with an average absolute deviation of 6.95%. Moreover, as the presented equation and the Yu-

Gao model require the same fitting parameters, the ability to calculate self-diffusion 

coefficients from the viscosity parameter is studied. Some of the classic reviewed relations, 

such as the Stokes-Einstein formula, are also contrasted with the available experimental data 

of both transport properties. 
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1. Introduction 

 

Viscosity is probably the most widely known and studied transport property, and there exists 

a great amount of experimental data in the literature leading to the establishment of theoretical 

or empirical models for this (Monnery et al., 1995; Reid et al., 1987). On the other hand, self-

diffusion has not received so much attention, partly due to the difficulties in measuring: 

isotope tracer techniques or more recently, nuclear magnetic resonance are complex methods 

that can not compete with viscosimeters (Tyrrell and Harris, 1984). Both properties imply a 

movement of molecules, and so a relation between them could exist, the hydrodynamic 

equation of Stokes-Einstein being the most popular. 

 

        Despite common opinion, methods for predicting viscosities in dense gases and 

compressed liquids do not abundant. For dense gases, the equations of Reichenberg, Lucas 

and Chung are useful (Monnery et al., 1995; Reid et al., 1987), but in liquids, only the 

saturated liquids have been widely studied (Hsu et al., 2002; Monnery et al., 1995; Reid et al., 

1987). For all fluid states, only the methods of Ely and Hanley (1981), Monnery et al. (1998) 

and the viscosity equations of state (Guo et al., 2001) can be employed, but none are problem 

free. The method of Ely-Hanley is based on the extended corresponding states, but is not good 

to predict the properties of non-hydrocarbon substances (Hwang and Whiting, 1987) and all 

the posterior modifications make the method correlative, not predictive (Huber et al., 2003; 

Hwang and Whiting, 1987; Monnery et al., 1991). Monnery and coworkers developed a 

modified square well intermolecular potential model, but this is a function of a molecular 

diameter calculated by group contributions, and viscosity is highly sensitive to this diameter 

(Galliero et al., 2005). Finally, the viscosity equations of state are empirical cubic equations 
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of state based on the morphological analogy between P-V-T graphs and P--T diagrams, and 

were only used for alkanes.  

       Regarding self-diffusion coefficients, there is no predictive way of obtaining these, 

except for dilute gases. The classic charts based on the corresponding states principle (CSP) 

were  elaborated with scarce experimental data (Bird et al., 1982; Bueno et al., 1990; 

Ramanan and  Hamrin, 1972; Takahashi, 1974; Tee et al., 1966b) and the Lennard-Jones (LJ) 

models are very sensitive to molecular diameters, and so can only can be used in a correlative 

way (Bachl et al., 1992;  Liu et al., 1998; Ruckenstein and Liu, 1997; Yu and Gao, 1999). 

These last models are all based on molecular dynamics simulations, and transform 

expressions for hard-sphere (HS) fluids into formulas for LJ fluids by means of effective HS 

molecular diameters and additional terms of attractive forces. 

 

      In the present work, the models relating viscosity and self-diffusion are reviewed, and a 

new LJ correlative equation for viscosity is proposed. This equation would be 

“complementary” to the Yu-Gao equations for self-diffusion (Yu and Gao, 1999, 2001), 

which describe molecules as chains of tangent LJ spheres. The adjustable parameters for the 

viscosities of real fluids (two for non-hydrogen-bonding substances and four for hydrogen-

bonding compounds) are expected to be the same as those for self-diffusion. The prediction of 

the Yu-Gao equations with these parameters for 16 substances are compared with the results 

of the other models. 

  

 

2. Relations between viscosity and diffusion coefficients in liquids 

 

2.1. Hydrodynamic theories 
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        These are all based on the Nernst-Einstein equation (Bird et al., 1982; Simons and 

Ponter, 1975), which states that the diffusivity of an isolated particle or solute molecule A 

through a solvent B is 

ABA

A
AB

kTv
kTD




F
                                                      (1) 

 

where k is the Boltzmann constant, T the absolute temperature, vA the particle velocity and FA 

the force that is acting on it. The ratio between velocity and force is termed the "movility" of 

the particle, and is equal to the inverse value of the friction coefficient, AB. Starting from the 

hydrodynamic basis, Basset has obtained a relation between the force and the velocity of one 

rigid sphere moving as “creeping flow” through a continuous fluid: 

 

















ABAB

ABAB
AABA

J

J
v






5,03

5,02
3F                                                (2) 

 

the JAB parameter is the sliding friction coefficient, A the molecular diameter of the solute 

and B the viscosity of the solvent. When the fluid does not slip on the sphere surface, this 

coefficient has an infinite value, and the previous equation becomes the Stokes formula: 

 

AABA v 3F                                                                     (3) 

 

    Substituting this expression of the force in the Nernst-Einstein equation, the well-known 

Stokes-Einstein equation is obtained: 

AB

AB

kT
D

3
                                                                    (4) 
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     If the fluid slips on the sphere surface, JAB =0 and the other limiting case of Basset 

expression is obtained: the so-called Sutherland equation 

 

AABA v 2F                                                             (5) 

 

                                                      
AB

AB

kT
D

2
                        (6) 

 

        The most important modification of the Sutherland formula is due to Li and Chang 

(1955), who supposed that fluid molecules were organized in a cubic cell, so in a pure 

substance, A=B, and the molecular diameter can be calculated from molar volume (V) and 

Avogadro’s number (Nav), 

 

3/1

2










V

NkT
D av


                                                              (7) 

                                 

       Eq. (7) predicts the self-diffusivities in polar, non-polar, hydrogen-bonding compounds 

and liquid metals at atmospheric pressure with average deviations of 12%. 

 

       Although the Stokes-Einstein equation supposes that the spherical particle moves through 

a continuous solvent, it has been applied to self-diffusion (molecules of the same size), and to 

non-spherical particles obtaining molecular diameters smaller than the real ones. On the other 

hand, the Sutherland equation provides much more meaningful diameters, and even molecular 

dynamics simulation data verifies it (Alder et al., 1970). Nevertheless, the products D/T and 

DV1/3/T are not constant along the liquid saturation line, increasing when the temperature 
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rises (Ertl et al., 1974; Gaven et al., 1962a; Rathbun and Babb, 1961). At elevated pressures it 

seems that only in a few compounds is kT/D invariable, although not exactly equal to 2. 

These substances are tetramethylsilane (Parkhurst and Jonas, 1975b), carbon tetrachloride 

(McCool and Woolf, 1972b), perfluorocyclobutane (Finney et al., 1977), cyclohexane (Jonas 

et al., 1980), methylcyclohexane (Jonas et al., 1979) and hexadecane (Vardag et al., 1991). 

The last two have values of kT/D  equal to 1.45 and 4.2, respectively. In benzene, McCool 

et al. (1972) consider that it is not constant, but Parkhust and Jonas (1975b) observe the 

opposite. The same contradiction between the data of different researchers appears in water 

and its isotopic derivatives: Krynicki et al. (1978) and Kiselnik et al. (1973) consider that 

Sutherland expression is roughly applicable, but the majority claim that is not valid (Harris 

and Woolf, 1980; Wilbur et al., 1976; Woolf, 1975, 1976). In substances like pyridine (Fury 

et al., 1979), hexane (Harris, 1982), carbon dioxide (Groβ et al., 1998), alcohols (Jonas and 

Akai, 1977; Meckl and Zeidler, 1988),  2-ethylhexylbenzoate (Walker et al., 1988), 1,2-

dichloroethane (Malhotra et al., 1990) and even the methane (Easteal and Woolf, 1984a), the 

group D/T  is temperature and/or pressure dependent.    

 

       The influence of temperature and pressure on the group DV1/3/T has been overly studied, 

but in liquid and supercritical carbon dioxide (Etesse et al., 1992) this group is not constant. 

 

 

2.2. Empirical modifications of Stokes-Einstein or Sutherland   

 

      The most well-known modification of Eqs. (4) and (6) are due to Hayduk and Cheng 

(1971). These authors studied the binary diffusion at infinite dilution of a solute in a wide 

variety of solvents, and proposed 
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2

C
C1 D                                                                      (8) 

 

where C1 and C2 were only functions of solute properties if there were not strong solute-

solvent interactions. Davis et al. (1980) proposed 

 

2.298

C2C1
T

D                                                          (9) 



10

1

10592.2
166.1C


                                             (10) 

  013.6C67.11C10 12

10 Ln                                      (11) 

 

with the molecular diameter determined as in Eq. (7) from low-temperature saturated liquid 

densities. 

 

        2.3. Intermolecular potential models: the hard-sphere 

 

        An HS liquid is a system in which only repulsive forces are present. Longuet-Higgins 

and Pople (1956) developed theoretical expressions for the tree transport coefficients in this 

fluid. These expressions for self-diffusion and viscosity were 

 

 1
1

4 


Zm

kT
DHS 

                                                              (12) 
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2
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
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where m is the mass of the sphere,  the numerical density and Z the compressibility factor. 

Vadovic and Colver (1972) combined both equations, obtaining 

  2

10

1







kT

D
HS

                                                                (14) 

 

       They assumed that the HS diameter was proportional to the liquid volume at melting 

point, Vf, and empirically adjusted the proportionality constant with experimental data of 

polar, non-polar, hydrogen-bonding compounds and liquid metals at atmospheric pressure 

 

3/2

f

16102707.0 V
kT

D 



                                                     (15) 

 

with an average error of 6%. 

 

 

        2.4. Intermolecular potential models: the rough-HS 

 

        The equations obtained by Enskog for the three transport properties in HS fluids 

(Hirschfelder et al., 1964) were corrected by the molecular dynamics simulations of Alder et 

al. (1970). These corecctions were adjusted empirically by Dymond (1974), who obtained in 

the high density range, 1.5  V/V0  2.0, 

 

  0

0 /384.11271.1 DVVDHS                                             (16) 
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where V0 is the close-packed molar volume, equal to  
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and the superscript 0 indicates that the property is evaluated at low-pressure limit 

(Hirschfelder et al., 1964), 

 

m

kT
D

 2

0

8

3
                                                                   (19) 
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mkT
2

0

16
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         The only adjustable parameter was the molecular diameter, which could be temperature 

and pressure dependent. Dymond obtained  from the viscosity at the same temperature and 

pressure that the self-diffusion data, and predicted the values of compressed liquid CCl4 with 

an average deviation of 7%. Krynicki et al. (1978) and Woolf (1975) did the same for water 

and Van Loef (1977a, b) applied Eqs. (16) and (17) to hydrogen and other satutated liquids.  

  

         Nevertheless, the procedure of Dymond has an important limitation: it supposed that the 

coupling factors for diffusion and viscosity, AD and A, are equal to unity. These factors were 

introducted by Chandler (1975) who states that 

 

SHS

D

RHSreal DADD                                               (21) 



12 

SHSRHSreal A                                                 (22) 

 

          The transpor property of a real system is supposed to be the same as that of a rough-

hard-sphere (RHS) fluid, which is described as the product of a coupling factor to the property 

of a smooth-hard-sphere (SHS) liquid. The SHS property would be calculated with the HS 

expressions using effective diameters (temperature and/or pressure dependent). In general, AD 

<1.00 and A>1.00, and they are temperature dependent (Finney et al.,1977; Fury et al., 1979; 

Jonas et al., 1979, 1980), but in some cases AD can be a function of density as well (Easteal 

and Woolf, 1984c, 1987; Malhotra et al., 1990; Walker et al., 1988). Nevertheless, this 

density dependence is probably due to the fact that the authors do not fit the molecular 

diameters from self-diffusivities, but from the liquid molar volume at melting point as 

suggested by Easteal and Woolf (1984a, b) so the whole weight of the fitting falls on AD. 

According to Chandler the coupling factors had to be constant, so the temperature and/or 

density dependence is due to the influence on D and  of all the effects neglected in the HS 

model, e.g. attractive forces, deviations from spherical symmetry and anisotropic interactions. 

There is no known method to estimate these, and the authors who have tried to correlate the 

tree transport properties at the same time with equal diameters (there also exists a coupling 

factor for thermal conductivity), have had to use these coupling factors as adjustable 

parameters (Assael et al., 1992; Bleazard and Teja, 1996). 

 

 

2.5.  Houghton's model 
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         Houghton (1964) treats viscosity and self-diffusion as stochastic processes, in which the 

liquid molecules are confined in cubic cells of side length . With the Navier-Stokes and 

Langevin equations, he obtained 

2
24




                                                                         (23) 

and as X-rays measures indicated that the side length was  = 2(V/Nav)
1/3 ,  

3/2

6 











avN

VkT
D




                                                              (24) 

 

        The average deviation is 9% in liquids at atmospheric pressure, but Eq. (24) indicates 

that product DV1/3/T is constant, like the Li-Chang modification of the Sutherland equation. 

 

 

2.6. Dullien's model 

 

         From Lamm's theory for binary diffusion, Dullien (1963) has derived an expression for 

calculating the mean distance of momentum transfer between colliding molecules, d, 

measured in the normal direction of the transport plane in function of intradiffusion 

coefficients. For one component system, it is simplified to  

d 
kT

D



2
                                                            (25) 

 

        Later, Dullien (1972) found a relation between this distance and the molecular diameter. 

He did not use hydrodynamic or kinetic theories; only supossing that in a liquid near melting 

point the molecules were very compacted, without translating, and that they could only 
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oscillate between their neighbours: the momentum transfer was produced when one vibrating 

molecule collided with these neighbours. This assumption, and the Newton's law gave  

 

kT

D




 24.2                                                          (26) 

 

         Starting from the dumbbell model, Allal et al. (2001) obtained, for liquid viscosity, that 

=L2, which introduction in Eq. (1) gives a similar relation (Boned et al., 2004). L was a 

characteristic molecular distance. 

   

         Dullien applied Eq. (26) to saturated liquids, from melting point to boiling point, and 

obtained near-constant values of molecular diameters, excepting methanol and ethanol (these 

are both hydrogen-bonding liquids, and these bonds break when temperature increases). At 

temperatures higher than boiling, the molecular diameter increases with the temperature. The 

diameter could be empirically related with the critical volume, Vc, with an average deviation 

of 4% as 

 

3/216101240.0 cV
kT

D 



                                                          (27) 

 

        This equation is similar to Eq. (15) if the relation Vf =0.31Vc  is taken. Nevertheless, Ertl 

and Dullien (1973) revised this for many compounds, and observed that the diameter was not 

constant between melting point and boiling point: there was a minimum in the curve   vs. Tr, 

so they proposed 
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          Concerning the temperature and pressure influence on the group D/kT, this has only 

been studied for water (Krynicki et al., 1978; Woolf, 1975) and 1,2-dichloroethane (Malhotra 

et al., 1990), and dependence of both variables has been found.  

 

 

         2.7. Packed-bed model 

 

       Sęk (1996) combined the Basset equation with the Blake-Kozeny-Carman formula to 

obtain an expression for the force in the Nernst-Einstein expression. He supposed that the bed 

volume was equal to the molar volume of the liquid, that the number of packed particles 

coincided with the Avogadro number, and that the porosiy could be identified with the free-

volume fraction between molecules, obtaining 
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        The factor fSek included two other factors: that of tortuosity and the proportionality 

constant in the Blake-Kozeny-Carman formula. Contrary to packed-beds, this factor was not 

constant, but was a function of both temperature and pressure. Porosity was calculated as 
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and the diameter with Eq. (26). After analyzing a lot of experimental saturated liquids (polar, 

non-polar and hydrogen-bonding), Sęk proposed 
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which is not valid near the critical point. The self-diffusion has to be obtained by trial and 

error in Eq. (30). 

 

       Despite good predictions, if the global equation is examined, a considerable error is 

observed: this is that F(DV1/3/T)=0, so DV1/3/T must be constant. The concordance between 

calculated and experimental data is due to the sensitivity of Sęk's formula to the initial test 

values, and to the tolerance imposed in order to accept the final result.     

 

2.8. Empirical correlations 

 

       Harris (1982) and Harris et al. (1993) correlated, at the same time, viscosity and self-

diffusion with eight fitting parameters. The reference temperature was arbitrarily chosen as 

273.16 K, and the excluded volume was defined as in Eq. (18). 
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        The good correlations obtained for hexane, octane, toluene and trichloromethane, 

together with the fact that only 3  6 could indicate that it is not possible to obtain any 

simple relation between self-diffusion and viscosity. 

 

 

3. Relations in all fluid states 

 

        3.1. The Enskog approach and the kinetic theory of dilute gases 

 

         Enskog developed equations for the three transport properties in HS fluids assuming that 

only binary molecular collisions were important and that there was no correlation between 

succesive collisions (Reid et al., 1987; Stephan and Lucas, 1979), 
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where b= (2/3)Nav3 is the second virial coefficient of the HS fluid and g () the radial 

distribution, which can be obtained by an equation of state as 

 

Z=PV/RT=1+bg ()/V                                                   (39) 

 

being the expression of Carnahan and Startling (1969) the most widely used for calculating 

this radial distribution    
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where * =3 =21/2V0/V is the molecular reduced density. As real fluids are not hard-spheres, 

Enskog employed the thermal pressure, T(P/T)V instead of P and the second virial 

coefficients of the real substances, B(T) in Eq. (39). So, g () and b were then defined as 

(Hanley et al., 1972) 
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dT

dB
TB b                                                           (42) 

 

Nevertheless, even in gases at low pressures Eqs. (19) and (20) fail because of the inadequacy 

of the hard-sphere potential. If the LJ intermolecular potential is selected, the results at 

atmospheric pressure are very good (Hirschfelder et al., 1964): Eqs. (19) and (20) only have 

to be divided by (1,1) and (2,2), respectively, which are the collision integrals for diffussion 
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and viscosity, and are exclusively functions of reduced molecular temperature T*=kT/LJ, 

where LJ is the Lennard-Jones characteristic energy. A lot of values of LJ and LJ are 

tabulated (Hirschfelder et al., 1964) and empirical formulas are available to calculate these 

two parameters (Chen and Othmer, 1962; Stiel and Thodos, 1962; Tee et al., 1966a; Tham 

and Gubbins, 1969). 
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          These numerical adjustments were made by Neufeld et al. (1972) and are valid in the 

range of 0.3 <T*<100. The resultant expressions for the transport properties are known as 

Chapman-Enskog formulas. Self-diffusion can now be obtained from viscosity without the 

knowledge of LJ as (Weissman and Mason, 1962) 
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where the ratio between collision integrals is not too temperature dependent, so the influence 

of the value of LJ is low.  
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        The popular generalized chart of Slattery and Bird is based on the Enskog theory 

together with the Chapman-Enskog formulas (Bird et al., 1982; Mathur and Thodos, 1965; 

Stiel and Thodos, 1965).  bg ()/V  was obtained from Eq. (41) and g() was calculated from 

Eq. (37) replacing E and 0 with real and LJ, respectively. The generalized chart was 

compared with scarce data, but years later, when more experimental data were available, 

Takahashi (1974) tried to reapply the ideas of Slattery and Bird, and observed that the Enskog 

theory was unable to give good results. 

 

         Another example of Enskog's failure could be the method of Chung et al. to calculate 

viscosities and thermal conductivities (Reid et al., 1987). The formulas are similar to Eqs. 

(37) and (38), but the numerical constants are temperature dependent and g () is replaced 

with empirically determined functions, that differ from viscosity to thermal conductivity. 

 

 

        3.2. The expression of Hippler et al. 

 

          This is an empirical interpolation between Chapman-Enskog and Stokes-Einstein 

(Hippler et al., 1984; Otto et al., 1984).  In principle, it was only developed for binary 

diffusion: 
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        3.3. CSP extension of Eq. (8)   
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        Riazi and Witson (1993) expressed the ratio D/(D)LJ as a potential function of /LJ, 
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where  is the Pitzer’s acentric factor and Pr the reduced pressure (=P/Pc). The systems 

employed to develop this were methane, carbon dioxide and binary mixtures of hidrocarbons, 

but the authors claimed that the formula could be applied to other systems.  

 

 

        3.4. Equations of Funazukuri and coworkers 

 

        These two equations are based on relations between the Schmidt number at any condition 

(Sc) and the same adimensional number at atmospheric pressure (Sc0) 
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          Funazukuri et al. (1992) combined the Chapman-Enskog equations with the expressions 

of Dymond, and supposed that 
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so for self-diffusion of CO2 and CH4 
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the proportionality constant was 2.18, but the right-side term had to be empirically elevated to 

the 1.12 power. 

 

          In 2000, they adjust self-diffusivities and binary diffusion coefficients at infinite 

dilution to the following formula (Funazukuri et al., 2003, 2004; Higashi et al., 1998, 2001; 

Kong et al., 2006): 
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        In Eq. (51), the Schmidt number at atmospheric pressure was calculated as in a HS gas 

(the collision integrals were not considered). 

 

        The first problem of these formulas is that V0 is temperature dependent, so predictive 

purposes are not considered. By way of example, for carbon dioxide 
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416313210 1029.110073.310749.2 TTT                                   (52) 

 

 

 

          3.5. Woerlee model 

 

          Woerlee (2001) started from the kinetic theory of gases and from the Eyring theory for 

liquids, supposing that the mean free path for self-diffusion is not the same for viscosity. 
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and if the activation energy for self-diffusion is equal to the viscosity activation energy, then 

 

av

eff N

VV
kT

D
42 )(9

2

b3
13













                                                              (55) 

 

       The effective diameter is calculated as an exponential interpolation between de hard-

sphere diameter (high densities) and the gaseous particle diameter, which Woerlee assumed to 

be TTc /1 ,  
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b is the same as in Enskog's formulas, and the molecular diameter can be taken as the LJ 

diameter. The model attempts to be general, applicable to all types of substances, but the 

average deviation is 24%, and it can be probed (although Woerlee does not specify this) that 

Eqs. (55) and (56) do not reproduce the low density limit defined by Chapman-Enskog 

equations.  

 

 

4.    Theory for LJ Chain fluids 

          4.1. Self-diffusion and viscosity in the LJ fluids 

 

         Alder et al. (1970) were the first to calculate numerical corrections to Eqs. (36-38) using 

computer simulations, the same as Dymond used to develop Eqs. (16) and (17). The 

corrections were given as three density-dependent factors, FD, F and F which multiply the 

avobe-mentioned Eqs. (36-38). Their effects can be seen in Fig. 1. As long as the Enskog 

formulas represent viscosity and thermal conductivity with good accuracy to high reduced 

densities (the numerical factors do not deviate much from the unity), the failure in self-

diffusion begins at low densities. 

 

       The resulting equations can be combined with the translational-rotational coupling 

parameters of Chandler (1975) and effective diameters to obtain  
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       If the temperature dependence of molecular diameter and rotational-coupling parameters 

is known, Eqs.  (57) and (58) can be employed to correlate self-diffusivities and viscosities of 

real substances. Furthermore, Eq. (59) can describe computer simulation data of dense and 

dilute LJ fluids if the following dependences are assumed (Bachl et al., 1992): 
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         Eq. (62) is not based on the work of Alder et al. (1970) but on the molecular simulation 

of Easteal et al. (1983), which differs in some ways from the first one. The high-density 

results of Woodcock and Angell (1981) were also taken into account, which stipulate that at 

*=1.09 the self-diffusion coefficient is zero. As simple real fluids are in good aproximation 

to LJ fluids, Bachl et al. (1992) applied Eqs. (57) and (60-62) to correlate them, using LJ and 
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LJ as fitting parameters. Surprisingly, the results were good for long-chain alkanes and polar 

compounds; not only monoatomic and apolar substances were well correlated. 

 

 

        4.2. The Ruckenstein-Liu model for LJ fluids  

 

      Ruckenstein and Liu (1997) proceeded as Bachl et al., using a RHS equation for 

correlating self-diffusivities of real substances. Nevertheless, they used the data of Alder et al. 

instead of the data points of Easteal et al., and did not introduce the effect of attractive forces 

in the coupling parameter, but started from Eq. (1), assuming that the friction coefficient is the 

sum of an HS friction coefficient and an attractive friction coefficient. 
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       To make Eq. (63) valid for LJ fluids, they replace the molecular diameter with the 

effective diameter. There are two fitting parameters: AD and LJ, because LJ  is calculated 

with the empirical formula of Chung et al. (Reid et al., 1987).  The coupling parameter is now 

constant, because it does not include the attractive forces, and only captures the influence of 

molecular geometry. For noble gases and methane AD =1.00, 
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Eq. (68), as Eq. (62) is zero near the value of *=1.09. 

 

 

         4.3. The Yu-Gao model for LJ Chain fluids 

 

          The Lennard-Jones Chain (LJC) fluid model of Yu and Gao (1999) is an improvement 

of Eq. (66). Yu and Gao used the molecular dynamics simulations of Smith et al. (1995) to 

treat the molecules as chains of tangent hard spheres, with two other fitting parameters: N (the 

number of spheres) and LJ

N  (the diameter of each sphere). The total diameter is now 

LJ=N1/3 LJ

N , and  eff=N1/3 eff
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FD(N,*) is the correction of Smith et al. to the Enskog theory for HS Chain fluids, and the 

radial distribution employed is given by Eq. (40).  As in the Yu-Gao formula the coupling 

factor disappears, it could be interesting to develop a model for viscosity based on LJ Chain 

fluids and on Eq. (58) to operate like Dymond, obtaining N and LJ

N  from . 

 

        Yu and Gao (2001) also extended their model to associated fluids with four fitting 

parameters  
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Dnhb is the self-diffusion coefficient obtained from Eq. (69) and X the mole fraction of 

molecules not bonded at association site . This mole fraction is taken from the Statistical 

Association Fluid Theory of Huang and Rasdoz (1990), 
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I  is the association strength between the sites  and , and is a function of an specific 

energy Ehb and a bond volume   hb

N

eff

N 
3

. For alcohols and hydrogen fluoride, the association 

strength is given by 
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        4.4. Proposed model for viscosity of HS Chain fluids and LJC fluids 

 

       On the basis of Eq. (63), the treatment of the friction coefficient is assumed to be 

applicable to viscosity. In this way, viscosity will be a sum of an attractive term and a 

repulsive term 

 

      = att + HS                                                        (79) 
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and for LJ fluids 
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    When the fluid is a sphere, and *0, Eqs. (66) and (69) become the Chapman-Enskog 

expression 
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        Analogously, taking the effective diameter for viscosity and the low-density limit, the 

attractive part of Eq. (81) could be written as 
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        For the HS part of Eq. (81), the molecular dynamics simulation data of Sigurgeirsson and 

Heyes (2003) have been taken for F (*) and the data of Smith et al. (1995) have been used 

to obtain F (N,*). The first two authors carried out computer simulations for FD, F and F  
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in the range 0.19<*<1.06, which had been never done before. Until then, all data were 

restricted to *<0.943. Nevertheless, the point at 1.06 is too high and is no compatible with 

experimental data. So, the extrapolation of Assael et al. (1992) has been chosen for 

1.04<*<1.09. Assael and coworkers adjusted F to a polynomial expression, and extended 

the avobe curve *>0.943 with the help of experimental viscosities of n-alkanes. Moreover, 

the curve of Assael et al. coincides very well with the data of Sigurgeirsson and Heyes in the 

range 0.943<*<1.04 as can be seen in Fig. 2. So, for HS fluids composed by spheres (not 

chains of spheres), we have fitted the data to 
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       The polynomial expression of Assael can not be directly taken because it is not valid for 

low reduced densities (*<0.1).  The AAD of Eq. (84) for both data series of Sigurgeirsson-

Heyes and Assael et al. in the range 0.0<*<1.09 is 2.2%. 

 

      When chains are considered, the following expression together with Eq. (80) and  

=N1/3N correlates the data of Smith et al. (1995) with an AAD of 4.8%, as can be seen in Fig. 

3.   
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       So, combining Eqs. (81), (83) and (85), the “complementary” of the Yu-Gao equation for 

viscosity in LJC fluids is 

 

       









































1
527.0

*
1

1532.1*

16

5

)(

)(
*

6/2
2/1

)2,2(

2

2/1

2

N

LJ

LJ TT

m 


  

 

          *,)(*338.3*676.1
)(

1*

16

5 2 


 NFg
g

T eff

eff









  

(86) 

 

        Eq. (86) can be compared with simulation data of LJ viscosities when N=1.00. For 

example Meier et al. (2004a, b) and Galliero et al. (2005) performed these simulations in the 

ranges 0.0<*<1.275 and 0.6<T*<6.0. The global AAD is 8.11%, although at high densities 

the errors are higher. 

 

        Finally, the extension of this model for hydrogen-bonding substances could be  
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5. Results and discussion  

 

          The selected experimental data can be seen in Table 1. Table 2 shows the properties of 

these substances: all were obtained from the Korea thermophysical properties Data Bank 

(KDB, at website http://infosys.korea.ac.kr/kdb/), except for tetramethylsilane, which was 

http://infosys.korea.ac.kr/kdb/
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obtained from the databank of the software HYSYS. The molar volumes at melting point are 

from Lee and Thodos (1988) and from the handbook of Perry and Green (2001), except for 

1,2-dichloroethane. For this compound, 278.15 K is the minimum temperature at which 

densities are available (Malhotra et al., 1990), the melting point being 237.6 K.  

 

        As the Eqs. (7), (9) and (27) can not be applied to dilute gases, we have combined these 

with the interpolation of Hippler et al. So, the term (kT/D)Stokes of Eq. (46), which for self-

diffusion should be equal to 2LJ (the Sutherland approach) is modified to give 
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       The parameters LJ and LJ were calculated with the formulas of Chung et al. (Reid et al., 

1987). The expressions of Funazukuri and coworkers were not employed because the 

sensitivity of both expressions to the molecular diameter: very small changes in the value of 

this parameter cause high increases in errors, like in self-diffusion or viscosity separately 

(Galliero et al., 2005; Ruckenstein and Liu, 1997). Results are shown in Table 3. The best 

equation is Eq. (88), closely followed by Eq. (90) and the original interpolation of Hippler et 

al. Besides, Eq. (88) reproduce the self-diffusion coefficients of water with relatively good 
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accuracy, as can be seen in Fig. 4. The introduction of the Davis et al. generalization of Eq. 

(8) makes the AAD of associated substances much worse, and its improvement is almost 

negligible except for n-hexane. The model of Woerlee systematically underestimates the low-

density self-diffusivity and is only reasonably good for liquid tetramethylsilane and ethanol. 

The equation of Riazi and Whitson reflects a pressure dependence which is more pronounced 

than the real, and for some substances even predicts an increase in self-diffusion when the 

pressure rises. The failures of these two equations are shown in Figs. 5 and 6. 

 

         The results of using Eqs. (69) and (86) together can be seen in Tables 4 and 5. The AAD 

of obtaining N and LJ

N  from correlating self-diffusion coefficients of each substance and 

introducting them in the viscosity equation is reported in Table 3. When the number of 

spheres and the diameter of each sphere are obtained from viscosities and introduced in the 

Yu-Gao equation, the resulting AAD can be seen in Table 4. The characteristic parameters 

por hydrogen-bonding, Ehb and hb do not vary. LJ/k is calculated with the Chung’s formula, 

except for water, in which LJ/k =809.10 K. Neither the Yu-Gao model nor ours can be 

applied to methylcyclohexane. Predicting self-diffusivities from viscosities or vice versa is in 

general not to good, except for methane, xenon, methanol and ethanol. In the first two cases, 

this is not strange, because they are small, apolar and nearly spherical molecules, in which the 

sensivity fitting parameters is not great (Ruckenstein and Liu, 1997). Nevertheless, the good 

results for the two alkanols are unexpected. N and LJ

N  there are not true properties of 

molecules, but fitting parameters that vary from property to property. 

 

        Finally, there exist some incongruencies between the derived HST formulas and the self-

diffusion coefficients in the middle-density range. Nevertheless, since available experimental 

data in this range are scarce, we have used LJ simulations (Galliero et al., 2005; Meier et al., 
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2004a, b) which provide reduced self-diffusivities, D*, and viscosities, *, over wide ranges 

of * and T*. Eq. (46) can be written as 
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where *=1.00 if the classical Stokes-Einstein approach is employed, *= (*)-1/3 if Li-Chang 

and *=5.0176/(2*) if Dullien.
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        In Figs. 7-9 some results are printing.  Saturated vapours and liquids are represented in 

Fig. 10. As some diffusion coefficients are placed in the thermodynamic metaestable liquid-

vapour biphasic zone, these have been rejected when saturated liquid and vapour densities 

were calculated with the formula of Okrasinski et al. (2001).  In general, the predictions of 

Eq. (81) for *D* worsen at elevated reduced temperatures, and only the combination of 

Hippler et al. with Li-Chang gives reasonable agreement (compare Fig. 8 with Figs. 7 and 9). 

The maximum deviation in the range 0.1 < * <0.8 concerns to original interpolation of 

Hippler et al., but it is notable that the Dullien equation overestimates the computer 

simulations near the freezing density at high values of T*. 

 

 

6. Conclusions 

 

        The performances of several equations connecting viscosity and self-diffusion 

coefficients have been studied, and a new correlative expression for viscosity has been 

developed. This expression employs two fitting parameters, that have the same meaning as 

those of the Yu-Gao model. Nevertheless, it was not possible to use the same values of these 

for the two transport properties. 

 

         In addition, the empirical equation of Hippler et al. has proved to be reasonably good for 

predicting diffusivities of all type of substances and LJ fluids, but it overestimates the group 

D at not very high densities, so some correction should be made in order to improve its 

results. 
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Symbols 

AD coupling parameter for diffusion 

A coupling parameter for viscosity 

b second virial coefficient of the HS fluid,  m3/mol 

B second virial coefficient of a real fluid,  m3/mol 

C1, C2 fitting constants  

d Dullien’s length,   m 

D diffusion,  m2 /s 

hb

NE  specific energy of the hydrogen bonds, J /mol 

fsek Sęk factor 

FA force that acts on a particle A,  N 

FD , FK , F corrections to Enskog theory 

g() radial distribution function 

GD activation energy for diffusion, J /mol 

G activation energy for viscosity  J/mol 

HS hard-sphere 

I association strength between the sites  and ,  m3/mol 

JAB sliding friction coefficient,  kg/(m s) 

k Boltzmann constant= 1.38065810-23 J/(K mol) 

LJ Lennard-Jones 

m molecular mass, kg/mol 

M molar mass, kg/mol 

N number of spheres that forms a molecule 

Nav Avogadro number 
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P pressure,  Pa 

R universal gas constant= 8.314  J/(K mol) 

RHS rough-hard-sphere 

Sc Schmidt number 

SHS smooth-hard-sphere 

T absolute temperature,  K 

vA velocity of the particle A,  m/s 

V molar volume, m3/mol 

Vfree free volume,  m3/mol 

V0 close-packed volume,  m3/mol 

X mole fraction of molecules not bonded at association site  

Z compressibility factor 

 

 

Greek symbols 

 molecular energy,  J/mol 

 viscosity, kg/(m s) 

hb

N  proportionality factor of hydrogen-bond volume 

 empirical fitting constants 

 thermal conductivity,   J/(s m3 mol) 

 length of a cell side,  m 

 friction coefficient,  kg/s 

 number density,  particles/m3 

 molecular diameter, m 
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 acentric factor 

(n,n) collision integral. When n=1 this refers to diffusion, and when n=2 

this refers to viscosity.  

 

Superscripts 

* molecular reduced parameter 

0 low density 

att attractive forces 

HS Hard-Sphere 

E Enskog 

eff effective 

min minimum 

nhb non-hydrogen-bonding 

real refers to a real property 

ref reference 

Stokes refers to the Stokes-Einstein equation 

 

Subscripts 

f freezing 

c critical conditions 

r reduced with respect to the critical point 

N relative to the number of spheres that form a molecule 
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LIST OF THE CAPTIONS  

 

Fig.1. Density-dependent corrections to Enskog equations. 

 

Fig. 2. Density-dependent correction to Enskog viscosity according to Sigurgeirsson and 

Heyes, (symbols) Assael et al (solid line). 
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Fig. 3. Reduced viscosity of the hard-sphere chain fluids according Smith et al. Solids lines 

are calculated with (80) and (85). 

 

Fig. 4. Self-diffusion coefficients as a function of temperature and pressure for subcritical 

water. Solid lines refer to the results of Eq. (88); symbols refer to the experimental values. 
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Fig. 5. Self-diffusion coefficients as a function of temperature and pressure for 

perfluorocyclobutane. Solid lines refer to the results of the Woerlee model; symbols refer to 

the experimental values. The last temperature is above the critical. 

 

Fig. 6. Self-diffusion coefficients as a function of temperature and pressure for liquid 

methanol. Solid lines refer to the results of the Riazi-Whitson equation; symbols refer to the 

experimental values.  
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Fig. 7.  *D* from the molecular simulation of Meier et al. Solid lines are calculated with the 

original equation of Hippler et al.  

 

Fig. 8.  *D* from the molecular simulation of Meier et al. Solid lines are calculated with the 

combination of Hippler et al. and  Li-Chang.  



 

62 

 

Fig. 9.  *D* from the molecular simulation of Meier et al. Solid lines are calculated with 

Hippler et al. +Dullien.  

 

Fig. 10.  *D* from the molecular simulation of Meier et al. (symbols) along the saturation 

curve, and calculated with Hippler+Dullien, original Hippler, Hippler+Li-Chang.  
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LIST OF THE TABLES 

Table 1 

Selected compounds. 
 

 

Substance NDP Fluid state Sources of self-diffusion 

Methanea 403 All fluid states Greiner-Schmid et al. (1991) ; Harris and Trappeniers (1980);  Harris (1978);  Winn 

(1950) ; Naghizadeh and Rice (1962); Mueller and Cahill (1964); Dawson et al. (1970); 

Oosting and Trappeniers (1971); Helbæk et al. (1996);  Gaven et al. (1962b); 

Rugheimer and Hubbard (1963) 

 

Propaneb 103 Saturated and compressed liquid, dense gas Greiner-Schmid et al. (1991); Robinson and Stewart (1968) 

n-Hexane 38 Saturated and compressed liquid Harris (1982) 

Cyclohexane 19 Compressed and saturated liquid McCool and Woolf (1972a,b) 

 

Methylcyclohexane 24 Compressed liquid Jonas et al. (1979) 

Benzene 74 Compressed and saturated liquid McCool et al. (1972); Collings and Mills (1970); Parkhurst and Jonas (1975a)c 

Pyridine 55 Saturated and compressed liquid Fury et al. (1979) 

 

Tetramethylsilanec 42 Compressed liquid Parkhurst and Jonas (1975a) 

Carbon tetrachloride 27 Compressed liquid McCool and Woolf (1972b) 

 

Trichlorofluoromethane 13 Compressed liquid, dense gas DeZwaan and Jonas (1975) 
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1,2-Dichloroethane 23 Compressed liquid Malhotra et al. (1990) 

Perfluorocyclobutane 27 Compressed liquid, dense gas Finney et al. (1977) 

Xenond 57 Saturated and compressed liquid, dense gas Peereboom  et al. (1989); Ehrlich and Carr (1970)  

 

Watere 75 Compressed liquid, dense gas Harris and Woolf (1980); Lamb et al. (1981) 

Methanolf 35 Compressed and saturated liquid Karger et al. (1990); Hurle et al. (1985)   

 

 
Ethanolf 55 Compressed and saturated liquid Meckl and Zeidler (1988);  Karger et al. (1990) 

 

 

 
a Viscosities calculated with the equation of Allal et al. (2001).  If densities were not available in the same reference that self-diffusion coefficients, they were calculated with 

the equation of state of Harris and Trappeniers (1980) or Fang-Wieh (1973). For saturated liquid, densities were taken from the handbook of Perry and Green 

(2001).  

b Viscosities calculated with the equation of Allal et al. (2001). Densities calculated with the corresponding states principle and the Hackinston-Brob-Thompson method as 

cited by Reid et al. (1987). For saturated liquid, densities were taken from the handbook of Perry and Green (2001). 

c Viscosities obtained from Parkust and Jonas (1975b). 

d Viscosities from Stephan and Lucas (1979)  and the handbook of Perry and Green (2001). Densities from Michels et al. (1954) and from the aforesaid handbook. 

e Viscosity of liquid water from Woolf (1975). 

f Viscosity of methanol and ethanol from Meckl-Zeidler (1988).  Densities from Cibulka and Zikova (1994). 
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Table 2 

Properties of studied substances 
 

 

Substance Formula Tc (K) 
Pc 

(105 Pa) 

Vc 

(10-6 m3/mol) 

M 

(10-3kg/mol) 
 

Vf 

(10-6 m3/mol) 

Methane CH4 190.56 45.99 98.60 16.0426 0.01100 35.37 

n-Propane C3H8 369.83 42.48 200.00 44.0962 0.15300 60.28 

n-Hexane C6H14 507.60 30.25 368.00 86.1766 0.29900 113.45 

Cyclohexane C6H12 553.80 40.80 308.00 84.1608 0.21200 106.30 

Methylcyclohexane C7H14 572.10 34.80 369.00 98.1876 0.23600 110.89 

Benzene C6H6 562.05 48.95 256.00 78.1134 0.21200 87.31 

Pyridine C5H5N 620.00 56.70 243.00 79.1012 0.24300 75.79 

Tetramethylsilane (CH3)4Si 450.41 28.14 357.00 88.2200 0.22400 114.14 

Carbon tetrachloride CCl4 556.60 45.16 276.00 153.8230 0.19300 91.96 

Trichlorofluoromethane CCl3F 471.20 44.10 248.00 137.3680 0.18900 78.14 

1,2-Dichloroethane C2H4Cl2 561.00 54.00 225.00 98.9596 0.27800 77.62 

Perfluorocyclobutane C4F8 388.46 27.84 324.00 200.0310 0.35600 117.77 

Xenon Xe 289.73 58.40 118.00 131.2900 0.00800 42.66 

Water H2O 647.14 220.60 56.00 18.0152 0.34400 17.99 

Methanol CH3OH 512.50 80.84 117.00 32.0420 0.55600 33.50 

Ethanol C2H5OH 514.00 61.37 168.00 46.0688 0.64400 48.42 
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Table 3  

AAD (%) for several predictive equations 
 

 

Substance NDP Eq. (46) Eq. (47) Eq. (55)    Eq. (88) Eq. (89)   Eq. (90) 

Methane 403 22.87 27.78 27.05 7.35 17.73 12.19 

n-Propane 103 11.58 72.03 36.29 9.70 38.36 11.49 

n-Hexane 38 32.68 82.27 55.47 32.82 20.18 31.13 

Cyclohexane 19 9.32 48.81 40.84 12.14 8.59 15.25 

Methylcyclohexane 24 30.93 93.69 56.98 30.03 63.68 26.17 

Benzene 74 17.35 63.25 35.44 17.27 22.53 18.40 

Pyridine 55 29.43 80.61 53.75 29.60 24.10 27.92 

Tetramethylsilane 42 21.42 82.34 15.70 19.20 44.76 20.31 

Carbon tetrachloride 27 6.52 68.72 30.79 4.66 51.86 4.85 

Trichlorofluoromethane 13 19.07 67.27 36.43 23.16 20.84 30.37 

1,2-Dichloroethane 23 6.47 63.51 37.41 6.41 49.83 5.94 

Perfluorocyclobutane 27 8.02 70.16 31.63 11.85 16.17 18.96 

Xenon 57 15.57 13.67 36.29 5.20 11.90 21.28 

Water 75 7.67 28.84 38.96 3.93 167.66 14.26 

Methanol 35 12.85 48.49 28.90 11.01 132.81 9.59 

Ethanol 55 20.57 173.91 19.88 17.81 135.60 15.59 

        

Overall 1070 18.88 54.00 32.94 11.89 43.96 15.51 
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Table 4 

Correlation for self-diffusion with Eq.(69) and prediction for viscosity with the proposed model 

 

Substance N Diff 
LJ

N Diff  (10-10m) REhb

N /   (K) 
hb

N  AADDiff  (%) AADvisc  (%) 

Methane 1.077 3.570   7.66 6.80 

n-Propane 2.578 3.411   9.59 28.23 

n-Hexane 2.021 4.524   2.45 46.30 

Cyclohexane 1.351 5.032   6.24 17.13 

Methylcyclohexane - -   -  

Benzene 1.585 4.411   4.57 21.18 

Pyridine 1.634 4.206   10.17 39.39 

Tetramethylsilane 2.533 4.297   5.43 9.51 

Carbon tetrachloride 2.017 4.236   2.72 15.64 

Trichlorofluoromethane 1.800 4.232   1.88 27.55 

1,2-Dichloroethane 2.300 3.770   4.48 28.57 

Perfluorocyclobutane 1.102 5.510   4.50 15.46 

Xenon 1.000 3.890   6.80 9.25 

Water 1.000 2.530 3674.52 5.79810-6 8.46 26.44 

Methanol 1.500 3.120 1080.42 3.14210-2 5.09 6.96 

Ethanol 2.000 3.310 1560.13 1.09510-2 1.82 5.26 

       

Overall     6.76 16.03 
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Table 5 

Correlation for viscosity with Eq. (86) and prediction for self-diffusion with Eq. (69) 

 

Substance N visc 
LJ

N visc (10-10m) REhb

N /  (K) 
hb

N  AADvisc (%) AADDiff (%) 

Methane 1.047 3.617   6.04 7.90 

n-Propane 3.591 3.134   9.61 41.89 

n-Hexane 5.041 3.503   2.38 54.61 

Cyclohexane 2.216 4.359   4.98 31.80 

Methylcyclohexane - -     

Benzene 2.510 3.857   16.3 28.74 

Pyridine 3.424 3.418   9.64 52.90 

Tetramethylsilane 3.022 4.090   4.17 15.85 

Carbon tetrachloride 3.515 3.600   2.57 28.52 

Trichlorofluoromethane 5.516 2.985   17.08 33.21 

1,2-Dichloroethane 4.020 3.218   2.22 35.74 

Perfluorocyclobutane 2.706 4.216   1.89 32.60 

Xenon 1.000 3.980   5.09 11.65 

Water 1.000 2.645 3674.52 5.79810-6 11.14 25.73 

Methanol 1.214 3.388 1080.42 3.14210-2 3.30 6.89 

Ethanol 1.456 3.726 1560.13 1.09510-2 2.02 8.00 

       

Overall     6.95 21.09 

 


