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Abstract This paper is aimed at exploring the interconversion path between the relaxation
modulus E(¢) and the corresponding complex modulus E*(w) for linear viscoelastic solid
materials. In contrast to other approximate methods, the fast Fourier transform (FFT) algo-
rithm is directly applied on the time-dependent part of the viscoelastic response R (). Firstly,
the method foundations are presented. Then, a theoretical example is performed by means
of a generalized Maxwell model, where the influence of sampling conditions and eventual
experimental error and data dispersion is analyzed. Finally, an application example using
experimental data is carried out to assess the method. As a result, the proposed procedure
allows obtaining the complex modulus by means of relaxation tests, and vice versa.

J. Garcia-Barruetabena (B<)

Department of Mechanical Engineering, Ikerlan-IK4, J.M. Arizmendiarrieta 2, 20500 Mondragén,
Spain

e-mail: jgarcia@ikerlan.es

F. Cortés

Deusto Institute of Technology (DeustoTech), Faculty of Engineering, University of Deusto,
Avenida de las Universidades 24, 48007 Bilbao, Spain

e-mail: fernando.cortes @deusto.es

J.M. Abete

Department of Mechanical Engineering, Mondragon Unibertsitatea, Loramendi 4, 20500 Mondragén,
Spain

e-mail: jmabete @mondragon.edu

P. Fernandez - M.J. Lamela - A. Fernandez-Canteli
Department of Construction and Manufacturing Engineering, University of Oviedo,
Campus de Viesques, 33203 Gijon, Spain

P. Ferndndez
e-mail: fenandezpelayo.uo@uniovi.es

M.J. Lamela
e-mail: mjesuslr@uniovi.es

A. Fernandez-Canteli
e-mail: afc@uniovi.es

@ Springer


mailto:jgarcia@ikerlan.es
mailto:fernando.cortes@deusto.es
mailto:jmabete@mondragon.edu
mailto:fenandezpelayo.uo@uniovi.es
mailto:mjesuslr@uniovi.es
mailto:afc@uniovi.es

466 Mech Time-Depend Mater (2013) 17:465-479

Keywords Relaxation modulus - Complex modulus - Viscoelasticity - Material functions
interconversion

1 Introduction

Viscoelastic materials (VEM) are widely employed in engineering applications and their
spread is growing in many sectors such as automotive industry, aerospace, wind power,
human transportation, etc. VEM mechanical properties depend on temperature, frequency
and amplitude, pre-stress, dynamic load level, relative humidity, among others (Ward and
Sweeney 2004). Service temperature, frequency and amplitude of deformation are the most
relevant ones (Sjoberg and Kari 2003). Thus, proper mechanical characterization is essential
in order to obtain reliable predictions (Warnaka and Miller 1968).

Concerning VEM behavior modeling, the memory of viscoelastic materials can be prop-
erly represented using the Boltzmann superposition principle (Boltzmann 1876). Therefore,
time evolution of stress o (¢) can be evaluated using relaxation functions R(¢) through con-
volution integrals given by

o(t) = Ee(t) +/ R(t — M)é(h) da, (1)
0

where €(t) is strain, E, the viscoelastic constant, A the integration variable and (e) repre-
sents time derivative. In frequency domain, viscoelastic behavior can be represented by the
complex modulus approximation (Nashif et al. 1985),

E*(w) = E'(0) +iE"(w) = E'(0)[1 +1 x tan§ ()], )

where E’(w) is the storage modulus, E”(w) the loss modulus, i = /—1, and tan § () is the
loss factor, which is defined as

E// (w)
E'(w)
Concerning VEM experimental characterization, ASTM E 756-04 (ASTM 2004) details the
methodology to characterize the mechanical behavior of non-self-supporting viscoelastic
materials, implying the use of multimaterial Oberst beam specimens. Nevertheless, the main
inconvenience of this standard consists in introducing additional damping or mass through
excitation or measurement devices. Besides, it should be remarked that standard methods
give glass transition temperature 7, values, which are not accurate for given moduli and the
true measure of damping.

In this context, DMTA technique allows to take into account together temperature and
time (or temperature and frequency) by means of the time-temperature superposition (TTS)
principle (Ferry 1980) introducing no extra mass or damping.

Thus, frequency-time interconversion methods are valuable and useful tools (Emri and
von Bernstorff 2005; Park and Schapery 1999a, 1999b) due to the fact that they can also
be applied to overcome the inherent difficulties of relaxation or dynamic characterizations
(Kulik et al. 2009; Maheri and Adams 2002; Jahani and Nobari 2008), depending on the
tested material. The most widely applied methods (Emri and von Bernstorff 2005) for ma-
terial functions conversion from time to frequency domains are those based on Prony series
(Chen 2000), and the opposed conversion can be achieved through the algorithms proposed
by Ninomiya and Ferry (1959). The former can be obtained by fitting the experimental
data by means of a generalized Maxwell model (Ferndndez et al. 2011), whereas the latter

tan é(w) =

3
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is based on experimental data fitting. Both conversion methods are approximate. Never-
theless, the methods proposed by Schwarzl (1970) should be highlighted also since both
interconversions can be achieved. More recently, other authors have proposed other meth-
ods (Emri and von Bernstorff 2005; Park and Schapery 1999a, 1999b; Kulik et al. 2009;
Maheri and Adams 2002; Jahani and Nobari 2008; Chen 2000; Ninomiya and Ferry 1959;
Fernandez et al. 2011; Schwarzl 1970; Sorvari and Malinen 2007). Nevertheless, that of
Leblanc (2005) should be highlighted, as his work focuses on the employment of the
Fourier transform but in order to investigate non-linear viscoelastic materials. As the au-
thor states (Leblanc 2005), standard dynamic testing requires strict proportionality between
strain and stress for valid resolution of the experimental complex modulus into its elastic and
viscous components. Nevertheless, no such condition is needed when the Fourier transform
is employed.

In short, the main objective of the present paper is to explore a unique intercon-
version method between time and frequency domains in order to obtain the complex
modulus E*(w) by means of relaxation tests, and vice versa. The advantage of this
method is a direct employment of the fast Fourier transform (FFT) algorithm to exper-
imental data, in opposition to other existing methods (Emri and von Bernstorff 2005;
Park and Schapery 1999a, 1999b; Kulik et al. 2009; Maheri and Adams 2002; Jahani and
Nobari 2008; Chen 2000; Ninomiya and Ferry 1959; Fernandez et al. 2011; Schwarzl 1970;
Sorvari and Malinen 2007) based on fitting models or theoretical functions. Concretely, the
proposed method is valuable when a Prony series cannot be properly fitted to the experi-
mental data in time or frequency domains. This article is structured as follows:

e Firstly, the method foundations are presented.

e Then, a theoretical example is performed by means of a generalized Maxwell model,
where the influence of the sampling conditions and the eventual experimental error data
dispersion is analyzed.

e Finally, an application example using experimental data is carried out to assess the
method.

2 Method foundations

An experimental relaxation test consists of applying a strain step as €(¢) = eoH(¢), where g
is the magnitude of the strain and H(#) is the Heaviside function. Consequently, applying a
strain step and substituting its time derivative to (1), yields

t
o) = ExcoH) + | R( — 02000 = [Ec-+ R e, @
0
where §(¢) is the Dirac function. Then, the relaxation modulus E(¢) can be deduced as
o ()
E(f)=8—=Er+R(f), 5
0

where the viscoelastic constant E; is the long-term part of the relaxation modulus and R(¢)
is the time-dependent one.

Next, by means of the Fourier transform, the complex modulus E*(w) is obtained. On
the one hand, applying the Fourier transform to Eq. (5) results in

- E -
E(@) =+ R(w), (6)
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where (e) represents the Fourier transform. On the other hand, applying the Fourier trans-
form to Eq. (1) yields

& () = E&(0) +iwR(0)E (), (7
from where the complex modulus E£*(w) can be derived, yielding
E*(w) = E, +iwR(w). 8)

Therefore, by substituting the Fourier transform of the time-dependent part of the viscoelas-
tic response R(w) to Eq. (6),a relati0n§hip between complex modulus E*(w) and the Fourier
transform of the relaxation modulus E (w) is obtained:

E*(w) = iwE (v). 9

It can be concluded that the complex modulus E*(w) of a linear viscoelastic material can
be computed from the Fourier transform of its relaxation modulus E(¢). However, employ-
ing the fast Fourier transform (FFT) algorithm, the resulting complex modulus E*(w) will
suffer from leakage since E (¢) is not periodic (Bellanger 1984) and E(¢) o E. #0. Con-

sequently, to avoid leakage, it has to be taken into account that the viscoelastic component

represented by the time-dependent part of the viscoelastic response R(t) disappears with

time, R(t) = 0, thus FFT algorithm does not produce leakage on approximation of com-
t—00

plex modulus E*(w) if Eq. (8) is used instead of (9). The disadvantage of the method is that
the viscoelastic constant E; is being obtained from the experimental data.

3 Theoretical example

In this section the influence of sampling conditions and eventual experimental error and
data dispersion are analyzed by means of an exponential material model. The analysis is
focused on several aspects related to the FFT algorithm: leakage, signal discretization and
the analyzed ranges. In this work, the FFT algorithm proposed by Cooley and Tuckey (1965)
to compute the discrete Fourier transform is employed (Oran 1988). This algorithm has
some widely known disadvantages. These are: 2" data points are needed; these points need
to be evenly spaced (Oran 1988). Nevertheless, because of the wide range of applications
based on the Fourier transform, many authors have developed several methods to overcome
these requirements. Dutt and Rokhlin (1995) proposed a group of algorithms generalizing
the FFT algorithm to the case of unevenly spaced data that have been applied to a wide
range of applications (Fourmont 2003; Greengard and Lee 2004; Marion 2005; Lee and
Greengard 2005). Nevertheless, as previously mentioned, the algorithm proposed by Cooley
and Tuckey (1965) will be employed, because the other mentioned algorithms make use
of resampling at different stages of the computation. Besides, it should be pointed out that
regarding the FFT algorithm requirements, a single zero has been added to the experimental
data in order to provide information for = 0.

Exponential damping model is widely used in literature (Adhikari 2000, 2001) because
of its capability to model damping mechanisms arising from viscoelastic nature of materials.
Its time-dependent part of the viscoelastic response R(¢) is given by

R(t) =cpe™™, (10)
resulting in a relaxation modulus

E(t)=E. 4+ Eje™™, an
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Fig. 1 Influence of leakage, conversion from time to frequency. Comparison among the analytic generalized
Maxwell model complex modulus E*(w) provided by Eq. (13), the one computed by means of Eq. (9) and
therefore suffering leakage, and the one computed by means of Eq. (8) and therefore avoiding leakage

where =1, ' = E|/c is the material relaxation parameter, 1, the relaxation time, and E|
and c are respectively stiffness and damping coefficient. The Fourier transform R(w) of the
time-dependent part of the viscoelastic response R(¢) is given by

R(w)=E . 12
(w)=E; P (12)
Accordingly, the complex modulus E*(w) yields
E*(@) = E,+ Ey———, (13)
m+ 1w
from where the storage modulus E’ and the loss factor tan§ can be directly obtained:
E%@—E+E—£i— (14)
— Ly ],LL2 ¥ w2
and
E
tan 8 (o) = s (15)

Eq + E\(1* + 0¥’
For the numerical application, it is considered that E, =3 MPa, E; = 6 MPa, and ¢ =
0.1 MPas.

3.1 Leakage

Next, the leakage influence is analyzed. For the conversion from time to frequency, the
methods exposed in Sect. 2 are employed, comparing the exact complex modulus (13) with
those provided by Egs. (9) and (8). All the complex moduli are represented in Fig. 1 as
storage modulus E’ and loss factor tan §.

From Fig. 1 it should be remarked that the direct use of Eq. (9) derives in erroneous
results due to leakage, while through Eq. (8) the complex modulus E*(w) can be precisely
computed from the relaxation modulus.
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Fig. 2 Influence of leakage, conversion from frequency to time. Comparison between the analytic general-
ized Maxwell model relaxation modulus E(¢) provided by Eq. (11) and the one computed through Eq. (8)
avoiding leakage

Considering the inverse transformation, the exact relaxation modulus given by Eq. (11) is
compared with those provided by the inverse FFT applied on Egs. (9) and (8). Unfortunately,
the leakage resulting from (9) provides a numerical unstability, the relaxation modulus being
infinity for every time. Therefore, Fig. 2 illustrates only two curves instead of three: the
analytic response given by Eq. (11) and the estimation for E(¢) by means of Eq. (8).

From Fig. 2 it should be pointed out that the proposed procedure is capable of accurately
computing the relaxation modulus E(t), if the corresponding complex modulus E*(w) is
known.

3.2 Influence of time and frequency sampling

Next, the influence of the time and frequency sampling is studied. It should be remembered
that concerning the conversion from time to frequency of a function defined up to a maxi-
mum time fn,y, the discretization time At determines the Nyquist frequency f.x according
to

1
max — s 16
fi AL (16)
the resulting discretized frequency being
1
Af =—, (17)
tmax
having
tmax
N = 18
At (18)

discrete data.
Considering the inverse transformation from frequency to time, these three equations can
be inversely taken into account.
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Fig.3 Influence of sampling frequency, conversion from time to frequency. Comparison between generalized
Maxwell model complex modulus E*(w) provided by Eq. (13) and the result provided by the proposed
interconversion method for different sampling times

For the present analysis, f.x = 0.5 s is chosen, and five different discretizations are
considered: At} = 1,,/2=0.0083 s, At = 11, /4 =0.0042 s, At = 7,,/8 = 0.0021 s, Aty =
/16 =0.0010 s and Ats = 1,/32 = 0.0005 s. Therefore, Fig. 3 shows six curves: the five
analyzed cases, plus the analytic response given by Eq. (13).

From Fig. 3 it should be noted that the lower is Az, the higher is f,.x and the better is the
accuracy. Thus, At; = 1,,/2 is only able to represent the low-frequency range, i.e. the rub-
bery zone and the beginning of the transition zone of the viscoelastic material (Ferry 1980).
On the contrary, Ats = t,,/32 is sufficient to accurately represent the complex modulus
E*(w) in the whole frequency range, including the vitreous one (Ferry 1980).

Considering the inverse transformation, from frequency to time domain, a maximum
frequency fm.x = 1 kHz is taken into account, and four discretization cases are analyzed:
Afi =1.1/2=2994 Hz, Afr = 1;'/4 = 14.97 Hz, Af; = 7;'/8 Hz = 7.48 Hz, and
Afy =1'/16 Hz = 3.74 Hz. Therefore, Fig. 4 shows five curves: the four analyzed cases
and the analytic response given by (11).

From Fig. 4 it should be noted that in two of the considered cases, Af; = 7-!/2 and
Af, = 1,;'/4, the relaxation is not properly represented. Thus, differences are verified for
t < 0.02 s. Consequently, they are not useful to compute the relaxation modulus E (¢). Con-
sidering the cases Af; = 7,!/8 and Afy = 7,;!/16, the relaxation is reached, providing
similar accuracy. Consequently, for the present case, a Af; = t!/8 is small enough to
accurately compute the relaxation modulus E(¢).

3.3 Influence of the maximum time and frequency

In this section, the influence of #,,, and fy.x is studied. First, the conversion from time
to frequency is analyzed. The previously defined function discretization parameter Afs is
employed. Five truncated signals are considered: fyax1 = 27 = 0.0334 s, fpax 2 = 47 =
0.0668 s, tmax.3 = 8Tm = 0.1336 8, frax.a = 16T, = 0.2672 s and fpax 5 = 327, = 0.5344 s.
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Fig. 4 Influence of sampling frequency, conversion from frequency to time. Comparison between general-
ized Maxwell model relaxation modulus E(¢) provided by Eq. (11) and the result provided by the proposed
interconversion method for different sampling frequencies

On the one hand, Fig. 5(a) illustrates the exact E(¢) given by Eq. (11), in which each em-
ployed truncation is represented. On the other hand, Fig. 5(b) contains six curves corre-
sponding to the five analyzed cases, plus the analytic response given by Eq. (13).

From Fig. 5(a) it should be remarked that in two of the considered cases, fyax,1 and fimax 2,
the relaxation has not been reached, implying that only the vitreous zone can be represented,
as Fig. 5(b) shows. Even if for f,,,x 3 and #yax 4 the relaxation has been reached, only the
transition zone can be represented. In fact, to include the rubbery zone, a maximum spam
max,s has to be taken into account.

Next, for the conversion from the complex modulus to the relaxation modulus, a previ-
ously defined discretization frequency A f; is chosen. Three cases of maximum frequency
are analyzed: fia1 = 0.17,' & 6 Hz, fuux2 =7,,' 60 Hz and fyu 3 = 107! ~ 600 Hz,
covering the rubbery, transition and vitreous zones, respectively, as Fig. 6(a) illustrates.
Therefore, Fig. 6(b) represents four curves corresponding to the three analyzed cases, plus
the analytic response given by Eq. (11).

From Fig. 6(b) it should be remarked that the higher is fi.x, the better is the accuracy.
Consequently, fia1 = 0.17,' 2 6 Hz is not able to represent the relaxation modulus E (7).
Concerning fmax 2 = 7., '~ 60 Hz, differences are encountered during the relaxation until
the viscoelastic constant E; is reached. On the contrary, fi.x 3 = 107, '~ 600 Hz is suffi-
cient to accurately represent E (¢) in the whole time range.

3.4 Influence of experimental error and data

In this section, the accuracy of the interconversion is analyzed taking into account eventual
data dispersion. In this context, some pseudo-experimental data for E(¢) and E*(w) have
been generated evaluating Eqs. (11) and (13), respectively, in some unevenly spaced data
points, in which random eventual errors «(f) and o*(w) have been included:

ENO=E®) +a®) (19)
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Fig. 5 Influence of the analyzed time range, conversion from time to frequency. (a) Analytic generalized
Maxwell model relaxation modulus E(¢) provided by Eq. (11), in which different truncation times are illus-
trated; (b) comparison between generalized Maxwell model complex modulus E*(w) provided by Eq. (13)
and the result provided by the proposed interconversion method for the different truncation times

and
E*(w) = E* () + o (w). (20)

Then, these generated data have been resampled in order to obtain evenly spaced data Ee(t)
and E +(w). For the present case, linear interpolation has been applied.

For the present numerical application, At = 10™* s and #,,, = | s are used. Figure 7
shows the conversion from relaxation modulus E(¢) to complex modulus E*(w). Figure 7(a)
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Fig. 6 Influence of the analyzed frequency range, conversion from frequency to time. (a) Analytic general-
ized Maxwell model complex modulus E*(w) provided by Eq. (13), in which different truncation frequencies
are illustrated; (b) comparison between generalized Maxwell model relaxation modulus E(¢) provided by
Eq. (11) and the result provided by the proposed interconversion method for different truncation frequencies

illustrates Eq. (11) together with the pseudo-experimental data E (r) and Fig. 7(b) illustrates
the converted modulus with the analytic solution for E*(w) given by Eq. (13).

From Fig. 7(b) it should be pointed out that the low-frequency range is properly repro-
duced while the estimation of E*(w) for the higher frequencies differs from the analytic
one given in Eq. (13). This is due to the fact that few points were taken in E(t) during
the relaxation, and therefore, a linear interpolation technique is not sufficient to reproduce
the employed model. Consequently, a higher number of data points are needed, especially
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Fig. 7 Influence of data dispersion, conversion from time to frequency. (a) Analytic generalized Maxwell
model relaxation modulus E(¢) provided by Eq. (11) together with the employed unevenly spaced data;
(b) comparison between analytic generalized Maxwell model complex modulus E*(w) provided by Eq. (13)
and the converted one using data dispersion

during the relaxation. Besides, a higher order interpolation technique will provide better
accuracy.

Regarding the inverse conversion, A f = 0.5 Hz and f,,x = 1 kHz are chosen to guaran-
tee a wider time range. Figure 8 shows the conversion from complex modulus to relaxation
modulus. Figure 8(a) illustrates Eq. (13) with the pseudo experimental data E*(w), and
Fig. 8(b) illustrates the converted modulus with the analytical solution for E(¢) given by
Eq. (11).
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Fig. 8 Influence of data dispersion, conversion from frequency to time. (a) Analytic generalized Maxwell
model complex modulus E*(w) provided by Eq. (13) together with the employed unevenly spaced data;
(b) comparison between analytic generalized Maxwell model relaxation modulus E(¢) provided by Eq. (11)
and the converted one using data dispersion

From Fig. 8(b) it should be remarked that the converted relaxation modulus precisely
matches the response provided by Eq. (11).

In short, it can be concluded that the proposed procedure is capable of providing an
accurate estimation of the complex modulus E*(w) and of the relaxation modulus E(¢)
even though the original data do not match the exact response and even though data are not
properly spaced.
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Fig. 9 Application example using experimental results. (a) Conversion from time to frequency: comparison
between the experimental complex modulus E*(w) of a flexible adhesive and the converted one from its re-
spective experimental relaxation modulus E (¢); (b) conversion from frequency to time: comparison between
the experimental relaxation modulus E(¢) of a flexible adhesive and the converted one from its respective
experimental complex modulus E* ()

4 Application example using experimental data

Finally, an application example is presented in which experimental data for DMTA ob-
tained relaxation and complex moduli E.,(t) and E;‘xp(a)) of a flexible adhesive (Garcia-
Barruetabefia et al. 2011) are used to assess the present procedure. The employed flexible

adhesive is a modified sylane. Concretely, ISR 70-03 is employed (Bostik Industry 2010). It
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should be remarked that the behavior of the employed material was fitted to an exponential
relaxation model (Garcia-Barruetabeiia et al. 2011) including nine relaxation functions.

The experimental relaxation modulus Ec,(f) covers the time range 1075 s-3 x 10° s
while the complex modulus EZ, (w) covers the frequency range 107! Hz-7 x 10 Hz. It
should be remarked that an interpolation technique is needed to obtain the evenly spaced
data. As well, this interpolation step is needed to reach the desired #,,,x and Atz. Concretely,
cubic interpolation is used. It should be pointed out that, due to the fact that E.,(¢) and
E;fxp (w) are the experimental data, there is no relaxation time 7y, associated with them and
as a result there is no underlying model. Thus, the desired Az is estimated using the cri-
teria T, = 0.667, where t, is the elapsed time from the moment the strain is applied until
the relaxation is reached. Therefore, At = 107> s is derived. Regarding the dynamic case,
Af =0.01 Hz is employed. Consequently, Fig. 9(a) compares the conversion from relax-
ation modulus E(¢) to complex modulus E*(w) with the experimental data and Fig. 9(b)
shows the inverse conversion.

From Fig. 9(a) it should be noted that the presented methodology provides an accurate
prediction for E (w). On the one hand, concerning the storage modulus, the proposed
methodology reproduces the experimental data in the whole frequency range. On the other
hand, regarding the loss factor tand(w), the method reproduces the tendency of the ex-
perimental data but differences are found, especially in the high-frequency range. These
differences are smaller than 5 % for the low-frequency range but up to 30 % for the high-
est frequencies. However, if a smaller At is used, the accuracy of the interconversion will
increase. Concerning the interconversion from complex modulus to relaxation modulus, as
seen in Fig. 9(b), it should be remarked that the presented procedure provides an accurate
prediction for the experimentally obtained relaxation modulus during the relaxation. Never-
theless, an error of 7 % is encountered for the upper time limit. This error can be reduced,
as it was discussed on Sect. 3, using a smaller Af for the interpolation step or starting from
a wider frequency range, i.e. employing a higher fux -

5 Concluding remarks

In this paper the interconversion between the relaxation modulus E (¢) and the corresponding
complex modulus E*(w) for linear viscoelastic materials has been explored. In contrast to
other approximate methods, in this work the FFT algorithm proposed by Cooley and Tuckey
has been directly applied to time-dependent part of the viscoelastic response R(¢). Influences
of leakage, signal discretization and analyzed ranges, as well as the eventual experimental
error and data dispersion, have been analyzed via an analytical material model. Finally, an
application example using experimental data has been carried out to assess the method. As
a result, the proposed procedure allows obtaining the complex modulus E*(w) by means of
relaxation tests, and vice versa.
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