
6455ELE 2023-24

Department of Electronics & Electrical Engineering

Webots-Based Implementation and
Simulation of Robotics Algorithms

Dissertation

Pablo Suárez Sánchez

Supervisor: Princy Johnson

2nd Marker: Ronan McMahon

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

1
Pablo Suárez Sánchez

Acknowledgements

This project could not have been accomplished without the support and encouragement

of various people, whose academic and moral contributions have been invaluable in its

completion.

First and foremost, I am deeply grateful to my family for their understanding,

encouragement, and patience during all this years. Their unwavering belief as kept me

always motivated.

I am equally grateful for the support of my friends, whose understanding and

appreciation have been invaluable.

Special recognitions and sincere appreciations go to Antonio M. López and Princy

Johnson, my supervisors, for their contributions and valuable guidance. Their expertise

and mentorship have been essential in shaping the direction and quality of this project.

Lastly, I also extend my gratitude to myself for the dedication, perseverance and hard

work that have been instrumental during this last four years.

Pablo

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

2
Pablo Suárez Sánchez

Abstract

In the vast realm of robotics, the implementation of different behaviours relies on

sophisticated and well-stablished techniques. This project will embark on the review,

implementation, and simulation of various algorithms and techniques used in general

robotics.

The main focus of the project will be the simulation, analysis, and validation of these,

using the Webots open-source software. More specifically, the project will focus on the

development of navigation algorithms like trajectory following (Pure Pursuit), sensor-

based approaches like Bug algorithms or Artificial Potential Fields (APF), as well as

map-based navigation including Grassfire, Dijkstra, and A*. These last algorithms will

be supported by map generation techniques such as Probabilistic Roadmaps

generation or RRT (Rapidly Exploring Random Trees) algorithms.

By employing a professional simulation software like Webots, this endeavour seeks to

explore a platform for in-depth examination and experimentation on robotics algorithms.

This work does not aim to develop or research into new or innovative solution, as it’s

mainly focused onto reviewing and acquiring a greater understanding of these kind of

technologies, widely demanded on the actual context of implementing automation and

robotics in nearly any field.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

3
Pablo Suárez Sánchez

Resumen

Introducción

En el contexto tecnológico actual, la robótica y otros sistemas autónomos han

adquirido una gran relevancia. Esta realidad ha producido una gran demanda en el

desarrollo e integración de soluciones innovadoras referidas a los algoritmos y técnicas

que controlan y permiten el correcto funcionamiento de estos nuevos sistemas,

aumentando su capacidad de navegación, planificación, localización y mapeado tan

necesarias para este tipo de aplicaciones.

Este proyecto explorará los entresijos de los sistemas que controlan el funcionamiento

de algunos sistemas robóticos, centrándose especialmente en el desarrollo de estos

algoritmos y su simulación en Webots, un software que proporciona un entorno ideal

para el análisis y desarrollo de este tipo de técnicas.

Motivación

Dado el contexto industrial y comercial actual, existe una gran demanda de sistemas

robóticos y autónomos, y en consecuencia, del desarrollo de las tecnologías de control

de estos. La capacidad de estos sistemas para navegar, mapear o interactuar con su

entorno es crucial en ciertas aplicaciones, por lo que resulta esencial explorar la gran

variedad de algoritmos y otras técnicas disponibles para abordar esto.

También es estrictamente necesario analizar las diferencias entre los cálculos y el

funcionamiento teórico, y una aplicación real. Aquí es donde los recursos de simulación

entran en juego, proporcionando un entorno virtual en el que trasladar los conceptos

teóricos a un funcionamiento realista y fiel a las imprecisiones del mundo real.

Por último, como una motivación más personal, este proyecto combina mi gran interés

por la robótica y las nuevas tecnologías, con su aplicación en el contexto ingenieril

actual. Resulta esencial adquirir conocimientos en esta área, a la hora de adentrarse

en el contexto laboral de la ingeniería moderna.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

4
Pablo Suárez Sánchez

Objetivos

El objetivo principal de este proyecto es la implementación y simulación de algoritmos

fundamentales, y su simulación en la plataforma Webots. Estos algoritmos incluyen

técnicas de navegación, planificación, localización y mapeado. Llevando a cabo

diferentes simulaciones de cada uno de estos, el proyecto trata de evaluar el

rendimiento y validez de estos algoritmos en un entorno realista.

El objetivo principal puede desglosarse en una serie de metas más específicas:

a. Revisión y análisis de las técnicas existentes para navegación, evasión o

esquiva de obstáculos, planificación de rutas y mapeado

b. Diseño e implementación de algoritmos de navegación para adoptar diferentes

posiciones, seguimiento de trayectorias, y mecanismos de evasión de

obstáculos basados en estrategias “Bug” o campos potenciales

c. Diseño e implementación de técnicas de planificación de rutas (como Dijkstra

y A*), adaptado para entornos de simulación en Webots

d. Diseño e implementación de algoritmos de generación de mapas

probabilísticos o mapas RRT

e. Evaluación de los algoritmos implementados y resultados obtenidos

Contribución

Este proyecto no es realmente una solución innovadora para la aplicación de todas

estas tecnologías. Su valor reside en la investigación, revisión, comparación y

contextualización de los diferentes algoritmos de robótica existentes, y su posterior

contribución a comprender sus fortalezas y debilidades, además de cómo varía su

comportamiento en diferentes escenarios.

La simulación de estos algoritmos proporcionará datos válidos a la hora de evaluar el

rendimiento y viabilidad de cada solución para, en un futuro, poder implementarla

sobre un robot real.

Por último, este trabajo define un buen marco inicial para futuro desarrollo o

investigaciones, ya que explora una gran variedad de algoritmos, estableciendo una

sólida base sobre la que desarrollar trabajos futuros.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

5
Pablo Suárez Sánchez

Robot e-puck

El robot utilizado para implementar y simular todos los algoritmos es el robot “e-puck”.

Se trata de un pequeño robot diferencial, de software y hardware abiertos, y muy

extendido entre la comunidad educativa y científica. A su vez se trata de un robot muy

económico y robusto, lo que lo hace muy adecuado para el ámbito educacional.

Algunas de sus características principales son:

• Pequeño tamaño y peso

• Diseño basado en ruedas diferenciales, permitiendo un control preciso y

sencillo

• Variedad de sensores y posibilidad de expansión

• Potencia de procesamiento y capacidad de comunicación

• Uso y programación sencillos

• Amplia documentación y soporte de la comunidad

• Muy asequible y fácil de encontrar

• Muy extendido entre numerosos simuladores de robótica, siendo Webots uno

de ellos

Software de simulación Webots

Webots es un software profesional de simulación de robótica de código abierto,

desarrollado por Cyberbotics. Este software ofrece un ecosistema de simulación

relativamente “potente”, versátil y amigable para un usuario principiante, a la hora de

simular distintos robots y diseñar los entornos de prueba. Esto lo convierte en una

elección idónea para un proyecto como este.

Este simulador admite la programación de controladores para el robot en numerosos

lenguajes como C/C++, Python, Java o MATLAB. En este caso, debido a la facilidad

para exportar los datos a la propia suite de MATLAB, y la cantidad de funciones y

operadores matemáticos útiles que éste tiene integrados, el lenguaje utilizado será

MATLAB.

El programa ofrece algunas características muy interesantes como:

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

6
Pablo Suárez Sánchez

• Motor de físicas avanzado

• Extensas librerías de robots, sensores y otros

• Editor intuitivo del entorno de simulación

• Integración de ROS

• Simulación en tiempo real

Algunas de las ventajas de este simulador frente a otros como CoppeliaSim o Gazebo,

residen en su naturaleza de software de código abierto (gratuito), funcionalidad

combinada con la facilidad de uso, eficiencia de las simulaciones en tiempo real y su

fidelidad con la realidad.

Algoritmos de movimiento simple

La implementación de los algoritmos de movimiento fundamentales de un robot, son

esenciales para permitir que un robot terrestre se desplace de manera efectiva y

precisa. El modelo básico utilizado habitualmente para modelar esto es el modelo de

la bicicleta. Con este modelo, el robot posee 2 ruedas: una rueda trasera fija, y una

delantera que permite el giro sobre el eje vertical para dirigir el movimiento. Este

modelo resulta muy útil, al simplificar el movimiento del robot y con ello facilitar la

planificación de la trayectoria a seguir.

El algoritmo de movimiento más simple es el de moverse a un punto específico del

plano. Este tipo de algoritmo, implementa dos controladores proporcionales que

ajustan la velocidad y la dirección del robot hacia el punto objetivo.

Una vez conseguida la implementación de esto, se puede avanzar hacia movimientos

algo más complejos, como el de seguir una línea o trayectoria.

El movimiento más general será entonces el de seguir una trayectoria, siendo el

algoritmo más clásico utilizado con este fin el “Pure Pursuit”. Este algoritmo se basa

en mover un punto objetivo ficticio a lo largo de la trayectoria a seguir, utilizando una

velocidad constante; a su vez, se indica al robot que debe seguir este punto. En este

caso, los controladores a utilizar son uno proporcional, que controla la velocidad de las

ruedas del robot en relación con la distancia de este con el punto objetivo; y uno

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

7
Pablo Suárez Sánchez

integral, que controla la orientación y ángulo de giro de este, en relación con este punto

virtual.

Se presentan y evalúan esto algoritmos, “tuneando” los controladores y probando

distintos valores para las variables de control, analizando cómo varían los resultados

obtenidos con cada uno de estos, y cuáles generan un movimiento más preciso y

eficiente.

Navegación reactiva (basada en sensores)

Los algoritmos de navegación reactiva son una de las técnicas más utilizadas en

navegación robótica. Esto permite a un robot ir desde un punto inicial A hacia un

objetivo B sin necesidad de saber cómo se distribuyen los obstáculos a su alrededor.

Estos algoritmos aprovechan la capacidad de sus sensores para adaptar la dinámica

de su movimiento en tiempo real y evitar colisionar con algún obstáculo, permitiendo

así navegar en espacios relativamente complejos y brindando también a robot la

capacidad de moverse a través de un entorno en constante evolución (con obstáculos

móviles, por ejemplo). En este trabajo se revisan algunas de las técnicas más clásicas,

aunque también ofreciendo un pequeño contexto sobre los algoritmos más complejos.

Uno de los casos a tratar, y entre los más utilizados, son los algoritmos “Bug”, en los

que se asume la manera más sencilla de movimiento. El robot se mueve en línea recta

hacia el punto objetivo hasta que un obstáculo es detectado en el camino, en cuyo

caso, el robot, dependiendo del tipo de algoritmo implementado, circunnavegará el

obstáculo evitándolo, hasta encontrar de nuevo una trayectoria viable hacia el objetivo.

Existen distintos tipos de algoritmos “Bug”, dependiendo de las decisiones y

posibilidades que baraja el robot, y la complejidad de las soluciones que sea capaz de

encontrar. En este caso, el trabajo se centra sobre el algoritmo “Bug2”.

Por otro lado, existen otras soluciones más complejas en cuanto a navegación

reactiva, como la navegación basada en campos potenciales. En este caso, la idea es

la de simular el comportamiento de una partícula cruzando un campo potencial, de

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

8
Pablo Suárez Sánchez

manera que los obstáculos simulen un comportamiento repulsivo, y el punto objetivo

como el potencial atractivo del campo. Esta solución es compleja en cuanto a su

adaptación al entorno donde se utilice, ya que los valores necesarios para su correcto

funcionamiento son muy dependientes del problema, además de la necesidad de que

estos se ajusten muy precisamente (el mínimo cambio erróneo puede desequilibrar

completamente el funcionamiento del robot).

De nuevo se presentarán y evaluarán estos algoritmos, cambiando en cada caso las

variables de control y analizando cada uno de los resultados obtenidos. Además, en el

caso de los algoritmos “Bug”, la decisión de circunnavegar un obstáculo por el lado

derecho o izquierdo puede determinar la capacidad del robot de navegar por el entorno

dado o impedirlo, por lo que se evaluará el efecto de la toma de una decisión u otra en

entornos y disposiciones de obstáculos distintas.

Navegación basada en mapas

La navegación basada en mapas es una pieza fundamental en muchas aplicaciones

de robótica móvil. Estos algoritmos se apoyan en diferentes tipos de mapas y

representaciones del entorno, para calcular las rutas óptimas, evitando obstáculos y

alcanzando el destino específico de manera eficiente.

Es crucial entender los tipos de mapas a utilizar al aplicar estas técnicas de búsqueda.

Habitualmente, los mapas métricos son demasiado complejos y demandantes

computacionalmente, por lo que suelen transformarse en otro tipo de mapas. Los

mapas de rejilla reducen la capacidad computacional requerida, dividiendo el entorno

en una cuadrícula de celdas. También existen los mapas topológicos, que ofrecen una

representación más abstracta, centrándose en la conectividad y relación entre

ubicaciones clave del mapa, y dejando de lado los detalles geométricos precisos.

En casos como los de los mapas de rejilla, encontrar una ruta implica explorar las

celdas adyacentes, utilizando algoritmos sencillos como el “Grassfire” para determinar

el camino más eficiente. Esto se puede aplicar a problemas sin mucha complejidad,

como la resolución de un laberinto.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

9
Pablo Suárez Sánchez

Por otro lado, los mapas topológicos permiten implementar algoritmos más complejos

y utilizados en muchas disciplinas, como el “Dijkstra” o el “A*”, que combina la

eficiencia del primero con la implementación de una función heurística que guía la

búsqueda de la ruta. Estos algoritmos se aplican en problemas de redes u optimización

de la logística y entregas, entre otros.

La implementación de dichos algoritmos en este proyecto, irá estrechamente ligada

con la técnicas de generación de mapas. Combinando ambas, con los algoritmos de

movimiento presentados anteriormente, el robot será capaz de recibir la información

sobre el entorno, generar un mapa adecuado de este, y con ellos buscar la ruta óptima

entre su posición y la localización del punto de destino. Una vez planificada la ruta, se

ejecutarán los correspondientes algoritmos de movimiento o seguimiento de la

trayectoria, para así lograr recorrer el camino calculado.

Estos algoritmos se probarán tanto sobre un mapa sencillo, como el caso de un

laberinto con una sola solución; como en otros más complejos, donde existen varios

caminos para llegar a una solución, y cada algoritmo deberá decidir cuál es el camino

más eficiente. En el caso de “A*”, se evalúa el funcionamiento de distintos heurísticos

y cómo afecta la naturaleza de cada uno de ellos al resultado calculado.

Generación de mapas

Los algoritmos de generación de mapas son esenciales en la navegación robótica, ya

que las representaciones o mapas que conocemos habitualmente no siempre son

adecuadas ni fácilmente computables a la hora de aplicarlas en conjunto con

algoritmos de planificación. Para remediar esto, existen diferentes métodos para

transformar o discretizar los mapas, haciéndolos más adecuados para los cálculos a

realizar.

Habitualmente las representaciones en mapas de rejilla tampoco son muy eficientes,

excepto en algunos casos puntuales, especialmente en aquellos donde el mapa es

muy detallado, ya que se requerirían infinidad de celdas. La forma más eficiente de

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

10
Pablo Suárez Sánchez

representar un espacio, es mediante un mapa topológico, que permite almacenar la

suficiente información utilizando poco espacio y potencia computacional.

A la hora de generar estos mapas topológicos, el objetivo es definir un “mapa de

carreteras” del espacio representado, evitando los obstáculos. Estos mapas consisten

en una serie de nodos y conexiones, donde cada nodo representa un punto

significativo del entorno, y cada conexión es una línea recta que representa un posible

camino entre estos puntos.

Existen varios tipos de estos mapas, entre ellos, los mapas probabilísticos o de

carreteras probabilísticas. A partir de una configuración vacía, se genera un número

de puntos distribuidos aleatoriamente sobre el mapa, descartando aquellos que se

encuentran en posiciones no transitables de este. Una vez hecho esto, se generan las

trayectorias viables que unen cada par de puntos.

Una vez definido el mapa, es válido para generar trayectorias entre dos puntos

cualquiera del mismo, sólo necesitando los puntos de inicio y fin, y utilizando un

algoritmo de búsqueda como los mencionados anteriormente (“Dijkstra” o “A*”). El

algoritmo es probabilísticamente completo, por lo que si existe una solución para el

mapa de carreteras, la encontrará si el número de puntos generados establecido es

adecuado.

Por otro lado, es posible generar otro tipo de representaciones, en caso de no ser

necesaria la generación de un mapa de carreteras útiles. En este caso la estrategia

consiste en crear una ruta directamente desde el nodo inicial, generando un árbol de

caminos, hasta encontrar el punto final u objetivo. Este algoritmo se conoce como

“RRT” (Rapidly-Exploring Random Tree). También existen otras variantes más

eficientes de éste, como el “RRT-2”, que genera dos árboles al mismo tiempo, uno

desde el punto de inicio, y otro desde el punto final, hasta que ambos se encuentran.

Estos mapas serán generados en los entornos de prueba de los algoritmos de

navegación basada en mapas o planificación de rutas. Como se ha mencionado

anteriormente, el objetivo es el de combinar ambas técnicas, proporcionando al robot

la capacidad de analizar el mapa, y decidir cuál es el camino a tomar para llegar a un

objetivo determinado.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

11
Pablo Suárez Sánchez

Análisis y presentación de los resultados

Todos los datos y resultados de la simulación de cada algoritmo y técnica

implementados en Webots, son exportados a la suite de MATLAB, donde el análisis de

los datos obtenidos, y la posibilidad de crear gráficos y representaciones de los

resultados es mucho más sencillo y vistoso.

Para cada uno de los algoritmos, se seleccionarán una serie de estadísticas y

parámetros relevantes, que permitan clasificar y comparar el rendimiento de cada uno

de ellos.

Conclusiones y trabajo futuro

En el desarrollo de este proyecto se ha logrado implementar y simular una significativa

variedad de algoritmos fundamentales para la navegación, planificación, localización y

mapeado utilizado en robots autónomos, en la plataforma Webots. A través de estas

simulaciones, se ha podido evaluar el rendimiento y la validez de cada una de estas

soluciones, en distintos entornos controlados. Las principales conclusiones obtenidas

son:

• Revisión y comparación de los algoritmos, identificando algunas de sus

fortalezas y debilidades, así como su aplicabilidad en diferentes escenarios

• Implementación y simulación en Webots, que permitió la programación y

ejecución de cada algoritmo en un entorno personalizado, para evaluar

correctamente el rendimiento y comportamiento de cada uno

• Resultados de la simulación, que proporcionan una visión clara sobre la

eficiencia de cada uno de ellos. Se utilizó MATLAB para analizar y visualizar

estos datos, permitiendo una comparación basada en distintas métricas de

rendimiento

• Investigación en el marco de la robótica y base para trabajos futuros, aportando

un pequeño marco de referencia para el futuro desarrollo de alguno de estos

algoritmos, y estableciendo una base sólida de datos, que podrían ser

utilizados para una posterior implementación en un robot real

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

12
Pablo Suárez Sánchez

Por otro lado, surgen otros puntos sobre los que trabajar en un futuro como:

• La mencionada implementación en un robot real

• La optimización del funcionamiento de algunos de los algoritmos

• Mejoras y correcciones en el errático funcionamiento de algunas de las

implementaciones

• Integración de algunas de las nuevas tecnologías de IA o “machine learning”

• Ampliación del entorno de simulación, con nuevos y más complejos escenarios

de prueba

Siguiendo estas directrices futuras, no sólo se podría conseguir mejorar los resultados

obtenidos con este proyecto, sino que se contribuiría al avance general del campo de la

robótica en estos ámbitos, buscando soluciones más eficientes y efectivas para aplicaciones

en el mundo de la ingeniería real.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

13
Pablo Suárez Sánchez

Table of contents

1. Introduction ... 15

1.1. Introduction ... 15

1.2. Motivation.. 15

1.3. Aims and objectives ... 16

1.4. Contribution ... 17

1.5. Report layout ... 17

2. Literature review ... 18

2.1. Algorithms .. 19

2.1.1. Simple movement control ... 19

2.1.2. Reactive Navigation (Sensor-Based) .. 23

2.1.3. Map-Based Navigation .. 34

2.1.4. Map generation algorithms ... 43

2.2. Software platforms... 47

2.2.1. Webots simulation environment. .. 47

2.2.2. Webots and other robotics simulators comparison .. 48

2.3. Performance metrics.. 53

3. System design .. 54

3.1. E-puck robot ... 54

3.2. Simulation environment set-up ... 57

3.2.1. Basic navigation algorithms test arena ... 60

3.2.2. Sensor-based Navigation Algorithms .. 61

3.2.3. Map-based Navigation Algorithms .. 64

3.2.4. Map generation algorithms ... 65

3.3. Data collection and analysis ... 65

4. Implementation ... 66

4.1. Simple navigation algorithms – Move to a point ... 66

4.2. Simple navigation algorithms – Follow a trajectory ... 68

4.3. Reactive Navigation – Bug2 Algorithm ... 70

4.4. Reactive Navigation – Artificial Potential Fields ... 72

4.5. Map-Based Navigation – Dijkstra’s algorithm .. 74

4.6. Map-Based Navigation – A* algorithm .. 76

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

14
Pablo Suárez Sánchez

4.7. Map generation algorithms – Probabilistic roadmaps ... 78

4.8. Map generation algorithms – RRT (Rapidly-Exploring Random Tree) 80

5. Results and discussion ... 82

5.1. Move to a point .. 82

5.2. Follow a trajectory – Pure Pursuit .. 87

5.3. Bug2 algorithm ... 92

5.4. Artificial Potential Fields .. 96

5.5. Grassfire algorithm .. 98

5.6. Probabilistic roadmaps generation .. 99

5.1. Dijkstra and A* algorithms ... 101

5.1. RRT (Rapidly-Exploring Random Tree) ... 105

6. Conclusion and future work .. 108

7. Potential client companies .. 111

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

15
Pablo Suárez Sánchez

1. Introduction

1.1. Introduction

In the actual context of ever-evolving technology; robotics and autonomous systems

have been given a huge relevance. This landscape has demanded the design,

development and integration of innovative algorithms and techniques to power these

new technologies, in order to elevate the understanding of navigation, planning,

localization and mapping needed for these applications.

This project will embark on a journey into the heart of robotics algorithms, exploring

the different techniques used, and focusing on its development in the Webots

simulation platform.

The ability of a robot to be able to navigate and interact with static or dynamic

environments is essential. The Webots platform as a simulation tool, provides us with

the right canvas to develop these technologies and test theoretical algorithms into real-

world applications, including realistic and 3D visual attractive simulations with a user-

friendly interface, as it already has many built-in features as shapes, robots and

sensors which will make the simulation tasks much manageable.

1.2. Motivation

The projects core and main objective is to explore the insights and complexities of

robotics and autonomous systems. In the actual market, there’s a big demand for this

kind of products, and the development of its control technologies.

Given the actual context, the ability of robotics systems to navigate, plan, map and

interact with a dynamic environment is crucial. It is essential to explore the variety of

algorithms and techniques available to overcome these, but also the differences

between these theoretical maths and real applications.

To bridge this gap and to be able to develop robust algorithms, it’s crucial to simulate

them on a proper environment, which the Webots platform provides us with. This kind

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

16
Pablo Suárez Sánchez

of virtual environments help us translating theoretical concepts into realistic

simulations, while providing us with the data and statistics needed to evaluate these

systems.

As a more personal motivation, this work involves my deep interest in robotics and its

applications in the actual engineering. I can recognize the significant value of acquiring

knowledge in this field, especially within my university, which actively researches in

robotics and automation applications.

1.3. Aims and objectives

Aim:

Implement and simulate fundamental robotics algorithms on the Webots platform.

These algorithms will include navigation, planning, localization, and mapping

techniques. By conducting simulations in various complex scenarios, the project aims

to evaluate the performance of these algorithms, generate detailed maps of simulated

environments, and analyse the accuracy of the localization methods, providing

valuable insights into the effectiveness of these algorithms in realistic navigation

situations.

Objectives:

a. Review of techniques for navigation, obstacle avoidance, route planning, and

mapping in an indoor environment.

b. Design and implementation of navigation algorithms for reaching

predetermined poses, path tracking, mobile object tracking (pure pursuit), and

obstacle avoidance mechanisms based on "Bug" strategies and Potential

Fields.

c. Design and implementation of route-planning algorithms like Dijkstra and A*,

adapted for simulated environments in Webots.

d. Design and implementation of Algorithms for generating probabilistic maps or

RRT paths.

e. Evaluate the mapping and navigation system using benchmark parameters.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

17
Pablo Suárez Sánchez

1.4. Contribution

This project is not really an innovative solution for these technologies, its value relies

more into the review, comparison, and contextualization of different existing robotics

algorithms. The real contribution stands in understanding the strengths and

weaknesses of each solution, and how can these perform on different scenarios.

On the other hand, Webots based simulations will provide realistic data, in order to

assess each solution’s performance and suitability in different scenarios.

Finally, this project is a good framework for future research, as it will cover a good

range of robotics planning, mapping, and navigation algorithms, setting up a solid

basis upon which to develop future work.

1.5. Report layout

1. Introduction

1.1. Introduction

Provides a general overview of the project.

1.2. Motivation

Exploring the reasons behind undertaking this project, highlighting its

relevance.

1.3. Aim and Objectives

States the goals and objectives that this project aims to achieve.

1.4. Contribution

Highlights the potential contribution of this project to robotics and

engineering.

1.5. Report layout

Preview of the structure of the report.

2. Literature review

2.1. Algorithms

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

18
Pablo Suárez Sánchez

Survey of existent literature and giving theoretical context to each

algorithm reviewed.

2.2. Software platforms

Review of the software selected for the project, and comparison with

other options.

2.3. Performance metrics

Discussion about some of the metrics used to evaluate each

implementation’s performance.

3. System Design

Design considerations and decisions made to develop the system.

4. Software implementation

Detailed description of the practical implementation of each technique.

5. Results and discussion

Presenting the results obtained and discussion about them.

6. Conclusion and future work

Summarize key findings, results, and potential future work on the topic.

2. Literature review

Providing a proper context for the project, as well as reviewing previous work done on

the same topic is one of the main objectives of this project. This review will be

structured in three main sections.

Firstly, emphasis will be placed into the theoretical framework of the project, the

robotics algorithms themselves. These algorithms will include navigation, obstacle

avoidance, mapping, and route planning. Given the already extensive work done on

this topic by various researchers, the intention will be getting a proper context from

previous work done.

Following this, the system design and simulation platform chosen will be reviewed, the

Webots software, where all these mentioned theoretical algorithms will be tested

further on. This software will be evaluated against some other potential alternatives,

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

19
Pablo Suárez Sánchez

giving a proper analysis on its features, user-friendly interface, and accuracy of its

simulations.

Finally, in order to perform accurate tests for each algorithm, some benchmark metrics

need to be set. By reviewing some similar works to this project, some accurate and

significant performance metrics will be set, in order to evaluate our simulations further

on the project.

2.1. Algorithms

There a wide range of algorithms and techniques being reviewed on this project. This

will be classified in four main types, depending on the function they perform.

2.1.1. Simple movement control

When talking about robot movement, the first thing is to define how a robot moves with

some equations, and then introduce the simplest movements a robot can achieve.

The simplest archetype for most ground robots is the wheeled car. The car’s

movement is usually represented with the bicycle model in which a bicycle has a rear

wheel fixed to the body, and the front wheel rotates about the vertical axis to steer the

vehicle. The position of a robot on Cartesian planes can be illustrated by Figure 1. The

world coordinate is shown in blue, and the vehicle’s coordinate axis in red. γ is the

steering angle of the car, and v is the velocity of the back when in the x-direction

(Corke, 2017).

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

20
Pablo Suárez Sánchez

Figure 1 - Bicycle-based model of a vehicle's motion. From Peter Corke, Robotics, Vision & Control, Springer, 2nd Edition, 2017.

With all of this, the motion equations for the robot in the world frame can be written as

shown in Equation 1.

�̇� = 𝑣 cos 𝜃

�̇� = 𝑣 sin 𝜃

�̇� =
𝑣

𝐿
 tan 𝛾

Equation 1. Robot's basic motion equations (Corke, 2017).

Once defined the robot’s motion equations and characteristics, the simplest moving

algorithm can be introduced.

Moving to a specific point on the plane is the simplest navigation algorithm we can

implement. Considering a goal point in the plane:

𝑃∗ = [𝑥∗, 𝑦∗]𝑇

Equation 2 - Robot's goal point in the plane (Corke, 2017).

The robot’s velocity is controlled by applying a proportional action to its distance to the

goal:

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

21
Pablo Suárez Sánchez

𝑣∗ = 𝐾𝑣√(𝑥∗ − 𝑥)2 + (𝑦∗ − 𝑦)2

Equation 3 - Proportional control algorithm for the robot's velocity (Corke, 2017).

Then to steer towards the goal, which is at the vehicle-relative angle:

𝜃∗ = tan−1
𝑦∗ − 𝑦

𝑥∗ − 𝑥

Equation 4 – Vehicle’s relative angle to steer towards the goal (Corke, 2017).

Another proportional control algorithm is used:

𝛾 = 𝐾ℎ(𝜃∗ − 𝜃)

Equation 5 - Proportional control algorithm for the vehicle's steering angle (Corke, 2017).

Once moving to a point on the plane is achieved, we can model more complex

movements in the plane, being the next in nature, following a line.

A line on the plane is defined by:

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

Equation 6 - General equation for a line in the plane (Corke, 2017).

Following this line will require two controllers to be able to adjust the steering. The first

one steers the robot to minimize its normal distance from de line, which is:

𝑑 =
(𝑎, 𝑏, 𝑐) ∙ (𝑥, 𝑦, 1)

√𝑎2 + 𝑏2

Equation 7 - Normal distance between the robot and the line (Corke, 2017).

The proportional controller turning the robot towards the line would be:

𝛼𝑑 = −𝐾𝑑𝑑

Equation 8 - Proportional control algorithm to turn the robot towards the line (Corke, 2017).

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

22
Pablo Suárez Sánchez

The second controller would adjust the heading angle (orientation) of the vehicle, in

order to be parallel to the line followed:

𝜃∗ = tan−1
−𝑎

𝑏

𝛼ℎ = 𝐾ℎ(𝜃∗ − 𝜃)

Equation 9 - Steering angle needed and control law to adjust the robot's orientation (Corke, 2017).

Finally, the combined control law would be:

𝛾 = 𝛼𝑑 + 𝛼ℎ = −𝐾𝑑𝑑 + 𝐾ℎ(𝜃∗ − 𝜃)

Equation 10 - Combined control algorithm to follow a line (Corke, 2017).

Finally, having already reviewed the algorithms and equations needed to move a robot

to a specific point, or follow a line, there’s the final basic movement a robot should be

capable of doing.

Following a path or trajectory is a more general and common movement for a robot,

instead of following a line, for example, a trajectory could be generated by a motion or

path planned and sent to the motion control algorithm of the robot, which should be

capable of execute this movement precisely. The classic algorithm used to implement

this is named pure pursuit, which is based on moving the goal point to reach along the

path in a constant speed, and then make the robot follow that point, achieving this

movement through a specified path.

The approach to this is similar to moving to a point, despite the fact that the point is

moving this time (Universidad de Oviedo, s.f.). An error is calculated with the distance

maintained between the robot and the pursuit point:

𝑒 = √(𝑥∗ − 𝑥)2 + (𝑦∗ − 𝑦)2 − 𝑑∗

Equation 11 - Distance error between the pursuit point and the robot (Corke, 2017).

This error is regulated to zero by controlling the robot’s velocity, this is done by

designing a proportional-integral controller (PI):

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

23
Pablo Suárez Sánchez

𝑣∗ = 𝐾𝑣𝑒 + 𝐾𝑖 ∫ 𝑒 𝑑𝑡

Equation 12 - PI controller for the robot's velocity (Corke, 2017).

The second controller now steers the robot towards the target at the relative angle θ*,

implementing the following:

𝜃∗ = tan−1
𝑦∗ − 𝑦

𝑥∗ − 𝑥

𝛾 = 𝐾ℎ(𝜃∗ − 𝜃)

Equation 13 - Relative angle and steering angle control algorithm (Corke, 2017).

2.1.2. Reactive Navigation (Sensor-Based)

Reactive navigation algorithms are among the most used techniques, in order to make

a robot go from A to B without knowing how obstacles are distributed in his path. This

kind of algorithms are able to adapt to a real-time dynamic environment, responding

to obstacles and changes. The sensors equipped on robots managed like this, make

them able to navigate through complex and dynamic spaces with some agility and

responsiveness, depending also on the complexity and capacity of the algorithm used.

This project will review some of these techniques, the most basic and classic ones,

but also giving some context to more advanced ones.

Bug strategies

Bug strategies are among the earliest and simplest sensor-based algorithms with

probable guarantees (Yufka & Parlaktuna, 2009). These algorithms assume that the

robot is a point in the plane and use its sensors (usually a contact or zero range one)

to try finding the path from the initial point to the desired destination.

Bug strategies are based on the simplest assumption made when thinking about

moving from A to B. Its navigation approach consists of moving towards the destination

point until an obstacle is encountered, in which case, the robot would circumnavigate

it until motion towards the goal is again possible.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

24
Pablo Suárez Sánchez

The Bug0 algorithm is the most basic one of these. It consists of getting the robot

orientated to the objective point, move towards it until an obstacle is found; then just

circumnavigate it until the robot is capable of reorientating towards the objective again,

and continue until reaching the objective point.

A pseudocode for getting this algorithm implemented would be like this:

1: While not at goal location do

2: If hit an obstacle then

3: Follow obstacle turning to the left

4: Else

5: Drive towards goal location

6: End if

7: End while

This would lead to a result similar to this:

Figure 2 - Result of the movement using the Bug0 algorithm. From Howie Choset, G.D. Hager, and Z. Dodds, Robotic Motion
Planning: Bug Algorithms slides, CMU School of Computer Science, 2010.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

25
Pablo Suárez Sánchez

In the example given, the left-turning robot option has been selected. Navigating

obstacles in the opposite direction would be completely valid, but depending on the

starting point, or how the obstacles are displayed, right or left turning robots would give

different results and efficiencies, but there’s no “written rule” on which one to choose.

Obtaining a much more efficient bug algorithm which improves the last one is quite

simple, and consists of adding some memory, remembering the path taken.

The Bug1 algorithm is essentially, an improvement of his little brother Bug0. It consists

in the robot heading towards the goal, until an obstacle is encountered. Once this

happens, the robot circumnavigates the complete obstacle, remembering the start or

first “hit” point of the obstacle, and also logging the distance from each point of the

obstacle’s perimeter to the goal location. Once the robot gets again to the hit point, it

navigates wall-following the obstacle again to the point the closest to our objective

location. When reaching this point, it heads again towards the goal, repeating this

process if another obstacle is encountered.

This can be again implemented following this pseudocode:

1: While not at goal location do

2: If hit an obstacle then

3: Log hit point (x)

4: Follow obstacle turning to the left

5: While not at x do

6: Follow obstacle turning to the left

7: Log minimum distance to goal point (n)

8: End while

9: Go to n

10: Else

11: Drive towards goal location

12: End if

13: End while

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

26
Pablo Suárez Sánchez

This would result in a movement like this:

Figure 3 - Result obtained from applying the Bug1 Algorithm. From Howie Choset, G.D. Hager, and Z. Dodds, Robotic Motion
Planning: Bug Algorithms slides, CMU School of Computer Science, 2010.

Again, the left-turning robot has been represented, but as before, the other option is

completely valid, but in this case the result would be almost the exact same for both

turn directions.

There’s another evolution for this technique, the Bug2 algorithm. This one starts from

the Bug1, improving its performance and efficiency in most of the cases.

This one is based on m-line techniques; it consists of calculating a line (m-line) from

the origin to the objective point. The robot moves along this line until an obstacle is

reached, and as in the other ones, it starts to wall-follow it, until the m-line is again

encountered in a closer point to the objective, starting again to follow the line, repeating

this process if another obstacle is found, until reaching the goal.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

27
Pablo Suárez Sánchez

The pseudocode for this Bug2 algorithm would be:

1: Calculate m-line between origin point and goal

2: Set state on Follow m-line

3: While not at goal location do

4: If current state = Follow m-line and hit an obstacle then

5: Log distance from hit point to goal (h)

6: Set state on Avoiding obstacle

7: If current state = Avoiding obstacle and m-line

encountered and (distance to goal < h) then

8: Set state on Follow m-line

9: End if

10: Execute current state

11: End while

This would result in a movement like this, on the same obstacle layout example as the

other ones:

Figure 4 - Result obtained from applying the Bug2 Algorithm. From Howie Choset, G.D. Hager, and Z. Dodds, Robotic Motion
Planning: Bug Algorithms slides, CMU School of Computer Science, 2010.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

28
Pablo Suárez Sánchez

In this case, the Bug2 algorithm outperforms the Bug1, but there are some cases in

which this other version works better. This is because both algorithms different nature.

Bug1 is an exhaustive search algorithm, what means that it looks at all choices before

committing into the best one. On the other hand, Bug2 is a greedy algorithm, as it

takes the first choice that looks better than what it had previously. In most of the cases,

Bug2 will outperform Bug1, but overall, Bug1 has a more predictable performance.

Figure 5 - Comparison between the result obtained in different situations for Bug1 and Bug2 algorithms. From Howie Choset,
G.D. Hager, and Z. Dodds, Robotic Motion Planning: Bug Algorithms slides, CMU School of Computer Science, 2010.

Other Bug strategies

There are other similar and realistic but more complex algorithms based on this Bug

ones, as this three first ones, are basically contact bug algorithms. Adding a range

sensor capable of detecting obstacles from some distance unlocks new more efficient

solutions. One of these is the Tangent Bug algorithm.

The Tangent Bug algorithm is another reactive navigation robotics technique, designed

to move through unknown environments. Its basic idea is using both motion-to-goal

and boundary following behaviours to reach de desired goal. This algorithm

dynamically adjusts the movement strategy based on the robots position relative to

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

29
Pablo Suárez Sánchez

the goal and the information given by its range sensors of the obstacles around the

machine. It initially moves the robot towards the objective until encountering an

obstacle, switching to a boundary-following mode until getting again a line of sight to

the goal position.

Figure 6 - Example of navigation using a Tangent Bug Algorithm. From Choset, Howie M.

Principles of robot motion theory, algorithms, and implementation. Cambridge, Mass. MIT Press, 2005.

There are lots of other more complex algorithms using the same or different strategies

to solve the navigation of a robot.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

30
Pablo Suárez Sánchez

Figure 7 - Overview of Bug algorithms. From K.N. McGuire, G.C.H.E. de Croon, K. Tuyls, Robotics and Autonomous Systems: A
comparative study of bug algorithms for robot navigation, Volume 121, 2019.

Artificial Potential Fields

Artificial potential fields are another approach to the reactive navigation algorithms. As

its own name says, the idea is to create a function mixing attractive and repulsive

“forces”, in order to guide the robot to the target position.

First of all, the attractive function. We can generate an attractive force between the

robot’s position:

𝑝𝑘 = [𝑥𝑘 , 𝑦𝑘]𝑇

Equation 14 - Robot's position vector (Universidad de Oviedo, s.f.).

And the objective’s location:

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

31
Pablo Suárez Sánchez

𝑔 = [𝑥∗, 𝑦∗]𝑇

Equation 15 - Target point location vector (Universidad de Oviedo, s.f.).

The attractive force model would be modelled following the equations:

𝑑(𝑥𝑘 , 𝑦𝑘) = √(𝑥∗ − 𝑥𝑘)2 + (𝑦∗ − 𝑦𝑘)2

𝑓𝑎𝑡𝑡(𝑥𝑘, 𝑦𝑘) =
1

2
𝑑(𝑥𝑘 , 𝑦𝑘)2

Equation 16 - Distance from the robot's location and the goal, and attractive force model equations (Universidad de Oviedo,
s.f.).

Having the robot, the location pk, this model would return an attractive force to the

target location. Looking into a plot of the attractive force function, the robot would be

placed on top of the slope, and the force would attract him to the valley, where the goal

is located.

Figure 8 - Example of a potential attractive function. From Intensificación en Sistemas Robóticos slides, Industrial Engineering
Master, Universidad de Oviedo.

Each axis component of the gradient function from the potential field would be:

∇𝑥𝑓𝑎𝑡𝑡(𝑥𝑘, 𝑦𝑘) =
𝛿𝑓𝑎𝑡𝑡(𝑥𝑘, 𝑦𝑘)

𝛿𝑥𝑘
= (𝑥𝑘 − 𝑥∗)

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

32
Pablo Suárez Sánchez

∇𝑦𝑓𝑎𝑡𝑡(𝑥𝑘 , 𝑦𝑘) =
𝛿𝑓𝑎𝑡𝑡(𝑥𝑘 , 𝑦𝑘)

𝛿𝑦𝑘
= (𝑦𝑘 − 𝑦∗)

Equation 17 – Attractive potential field gradient function for each axis component (Universidad de Oviedo, s.f.).

Finally obtaining the equations for the control algorithm:

𝑥𝑘+1 = 𝑥𝑘 − 𝜉
𝛿𝑓𝑎𝑡𝑡(𝑥𝑘, 𝑦𝑘)

𝛿𝑥𝑘
= 𝑥𝑘 − 𝜉(𝑥𝑘 − 𝑥∗)

𝑦𝑘+1 = 𝑦𝑘 − 𝜉
𝛿𝑓𝑎𝑡𝑡(𝑥𝑘 , 𝑦𝑘)

𝛿𝑦𝑘
= 𝑦𝑘 − 𝜉(𝑦𝑘 − 𝑦∗)

Equation 18 - Control algorithm equations for the attractive potential field (Universidad de Oviedo, s.f.).

Where ξ is a scale factor that determines the magnitude of the attractive gradient.

On the other hand, we have the repulsive function, where the idea is to create high

repulsive areas on the field, corresponding those to the obstacles the robot can

encounter, in order to make the robot stay away from those.

Mathematically, and starting again from the distance equation, this would be modelled

as:

𝜌(𝑥𝑘 , 𝑦𝑘) = √(𝑥∗ − 𝑥𝑘)2 + (𝑦∗ − 𝑦𝑘)2

𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘) =
1

2
(

1

𝜌(𝑥𝑘 , 𝑦𝑘)
−

1

𝑑0
)

2

Equation 19 - Distance to a point and repulsive potential field equations (Universidad de Oviedo, s.f.).

Where d0 is a parameter that controls the repulsive potential field influence.

Again, calculating each component of the gradient function:

∇𝑥𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘) =
𝛿𝑓𝑟𝑒𝑝(𝑥𝑘 , 𝑦𝑘)

𝛿𝑥𝑘
= (

1

d0
−

1

𝜌(𝑥𝑘 , 𝑦𝑘)
)

1

𝜌(𝑥𝑘 , 𝑦𝑘)2

δ𝜌(𝑥𝑘 , 𝑦𝑘)

𝛿𝑥𝑘

∇𝑦𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘) =
𝛿𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘)

𝛿𝑦𝑘
= (

1

d0
−

1

𝜌(𝑥𝑘 , 𝑦𝑘)
)

1

𝜌(𝑥𝑘 , 𝑦𝑘)2

δ𝜌(𝑥𝑘 , 𝑦𝑘)

𝛿𝑦𝑘

Equation 20 – Repulsive potential field gradient function for each axis component (Universidad de Oviedo, s.f.).

Finally obtaining again:

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

33
Pablo Suárez Sánchez

𝑥𝑘+1 = 𝑥𝑘 − 𝜂
𝛿𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘)

𝛿𝑥𝑘

𝑦𝑘+1 = 𝑦𝑘 − 𝜂
𝛿𝑓𝑟𝑒𝑝(𝑥𝑘 , 𝑦𝑘)

𝛿𝑦𝑘

Equation 21 - Control algorithm equations for the repulsive potential field (Universidad de Oviedo, s.f.).

Where again η is a scale factor to determine the potential field influence.

Combining both potential fields, attractive and repulsive, we obtain the mathematical

expression for the complete artificial potential field:

𝑥𝑘+1 = 𝑥𝑘 − 𝜉
𝛿𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘)

𝛿𝑥𝑘
− 𝜂

𝛿𝑓𝑟𝑒𝑝(𝑥𝑘 , 𝑦𝑘)

𝛿𝑥𝑘

𝑦𝑘+1 = 𝑦𝑘 − 𝜉
𝛿𝑓𝑟𝑒𝑝(𝑥𝑘, 𝑦𝑘)

𝛿𝑦𝑘
− 𝜂

𝛿𝑓𝑟𝑒𝑝(𝑥𝑘 , 𝑦𝑘)

𝛿𝑦𝑘

Equation 22 - Complete equations for the artificial potential field (Universidad de Oviedo, s.f.).

Figure 9 - Artificial potential field example. From Lingjian Ye, Jinbao Chen, Yimin Zhou, Real-Time Path Planning for Robot
Using OP-PRM in Complex Dynamic Environment, Shenzhen Institute of Advanced Technology, Chinese Academy of Science,

Shenzhen, China, 2022.

This potential field technique has also some weaknesses, as sometimes it does not

work as expected. Its main problem is a local minimum on the potential function

generated. On these singular points of the function, the effect of the obstacles

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

34
Pablo Suárez Sánchez

(repulsion zones) around the robot, create a local minimum where this repulsive action,

counteracts the attractive force from the target, making the robot unable to reach the

target.

Figure 10 - Example of a local minimum on a potential field function. From Giuseppe Fedele, Luigi D’Alfonso, Obstacles
Avoidance Based on Switching Potential Functions, Journal of Intelligent & Robotic Systems, 2018.

There can be some solutions developed to avoid this. The simplest one is to implement

a function on the robots control algorithm that detects if the system is on a minimum

of the function (looking at the gradient), and it has not reached the objective point,

circumnavigate the near obstacle, in order to get the potential function working again.

There are also more complex solutions, for example, the one developed by

Barraquand and Latombe, called Randomized Path Planner (RPP), that when stuck

on a local minimum, the robot initiates a series of random walks that eventually allow

the robot to escape this conflictive point.

2.1.3. Map-Based Navigation

Map-based navigation algorithms play an essential role in enabling robots to move

around spaces efficiently, avoiding the obstacles represented and reaching a target

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

35
Pablo Suárez Sánchez

location. These algorithms operate on the framework of distinct types of maps and

representations of the environment.

After getting to work with map-based navigation, the first thing to do, is to define what

type of maps will be used with this control techniques.

Metric and grid maps

This is one of the most common maps we can encounter. This is basically a plain

continuous map where each point represented has its own coordinates, giving this an

exact localization on this map.

However, when it comes to practical implementation and computational efficiency,

these metric maps are not good enough. Transforming these metric maps into grid

maps, becomes a crucial step into simplifying the complex geometrical information a

metric map gives, into a simpler grid of cells, resulting in a much more computationally

and memory manageable map.

Figure 11 - Comparison between metric and grid maps. Pablo Suárez, 2023.

Topological maps

Topological maps are a more abstract and powerful representations of a space. Unlike

the ones mentioned before, this kind of representations emphasize into the

connectivity and topology between the key locations on the map. These maps are

basically a network of interconnected nodes, where each node represents a key point

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

36
Pablo Suárez Sánchez

of interest, and there are some connections between nodes, which are also sometimes

tagged with a “cost” of taking that route. This high-level abstraction maps provide a

simpler form to compute and calculate navigation and efficient routes between

locations, without getting into unnecessary details.

Grid maps navigation

This is one of the most common maps used for this kind of applications. There are

some key points needed in order to develop these algorithms:

• The robot can only occupy one of the cells in the map, and it’s able to know or

measure in which cell it is.

• The robot can move to any unoccupied adjacent cells.

The most common representation of occupied cells, is to use a Boolean variable

meaning:

• True if the cell is unoccupied, so the robot can move into it.

• False if this cell is occupied by an obstacle.

Navigation based on this kind of maps is simple, the objective is to find a route or path

across the grid, having a starting cell and an ending one. There is usually more than

one path possible, so the challenge is not only to find one of them, but also to calculate

the shortest or most efficient one (that may not be unique).

Grassfire algorithm

The most common algorithm to develop for grid maps is named Grassfire algorithm.

This technique is based on searching the most efficient path starting from the target

cell and finishing on the start point. The algorithm starts tagging the target cell with a

zero value, and immediately starts to iterate tagging each adjacent node with the

adequate “cost”. After doing this, this algorithm shows the minimum cost of travelling

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

37
Pablo Suárez Sánchez

from any cell on the grid, to the target. To travel to de end point from one cell, it is

sufficient to move to an adjacent node with a lower cost.

This method can easily be understood with its implementation in pseudocode:

1: For each node (n) from the graph:

2: n.distance = infinite

3: objective.node.distance = 0

4: open_list = empty

5: Add objective.node to open_list

6: While open_list is not empty do

7: current_node = 1st element in open_list

8: Eliminate current_node from open_list

9: For each node (n) adjacent to current_node do:

10: If n.distance > (current_node.distance+1)

11: Add n at the end of open_list

This algorithm is pretty simple to explore the most efficient paths in a grid map, but it

also has some problems, as if “cost” of moving from one node to another are not

constant, this method does not work at all.

Topological maps navigation

Topological maps navigation algorithms usually permit implementing more complex

algorithms, as they are usually more detailed and complex than grid representations.

There are much more topological-map exploration algorithms like Dijkstra, A*, Kruskal,

Prim and many more.

On the other hand, it’s sometimes also possible to create a topological map based on

a grid one, in order to solve grid-map complex problems.

Dijkstra’s algorithm

This algorithm is fundamental in graph theory for finding the shortest paths between

nodes in topological maps. This method, systematically explores the graph, assigning

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

38
Pablo Suárez Sánchez

distances to nodes and updating them continually while it navigates thought the map.

Finally, the algorithm prioritizes nodes with the shortest distances, outputting the

optimal and efficient path between two locations (start and target points).

The algorithm can be implemented with this pseudocode:

1: For every node (n) on the graph do:

2: n.cost = infinite

3: n.origin = indefinite

4: initial_node.cost = 0

5: open_list = empty

6: Add initial_node to open_list

7: While open_list is not empty do:

8: current_node = open_list element with the least cost

9: Eliminate current_node from open_list

10: If (current_node = target_node)

11: Return OK

12: For each node (n) adjacent to current_node do:

13: If n.cost > (current_node.cost +

from_current_node_to_n.cost)

14: n.cost = current_node.cost +

from_current_node_to_n.cost

15: n.origin = current_node

16: Add n to open_list

This algorithm is quite simple and is able to find the most efficient path to go from A to

B on a topographic map.

A* algorithm

When exploring grid or topological maps in which each movement or connection has

the same cost, Dijkstra’s and Grassfire algorithms have similar behaviours and

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

39
Pablo Suárez Sánchez

performance, and give valid and efficient outputs. Both explore each node next to the

target, in order to follow the most efficient path. But when it comes to more complex

maps or movements, they sometimes fail, giving wrong paths, or just don’t work at all.

Here is when the A* algorithm appears, as a more complete and efficient solution for

this kind of navigations. This method combines the performance of both, adding a

heuristic component which guides the planner on its way to the target.

A heuristic function is used to give each node of the map a non-negative value

following these equations:

h(objective) = 0

Equation 23 - Heuristic function value for the objective point (Corke, 2017).

Then for each two adjacent nodes x and y:

ℎ(𝑥) ≤ ℎ(𝑦) + 𝑑(𝑥, 𝑦)

Equation 24 - Heuristic function condition for two adjacent node x and y (Corke, 2017).

Where d(x, y) would be the “cost” of going from x to y.

If this heuristic function is consistent, the A* algorithm is optimal and complete.

Completion for algorithms, means that it will be able to find the optimal solution if there

is one, or in other words, that it does work properly.

The most common heuristics in this kind of planning algorithms usually are:

• Euclidean distance:

ℎ(𝑥, 𝑦) = √(𝑥 − 𝑥∗)2 + (𝑦 − 𝑦∗)2

Equation 25 - Euclidean distance equation (Corke, 2017).

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

40
Pablo Suárez Sánchez

• Manhattan distance:

ℎ(𝑥, 𝑦) = |𝑥 − 𝑥∗| + |𝑦 − 𝑦∗|

Equation 26 - Manhattan distance equation (Corke, 2017).

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

41
Pablo Suárez Sánchez

Being (x, y) the actual point and (x*, y*) the target point.

Once reviewed heuristics, the implementation would be based on the following

pseudocode:

1: For every node (n) on the graph do:

2: n.f = infinite

3: n.cost = infinite

4: n.origin = indefinite

5: initial_node.cost = 0

6: initial_node.f = h(initial_node)

7: open_list = empty

8: Add initial_node to open_list

9: While open_list is not empty do:

10: current_node = open_list element with the least f value

11: Eliminate current_node from open_list

12: If (current_node = target_node)

13: Return OK

14: For each node (n) adjacent to current_node do:

15: If n.cost > (current_node.cost +

from_current_node_to_n.cost)

16: n.cost = current_node.cost +

from_current_node_to_n.cost

17: n.f = n.cost + h(n)

18: n.origin = current_node

19: Add n to open_list

This implements the A* algorithm, providing an optimal solution for most of the

navigation problems that could be faced.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

42
Pablo Suárez Sánchez

Replanning

There could be times where the route planned is being executed, but there’s some

anomaly encountered on the path, as the map could have an error, or there may be

some new obstacles not represented before. On this point, the solution is to make a

replanning, using the A* replanning algorithm, or a better version of this, the D*

algorithm.

The A* replanning algorithm is quite simple, it just uses the A* method to construct a

path, then if a discrepancy is encountered, it simply replans the movement from where

the robot is, without taking into the algorithm the new obstacle encountered.

The algorithm would follow this flowchart:

Figure 12 - A* replanning algorithm flowchart. From Intensificación en Sistemas Robóticos slides, Industrial Engineering
Master, Universidad de Oviedo.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

43
Pablo Suárez Sánchez

The other well-known algorithm is a bit more complex. The D* replanning method fixes

the A* problem, as it includes the information acquired about the new obstacles and

discrepancies with the map, providing a more efficient algorithm:

Figure 13 - D* replanning algorithm representation. From Intensificación en Sistemas Robóticos slides, Industrial Engineering
Master, Universidad de Oviedo.

2.1.4. Map generation algorithms

Usually, maps and other environment’s representations are not adequate and easily

computable for its direct use in navigation. To overcome this, there are some methods

to transform and discretize maps, in order to make them computationally efficient for

searching paths and trajectories, what is the same, to enable path planning.

Creating grid map representations is not efficient at all, mainly because if the map is

detailed, lots of grids would be needed. The same happens with usual space

configurations, as usual maps represent mainly three-dimensional spaces, if not more,

depending on what we want to map. In conclusion, the most efficient way is to create

topologic maps, as these ones can store more information with less space and

computation-power.

Roadmap generation

To create these topologic maps, the objective is to define an obstacle-avoiding

roadmap of the space represented. This roadmaps, as topologic maps, consist of

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

44
Pablo Suárez Sánchez

nodes and edges, with nodes representing significant points in the environment, and

edges denote possible paths and connections between these points.

There are many types of roadmaps including visibility graphs, Voronoi diagrams, or

probabilistic roadmaps.

Visibility graphs

These are graphs based on transitable positions between obstacles, being these

created from the vertices of each obstacle. This visibility graphs are complete

roadmaps, what’s the same, they find a solution path if it exists, or they output an error

if not possible. They also find the most efficient path, mainly made of straight lines

between each obstacle’s vertices.

Its construction is simple, the simplest way is to create an empty graph, calculate the

vertices of each obstacle, and for each couple of vertexes, explore I there’s an obstacle

between them, and if not, create a road that connects them. Iterating on this process,

the roadmap is generated.

These graphs are useful for search algorithms previously stated, as Dijkstra, A*, D*...

This method also sometimes creates useless roads, between vertices that don’t mean

to be connected. There are some techniques to eliminate those and improve the

graphs performance. They have other problems, like some roads being too close to

obstacles; as close as if any little error is made in the robot’s motion control, it could

crash with an obstacle.

Probabilistic roadmap

Starting from an empty graph “G”, the algorithm generates a random roadmap point

configuration “q”. Then if the points are possible (on the map’s free space), its added

to “G”, if not they are discarded. The algorithm keeps on iterating until “G” contains a

number “N” specified configurations. For each configuration “q” in “G”, some “k”

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

45
Pablo Suárez Sánchez

neighbour points are selected, and if a path is found between “q” and “q*” (q* contains

the points named k), the graph connects “q” and “q*”.

Once defined it’s valid and useful to generate trajectories between any two points, only

needing start and end points, connect them as done with the other graphs nodes; and

use a search algorithm like Dijkstra or A*.

This algorithm is probabilistically complete, so if there’s a solution for the roadmap, I

will find it if an adequate number of points is set for the graph.

Rapidly exploring Random Tree (RRT)

A graph’s generation, for adding finally the start and end is useful in case of needing

to illustrate a roadmap with multiple paths and options. Sometimes this is not

necessary, so the representation can be generated starting directly on the initial node.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

46
Pablo Suárez Sánchez

In this case the strategy used is based on a tree-generation, in where each node has

only one origin.

This algorithm is commonly known as Rapidly exploring Random Tree, it can be

implemented with the following pseudocode:

1: Add initial node to the tree

2: Repeat n times:

3: Generate a random configuration X until X is on completely free space.

4: y = tree’s node the nearest to x

5: If distance(x, y) > delta

6: z = configuration between x and y & distance (z, y) <= delta

7: x = z

8: If it’s possible to go from x to y

9: Add x to the tree, and add y as its origin

This algorithm also has another more efficient variant, in which two trees are generated

at the same time, one from each start and ending point, until both come together. This

variation is named RRT-2.

Figure 14 - RRT algorithm example. From Xinda Wang, Xiao Luo, Baoling Han, Collision-Free Path Planning Method for
Robots Based on an Improved Rapidly-Exploring Random Tree Algorithm, Beijing Institute of Technology, 2020.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

47
Pablo Suárez Sánchez

2.2. Software platforms

In the realm of robotics and autonomous systems the development and integration of

algorithms demands a rigorous and tuneable simulation and testing environment. This

simulation software platforms play an essential role in this process, as they provide a

virtual space where this techniques ca be developing without facing any risk (material

or human), and with fully accurate tests.

The choice of a proper simulation platform is crucial, so in this section, some of these

platforms will be analysed, focusing more into Webots as the software where the

algorithm explained on this project will be evaluated.

2.2.1. Webots simulation environment.

Webots is a professional robotics simulation suite, developed by Cyberbotics. It serves

as a powerful, versatile, and user-friendly ecosystem to simulate and test robotics

algorithms and techniques. This makes an ideal choice for this project, as it involves

complete control and customization on simulations, as well as being easy to learn and

use.

Some of its key features would be:

• Physics engine: This software features a complete physics engine that is able

to reproduce realistic interactions between robots and their environment. This

feature includes an accurate modelling of dynamics and cinematics of the

systems simulated.

• Robot and sensor library: Webots includes a wide range of different pre-built

robots and systems, assorted into various categories, depending on their

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

48
Pablo Suárez Sánchez

features or use. It also features a variety of sensor models, such as cameras,

proximity or contact sensors, lidars, and many other useful ones.

• Environment editor: An intuitive environment editor is implemented in this

program, which enables users to create and edit their own worlds according to

their needs. This includes different terrains, fluids, obstacles and many more.

• Integration with ROS: Webots also supports ROS ecosystem, providing a

great integration, allowing users to implement their simulations into real robots.

• Real-Time simulations: It can also perform real-time simulations, allowing the

developer to analyse the behaviour of their robots or look at some statistics in

real-time.

Overall, this makes Webots a great option for this project, as it’s a comprehensive and

complete software package aimed to design and test this kind of algorithms.

2.2.2. Webots and other robotics simulators comparison

There are many other software options in the market. Some of them offer incredibly

accurate physics and simulations, or big robot prototypes libraries. But some of them

also involve a much more detailed knowledge and training to get used to it.

In this section, some of these options will be compared and evaluated, mainly

referencing into an article named “How to pick a mobile robot simulator: A quantitative

comparison of CoppeliaSim, Gazebo, MORSE and Webots with a focus on accuracy

of motion” (Farley, et al., 2022).

The simulators compared will be CoppeliaSim, Gazebo, MORSE and Webots,

analysing qualitative and quantitative features.

CoppeliaSim (formerly known as V-REP, from Virtual Robot Experimentation Platform)

is a powerful robotics simulation software, developed by Coppelia Robotics. It provides

the user with a user-friendly interface, an extensive library of robot models and support

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

49
Pablo Suárez Sánchez

for different other sensors and actuators. It’s widely used in education research and

some industrial applications.

Gazebo is an open-source robot simulation suite that offers a realistic and flexible

environment to simulate robotic systems, developed by OSRF (Open Source Robotics

Foundation). This software is one of the most popular, mainly because of its high-

fidelity physics engine, integration with ROS and ability to simulate complex scenarios.

MORSE is an open-source robotics simulation platform designed for simulating large

robots, developed by the Institute for Systems and Robotic in the Instituto Superior

Tecnico in Lisbon. This software provides a great scalable and realistic environment

to simulate multi-robot scenarios or testing their algorithms. This is used in research

projects and educational purposes.

Comparison

In order to compare this software platforms, the article previously mentioned provides

some benchmark parameters, with qualitative and quantitative features detailed in

Table 1.

Table 1 - Qualitative metrics comparation for each software (Farley, et al., 2022).

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

50
Pablo Suárez Sánchez

Metric name CoppeliaSim Gazebo MORSE Webots

Free to use True True True True

Open source False True True True

ROS

Compatibility

Built-in plugin

provided

Yes Yes A built-in plugin

provided

Programming

languages

C/C++, Python,

Lua, MATLAB,

Java, Octave

C/C++, Python Python C/C++, Python,

Java, MATLAB

UI

functionality

Full functionality Full functionality Visualization

only

Full functionality

Model format

support

URDF, SDF, Stl,

Obj, Dxf,

Collada

URDF, SDF, Stl,

Obj, Collada

Blend Proto Nodes

Physics

engine

support

Bullet, ODE,

Vortex, Newton

Bullet, ODE,

DART, Simbody

Bullet ODE

On the other hand, there are some measurable quantitative metrics, essentially about

simulation’s efficiency, CPU loads and real-world fidelity. These are shown in

Table 2.

Table 2 - Quantitative metrics comparation for each software (Farley, et al., 2022).

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

51
Pablo Suárez Sánchez

Metric name CoppeliaSim Gazebo MORSE Webots

Real time factor 0.973 1.064 0.839 0.903

Average load

CPU efficiency
11% 23% 12% 4%

Intense load

CPU efficiency
12% 23% 12% 7%

IMU angular

velocity error
21.46 rad/s 18.76 rad/s 24.42 rad/s 22.30 rad/s

IMU linear

acceleration

error

247.36 m/s2 340.39 m/s2 624.23 m/s2 359.66 m/s2

Real time factor is calculated by taking the ratio of the sum of simulated time steps to

the sum of desired real time steps. The closer to 1, the most accurate.

IMU accuracy is basically the accuracy of the data measured in the simulator,

compared to real data. The numbers measured look so large, this is because the

researchers decided to add up all angular velocity and linear acceleration error,

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

52
Pablo Suárez Sánchez

obtaining larger numbers than if made with means or other similar approaches.

Obviously, for this metric, the smaller the number is, the best.

These results are all summarized on Table 3, where each metric has been given a

weight (out of 10), depending on how crucial that measurement is.

Table 3 - Software's benchmark metrics summary and result (Farley, et al., 2022).

Metric name Weight CoppeliaSim Gazebo MORSE Webots

Free to use 4 1.000 1.000 1.000 1.000

Open source 2 0 1.000 1.000 1.000

ROS Integration 6 0.800 1.000 1.000 0.800

Programming

languages
3 1.000 0.667 0.333 1.000

UI functionality 6 1.000 1.000 0.333 1.000

Model format

support
4 1.000 1.000 0 0.250

Physics engine

support
3 1.000 1.000 0 0

Real time factor 4 0.914 1.000 0.789 0.849

Average load

CPU efficiency
2 0.364 0.174 0.333 1.000

Intense load

CPU efficiency
2 0.583 0.304 0.583 1.000

IMU angular

velocity error
10 0.875 1.000 0.792 0.867

IMU linear

acceleration

error

10 1.000 0.713 0.424 0.736

Total 56 49.100 49.087 32.148 44.226

The final result gives us two remarkably close simulators, CoppeliaSim and Gazebo.

These are the most accurate ones, and the most compatible in terms of programming

languages, ROS integration and formats supported.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

53
Pablo Suárez Sánchez

Conclusion

The comparison gives us two software that are quantitatively better than the other,

however, the Webots platform is indeed not that far from them.

According to the data, the Webots software is the most efficient of the four, giving also

great marks on compatibility, real time factor and simulated vs real data errors. This

added to the user-friendly interface, the software being open source, and the wide

range of pre-built robots and sensors, make it an excellent choice for this project.

2.3. Performance metrics

In order to judge if the implementation of the algorithms explained before, some

performance and efficiency metrics should be stated. For navigation, planning or

obstacle avoidance algorithms, we can state some performance criteria:

• Mission success: number of successful missions.

• Path length: distance travelled to accomplish the task.

• Time: time taken to accomplish the task.

• Collisions: number of collisions per task, per distance and per time

• Obstacle clearance: minimum and mean distance to the obstacles

• Robustness in narrow spaces: number of narrow passages traversed.

• Smoothness of the trajectory: relative to control effort

This performance metrics have been stated by an article named “Quantitative metrics

for Mobile Robots Navigation” (Muñoz & Valencia, 210). These provide a great

approach to similar algorithms and the benchmarks used to judge each

implementation.

These metrics can also be sorted in three different importance orders:

• Safety metrics: metrics expressing the relationship between the data and the

safeness of the trajectory followed. This includes the mean distance between

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

54
Pablo Suárez Sánchez

the robot and the obstacles through the hole mission, and the minimum mean

distance to obstacles too.

• Dimensional metrics: the trajectory to a goal is considered in space and time

means. This metrics include length of the covered trajectory, mean distance to

goal or time taken to accomplish the mission.

• Smoothness metrics: smoothness in a trajectory shows the consistency

between de decision and action that the navigation control system makes.

These me be more qualitative or subjective metrics, meaning that the

supervisor manipulating the robot, can judge if the robot’s movement and

actions are smooth and accurate.

3. System design

In this section, I will delve into some important aspects of the system’s design, where

the foundation of the project will be led. By making these careful considerations and

setting up the simulation environment appropriately, we aim to create a, accurate

environment to successfully evaluate and validate each algorithm’s performance.

3.1. E-puck robot

The e-puck robot is an open-hardware and onboard open-source-software developed

by Michael Bonani and Francesco Mondadada at the EPFL (Switzerland). It is a small

differential wheeled mobile robot really spread within the scientific community research

ambit and also orientated to educational purposes, due to its open hardware

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

55
Pablo Suárez Sánchez

characteristic, being built and sold by several companies and making its price really

competitive and suitable for these ambits (Gonçalves, et al., 2009).

Its main characteristics are highlighted as:

• Size and weight: it’s a really compact and lightweight robot, making it easy to

transport and manipulate

• Differential wheeled design: this kind of design enables programming smooth

and precise movements

• Sensors and expandability: it is equipped with a nice variety of sensors allowing

to scan its surroundings. It also features expansion slots to add additional

sensors or other modules, making it flexible in that aspect.

• Processing power and communications: The robot is powered by a

microcontroller which provides sufficient processing power to run algorithms

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

56
Pablo Suárez Sánchez

and commands. It also features wireless communications support, making this

robot suitable for communicating with other robots or a central control system.

A more detailed specifications table is given:

Table 4 - E-puck robot specifications (Gonçalves, et al., 2009).

Diameter 70 mm RAM 8 kB

Height 50 mm Flash memory 144 kB

Weight 200 g Sensors

8 infrared

proximity and

light sensors

·3D

accelerometer

Max speed 13 cm/s Camera

VGA Colour

camera

(640x480)

Autonomy 2 h moving LEDs
8 LEDs in ring +

1 body + 1 front

Microcontroller

dsPiC

30F6014A

@60MHz

Comms
Standard Serial

Port, Bluetooth

On the other hand, there are some other interesting points or features of this kind of

robots:

• Ease of use: it features user-friendly software interfaces and development

tools.

• Documentation and Community Support: lots of comprehensive

documentation, tutorials, or sample code to use. It also has a wide online

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

57
Pablo Suárez Sánchez

community of users and developers, providing other ideas, resources, and

troubleshooting.

• Affordability: It’s open-hardware nature allows companies to develop these on

competitive prices, allowing it to be used on educational and research

purposes with limited budgets.

• Research and educational impact: thanks to much of the above-mentioned

points, this kind of robot is widely spread in these areas, as a significant

research and educational tool.

• Simulation: it’s also a widespread robot implemented in numerous simulators

as, especially for this project, the Webots platform.

3.2. Simulation environment set-up

All robot movement simulations will be carried out on Webots, using the MATLAB

plugin and coding for the controller’s implementations. The Webots environment is a

really customisable and flexible environment, permitting precise bit also graphically

accurate simulations. Depending on the algorithm being tested the set up will be a bit

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

58
Pablo Suárez Sánchez

different, but there are some common main characters on this play:

• World setup: each world created on Webots consists of some basic parameters

needed to perform the simulation. These are defined as “WorldInfo” and

contain the basis for the simulation. Some of the most important include:

o Basic world info: includes title, description, or window management.

o Gravity: sets up the gravitational force acting on the objects on the

simulation. Set as 9.81 m/s^2 as default.

o CFM (Constraint Force Mixing): controls the force of the physics

engine, in order to manage joints and constraints.

o Physics: to enable, disable or change the physics engine parameters

o Basic time step: specifies the timestep used for calculations on the

simulation. Will be set to 64 ms.

o FPS: defines the desired framerate for rendering the simulation’s

graphical environment. Set to 30 fps for performance.

o Coordinate system: defines the coordinate system type.

o GPS coordinate system and reference: specifies the coordinate system

type used by GPS sensors and sets up the origin point for these. Set to

local and (0,0,0) by default.

o Force and torque scales: these parameters affect the drag and

resistance forces and torques of the simulation.

o Contact properties: specifies properties related to object collisions and

contact physics

o Other performance parameters

• A viewpoint and background light will also be needed. These need to be

adjusted in order to have a visual good-looking simulation.

• The e-puck robot is the main essential on the simulation:

o Translation and rotation: which will define the starting point and

orientation of the robot

o Controller: specifies the controller loaded into the robot

o Supervisor: enables the robot controller to access the “administrator”

functions, as accessing some world parameters, or other robot’s

functions and control.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

59
Pablo Suárez Sánchez

o Camera settings: camera resolution, noise and FOV adjustments

o Sensor slots: this enables the user to add other sensors on the robot’s

expansion slots. In this work this will be used to include the GPS and

compass modules. A LiDAR will also be included to simulate sensor-

based navigation algorithms (Bug2 algorithm and Artificial Potential

Fields).

o Other settings: battery drain simulation, emitter and receiver channels

for communications, and others.

Figure 15 - E-puck robot on Webots simulation.

• The plain rectangle arena will also be present on all the simulations. This node

crates a rectangular plain tiled arena, surrounded by walls. This will allow to

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

60
Pablo Suárez Sánchez

test the robot on a plain terrain, as well as being the basis to place other objects

and obstacles.

Figure 16 - Webots rectangle arena node.

3.2.1. Basic navigation algorithms test arena

These simple algorithms will just be tested on the environment just mentioned. There’s

no need to add anything else to the simulation, as the only need on this test is to allow

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

61
Pablo Suárez Sánchez

the robot to move along the arena and collect this movement data in order to analyse

it later on.

Figure 17 - Simulation visual set-up for go to a point algorithm.

3.2.2. Sensor-based Navigation Algorithms

In this case, these algorithms will need a more complex test arena, as some obstacles

will be needed to test the performance of these. As mentioned before, in this case a

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

62
Pablo Suárez Sánchez

LiDAR sensor will be included on the sensor’s slot of the e-puck robot. The first

obstacle test arena used for the Bug2 algorithm will be the following:

Figure 18 - Set-up for Bug2 algorithm testing.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

63
Pablo Suárez Sánchez

To test this kind of algorithm’s performance, other kind of obstacle display will be

tested, in order to test its strengths and weaknesses:

Figure 19 - Bug2 algorithm second test arena.

To finish with the sensor-based navigation algorithms being implemented, we have

the Artificial Potential Fields algorithm, which due to its complexity and

environment-depending nature, it’s difficult to define the constants that define its

operation, this algorithm will be tested in a really simple obstacle map:

Figure 20 - APF algorithm test arena set-up.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

64
Pablo Suárez Sánchez

3.2.3. Map-based Navigation Algorithms

In this case, defining the map and environment of the simulation is crucial, as these

algorithms will be tested against these designs. In case of Grassfire algorithm or

map generation ones, these will be tested on a maze:

Figure 21 - Map-based algorithms maze test arena.

For more complex algorithms, this maze can also be used, but it’s more interesting

to analyse those in a different map or scenario, which includes different paths or

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

65
Pablo Suárez Sánchez

solutions to get to the same target point. These search algorithms like Dijkstra or

A*, will be tested on the following map:

Figure 22 - Search algorithms test arena obstacle layout.

3.2.4. Map generation algorithms

Finally, the map generation algorithms considered for this project, such as

probabilistic maps and RRT map generations, will directly be implemented on the

MATLAB suite. These algorithms don’t generate something suitable to simulate on

Webots directly, as it does not control a robot’s movement or navigation. In these

cases, simulations will be implemented on MATLAB, providing graphs and data, in

order to understand their functioning and estimate their performance in different

cases. In case of probabilistic map generation, this algorithm will serve as main

foundation to implement search algorithms (Dijkstra and A*), as it is capable of

generating a visual graph of one of the simulation arenas showed above, in which

these search algorithms will be tested then.

3.3. Data collection and analysis

These kinds of precise and realistic simulations generate extensive datasets, for

which some powerful processing tools to undergo their analysis. MATLAB stands

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

66
Pablo Suárez Sánchez

out as an ideal platform for this task, as it’s really capable of handling large volumes

of data and still work efficiently. Since all the implementations are already coded

on MATLAB language, transferring these data from the Webots platform to

MATLAB ensures an easy and smooth workflow.

4. Implementation

In this section, we delve into the implementation details of each algorithm, aiming

to provide a clear understanding of its functionality and operation within our

system. While the code implementations are provided in the annexes for reference,

our focus here is on elucidating the underlying principles and mechanisms behind

each algorithm's behaviour. Through illustrative explanations and conceptual

breakdowns, we aim to demystify the implementation process and foster a deeper

comprehension of how these algorithms are applied in practice. Let's explore each

algorithm's functioning and discuss the key considerations in its implementation.

4.1. Simple navigation algorithms – Move to a point

The first and simplest but necessary algorithm consists of making the robot go from

its initial position to a target point in a precise and efficient way. This algorithm

implements two simple proportional controllers, one used to control the robot’s

linear speed towards the goal; and the second one used to steer the robot and

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

67
Pablo Suárez Sánchez

keep it always facing our target. The main algorithm is easily explained with the

following flowchart:

Figure 23 - Go to a point algorithm flowchart.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

68
Pablo Suárez Sánchez

Once designed and implemented, the controllers’ variables must be tuned in

order to find an optimal functioning of this one. The variables for this tunning are

the proportional gains of both linear speed and steering of the robot. These will

be the main analysis for this simple algorithm, which will be discussed in next

section.

4.2. Simple navigation algorithms – Follow a trajectory

On the other hand, it comes the second but really important simple move

algorithm, the trajectory following. Being able to design an accurate and efficient

trajectory following algorithm is a must in these cases, as then this will serve as

foundation for other “trajectory calculating algorithms”, as those won’t implement

the robot’s movement itself. The strategy used to address this part, is known as

Pure Pursuit, as it involves calculating a moving point close to our robot, but

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

69
Pablo Suárez Sánchez

always faced towards our goal trajectory, making this point closely go before the

robot’s movement.

Figure 24 - Trajectory following and Pure Pursuit algorithm flowchart.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

70
Pablo Suárez Sánchez

In this case, variables to be tuned are P controller’s gains for speed and steering,

but there’s other really important parameter, the Lookahead distance, which

determines the point along the trajectory which the robots aim to pursue. This

parameter governs how far ahead does the robot anticipate the trajectory, making

it a critical factor as it directly affects the robot’s ability to follow the desired

trajectory accurately. Adjusting this parameter can lead to a responsive, smooth,

and accurate trajectory following algorithm.

4.3. Reactive Navigation – Bug2 Algorithm

Starting with reactive navigation algorithms, bug algorithms are some of the most

basic but effective ones. In this case, I have designed the improved Bug2 algorithm

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

71
Pablo Suárez Sánchez

version, as it stands as the evolution and combination of Bug0 and Bug1 but

obtaining much better overall performance in most of the scenarios.

This kind of algorithm can be easily implemented as a Finite State Machine (FSM):

Figure 25 - Bug2 algorithm state machine implementation.

This diagram contains only the basic statements to make the algorithm work, but

each state and transition have their own internal variables, conditional

statements and actions, which implementation can be consulted on the code

appendixes of this project.

As other comments, in this case we get again two proportional controllers and

their gains to tune, one controls the speed at which the robot advances towards

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

72
Pablo Suárez Sánchez

the goal (really similar to the cases studied before), and the other one monitors

the distance between wall and robot during the wall-follow state. Tuning this

second proportional gain correctly, should lead to a precise wall following

algorithm.

4.4. Reactive Navigation – Artificial Potential Fields

This Artificial Potential Fields approach for reactive navigation techniques requires

an accurate and well-defined workflow. The core of these algorithms is to mimic

the behaviour of a physical system where the robot is seen as a particle navigating

through a field of forces. The goal point acts as an attractive force that pulls the

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

73
Pablo Suárez Sánchez

robot towards it, while all obstacles generate a repulsive force in order to push the

robot away from them.

Figure 26 - AFP algorithm flowchart.

The key components of this algorithm are the forces and their calculations. This

kind of techniques are highly constant dependant, as for each obstacles display or

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

74
Pablo Suárez Sánchez

robot’s position, some values for the potential fields constants will make the robot

work its way to the goal point or not. The main focus here will be to try to find the

suitable values for these, in our simulations case.

4.5. Map-Based Navigation – Dijkstra’s algorithm

Dijkstra’s search algorithm is a fundamental algorithm in robotics and graph theory,

used to find the shortest path between two nodes in a graph. There are various

important concepts to take into account before implementing this kind of algorithm.

First of all, Dijkstra’s algorithm operates on a graph, a collection of nodes

connected by edges. Each of these edges or links have an associated weight or

cost, typically representing distance, time, or another relevant metric. In this case,

for simplicity and efficiency, distance cost functions will be the metric chosen. In

this part, graphs will be assumed to be already implemented.

This algorithm always aims to find the shortest path from a designated node to all

of the other nodes of the graph. The shortest path to each will be the one with the

minimum total cost. Dijkstra implements a greedy approach, which means that it

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

75
Pablo Suárez Sánchez

makes locally optimal choices on each step with the hope of finding a globally

optimal solution.

In this case once the path is calculated through the graph, the trajectory following

algorithm (Pure Pursuit) will be used, in order to achieve the robot’s navigation

through the map.

Figure 27 - Dijkstra's search algorithm and path following implementation.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

76
Pablo Suárez Sánchez

4.6. Map-Based Navigation – A* algorithm

The A* algorithm is a widely used search algorithm, especially in robotics or the

latest artificial intelligence applications, particularly used in pathfinding and graph

exploration. It introduces an “extension” or improvement in some cases of the

Dijkstra’s algorithm, as it adds the benefit of applying a heuristic function to guide

the search process.

A* (A star) operates over a graph constructed by nodes connected by edges, with

again each edge having an associated cost representing some relevant metric.

What sets this algorithm apart is the inclusion of a heuristic function, which helps

guiding the search towards the goal node more efficiently.

 This approach implements a best-first search strategy, prioritizing nodes with

lower costs for exploration. By doing this, it effectively balances the greedy

approach of Dijkstra’s algorithm, and the informed search provided by the heuristic

functions.

Again, in this project’s context, implementing the A* algorithm for map-based

navigation, provides the robot with an intelligent pathfinding capability, as once the

algorithm calculates the shortest path through the graph, it can be again integrated

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

77
Pablo Suárez Sánchez

with the Pure Pursuit algorithm implemented before to enable smooth and efficient

navigation through the computed waypoints.

The main algorithm, will be the same as Dijkstra’s but obviously changing the main

searching function for:

Figure 28 - A* algorithm and trajectory follow flowchart.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

78
Pablo Suárez Sánchez

4.7. Map generation algorithms – Probabilistic roadmaps

Probabilistic roadmaps algorithms (PRM) are one of the fundamental approaches

to map generation in robotics and motion planning. This algorithm generates a

roadmap (graph), by randomly sampling points in the map, assessing if they’re

transitable or not, and then stablishing connections between valid configurations

for paths. Unlike other graph-based approaches or grid maps, this kind of algorithm

is capable of handling complex obstacle geometries and spaces configuration.

The process typically involves different steps. First of all, handling the space

representation, having many ways to do so, it allows to recognise the obstacles

position, and to determine which points would be transitable or which paths would

be viable or not. Then the map is randomly sampled, placing points all over the

space representation, making sure that each of these is in an unoccupied position

and discarding the ones that are not. Then a connection is stablished between

close nodes (how close they are is usually determined by a control parameter),

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

79
Pablo Suárez Sánchez

that are possible to link, creating a network of paths through which the robot can

move along.

Figure 29 - Probability Roadmaps generation algorithm flowchart.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

80
Pablo Suárez Sánchez

To determine if two points are linkable, the Bresenham algorithm has been

implemented. The Bresenham algorithm is a line-drawing technique used to drag

lines between 2 points in a discrete grid (in this case the map given). It’s commonly

used on computer graphics and image processing because of its efficiency and

simplicity. Determining the line between two generated points and checking if it

goes through any of the grid cells occupied by a wall, determines if two points are

linkable or not.

4.8. Map generation algorithms – RRT (Rapidly-Exploring Random Tree)

The Rapidly-Exploring Random Tree (RRT) algorithm is a popular and simple

motion planning algorithm widely used in robotics to efficiently find possible paths

for robots operating in complex spaces.

This algorithm starts randomly creates points on the map, and connects them to

the existing point tree, continuing with this process until the maximum iterations or

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

81
Pablo Suárez Sánchez

the goal point are reached. It also checks for collisions when creating a new point,

in order to create a viable path through the map.

Figure 30 - RRT flowchart.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

82
Pablo Suárez Sánchez

5. Results and discussion

Having explored the implementation and functioning of each algorithm within these

systems, it’s time to turn the attention into the results obtained from our simulations, testing

each of them for different situations and analyse and interpret all the data collected during

these experiments, shedding some light into each algorithms performance, effectiveness,

and behaviour in each case.

5.1. Move to a point

In this first section, results from the experimentation with the move to a point algorithm

will be presented and evaluated. This analysis will be done under varying

configurations of both steering and speed proportional controller’s gain. By

systematically changing these values, the aim is to assess their impact on the

algorithms effectiveness and precision in guiding the e-puck robot towards the target

point.

Figure 31 - Move to a point algorithm trajectories for Kv comparison.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

83
Pablo Suárez Sánchez

Figure 32 - Move to a point algorithm distances to target for Kv comparison.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

84
Pablo Suárez Sánchez

Table 5 - Kv values and statistics comparison for move to a point algorithm.

Kv values (Kh=1) 0.1 0.5 1 2 4 5 10

Mean error (m) 1.32e-5 1.29e-5 4.28e-5 1.41e-3 6.00e-3 9.80e-3 4.13e-2

Standard

deviation (m)
2.65e-4 5.30e-4 1.28e-3 3.33e-3 1.05e-2 1.51e-2 4.07e-2

Ideal distance (m) 2.8284 2.8284 2.8284 2.8284 2.8284 2.8284 2.8284

Real distance

travelled (m)
3.1789 2.8569 2.8443 2.8524 2.8792 2.8933 2.9707

Mean Speed

(cm/s)
0.11269 0.5062 1.0066 2.0176 3.9018 4.6993 7.4988

Time to Target (s) 2820.928 564.416 282.624 141.440 73.856 61.632 39.680

Starting with the tuning for the proportional controller gain for the speed (Kv). The

steering gain has been set to a neutral unit value in this case.

Statistic values such as mean error and standard deviation have been computed by

comparing the trajectory followed by each case, against an ideal trajectory to the

objective point, in this case, a straight line from start to target points.

It’s easy to realise how does this value affect the robot’s performance. This controller

gives the wheels speed an input of Kv times the distance to the objective. This makes

high Kv values to achieve much higher mean speeds, and lower times to target values.

On the other hand, this makes the robot make much larger curves, as the robot

advances quickly towards the goal, while the steering controller hasn’t already

achieved to match the target point orientation completely. We can clearly observe this

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

85
Pablo Suárez Sánchez

in Figure 31, where high valued Kv controllers make much larger radius turns, while

lower ones get similar results to the ideal straight line.

On the other hand, Figure 32 shows the distance to target vs time graphic, where we

can see how higher values achieve the objective point in an acceptable amount of

time, while low values spend too much time to do so.

In this case, the objective would be to achieve a precise but fast result, so intermediate

values should be fine, for example a value of Kv=5, gives a fast navigation, while

maintaining an error of less than 1 cm, which is perfectly acceptable.

Next would be analysing the effect of changing the controller gain for steering (Kh),

again assigning a neutral or good value for Kv. Using the results of last section, a value

of Kv=4 has been selected.

Figure 33 - Move to a point algorithm trajectories for Kh comparison.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

86
Pablo Suárez Sánchez

Figure 34 - Move to a point algorithm distances to target for Kh comparison.

Table 6 - Kv values and statistics comparison for move to a point algorithm.

Kh values (Kv=4) 0.1 0.2 0.5 1 2 5 10

Mean error (m) 0.3155 9.76e-2 1.90e-2 6.00e-3 1.85e-3 6.36e-4 2.50e-4

Standard deviation

(m)
0.2545 8.51e-2 2.62e-2 1.05e-2 4.04e-3 1.77e-3 9.16e-4

Ideal distance (m) 2.8284 2.8284 2.8284 2.8284 2.8284 2.8284 2.8284

Real distance

travelled (m)
4.1565 3.1766 2.9381 2.8792 2.8522 2.8414 2.8356

Mean Speed (cm/s) 3.9697 4.1501 3.9576 3.9018 3.8752 3.8573 3.8527

Time to Target (s) 104.768 76.608 74.304 73.856 73.664 73.728 73.664

In this case, lower values clearly achieve poorer results. This controller applies a

difference of speed between the two differential wheels in order to make the robot

rotate. The value of this difference is determined by Kh times the difference in

orientation (angle) between the robot’s actual heading and the point’s position.

Lower values mean much slower and smooth turns, but affecting this to the time

taken, the big curve covered to achieve the objective and the precision of the

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

87
Pablo Suárez Sánchez

trajectory compared to the ideal one. Even for the lowest value, the proximity

threshold value to consider the objective reached, had to be incremented, as the

controller wasn’t able to achieve that precision.

In this case, the conclusion is easy to get to. A high value outputs much lower

mean errors, distance covered and time to target. The highest value does not mean

to be the best, as in some cases, it would make the robot oscillate too much, so a

value of Kh=2, would be perfect, achieving the fastest result and still maintaining

a mean error of less than 1 cm.

5.2. Follow a trajectory – Pure Pursuit

Moving onto the results of the trajectory following algorithm implementation, the

data from the Pure Pursuit algorithm will be analysed. Again, this analysis will be

based on tuning the controller gains (Kv, Kh), and also understanding the

Lookahead (L) factor, and how do these impact the robot’s behaviour while

following a trajectory. For cases like straight lines, this does not have much interest,

as it only applies a move to a point strategy, obtaining similar results to the section

before. In this case, the algorithms will be tested against a sinusoidal trajectory,

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

88
Pablo Suárez Sánchez

which involves some straight-like sections and sharp turns, perfect to test the

algorithms and movement possibilities and limitations.

Figure 35 - Pure Pursuit algorithm trajectories for Kv comparison.

Table 7 - Kv values and statistics comparison for Pure Pursuit.

Kv values (Kh=1, L=0.1) 0.5 1 2 5

Mean error (m) 1.44e-4 1.30e-4 1.57e-4 5.49e-4

Standard deviation (m) 2.07e-4 3.26e-4 5.80e-4 1.28e-3

Ideal distance (m) 3.5363 3.5363 3.5364 3.5368

Real distance travelled (m) 3.5409 3.5378 3.5369 3.5412

Mean Speed (cm/s) 0.1002 0.2002 0.4003 1.0007

Time to Target (s) 3532.352 1766.464 883.52 353.92

In the case of Kv values, there’s not much change or variation in the trajectory

error itself, as it only seems to affect the time taken to accomplish the goal or the

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

89
Pablo Suárez Sánchez

mean speeds. So, in this case, the optimal value should be between 2 and 5, as

depending on the Kh value selected, these results may vary.

Figure 36 - Pure Pursuit algorithm trajectories for Kh comparison.

Table 8 - Kh values and statistics comparison for Pure Pursuit.

Kh values (Kv=3, L=0.1) 0.5 1 2

Mean error (m) 1.73e-2 9.28e-3 6.00e-3

Standard deviation (m) 2.61e-2 1.13e-2 4.01e-3

Ideal distance (m) 3.6498 3.5832 3.5532

Real distance travelled (m) 3.7903 3.6285 3.5565

Mean Speed (cm/s) 3.5378 3.4613 3.4281

Time to Target (s) 107.2 104.869 103.808

The Kh value selection is more important here, for high Kv values such as the

chosen one (Kv=3), the robot moves quite fast, so it will be important to make the

steering responsive and its gain should be capable of handling the sharp turns.

Low values such as 0.5, don’t give high mean error outputs, but as we can see on

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

90
Pablo Suárez Sánchez

the graph, when the robot is moving faster, it doesn’t respond well to sharp turns,

and gets a bit deviated from the ideal trajectory.

On the other hand, higher values like 2, get the least error and deviation, similar

distance travelled and the least time to target. So again, A higher value for the

steering controller is the right choice.

Once the effects of speed and steering controllers have been analysed, it’s time to

sample the Lookahead factor (L), which determines the distance from the robot, in

which the pursuit point is generated. Higher values usually provide smooth

trajectories, but the movement described will be too different to the one desired.

On the other hand, low values provide trajectories similar to the ideal ones, but the

movement is usually more unstable, erratic, or oscillating.

Figure 37 - Pure Pursuit algorithm trajectories for L comparison.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

91
Pablo Suárez Sánchez

Table 9 - L values and statistics comparison for Pure Pursuit.

Kh values (Kv=2.5, Kh=2) 0.01 0.05 0.1 0.5 1 3

Mean error (m) 3.97e-4 1.93e-3 5.53e-3 0.10 0.21 0.20

Standard deviation (m) 8.31e-4 1.92e-3 3.42e-3 5.69e-2 0.11 0.11

Ideal distance (m) 3.5410 3.5473 3.5478 3.5121 3.5099 3.5108

Real distance travelled (m) 3.5508 3.5618 3.5478 3.1383 2.9649 2.9165

Mean Speed (cm/s) 1.04959 2.0055 2.8882 7.5555 11.0301 12.5540

Time to Target (s) 338.368 177.664 122.752 41.600 26.944 23.296

As just described, the trajectories vary a lot depending on this factor. Values such

as L=3, provide almost a straight line to an endpoint (it turns out that the ideal

trajectory being sampled ends on x=3, so this lookahead factor, just drives the

robot to the end point of the trajectory. Values higher than 3, will provide the same

output).

On the other hand, lower values present a really precise and ideal trajectory, but

providing high travel times and low speeds.

L=0.1 seems like the optimal value, as it provides a really accurate trajectory, with

low mean error and deviation, a similar travelled distance, and an acceptable time

to target (meaning also medium-high values for speed).

It’s also important to mention that the ideal trajectory has been sampled over the

same X values than the trajectory they were being compared with, in order to get

the error calculations done properly (that’s why each of the ideal distances is a bit

different from each other).

Finally, we can conclude that the best values for this kind of controller, in this

simulation case, will be Kv=[3, 5], Kh=2 and L=0.1. Which will be useful in further

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

92
Pablo Suárez Sánchez

implementations, where some algorithm-generated trajectories will be needed to

follow accurately.

5.3. Bug2 algorithm

Once these simple movement algorithms have been analysed, it’s time to get into

sensor-based navigation, starting with Bug2 algorithm.

Figure 38 - Trajectory comparison for Kf values in Bug2 algorithm.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

93
Pablo Suárez Sánchez

Figure 39 - Minimum distance to wall vs time graph for different Kf values.

Table 10 - Kf values and statistics comparison for Bug2 algorithm.

Kf values 2 5 10

Mean speeds (cm/s) 1.9641 1.9757 1.9639

Time to Target (s) 342.336 328.576 323.392

Minimum distance to wall (cm) 6.890 7.303 12.589

Mean distance to wall (cm) 24.656 24.464 24.749

Collisions 0 0 0

Target achieved yes yes yes

These are the outputs for the Bug2 algorithm tested over the first map. The graphs

and table show the results for different values of Kf, which is the proportional gain

for the controller which maintains the distance between robot and wall, while wall

following an obstacle.

On Figure 38 we can see the different trajectories described depending on the

value of the Kf controller. Each of the state machine’s state is also visible, as the

straight line to the objective, wall following and the re-encounter with m-line can be

easily recognised. We can also see how each value changes the oscillation of the

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

94
Pablo Suárez Sánchez

robot while following the wall, although it’s true that the walls are not too long, and

the wall following controller can’t really stabilize in a little matter of time.

On Figure 39 the distance to the closest wall is plotted. There are some fuzzy

values for Kf=5 specially, those result from the turns at the edges of the walls,

where the LiDAR sometimes gets the wall out of range, getting a peak on the

distance. The “sinusoidal-like” parts represent the wall follow state, then the peaks

and distortions usually plot the turns at the wall’s edges.

Over the statistics plotted, we can see that the output for each value is quite

similar, there’s no collisions and target is achieved for all of this values, while for

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

95
Pablo Suárez Sánchez

example, lower values return some collisions, even some of them make the target

unreachable, getting the robot stuck in some wall corner.

So, the conclusion, or value with the best result here, should be between 5 and

10, as they are faster to achieve the goal, oscillation is not excessive, and minimum

distances to walls are large enough to be acceptable and safe.

On the other hand, we have the second map implemented. This one aim to show

and test the nature of this algorithm, and in which obstacle configurations it does

work well.

Figure 40 - Turn side comparison for Bug2 algorithm.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

96
Pablo Suárez Sánchez

Table 11 - Turn side statistics comparison.

Turn left right

Mean speeds (cm/s) 1.9726 1.8709

Time to Target (s) 989.312 390.656

Collisions 0 0

Target achieved yes yes

In this case, depending on which side turning is coded on the algorithm, it will get

to the objective on an efficient way, or not, as it would have to go all around the

obstacle in order to get too the target point.

Here as the walls are larger, we can appreciate the oscillation of the wall following

controller (in this case Kf=7). This could be reduced without affecting the speed

too much, implementing an integrator, or even also a derivative action, controlling

the system with a PID controller.

5.4. Artificial Potential Fields

This algorithm was one of the main challenges in this project, as it involves a

difficult tuning task with attractive and repulsive field constants, in order to achieve

an optimal performance. Despite having done meticulous and exhaustive

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

97
Pablo Suárez Sánchez

experimentation and adjustments, a lot of problems were encountered in fine-

tuning these.

The importance of this lies in finding the adequate balance between both fields,

achieving smooth navigation towards the goal, while ensuring a safe and robust

avoidance behaviour.

Despite the efforts, the implementation of this APF algorithm did not output the

desired results, as we can see on Figure 41. The robot kept on colliding with the

obstacles, with all values inputted during experimentation.

Figure 41 - APF algorithm failed trajectory.

As displayed on the graph, the robot orientates towards the goal point, and when

getting close to the obstacle, it tries to avoid it, represented on the little rattling

when getting near to the obstacle. It does not achieve it, and crashes with the

obstacle, sliding over it until reaching the top. The problem may be on the obstacle

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

98
Pablo Suárez Sánchez

recognition algorithm implementation, as it may not output the obstacle’s position

correctly.

5.5. Grassfire algorithm

This section presents the results obtained from the grassfire algorithm, a classical

path-finding algorithm widely used in robotics and navigation. Analysing this

algorithm only involves checking if the maze is solved, and how much time does it

take to calculate.

Figure 42 - Grassfire algorithm maze solution output.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

99
Pablo Suárez Sánchez

Table 12 - Time to calculate Grassfire maze solution.

Time to calculate (s) 0.059236 s

Once calculated, the Pure Pursuit algorithm is applied, obtaining the movement

through all the maze without any problem.

5.6. Probabilistic roadmaps generation

It’s interesting to analyse this algorithm before getting into search algorithms

(Dijkstra and A*). This probability roadmap technique generates a graph that will

then be explored by both Dijkstra and A* algorithms, in order to search for optimal

paths.

Figure 43 - PRM graph generated for maze arena.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

100
Pablo Suárez Sánchez

Table 13 - Maze graph calculation statistics.

Generated points 2000

Valid nodes 1202

Generated edges 12474

Generation time (s) 0.1573

 For the first maze case, the algorithm seems quite efficient and accurate. All nodes and

edges can be clearly distinguished in Figure 43, and how do they fit around the maze’s walls.

The algorithm is also time efficient, with a generation time of 0.1573 seconds, quite acceptable.

For the second map, we have this output:

Figure 44 - Graph generated by PRM algorithm for search algorithms second test.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

101
Pablo Suárez Sánchez

Table 14 - Test arena 2 graph generation statistics.

Generated points 2500

Valid nodes 1698

Generated edges 24104

Generation time (s) 0.32754

Again, the roadmap is successfully generated. In this case, there’s some more points being

generated, as the map is a bit more complex, and has a widespread variety of obstacles. Again,

all roadmaps and nodes are shown in Figure 44, and time taken to generate those is

acceptable, less than half a second.

5.1. Dijkstra and A* algorithms

In this part, results from the evaluation and comparison of this two widely used pathfinding

algorithms will be presented. These algorithms are really efficient and accurate in path

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

102
Pablo Suárez Sánchez

searching over graphs like the ones generated by the probability roadmap algorithm showed

above.

The first test, was based on a simple maze:

Figure 45 - Maze graph path output from Dijkstra's and A* heuristic algorithms.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

103
Pablo Suárez Sánchez

Table 15 - Search algorithms output statistics.

Method Dijkstra
A*

(Euclidean)

A*

(Manhattan)

A*

(Chebyshev)

A*

(Octile)

A*

(None)

Searching

time (s)
0.087503 0.14497 0.078754 0.16201 0.12418 0.088238

Path cost (m) 25.7441 34.8839 34.8839 34.8839 34.8839 25.7441

Knowing how do this algorithms work, it’s easy to see that there’s something not making sense

on these results. A* star algorithm is a complete and effective algorithm, that always finds the

shortest path if there’s any. In this case, A* is searching and finding a path (every different

heuristic is doing so), but Dijkstra’s algorithm is always outputting a shorter path, meaning that

the ones found by A* are not optimal, when they should be at least equal.

Observing the case in which the A* algorithm is run, but without any heuristic function (this

makes the algorithm run exactly as Dijkstra’s), gives a clue on where the error may be. This

one outputs just the same result (even almost the same search time), as Dijkstra’s, what shows

that the A* algorithm itself is well set. The problem may be then on the heuristic’s

implementation.

On Figure 45, we can clearly see the difference between paths. The A* outputs are all the

same, but clearly more erratic and larger than the others. Despite all of this, all of these

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

104
Pablo Suárez Sánchez

combinations make the robot work and go from star point to target without any problems, using

the Pure Pursuit algorithm over the calculated paths.

For the second test, results don’t really vary at all:

Figure 46 - 2nd test arena path output from Dijkstra's and A* heuristic algorithms.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

105
Pablo Suárez Sánchez

Table 16 - 2nd test arena output statistics for search algorithms.

Method Dijkstra
A*

(Euclidean)

A*

(Manhattan)

A*

(Chebyshev)

A*

(Octile)

A*

(None)

Searching

time (s)
0.21534 0.17455 0.12777 0.1514 0.10555 0.12409

Path cost (m) 11.8171 14.4198 14.4198 14.4198 14.4198 14.4198

In this case, all A* outputs seem more efficient timewise, as they have lower calculation times.

But again, the path found is not as optimal as Dijkstra’s, and using no heuristic function gives

again the same output as this one, giving again the same conclusion, there is something wrong

with the heuristics (although they may be doing something to guide the algorithm, as times are

quite shorter than Dijkstra’s this time).

5.1. RRT (Rapidly-Exploring Random Tree)

Last algorithm being tested is RRT, a path generating algorithm that grows a random point tree

from a starting point, until reaching (or not), the goal point. The implementation has 2 variables:

number of iterations and distance between points generated. Depending on these parameters,

trees will have longer or shorter links (distance between nodes) and will find or not a feasible

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

106
Pablo Suárez Sánchez

path (depends on the number of iterations inputted, and if that is enough or not). This algorithm

was teste against the same maze used on some sections above.

For a same number of iterations (5000 should be enough), some distances are sampled:

Figure 47 - RRT algorithm paths for different distance random points generation.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

107
Pablo Suárez Sánchez

Table 17 - RRT algorithm output statistics for different distance generated points.

Max distance between points (m) 0.1 0.3 0.5 0.7 1

Searching time (s) 0.10587 0.08958 0.03802 0.02139 0.01785

Iterations needed 5000 3754 2651 1875 1361

Target reached no yes yes yes yes

To make the 0.1 distance value find a viable path, we need to increment the number of

iterations, e.g. 20000 iterations:

Figure 48 - RRT path for 0.1 m distance generation.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

108
Pablo Suárez Sánchez

Table 18 - RRT output statistics for high iterations case.

Max distance between points (m) 0.1

Searching time (s) 0.27813

Iterations needed 10410

Target reached Yes

This algorithm also outputs viable paths to follow. Its nature makes it really random, for

example, in this case to output a 0.1m distanced nodes path, 20000 iterations were needed,

while next time executed, the code may need much less, or many more.

We can also distinguish how do paths change, depending on the distance used. In cases

where long distances are used, the path even goes through some of the wall’s vertexes, as

the Bresenham algorithm used, is not precise enough.

6. Conclusion and future work

In this project, a diverse range of algorithms has been explored, implemented, and analysed.

Algorithms for robotics path planning and navigation including go to a point, Pure pursuit, Bug

algorithms, Artificial Potential Fields; path searching algorithms such as Grassfire, Dijkstra, and

A*; or graph generating techniques like Probabilistic Roadmaps (PRMs) and Rapidly-Exploring

Random Trees (RRT). Each algorithm presented a unique behaviour, with their strengths and

limitations, offering some valuable insight into this gigantic world of robotics and its algorithms.

This experimentation revealed some key findings or challenges:

• Algorithm’s performance: a valuable analysis of different algorithms, and its

internal parameters and variables, which tuning turned out to be essential in

order to achieve good performances. Some algorithms such as the move to a

point, Pure Pursuit, Bug2 or Grassfire, turned out to be robust and efficient in

some way; while others such as APF, which proved challenging to tune

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

109
Pablo Suárez Sánchez

effectively, or A*, which results discovered some errors or malfunctions on the

heuristics implementation.

• Simulation tools: the project has also given a deep analysis and use of the

Webots platform, discovering a “user-friendly” interface with a really high

simulation power and precision. These results should also be tried to reproduce

in a real-life application, in order to test the scalability of this kind of tools.

• Computational efficiency: these kinds of realistic and precise simulations, are

usually really demanding computationally talking. This project has also given a

valuable insight into the need to optimise the coding of each algorithm.

• Sensitivity to environment changes: most of the algorithms have proved to

work nicely on each of its test arenas, but are they robust enough to work as

well on other more complex or completely different scenarios? Some other

implementations like the APF have proven to be really scenario-dependant.

Building upon all these findings and experimentation, a good basis for future

research and development can be stated:

• Real-world applications: transitioning to real world deployment and testing,

addressing some challenges mentioned like noise, hardware limitations,

environment variability or power consumption would be the next logical step.

• APF algorithm refinement or redesign: due to the failure to achieve the

functioning of this algorithm, exploring an alternative approach or redesign the

parameter tuning and optimization would make sense. Including some more

investigation of more advanced control techniques, machine learning or others,

to enhance the APF algorithm implemented.

• A* heuristics review: conducting the data analysis of this algorithm, showed

some limitations and inaccuracies that would impact the optimal path search.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

110
Pablo Suárez Sánchez

This review should include experimenting with different heuristic functions and

refining the ones already implemented.

• General code efficiency and redesign: a complete code review is always

advantageous in order to achieve computationally efficient and fast results.

Also improving the code’s readability and maintainability will enhance its

performance.

• Path refinement: implementing some post-processing techniques to paths

generated by search algorithms (Dijkstra, A*, RRT) such as smoothing

techniques or obstacle avoidance manoeuvres form example. These would

improve the path’s quality, reduce unnecessary turns causing energy waste or

enhance overall navigation efficiency.

• Replanning: implementing dynamic replanning strategies, particularly for

cases like A* algorithm, when encountering unexpected obstacles or changes

in the environment.

• Sensor integration and data collection: sensors are always theoretically

fabulous, but when getting into a real application, noise or error are always

present. Refining the sensor inputs or data collected would mitigate errors and

uncertainties of real-world applications. Implementing filtering or sensor-fusion

algorithms would improve data’s quality and reliability.

• Machine learning: investigating the integration of these techniques, such as

reinforcement learning or deep learning into path planning algorithms could

enable more adaptive and flexible navigation strategies capable of handling

uncertain situations.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

111
Pablo Suárez Sánchez

• Research on more techniques and algorithms: as mentioned on the literature

review there’s plenty of other algorithms or improvements for the ones

developed on this project.

7. Potential client companies

There’s a wide range of companies that would be interested in this kind of research.

Robotics and their control algorithms are truly relevant in the actual engineering’s

landscape, demanding the research and development of these control techniques for

lots of products and applications.

There are many companies which this project would suit to, depending on the

engineering area they focus on, some examples are given:

➢ Research institutions: MIT Robotics, many other universities.

➢ Robotics companies: Boston Dynamics, iRobot.

➢ Autonomous vehicles companies: Tesla, many other manufacturers working

on these technologies.

➢ Healthcare robotics: Intuitive Surgical, Hansen Medical.

➢ Drone and UAV manufacturers: DJI, AeroVironment.

➢ Logistics and warehouse: Amazon, KUKA.

➢ Government agencies: NASA, numerous defence departments.

Here there are three of the most interesting options:

• iRobot: This company is a pioneer in consumer and home robotics, very well

known for some products lime the Roomba vacuum cleaner. This project

aims and research, completely aligns with the development of this kind of

products, and the challenges faced when implementing these in real-world

environments.

• This company could be interested in the project as these kinds of algorithms

are the base of home robots like this vacuum cleaners, and how they manage

to follow particular paths or cover complete areas with precision. Also,

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

112
Pablo Suárez Sánchez

understanding each solution strengths and weaknesses would help to

enhance their technologies and overall performance.

• Tesla: This company’s big focus is on autonomous vehicles, so the project

involving navigation, route planning or localization algorithms would be

relevant in this. Also, the project’s emphasis on simulation and analysis of

data and results aligns with what autonomous cars or systems need in its

early development being made now. Analysis the performance of some

algorithms on complex scenarios and performing accurate and realistic

simulations on some kind of software would also be a great aspect that would

be on this company’s interest.

• Amazon: Amazon’s logistics and on-time deliveries are well known worldwide.

This is also possible because of how they manage and control their products

on warehouses. The project’s focus on indoor navigation, planning and

obstacle avoidance algorithms are a particularly relevant task for Amazon’s

engineering teams, as their logistics robots need to do these tasks accurately

and efficiently.

The value on this project could be found on the development of this algorithms

focused on indoor environments, in order to enhance Amazon’s robotic systems in

warehouse settings.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

113
Pablo Suárez Sánchez

Project planning

Figure 49 - Gantt chart illustrating the project's tasks and planification.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

114
Pablo Suárez Sánchez

References

Choset, H., Hager, G. & Dodds, Z., 2010. Robotic Motion Planning: Bug Algorithms

slides. s.l.:CMU School of Computer Science.

Choset, H. M., 2005. Principles of robot motion theory, algorithms, and

implementation. s.l.:Cambridge Mass, MIT Press.

Corke, P., 2017. Robotics, Vision, and Control. 2nd ed. s.l.:Springer.

Farley, A., Wang, J. & Marshall, J. A., 2022. How to pick a mobile robot simulator: A

quantitative comparison of CoppeliaSim, Gazebo, MORSE and Webots with focus on

accuracy of motion. Simulation modelling practice and theory, 120(102626).

Gonçalves, P. J., Paulo J.D. Torres, C. M. A. & Mondada, F., 2009. The e-puck, a

Robot Designed for Education in Engineering. Proceedings of the 9th Conference on

Autonomous Robot Systems and Competitions, Volume 1.

McGuire, K., Croon, G. d. & Tuyls, K., 2018. A comparative study of bug algorithms

for robot navigation. CoRR.

Muñoz, N. D. & Valencia, J. A., 210. Quantitative metrics for Mobile Robots

Navigation. Politécnico Colombiano Jaime Isaza Cadavid, University of Antioquia.

Universidad de Oviedo, n.d. Intensificación en Sistemas robóticos, Industrial

Engineering Master. s.l.:s.n.

Yufka, A. & Parlaktuna, O., 2009. Performance Comparison of the BUG’s Algorithms

for Mobile Robots.

Webots-Based Implementation and Simulation of Robotics Algorithms 6455ELE

115
Pablo Suárez Sánchez

Annexes

All code and simulated worlds have been uploaded to GitHub:

Webots Based Implementation and Simulation of Robotics Algorithms GitHub

https://github.com/psuarezzz/Webots-Based-Implementation-and-Simulation-of-Robotics-Algorithms

